1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * /proc/sys support
4 */
5 #include <linux/init.h>
6 #include <linux/sysctl.h>
7 #include <linux/poll.h>
8 #include <linux/proc_fs.h>
9 #include <linux/printk.h>
10 #include <linux/security.h>
11 #include <linux/sched.h>
12 #include <linux/cred.h>
13 #include <linux/namei.h>
14 #include <linux/mm.h>
15 #include <linux/uio.h>
16 #include <linux/module.h>
17 #include <linux/bpf-cgroup.h>
18 #include <linux/mount.h>
19 #include <linux/kmemleak.h>
20 #include <linux/lockdep.h>
21 #include "internal.h"
22
23 #define list_for_each_table_entry(entry, header) \
24 entry = header->ctl_table; \
25 for (size_t i = 0 ; i < header->ctl_table_size; ++i, entry++)
26
27 static const struct dentry_operations proc_sys_dentry_operations;
28 static const struct file_operations proc_sys_file_operations;
29 static const struct inode_operations proc_sys_inode_operations;
30 static const struct file_operations proc_sys_dir_file_operations;
31 static const struct inode_operations proc_sys_dir_operations;
32
33 /*
34 * Support for permanently empty directories.
35 * Must be non-empty to avoid sharing an address with other tables.
36 */
37 static const struct ctl_table sysctl_mount_point[] = {
38 { }
39 };
40
41 /**
42 * register_sysctl_mount_point() - registers a sysctl mount point
43 * @path: path for the mount point
44 *
45 * Used to create a permanently empty directory to serve as mount point.
46 * There are some subtle but important permission checks this allows in the
47 * case of unprivileged mounts.
48 */
register_sysctl_mount_point(const char * path)49 struct ctl_table_header *register_sysctl_mount_point(const char *path)
50 {
51 return register_sysctl_sz(path, sysctl_mount_point, 0);
52 }
53 EXPORT_SYMBOL(register_sysctl_mount_point);
54
55 #define sysctl_is_perm_empty_ctl_header(hptr) \
56 (hptr->type == SYSCTL_TABLE_TYPE_PERMANENTLY_EMPTY)
57 #define sysctl_set_perm_empty_ctl_header(hptr) \
58 (hptr->type = SYSCTL_TABLE_TYPE_PERMANENTLY_EMPTY)
59 #define sysctl_clear_perm_empty_ctl_header(hptr) \
60 (hptr->type = SYSCTL_TABLE_TYPE_DEFAULT)
61
proc_sys_poll_notify(struct ctl_table_poll * poll)62 void proc_sys_poll_notify(struct ctl_table_poll *poll)
63 {
64 if (!poll)
65 return;
66
67 atomic_inc(&poll->event);
68 wake_up_interruptible(&poll->wait);
69 }
70
71 static const struct ctl_table root_table[] = {
72 {
73 .procname = "",
74 .mode = S_IFDIR|S_IRUGO|S_IXUGO,
75 },
76 };
77 static struct ctl_table_root sysctl_table_root = {
78 .default_set.dir.header = {
79 {{.count = 1,
80 .nreg = 1,
81 .ctl_table = root_table }},
82 .ctl_table_arg = root_table,
83 .root = &sysctl_table_root,
84 .set = &sysctl_table_root.default_set,
85 },
86 };
87
88 static DEFINE_SPINLOCK(sysctl_lock);
89
90 static void drop_sysctl_table(struct ctl_table_header *header);
91 static int sysctl_follow_link(struct ctl_table_header **phead,
92 const struct ctl_table **pentry);
93 static int insert_links(struct ctl_table_header *head);
94 static void put_links(struct ctl_table_header *header);
95
sysctl_print_dir(struct ctl_dir * dir)96 static void sysctl_print_dir(struct ctl_dir *dir)
97 {
98 if (dir->header.parent)
99 sysctl_print_dir(dir->header.parent);
100 pr_cont("%s/", dir->header.ctl_table[0].procname);
101 }
102
namecmp(const char * name1,int len1,const char * name2,int len2)103 static int namecmp(const char *name1, int len1, const char *name2, int len2)
104 {
105 int cmp;
106
107 cmp = memcmp(name1, name2, min(len1, len2));
108 if (cmp == 0)
109 cmp = len1 - len2;
110 return cmp;
111 }
112
find_entry(struct ctl_table_header ** phead,struct ctl_dir * dir,const char * name,int namelen)113 static const struct ctl_table *find_entry(struct ctl_table_header **phead,
114 struct ctl_dir *dir, const char *name, int namelen)
115 {
116 struct ctl_table_header *head;
117 const struct ctl_table *entry;
118 struct rb_node *node = dir->root.rb_node;
119
120 lockdep_assert_held(&sysctl_lock);
121
122 while (node)
123 {
124 struct ctl_node *ctl_node;
125 const char *procname;
126 int cmp;
127
128 ctl_node = rb_entry(node, struct ctl_node, node);
129 head = ctl_node->header;
130 entry = &head->ctl_table[ctl_node - head->node];
131 procname = entry->procname;
132
133 cmp = namecmp(name, namelen, procname, strlen(procname));
134 if (cmp < 0)
135 node = node->rb_left;
136 else if (cmp > 0)
137 node = node->rb_right;
138 else {
139 *phead = head;
140 return entry;
141 }
142 }
143 return NULL;
144 }
145
insert_entry(struct ctl_table_header * head,const struct ctl_table * entry)146 static int insert_entry(struct ctl_table_header *head, const struct ctl_table *entry)
147 {
148 struct rb_node *node = &head->node[entry - head->ctl_table].node;
149 struct rb_node **p = &head->parent->root.rb_node;
150 struct rb_node *parent = NULL;
151 const char *name = entry->procname;
152 int namelen = strlen(name);
153
154 while (*p) {
155 struct ctl_table_header *parent_head;
156 const struct ctl_table *parent_entry;
157 struct ctl_node *parent_node;
158 const char *parent_name;
159 int cmp;
160
161 parent = *p;
162 parent_node = rb_entry(parent, struct ctl_node, node);
163 parent_head = parent_node->header;
164 parent_entry = &parent_head->ctl_table[parent_node - parent_head->node];
165 parent_name = parent_entry->procname;
166
167 cmp = namecmp(name, namelen, parent_name, strlen(parent_name));
168 if (cmp < 0)
169 p = &(*p)->rb_left;
170 else if (cmp > 0)
171 p = &(*p)->rb_right;
172 else {
173 pr_err("sysctl duplicate entry: ");
174 sysctl_print_dir(head->parent);
175 pr_cont("%s\n", entry->procname);
176 return -EEXIST;
177 }
178 }
179
180 rb_link_node(node, parent, p);
181 rb_insert_color(node, &head->parent->root);
182 return 0;
183 }
184
erase_entry(struct ctl_table_header * head,const struct ctl_table * entry)185 static void erase_entry(struct ctl_table_header *head, const struct ctl_table *entry)
186 {
187 struct rb_node *node = &head->node[entry - head->ctl_table].node;
188
189 rb_erase(node, &head->parent->root);
190 }
191
init_header(struct ctl_table_header * head,struct ctl_table_root * root,struct ctl_table_set * set,struct ctl_node * node,const struct ctl_table * table,size_t table_size)192 static void init_header(struct ctl_table_header *head,
193 struct ctl_table_root *root, struct ctl_table_set *set,
194 struct ctl_node *node, const struct ctl_table *table, size_t table_size)
195 {
196 head->ctl_table = table;
197 head->ctl_table_size = table_size;
198 head->ctl_table_arg = table;
199 head->used = 0;
200 head->count = 1;
201 head->nreg = 1;
202 head->unregistering = NULL;
203 head->root = root;
204 head->set = set;
205 head->parent = NULL;
206 head->node = node;
207 INIT_HLIST_HEAD(&head->inodes);
208 if (node) {
209 const struct ctl_table *entry;
210
211 list_for_each_table_entry(entry, head) {
212 node->header = head;
213 node++;
214 }
215 }
216 if (table == sysctl_mount_point)
217 sysctl_set_perm_empty_ctl_header(head);
218 }
219
erase_header(struct ctl_table_header * head)220 static void erase_header(struct ctl_table_header *head)
221 {
222 const struct ctl_table *entry;
223
224 list_for_each_table_entry(entry, head)
225 erase_entry(head, entry);
226 }
227
insert_header(struct ctl_dir * dir,struct ctl_table_header * header)228 static int insert_header(struct ctl_dir *dir, struct ctl_table_header *header)
229 {
230 const struct ctl_table *entry;
231 struct ctl_table_header *dir_h = &dir->header;
232 int err;
233
234
235 /* Is this a permanently empty directory? */
236 if (sysctl_is_perm_empty_ctl_header(dir_h))
237 return -EROFS;
238
239 /* Am I creating a permanently empty directory? */
240 if (sysctl_is_perm_empty_ctl_header(header)) {
241 if (!RB_EMPTY_ROOT(&dir->root))
242 return -EINVAL;
243 sysctl_set_perm_empty_ctl_header(dir_h);
244 }
245
246 dir_h->nreg++;
247 header->parent = dir;
248 err = insert_links(header);
249 if (err)
250 goto fail_links;
251 list_for_each_table_entry(entry, header) {
252 err = insert_entry(header, entry);
253 if (err)
254 goto fail;
255 }
256 return 0;
257 fail:
258 erase_header(header);
259 put_links(header);
260 fail_links:
261 if (header->ctl_table == sysctl_mount_point)
262 sysctl_clear_perm_empty_ctl_header(dir_h);
263 header->parent = NULL;
264 drop_sysctl_table(dir_h);
265 return err;
266 }
267
use_table(struct ctl_table_header * p)268 static int use_table(struct ctl_table_header *p)
269 {
270 lockdep_assert_held(&sysctl_lock);
271
272 if (unlikely(p->unregistering))
273 return 0;
274 p->used++;
275 return 1;
276 }
277
unuse_table(struct ctl_table_header * p)278 static void unuse_table(struct ctl_table_header *p)
279 {
280 lockdep_assert_held(&sysctl_lock);
281
282 if (!--p->used)
283 if (unlikely(p->unregistering))
284 complete(p->unregistering);
285 }
286
proc_sys_invalidate_dcache(struct ctl_table_header * head)287 static void proc_sys_invalidate_dcache(struct ctl_table_header *head)
288 {
289 proc_invalidate_siblings_dcache(&head->inodes, &sysctl_lock);
290 }
291
start_unregistering(struct ctl_table_header * p)292 static void start_unregistering(struct ctl_table_header *p)
293 {
294 /* will reacquire if has to wait */
295 lockdep_assert_held(&sysctl_lock);
296
297 /*
298 * if p->used is 0, nobody will ever touch that entry again;
299 * we'll eliminate all paths to it before dropping sysctl_lock
300 */
301 if (unlikely(p->used)) {
302 struct completion wait;
303 init_completion(&wait);
304 p->unregistering = &wait;
305 spin_unlock(&sysctl_lock);
306 wait_for_completion(&wait);
307 } else {
308 /* anything non-NULL; we'll never dereference it */
309 p->unregistering = ERR_PTR(-EINVAL);
310 spin_unlock(&sysctl_lock);
311 }
312 /*
313 * Invalidate dentries for unregistered sysctls: namespaced sysctls
314 * can have duplicate names and contaminate dcache very badly.
315 */
316 proc_sys_invalidate_dcache(p);
317 /*
318 * do not remove from the list until nobody holds it; walking the
319 * list in do_sysctl() relies on that.
320 */
321 spin_lock(&sysctl_lock);
322 erase_header(p);
323 }
324
sysctl_head_grab(struct ctl_table_header * head)325 static struct ctl_table_header *sysctl_head_grab(struct ctl_table_header *head)
326 {
327 BUG_ON(!head);
328 spin_lock(&sysctl_lock);
329 if (!use_table(head))
330 head = ERR_PTR(-ENOENT);
331 spin_unlock(&sysctl_lock);
332 return head;
333 }
334
sysctl_head_finish(struct ctl_table_header * head)335 static void sysctl_head_finish(struct ctl_table_header *head)
336 {
337 if (!head)
338 return;
339 spin_lock(&sysctl_lock);
340 unuse_table(head);
341 spin_unlock(&sysctl_lock);
342 }
343
344 static struct ctl_table_set *
lookup_header_set(struct ctl_table_root * root)345 lookup_header_set(struct ctl_table_root *root)
346 {
347 struct ctl_table_set *set = &root->default_set;
348 if (root->lookup)
349 set = root->lookup(root);
350 return set;
351 }
352
lookup_entry(struct ctl_table_header ** phead,struct ctl_dir * dir,const char * name,int namelen)353 static const struct ctl_table *lookup_entry(struct ctl_table_header **phead,
354 struct ctl_dir *dir,
355 const char *name, int namelen)
356 {
357 struct ctl_table_header *head;
358 const struct ctl_table *entry;
359
360 spin_lock(&sysctl_lock);
361 entry = find_entry(&head, dir, name, namelen);
362 if (entry && use_table(head))
363 *phead = head;
364 else
365 entry = NULL;
366 spin_unlock(&sysctl_lock);
367 return entry;
368 }
369
first_usable_entry(struct rb_node * node)370 static struct ctl_node *first_usable_entry(struct rb_node *node)
371 {
372 struct ctl_node *ctl_node;
373
374 for (;node; node = rb_next(node)) {
375 ctl_node = rb_entry(node, struct ctl_node, node);
376 if (use_table(ctl_node->header))
377 return ctl_node;
378 }
379 return NULL;
380 }
381
first_entry(struct ctl_dir * dir,struct ctl_table_header ** phead,const struct ctl_table ** pentry)382 static void first_entry(struct ctl_dir *dir,
383 struct ctl_table_header **phead, const struct ctl_table **pentry)
384 {
385 struct ctl_table_header *head = NULL;
386 const struct ctl_table *entry = NULL;
387 struct ctl_node *ctl_node;
388
389 spin_lock(&sysctl_lock);
390 ctl_node = first_usable_entry(rb_first(&dir->root));
391 spin_unlock(&sysctl_lock);
392 if (ctl_node) {
393 head = ctl_node->header;
394 entry = &head->ctl_table[ctl_node - head->node];
395 }
396 *phead = head;
397 *pentry = entry;
398 }
399
next_entry(struct ctl_table_header ** phead,const struct ctl_table ** pentry)400 static void next_entry(struct ctl_table_header **phead, const struct ctl_table **pentry)
401 {
402 struct ctl_table_header *head = *phead;
403 const struct ctl_table *entry = *pentry;
404 struct ctl_node *ctl_node = &head->node[entry - head->ctl_table];
405
406 spin_lock(&sysctl_lock);
407 unuse_table(head);
408
409 ctl_node = first_usable_entry(rb_next(&ctl_node->node));
410 spin_unlock(&sysctl_lock);
411 head = NULL;
412 if (ctl_node) {
413 head = ctl_node->header;
414 entry = &head->ctl_table[ctl_node - head->node];
415 }
416 *phead = head;
417 *pentry = entry;
418 }
419
420 /*
421 * sysctl_perm does NOT grant the superuser all rights automatically, because
422 * some sysctl variables are readonly even to root.
423 */
424
test_perm(int mode,int op)425 static int test_perm(int mode, int op)
426 {
427 if (uid_eq(current_euid(), GLOBAL_ROOT_UID))
428 mode >>= 6;
429 else if (in_egroup_p(GLOBAL_ROOT_GID))
430 mode >>= 3;
431 if ((op & ~mode & (MAY_READ|MAY_WRITE|MAY_EXEC)) == 0)
432 return 0;
433 return -EACCES;
434 }
435
sysctl_perm(struct ctl_table_header * head,const struct ctl_table * table,int op)436 static int sysctl_perm(struct ctl_table_header *head, const struct ctl_table *table, int op)
437 {
438 struct ctl_table_root *root = head->root;
439 int mode;
440
441 if (root->permissions)
442 mode = root->permissions(head, table);
443 else
444 mode = table->mode;
445
446 return test_perm(mode, op);
447 }
448
proc_sys_make_inode(struct super_block * sb,struct ctl_table_header * head,const struct ctl_table * table)449 static struct inode *proc_sys_make_inode(struct super_block *sb,
450 struct ctl_table_header *head, const struct ctl_table *table)
451 {
452 struct ctl_table_root *root = head->root;
453 struct inode *inode;
454 struct proc_inode *ei;
455
456 inode = new_inode(sb);
457 if (!inode)
458 return ERR_PTR(-ENOMEM);
459
460 inode->i_ino = get_next_ino();
461
462 ei = PROC_I(inode);
463
464 spin_lock(&sysctl_lock);
465 if (unlikely(head->unregistering)) {
466 spin_unlock(&sysctl_lock);
467 iput(inode);
468 return ERR_PTR(-ENOENT);
469 }
470 ei->sysctl = head;
471 ei->sysctl_entry = table;
472 hlist_add_head_rcu(&ei->sibling_inodes, &head->inodes);
473 head->count++;
474 spin_unlock(&sysctl_lock);
475
476 simple_inode_init_ts(inode);
477 inode->i_mode = table->mode;
478 if (!S_ISDIR(table->mode)) {
479 inode->i_mode |= S_IFREG;
480 inode->i_op = &proc_sys_inode_operations;
481 inode->i_fop = &proc_sys_file_operations;
482 } else {
483 inode->i_mode |= S_IFDIR;
484 inode->i_op = &proc_sys_dir_operations;
485 inode->i_fop = &proc_sys_dir_file_operations;
486 if (sysctl_is_perm_empty_ctl_header(head))
487 make_empty_dir_inode(inode);
488 }
489
490 inode->i_uid = GLOBAL_ROOT_UID;
491 inode->i_gid = GLOBAL_ROOT_GID;
492 if (root->set_ownership)
493 root->set_ownership(head, &inode->i_uid, &inode->i_gid);
494
495 return inode;
496 }
497
proc_sys_evict_inode(struct inode * inode,struct ctl_table_header * head)498 void proc_sys_evict_inode(struct inode *inode, struct ctl_table_header *head)
499 {
500 spin_lock(&sysctl_lock);
501 hlist_del_init_rcu(&PROC_I(inode)->sibling_inodes);
502 if (!--head->count)
503 kfree_rcu(head, rcu);
504 spin_unlock(&sysctl_lock);
505 }
506
grab_header(struct inode * inode)507 static struct ctl_table_header *grab_header(struct inode *inode)
508 {
509 struct ctl_table_header *head = PROC_I(inode)->sysctl;
510 if (!head)
511 head = &sysctl_table_root.default_set.dir.header;
512 return sysctl_head_grab(head);
513 }
514
proc_sys_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)515 static struct dentry *proc_sys_lookup(struct inode *dir, struct dentry *dentry,
516 unsigned int flags)
517 {
518 struct ctl_table_header *head = grab_header(dir);
519 struct ctl_table_header *h = NULL;
520 const struct qstr *name = &dentry->d_name;
521 const struct ctl_table *p;
522 struct inode *inode;
523 struct dentry *err = ERR_PTR(-ENOENT);
524 struct ctl_dir *ctl_dir;
525 int ret;
526
527 if (IS_ERR(head))
528 return ERR_CAST(head);
529
530 ctl_dir = container_of(head, struct ctl_dir, header);
531
532 p = lookup_entry(&h, ctl_dir, name->name, name->len);
533 if (!p)
534 goto out;
535
536 if (S_ISLNK(p->mode)) {
537 ret = sysctl_follow_link(&h, &p);
538 err = ERR_PTR(ret);
539 if (ret)
540 goto out;
541 }
542
543 d_set_d_op(dentry, &proc_sys_dentry_operations);
544 inode = proc_sys_make_inode(dir->i_sb, h ? h : head, p);
545 err = d_splice_alias(inode, dentry);
546
547 out:
548 if (h)
549 sysctl_head_finish(h);
550 sysctl_head_finish(head);
551 return err;
552 }
553
proc_sys_call_handler(struct kiocb * iocb,struct iov_iter * iter,int write)554 static ssize_t proc_sys_call_handler(struct kiocb *iocb, struct iov_iter *iter,
555 int write)
556 {
557 struct inode *inode = file_inode(iocb->ki_filp);
558 struct ctl_table_header *head = grab_header(inode);
559 const struct ctl_table *table = PROC_I(inode)->sysctl_entry;
560 size_t count = iov_iter_count(iter);
561 char *kbuf;
562 ssize_t error;
563
564 if (IS_ERR(head))
565 return PTR_ERR(head);
566
567 /*
568 * At this point we know that the sysctl was not unregistered
569 * and won't be until we finish.
570 */
571 error = -EPERM;
572 if (sysctl_perm(head, table, write ? MAY_WRITE : MAY_READ))
573 goto out;
574
575 /* if that can happen at all, it should be -EINVAL, not -EISDIR */
576 error = -EINVAL;
577 if (!table->proc_handler)
578 goto out;
579
580 /* don't even try if the size is too large */
581 error = -ENOMEM;
582 if (count >= KMALLOC_MAX_SIZE)
583 goto out;
584 kbuf = kvzalloc(count + 1, GFP_KERNEL);
585 if (!kbuf)
586 goto out;
587
588 if (write) {
589 error = -EFAULT;
590 if (!copy_from_iter_full(kbuf, count, iter))
591 goto out_free_buf;
592 kbuf[count] = '\0';
593 }
594
595 error = BPF_CGROUP_RUN_PROG_SYSCTL(head, table, write, &kbuf, &count,
596 &iocb->ki_pos);
597 if (error)
598 goto out_free_buf;
599
600 /* careful: calling conventions are nasty here */
601 error = table->proc_handler(table, write, kbuf, &count, &iocb->ki_pos);
602 if (error)
603 goto out_free_buf;
604
605 if (!write) {
606 error = -EFAULT;
607 if (copy_to_iter(kbuf, count, iter) < count)
608 goto out_free_buf;
609 }
610
611 error = count;
612 out_free_buf:
613 kvfree(kbuf);
614 out:
615 sysctl_head_finish(head);
616
617 return error;
618 }
619
proc_sys_read(struct kiocb * iocb,struct iov_iter * iter)620 static ssize_t proc_sys_read(struct kiocb *iocb, struct iov_iter *iter)
621 {
622 return proc_sys_call_handler(iocb, iter, 0);
623 }
624
proc_sys_write(struct kiocb * iocb,struct iov_iter * iter)625 static ssize_t proc_sys_write(struct kiocb *iocb, struct iov_iter *iter)
626 {
627 return proc_sys_call_handler(iocb, iter, 1);
628 }
629
proc_sys_open(struct inode * inode,struct file * filp)630 static int proc_sys_open(struct inode *inode, struct file *filp)
631 {
632 struct ctl_table_header *head = grab_header(inode);
633 const struct ctl_table *table = PROC_I(inode)->sysctl_entry;
634
635 /* sysctl was unregistered */
636 if (IS_ERR(head))
637 return PTR_ERR(head);
638
639 if (table->poll)
640 filp->private_data = proc_sys_poll_event(table->poll);
641
642 sysctl_head_finish(head);
643
644 return 0;
645 }
646
proc_sys_poll(struct file * filp,poll_table * wait)647 static __poll_t proc_sys_poll(struct file *filp, poll_table *wait)
648 {
649 struct inode *inode = file_inode(filp);
650 struct ctl_table_header *head = grab_header(inode);
651 const struct ctl_table *table = PROC_I(inode)->sysctl_entry;
652 __poll_t ret = DEFAULT_POLLMASK;
653 unsigned long event;
654
655 /* sysctl was unregistered */
656 if (IS_ERR(head))
657 return EPOLLERR | EPOLLHUP;
658
659 if (!table->proc_handler)
660 goto out;
661
662 if (!table->poll)
663 goto out;
664
665 event = (unsigned long)filp->private_data;
666 poll_wait(filp, &table->poll->wait, wait);
667
668 if (event != atomic_read(&table->poll->event)) {
669 filp->private_data = proc_sys_poll_event(table->poll);
670 ret = EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
671 }
672
673 out:
674 sysctl_head_finish(head);
675
676 return ret;
677 }
678
proc_sys_fill_cache(struct file * file,struct dir_context * ctx,struct ctl_table_header * head,const struct ctl_table * table)679 static bool proc_sys_fill_cache(struct file *file,
680 struct dir_context *ctx,
681 struct ctl_table_header *head,
682 const struct ctl_table *table)
683 {
684 struct dentry *child, *dir = file->f_path.dentry;
685 struct inode *inode;
686 struct qstr qname;
687 ino_t ino = 0;
688 unsigned type = DT_UNKNOWN;
689
690 qname.name = table->procname;
691 qname.len = strlen(table->procname);
692 qname.hash = full_name_hash(dir, qname.name, qname.len);
693
694 child = d_lookup(dir, &qname);
695 if (!child) {
696 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
697 child = d_alloc_parallel(dir, &qname, &wq);
698 if (IS_ERR(child))
699 return false;
700 if (d_in_lookup(child)) {
701 struct dentry *res;
702 d_set_d_op(child, &proc_sys_dentry_operations);
703 inode = proc_sys_make_inode(dir->d_sb, head, table);
704 res = d_splice_alias(inode, child);
705 d_lookup_done(child);
706 if (unlikely(res)) {
707 dput(child);
708
709 if (IS_ERR(res))
710 return false;
711
712 child = res;
713 }
714 }
715 }
716 inode = d_inode(child);
717 ino = inode->i_ino;
718 type = inode->i_mode >> 12;
719 dput(child);
720 return dir_emit(ctx, qname.name, qname.len, ino, type);
721 }
722
proc_sys_link_fill_cache(struct file * file,struct dir_context * ctx,struct ctl_table_header * head,const struct ctl_table * table)723 static bool proc_sys_link_fill_cache(struct file *file,
724 struct dir_context *ctx,
725 struct ctl_table_header *head,
726 const struct ctl_table *table)
727 {
728 bool ret = true;
729
730 head = sysctl_head_grab(head);
731 if (IS_ERR(head))
732 return false;
733
734 /* It is not an error if we can not follow the link ignore it */
735 if (sysctl_follow_link(&head, &table))
736 goto out;
737
738 ret = proc_sys_fill_cache(file, ctx, head, table);
739 out:
740 sysctl_head_finish(head);
741 return ret;
742 }
743
scan(struct ctl_table_header * head,const struct ctl_table * table,unsigned long * pos,struct file * file,struct dir_context * ctx)744 static int scan(struct ctl_table_header *head, const struct ctl_table *table,
745 unsigned long *pos, struct file *file,
746 struct dir_context *ctx)
747 {
748 bool res;
749
750 if ((*pos)++ < ctx->pos)
751 return true;
752
753 if (unlikely(S_ISLNK(table->mode)))
754 res = proc_sys_link_fill_cache(file, ctx, head, table);
755 else
756 res = proc_sys_fill_cache(file, ctx, head, table);
757
758 if (res)
759 ctx->pos = *pos;
760
761 return res;
762 }
763
proc_sys_readdir(struct file * file,struct dir_context * ctx)764 static int proc_sys_readdir(struct file *file, struct dir_context *ctx)
765 {
766 struct ctl_table_header *head = grab_header(file_inode(file));
767 struct ctl_table_header *h = NULL;
768 const struct ctl_table *entry;
769 struct ctl_dir *ctl_dir;
770 unsigned long pos;
771
772 if (IS_ERR(head))
773 return PTR_ERR(head);
774
775 ctl_dir = container_of(head, struct ctl_dir, header);
776
777 if (!dir_emit_dots(file, ctx))
778 goto out;
779
780 pos = 2;
781
782 for (first_entry(ctl_dir, &h, &entry); h; next_entry(&h, &entry)) {
783 if (!scan(h, entry, &pos, file, ctx)) {
784 sysctl_head_finish(h);
785 break;
786 }
787 }
788 out:
789 sysctl_head_finish(head);
790 return 0;
791 }
792
proc_sys_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)793 static int proc_sys_permission(struct mnt_idmap *idmap,
794 struct inode *inode, int mask)
795 {
796 /*
797 * sysctl entries that are not writeable,
798 * are _NOT_ writeable, capabilities or not.
799 */
800 struct ctl_table_header *head;
801 const struct ctl_table *table;
802 int error;
803
804 /* Executable files are not allowed under /proc/sys/ */
805 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode))
806 return -EACCES;
807
808 head = grab_header(inode);
809 if (IS_ERR(head))
810 return PTR_ERR(head);
811
812 table = PROC_I(inode)->sysctl_entry;
813 if (!table) /* global root - r-xr-xr-x */
814 error = mask & MAY_WRITE ? -EACCES : 0;
815 else /* Use the permissions on the sysctl table entry */
816 error = sysctl_perm(head, table, mask & ~MAY_NOT_BLOCK);
817
818 sysctl_head_finish(head);
819 return error;
820 }
821
proc_sys_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)822 static int proc_sys_setattr(struct mnt_idmap *idmap,
823 struct dentry *dentry, struct iattr *attr)
824 {
825 struct inode *inode = d_inode(dentry);
826 int error;
827
828 if (attr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID))
829 return -EPERM;
830
831 error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
832 if (error)
833 return error;
834
835 setattr_copy(&nop_mnt_idmap, inode, attr);
836 return 0;
837 }
838
proc_sys_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)839 static int proc_sys_getattr(struct mnt_idmap *idmap,
840 const struct path *path, struct kstat *stat,
841 u32 request_mask, unsigned int query_flags)
842 {
843 struct inode *inode = d_inode(path->dentry);
844 struct ctl_table_header *head = grab_header(inode);
845 const struct ctl_table *table = PROC_I(inode)->sysctl_entry;
846
847 if (IS_ERR(head))
848 return PTR_ERR(head);
849
850 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
851 if (table)
852 stat->mode = (stat->mode & S_IFMT) | table->mode;
853
854 sysctl_head_finish(head);
855 return 0;
856 }
857
858 static const struct file_operations proc_sys_file_operations = {
859 .open = proc_sys_open,
860 .poll = proc_sys_poll,
861 .read_iter = proc_sys_read,
862 .write_iter = proc_sys_write,
863 .splice_read = copy_splice_read,
864 .splice_write = iter_file_splice_write,
865 .llseek = default_llseek,
866 };
867
868 static const struct file_operations proc_sys_dir_file_operations = {
869 .read = generic_read_dir,
870 .iterate_shared = proc_sys_readdir,
871 .llseek = generic_file_llseek,
872 };
873
874 static const struct inode_operations proc_sys_inode_operations = {
875 .permission = proc_sys_permission,
876 .setattr = proc_sys_setattr,
877 .getattr = proc_sys_getattr,
878 };
879
880 static const struct inode_operations proc_sys_dir_operations = {
881 .lookup = proc_sys_lookup,
882 .permission = proc_sys_permission,
883 .setattr = proc_sys_setattr,
884 .getattr = proc_sys_getattr,
885 };
886
proc_sys_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)887 static int proc_sys_revalidate(struct inode *dir, const struct qstr *name,
888 struct dentry *dentry, unsigned int flags)
889 {
890 if (flags & LOOKUP_RCU)
891 return -ECHILD;
892 return !PROC_I(d_inode(dentry))->sysctl->unregistering;
893 }
894
proc_sys_delete(const struct dentry * dentry)895 static int proc_sys_delete(const struct dentry *dentry)
896 {
897 return !!PROC_I(d_inode(dentry))->sysctl->unregistering;
898 }
899
sysctl_is_seen(struct ctl_table_header * p)900 static int sysctl_is_seen(struct ctl_table_header *p)
901 {
902 struct ctl_table_set *set = p->set;
903 int res;
904 spin_lock(&sysctl_lock);
905 if (p->unregistering)
906 res = 0;
907 else if (!set->is_seen)
908 res = 1;
909 else
910 res = set->is_seen(set);
911 spin_unlock(&sysctl_lock);
912 return res;
913 }
914
proc_sys_compare(const struct dentry * dentry,unsigned int len,const char * str,const struct qstr * name)915 static int proc_sys_compare(const struct dentry *dentry,
916 unsigned int len, const char *str, const struct qstr *name)
917 {
918 struct ctl_table_header *head;
919 struct inode *inode;
920
921 /* Although proc doesn't have negative dentries, rcu-walk means
922 * that inode here can be NULL */
923 /* AV: can it, indeed? */
924 inode = d_inode_rcu(dentry);
925 if (!inode)
926 return 1;
927 if (name->len != len)
928 return 1;
929 if (memcmp(name->name, str, len))
930 return 1;
931 head = rcu_dereference(PROC_I(inode)->sysctl);
932 return !head || !sysctl_is_seen(head);
933 }
934
935 static const struct dentry_operations proc_sys_dentry_operations = {
936 .d_revalidate = proc_sys_revalidate,
937 .d_delete = proc_sys_delete,
938 .d_compare = proc_sys_compare,
939 };
940
find_subdir(struct ctl_dir * dir,const char * name,int namelen)941 static struct ctl_dir *find_subdir(struct ctl_dir *dir,
942 const char *name, int namelen)
943 {
944 struct ctl_table_header *head;
945 const struct ctl_table *entry;
946
947 entry = find_entry(&head, dir, name, namelen);
948 if (!entry)
949 return ERR_PTR(-ENOENT);
950 if (!S_ISDIR(entry->mode))
951 return ERR_PTR(-ENOTDIR);
952 return container_of(head, struct ctl_dir, header);
953 }
954
new_dir(struct ctl_table_set * set,const char * name,int namelen)955 static struct ctl_dir *new_dir(struct ctl_table_set *set,
956 const char *name, int namelen)
957 {
958 struct ctl_table *table;
959 struct ctl_dir *new;
960 struct ctl_node *node;
961 char *new_name;
962
963 new = kzalloc(sizeof(*new) + sizeof(struct ctl_node) +
964 sizeof(struct ctl_table) + namelen + 1,
965 GFP_KERNEL);
966 if (!new)
967 return NULL;
968
969 node = (struct ctl_node *)(new + 1);
970 table = (struct ctl_table *)(node + 1);
971 new_name = (char *)(table + 1);
972 memcpy(new_name, name, namelen);
973 table[0].procname = new_name;
974 table[0].mode = S_IFDIR|S_IRUGO|S_IXUGO;
975 init_header(&new->header, set->dir.header.root, set, node, table, 1);
976
977 return new;
978 }
979
980 /**
981 * get_subdir - find or create a subdir with the specified name.
982 * @dir: Directory to create the subdirectory in
983 * @name: The name of the subdirectory to find or create
984 * @namelen: The length of name
985 *
986 * Takes a directory with an elevated reference count so we know that
987 * if we drop the lock the directory will not go away. Upon success
988 * the reference is moved from @dir to the returned subdirectory.
989 * Upon error an error code is returned and the reference on @dir is
990 * simply dropped.
991 */
get_subdir(struct ctl_dir * dir,const char * name,int namelen)992 static struct ctl_dir *get_subdir(struct ctl_dir *dir,
993 const char *name, int namelen)
994 {
995 struct ctl_table_set *set = dir->header.set;
996 struct ctl_dir *subdir, *new = NULL;
997 int err;
998
999 spin_lock(&sysctl_lock);
1000 subdir = find_subdir(dir, name, namelen);
1001 if (!IS_ERR(subdir))
1002 goto found;
1003 if (PTR_ERR(subdir) != -ENOENT)
1004 goto failed;
1005
1006 spin_unlock(&sysctl_lock);
1007 new = new_dir(set, name, namelen);
1008 spin_lock(&sysctl_lock);
1009 subdir = ERR_PTR(-ENOMEM);
1010 if (!new)
1011 goto failed;
1012
1013 /* Was the subdir added while we dropped the lock? */
1014 subdir = find_subdir(dir, name, namelen);
1015 if (!IS_ERR(subdir))
1016 goto found;
1017 if (PTR_ERR(subdir) != -ENOENT)
1018 goto failed;
1019
1020 /* Nope. Use the our freshly made directory entry. */
1021 err = insert_header(dir, &new->header);
1022 subdir = ERR_PTR(err);
1023 if (err)
1024 goto failed;
1025 subdir = new;
1026 found:
1027 subdir->header.nreg++;
1028 failed:
1029 if (IS_ERR(subdir)) {
1030 pr_err("sysctl could not get directory: ");
1031 sysctl_print_dir(dir);
1032 pr_cont("%*.*s %ld\n", namelen, namelen, name,
1033 PTR_ERR(subdir));
1034 }
1035 drop_sysctl_table(&dir->header);
1036 if (new)
1037 drop_sysctl_table(&new->header);
1038 spin_unlock(&sysctl_lock);
1039 return subdir;
1040 }
1041
xlate_dir(struct ctl_table_set * set,struct ctl_dir * dir)1042 static struct ctl_dir *xlate_dir(struct ctl_table_set *set, struct ctl_dir *dir)
1043 {
1044 struct ctl_dir *parent;
1045 const char *procname;
1046 if (!dir->header.parent)
1047 return &set->dir;
1048 parent = xlate_dir(set, dir->header.parent);
1049 if (IS_ERR(parent))
1050 return parent;
1051 procname = dir->header.ctl_table[0].procname;
1052 return find_subdir(parent, procname, strlen(procname));
1053 }
1054
sysctl_follow_link(struct ctl_table_header ** phead,const struct ctl_table ** pentry)1055 static int sysctl_follow_link(struct ctl_table_header **phead,
1056 const struct ctl_table **pentry)
1057 {
1058 struct ctl_table_header *head;
1059 const struct ctl_table *entry;
1060 struct ctl_table_root *root;
1061 struct ctl_table_set *set;
1062 struct ctl_dir *dir;
1063 int ret;
1064
1065 spin_lock(&sysctl_lock);
1066 root = (*pentry)->data;
1067 set = lookup_header_set(root);
1068 dir = xlate_dir(set, (*phead)->parent);
1069 if (IS_ERR(dir))
1070 ret = PTR_ERR(dir);
1071 else {
1072 const char *procname = (*pentry)->procname;
1073 head = NULL;
1074 entry = find_entry(&head, dir, procname, strlen(procname));
1075 ret = -ENOENT;
1076 if (entry && use_table(head)) {
1077 unuse_table(*phead);
1078 *phead = head;
1079 *pentry = entry;
1080 ret = 0;
1081 }
1082 }
1083
1084 spin_unlock(&sysctl_lock);
1085 return ret;
1086 }
1087
sysctl_err(const char * path,const struct ctl_table * table,char * fmt,...)1088 static int sysctl_err(const char *path, const struct ctl_table *table, char *fmt, ...)
1089 {
1090 struct va_format vaf;
1091 va_list args;
1092
1093 va_start(args, fmt);
1094 vaf.fmt = fmt;
1095 vaf.va = &args;
1096
1097 pr_err("sysctl table check failed: %s/%s %pV\n",
1098 path, table->procname, &vaf);
1099
1100 va_end(args);
1101 return -EINVAL;
1102 }
1103
sysctl_check_table_array(const char * path,const struct ctl_table * table)1104 static int sysctl_check_table_array(const char *path, const struct ctl_table *table)
1105 {
1106 unsigned int extra;
1107 int err = 0;
1108
1109 if ((table->proc_handler == proc_douintvec) ||
1110 (table->proc_handler == proc_douintvec_minmax)) {
1111 if (table->maxlen != sizeof(unsigned int))
1112 err |= sysctl_err(path, table, "array not allowed");
1113 }
1114
1115 if (table->proc_handler == proc_dou8vec_minmax) {
1116 if (table->maxlen != sizeof(u8))
1117 err |= sysctl_err(path, table, "array not allowed");
1118
1119 if (table->extra1) {
1120 extra = *(unsigned int *) table->extra1;
1121 if (extra > 255U)
1122 err |= sysctl_err(path, table,
1123 "range value too large for proc_dou8vec_minmax");
1124 }
1125 if (table->extra2) {
1126 extra = *(unsigned int *) table->extra2;
1127 if (extra > 255U)
1128 err |= sysctl_err(path, table,
1129 "range value too large for proc_dou8vec_minmax");
1130 }
1131 }
1132
1133 if (table->proc_handler == proc_dobool) {
1134 if (table->maxlen != sizeof(bool))
1135 err |= sysctl_err(path, table, "array not allowed");
1136 }
1137
1138 return err;
1139 }
1140
sysctl_check_table(const char * path,struct ctl_table_header * header)1141 static int sysctl_check_table(const char *path, struct ctl_table_header *header)
1142 {
1143 const struct ctl_table *entry;
1144 int err = 0;
1145 list_for_each_table_entry(entry, header) {
1146 if (!entry->procname)
1147 err |= sysctl_err(path, entry, "procname is null");
1148 if ((entry->proc_handler == proc_dostring) ||
1149 (entry->proc_handler == proc_dobool) ||
1150 (entry->proc_handler == proc_dointvec) ||
1151 (entry->proc_handler == proc_douintvec) ||
1152 (entry->proc_handler == proc_douintvec_minmax) ||
1153 (entry->proc_handler == proc_dointvec_minmax) ||
1154 (entry->proc_handler == proc_dou8vec_minmax) ||
1155 (entry->proc_handler == proc_dointvec_jiffies) ||
1156 (entry->proc_handler == proc_dointvec_userhz_jiffies) ||
1157 (entry->proc_handler == proc_dointvec_ms_jiffies) ||
1158 (entry->proc_handler == proc_doulongvec_minmax) ||
1159 (entry->proc_handler == proc_doulongvec_ms_jiffies_minmax)) {
1160 if (!entry->data)
1161 err |= sysctl_err(path, entry, "No data");
1162 if (!entry->maxlen)
1163 err |= sysctl_err(path, entry, "No maxlen");
1164 else
1165 err |= sysctl_check_table_array(path, entry);
1166 }
1167 if (!entry->proc_handler)
1168 err |= sysctl_err(path, entry, "No proc_handler");
1169
1170 if ((entry->mode & (S_IRUGO|S_IWUGO)) != entry->mode)
1171 err |= sysctl_err(path, entry, "bogus .mode 0%o",
1172 entry->mode);
1173 }
1174 return err;
1175 }
1176
new_links(struct ctl_dir * dir,struct ctl_table_header * head)1177 static struct ctl_table_header *new_links(struct ctl_dir *dir, struct ctl_table_header *head)
1178 {
1179 struct ctl_table *link_table, *link;
1180 struct ctl_table_header *links;
1181 const struct ctl_table *entry;
1182 struct ctl_node *node;
1183 char *link_name;
1184 int name_bytes;
1185
1186 name_bytes = 0;
1187 list_for_each_table_entry(entry, head) {
1188 name_bytes += strlen(entry->procname) + 1;
1189 }
1190
1191 links = kzalloc(sizeof(struct ctl_table_header) +
1192 sizeof(struct ctl_node)*head->ctl_table_size +
1193 sizeof(struct ctl_table)*head->ctl_table_size +
1194 name_bytes,
1195 GFP_KERNEL);
1196
1197 if (!links)
1198 return NULL;
1199
1200 node = (struct ctl_node *)(links + 1);
1201 link_table = (struct ctl_table *)(node + head->ctl_table_size);
1202 link_name = (char *)(link_table + head->ctl_table_size);
1203 link = link_table;
1204
1205 list_for_each_table_entry(entry, head) {
1206 int len = strlen(entry->procname) + 1;
1207 memcpy(link_name, entry->procname, len);
1208 link->procname = link_name;
1209 link->mode = S_IFLNK|S_IRWXUGO;
1210 link->data = head->root;
1211 link_name += len;
1212 link++;
1213 }
1214 init_header(links, dir->header.root, dir->header.set, node, link_table,
1215 head->ctl_table_size);
1216 links->nreg = head->ctl_table_size;
1217
1218 return links;
1219 }
1220
get_links(struct ctl_dir * dir,struct ctl_table_header * header,struct ctl_table_root * link_root)1221 static bool get_links(struct ctl_dir *dir,
1222 struct ctl_table_header *header,
1223 struct ctl_table_root *link_root)
1224 {
1225 struct ctl_table_header *tmp_head;
1226 const struct ctl_table *entry, *link;
1227
1228 if (header->ctl_table_size == 0 ||
1229 sysctl_is_perm_empty_ctl_header(header))
1230 return true;
1231
1232 /* Are there links available for every entry in table? */
1233 list_for_each_table_entry(entry, header) {
1234 const char *procname = entry->procname;
1235 link = find_entry(&tmp_head, dir, procname, strlen(procname));
1236 if (!link)
1237 return false;
1238 if (S_ISDIR(link->mode) && S_ISDIR(entry->mode))
1239 continue;
1240 if (S_ISLNK(link->mode) && (link->data == link_root))
1241 continue;
1242 return false;
1243 }
1244
1245 /* The checks passed. Increase the registration count on the links */
1246 list_for_each_table_entry(entry, header) {
1247 const char *procname = entry->procname;
1248 link = find_entry(&tmp_head, dir, procname, strlen(procname));
1249 tmp_head->nreg++;
1250 }
1251 return true;
1252 }
1253
insert_links(struct ctl_table_header * head)1254 static int insert_links(struct ctl_table_header *head)
1255 {
1256 struct ctl_table_set *root_set = &sysctl_table_root.default_set;
1257 struct ctl_dir *core_parent;
1258 struct ctl_table_header *links;
1259 int err;
1260
1261 if (head->set == root_set)
1262 return 0;
1263
1264 core_parent = xlate_dir(root_set, head->parent);
1265 if (IS_ERR(core_parent))
1266 return 0;
1267
1268 if (get_links(core_parent, head, head->root))
1269 return 0;
1270
1271 core_parent->header.nreg++;
1272 spin_unlock(&sysctl_lock);
1273
1274 links = new_links(core_parent, head);
1275
1276 spin_lock(&sysctl_lock);
1277 err = -ENOMEM;
1278 if (!links)
1279 goto out;
1280
1281 err = 0;
1282 if (get_links(core_parent, head, head->root)) {
1283 kfree(links);
1284 goto out;
1285 }
1286
1287 err = insert_header(core_parent, links);
1288 if (err)
1289 kfree(links);
1290 out:
1291 drop_sysctl_table(&core_parent->header);
1292 return err;
1293 }
1294
1295 /* Find the directory for the ctl_table. If one is not found create it. */
sysctl_mkdir_p(struct ctl_dir * dir,const char * path)1296 static struct ctl_dir *sysctl_mkdir_p(struct ctl_dir *dir, const char *path)
1297 {
1298 const char *name, *nextname;
1299
1300 for (name = path; name; name = nextname) {
1301 int namelen;
1302 nextname = strchr(name, '/');
1303 if (nextname) {
1304 namelen = nextname - name;
1305 nextname++;
1306 } else {
1307 namelen = strlen(name);
1308 }
1309 if (namelen == 0)
1310 continue;
1311
1312 /*
1313 * namelen ensures if name is "foo/bar/yay" only foo is
1314 * registered first. We traverse as if using mkdir -p and
1315 * return a ctl_dir for the last directory entry.
1316 */
1317 dir = get_subdir(dir, name, namelen);
1318 if (IS_ERR(dir))
1319 break;
1320 }
1321 return dir;
1322 }
1323
1324 /**
1325 * __register_sysctl_table - register a leaf sysctl table
1326 * @set: Sysctl tree to register on
1327 * @path: The path to the directory the sysctl table is in.
1328 *
1329 * @table: the top-level table structure. This table should not be free'd
1330 * after registration. So it should not be used on stack. It can either
1331 * be a global or dynamically allocated by the caller and free'd later
1332 * after sysctl unregistration.
1333 * @table_size : The number of elements in table
1334 *
1335 * Register a sysctl table hierarchy. @table should be a filled in ctl_table
1336 * array.
1337 *
1338 * The members of the &struct ctl_table structure are used as follows:
1339 * procname - the name of the sysctl file under /proc/sys. Set to %NULL to not
1340 * enter a sysctl file
1341 * data - a pointer to data for use by proc_handler
1342 * maxlen - the maximum size in bytes of the data
1343 * mode - the file permissions for the /proc/sys file
1344 * type - Defines the target type (described in struct definition)
1345 * proc_handler - the text handler routine (described below)
1346 *
1347 * extra1, extra2 - extra pointers usable by the proc handler routines
1348 * XXX: we should eventually modify these to use long min / max [0]
1349 * [0] https://lkml.kernel.org/87zgpte9o4.fsf@email.froward.int.ebiederm.org
1350 *
1351 * Leaf nodes in the sysctl tree will be represented by a single file
1352 * under /proc; non-leaf nodes are not allowed.
1353 *
1354 * There must be a proc_handler routine for any terminal nodes.
1355 * Several default handlers are available to cover common cases -
1356 *
1357 * proc_dostring(), proc_dointvec(), proc_dointvec_jiffies(),
1358 * proc_dointvec_userhz_jiffies(), proc_dointvec_minmax(),
1359 * proc_doulongvec_ms_jiffies_minmax(), proc_doulongvec_minmax()
1360 *
1361 * It is the handler's job to read the input buffer from user memory
1362 * and process it. The handler should return 0 on success.
1363 *
1364 * This routine returns %NULL on a failure to register, and a pointer
1365 * to the table header on success.
1366 */
__register_sysctl_table(struct ctl_table_set * set,const char * path,const struct ctl_table * table,size_t table_size)1367 struct ctl_table_header *__register_sysctl_table(
1368 struct ctl_table_set *set,
1369 const char *path, const struct ctl_table *table, size_t table_size)
1370 {
1371 struct ctl_table_root *root = set->dir.header.root;
1372 struct ctl_table_header *header;
1373 struct ctl_dir *dir;
1374 struct ctl_node *node;
1375
1376 header = kzalloc(sizeof(struct ctl_table_header) +
1377 sizeof(struct ctl_node)*table_size, GFP_KERNEL_ACCOUNT);
1378 if (!header)
1379 return NULL;
1380
1381 node = (struct ctl_node *)(header + 1);
1382 init_header(header, root, set, node, table, table_size);
1383 if (sysctl_check_table(path, header))
1384 goto fail;
1385
1386 spin_lock(&sysctl_lock);
1387 dir = &set->dir;
1388 /* Reference moved down the directory tree get_subdir */
1389 dir->header.nreg++;
1390 spin_unlock(&sysctl_lock);
1391
1392 dir = sysctl_mkdir_p(dir, path);
1393 if (IS_ERR(dir))
1394 goto fail;
1395 spin_lock(&sysctl_lock);
1396 if (insert_header(dir, header))
1397 goto fail_put_dir_locked;
1398
1399 drop_sysctl_table(&dir->header);
1400 spin_unlock(&sysctl_lock);
1401
1402 return header;
1403
1404 fail_put_dir_locked:
1405 drop_sysctl_table(&dir->header);
1406 spin_unlock(&sysctl_lock);
1407 fail:
1408 kfree(header);
1409 return NULL;
1410 }
1411
1412 /**
1413 * register_sysctl_sz - register a sysctl table
1414 * @path: The path to the directory the sysctl table is in. If the path
1415 * doesn't exist we will create it for you.
1416 * @table: the table structure. The calller must ensure the life of the @table
1417 * will be kept during the lifetime use of the syctl. It must not be freed
1418 * until unregister_sysctl_table() is called with the given returned table
1419 * with this registration. If your code is non modular then you don't need
1420 * to call unregister_sysctl_table() and can instead use something like
1421 * register_sysctl_init() which does not care for the result of the syctl
1422 * registration.
1423 * @table_size: The number of elements in table.
1424 *
1425 * Register a sysctl table. @table should be a filled in ctl_table
1426 * array. A completely 0 filled entry terminates the table.
1427 *
1428 * See __register_sysctl_table for more details.
1429 */
register_sysctl_sz(const char * path,const struct ctl_table * table,size_t table_size)1430 struct ctl_table_header *register_sysctl_sz(const char *path, const struct ctl_table *table,
1431 size_t table_size)
1432 {
1433 return __register_sysctl_table(&sysctl_table_root.default_set,
1434 path, table, table_size);
1435 }
1436 EXPORT_SYMBOL(register_sysctl_sz);
1437
1438 /**
1439 * __register_sysctl_init() - register sysctl table to path
1440 * @path: path name for sysctl base. If that path doesn't exist we will create
1441 * it for you.
1442 * @table: This is the sysctl table that needs to be registered to the path.
1443 * The caller must ensure the life of the @table will be kept during the
1444 * lifetime use of the sysctl.
1445 * @table_name: The name of sysctl table, only used for log printing when
1446 * registration fails
1447 * @table_size: The number of elements in table
1448 *
1449 * The sysctl interface is used by userspace to query or modify at runtime
1450 * a predefined value set on a variable. These variables however have default
1451 * values pre-set. Code which depends on these variables will always work even
1452 * if register_sysctl() fails. If register_sysctl() fails you'd just loose the
1453 * ability to query or modify the sysctls dynamically at run time. Chances of
1454 * register_sysctl() failing on init are extremely low, and so for both reasons
1455 * this function does not return any error as it is used by initialization code.
1456 *
1457 * Context: if your base directory does not exist it will be created for you.
1458 */
__register_sysctl_init(const char * path,const struct ctl_table * table,const char * table_name,size_t table_size)1459 void __init __register_sysctl_init(const char *path, const struct ctl_table *table,
1460 const char *table_name, size_t table_size)
1461 {
1462 struct ctl_table_header *hdr = register_sysctl_sz(path, table, table_size);
1463
1464 if (unlikely(!hdr)) {
1465 pr_err("failed when register_sysctl_sz %s to %s\n", table_name, path);
1466 return;
1467 }
1468 kmemleak_not_leak(hdr);
1469 }
1470
put_links(struct ctl_table_header * header)1471 static void put_links(struct ctl_table_header *header)
1472 {
1473 struct ctl_table_set *root_set = &sysctl_table_root.default_set;
1474 struct ctl_table_root *root = header->root;
1475 struct ctl_dir *parent = header->parent;
1476 struct ctl_dir *core_parent;
1477 const struct ctl_table *entry;
1478
1479 if (header->set == root_set)
1480 return;
1481
1482 core_parent = xlate_dir(root_set, parent);
1483 if (IS_ERR(core_parent))
1484 return;
1485
1486 list_for_each_table_entry(entry, header) {
1487 struct ctl_table_header *link_head;
1488 const struct ctl_table *link;
1489 const char *name = entry->procname;
1490
1491 link = find_entry(&link_head, core_parent, name, strlen(name));
1492 if (link &&
1493 ((S_ISDIR(link->mode) && S_ISDIR(entry->mode)) ||
1494 (S_ISLNK(link->mode) && (link->data == root)))) {
1495 drop_sysctl_table(link_head);
1496 }
1497 else {
1498 pr_err("sysctl link missing during unregister: ");
1499 sysctl_print_dir(parent);
1500 pr_cont("%s\n", name);
1501 }
1502 }
1503 }
1504
drop_sysctl_table(struct ctl_table_header * header)1505 static void drop_sysctl_table(struct ctl_table_header *header)
1506 {
1507 struct ctl_dir *parent = header->parent;
1508
1509 if (--header->nreg)
1510 return;
1511
1512 if (parent) {
1513 put_links(header);
1514 start_unregistering(header);
1515 }
1516
1517 if (!--header->count)
1518 kfree_rcu(header, rcu);
1519
1520 if (parent)
1521 drop_sysctl_table(&parent->header);
1522 }
1523
1524 /**
1525 * unregister_sysctl_table - unregister a sysctl table hierarchy
1526 * @header: the header returned from register_sysctl or __register_sysctl_table
1527 *
1528 * Unregisters the sysctl table and all children. proc entries may not
1529 * actually be removed until they are no longer used by anyone.
1530 */
unregister_sysctl_table(struct ctl_table_header * header)1531 void unregister_sysctl_table(struct ctl_table_header * header)
1532 {
1533 might_sleep();
1534
1535 if (header == NULL)
1536 return;
1537
1538 spin_lock(&sysctl_lock);
1539 drop_sysctl_table(header);
1540 spin_unlock(&sysctl_lock);
1541 }
1542 EXPORT_SYMBOL(unregister_sysctl_table);
1543
setup_sysctl_set(struct ctl_table_set * set,struct ctl_table_root * root,int (* is_seen)(struct ctl_table_set *))1544 void setup_sysctl_set(struct ctl_table_set *set,
1545 struct ctl_table_root *root,
1546 int (*is_seen)(struct ctl_table_set *))
1547 {
1548 memset(set, 0, sizeof(*set));
1549 set->is_seen = is_seen;
1550 init_header(&set->dir.header, root, set, NULL, root_table, 1);
1551 }
1552
retire_sysctl_set(struct ctl_table_set * set)1553 void retire_sysctl_set(struct ctl_table_set *set)
1554 {
1555 WARN_ON(!RB_EMPTY_ROOT(&set->dir.root));
1556 }
1557
proc_sys_init(void)1558 int __init proc_sys_init(void)
1559 {
1560 struct proc_dir_entry *proc_sys_root;
1561
1562 proc_sys_root = proc_mkdir("sys", NULL);
1563 proc_sys_root->proc_iops = &proc_sys_dir_operations;
1564 proc_sys_root->proc_dir_ops = &proc_sys_dir_file_operations;
1565 proc_sys_root->nlink = 0;
1566
1567 return sysctl_init_bases();
1568 }
1569
1570 struct sysctl_alias {
1571 const char *kernel_param;
1572 const char *sysctl_param;
1573 };
1574
1575 /*
1576 * Historically some settings had both sysctl and a command line parameter.
1577 * With the generic sysctl. parameter support, we can handle them at a single
1578 * place and only keep the historical name for compatibility. This is not meant
1579 * to add brand new aliases. When adding existing aliases, consider whether
1580 * the possibly different moment of changing the value (e.g. from early_param
1581 * to the moment do_sysctl_args() is called) is an issue for the specific
1582 * parameter.
1583 */
1584 static const struct sysctl_alias sysctl_aliases[] = {
1585 {"hardlockup_all_cpu_backtrace", "kernel.hardlockup_all_cpu_backtrace" },
1586 {"hung_task_panic", "kernel.hung_task_panic" },
1587 {"numa_zonelist_order", "vm.numa_zonelist_order" },
1588 {"softlockup_all_cpu_backtrace", "kernel.softlockup_all_cpu_backtrace" },
1589 { }
1590 };
1591
sysctl_find_alias(char * param)1592 static const char *sysctl_find_alias(char *param)
1593 {
1594 const struct sysctl_alias *alias;
1595
1596 for (alias = &sysctl_aliases[0]; alias->kernel_param != NULL; alias++) {
1597 if (strcmp(alias->kernel_param, param) == 0)
1598 return alias->sysctl_param;
1599 }
1600
1601 return NULL;
1602 }
1603
sysctl_is_alias(char * param)1604 bool sysctl_is_alias(char *param)
1605 {
1606 const char *alias = sysctl_find_alias(param);
1607
1608 return alias != NULL;
1609 }
1610
1611 /* Set sysctl value passed on kernel command line. */
process_sysctl_arg(char * param,char * val,const char * unused,void * arg)1612 static int process_sysctl_arg(char *param, char *val,
1613 const char *unused, void *arg)
1614 {
1615 char *path;
1616 struct vfsmount **proc_mnt = arg;
1617 struct file_system_type *proc_fs_type;
1618 struct file *file;
1619 int len;
1620 int err;
1621 loff_t pos = 0;
1622 ssize_t wret;
1623
1624 if (strncmp(param, "sysctl", sizeof("sysctl") - 1) == 0) {
1625 param += sizeof("sysctl") - 1;
1626
1627 if (param[0] != '/' && param[0] != '.')
1628 return 0;
1629
1630 param++;
1631 } else {
1632 param = (char *) sysctl_find_alias(param);
1633 if (!param)
1634 return 0;
1635 }
1636
1637 if (!val)
1638 return -EINVAL;
1639 len = strlen(val);
1640 if (len == 0)
1641 return -EINVAL;
1642
1643 /*
1644 * To set sysctl options, we use a temporary mount of proc, look up the
1645 * respective sys/ file and write to it. To avoid mounting it when no
1646 * options were given, we mount it only when the first sysctl option is
1647 * found. Why not a persistent mount? There are problems with a
1648 * persistent mount of proc in that it forces userspace not to use any
1649 * proc mount options.
1650 */
1651 if (!*proc_mnt) {
1652 proc_fs_type = get_fs_type("proc");
1653 if (!proc_fs_type) {
1654 pr_err("Failed to find procfs to set sysctl from command line\n");
1655 return 0;
1656 }
1657 *proc_mnt = kern_mount(proc_fs_type);
1658 put_filesystem(proc_fs_type);
1659 if (IS_ERR(*proc_mnt)) {
1660 pr_err("Failed to mount procfs to set sysctl from command line\n");
1661 return 0;
1662 }
1663 }
1664
1665 path = kasprintf(GFP_KERNEL, "sys/%s", param);
1666 if (!path)
1667 panic("%s: Failed to allocate path for %s\n", __func__, param);
1668 strreplace(path, '.', '/');
1669
1670 file = file_open_root_mnt(*proc_mnt, path, O_WRONLY, 0);
1671 if (IS_ERR(file)) {
1672 err = PTR_ERR(file);
1673 if (err == -ENOENT)
1674 pr_err("Failed to set sysctl parameter '%s=%s': parameter not found\n",
1675 param, val);
1676 else if (err == -EACCES)
1677 pr_err("Failed to set sysctl parameter '%s=%s': permission denied (read-only?)\n",
1678 param, val);
1679 else
1680 pr_err("Error %pe opening proc file to set sysctl parameter '%s=%s'\n",
1681 file, param, val);
1682 goto out;
1683 }
1684 wret = kernel_write(file, val, len, &pos);
1685 if (wret < 0) {
1686 err = wret;
1687 if (err == -EINVAL)
1688 pr_err("Failed to set sysctl parameter '%s=%s': invalid value\n",
1689 param, val);
1690 else
1691 pr_err("Error %pe writing to proc file to set sysctl parameter '%s=%s'\n",
1692 ERR_PTR(err), param, val);
1693 } else if (wret != len) {
1694 pr_err("Wrote only %zd bytes of %d writing to proc file %s to set sysctl parameter '%s=%s\n",
1695 wret, len, path, param, val);
1696 }
1697
1698 err = filp_close(file, NULL);
1699 if (err)
1700 pr_err("Error %pe closing proc file to set sysctl parameter '%s=%s\n",
1701 ERR_PTR(err), param, val);
1702 out:
1703 kfree(path);
1704 return 0;
1705 }
1706
do_sysctl_args(void)1707 void do_sysctl_args(void)
1708 {
1709 char *command_line;
1710 struct vfsmount *proc_mnt = NULL;
1711
1712 command_line = kstrdup(saved_command_line, GFP_KERNEL);
1713 if (!command_line)
1714 panic("%s: Failed to allocate copy of command line\n", __func__);
1715
1716 parse_args("Setting sysctl args", command_line,
1717 NULL, 0, -1, -1, &proc_mnt, process_sysctl_arg);
1718
1719 if (proc_mnt)
1720 kern_unmount(proc_mnt);
1721
1722 kfree(command_line);
1723 }
1724