1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Regents of the University of California
4 * Copyright (C) 2019 Western Digital Corporation or its affiliates.
5 * Copyright (C) 2020 FORTH-ICS/CARV
6 * Nick Kossifidis <mick@ics.forth.gr>
7 */
8
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/memblock.h>
12 #include <linux/initrd.h>
13 #include <linux/swap.h>
14 #include <linux/swiotlb.h>
15 #include <linux/sizes.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_reserved_mem.h>
18 #include <linux/libfdt.h>
19 #include <linux/set_memory.h>
20 #include <linux/dma-map-ops.h>
21 #include <linux/crash_dump.h>
22 #include <linux/hugetlb.h>
23 #ifdef CONFIG_RELOCATABLE
24 #include <linux/elf.h>
25 #endif
26 #include <linux/kfence.h>
27 #include <linux/execmem.h>
28
29 #include <asm/fixmap.h>
30 #include <asm/io.h>
31 #include <asm/kasan.h>
32 #include <asm/numa.h>
33 #include <asm/pgtable.h>
34 #include <asm/sections.h>
35 #include <asm/soc.h>
36 #include <asm/sparsemem.h>
37 #include <asm/tlbflush.h>
38
39 #include "../kernel/head.h"
40
41 u64 new_vmalloc[NR_CPUS / sizeof(u64) + 1];
42
43 struct kernel_mapping kernel_map __ro_after_init;
44 EXPORT_SYMBOL(kernel_map);
45 #ifdef CONFIG_XIP_KERNEL
46 #define kernel_map (*(struct kernel_mapping *)XIP_FIXUP(&kernel_map))
47 #endif
48
49 #ifdef CONFIG_64BIT
50 u64 satp_mode __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL) ? SATP_MODE_57 : SATP_MODE_39;
51 #else
52 u64 satp_mode __ro_after_init = SATP_MODE_32;
53 #endif
54 EXPORT_SYMBOL(satp_mode);
55
56 #ifdef CONFIG_64BIT
57 bool pgtable_l4_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL);
58 bool pgtable_l5_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL);
59 EXPORT_SYMBOL(pgtable_l4_enabled);
60 EXPORT_SYMBOL(pgtable_l5_enabled);
61 #endif
62
63 phys_addr_t phys_ram_base __ro_after_init;
64 EXPORT_SYMBOL(phys_ram_base);
65
66 #ifdef CONFIG_SPARSEMEM_VMEMMAP
67 #define VMEMMAP_ADDR_ALIGN (1ULL << SECTION_SIZE_BITS)
68
69 unsigned long vmemmap_start_pfn __ro_after_init;
70 EXPORT_SYMBOL(vmemmap_start_pfn);
71 #endif
72
73 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
74 __page_aligned_bss;
75 EXPORT_SYMBOL(empty_zero_page);
76
77 extern char _start[];
78 void *_dtb_early_va __initdata;
79 uintptr_t _dtb_early_pa __initdata;
80
81 phys_addr_t dma32_phys_limit __initdata;
82
zone_sizes_init(void)83 static void __init zone_sizes_init(void)
84 {
85 unsigned long max_zone_pfns[MAX_NR_ZONES] = { 0, };
86
87 #ifdef CONFIG_ZONE_DMA32
88 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
89 #endif
90 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
91
92 free_area_init(max_zone_pfns);
93 }
94
95 #if defined(CONFIG_MMU) && defined(CONFIG_DEBUG_VM)
96
97 #define LOG2_SZ_1K ilog2(SZ_1K)
98 #define LOG2_SZ_1M ilog2(SZ_1M)
99 #define LOG2_SZ_1G ilog2(SZ_1G)
100 #define LOG2_SZ_1T ilog2(SZ_1T)
101
print_mlk(char * name,unsigned long b,unsigned long t)102 static inline void print_mlk(char *name, unsigned long b, unsigned long t)
103 {
104 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld kB)\n", name, b, t,
105 (((t) - (b)) >> LOG2_SZ_1K));
106 }
107
print_mlm(char * name,unsigned long b,unsigned long t)108 static inline void print_mlm(char *name, unsigned long b, unsigned long t)
109 {
110 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld MB)\n", name, b, t,
111 (((t) - (b)) >> LOG2_SZ_1M));
112 }
113
print_mlg(char * name,unsigned long b,unsigned long t)114 static inline void print_mlg(char *name, unsigned long b, unsigned long t)
115 {
116 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld GB)\n", name, b, t,
117 (((t) - (b)) >> LOG2_SZ_1G));
118 }
119
120 #ifdef CONFIG_64BIT
print_mlt(char * name,unsigned long b,unsigned long t)121 static inline void print_mlt(char *name, unsigned long b, unsigned long t)
122 {
123 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld TB)\n", name, b, t,
124 (((t) - (b)) >> LOG2_SZ_1T));
125 }
126 #else
127 #define print_mlt(n, b, t) do {} while (0)
128 #endif
129
print_ml(char * name,unsigned long b,unsigned long t)130 static inline void print_ml(char *name, unsigned long b, unsigned long t)
131 {
132 unsigned long diff = t - b;
133
134 if (IS_ENABLED(CONFIG_64BIT) && (diff >> LOG2_SZ_1T) >= 10)
135 print_mlt(name, b, t);
136 else if ((diff >> LOG2_SZ_1G) >= 10)
137 print_mlg(name, b, t);
138 else if ((diff >> LOG2_SZ_1M) >= 10)
139 print_mlm(name, b, t);
140 else
141 print_mlk(name, b, t);
142 }
143
print_vm_layout(void)144 static void __init print_vm_layout(void)
145 {
146 pr_notice("Virtual kernel memory layout:\n");
147 print_ml("fixmap", (unsigned long)FIXADDR_START,
148 (unsigned long)FIXADDR_TOP);
149 print_ml("pci io", (unsigned long)PCI_IO_START,
150 (unsigned long)PCI_IO_END);
151 print_ml("vmemmap", (unsigned long)VMEMMAP_START,
152 (unsigned long)VMEMMAP_END);
153 print_ml("vmalloc", (unsigned long)VMALLOC_START,
154 (unsigned long)VMALLOC_END);
155 #ifdef CONFIG_64BIT
156 print_ml("modules", (unsigned long)MODULES_VADDR,
157 (unsigned long)MODULES_END);
158 #endif
159 print_ml("lowmem", (unsigned long)PAGE_OFFSET,
160 (unsigned long)high_memory);
161 if (IS_ENABLED(CONFIG_64BIT)) {
162 #ifdef CONFIG_KASAN
163 print_ml("kasan", KASAN_SHADOW_START, KASAN_SHADOW_END);
164 #endif
165
166 print_ml("kernel", (unsigned long)kernel_map.virt_addr,
167 (unsigned long)ADDRESS_SPACE_END);
168 }
169 }
170 #else
print_vm_layout(void)171 static void print_vm_layout(void) { }
172 #endif /* CONFIG_DEBUG_VM */
173
mem_init(void)174 void __init mem_init(void)
175 {
176 bool swiotlb = max_pfn > PFN_DOWN(dma32_phys_limit);
177 #ifdef CONFIG_FLATMEM
178 BUG_ON(!mem_map);
179 #endif /* CONFIG_FLATMEM */
180
181 if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb &&
182 dma_cache_alignment != 1) {
183 /*
184 * If no bouncing needed for ZONE_DMA, allocate 1MB swiotlb
185 * buffer per 1GB of RAM for kmalloc() bouncing on
186 * non-coherent platforms.
187 */
188 unsigned long size =
189 DIV_ROUND_UP(memblock_phys_mem_size(), 1024);
190 swiotlb_adjust_size(min(swiotlb_size_or_default(), size));
191 swiotlb = true;
192 }
193
194 swiotlb_init(swiotlb, SWIOTLB_VERBOSE);
195 memblock_free_all();
196
197 print_vm_layout();
198 }
199
200 /* Limit the memory size via mem. */
201 static phys_addr_t memory_limit;
202 #ifdef CONFIG_XIP_KERNEL
203 #define memory_limit (*(phys_addr_t *)XIP_FIXUP(&memory_limit))
204 #endif /* CONFIG_XIP_KERNEL */
205
early_mem(char * p)206 static int __init early_mem(char *p)
207 {
208 u64 size;
209
210 if (!p)
211 return 1;
212
213 size = memparse(p, &p) & PAGE_MASK;
214 memory_limit = min_t(u64, size, memory_limit);
215
216 pr_notice("Memory limited to %lldMB\n", (u64)memory_limit >> 20);
217
218 return 0;
219 }
220 early_param("mem", early_mem);
221
setup_bootmem(void)222 static void __init setup_bootmem(void)
223 {
224 phys_addr_t vmlinux_end = __pa_symbol(&_end);
225 phys_addr_t max_mapped_addr;
226 phys_addr_t phys_ram_end, vmlinux_start;
227
228 if (IS_ENABLED(CONFIG_XIP_KERNEL))
229 vmlinux_start = __pa_symbol(&_sdata);
230 else
231 vmlinux_start = __pa_symbol(&_start);
232
233 memblock_enforce_memory_limit(memory_limit);
234
235 /*
236 * Make sure we align the reservation on PMD_SIZE since we will
237 * map the kernel in the linear mapping as read-only: we do not want
238 * any allocation to happen between _end and the next pmd aligned page.
239 */
240 if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_STRICT_KERNEL_RWX))
241 vmlinux_end = (vmlinux_end + PMD_SIZE - 1) & PMD_MASK;
242 /*
243 * Reserve from the start of the kernel to the end of the kernel
244 */
245 memblock_reserve(vmlinux_start, vmlinux_end - vmlinux_start);
246
247 /*
248 * Make sure we align the start of the memory on a PMD boundary so that
249 * at worst, we map the linear mapping with PMD mappings.
250 */
251 if (!IS_ENABLED(CONFIG_XIP_KERNEL)) {
252 phys_ram_base = memblock_start_of_DRAM() & PMD_MASK;
253 #ifdef CONFIG_SPARSEMEM_VMEMMAP
254 vmemmap_start_pfn = round_down(phys_ram_base, VMEMMAP_ADDR_ALIGN) >> PAGE_SHIFT;
255 #endif
256 }
257
258 /*
259 * In 64-bit, any use of __va/__pa before this point is wrong as we
260 * did not know the start of DRAM before.
261 */
262 if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU))
263 kernel_map.va_pa_offset = PAGE_OFFSET - phys_ram_base;
264
265 /*
266 * The size of the linear page mapping may restrict the amount of
267 * usable RAM.
268 */
269 if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU)) {
270 max_mapped_addr = __pa(PAGE_OFFSET) + KERN_VIRT_SIZE;
271 memblock_cap_memory_range(phys_ram_base,
272 max_mapped_addr - phys_ram_base);
273 }
274
275 /*
276 * Reserve physical address space that would be mapped to virtual
277 * addresses greater than (void *)(-PAGE_SIZE) because:
278 * - This memory would overlap with ERR_PTR
279 * - This memory belongs to high memory, which is not supported
280 *
281 * This is not applicable to 64-bit kernel, because virtual addresses
282 * after (void *)(-PAGE_SIZE) are not linearly mapped: they are
283 * occupied by kernel mapping. Also it is unrealistic for high memory
284 * to exist on 64-bit platforms.
285 */
286 if (!IS_ENABLED(CONFIG_64BIT)) {
287 max_mapped_addr = __va_to_pa_nodebug(-PAGE_SIZE);
288 memblock_reserve(max_mapped_addr, (phys_addr_t)-max_mapped_addr);
289 }
290
291 phys_ram_end = memblock_end_of_DRAM();
292 min_low_pfn = PFN_UP(phys_ram_base);
293 max_low_pfn = max_pfn = PFN_DOWN(phys_ram_end);
294 high_memory = (void *)(__va(PFN_PHYS(max_low_pfn)));
295
296 dma32_phys_limit = min(4UL * SZ_1G, (unsigned long)PFN_PHYS(max_low_pfn));
297 set_max_mapnr(max_low_pfn - ARCH_PFN_OFFSET);
298
299 reserve_initrd_mem();
300
301 /*
302 * No allocation should be done before reserving the memory as defined
303 * in the device tree, otherwise the allocation could end up in a
304 * reserved region.
305 */
306 early_init_fdt_scan_reserved_mem();
307
308 /*
309 * If DTB is built in, no need to reserve its memblock.
310 * Otherwise, do reserve it but avoid using
311 * early_init_fdt_reserve_self() since __pa() does
312 * not work for DTB pointers that are fixmap addresses
313 */
314 if (!IS_ENABLED(CONFIG_BUILTIN_DTB))
315 memblock_reserve(dtb_early_pa, fdt_totalsize(dtb_early_va));
316
317 dma_contiguous_reserve(dma32_phys_limit);
318 if (IS_ENABLED(CONFIG_64BIT))
319 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
320 }
321
322 #ifdef CONFIG_MMU
323 struct pt_alloc_ops pt_ops __meminitdata;
324
325 pgd_t swapper_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
326 pgd_t trampoline_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
327 static pte_t fixmap_pte[PTRS_PER_PTE] __page_aligned_bss;
328
329 pgd_t early_pg_dir[PTRS_PER_PGD] __initdata __aligned(PAGE_SIZE);
330
331 #ifdef CONFIG_XIP_KERNEL
332 #define pt_ops (*(struct pt_alloc_ops *)XIP_FIXUP(&pt_ops))
333 #define trampoline_pg_dir ((pgd_t *)XIP_FIXUP(trampoline_pg_dir))
334 #define fixmap_pte ((pte_t *)XIP_FIXUP(fixmap_pte))
335 #define early_pg_dir ((pgd_t *)XIP_FIXUP(early_pg_dir))
336 #endif /* CONFIG_XIP_KERNEL */
337
338 static const pgprot_t protection_map[16] = {
339 [VM_NONE] = PAGE_NONE,
340 [VM_READ] = PAGE_READ,
341 [VM_WRITE] = PAGE_COPY,
342 [VM_WRITE | VM_READ] = PAGE_COPY,
343 [VM_EXEC] = PAGE_EXEC,
344 [VM_EXEC | VM_READ] = PAGE_READ_EXEC,
345 [VM_EXEC | VM_WRITE] = PAGE_COPY_EXEC,
346 [VM_EXEC | VM_WRITE | VM_READ] = PAGE_COPY_EXEC,
347 [VM_SHARED] = PAGE_NONE,
348 [VM_SHARED | VM_READ] = PAGE_READ,
349 [VM_SHARED | VM_WRITE] = PAGE_SHARED,
350 [VM_SHARED | VM_WRITE | VM_READ] = PAGE_SHARED,
351 [VM_SHARED | VM_EXEC] = PAGE_EXEC,
352 [VM_SHARED | VM_EXEC | VM_READ] = PAGE_READ_EXEC,
353 [VM_SHARED | VM_EXEC | VM_WRITE] = PAGE_SHARED_EXEC,
354 [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = PAGE_SHARED_EXEC
355 };
356 DECLARE_VM_GET_PAGE_PROT
357
__set_fixmap(enum fixed_addresses idx,phys_addr_t phys,pgprot_t prot)358 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
359 {
360 unsigned long addr = __fix_to_virt(idx);
361 pte_t *ptep;
362
363 BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
364
365 ptep = &fixmap_pte[pte_index(addr)];
366
367 if (pgprot_val(prot))
368 set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
369 else
370 pte_clear(&init_mm, addr, ptep);
371 local_flush_tlb_page(addr);
372 }
373
get_pte_virt_early(phys_addr_t pa)374 static inline pte_t *__init get_pte_virt_early(phys_addr_t pa)
375 {
376 return (pte_t *)((uintptr_t)pa);
377 }
378
get_pte_virt_fixmap(phys_addr_t pa)379 static inline pte_t *__init get_pte_virt_fixmap(phys_addr_t pa)
380 {
381 clear_fixmap(FIX_PTE);
382 return (pte_t *)set_fixmap_offset(FIX_PTE, pa);
383 }
384
get_pte_virt_late(phys_addr_t pa)385 static inline pte_t *__meminit get_pte_virt_late(phys_addr_t pa)
386 {
387 return (pte_t *) __va(pa);
388 }
389
alloc_pte_early(uintptr_t va)390 static inline phys_addr_t __init alloc_pte_early(uintptr_t va)
391 {
392 /*
393 * We only create PMD or PGD early mappings so we
394 * should never reach here with MMU disabled.
395 */
396 BUG();
397 }
398
alloc_pte_fixmap(uintptr_t va)399 static inline phys_addr_t __init alloc_pte_fixmap(uintptr_t va)
400 {
401 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
402 }
403
alloc_pte_late(uintptr_t va)404 static phys_addr_t __meminit alloc_pte_late(uintptr_t va)
405 {
406 struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0);
407
408 BUG_ON(!ptdesc || !pagetable_pte_ctor(ptdesc));
409 return __pa((pte_t *)ptdesc_address(ptdesc));
410 }
411
create_pte_mapping(pte_t * ptep,uintptr_t va,phys_addr_t pa,phys_addr_t sz,pgprot_t prot)412 static void __meminit create_pte_mapping(pte_t *ptep, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
413 pgprot_t prot)
414 {
415 uintptr_t pte_idx = pte_index(va);
416
417 BUG_ON(sz != PAGE_SIZE);
418
419 if (pte_none(ptep[pte_idx]))
420 ptep[pte_idx] = pfn_pte(PFN_DOWN(pa), prot);
421 }
422
423 #ifndef __PAGETABLE_PMD_FOLDED
424
425 static pmd_t trampoline_pmd[PTRS_PER_PMD] __page_aligned_bss;
426 static pmd_t fixmap_pmd[PTRS_PER_PMD] __page_aligned_bss;
427 static pmd_t early_pmd[PTRS_PER_PMD] __initdata __aligned(PAGE_SIZE);
428
429 #ifdef CONFIG_XIP_KERNEL
430 #define trampoline_pmd ((pmd_t *)XIP_FIXUP(trampoline_pmd))
431 #define fixmap_pmd ((pmd_t *)XIP_FIXUP(fixmap_pmd))
432 #define early_pmd ((pmd_t *)XIP_FIXUP(early_pmd))
433 #endif /* CONFIG_XIP_KERNEL */
434
435 static p4d_t trampoline_p4d[PTRS_PER_P4D] __page_aligned_bss;
436 static p4d_t fixmap_p4d[PTRS_PER_P4D] __page_aligned_bss;
437 static p4d_t early_p4d[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
438
439 #ifdef CONFIG_XIP_KERNEL
440 #define trampoline_p4d ((p4d_t *)XIP_FIXUP(trampoline_p4d))
441 #define fixmap_p4d ((p4d_t *)XIP_FIXUP(fixmap_p4d))
442 #define early_p4d ((p4d_t *)XIP_FIXUP(early_p4d))
443 #endif /* CONFIG_XIP_KERNEL */
444
445 static pud_t trampoline_pud[PTRS_PER_PUD] __page_aligned_bss;
446 static pud_t fixmap_pud[PTRS_PER_PUD] __page_aligned_bss;
447 static pud_t early_pud[PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE);
448
449 #ifdef CONFIG_XIP_KERNEL
450 #define trampoline_pud ((pud_t *)XIP_FIXUP(trampoline_pud))
451 #define fixmap_pud ((pud_t *)XIP_FIXUP(fixmap_pud))
452 #define early_pud ((pud_t *)XIP_FIXUP(early_pud))
453 #endif /* CONFIG_XIP_KERNEL */
454
get_pmd_virt_early(phys_addr_t pa)455 static pmd_t *__init get_pmd_virt_early(phys_addr_t pa)
456 {
457 /* Before MMU is enabled */
458 return (pmd_t *)((uintptr_t)pa);
459 }
460
get_pmd_virt_fixmap(phys_addr_t pa)461 static pmd_t *__init get_pmd_virt_fixmap(phys_addr_t pa)
462 {
463 clear_fixmap(FIX_PMD);
464 return (pmd_t *)set_fixmap_offset(FIX_PMD, pa);
465 }
466
get_pmd_virt_late(phys_addr_t pa)467 static pmd_t *__meminit get_pmd_virt_late(phys_addr_t pa)
468 {
469 return (pmd_t *) __va(pa);
470 }
471
alloc_pmd_early(uintptr_t va)472 static phys_addr_t __init alloc_pmd_early(uintptr_t va)
473 {
474 BUG_ON((va - kernel_map.virt_addr) >> PUD_SHIFT);
475
476 return (uintptr_t)early_pmd;
477 }
478
alloc_pmd_fixmap(uintptr_t va)479 static phys_addr_t __init alloc_pmd_fixmap(uintptr_t va)
480 {
481 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
482 }
483
alloc_pmd_late(uintptr_t va)484 static phys_addr_t __meminit alloc_pmd_late(uintptr_t va)
485 {
486 struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0);
487
488 BUG_ON(!ptdesc || !pagetable_pmd_ctor(ptdesc));
489 return __pa((pmd_t *)ptdesc_address(ptdesc));
490 }
491
create_pmd_mapping(pmd_t * pmdp,uintptr_t va,phys_addr_t pa,phys_addr_t sz,pgprot_t prot)492 static void __meminit create_pmd_mapping(pmd_t *pmdp,
493 uintptr_t va, phys_addr_t pa,
494 phys_addr_t sz, pgprot_t prot)
495 {
496 pte_t *ptep;
497 phys_addr_t pte_phys;
498 uintptr_t pmd_idx = pmd_index(va);
499
500 if (sz == PMD_SIZE) {
501 if (pmd_none(pmdp[pmd_idx]))
502 pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pa), prot);
503 return;
504 }
505
506 if (pmd_none(pmdp[pmd_idx])) {
507 pte_phys = pt_ops.alloc_pte(va);
508 pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pte_phys), PAGE_TABLE);
509 ptep = pt_ops.get_pte_virt(pte_phys);
510 memset(ptep, 0, PAGE_SIZE);
511 } else {
512 pte_phys = PFN_PHYS(_pmd_pfn(pmdp[pmd_idx]));
513 ptep = pt_ops.get_pte_virt(pte_phys);
514 }
515
516 create_pte_mapping(ptep, va, pa, sz, prot);
517 }
518
get_pud_virt_early(phys_addr_t pa)519 static pud_t *__init get_pud_virt_early(phys_addr_t pa)
520 {
521 return (pud_t *)((uintptr_t)pa);
522 }
523
get_pud_virt_fixmap(phys_addr_t pa)524 static pud_t *__init get_pud_virt_fixmap(phys_addr_t pa)
525 {
526 clear_fixmap(FIX_PUD);
527 return (pud_t *)set_fixmap_offset(FIX_PUD, pa);
528 }
529
get_pud_virt_late(phys_addr_t pa)530 static pud_t *__meminit get_pud_virt_late(phys_addr_t pa)
531 {
532 return (pud_t *)__va(pa);
533 }
534
alloc_pud_early(uintptr_t va)535 static phys_addr_t __init alloc_pud_early(uintptr_t va)
536 {
537 /* Only one PUD is available for early mapping */
538 BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT);
539
540 return (uintptr_t)early_pud;
541 }
542
alloc_pud_fixmap(uintptr_t va)543 static phys_addr_t __init alloc_pud_fixmap(uintptr_t va)
544 {
545 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
546 }
547
alloc_pud_late(uintptr_t va)548 static phys_addr_t __meminit alloc_pud_late(uintptr_t va)
549 {
550 unsigned long vaddr;
551
552 vaddr = __get_free_page(GFP_KERNEL);
553 BUG_ON(!vaddr);
554 return __pa(vaddr);
555 }
556
get_p4d_virt_early(phys_addr_t pa)557 static p4d_t *__init get_p4d_virt_early(phys_addr_t pa)
558 {
559 return (p4d_t *)((uintptr_t)pa);
560 }
561
get_p4d_virt_fixmap(phys_addr_t pa)562 static p4d_t *__init get_p4d_virt_fixmap(phys_addr_t pa)
563 {
564 clear_fixmap(FIX_P4D);
565 return (p4d_t *)set_fixmap_offset(FIX_P4D, pa);
566 }
567
get_p4d_virt_late(phys_addr_t pa)568 static p4d_t *__meminit get_p4d_virt_late(phys_addr_t pa)
569 {
570 return (p4d_t *)__va(pa);
571 }
572
alloc_p4d_early(uintptr_t va)573 static phys_addr_t __init alloc_p4d_early(uintptr_t va)
574 {
575 /* Only one P4D is available for early mapping */
576 BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT);
577
578 return (uintptr_t)early_p4d;
579 }
580
alloc_p4d_fixmap(uintptr_t va)581 static phys_addr_t __init alloc_p4d_fixmap(uintptr_t va)
582 {
583 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
584 }
585
alloc_p4d_late(uintptr_t va)586 static phys_addr_t __meminit alloc_p4d_late(uintptr_t va)
587 {
588 unsigned long vaddr;
589
590 vaddr = __get_free_page(GFP_KERNEL);
591 BUG_ON(!vaddr);
592 return __pa(vaddr);
593 }
594
create_pud_mapping(pud_t * pudp,uintptr_t va,phys_addr_t pa,phys_addr_t sz,pgprot_t prot)595 static void __meminit create_pud_mapping(pud_t *pudp, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
596 pgprot_t prot)
597 {
598 pmd_t *nextp;
599 phys_addr_t next_phys;
600 uintptr_t pud_index = pud_index(va);
601
602 if (sz == PUD_SIZE) {
603 if (pud_val(pudp[pud_index]) == 0)
604 pudp[pud_index] = pfn_pud(PFN_DOWN(pa), prot);
605 return;
606 }
607
608 if (pud_val(pudp[pud_index]) == 0) {
609 next_phys = pt_ops.alloc_pmd(va);
610 pudp[pud_index] = pfn_pud(PFN_DOWN(next_phys), PAGE_TABLE);
611 nextp = pt_ops.get_pmd_virt(next_phys);
612 memset(nextp, 0, PAGE_SIZE);
613 } else {
614 next_phys = PFN_PHYS(_pud_pfn(pudp[pud_index]));
615 nextp = pt_ops.get_pmd_virt(next_phys);
616 }
617
618 create_pmd_mapping(nextp, va, pa, sz, prot);
619 }
620
create_p4d_mapping(p4d_t * p4dp,uintptr_t va,phys_addr_t pa,phys_addr_t sz,pgprot_t prot)621 static void __meminit create_p4d_mapping(p4d_t *p4dp, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
622 pgprot_t prot)
623 {
624 pud_t *nextp;
625 phys_addr_t next_phys;
626 uintptr_t p4d_index = p4d_index(va);
627
628 if (sz == P4D_SIZE) {
629 if (p4d_val(p4dp[p4d_index]) == 0)
630 p4dp[p4d_index] = pfn_p4d(PFN_DOWN(pa), prot);
631 return;
632 }
633
634 if (p4d_val(p4dp[p4d_index]) == 0) {
635 next_phys = pt_ops.alloc_pud(va);
636 p4dp[p4d_index] = pfn_p4d(PFN_DOWN(next_phys), PAGE_TABLE);
637 nextp = pt_ops.get_pud_virt(next_phys);
638 memset(nextp, 0, PAGE_SIZE);
639 } else {
640 next_phys = PFN_PHYS(_p4d_pfn(p4dp[p4d_index]));
641 nextp = pt_ops.get_pud_virt(next_phys);
642 }
643
644 create_pud_mapping(nextp, va, pa, sz, prot);
645 }
646
647 #define pgd_next_t p4d_t
648 #define alloc_pgd_next(__va) (pgtable_l5_enabled ? \
649 pt_ops.alloc_p4d(__va) : (pgtable_l4_enabled ? \
650 pt_ops.alloc_pud(__va) : pt_ops.alloc_pmd(__va)))
651 #define get_pgd_next_virt(__pa) (pgtable_l5_enabled ? \
652 pt_ops.get_p4d_virt(__pa) : (pgd_next_t *)(pgtable_l4_enabled ? \
653 pt_ops.get_pud_virt(__pa) : (pud_t *)pt_ops.get_pmd_virt(__pa)))
654 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \
655 (pgtable_l5_enabled ? \
656 create_p4d_mapping(__nextp, __va, __pa, __sz, __prot) : \
657 (pgtable_l4_enabled ? \
658 create_pud_mapping((pud_t *)__nextp, __va, __pa, __sz, __prot) : \
659 create_pmd_mapping((pmd_t *)__nextp, __va, __pa, __sz, __prot)))
660 #define fixmap_pgd_next (pgtable_l5_enabled ? \
661 (uintptr_t)fixmap_p4d : (pgtable_l4_enabled ? \
662 (uintptr_t)fixmap_pud : (uintptr_t)fixmap_pmd))
663 #define trampoline_pgd_next (pgtable_l5_enabled ? \
664 (uintptr_t)trampoline_p4d : (pgtable_l4_enabled ? \
665 (uintptr_t)trampoline_pud : (uintptr_t)trampoline_pmd))
666 #else
667 #define pgd_next_t pte_t
668 #define alloc_pgd_next(__va) pt_ops.alloc_pte(__va)
669 #define get_pgd_next_virt(__pa) pt_ops.get_pte_virt(__pa)
670 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \
671 create_pte_mapping(__nextp, __va, __pa, __sz, __prot)
672 #define fixmap_pgd_next ((uintptr_t)fixmap_pte)
673 #define create_p4d_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
674 #define create_pud_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
675 #define create_pmd_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
676 #endif /* __PAGETABLE_PMD_FOLDED */
677
create_pgd_mapping(pgd_t * pgdp,uintptr_t va,phys_addr_t pa,phys_addr_t sz,pgprot_t prot)678 void __meminit create_pgd_mapping(pgd_t *pgdp, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
679 pgprot_t prot)
680 {
681 pgd_next_t *nextp;
682 phys_addr_t next_phys;
683 uintptr_t pgd_idx = pgd_index(va);
684
685 if (sz == PGDIR_SIZE) {
686 if (pgd_val(pgdp[pgd_idx]) == 0)
687 pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(pa), prot);
688 return;
689 }
690
691 if (pgd_val(pgdp[pgd_idx]) == 0) {
692 next_phys = alloc_pgd_next(va);
693 pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(next_phys), PAGE_TABLE);
694 nextp = get_pgd_next_virt(next_phys);
695 memset(nextp, 0, PAGE_SIZE);
696 } else {
697 next_phys = PFN_PHYS(_pgd_pfn(pgdp[pgd_idx]));
698 nextp = get_pgd_next_virt(next_phys);
699 }
700
701 create_pgd_next_mapping(nextp, va, pa, sz, prot);
702 }
703
best_map_size(phys_addr_t pa,uintptr_t va,phys_addr_t size)704 static uintptr_t __meminit best_map_size(phys_addr_t pa, uintptr_t va, phys_addr_t size)
705 {
706 if (debug_pagealloc_enabled())
707 return PAGE_SIZE;
708
709 if (pgtable_l5_enabled &&
710 !(pa & (P4D_SIZE - 1)) && !(va & (P4D_SIZE - 1)) && size >= P4D_SIZE)
711 return P4D_SIZE;
712
713 if (pgtable_l4_enabled &&
714 !(pa & (PUD_SIZE - 1)) && !(va & (PUD_SIZE - 1)) && size >= PUD_SIZE)
715 return PUD_SIZE;
716
717 if (IS_ENABLED(CONFIG_64BIT) &&
718 !(pa & (PMD_SIZE - 1)) && !(va & (PMD_SIZE - 1)) && size >= PMD_SIZE)
719 return PMD_SIZE;
720
721 return PAGE_SIZE;
722 }
723
724 #ifdef CONFIG_XIP_KERNEL
725 #define phys_ram_base (*(phys_addr_t *)XIP_FIXUP(&phys_ram_base))
726 extern char _xiprom[], _exiprom[], __data_loc;
727
728 /* called from head.S with MMU off */
__copy_data(void)729 asmlinkage void __init __copy_data(void)
730 {
731 void *from = (void *)(&__data_loc);
732 void *to = (void *)CONFIG_PHYS_RAM_BASE;
733 size_t sz = (size_t)((uintptr_t)(&_end) - (uintptr_t)(&_sdata));
734
735 memcpy(to, from, sz);
736 }
737 #endif
738
739 #ifdef CONFIG_STRICT_KERNEL_RWX
pgprot_from_va(uintptr_t va)740 static __meminit pgprot_t pgprot_from_va(uintptr_t va)
741 {
742 if (is_va_kernel_text(va))
743 return PAGE_KERNEL_READ_EXEC;
744
745 /*
746 * In 64-bit kernel, the kernel mapping is outside the linear mapping so
747 * we must protect its linear mapping alias from being executed and
748 * written.
749 * And rodata section is marked readonly in mark_rodata_ro.
750 */
751 if (IS_ENABLED(CONFIG_64BIT) && is_va_kernel_lm_alias_text(va))
752 return PAGE_KERNEL_READ;
753
754 return PAGE_KERNEL;
755 }
756
mark_rodata_ro(void)757 void mark_rodata_ro(void)
758 {
759 set_kernel_memory(__start_rodata, _data, set_memory_ro);
760 if (IS_ENABLED(CONFIG_64BIT))
761 set_kernel_memory(lm_alias(__start_rodata), lm_alias(_data),
762 set_memory_ro);
763 }
764 #else
pgprot_from_va(uintptr_t va)765 static __meminit pgprot_t pgprot_from_va(uintptr_t va)
766 {
767 if (IS_ENABLED(CONFIG_64BIT) && !is_kernel_mapping(va))
768 return PAGE_KERNEL;
769
770 return PAGE_KERNEL_EXEC;
771 }
772 #endif /* CONFIG_STRICT_KERNEL_RWX */
773
774 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL)
775 u64 __pi_set_satp_mode_from_cmdline(uintptr_t dtb_pa);
776
disable_pgtable_l5(void)777 static void __init disable_pgtable_l5(void)
778 {
779 pgtable_l5_enabled = false;
780 kernel_map.page_offset = PAGE_OFFSET_L4;
781 satp_mode = SATP_MODE_48;
782 }
783
disable_pgtable_l4(void)784 static void __init disable_pgtable_l4(void)
785 {
786 pgtable_l4_enabled = false;
787 kernel_map.page_offset = PAGE_OFFSET_L3;
788 satp_mode = SATP_MODE_39;
789 }
790
print_no4lvl(char * p)791 static int __init print_no4lvl(char *p)
792 {
793 pr_info("Disabled 4-level and 5-level paging");
794 return 0;
795 }
796 early_param("no4lvl", print_no4lvl);
797
print_no5lvl(char * p)798 static int __init print_no5lvl(char *p)
799 {
800 pr_info("Disabled 5-level paging");
801 return 0;
802 }
803 early_param("no5lvl", print_no5lvl);
804
set_mmap_rnd_bits_max(void)805 static void __init set_mmap_rnd_bits_max(void)
806 {
807 mmap_rnd_bits_max = MMAP_VA_BITS - PAGE_SHIFT - 3;
808 }
809
810 /*
811 * There is a simple way to determine if 4-level is supported by the
812 * underlying hardware: establish 1:1 mapping in 4-level page table mode
813 * then read SATP to see if the configuration was taken into account
814 * meaning sv48 is supported.
815 */
set_satp_mode(uintptr_t dtb_pa)816 static __init void set_satp_mode(uintptr_t dtb_pa)
817 {
818 u64 identity_satp, hw_satp;
819 uintptr_t set_satp_mode_pmd = ((unsigned long)set_satp_mode) & PMD_MASK;
820 u64 satp_mode_cmdline = __pi_set_satp_mode_from_cmdline(dtb_pa);
821
822 if (satp_mode_cmdline == SATP_MODE_57) {
823 disable_pgtable_l5();
824 } else if (satp_mode_cmdline == SATP_MODE_48) {
825 disable_pgtable_l5();
826 disable_pgtable_l4();
827 return;
828 }
829
830 create_p4d_mapping(early_p4d,
831 set_satp_mode_pmd, (uintptr_t)early_pud,
832 P4D_SIZE, PAGE_TABLE);
833 create_pud_mapping(early_pud,
834 set_satp_mode_pmd, (uintptr_t)early_pmd,
835 PUD_SIZE, PAGE_TABLE);
836 /* Handle the case where set_satp_mode straddles 2 PMDs */
837 create_pmd_mapping(early_pmd,
838 set_satp_mode_pmd, set_satp_mode_pmd,
839 PMD_SIZE, PAGE_KERNEL_EXEC);
840 create_pmd_mapping(early_pmd,
841 set_satp_mode_pmd + PMD_SIZE,
842 set_satp_mode_pmd + PMD_SIZE,
843 PMD_SIZE, PAGE_KERNEL_EXEC);
844 retry:
845 create_pgd_mapping(early_pg_dir,
846 set_satp_mode_pmd,
847 pgtable_l5_enabled ?
848 (uintptr_t)early_p4d : (uintptr_t)early_pud,
849 PGDIR_SIZE, PAGE_TABLE);
850
851 identity_satp = PFN_DOWN((uintptr_t)&early_pg_dir) | satp_mode;
852
853 local_flush_tlb_all();
854 csr_write(CSR_SATP, identity_satp);
855 hw_satp = csr_swap(CSR_SATP, 0ULL);
856 local_flush_tlb_all();
857
858 if (hw_satp != identity_satp) {
859 if (pgtable_l5_enabled) {
860 disable_pgtable_l5();
861 memset(early_pg_dir, 0, PAGE_SIZE);
862 goto retry;
863 }
864 disable_pgtable_l4();
865 }
866
867 memset(early_pg_dir, 0, PAGE_SIZE);
868 memset(early_p4d, 0, PAGE_SIZE);
869 memset(early_pud, 0, PAGE_SIZE);
870 memset(early_pmd, 0, PAGE_SIZE);
871 }
872 #endif
873
874 /*
875 * setup_vm() is called from head.S with MMU-off.
876 *
877 * Following requirements should be honoured for setup_vm() to work
878 * correctly:
879 * 1) It should use PC-relative addressing for accessing kernel symbols.
880 * To achieve this we always use GCC cmodel=medany.
881 * 2) The compiler instrumentation for FTRACE will not work for setup_vm()
882 * so disable compiler instrumentation when FTRACE is enabled.
883 *
884 * Currently, the above requirements are honoured by using custom CFLAGS
885 * for init.o in mm/Makefile.
886 */
887
888 #ifndef __riscv_cmodel_medany
889 #error "setup_vm() is called from head.S before relocate so it should not use absolute addressing."
890 #endif
891
892 #ifdef CONFIG_RELOCATABLE
893 extern unsigned long __rela_dyn_start, __rela_dyn_end;
894
relocate_kernel(void)895 static void __init relocate_kernel(void)
896 {
897 Elf64_Rela *rela = (Elf64_Rela *)&__rela_dyn_start;
898 /*
899 * This holds the offset between the linked virtual address and the
900 * relocated virtual address.
901 */
902 uintptr_t reloc_offset = kernel_map.virt_addr - KERNEL_LINK_ADDR;
903 /*
904 * This holds the offset between kernel linked virtual address and
905 * physical address.
906 */
907 uintptr_t va_kernel_link_pa_offset = KERNEL_LINK_ADDR - kernel_map.phys_addr;
908
909 for ( ; rela < (Elf64_Rela *)&__rela_dyn_end; rela++) {
910 Elf64_Addr addr = (rela->r_offset - va_kernel_link_pa_offset);
911 Elf64_Addr relocated_addr = rela->r_addend;
912
913 if (rela->r_info != R_RISCV_RELATIVE)
914 continue;
915
916 /*
917 * Make sure to not relocate vdso symbols like rt_sigreturn
918 * which are linked from the address 0 in vmlinux since
919 * vdso symbol addresses are actually used as an offset from
920 * mm->context.vdso in VDSO_OFFSET macro.
921 */
922 if (relocated_addr >= KERNEL_LINK_ADDR)
923 relocated_addr += reloc_offset;
924
925 *(Elf64_Addr *)addr = relocated_addr;
926 }
927 }
928 #endif /* CONFIG_RELOCATABLE */
929
930 #ifdef CONFIG_XIP_KERNEL
create_kernel_page_table(pgd_t * pgdir,__always_unused bool early)931 static void __init create_kernel_page_table(pgd_t *pgdir,
932 __always_unused bool early)
933 {
934 uintptr_t va, start_va, end_va;
935
936 /* Map the flash resident part */
937 end_va = kernel_map.virt_addr + kernel_map.xiprom_sz;
938 for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE)
939 create_pgd_mapping(pgdir, va,
940 kernel_map.xiprom + (va - kernel_map.virt_addr),
941 PMD_SIZE, PAGE_KERNEL_EXEC);
942
943 /* Map the data in RAM */
944 start_va = kernel_map.virt_addr + (uintptr_t)&_sdata - (uintptr_t)&_start;
945 end_va = kernel_map.virt_addr + kernel_map.size;
946 for (va = start_va; va < end_va; va += PMD_SIZE)
947 create_pgd_mapping(pgdir, va,
948 kernel_map.phys_addr + (va - start_va),
949 PMD_SIZE, PAGE_KERNEL);
950 }
951 #else
create_kernel_page_table(pgd_t * pgdir,bool early)952 static void __init create_kernel_page_table(pgd_t *pgdir, bool early)
953 {
954 uintptr_t va, end_va;
955
956 end_va = kernel_map.virt_addr + kernel_map.size;
957 for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE)
958 create_pgd_mapping(pgdir, va,
959 kernel_map.phys_addr + (va - kernel_map.virt_addr),
960 PMD_SIZE,
961 early ?
962 PAGE_KERNEL_EXEC : pgprot_from_va(va));
963 }
964 #endif
965
966 /*
967 * Setup a 4MB mapping that encompasses the device tree: for 64-bit kernel,
968 * this means 2 PMD entries whereas for 32-bit kernel, this is only 1 PGDIR
969 * entry.
970 */
create_fdt_early_page_table(uintptr_t fix_fdt_va,uintptr_t dtb_pa)971 static void __init create_fdt_early_page_table(uintptr_t fix_fdt_va,
972 uintptr_t dtb_pa)
973 {
974 #ifndef CONFIG_BUILTIN_DTB
975 uintptr_t pa = dtb_pa & ~(PMD_SIZE - 1);
976
977 /* Make sure the fdt fixmap address is always aligned on PMD size */
978 BUILD_BUG_ON(FIX_FDT % (PMD_SIZE / PAGE_SIZE));
979
980 /* In 32-bit only, the fdt lies in its own PGD */
981 if (!IS_ENABLED(CONFIG_64BIT)) {
982 create_pgd_mapping(early_pg_dir, fix_fdt_va,
983 pa, MAX_FDT_SIZE, PAGE_KERNEL);
984 } else {
985 create_pmd_mapping(fixmap_pmd, fix_fdt_va,
986 pa, PMD_SIZE, PAGE_KERNEL);
987 create_pmd_mapping(fixmap_pmd, fix_fdt_va + PMD_SIZE,
988 pa + PMD_SIZE, PMD_SIZE, PAGE_KERNEL);
989 }
990
991 dtb_early_va = (void *)fix_fdt_va + (dtb_pa & (PMD_SIZE - 1));
992 #else
993 /*
994 * For 64-bit kernel, __va can't be used since it would return a linear
995 * mapping address whereas dtb_early_va will be used before
996 * setup_vm_final installs the linear mapping. For 32-bit kernel, as the
997 * kernel is mapped in the linear mapping, that makes no difference.
998 */
999 dtb_early_va = kernel_mapping_pa_to_va(dtb_pa);
1000 #endif
1001
1002 dtb_early_pa = dtb_pa;
1003 }
1004
1005 /*
1006 * MMU is not enabled, the page tables are allocated directly using
1007 * early_pmd/pud/p4d and the address returned is the physical one.
1008 */
pt_ops_set_early(void)1009 static void __init pt_ops_set_early(void)
1010 {
1011 pt_ops.alloc_pte = alloc_pte_early;
1012 pt_ops.get_pte_virt = get_pte_virt_early;
1013 #ifndef __PAGETABLE_PMD_FOLDED
1014 pt_ops.alloc_pmd = alloc_pmd_early;
1015 pt_ops.get_pmd_virt = get_pmd_virt_early;
1016 pt_ops.alloc_pud = alloc_pud_early;
1017 pt_ops.get_pud_virt = get_pud_virt_early;
1018 pt_ops.alloc_p4d = alloc_p4d_early;
1019 pt_ops.get_p4d_virt = get_p4d_virt_early;
1020 #endif
1021 }
1022
1023 /*
1024 * MMU is enabled but page table setup is not complete yet.
1025 * fixmap page table alloc functions must be used as a means to temporarily
1026 * map the allocated physical pages since the linear mapping does not exist yet.
1027 *
1028 * Note that this is called with MMU disabled, hence kernel_mapping_pa_to_va,
1029 * but it will be used as described above.
1030 */
pt_ops_set_fixmap(void)1031 static void __init pt_ops_set_fixmap(void)
1032 {
1033 pt_ops.alloc_pte = kernel_mapping_pa_to_va(alloc_pte_fixmap);
1034 pt_ops.get_pte_virt = kernel_mapping_pa_to_va(get_pte_virt_fixmap);
1035 #ifndef __PAGETABLE_PMD_FOLDED
1036 pt_ops.alloc_pmd = kernel_mapping_pa_to_va(alloc_pmd_fixmap);
1037 pt_ops.get_pmd_virt = kernel_mapping_pa_to_va(get_pmd_virt_fixmap);
1038 pt_ops.alloc_pud = kernel_mapping_pa_to_va(alloc_pud_fixmap);
1039 pt_ops.get_pud_virt = kernel_mapping_pa_to_va(get_pud_virt_fixmap);
1040 pt_ops.alloc_p4d = kernel_mapping_pa_to_va(alloc_p4d_fixmap);
1041 pt_ops.get_p4d_virt = kernel_mapping_pa_to_va(get_p4d_virt_fixmap);
1042 #endif
1043 }
1044
1045 /*
1046 * MMU is enabled and page table setup is complete, so from now, we can use
1047 * generic page allocation functions to setup page table.
1048 */
pt_ops_set_late(void)1049 static void __init pt_ops_set_late(void)
1050 {
1051 pt_ops.alloc_pte = alloc_pte_late;
1052 pt_ops.get_pte_virt = get_pte_virt_late;
1053 #ifndef __PAGETABLE_PMD_FOLDED
1054 pt_ops.alloc_pmd = alloc_pmd_late;
1055 pt_ops.get_pmd_virt = get_pmd_virt_late;
1056 pt_ops.alloc_pud = alloc_pud_late;
1057 pt_ops.get_pud_virt = get_pud_virt_late;
1058 pt_ops.alloc_p4d = alloc_p4d_late;
1059 pt_ops.get_p4d_virt = get_p4d_virt_late;
1060 #endif
1061 }
1062
1063 #ifdef CONFIG_RANDOMIZE_BASE
1064 extern bool __init __pi_set_nokaslr_from_cmdline(uintptr_t dtb_pa);
1065 extern u64 __init __pi_get_kaslr_seed(uintptr_t dtb_pa);
1066 extern u64 __init __pi_get_kaslr_seed_zkr(const uintptr_t dtb_pa);
1067
print_nokaslr(char * p)1068 static int __init print_nokaslr(char *p)
1069 {
1070 pr_info("Disabled KASLR");
1071 return 0;
1072 }
1073 early_param("nokaslr", print_nokaslr);
1074
kaslr_offset(void)1075 unsigned long kaslr_offset(void)
1076 {
1077 return kernel_map.virt_offset;
1078 }
1079 #endif
1080
setup_vm(uintptr_t dtb_pa)1081 asmlinkage void __init setup_vm(uintptr_t dtb_pa)
1082 {
1083 pmd_t __maybe_unused fix_bmap_spmd, fix_bmap_epmd;
1084
1085 #ifdef CONFIG_RANDOMIZE_BASE
1086 if (!__pi_set_nokaslr_from_cmdline(dtb_pa)) {
1087 u64 kaslr_seed = __pi_get_kaslr_seed_zkr(dtb_pa);
1088 u32 kernel_size = (uintptr_t)(&_end) - (uintptr_t)(&_start);
1089 u32 nr_pos;
1090
1091 if (kaslr_seed == 0)
1092 kaslr_seed = __pi_get_kaslr_seed(dtb_pa);
1093 /*
1094 * Compute the number of positions available: we are limited
1095 * by the early page table that only has one PUD and we must
1096 * be aligned on PMD_SIZE.
1097 */
1098 nr_pos = (PUD_SIZE - kernel_size) / PMD_SIZE;
1099
1100 kernel_map.virt_offset = (kaslr_seed % nr_pos) * PMD_SIZE;
1101 }
1102 #endif
1103
1104 kernel_map.virt_addr = KERNEL_LINK_ADDR + kernel_map.virt_offset;
1105
1106 #ifdef CONFIG_XIP_KERNEL
1107 #ifdef CONFIG_64BIT
1108 kernel_map.page_offset = PAGE_OFFSET_L3;
1109 #else
1110 kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL);
1111 #endif
1112 kernel_map.xiprom = (uintptr_t)CONFIG_XIP_PHYS_ADDR;
1113 kernel_map.xiprom_sz = (uintptr_t)(&_exiprom) - (uintptr_t)(&_xiprom);
1114
1115 phys_ram_base = CONFIG_PHYS_RAM_BASE;
1116 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1117 vmemmap_start_pfn = round_down(phys_ram_base, VMEMMAP_ADDR_ALIGN) >> PAGE_SHIFT;
1118 #endif
1119 kernel_map.phys_addr = (uintptr_t)CONFIG_PHYS_RAM_BASE;
1120 kernel_map.size = (uintptr_t)(&_end) - (uintptr_t)(&_start);
1121
1122 kernel_map.va_kernel_xip_text_pa_offset = kernel_map.virt_addr - kernel_map.xiprom;
1123 kernel_map.va_kernel_xip_data_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr
1124 + (uintptr_t)&_sdata - (uintptr_t)&_start;
1125 #else
1126 kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL);
1127 kernel_map.phys_addr = (uintptr_t)(&_start);
1128 kernel_map.size = (uintptr_t)(&_end) - kernel_map.phys_addr;
1129 kernel_map.va_kernel_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr;
1130 #endif
1131
1132 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL)
1133 set_satp_mode(dtb_pa);
1134 set_mmap_rnd_bits_max();
1135 #endif
1136
1137 /*
1138 * In 64-bit, we defer the setup of va_pa_offset to setup_bootmem,
1139 * where we have the system memory layout: this allows us to align
1140 * the physical and virtual mappings and then make use of PUD/P4D/PGD
1141 * for the linear mapping. This is only possible because the kernel
1142 * mapping lies outside the linear mapping.
1143 * In 32-bit however, as the kernel resides in the linear mapping,
1144 * setup_vm_final can not change the mapping established here,
1145 * otherwise the same kernel addresses would get mapped to different
1146 * physical addresses (if the start of dram is different from the
1147 * kernel physical address start).
1148 */
1149 kernel_map.va_pa_offset = IS_ENABLED(CONFIG_64BIT) ?
1150 0UL : PAGE_OFFSET - kernel_map.phys_addr;
1151
1152 memory_limit = KERN_VIRT_SIZE;
1153
1154 /* Sanity check alignment and size */
1155 BUG_ON((PAGE_OFFSET % PGDIR_SIZE) != 0);
1156 BUG_ON((kernel_map.phys_addr % PMD_SIZE) != 0);
1157
1158 #ifdef CONFIG_64BIT
1159 /*
1160 * The last 4K bytes of the addressable memory can not be mapped because
1161 * of IS_ERR_VALUE macro.
1162 */
1163 BUG_ON((kernel_map.virt_addr + kernel_map.size) > ADDRESS_SPACE_END - SZ_4K);
1164 #endif
1165
1166 #ifdef CONFIG_RELOCATABLE
1167 /*
1168 * Early page table uses only one PUD, which makes it possible
1169 * to map PUD_SIZE aligned on PUD_SIZE: if the relocation offset
1170 * makes the kernel cross over a PUD_SIZE boundary, raise a bug
1171 * since a part of the kernel would not get mapped.
1172 */
1173 BUG_ON(PUD_SIZE - (kernel_map.virt_addr & (PUD_SIZE - 1)) < kernel_map.size);
1174 relocate_kernel();
1175 #endif
1176
1177 apply_early_boot_alternatives();
1178 pt_ops_set_early();
1179
1180 /* Setup early PGD for fixmap */
1181 create_pgd_mapping(early_pg_dir, FIXADDR_START,
1182 fixmap_pgd_next, PGDIR_SIZE, PAGE_TABLE);
1183
1184 #ifndef __PAGETABLE_PMD_FOLDED
1185 /* Setup fixmap P4D and PUD */
1186 if (pgtable_l5_enabled)
1187 create_p4d_mapping(fixmap_p4d, FIXADDR_START,
1188 (uintptr_t)fixmap_pud, P4D_SIZE, PAGE_TABLE);
1189 /* Setup fixmap PUD and PMD */
1190 if (pgtable_l4_enabled)
1191 create_pud_mapping(fixmap_pud, FIXADDR_START,
1192 (uintptr_t)fixmap_pmd, PUD_SIZE, PAGE_TABLE);
1193 create_pmd_mapping(fixmap_pmd, FIXADDR_START,
1194 (uintptr_t)fixmap_pte, PMD_SIZE, PAGE_TABLE);
1195 /* Setup trampoline PGD and PMD */
1196 create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr,
1197 trampoline_pgd_next, PGDIR_SIZE, PAGE_TABLE);
1198 if (pgtable_l5_enabled)
1199 create_p4d_mapping(trampoline_p4d, kernel_map.virt_addr,
1200 (uintptr_t)trampoline_pud, P4D_SIZE, PAGE_TABLE);
1201 if (pgtable_l4_enabled)
1202 create_pud_mapping(trampoline_pud, kernel_map.virt_addr,
1203 (uintptr_t)trampoline_pmd, PUD_SIZE, PAGE_TABLE);
1204 #ifdef CONFIG_XIP_KERNEL
1205 create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr,
1206 kernel_map.xiprom, PMD_SIZE, PAGE_KERNEL_EXEC);
1207 #else
1208 create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr,
1209 kernel_map.phys_addr, PMD_SIZE, PAGE_KERNEL_EXEC);
1210 #endif
1211 #else
1212 /* Setup trampoline PGD */
1213 create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr,
1214 kernel_map.phys_addr, PGDIR_SIZE, PAGE_KERNEL_EXEC);
1215 #endif
1216
1217 /*
1218 * Setup early PGD covering entire kernel which will allow
1219 * us to reach paging_init(). We map all memory banks later
1220 * in setup_vm_final() below.
1221 */
1222 create_kernel_page_table(early_pg_dir, true);
1223
1224 /* Setup early mapping for FDT early scan */
1225 create_fdt_early_page_table(__fix_to_virt(FIX_FDT), dtb_pa);
1226
1227 /*
1228 * Bootime fixmap only can handle PMD_SIZE mapping. Thus, boot-ioremap
1229 * range can not span multiple pmds.
1230 */
1231 BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
1232 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
1233
1234 #ifndef __PAGETABLE_PMD_FOLDED
1235 /*
1236 * Early ioremap fixmap is already created as it lies within first 2MB
1237 * of fixmap region. We always map PMD_SIZE. Thus, both FIX_BTMAP_END
1238 * FIX_BTMAP_BEGIN should lie in the same pmd. Verify that and warn
1239 * the user if not.
1240 */
1241 fix_bmap_spmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_BEGIN))];
1242 fix_bmap_epmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_END))];
1243 if (pmd_val(fix_bmap_spmd) != pmd_val(fix_bmap_epmd)) {
1244 WARN_ON(1);
1245 pr_warn("fixmap btmap start [%08lx] != end [%08lx]\n",
1246 pmd_val(fix_bmap_spmd), pmd_val(fix_bmap_epmd));
1247 pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
1248 fix_to_virt(FIX_BTMAP_BEGIN));
1249 pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n",
1250 fix_to_virt(FIX_BTMAP_END));
1251
1252 pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
1253 pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN);
1254 }
1255 #endif
1256
1257 pt_ops_set_fixmap();
1258 }
1259
create_linear_mapping_range(phys_addr_t start,phys_addr_t end,uintptr_t fixed_map_size,const pgprot_t * pgprot)1260 static void __meminit create_linear_mapping_range(phys_addr_t start, phys_addr_t end,
1261 uintptr_t fixed_map_size, const pgprot_t *pgprot)
1262 {
1263 phys_addr_t pa;
1264 uintptr_t va, map_size;
1265
1266 for (pa = start; pa < end; pa += map_size) {
1267 va = (uintptr_t)__va(pa);
1268 map_size = fixed_map_size ? fixed_map_size :
1269 best_map_size(pa, va, end - pa);
1270
1271 create_pgd_mapping(swapper_pg_dir, va, pa, map_size,
1272 pgprot ? *pgprot : pgprot_from_va(va));
1273 }
1274 }
1275
create_linear_mapping_page_table(void)1276 static void __init create_linear_mapping_page_table(void)
1277 {
1278 phys_addr_t start, end;
1279 phys_addr_t kfence_pool __maybe_unused;
1280 u64 i;
1281
1282 #ifdef CONFIG_STRICT_KERNEL_RWX
1283 phys_addr_t ktext_start = __pa_symbol(_start);
1284 phys_addr_t ktext_size = __init_data_begin - _start;
1285 phys_addr_t krodata_start = __pa_symbol(__start_rodata);
1286 phys_addr_t krodata_size = _data - __start_rodata;
1287
1288 /* Isolate kernel text and rodata so they don't get mapped with a PUD */
1289 memblock_mark_nomap(ktext_start, ktext_size);
1290 memblock_mark_nomap(krodata_start, krodata_size);
1291 #endif
1292
1293 #ifdef CONFIG_KFENCE
1294 /*
1295 * kfence pool must be backed by PAGE_SIZE mappings, so allocate it
1296 * before we setup the linear mapping so that we avoid using hugepages
1297 * for this region.
1298 */
1299 kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
1300 BUG_ON(!kfence_pool);
1301
1302 memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
1303 __kfence_pool = __va(kfence_pool);
1304 #endif
1305
1306 /* Map all memory banks in the linear mapping */
1307 for_each_mem_range(i, &start, &end) {
1308 if (start >= end)
1309 break;
1310 if (start <= __pa(PAGE_OFFSET) &&
1311 __pa(PAGE_OFFSET) < end)
1312 start = __pa(PAGE_OFFSET);
1313
1314 create_linear_mapping_range(start, end, 0, NULL);
1315 }
1316
1317 #ifdef CONFIG_STRICT_KERNEL_RWX
1318 create_linear_mapping_range(ktext_start, ktext_start + ktext_size, 0, NULL);
1319 create_linear_mapping_range(krodata_start, krodata_start + krodata_size, 0, NULL);
1320
1321 memblock_clear_nomap(ktext_start, ktext_size);
1322 memblock_clear_nomap(krodata_start, krodata_size);
1323 #endif
1324
1325 #ifdef CONFIG_KFENCE
1326 create_linear_mapping_range(kfence_pool, kfence_pool + KFENCE_POOL_SIZE, PAGE_SIZE, NULL);
1327
1328 memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
1329 #endif
1330 }
1331
setup_vm_final(void)1332 static void __init setup_vm_final(void)
1333 {
1334 /* Setup swapper PGD for fixmap */
1335 #if !defined(CONFIG_64BIT)
1336 /*
1337 * In 32-bit, the device tree lies in a pgd entry, so it must be copied
1338 * directly in swapper_pg_dir in addition to the pgd entry that points
1339 * to fixmap_pte.
1340 */
1341 unsigned long idx = pgd_index(__fix_to_virt(FIX_FDT));
1342
1343 set_pgd(&swapper_pg_dir[idx], early_pg_dir[idx]);
1344 #endif
1345 create_pgd_mapping(swapper_pg_dir, FIXADDR_START,
1346 __pa_symbol(fixmap_pgd_next),
1347 PGDIR_SIZE, PAGE_TABLE);
1348
1349 /* Map the linear mapping */
1350 create_linear_mapping_page_table();
1351
1352 /* Map the kernel */
1353 if (IS_ENABLED(CONFIG_64BIT))
1354 create_kernel_page_table(swapper_pg_dir, false);
1355
1356 #ifdef CONFIG_KASAN
1357 kasan_swapper_init();
1358 #endif
1359
1360 /* Clear fixmap PTE and PMD mappings */
1361 clear_fixmap(FIX_PTE);
1362 clear_fixmap(FIX_PMD);
1363 clear_fixmap(FIX_PUD);
1364 clear_fixmap(FIX_P4D);
1365
1366 /* Move to swapper page table */
1367 csr_write(CSR_SATP, PFN_DOWN(__pa_symbol(swapper_pg_dir)) | satp_mode);
1368 local_flush_tlb_all();
1369
1370 pt_ops_set_late();
1371 }
1372 #else
setup_vm(uintptr_t dtb_pa)1373 asmlinkage void __init setup_vm(uintptr_t dtb_pa)
1374 {
1375 dtb_early_va = (void *)dtb_pa;
1376 dtb_early_pa = dtb_pa;
1377 }
1378
setup_vm_final(void)1379 static inline void setup_vm_final(void)
1380 {
1381 }
1382 #endif /* CONFIG_MMU */
1383
1384 /*
1385 * reserve_crashkernel() - reserves memory for crash kernel
1386 *
1387 * This function reserves memory area given in "crashkernel=" kernel command
1388 * line parameter. The memory reserved is used by dump capture kernel when
1389 * primary kernel is crashing.
1390 */
arch_reserve_crashkernel(void)1391 static void __init arch_reserve_crashkernel(void)
1392 {
1393 unsigned long long low_size = 0;
1394 unsigned long long crash_base, crash_size;
1395 char *cmdline = boot_command_line;
1396 bool high = false;
1397 int ret;
1398
1399 if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
1400 return;
1401
1402 ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
1403 &crash_size, &crash_base,
1404 &low_size, &high);
1405 if (ret)
1406 return;
1407
1408 reserve_crashkernel_generic(cmdline, crash_size, crash_base,
1409 low_size, high);
1410 }
1411
paging_init(void)1412 void __init paging_init(void)
1413 {
1414 setup_bootmem();
1415 setup_vm_final();
1416
1417 /* Depend on that Linear Mapping is ready */
1418 memblock_allow_resize();
1419 }
1420
misc_mem_init(void)1421 void __init misc_mem_init(void)
1422 {
1423 early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT);
1424 arch_numa_init();
1425 sparse_init();
1426 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1427 /* The entire VMEMMAP region has been populated. Flush TLB for this region */
1428 local_flush_tlb_kernel_range(VMEMMAP_START, VMEMMAP_END);
1429 #endif
1430 zone_sizes_init();
1431 arch_reserve_crashkernel();
1432 memblock_dump_all();
1433 }
1434
1435 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmemmap_set_pmd(pmd_t * pmd,void * p,int node,unsigned long addr,unsigned long next)1436 void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
1437 unsigned long addr, unsigned long next)
1438 {
1439 pmd_set_huge(pmd, virt_to_phys(p), PAGE_KERNEL);
1440 }
1441
vmemmap_check_pmd(pmd_t * pmdp,int node,unsigned long addr,unsigned long next)1442 int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
1443 unsigned long addr, unsigned long next)
1444 {
1445 vmemmap_verify((pte_t *)pmdp, node, addr, next);
1446 return 1;
1447 }
1448
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1449 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1450 struct vmem_altmap *altmap)
1451 {
1452 /*
1453 * Note that SPARSEMEM_VMEMMAP is only selected for rv64 and that we
1454 * can't use hugepage mappings for 2-level page table because in case of
1455 * memory hotplug, we are not able to update all the page tables with
1456 * the new PMDs.
1457 */
1458 return vmemmap_populate_hugepages(start, end, node, altmap);
1459 }
1460 #endif
1461
1462 #if defined(CONFIG_MMU) && defined(CONFIG_64BIT)
1463 /*
1464 * Pre-allocates page-table pages for a specific area in the kernel
1465 * page-table. Only the level which needs to be synchronized between
1466 * all page-tables is allocated because the synchronization can be
1467 * expensive.
1468 */
preallocate_pgd_pages_range(unsigned long start,unsigned long end,const char * area)1469 static void __init preallocate_pgd_pages_range(unsigned long start, unsigned long end,
1470 const char *area)
1471 {
1472 unsigned long addr;
1473 const char *lvl;
1474
1475 for (addr = start; addr < end && addr >= start; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1476 pgd_t *pgd = pgd_offset_k(addr);
1477 p4d_t *p4d;
1478 pud_t *pud;
1479 pmd_t *pmd;
1480
1481 lvl = "p4d";
1482 p4d = p4d_alloc(&init_mm, pgd, addr);
1483 if (!p4d)
1484 goto failed;
1485
1486 if (pgtable_l5_enabled)
1487 continue;
1488
1489 lvl = "pud";
1490 pud = pud_alloc(&init_mm, p4d, addr);
1491 if (!pud)
1492 goto failed;
1493
1494 if (pgtable_l4_enabled)
1495 continue;
1496
1497 lvl = "pmd";
1498 pmd = pmd_alloc(&init_mm, pud, addr);
1499 if (!pmd)
1500 goto failed;
1501 }
1502 return;
1503
1504 failed:
1505 /*
1506 * The pages have to be there now or they will be missing in
1507 * process page-tables later.
1508 */
1509 panic("Failed to pre-allocate %s pages for %s area\n", lvl, area);
1510 }
1511
1512 #define PAGE_END KASAN_SHADOW_START
1513
pgtable_cache_init(void)1514 void __init pgtable_cache_init(void)
1515 {
1516 preallocate_pgd_pages_range(VMALLOC_START, VMALLOC_END, "vmalloc");
1517 if (IS_ENABLED(CONFIG_MODULES))
1518 preallocate_pgd_pages_range(MODULES_VADDR, MODULES_END, "bpf/modules");
1519 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
1520 preallocate_pgd_pages_range(VMEMMAP_START, VMEMMAP_END, "vmemmap");
1521 preallocate_pgd_pages_range(PAGE_OFFSET, PAGE_END, "direct map");
1522 if (IS_ENABLED(CONFIG_KASAN))
1523 preallocate_pgd_pages_range(KASAN_SHADOW_START, KASAN_SHADOW_END, "kasan");
1524 }
1525 }
1526 #endif
1527
1528 #ifdef CONFIG_EXECMEM
1529 #ifdef CONFIG_MMU
1530 static struct execmem_info execmem_info __ro_after_init;
1531
execmem_arch_setup(void)1532 struct execmem_info __init *execmem_arch_setup(void)
1533 {
1534 execmem_info = (struct execmem_info){
1535 .ranges = {
1536 [EXECMEM_DEFAULT] = {
1537 .start = MODULES_VADDR,
1538 .end = MODULES_END,
1539 .pgprot = PAGE_KERNEL,
1540 .alignment = 1,
1541 },
1542 [EXECMEM_KPROBES] = {
1543 .start = VMALLOC_START,
1544 .end = VMALLOC_END,
1545 .pgprot = PAGE_KERNEL_READ_EXEC,
1546 .alignment = 1,
1547 },
1548 [EXECMEM_BPF] = {
1549 .start = BPF_JIT_REGION_START,
1550 .end = BPF_JIT_REGION_END,
1551 .pgprot = PAGE_KERNEL,
1552 .alignment = PAGE_SIZE,
1553 },
1554 },
1555 };
1556
1557 return &execmem_info;
1558 }
1559 #endif /* CONFIG_MMU */
1560 #endif /* CONFIG_EXECMEM */
1561
1562 #ifdef CONFIG_MEMORY_HOTPLUG
free_pte_table(pte_t * pte_start,pmd_t * pmd)1563 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
1564 {
1565 struct page *page = pmd_page(*pmd);
1566 struct ptdesc *ptdesc = page_ptdesc(page);
1567 pte_t *pte;
1568 int i;
1569
1570 for (i = 0; i < PTRS_PER_PTE; i++) {
1571 pte = pte_start + i;
1572 if (!pte_none(*pte))
1573 return;
1574 }
1575
1576 pagetable_pte_dtor(ptdesc);
1577 if (PageReserved(page))
1578 free_reserved_page(page);
1579 else
1580 pagetable_free(ptdesc);
1581 pmd_clear(pmd);
1582 }
1583
free_pmd_table(pmd_t * pmd_start,pud_t * pud,bool is_vmemmap)1584 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud, bool is_vmemmap)
1585 {
1586 struct page *page = pud_page(*pud);
1587 struct ptdesc *ptdesc = page_ptdesc(page);
1588 pmd_t *pmd;
1589 int i;
1590
1591 for (i = 0; i < PTRS_PER_PMD; i++) {
1592 pmd = pmd_start + i;
1593 if (!pmd_none(*pmd))
1594 return;
1595 }
1596
1597 if (!is_vmemmap)
1598 pagetable_pmd_dtor(ptdesc);
1599 if (PageReserved(page))
1600 free_reserved_page(page);
1601 else
1602 pagetable_free(ptdesc);
1603 pud_clear(pud);
1604 }
1605
free_pud_table(pud_t * pud_start,p4d_t * p4d)1606 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
1607 {
1608 struct page *page = p4d_page(*p4d);
1609 pud_t *pud;
1610 int i;
1611
1612 for (i = 0; i < PTRS_PER_PUD; i++) {
1613 pud = pud_start + i;
1614 if (!pud_none(*pud))
1615 return;
1616 }
1617
1618 if (PageReserved(page))
1619 free_reserved_page(page);
1620 else
1621 free_pages((unsigned long)page_address(page), 0);
1622 p4d_clear(p4d);
1623 }
1624
free_vmemmap_storage(struct page * page,size_t size,struct vmem_altmap * altmap)1625 static void __meminit free_vmemmap_storage(struct page *page, size_t size,
1626 struct vmem_altmap *altmap)
1627 {
1628 int order = get_order(size);
1629
1630 if (altmap) {
1631 vmem_altmap_free(altmap, size >> PAGE_SHIFT);
1632 return;
1633 }
1634
1635 if (PageReserved(page)) {
1636 unsigned int nr_pages = 1 << order;
1637
1638 while (nr_pages--)
1639 free_reserved_page(page++);
1640 return;
1641 }
1642
1643 free_pages((unsigned long)page_address(page), order);
1644 }
1645
remove_pte_mapping(pte_t * pte_base,unsigned long addr,unsigned long end,bool is_vmemmap,struct vmem_altmap * altmap)1646 static void __meminit remove_pte_mapping(pte_t *pte_base, unsigned long addr, unsigned long end,
1647 bool is_vmemmap, struct vmem_altmap *altmap)
1648 {
1649 unsigned long next;
1650 pte_t *ptep, pte;
1651
1652 for (; addr < end; addr = next) {
1653 next = (addr + PAGE_SIZE) & PAGE_MASK;
1654 if (next > end)
1655 next = end;
1656
1657 ptep = pte_base + pte_index(addr);
1658 pte = ptep_get(ptep);
1659 if (!pte_present(*ptep))
1660 continue;
1661
1662 pte_clear(&init_mm, addr, ptep);
1663 if (is_vmemmap)
1664 free_vmemmap_storage(pte_page(pte), PAGE_SIZE, altmap);
1665 }
1666 }
1667
remove_pmd_mapping(pmd_t * pmd_base,unsigned long addr,unsigned long end,bool is_vmemmap,struct vmem_altmap * altmap)1668 static void __meminit remove_pmd_mapping(pmd_t *pmd_base, unsigned long addr, unsigned long end,
1669 bool is_vmemmap, struct vmem_altmap *altmap)
1670 {
1671 unsigned long next;
1672 pte_t *pte_base;
1673 pmd_t *pmdp, pmd;
1674
1675 for (; addr < end; addr = next) {
1676 next = pmd_addr_end(addr, end);
1677 pmdp = pmd_base + pmd_index(addr);
1678 pmd = pmdp_get(pmdp);
1679 if (!pmd_present(pmd))
1680 continue;
1681
1682 if (pmd_leaf(pmd)) {
1683 pmd_clear(pmdp);
1684 if (is_vmemmap)
1685 free_vmemmap_storage(pmd_page(pmd), PMD_SIZE, altmap);
1686 continue;
1687 }
1688
1689 pte_base = (pte_t *)pmd_page_vaddr(*pmdp);
1690 remove_pte_mapping(pte_base, addr, next, is_vmemmap, altmap);
1691 free_pte_table(pte_base, pmdp);
1692 }
1693 }
1694
remove_pud_mapping(pud_t * pud_base,unsigned long addr,unsigned long end,bool is_vmemmap,struct vmem_altmap * altmap)1695 static void __meminit remove_pud_mapping(pud_t *pud_base, unsigned long addr, unsigned long end,
1696 bool is_vmemmap, struct vmem_altmap *altmap)
1697 {
1698 unsigned long next;
1699 pud_t *pudp, pud;
1700 pmd_t *pmd_base;
1701
1702 for (; addr < end; addr = next) {
1703 next = pud_addr_end(addr, end);
1704 pudp = pud_base + pud_index(addr);
1705 pud = pudp_get(pudp);
1706 if (!pud_present(pud))
1707 continue;
1708
1709 if (pud_leaf(pud)) {
1710 if (pgtable_l4_enabled) {
1711 pud_clear(pudp);
1712 if (is_vmemmap)
1713 free_vmemmap_storage(pud_page(pud), PUD_SIZE, altmap);
1714 }
1715 continue;
1716 }
1717
1718 pmd_base = pmd_offset(pudp, 0);
1719 remove_pmd_mapping(pmd_base, addr, next, is_vmemmap, altmap);
1720
1721 if (pgtable_l4_enabled)
1722 free_pmd_table(pmd_base, pudp, is_vmemmap);
1723 }
1724 }
1725
remove_p4d_mapping(p4d_t * p4d_base,unsigned long addr,unsigned long end,bool is_vmemmap,struct vmem_altmap * altmap)1726 static void __meminit remove_p4d_mapping(p4d_t *p4d_base, unsigned long addr, unsigned long end,
1727 bool is_vmemmap, struct vmem_altmap *altmap)
1728 {
1729 unsigned long next;
1730 p4d_t *p4dp, p4d;
1731 pud_t *pud_base;
1732
1733 for (; addr < end; addr = next) {
1734 next = p4d_addr_end(addr, end);
1735 p4dp = p4d_base + p4d_index(addr);
1736 p4d = p4dp_get(p4dp);
1737 if (!p4d_present(p4d))
1738 continue;
1739
1740 if (p4d_leaf(p4d)) {
1741 if (pgtable_l5_enabled) {
1742 p4d_clear(p4dp);
1743 if (is_vmemmap)
1744 free_vmemmap_storage(p4d_page(p4d), P4D_SIZE, altmap);
1745 }
1746 continue;
1747 }
1748
1749 pud_base = pud_offset(p4dp, 0);
1750 remove_pud_mapping(pud_base, addr, next, is_vmemmap, altmap);
1751
1752 if (pgtable_l5_enabled)
1753 free_pud_table(pud_base, p4dp);
1754 }
1755 }
1756
remove_pgd_mapping(unsigned long va,unsigned long end,bool is_vmemmap,struct vmem_altmap * altmap)1757 static void __meminit remove_pgd_mapping(unsigned long va, unsigned long end, bool is_vmemmap,
1758 struct vmem_altmap *altmap)
1759 {
1760 unsigned long addr, next;
1761 p4d_t *p4d_base;
1762 pgd_t *pgd;
1763
1764 for (addr = va; addr < end; addr = next) {
1765 next = pgd_addr_end(addr, end);
1766 pgd = pgd_offset_k(addr);
1767
1768 if (!pgd_present(*pgd))
1769 continue;
1770
1771 if (pgd_leaf(*pgd))
1772 continue;
1773
1774 p4d_base = p4d_offset(pgd, 0);
1775 remove_p4d_mapping(p4d_base, addr, next, is_vmemmap, altmap);
1776 }
1777
1778 flush_tlb_all();
1779 }
1780
remove_linear_mapping(phys_addr_t start,u64 size)1781 static void __meminit remove_linear_mapping(phys_addr_t start, u64 size)
1782 {
1783 unsigned long va = (unsigned long)__va(start);
1784 unsigned long end = (unsigned long)__va(start + size);
1785
1786 remove_pgd_mapping(va, end, false, NULL);
1787 }
1788
arch_get_mappable_range(void)1789 struct range arch_get_mappable_range(void)
1790 {
1791 struct range mhp_range;
1792
1793 mhp_range.start = __pa(PAGE_OFFSET);
1794 mhp_range.end = __pa(PAGE_END - 1);
1795 return mhp_range;
1796 }
1797
arch_add_memory(int nid,u64 start,u64 size,struct mhp_params * params)1798 int __ref arch_add_memory(int nid, u64 start, u64 size, struct mhp_params *params)
1799 {
1800 int ret = 0;
1801
1802 create_linear_mapping_range(start, start + size, 0, ¶ms->pgprot);
1803 ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT, params);
1804 if (ret) {
1805 remove_linear_mapping(start, size);
1806 goto out;
1807 }
1808
1809 max_pfn = PFN_UP(start + size);
1810 max_low_pfn = max_pfn;
1811
1812 out:
1813 flush_tlb_all();
1814 return ret;
1815 }
1816
arch_remove_memory(u64 start,u64 size,struct vmem_altmap * altmap)1817 void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1818 {
1819 __remove_pages(start >> PAGE_SHIFT, size >> PAGE_SHIFT, altmap);
1820 remove_linear_mapping(start, size);
1821 flush_tlb_all();
1822 }
1823
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)1824 void __ref vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap)
1825 {
1826 remove_pgd_mapping(start, end, true, altmap);
1827 }
1828 #endif /* CONFIG_MEMORY_HOTPLUG */
1829