1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 */
5
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 #include <linux/fsverity.h>
19 #include "send.h"
20 #include "ctree.h"
21 #include "backref.h"
22 #include "locking.h"
23 #include "disk-io.h"
24 #include "btrfs_inode.h"
25 #include "transaction.h"
26 #include "compression.h"
27 #include "print-tree.h"
28 #include "accessors.h"
29 #include "dir-item.h"
30 #include "file-item.h"
31 #include "ioctl.h"
32 #include "verity.h"
33 #include "lru_cache.h"
34
35 /*
36 * Maximum number of references an extent can have in order for us to attempt to
37 * issue clone operations instead of write operations. This currently exists to
38 * avoid hitting limitations of the backreference walking code (taking a lot of
39 * time and using too much memory for extents with large number of references).
40 */
41 #define SEND_MAX_EXTENT_REFS 1024
42
43 /*
44 * A fs_path is a helper to dynamically build path names with unknown size.
45 * It reallocates the internal buffer on demand.
46 * It allows fast adding of path elements on the right side (normal path) and
47 * fast adding to the left side (reversed path). A reversed path can also be
48 * unreversed if needed.
49 */
50 struct fs_path {
51 union {
52 struct {
53 char *start;
54 char *end;
55
56 char *buf;
57 unsigned short buf_len:15;
58 unsigned short reversed:1;
59 char inline_buf[];
60 };
61 /*
62 * Average path length does not exceed 200 bytes, we'll have
63 * better packing in the slab and higher chance to satisfy
64 * an allocation later during send.
65 */
66 char pad[256];
67 };
68 };
69 #define FS_PATH_INLINE_SIZE \
70 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
71
72
73 /* reused for each extent */
74 struct clone_root {
75 struct btrfs_root *root;
76 u64 ino;
77 u64 offset;
78 u64 num_bytes;
79 bool found_ref;
80 };
81
82 #define SEND_MAX_NAME_CACHE_SIZE 256
83
84 /*
85 * Limit the root_ids array of struct backref_cache_entry to 17 elements.
86 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
87 * can be satisfied from the kmalloc-192 slab, without wasting any space.
88 * The most common case is to have a single root for cloning, which corresponds
89 * to the send root. Having the user specify more than 16 clone roots is not
90 * common, and in such rare cases we simply don't use caching if the number of
91 * cloning roots that lead down to a leaf is more than 17.
92 */
93 #define SEND_MAX_BACKREF_CACHE_ROOTS 17
94
95 /*
96 * Max number of entries in the cache.
97 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
98 * maple tree's internal nodes, is 24K.
99 */
100 #define SEND_MAX_BACKREF_CACHE_SIZE 128
101
102 /*
103 * A backref cache entry maps a leaf to a list of IDs of roots from which the
104 * leaf is accessible and we can use for clone operations.
105 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
106 * x86_64).
107 */
108 struct backref_cache_entry {
109 struct btrfs_lru_cache_entry entry;
110 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
111 /* Number of valid elements in the root_ids array. */
112 int num_roots;
113 };
114
115 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
116 static_assert(offsetof(struct backref_cache_entry, entry) == 0);
117
118 /*
119 * Max number of entries in the cache that stores directories that were already
120 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
121 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
122 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
123 */
124 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64
125
126 /*
127 * Max number of entries in the cache that stores directories that were already
128 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
129 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
130 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
131 */
132 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64
133
134 struct send_ctx {
135 struct file *send_filp;
136 loff_t send_off;
137 char *send_buf;
138 u32 send_size;
139 u32 send_max_size;
140 /*
141 * Whether BTRFS_SEND_A_DATA attribute was already added to current
142 * command (since protocol v2, data must be the last attribute).
143 */
144 bool put_data;
145 struct page **send_buf_pages;
146 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
147 /* Protocol version compatibility requested */
148 u32 proto;
149
150 struct btrfs_root *send_root;
151 struct btrfs_root *parent_root;
152 struct clone_root *clone_roots;
153 int clone_roots_cnt;
154
155 /* current state of the compare_tree call */
156 struct btrfs_path *left_path;
157 struct btrfs_path *right_path;
158 struct btrfs_key *cmp_key;
159
160 /*
161 * Keep track of the generation of the last transaction that was used
162 * for relocating a block group. This is periodically checked in order
163 * to detect if a relocation happened since the last check, so that we
164 * don't operate on stale extent buffers for nodes (level >= 1) or on
165 * stale disk_bytenr values of file extent items.
166 */
167 u64 last_reloc_trans;
168
169 /*
170 * infos of the currently processed inode. In case of deleted inodes,
171 * these are the values from the deleted inode.
172 */
173 u64 cur_ino;
174 u64 cur_inode_gen;
175 u64 cur_inode_size;
176 u64 cur_inode_mode;
177 u64 cur_inode_rdev;
178 u64 cur_inode_last_extent;
179 u64 cur_inode_next_write_offset;
180 struct fs_path cur_inode_path;
181 bool cur_inode_new;
182 bool cur_inode_new_gen;
183 bool cur_inode_deleted;
184 bool ignore_cur_inode;
185 bool cur_inode_needs_verity;
186 void *verity_descriptor;
187
188 u64 send_progress;
189
190 struct list_head new_refs;
191 struct list_head deleted_refs;
192
193 struct btrfs_lru_cache name_cache;
194
195 /*
196 * The inode we are currently processing. It's not NULL only when we
197 * need to issue write commands for data extents from this inode.
198 */
199 struct inode *cur_inode;
200 struct file_ra_state ra;
201 u64 page_cache_clear_start;
202 bool clean_page_cache;
203
204 /*
205 * We process inodes by their increasing order, so if before an
206 * incremental send we reverse the parent/child relationship of
207 * directories such that a directory with a lower inode number was
208 * the parent of a directory with a higher inode number, and the one
209 * becoming the new parent got renamed too, we can't rename/move the
210 * directory with lower inode number when we finish processing it - we
211 * must process the directory with higher inode number first, then
212 * rename/move it and then rename/move the directory with lower inode
213 * number. Example follows.
214 *
215 * Tree state when the first send was performed:
216 *
217 * .
218 * |-- a (ino 257)
219 * |-- b (ino 258)
220 * |
221 * |
222 * |-- c (ino 259)
223 * | |-- d (ino 260)
224 * |
225 * |-- c2 (ino 261)
226 *
227 * Tree state when the second (incremental) send is performed:
228 *
229 * .
230 * |-- a (ino 257)
231 * |-- b (ino 258)
232 * |-- c2 (ino 261)
233 * |-- d2 (ino 260)
234 * |-- cc (ino 259)
235 *
236 * The sequence of steps that lead to the second state was:
237 *
238 * mv /a/b/c/d /a/b/c2/d2
239 * mv /a/b/c /a/b/c2/d2/cc
240 *
241 * "c" has lower inode number, but we can't move it (2nd mv operation)
242 * before we move "d", which has higher inode number.
243 *
244 * So we just memorize which move/rename operations must be performed
245 * later when their respective parent is processed and moved/renamed.
246 */
247
248 /* Indexed by parent directory inode number. */
249 struct rb_root pending_dir_moves;
250
251 /*
252 * Reverse index, indexed by the inode number of a directory that
253 * is waiting for the move/rename of its immediate parent before its
254 * own move/rename can be performed.
255 */
256 struct rb_root waiting_dir_moves;
257
258 /*
259 * A directory that is going to be rm'ed might have a child directory
260 * which is in the pending directory moves index above. In this case,
261 * the directory can only be removed after the move/rename of its child
262 * is performed. Example:
263 *
264 * Parent snapshot:
265 *
266 * . (ino 256)
267 * |-- a/ (ino 257)
268 * |-- b/ (ino 258)
269 * |-- c/ (ino 259)
270 * | |-- x/ (ino 260)
271 * |
272 * |-- y/ (ino 261)
273 *
274 * Send snapshot:
275 *
276 * . (ino 256)
277 * |-- a/ (ino 257)
278 * |-- b/ (ino 258)
279 * |-- YY/ (ino 261)
280 * |-- x/ (ino 260)
281 *
282 * Sequence of steps that lead to the send snapshot:
283 * rm -f /a/b/c/foo.txt
284 * mv /a/b/y /a/b/YY
285 * mv /a/b/c/x /a/b/YY
286 * rmdir /a/b/c
287 *
288 * When the child is processed, its move/rename is delayed until its
289 * parent is processed (as explained above), but all other operations
290 * like update utimes, chown, chgrp, etc, are performed and the paths
291 * that it uses for those operations must use the orphanized name of
292 * its parent (the directory we're going to rm later), so we need to
293 * memorize that name.
294 *
295 * Indexed by the inode number of the directory to be deleted.
296 */
297 struct rb_root orphan_dirs;
298
299 struct rb_root rbtree_new_refs;
300 struct rb_root rbtree_deleted_refs;
301
302 struct btrfs_lru_cache backref_cache;
303 u64 backref_cache_last_reloc_trans;
304
305 struct btrfs_lru_cache dir_created_cache;
306 struct btrfs_lru_cache dir_utimes_cache;
307 };
308
309 struct pending_dir_move {
310 struct rb_node node;
311 struct list_head list;
312 u64 parent_ino;
313 u64 ino;
314 u64 gen;
315 struct list_head update_refs;
316 };
317
318 struct waiting_dir_move {
319 struct rb_node node;
320 u64 ino;
321 /*
322 * There might be some directory that could not be removed because it
323 * was waiting for this directory inode to be moved first. Therefore
324 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
325 */
326 u64 rmdir_ino;
327 u64 rmdir_gen;
328 bool orphanized;
329 };
330
331 struct orphan_dir_info {
332 struct rb_node node;
333 u64 ino;
334 u64 gen;
335 u64 last_dir_index_offset;
336 u64 dir_high_seq_ino;
337 };
338
339 struct name_cache_entry {
340 /*
341 * The key in the entry is an inode number, and the generation matches
342 * the inode's generation.
343 */
344 struct btrfs_lru_cache_entry entry;
345 u64 parent_ino;
346 u64 parent_gen;
347 int ret;
348 int need_later_update;
349 /* Name length without NUL terminator. */
350 int name_len;
351 /* Not NUL terminated. */
352 char name[] __counted_by(name_len) __nonstring;
353 };
354
355 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
356 static_assert(offsetof(struct name_cache_entry, entry) == 0);
357
358 #define ADVANCE 1
359 #define ADVANCE_ONLY_NEXT -1
360
361 enum btrfs_compare_tree_result {
362 BTRFS_COMPARE_TREE_NEW,
363 BTRFS_COMPARE_TREE_DELETED,
364 BTRFS_COMPARE_TREE_CHANGED,
365 BTRFS_COMPARE_TREE_SAME,
366 };
367
368 __cold
inconsistent_snapshot_error(struct send_ctx * sctx,enum btrfs_compare_tree_result result,const char * what)369 static void inconsistent_snapshot_error(struct send_ctx *sctx,
370 enum btrfs_compare_tree_result result,
371 const char *what)
372 {
373 const char *result_string;
374
375 switch (result) {
376 case BTRFS_COMPARE_TREE_NEW:
377 result_string = "new";
378 break;
379 case BTRFS_COMPARE_TREE_DELETED:
380 result_string = "deleted";
381 break;
382 case BTRFS_COMPARE_TREE_CHANGED:
383 result_string = "updated";
384 break;
385 case BTRFS_COMPARE_TREE_SAME:
386 ASSERT(0);
387 result_string = "unchanged";
388 break;
389 default:
390 ASSERT(0);
391 result_string = "unexpected";
392 }
393
394 btrfs_err(sctx->send_root->fs_info,
395 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
396 result_string, what, sctx->cmp_key->objectid,
397 btrfs_root_id(sctx->send_root),
398 (sctx->parent_root ? btrfs_root_id(sctx->parent_root) : 0));
399 }
400
401 __maybe_unused
proto_cmd_ok(const struct send_ctx * sctx,int cmd)402 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
403 {
404 switch (sctx->proto) {
405 case 1: return cmd <= BTRFS_SEND_C_MAX_V1;
406 case 2: return cmd <= BTRFS_SEND_C_MAX_V2;
407 case 3: return cmd <= BTRFS_SEND_C_MAX_V3;
408 default: return false;
409 }
410 }
411
412 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
413
414 static struct waiting_dir_move *
415 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
416
417 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
418
need_send_hole(struct send_ctx * sctx)419 static int need_send_hole(struct send_ctx *sctx)
420 {
421 return (sctx->parent_root && !sctx->cur_inode_new &&
422 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
423 S_ISREG(sctx->cur_inode_mode));
424 }
425
fs_path_reset(struct fs_path * p)426 static void fs_path_reset(struct fs_path *p)
427 {
428 if (p->reversed)
429 p->start = p->buf + p->buf_len - 1;
430 else
431 p->start = p->buf;
432
433 p->end = p->start;
434 *p->start = 0;
435 }
436
init_path(struct fs_path * p)437 static void init_path(struct fs_path *p)
438 {
439 p->reversed = 0;
440 p->buf = p->inline_buf;
441 p->buf_len = FS_PATH_INLINE_SIZE;
442 fs_path_reset(p);
443 }
444
fs_path_alloc(void)445 static struct fs_path *fs_path_alloc(void)
446 {
447 struct fs_path *p;
448
449 p = kmalloc(sizeof(*p), GFP_KERNEL);
450 if (!p)
451 return NULL;
452 init_path(p);
453 return p;
454 }
455
fs_path_alloc_reversed(void)456 static struct fs_path *fs_path_alloc_reversed(void)
457 {
458 struct fs_path *p;
459
460 p = fs_path_alloc();
461 if (!p)
462 return NULL;
463 p->reversed = 1;
464 fs_path_reset(p);
465 return p;
466 }
467
fs_path_free(struct fs_path * p)468 static void fs_path_free(struct fs_path *p)
469 {
470 if (!p)
471 return;
472 if (p->buf != p->inline_buf)
473 kfree(p->buf);
474 kfree(p);
475 }
476
fs_path_len(const struct fs_path * p)477 static inline int fs_path_len(const struct fs_path *p)
478 {
479 return p->end - p->start;
480 }
481
fs_path_ensure_buf(struct fs_path * p,int len)482 static int fs_path_ensure_buf(struct fs_path *p, int len)
483 {
484 char *tmp_buf;
485 int path_len;
486 int old_buf_len;
487
488 len++;
489
490 if (p->buf_len >= len)
491 return 0;
492
493 if (WARN_ON(len > PATH_MAX))
494 return -ENAMETOOLONG;
495
496 path_len = fs_path_len(p);
497 old_buf_len = p->buf_len;
498
499 /*
500 * Allocate to the next largest kmalloc bucket size, to let
501 * the fast path happen most of the time.
502 */
503 len = kmalloc_size_roundup(len);
504 /*
505 * First time the inline_buf does not suffice
506 */
507 if (p->buf == p->inline_buf) {
508 tmp_buf = kmalloc(len, GFP_KERNEL);
509 if (tmp_buf)
510 memcpy(tmp_buf, p->buf, old_buf_len);
511 } else {
512 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
513 }
514 if (!tmp_buf)
515 return -ENOMEM;
516 p->buf = tmp_buf;
517 p->buf_len = len;
518
519 if (p->reversed) {
520 tmp_buf = p->buf + old_buf_len - path_len - 1;
521 p->end = p->buf + p->buf_len - 1;
522 p->start = p->end - path_len;
523 memmove(p->start, tmp_buf, path_len + 1);
524 } else {
525 p->start = p->buf;
526 p->end = p->start + path_len;
527 }
528 return 0;
529 }
530
fs_path_prepare_for_add(struct fs_path * p,int name_len,char ** prepared)531 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
532 char **prepared)
533 {
534 int ret;
535 int new_len;
536
537 new_len = fs_path_len(p) + name_len;
538 if (p->start != p->end)
539 new_len++;
540 ret = fs_path_ensure_buf(p, new_len);
541 if (ret < 0)
542 return ret;
543
544 if (p->reversed) {
545 if (p->start != p->end)
546 *--p->start = '/';
547 p->start -= name_len;
548 *prepared = p->start;
549 } else {
550 if (p->start != p->end)
551 *p->end++ = '/';
552 *prepared = p->end;
553 p->end += name_len;
554 *p->end = 0;
555 }
556
557 return 0;
558 }
559
fs_path_add(struct fs_path * p,const char * name,int name_len)560 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
561 {
562 int ret;
563 char *prepared;
564
565 ret = fs_path_prepare_for_add(p, name_len, &prepared);
566 if (ret < 0)
567 return ret;
568 memcpy(prepared, name, name_len);
569
570 return 0;
571 }
572
fs_path_add_path(struct fs_path * p,const struct fs_path * p2)573 static inline int fs_path_add_path(struct fs_path *p, const struct fs_path *p2)
574 {
575 return fs_path_add(p, p2->start, fs_path_len(p2));
576 }
577
fs_path_add_from_extent_buffer(struct fs_path * p,struct extent_buffer * eb,unsigned long off,int len)578 static int fs_path_add_from_extent_buffer(struct fs_path *p,
579 struct extent_buffer *eb,
580 unsigned long off, int len)
581 {
582 int ret;
583 char *prepared;
584
585 ret = fs_path_prepare_for_add(p, len, &prepared);
586 if (ret < 0)
587 return ret;
588
589 read_extent_buffer(eb, prepared, off, len);
590
591 return 0;
592 }
593
fs_path_copy(struct fs_path * p,struct fs_path * from)594 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
595 {
596 p->reversed = from->reversed;
597 fs_path_reset(p);
598
599 return fs_path_add_path(p, from);
600 }
601
fs_path_unreverse(struct fs_path * p)602 static void fs_path_unreverse(struct fs_path *p)
603 {
604 char *tmp;
605 int len;
606
607 if (!p->reversed)
608 return;
609
610 tmp = p->start;
611 len = fs_path_len(p);
612 p->start = p->buf;
613 p->end = p->start + len;
614 memmove(p->start, tmp, len + 1);
615 p->reversed = 0;
616 }
617
is_current_inode_path(const struct send_ctx * sctx,const struct fs_path * path)618 static inline bool is_current_inode_path(const struct send_ctx *sctx,
619 const struct fs_path *path)
620 {
621 const struct fs_path *cur = &sctx->cur_inode_path;
622
623 return (strncmp(path->start, cur->start, fs_path_len(cur)) == 0);
624 }
625
alloc_path_for_send(void)626 static struct btrfs_path *alloc_path_for_send(void)
627 {
628 struct btrfs_path *path;
629
630 path = btrfs_alloc_path();
631 if (!path)
632 return NULL;
633 path->search_commit_root = 1;
634 path->skip_locking = 1;
635 path->need_commit_sem = 1;
636 return path;
637 }
638
write_buf(struct file * filp,const void * buf,u32 len,loff_t * off)639 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
640 {
641 int ret;
642 u32 pos = 0;
643
644 while (pos < len) {
645 ret = kernel_write(filp, buf + pos, len - pos, off);
646 if (ret < 0)
647 return ret;
648 if (ret == 0)
649 return -EIO;
650 pos += ret;
651 }
652
653 return 0;
654 }
655
tlv_put(struct send_ctx * sctx,u16 attr,const void * data,int len)656 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
657 {
658 struct btrfs_tlv_header *hdr;
659 int total_len = sizeof(*hdr) + len;
660 int left = sctx->send_max_size - sctx->send_size;
661
662 if (WARN_ON_ONCE(sctx->put_data))
663 return -EINVAL;
664
665 if (unlikely(left < total_len))
666 return -EOVERFLOW;
667
668 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
669 put_unaligned_le16(attr, &hdr->tlv_type);
670 put_unaligned_le16(len, &hdr->tlv_len);
671 memcpy(hdr + 1, data, len);
672 sctx->send_size += total_len;
673
674 return 0;
675 }
676
677 #define TLV_PUT_DEFINE_INT(bits) \
678 static int tlv_put_u##bits(struct send_ctx *sctx, \
679 u##bits attr, u##bits value) \
680 { \
681 __le##bits __tmp = cpu_to_le##bits(value); \
682 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
683 }
684
685 TLV_PUT_DEFINE_INT(8)
686 TLV_PUT_DEFINE_INT(32)
687 TLV_PUT_DEFINE_INT(64)
688
tlv_put_string(struct send_ctx * sctx,u16 attr,const char * str,int len)689 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
690 const char *str, int len)
691 {
692 if (len == -1)
693 len = strlen(str);
694 return tlv_put(sctx, attr, str, len);
695 }
696
tlv_put_uuid(struct send_ctx * sctx,u16 attr,const u8 * uuid)697 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
698 const u8 *uuid)
699 {
700 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
701 }
702
tlv_put_btrfs_timespec(struct send_ctx * sctx,u16 attr,struct extent_buffer * eb,struct btrfs_timespec * ts)703 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
704 struct extent_buffer *eb,
705 struct btrfs_timespec *ts)
706 {
707 struct btrfs_timespec bts;
708 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
709 return tlv_put(sctx, attr, &bts, sizeof(bts));
710 }
711
712
713 #define TLV_PUT(sctx, attrtype, data, attrlen) \
714 do { \
715 ret = tlv_put(sctx, attrtype, data, attrlen); \
716 if (ret < 0) \
717 goto tlv_put_failure; \
718 } while (0)
719
720 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
721 do { \
722 ret = tlv_put_u##bits(sctx, attrtype, value); \
723 if (ret < 0) \
724 goto tlv_put_failure; \
725 } while (0)
726
727 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
728 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
729 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
730 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
731 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
732 do { \
733 ret = tlv_put_string(sctx, attrtype, str, len); \
734 if (ret < 0) \
735 goto tlv_put_failure; \
736 } while (0)
737 #define TLV_PUT_PATH(sctx, attrtype, p) \
738 do { \
739 ret = tlv_put_string(sctx, attrtype, p->start, \
740 fs_path_len((p))); \
741 if (ret < 0) \
742 goto tlv_put_failure; \
743 } while(0)
744 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
745 do { \
746 ret = tlv_put_uuid(sctx, attrtype, uuid); \
747 if (ret < 0) \
748 goto tlv_put_failure; \
749 } while (0)
750 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
751 do { \
752 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
753 if (ret < 0) \
754 goto tlv_put_failure; \
755 } while (0)
756
send_header(struct send_ctx * sctx)757 static int send_header(struct send_ctx *sctx)
758 {
759 struct btrfs_stream_header hdr;
760
761 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
762 hdr.version = cpu_to_le32(sctx->proto);
763 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
764 &sctx->send_off);
765 }
766
767 /*
768 * For each command/item we want to send to userspace, we call this function.
769 */
begin_cmd(struct send_ctx * sctx,int cmd)770 static int begin_cmd(struct send_ctx *sctx, int cmd)
771 {
772 struct btrfs_cmd_header *hdr;
773
774 if (WARN_ON(!sctx->send_buf))
775 return -EINVAL;
776
777 if (unlikely(sctx->send_size != 0)) {
778 btrfs_err(sctx->send_root->fs_info,
779 "send: command header buffer not empty cmd %d offset %llu",
780 cmd, sctx->send_off);
781 return -EINVAL;
782 }
783
784 sctx->send_size += sizeof(*hdr);
785 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
786 put_unaligned_le16(cmd, &hdr->cmd);
787
788 return 0;
789 }
790
send_cmd(struct send_ctx * sctx)791 static int send_cmd(struct send_ctx *sctx)
792 {
793 int ret;
794 struct btrfs_cmd_header *hdr;
795 u32 crc;
796
797 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
798 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
799 put_unaligned_le32(0, &hdr->crc);
800
801 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
802 put_unaligned_le32(crc, &hdr->crc);
803
804 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
805 &sctx->send_off);
806
807 sctx->send_size = 0;
808 sctx->put_data = false;
809
810 return ret;
811 }
812
813 /*
814 * Sends a move instruction to user space
815 */
send_rename(struct send_ctx * sctx,struct fs_path * from,struct fs_path * to)816 static int send_rename(struct send_ctx *sctx,
817 struct fs_path *from, struct fs_path *to)
818 {
819 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
820 int ret;
821
822 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
823
824 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
825 if (ret < 0)
826 return ret;
827
828 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
829 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
830
831 ret = send_cmd(sctx);
832
833 tlv_put_failure:
834 return ret;
835 }
836
837 /*
838 * Sends a link instruction to user space
839 */
send_link(struct send_ctx * sctx,struct fs_path * path,struct fs_path * lnk)840 static int send_link(struct send_ctx *sctx,
841 struct fs_path *path, struct fs_path *lnk)
842 {
843 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
844 int ret;
845
846 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
847
848 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
849 if (ret < 0)
850 return ret;
851
852 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
853 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
854
855 ret = send_cmd(sctx);
856
857 tlv_put_failure:
858 return ret;
859 }
860
861 /*
862 * Sends an unlink instruction to user space
863 */
send_unlink(struct send_ctx * sctx,struct fs_path * path)864 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
865 {
866 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
867 int ret;
868
869 btrfs_debug(fs_info, "send_unlink %s", path->start);
870
871 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
872 if (ret < 0)
873 return ret;
874
875 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
876
877 ret = send_cmd(sctx);
878
879 tlv_put_failure:
880 return ret;
881 }
882
883 /*
884 * Sends a rmdir instruction to user space
885 */
send_rmdir(struct send_ctx * sctx,struct fs_path * path)886 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
887 {
888 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
889 int ret;
890
891 btrfs_debug(fs_info, "send_rmdir %s", path->start);
892
893 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
894 if (ret < 0)
895 return ret;
896
897 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
898
899 ret = send_cmd(sctx);
900
901 tlv_put_failure:
902 return ret;
903 }
904
905 struct btrfs_inode_info {
906 u64 size;
907 u64 gen;
908 u64 mode;
909 u64 uid;
910 u64 gid;
911 u64 rdev;
912 u64 fileattr;
913 u64 nlink;
914 };
915
916 /*
917 * Helper function to retrieve some fields from an inode item.
918 */
get_inode_info(struct btrfs_root * root,u64 ino,struct btrfs_inode_info * info)919 static int get_inode_info(struct btrfs_root *root, u64 ino,
920 struct btrfs_inode_info *info)
921 {
922 int ret;
923 struct btrfs_path *path;
924 struct btrfs_inode_item *ii;
925 struct btrfs_key key;
926
927 path = alloc_path_for_send();
928 if (!path)
929 return -ENOMEM;
930
931 key.objectid = ino;
932 key.type = BTRFS_INODE_ITEM_KEY;
933 key.offset = 0;
934 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
935 if (ret) {
936 if (ret > 0)
937 ret = -ENOENT;
938 goto out;
939 }
940
941 if (!info)
942 goto out;
943
944 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
945 struct btrfs_inode_item);
946 info->size = btrfs_inode_size(path->nodes[0], ii);
947 info->gen = btrfs_inode_generation(path->nodes[0], ii);
948 info->mode = btrfs_inode_mode(path->nodes[0], ii);
949 info->uid = btrfs_inode_uid(path->nodes[0], ii);
950 info->gid = btrfs_inode_gid(path->nodes[0], ii);
951 info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
952 info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
953 /*
954 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
955 * otherwise logically split to 32/32 parts.
956 */
957 info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
958
959 out:
960 btrfs_free_path(path);
961 return ret;
962 }
963
get_inode_gen(struct btrfs_root * root,u64 ino,u64 * gen)964 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
965 {
966 int ret;
967 struct btrfs_inode_info info = { 0 };
968
969 ASSERT(gen);
970
971 ret = get_inode_info(root, ino, &info);
972 *gen = info.gen;
973 return ret;
974 }
975
976 typedef int (*iterate_inode_ref_t)(u64 dir, struct fs_path *p, void *ctx);
977
978 /*
979 * Helper function to iterate the entries in ONE btrfs_inode_ref or
980 * btrfs_inode_extref.
981 * The iterate callback may return a non zero value to stop iteration. This can
982 * be a negative value for error codes or 1 to simply stop it.
983 *
984 * path must point to the INODE_REF or INODE_EXTREF when called.
985 */
iterate_inode_ref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * found_key,int resolve,iterate_inode_ref_t iterate,void * ctx)986 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
987 struct btrfs_key *found_key, int resolve,
988 iterate_inode_ref_t iterate, void *ctx)
989 {
990 struct extent_buffer *eb = path->nodes[0];
991 struct btrfs_inode_ref *iref;
992 struct btrfs_inode_extref *extref;
993 struct btrfs_path *tmp_path;
994 struct fs_path *p;
995 u32 cur = 0;
996 u32 total;
997 int slot = path->slots[0];
998 u32 name_len;
999 char *start;
1000 int ret = 0;
1001 u64 dir;
1002 unsigned long name_off;
1003 unsigned long elem_size;
1004 unsigned long ptr;
1005
1006 p = fs_path_alloc_reversed();
1007 if (!p)
1008 return -ENOMEM;
1009
1010 tmp_path = alloc_path_for_send();
1011 if (!tmp_path) {
1012 fs_path_free(p);
1013 return -ENOMEM;
1014 }
1015
1016
1017 if (found_key->type == BTRFS_INODE_REF_KEY) {
1018 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1019 struct btrfs_inode_ref);
1020 total = btrfs_item_size(eb, slot);
1021 elem_size = sizeof(*iref);
1022 } else {
1023 ptr = btrfs_item_ptr_offset(eb, slot);
1024 total = btrfs_item_size(eb, slot);
1025 elem_size = sizeof(*extref);
1026 }
1027
1028 while (cur < total) {
1029 fs_path_reset(p);
1030
1031 if (found_key->type == BTRFS_INODE_REF_KEY) {
1032 iref = (struct btrfs_inode_ref *)(ptr + cur);
1033 name_len = btrfs_inode_ref_name_len(eb, iref);
1034 name_off = (unsigned long)(iref + 1);
1035 dir = found_key->offset;
1036 } else {
1037 extref = (struct btrfs_inode_extref *)(ptr + cur);
1038 name_len = btrfs_inode_extref_name_len(eb, extref);
1039 name_off = (unsigned long)&extref->name;
1040 dir = btrfs_inode_extref_parent(eb, extref);
1041 }
1042
1043 if (resolve) {
1044 start = btrfs_ref_to_path(root, tmp_path, name_len,
1045 name_off, eb, dir,
1046 p->buf, p->buf_len);
1047 if (IS_ERR(start)) {
1048 ret = PTR_ERR(start);
1049 goto out;
1050 }
1051 if (start < p->buf) {
1052 /* overflow , try again with larger buffer */
1053 ret = fs_path_ensure_buf(p,
1054 p->buf_len + p->buf - start);
1055 if (ret < 0)
1056 goto out;
1057 start = btrfs_ref_to_path(root, tmp_path,
1058 name_len, name_off,
1059 eb, dir,
1060 p->buf, p->buf_len);
1061 if (IS_ERR(start)) {
1062 ret = PTR_ERR(start);
1063 goto out;
1064 }
1065 if (unlikely(start < p->buf)) {
1066 btrfs_err(root->fs_info,
1067 "send: path ref buffer underflow for key (%llu %u %llu)",
1068 found_key->objectid,
1069 found_key->type,
1070 found_key->offset);
1071 ret = -EINVAL;
1072 goto out;
1073 }
1074 }
1075 p->start = start;
1076 } else {
1077 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1078 name_len);
1079 if (ret < 0)
1080 goto out;
1081 }
1082
1083 cur += elem_size + name_len;
1084 ret = iterate(dir, p, ctx);
1085 if (ret)
1086 goto out;
1087 }
1088
1089 out:
1090 btrfs_free_path(tmp_path);
1091 fs_path_free(p);
1092 return ret;
1093 }
1094
1095 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1096 const char *name, int name_len,
1097 const char *data, int data_len,
1098 void *ctx);
1099
1100 /*
1101 * Helper function to iterate the entries in ONE btrfs_dir_item.
1102 * The iterate callback may return a non zero value to stop iteration. This can
1103 * be a negative value for error codes or 1 to simply stop it.
1104 *
1105 * path must point to the dir item when called.
1106 */
iterate_dir_item(struct btrfs_root * root,struct btrfs_path * path,iterate_dir_item_t iterate,void * ctx)1107 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1108 iterate_dir_item_t iterate, void *ctx)
1109 {
1110 int ret = 0;
1111 struct extent_buffer *eb;
1112 struct btrfs_dir_item *di;
1113 struct btrfs_key di_key;
1114 char *buf = NULL;
1115 int buf_len;
1116 u32 name_len;
1117 u32 data_len;
1118 u32 cur;
1119 u32 len;
1120 u32 total;
1121 int slot;
1122 int num;
1123
1124 /*
1125 * Start with a small buffer (1 page). If later we end up needing more
1126 * space, which can happen for xattrs on a fs with a leaf size greater
1127 * than the page size, attempt to increase the buffer. Typically xattr
1128 * values are small.
1129 */
1130 buf_len = PATH_MAX;
1131 buf = kmalloc(buf_len, GFP_KERNEL);
1132 if (!buf) {
1133 ret = -ENOMEM;
1134 goto out;
1135 }
1136
1137 eb = path->nodes[0];
1138 slot = path->slots[0];
1139 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1140 cur = 0;
1141 len = 0;
1142 total = btrfs_item_size(eb, slot);
1143
1144 num = 0;
1145 while (cur < total) {
1146 name_len = btrfs_dir_name_len(eb, di);
1147 data_len = btrfs_dir_data_len(eb, di);
1148 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1149
1150 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1151 if (name_len > XATTR_NAME_MAX) {
1152 ret = -ENAMETOOLONG;
1153 goto out;
1154 }
1155 if (name_len + data_len >
1156 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1157 ret = -E2BIG;
1158 goto out;
1159 }
1160 } else {
1161 /*
1162 * Path too long
1163 */
1164 if (name_len + data_len > PATH_MAX) {
1165 ret = -ENAMETOOLONG;
1166 goto out;
1167 }
1168 }
1169
1170 if (name_len + data_len > buf_len) {
1171 buf_len = name_len + data_len;
1172 if (is_vmalloc_addr(buf)) {
1173 vfree(buf);
1174 buf = NULL;
1175 } else {
1176 char *tmp = krealloc(buf, buf_len,
1177 GFP_KERNEL | __GFP_NOWARN);
1178
1179 if (!tmp)
1180 kfree(buf);
1181 buf = tmp;
1182 }
1183 if (!buf) {
1184 buf = kvmalloc(buf_len, GFP_KERNEL);
1185 if (!buf) {
1186 ret = -ENOMEM;
1187 goto out;
1188 }
1189 }
1190 }
1191
1192 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1193 name_len + data_len);
1194
1195 len = sizeof(*di) + name_len + data_len;
1196 di = (struct btrfs_dir_item *)((char *)di + len);
1197 cur += len;
1198
1199 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1200 data_len, ctx);
1201 if (ret < 0)
1202 goto out;
1203 if (ret) {
1204 ret = 0;
1205 goto out;
1206 }
1207
1208 num++;
1209 }
1210
1211 out:
1212 kvfree(buf);
1213 return ret;
1214 }
1215
__copy_first_ref(u64 dir,struct fs_path * p,void * ctx)1216 static int __copy_first_ref(u64 dir, struct fs_path *p, void *ctx)
1217 {
1218 int ret;
1219 struct fs_path *pt = ctx;
1220
1221 ret = fs_path_copy(pt, p);
1222 if (ret < 0)
1223 return ret;
1224
1225 /* we want the first only */
1226 return 1;
1227 }
1228
1229 /*
1230 * Retrieve the first path of an inode. If an inode has more then one
1231 * ref/hardlink, this is ignored.
1232 */
get_inode_path(struct btrfs_root * root,u64 ino,struct fs_path * path)1233 static int get_inode_path(struct btrfs_root *root,
1234 u64 ino, struct fs_path *path)
1235 {
1236 int ret;
1237 struct btrfs_key key, found_key;
1238 struct btrfs_path *p;
1239
1240 p = alloc_path_for_send();
1241 if (!p)
1242 return -ENOMEM;
1243
1244 fs_path_reset(path);
1245
1246 key.objectid = ino;
1247 key.type = BTRFS_INODE_REF_KEY;
1248 key.offset = 0;
1249
1250 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1251 if (ret < 0)
1252 goto out;
1253 if (ret) {
1254 ret = 1;
1255 goto out;
1256 }
1257 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1258 if (found_key.objectid != ino ||
1259 (found_key.type != BTRFS_INODE_REF_KEY &&
1260 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1261 ret = -ENOENT;
1262 goto out;
1263 }
1264
1265 ret = iterate_inode_ref(root, p, &found_key, 1,
1266 __copy_first_ref, path);
1267 if (ret < 0)
1268 goto out;
1269 ret = 0;
1270
1271 out:
1272 btrfs_free_path(p);
1273 return ret;
1274 }
1275
1276 struct backref_ctx {
1277 struct send_ctx *sctx;
1278
1279 /* number of total found references */
1280 u64 found;
1281
1282 /*
1283 * used for clones found in send_root. clones found behind cur_objectid
1284 * and cur_offset are not considered as allowed clones.
1285 */
1286 u64 cur_objectid;
1287 u64 cur_offset;
1288
1289 /* may be truncated in case it's the last extent in a file */
1290 u64 extent_len;
1291
1292 /* The bytenr the file extent item we are processing refers to. */
1293 u64 bytenr;
1294 /* The owner (root id) of the data backref for the current extent. */
1295 u64 backref_owner;
1296 /* The offset of the data backref for the current extent. */
1297 u64 backref_offset;
1298 };
1299
__clone_root_cmp_bsearch(const void * key,const void * elt)1300 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1301 {
1302 u64 root = (u64)(uintptr_t)key;
1303 const struct clone_root *cr = elt;
1304
1305 if (root < btrfs_root_id(cr->root))
1306 return -1;
1307 if (root > btrfs_root_id(cr->root))
1308 return 1;
1309 return 0;
1310 }
1311
__clone_root_cmp_sort(const void * e1,const void * e2)1312 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1313 {
1314 const struct clone_root *cr1 = e1;
1315 const struct clone_root *cr2 = e2;
1316
1317 if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root))
1318 return -1;
1319 if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root))
1320 return 1;
1321 return 0;
1322 }
1323
1324 /*
1325 * Called for every backref that is found for the current extent.
1326 * Results are collected in sctx->clone_roots->ino/offset.
1327 */
iterate_backrefs(u64 ino,u64 offset,u64 num_bytes,u64 root_id,void * ctx_)1328 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1329 void *ctx_)
1330 {
1331 struct backref_ctx *bctx = ctx_;
1332 struct clone_root *clone_root;
1333
1334 /* First check if the root is in the list of accepted clone sources */
1335 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1336 bctx->sctx->clone_roots_cnt,
1337 sizeof(struct clone_root),
1338 __clone_root_cmp_bsearch);
1339 if (!clone_root)
1340 return 0;
1341
1342 /* This is our own reference, bail out as we can't clone from it. */
1343 if (clone_root->root == bctx->sctx->send_root &&
1344 ino == bctx->cur_objectid &&
1345 offset == bctx->cur_offset)
1346 return 0;
1347
1348 /*
1349 * Make sure we don't consider clones from send_root that are
1350 * behind the current inode/offset.
1351 */
1352 if (clone_root->root == bctx->sctx->send_root) {
1353 /*
1354 * If the source inode was not yet processed we can't issue a
1355 * clone operation, as the source extent does not exist yet at
1356 * the destination of the stream.
1357 */
1358 if (ino > bctx->cur_objectid)
1359 return 0;
1360 /*
1361 * We clone from the inode currently being sent as long as the
1362 * source extent is already processed, otherwise we could try
1363 * to clone from an extent that does not exist yet at the
1364 * destination of the stream.
1365 */
1366 if (ino == bctx->cur_objectid &&
1367 offset + bctx->extent_len >
1368 bctx->sctx->cur_inode_next_write_offset)
1369 return 0;
1370 }
1371
1372 bctx->found++;
1373 clone_root->found_ref = true;
1374
1375 /*
1376 * If the given backref refers to a file extent item with a larger
1377 * number of bytes than what we found before, use the new one so that
1378 * we clone more optimally and end up doing less writes and getting
1379 * less exclusive, non-shared extents at the destination.
1380 */
1381 if (num_bytes > clone_root->num_bytes) {
1382 clone_root->ino = ino;
1383 clone_root->offset = offset;
1384 clone_root->num_bytes = num_bytes;
1385
1386 /*
1387 * Found a perfect candidate, so there's no need to continue
1388 * backref walking.
1389 */
1390 if (num_bytes >= bctx->extent_len)
1391 return BTRFS_ITERATE_EXTENT_INODES_STOP;
1392 }
1393
1394 return 0;
1395 }
1396
lookup_backref_cache(u64 leaf_bytenr,void * ctx,const u64 ** root_ids_ret,int * root_count_ret)1397 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1398 const u64 **root_ids_ret, int *root_count_ret)
1399 {
1400 struct backref_ctx *bctx = ctx;
1401 struct send_ctx *sctx = bctx->sctx;
1402 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1403 const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1404 struct btrfs_lru_cache_entry *raw_entry;
1405 struct backref_cache_entry *entry;
1406
1407 if (sctx->backref_cache.size == 0)
1408 return false;
1409
1410 /*
1411 * If relocation happened since we first filled the cache, then we must
1412 * empty the cache and can not use it, because even though we operate on
1413 * read-only roots, their leaves and nodes may have been reallocated and
1414 * now be used for different nodes/leaves of the same tree or some other
1415 * tree.
1416 *
1417 * We are called from iterate_extent_inodes() while either holding a
1418 * transaction handle or holding fs_info->commit_root_sem, so no need
1419 * to take any lock here.
1420 */
1421 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1422 btrfs_lru_cache_clear(&sctx->backref_cache);
1423 return false;
1424 }
1425
1426 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1427 if (!raw_entry)
1428 return false;
1429
1430 entry = container_of(raw_entry, struct backref_cache_entry, entry);
1431 *root_ids_ret = entry->root_ids;
1432 *root_count_ret = entry->num_roots;
1433
1434 return true;
1435 }
1436
store_backref_cache(u64 leaf_bytenr,const struct ulist * root_ids,void * ctx)1437 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1438 void *ctx)
1439 {
1440 struct backref_ctx *bctx = ctx;
1441 struct send_ctx *sctx = bctx->sctx;
1442 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1443 struct backref_cache_entry *new_entry;
1444 struct ulist_iterator uiter;
1445 struct ulist_node *node;
1446 int ret;
1447
1448 /*
1449 * We're called while holding a transaction handle or while holding
1450 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1451 * NOFS allocation.
1452 */
1453 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1454 /* No worries, cache is optional. */
1455 if (!new_entry)
1456 return;
1457
1458 new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1459 new_entry->entry.gen = 0;
1460 new_entry->num_roots = 0;
1461 ULIST_ITER_INIT(&uiter);
1462 while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1463 const u64 root_id = node->val;
1464 struct clone_root *root;
1465
1466 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1467 sctx->clone_roots_cnt, sizeof(struct clone_root),
1468 __clone_root_cmp_bsearch);
1469 if (!root)
1470 continue;
1471
1472 /* Too many roots, just exit, no worries as caching is optional. */
1473 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1474 kfree(new_entry);
1475 return;
1476 }
1477
1478 new_entry->root_ids[new_entry->num_roots] = root_id;
1479 new_entry->num_roots++;
1480 }
1481
1482 /*
1483 * We may have not added any roots to the new cache entry, which means
1484 * none of the roots is part of the list of roots from which we are
1485 * allowed to clone. Cache the new entry as it's still useful to avoid
1486 * backref walking to determine which roots have a path to the leaf.
1487 *
1488 * Also use GFP_NOFS because we're called while holding a transaction
1489 * handle or while holding fs_info->commit_root_sem.
1490 */
1491 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1492 GFP_NOFS);
1493 ASSERT(ret == 0 || ret == -ENOMEM);
1494 if (ret) {
1495 /* Caching is optional, no worries. */
1496 kfree(new_entry);
1497 return;
1498 }
1499
1500 /*
1501 * We are called from iterate_extent_inodes() while either holding a
1502 * transaction handle or holding fs_info->commit_root_sem, so no need
1503 * to take any lock here.
1504 */
1505 if (sctx->backref_cache.size == 1)
1506 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1507 }
1508
check_extent_item(u64 bytenr,const struct btrfs_extent_item * ei,const struct extent_buffer * leaf,void * ctx)1509 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1510 const struct extent_buffer *leaf, void *ctx)
1511 {
1512 const u64 refs = btrfs_extent_refs(leaf, ei);
1513 const struct backref_ctx *bctx = ctx;
1514 const struct send_ctx *sctx = bctx->sctx;
1515
1516 if (bytenr == bctx->bytenr) {
1517 const u64 flags = btrfs_extent_flags(leaf, ei);
1518
1519 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1520 return -EUCLEAN;
1521
1522 /*
1523 * If we have only one reference and only the send root as a
1524 * clone source - meaning no clone roots were given in the
1525 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1526 * it's our reference and there's no point in doing backref
1527 * walking which is expensive, so exit early.
1528 */
1529 if (refs == 1 && sctx->clone_roots_cnt == 1)
1530 return -ENOENT;
1531 }
1532
1533 /*
1534 * Backreference walking (iterate_extent_inodes() below) is currently
1535 * too expensive when an extent has a large number of references, both
1536 * in time spent and used memory. So for now just fallback to write
1537 * operations instead of clone operations when an extent has more than
1538 * a certain amount of references.
1539 */
1540 if (refs > SEND_MAX_EXTENT_REFS)
1541 return -ENOENT;
1542
1543 return 0;
1544 }
1545
skip_self_data_ref(u64 root,u64 ino,u64 offset,void * ctx)1546 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1547 {
1548 const struct backref_ctx *bctx = ctx;
1549
1550 if (ino == bctx->cur_objectid &&
1551 root == bctx->backref_owner &&
1552 offset == bctx->backref_offset)
1553 return true;
1554
1555 return false;
1556 }
1557
1558 /*
1559 * Given an inode, offset and extent item, it finds a good clone for a clone
1560 * instruction. Returns -ENOENT when none could be found. The function makes
1561 * sure that the returned clone is usable at the point where sending is at the
1562 * moment. This means, that no clones are accepted which lie behind the current
1563 * inode+offset.
1564 *
1565 * path must point to the extent item when called.
1566 */
find_extent_clone(struct send_ctx * sctx,struct btrfs_path * path,u64 ino,u64 data_offset,u64 ino_size,struct clone_root ** found)1567 static int find_extent_clone(struct send_ctx *sctx,
1568 struct btrfs_path *path,
1569 u64 ino, u64 data_offset,
1570 u64 ino_size,
1571 struct clone_root **found)
1572 {
1573 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1574 int ret;
1575 int extent_type;
1576 u64 logical;
1577 u64 disk_byte;
1578 u64 num_bytes;
1579 struct btrfs_file_extent_item *fi;
1580 struct extent_buffer *eb = path->nodes[0];
1581 struct backref_ctx backref_ctx = { 0 };
1582 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1583 struct clone_root *cur_clone_root;
1584 int compressed;
1585 u32 i;
1586
1587 /*
1588 * With fallocate we can get prealloc extents beyond the inode's i_size,
1589 * so we don't do anything here because clone operations can not clone
1590 * to a range beyond i_size without increasing the i_size of the
1591 * destination inode.
1592 */
1593 if (data_offset >= ino_size)
1594 return 0;
1595
1596 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1597 extent_type = btrfs_file_extent_type(eb, fi);
1598 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1599 return -ENOENT;
1600
1601 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1602 if (disk_byte == 0)
1603 return -ENOENT;
1604
1605 compressed = btrfs_file_extent_compression(eb, fi);
1606 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1607 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1608
1609 /*
1610 * Setup the clone roots.
1611 */
1612 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1613 cur_clone_root = sctx->clone_roots + i;
1614 cur_clone_root->ino = (u64)-1;
1615 cur_clone_root->offset = 0;
1616 cur_clone_root->num_bytes = 0;
1617 cur_clone_root->found_ref = false;
1618 }
1619
1620 backref_ctx.sctx = sctx;
1621 backref_ctx.cur_objectid = ino;
1622 backref_ctx.cur_offset = data_offset;
1623 backref_ctx.bytenr = disk_byte;
1624 /*
1625 * Use the header owner and not the send root's id, because in case of a
1626 * snapshot we can have shared subtrees.
1627 */
1628 backref_ctx.backref_owner = btrfs_header_owner(eb);
1629 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1630
1631 /*
1632 * The last extent of a file may be too large due to page alignment.
1633 * We need to adjust extent_len in this case so that the checks in
1634 * iterate_backrefs() work.
1635 */
1636 if (data_offset + num_bytes >= ino_size)
1637 backref_ctx.extent_len = ino_size - data_offset;
1638 else
1639 backref_ctx.extent_len = num_bytes;
1640
1641 /*
1642 * Now collect all backrefs.
1643 */
1644 backref_walk_ctx.bytenr = disk_byte;
1645 if (compressed == BTRFS_COMPRESS_NONE)
1646 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1647 backref_walk_ctx.fs_info = fs_info;
1648 backref_walk_ctx.cache_lookup = lookup_backref_cache;
1649 backref_walk_ctx.cache_store = store_backref_cache;
1650 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1651 backref_walk_ctx.check_extent_item = check_extent_item;
1652 backref_walk_ctx.user_ctx = &backref_ctx;
1653
1654 /*
1655 * If have a single clone root, then it's the send root and we can tell
1656 * the backref walking code to skip our own backref and not resolve it,
1657 * since we can not use it for cloning - the source and destination
1658 * ranges can't overlap and in case the leaf is shared through a subtree
1659 * due to snapshots, we can't use those other roots since they are not
1660 * in the list of clone roots.
1661 */
1662 if (sctx->clone_roots_cnt == 1)
1663 backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1664
1665 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1666 &backref_ctx);
1667 if (ret < 0)
1668 return ret;
1669
1670 down_read(&fs_info->commit_root_sem);
1671 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1672 /*
1673 * A transaction commit for a transaction in which block group
1674 * relocation was done just happened.
1675 * The disk_bytenr of the file extent item we processed is
1676 * possibly stale, referring to the extent's location before
1677 * relocation. So act as if we haven't found any clone sources
1678 * and fallback to write commands, which will read the correct
1679 * data from the new extent location. Otherwise we will fail
1680 * below because we haven't found our own back reference or we
1681 * could be getting incorrect sources in case the old extent
1682 * was already reallocated after the relocation.
1683 */
1684 up_read(&fs_info->commit_root_sem);
1685 return -ENOENT;
1686 }
1687 up_read(&fs_info->commit_root_sem);
1688
1689 btrfs_debug(fs_info,
1690 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1691 data_offset, ino, num_bytes, logical);
1692
1693 if (!backref_ctx.found) {
1694 btrfs_debug(fs_info, "no clones found");
1695 return -ENOENT;
1696 }
1697
1698 cur_clone_root = NULL;
1699 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1700 struct clone_root *clone_root = &sctx->clone_roots[i];
1701
1702 if (!clone_root->found_ref)
1703 continue;
1704
1705 /*
1706 * Choose the root from which we can clone more bytes, to
1707 * minimize write operations and therefore have more extent
1708 * sharing at the destination (the same as in the source).
1709 */
1710 if (!cur_clone_root ||
1711 clone_root->num_bytes > cur_clone_root->num_bytes) {
1712 cur_clone_root = clone_root;
1713
1714 /*
1715 * We found an optimal clone candidate (any inode from
1716 * any root is fine), so we're done.
1717 */
1718 if (clone_root->num_bytes >= backref_ctx.extent_len)
1719 break;
1720 }
1721 }
1722
1723 if (cur_clone_root) {
1724 *found = cur_clone_root;
1725 ret = 0;
1726 } else {
1727 ret = -ENOENT;
1728 }
1729
1730 return ret;
1731 }
1732
read_symlink(struct btrfs_root * root,u64 ino,struct fs_path * dest)1733 static int read_symlink(struct btrfs_root *root,
1734 u64 ino,
1735 struct fs_path *dest)
1736 {
1737 int ret;
1738 struct btrfs_path *path;
1739 struct btrfs_key key;
1740 struct btrfs_file_extent_item *ei;
1741 u8 type;
1742 u8 compression;
1743 unsigned long off;
1744 int len;
1745
1746 path = alloc_path_for_send();
1747 if (!path)
1748 return -ENOMEM;
1749
1750 key.objectid = ino;
1751 key.type = BTRFS_EXTENT_DATA_KEY;
1752 key.offset = 0;
1753 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1754 if (ret < 0)
1755 goto out;
1756 if (ret) {
1757 /*
1758 * An empty symlink inode. Can happen in rare error paths when
1759 * creating a symlink (transaction committed before the inode
1760 * eviction handler removed the symlink inode items and a crash
1761 * happened in between or the subvol was snapshoted in between).
1762 * Print an informative message to dmesg/syslog so that the user
1763 * can delete the symlink.
1764 */
1765 btrfs_err(root->fs_info,
1766 "Found empty symlink inode %llu at root %llu",
1767 ino, btrfs_root_id(root));
1768 ret = -EIO;
1769 goto out;
1770 }
1771
1772 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1773 struct btrfs_file_extent_item);
1774 type = btrfs_file_extent_type(path->nodes[0], ei);
1775 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1776 ret = -EUCLEAN;
1777 btrfs_crit(root->fs_info,
1778 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1779 ino, btrfs_root_id(root), type);
1780 goto out;
1781 }
1782 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1783 if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1784 ret = -EUCLEAN;
1785 btrfs_crit(root->fs_info,
1786 "send: found symlink extent with compression, ino %llu root %llu compression type %d",
1787 ino, btrfs_root_id(root), compression);
1788 goto out;
1789 }
1790
1791 off = btrfs_file_extent_inline_start(ei);
1792 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1793
1794 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1795
1796 out:
1797 btrfs_free_path(path);
1798 return ret;
1799 }
1800
1801 /*
1802 * Helper function to generate a file name that is unique in the root of
1803 * send_root and parent_root. This is used to generate names for orphan inodes.
1804 */
gen_unique_name(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)1805 static int gen_unique_name(struct send_ctx *sctx,
1806 u64 ino, u64 gen,
1807 struct fs_path *dest)
1808 {
1809 int ret = 0;
1810 struct btrfs_path *path;
1811 struct btrfs_dir_item *di;
1812 char tmp[64];
1813 int len;
1814 u64 idx = 0;
1815
1816 path = alloc_path_for_send();
1817 if (!path)
1818 return -ENOMEM;
1819
1820 while (1) {
1821 struct fscrypt_str tmp_name;
1822
1823 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1824 ino, gen, idx);
1825 ASSERT(len < sizeof(tmp));
1826 tmp_name.name = tmp;
1827 tmp_name.len = strlen(tmp);
1828
1829 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1830 path, BTRFS_FIRST_FREE_OBJECTID,
1831 &tmp_name, 0);
1832 btrfs_release_path(path);
1833 if (IS_ERR(di)) {
1834 ret = PTR_ERR(di);
1835 goto out;
1836 }
1837 if (di) {
1838 /* not unique, try again */
1839 idx++;
1840 continue;
1841 }
1842
1843 if (!sctx->parent_root) {
1844 /* unique */
1845 ret = 0;
1846 break;
1847 }
1848
1849 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1850 path, BTRFS_FIRST_FREE_OBJECTID,
1851 &tmp_name, 0);
1852 btrfs_release_path(path);
1853 if (IS_ERR(di)) {
1854 ret = PTR_ERR(di);
1855 goto out;
1856 }
1857 if (di) {
1858 /* not unique, try again */
1859 idx++;
1860 continue;
1861 }
1862 /* unique */
1863 break;
1864 }
1865
1866 ret = fs_path_add(dest, tmp, strlen(tmp));
1867
1868 out:
1869 btrfs_free_path(path);
1870 return ret;
1871 }
1872
1873 enum inode_state {
1874 inode_state_no_change,
1875 inode_state_will_create,
1876 inode_state_did_create,
1877 inode_state_will_delete,
1878 inode_state_did_delete,
1879 };
1880
get_cur_inode_state(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1881 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1882 u64 *send_gen, u64 *parent_gen)
1883 {
1884 int ret;
1885 int left_ret;
1886 int right_ret;
1887 u64 left_gen;
1888 u64 right_gen = 0;
1889 struct btrfs_inode_info info;
1890
1891 ret = get_inode_info(sctx->send_root, ino, &info);
1892 if (ret < 0 && ret != -ENOENT)
1893 return ret;
1894 left_ret = (info.nlink == 0) ? -ENOENT : ret;
1895 left_gen = info.gen;
1896 if (send_gen)
1897 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1898
1899 if (!sctx->parent_root) {
1900 right_ret = -ENOENT;
1901 } else {
1902 ret = get_inode_info(sctx->parent_root, ino, &info);
1903 if (ret < 0 && ret != -ENOENT)
1904 return ret;
1905 right_ret = (info.nlink == 0) ? -ENOENT : ret;
1906 right_gen = info.gen;
1907 if (parent_gen)
1908 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1909 }
1910
1911 if (!left_ret && !right_ret) {
1912 if (left_gen == gen && right_gen == gen) {
1913 ret = inode_state_no_change;
1914 } else if (left_gen == gen) {
1915 if (ino < sctx->send_progress)
1916 ret = inode_state_did_create;
1917 else
1918 ret = inode_state_will_create;
1919 } else if (right_gen == gen) {
1920 if (ino < sctx->send_progress)
1921 ret = inode_state_did_delete;
1922 else
1923 ret = inode_state_will_delete;
1924 } else {
1925 ret = -ENOENT;
1926 }
1927 } else if (!left_ret) {
1928 if (left_gen == gen) {
1929 if (ino < sctx->send_progress)
1930 ret = inode_state_did_create;
1931 else
1932 ret = inode_state_will_create;
1933 } else {
1934 ret = -ENOENT;
1935 }
1936 } else if (!right_ret) {
1937 if (right_gen == gen) {
1938 if (ino < sctx->send_progress)
1939 ret = inode_state_did_delete;
1940 else
1941 ret = inode_state_will_delete;
1942 } else {
1943 ret = -ENOENT;
1944 }
1945 } else {
1946 ret = -ENOENT;
1947 }
1948
1949 return ret;
1950 }
1951
is_inode_existent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1952 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1953 u64 *send_gen, u64 *parent_gen)
1954 {
1955 int ret;
1956
1957 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1958 return 1;
1959
1960 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1961 if (ret < 0)
1962 return ret;
1963
1964 if (ret == inode_state_no_change ||
1965 ret == inode_state_did_create ||
1966 ret == inode_state_will_delete)
1967 return 1;
1968
1969 return 0;
1970 }
1971
1972 /*
1973 * Helper function to lookup a dir item in a dir.
1974 */
lookup_dir_item_inode(struct btrfs_root * root,u64 dir,const char * name,int name_len,u64 * found_inode)1975 static int lookup_dir_item_inode(struct btrfs_root *root,
1976 u64 dir, const char *name, int name_len,
1977 u64 *found_inode)
1978 {
1979 int ret = 0;
1980 struct btrfs_dir_item *di;
1981 struct btrfs_key key;
1982 struct btrfs_path *path;
1983 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
1984
1985 path = alloc_path_for_send();
1986 if (!path)
1987 return -ENOMEM;
1988
1989 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
1990 if (IS_ERR_OR_NULL(di)) {
1991 ret = di ? PTR_ERR(di) : -ENOENT;
1992 goto out;
1993 }
1994 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1995 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1996 ret = -ENOENT;
1997 goto out;
1998 }
1999 *found_inode = key.objectid;
2000
2001 out:
2002 btrfs_free_path(path);
2003 return ret;
2004 }
2005
2006 /*
2007 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2008 * generation of the parent dir and the name of the dir entry.
2009 */
get_first_ref(struct btrfs_root * root,u64 ino,u64 * dir,u64 * dir_gen,struct fs_path * name)2010 static int get_first_ref(struct btrfs_root *root, u64 ino,
2011 u64 *dir, u64 *dir_gen, struct fs_path *name)
2012 {
2013 int ret;
2014 struct btrfs_key key;
2015 struct btrfs_key found_key;
2016 struct btrfs_path *path;
2017 int len;
2018 u64 parent_dir;
2019
2020 path = alloc_path_for_send();
2021 if (!path)
2022 return -ENOMEM;
2023
2024 key.objectid = ino;
2025 key.type = BTRFS_INODE_REF_KEY;
2026 key.offset = 0;
2027
2028 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2029 if (ret < 0)
2030 goto out;
2031 if (!ret)
2032 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2033 path->slots[0]);
2034 if (ret || found_key.objectid != ino ||
2035 (found_key.type != BTRFS_INODE_REF_KEY &&
2036 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2037 ret = -ENOENT;
2038 goto out;
2039 }
2040
2041 if (found_key.type == BTRFS_INODE_REF_KEY) {
2042 struct btrfs_inode_ref *iref;
2043 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2044 struct btrfs_inode_ref);
2045 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2046 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2047 (unsigned long)(iref + 1),
2048 len);
2049 parent_dir = found_key.offset;
2050 } else {
2051 struct btrfs_inode_extref *extref;
2052 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2053 struct btrfs_inode_extref);
2054 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2055 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2056 (unsigned long)&extref->name, len);
2057 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2058 }
2059 if (ret < 0)
2060 goto out;
2061 btrfs_release_path(path);
2062
2063 if (dir_gen) {
2064 ret = get_inode_gen(root, parent_dir, dir_gen);
2065 if (ret < 0)
2066 goto out;
2067 }
2068
2069 *dir = parent_dir;
2070
2071 out:
2072 btrfs_free_path(path);
2073 return ret;
2074 }
2075
is_first_ref(struct btrfs_root * root,u64 ino,u64 dir,const char * name,int name_len)2076 static int is_first_ref(struct btrfs_root *root,
2077 u64 ino, u64 dir,
2078 const char *name, int name_len)
2079 {
2080 int ret;
2081 struct fs_path *tmp_name;
2082 u64 tmp_dir;
2083
2084 tmp_name = fs_path_alloc();
2085 if (!tmp_name)
2086 return -ENOMEM;
2087
2088 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2089 if (ret < 0)
2090 goto out;
2091
2092 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2093 ret = 0;
2094 goto out;
2095 }
2096
2097 ret = !memcmp(tmp_name->start, name, name_len);
2098
2099 out:
2100 fs_path_free(tmp_name);
2101 return ret;
2102 }
2103
2104 /*
2105 * Used by process_recorded_refs to determine if a new ref would overwrite an
2106 * already existing ref. In case it detects an overwrite, it returns the
2107 * inode/gen in who_ino/who_gen.
2108 * When an overwrite is detected, process_recorded_refs does proper orphanizing
2109 * to make sure later references to the overwritten inode are possible.
2110 * Orphanizing is however only required for the first ref of an inode.
2111 * process_recorded_refs does an additional is_first_ref check to see if
2112 * orphanizing is really required.
2113 */
will_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,const char * name,int name_len,u64 * who_ino,u64 * who_gen,u64 * who_mode)2114 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2115 const char *name, int name_len,
2116 u64 *who_ino, u64 *who_gen, u64 *who_mode)
2117 {
2118 int ret;
2119 u64 parent_root_dir_gen;
2120 u64 other_inode = 0;
2121 struct btrfs_inode_info info;
2122
2123 if (!sctx->parent_root)
2124 return 0;
2125
2126 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2127 if (ret <= 0)
2128 return 0;
2129
2130 /*
2131 * If we have a parent root we need to verify that the parent dir was
2132 * not deleted and then re-created, if it was then we have no overwrite
2133 * and we can just unlink this entry.
2134 *
2135 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2136 * parent root.
2137 */
2138 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2139 parent_root_dir_gen != dir_gen)
2140 return 0;
2141
2142 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2143 &other_inode);
2144 if (ret == -ENOENT)
2145 return 0;
2146 else if (ret < 0)
2147 return ret;
2148
2149 /*
2150 * Check if the overwritten ref was already processed. If yes, the ref
2151 * was already unlinked/moved, so we can safely assume that we will not
2152 * overwrite anything at this point in time.
2153 */
2154 if (other_inode > sctx->send_progress ||
2155 is_waiting_for_move(sctx, other_inode)) {
2156 ret = get_inode_info(sctx->parent_root, other_inode, &info);
2157 if (ret < 0)
2158 return ret;
2159
2160 *who_ino = other_inode;
2161 *who_gen = info.gen;
2162 *who_mode = info.mode;
2163 return 1;
2164 }
2165
2166 return 0;
2167 }
2168
2169 /*
2170 * Checks if the ref was overwritten by an already processed inode. This is
2171 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2172 * thus the orphan name needs be used.
2173 * process_recorded_refs also uses it to avoid unlinking of refs that were
2174 * overwritten.
2175 */
did_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 ino,u64 ino_gen,const char * name,int name_len)2176 static int did_overwrite_ref(struct send_ctx *sctx,
2177 u64 dir, u64 dir_gen,
2178 u64 ino, u64 ino_gen,
2179 const char *name, int name_len)
2180 {
2181 int ret;
2182 u64 ow_inode;
2183 u64 ow_gen = 0;
2184 u64 send_root_dir_gen;
2185
2186 if (!sctx->parent_root)
2187 return 0;
2188
2189 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2190 if (ret <= 0)
2191 return ret;
2192
2193 /*
2194 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2195 * send root.
2196 */
2197 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2198 return 0;
2199
2200 /* check if the ref was overwritten by another ref */
2201 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2202 &ow_inode);
2203 if (ret == -ENOENT) {
2204 /* was never and will never be overwritten */
2205 return 0;
2206 } else if (ret < 0) {
2207 return ret;
2208 }
2209
2210 if (ow_inode == ino) {
2211 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2212 if (ret < 0)
2213 return ret;
2214
2215 /* It's the same inode, so no overwrite happened. */
2216 if (ow_gen == ino_gen)
2217 return 0;
2218 }
2219
2220 /*
2221 * We know that it is or will be overwritten. Check this now.
2222 * The current inode being processed might have been the one that caused
2223 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2224 * the current inode being processed.
2225 */
2226 if (ow_inode < sctx->send_progress)
2227 return 1;
2228
2229 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2230 if (ow_gen == 0) {
2231 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2232 if (ret < 0)
2233 return ret;
2234 }
2235 if (ow_gen == sctx->cur_inode_gen)
2236 return 1;
2237 }
2238
2239 return 0;
2240 }
2241
2242 /*
2243 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2244 * that got overwritten. This is used by process_recorded_refs to determine
2245 * if it has to use the path as returned by get_cur_path or the orphan name.
2246 */
did_overwrite_first_ref(struct send_ctx * sctx,u64 ino,u64 gen)2247 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2248 {
2249 int ret = 0;
2250 struct fs_path *name = NULL;
2251 u64 dir;
2252 u64 dir_gen;
2253
2254 if (!sctx->parent_root)
2255 goto out;
2256
2257 name = fs_path_alloc();
2258 if (!name)
2259 return -ENOMEM;
2260
2261 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2262 if (ret < 0)
2263 goto out;
2264
2265 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2266 name->start, fs_path_len(name));
2267
2268 out:
2269 fs_path_free(name);
2270 return ret;
2271 }
2272
name_cache_search(struct send_ctx * sctx,u64 ino,u64 gen)2273 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2274 u64 ino, u64 gen)
2275 {
2276 struct btrfs_lru_cache_entry *entry;
2277
2278 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2279 if (!entry)
2280 return NULL;
2281
2282 return container_of(entry, struct name_cache_entry, entry);
2283 }
2284
2285 /*
2286 * Used by get_cur_path for each ref up to the root.
2287 * Returns 0 if it succeeded.
2288 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2289 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2290 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2291 * Returns <0 in case of error.
2292 */
__get_cur_name_and_parent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * parent_ino,u64 * parent_gen,struct fs_path * dest)2293 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2294 u64 ino, u64 gen,
2295 u64 *parent_ino,
2296 u64 *parent_gen,
2297 struct fs_path *dest)
2298 {
2299 int ret;
2300 int nce_ret;
2301 struct name_cache_entry *nce;
2302
2303 /*
2304 * First check if we already did a call to this function with the same
2305 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2306 * return the cached result.
2307 */
2308 nce = name_cache_search(sctx, ino, gen);
2309 if (nce) {
2310 if (ino < sctx->send_progress && nce->need_later_update) {
2311 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2312 nce = NULL;
2313 } else {
2314 *parent_ino = nce->parent_ino;
2315 *parent_gen = nce->parent_gen;
2316 ret = fs_path_add(dest, nce->name, nce->name_len);
2317 if (ret < 0)
2318 return ret;
2319 return nce->ret;
2320 }
2321 }
2322
2323 /*
2324 * If the inode is not existent yet, add the orphan name and return 1.
2325 * This should only happen for the parent dir that we determine in
2326 * record_new_ref_if_needed().
2327 */
2328 ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2329 if (ret < 0)
2330 return ret;
2331
2332 if (!ret) {
2333 ret = gen_unique_name(sctx, ino, gen, dest);
2334 if (ret < 0)
2335 return ret;
2336 ret = 1;
2337 goto out_cache;
2338 }
2339
2340 /*
2341 * Depending on whether the inode was already processed or not, use
2342 * send_root or parent_root for ref lookup.
2343 */
2344 if (ino < sctx->send_progress)
2345 ret = get_first_ref(sctx->send_root, ino,
2346 parent_ino, parent_gen, dest);
2347 else
2348 ret = get_first_ref(sctx->parent_root, ino,
2349 parent_ino, parent_gen, dest);
2350 if (ret < 0)
2351 return ret;
2352
2353 /*
2354 * Check if the ref was overwritten by an inode's ref that was processed
2355 * earlier. If yes, treat as orphan and return 1.
2356 */
2357 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2358 dest->start, fs_path_len(dest));
2359 if (ret < 0)
2360 return ret;
2361 if (ret) {
2362 fs_path_reset(dest);
2363 ret = gen_unique_name(sctx, ino, gen, dest);
2364 if (ret < 0)
2365 return ret;
2366 ret = 1;
2367 }
2368
2369 out_cache:
2370 /*
2371 * Store the result of the lookup in the name cache.
2372 */
2373 nce = kmalloc(sizeof(*nce) + fs_path_len(dest), GFP_KERNEL);
2374 if (!nce)
2375 return -ENOMEM;
2376
2377 nce->entry.key = ino;
2378 nce->entry.gen = gen;
2379 nce->parent_ino = *parent_ino;
2380 nce->parent_gen = *parent_gen;
2381 nce->name_len = fs_path_len(dest);
2382 nce->ret = ret;
2383 memcpy(nce->name, dest->start, nce->name_len);
2384
2385 if (ino < sctx->send_progress)
2386 nce->need_later_update = 0;
2387 else
2388 nce->need_later_update = 1;
2389
2390 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2391 if (nce_ret < 0) {
2392 kfree(nce);
2393 return nce_ret;
2394 }
2395
2396 return ret;
2397 }
2398
2399 /*
2400 * Magic happens here. This function returns the first ref to an inode as it
2401 * would look like while receiving the stream at this point in time.
2402 * We walk the path up to the root. For every inode in between, we check if it
2403 * was already processed/sent. If yes, we continue with the parent as found
2404 * in send_root. If not, we continue with the parent as found in parent_root.
2405 * If we encounter an inode that was deleted at this point in time, we use the
2406 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2407 * that were not created yet and overwritten inodes/refs.
2408 *
2409 * When do we have orphan inodes:
2410 * 1. When an inode is freshly created and thus no valid refs are available yet
2411 * 2. When a directory lost all it's refs (deleted) but still has dir items
2412 * inside which were not processed yet (pending for move/delete). If anyone
2413 * tried to get the path to the dir items, it would get a path inside that
2414 * orphan directory.
2415 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2416 * of an unprocessed inode. If in that case the first ref would be
2417 * overwritten, the overwritten inode gets "orphanized". Later when we
2418 * process this overwritten inode, it is restored at a new place by moving
2419 * the orphan inode.
2420 *
2421 * sctx->send_progress tells this function at which point in time receiving
2422 * would be.
2423 */
get_cur_path(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)2424 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2425 struct fs_path *dest)
2426 {
2427 int ret = 0;
2428 struct fs_path *name = NULL;
2429 u64 parent_inode = 0;
2430 u64 parent_gen = 0;
2431 int stop = 0;
2432 const bool is_cur_inode = (ino == sctx->cur_ino && gen == sctx->cur_inode_gen);
2433
2434 if (is_cur_inode && fs_path_len(&sctx->cur_inode_path) > 0) {
2435 if (dest != &sctx->cur_inode_path)
2436 return fs_path_copy(dest, &sctx->cur_inode_path);
2437
2438 return 0;
2439 }
2440
2441 name = fs_path_alloc();
2442 if (!name) {
2443 ret = -ENOMEM;
2444 goto out;
2445 }
2446
2447 dest->reversed = 1;
2448 fs_path_reset(dest);
2449
2450 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2451 struct waiting_dir_move *wdm;
2452
2453 fs_path_reset(name);
2454
2455 if (is_waiting_for_rm(sctx, ino, gen)) {
2456 ret = gen_unique_name(sctx, ino, gen, name);
2457 if (ret < 0)
2458 goto out;
2459 ret = fs_path_add_path(dest, name);
2460 break;
2461 }
2462
2463 wdm = get_waiting_dir_move(sctx, ino);
2464 if (wdm && wdm->orphanized) {
2465 ret = gen_unique_name(sctx, ino, gen, name);
2466 stop = 1;
2467 } else if (wdm) {
2468 ret = get_first_ref(sctx->parent_root, ino,
2469 &parent_inode, &parent_gen, name);
2470 } else {
2471 ret = __get_cur_name_and_parent(sctx, ino, gen,
2472 &parent_inode,
2473 &parent_gen, name);
2474 if (ret)
2475 stop = 1;
2476 }
2477
2478 if (ret < 0)
2479 goto out;
2480
2481 ret = fs_path_add_path(dest, name);
2482 if (ret < 0)
2483 goto out;
2484
2485 ino = parent_inode;
2486 gen = parent_gen;
2487 }
2488
2489 out:
2490 fs_path_free(name);
2491 if (!ret) {
2492 fs_path_unreverse(dest);
2493 if (is_cur_inode && dest != &sctx->cur_inode_path)
2494 ret = fs_path_copy(&sctx->cur_inode_path, dest);
2495 }
2496
2497 return ret;
2498 }
2499
2500 /*
2501 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2502 */
send_subvol_begin(struct send_ctx * sctx)2503 static int send_subvol_begin(struct send_ctx *sctx)
2504 {
2505 int ret;
2506 struct btrfs_root *send_root = sctx->send_root;
2507 struct btrfs_root *parent_root = sctx->parent_root;
2508 struct btrfs_path *path;
2509 struct btrfs_key key;
2510 struct btrfs_root_ref *ref;
2511 struct extent_buffer *leaf;
2512 char *name = NULL;
2513 int namelen;
2514
2515 path = btrfs_alloc_path();
2516 if (!path)
2517 return -ENOMEM;
2518
2519 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2520 if (!name) {
2521 btrfs_free_path(path);
2522 return -ENOMEM;
2523 }
2524
2525 key.objectid = btrfs_root_id(send_root);
2526 key.type = BTRFS_ROOT_BACKREF_KEY;
2527 key.offset = 0;
2528
2529 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2530 &key, path, 1, 0);
2531 if (ret < 0)
2532 goto out;
2533 if (ret) {
2534 ret = -ENOENT;
2535 goto out;
2536 }
2537
2538 leaf = path->nodes[0];
2539 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2540 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2541 key.objectid != btrfs_root_id(send_root)) {
2542 ret = -ENOENT;
2543 goto out;
2544 }
2545 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2546 namelen = btrfs_root_ref_name_len(leaf, ref);
2547 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2548 btrfs_release_path(path);
2549
2550 if (parent_root) {
2551 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2552 if (ret < 0)
2553 goto out;
2554 } else {
2555 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2556 if (ret < 0)
2557 goto out;
2558 }
2559
2560 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2561
2562 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2563 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2564 sctx->send_root->root_item.received_uuid);
2565 else
2566 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2567 sctx->send_root->root_item.uuid);
2568
2569 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2570 btrfs_root_ctransid(&sctx->send_root->root_item));
2571 if (parent_root) {
2572 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2573 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2574 parent_root->root_item.received_uuid);
2575 else
2576 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2577 parent_root->root_item.uuid);
2578 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2579 btrfs_root_ctransid(&sctx->parent_root->root_item));
2580 }
2581
2582 ret = send_cmd(sctx);
2583
2584 tlv_put_failure:
2585 out:
2586 btrfs_free_path(path);
2587 kfree(name);
2588 return ret;
2589 }
2590
get_cur_inode_path(struct send_ctx * sctx)2591 static struct fs_path *get_cur_inode_path(struct send_ctx *sctx)
2592 {
2593 if (fs_path_len(&sctx->cur_inode_path) == 0) {
2594 int ret;
2595
2596 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
2597 &sctx->cur_inode_path);
2598 if (ret < 0)
2599 return ERR_PTR(ret);
2600 }
2601
2602 return &sctx->cur_inode_path;
2603 }
2604
get_path_for_command(struct send_ctx * sctx,u64 ino,u64 gen)2605 static struct fs_path *get_path_for_command(struct send_ctx *sctx, u64 ino, u64 gen)
2606 {
2607 struct fs_path *path;
2608 int ret;
2609
2610 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen)
2611 return get_cur_inode_path(sctx);
2612
2613 path = fs_path_alloc();
2614 if (!path)
2615 return ERR_PTR(-ENOMEM);
2616
2617 ret = get_cur_path(sctx, ino, gen, path);
2618 if (ret < 0) {
2619 fs_path_free(path);
2620 return ERR_PTR(ret);
2621 }
2622
2623 return path;
2624 }
2625
free_path_for_command(const struct send_ctx * sctx,struct fs_path * path)2626 static void free_path_for_command(const struct send_ctx *sctx, struct fs_path *path)
2627 {
2628 if (path != &sctx->cur_inode_path)
2629 fs_path_free(path);
2630 }
2631
send_truncate(struct send_ctx * sctx,u64 ino,u64 gen,u64 size)2632 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2633 {
2634 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2635 int ret = 0;
2636 struct fs_path *p;
2637
2638 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2639
2640 p = get_path_for_command(sctx, ino, gen);
2641 if (IS_ERR(p))
2642 return PTR_ERR(p);
2643
2644 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2645 if (ret < 0)
2646 goto out;
2647
2648 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2649 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2650
2651 ret = send_cmd(sctx);
2652
2653 tlv_put_failure:
2654 out:
2655 free_path_for_command(sctx, p);
2656 return ret;
2657 }
2658
send_chmod(struct send_ctx * sctx,u64 ino,u64 gen,u64 mode)2659 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2660 {
2661 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2662 int ret = 0;
2663 struct fs_path *p;
2664
2665 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2666
2667 p = get_path_for_command(sctx, ino, gen);
2668 if (IS_ERR(p))
2669 return PTR_ERR(p);
2670
2671 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2672 if (ret < 0)
2673 goto out;
2674
2675 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2676 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2677
2678 ret = send_cmd(sctx);
2679
2680 tlv_put_failure:
2681 out:
2682 free_path_for_command(sctx, p);
2683 return ret;
2684 }
2685
send_fileattr(struct send_ctx * sctx,u64 ino,u64 gen,u64 fileattr)2686 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2687 {
2688 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2689 int ret = 0;
2690 struct fs_path *p;
2691
2692 if (sctx->proto < 2)
2693 return 0;
2694
2695 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2696
2697 p = get_path_for_command(sctx, ino, gen);
2698 if (IS_ERR(p))
2699 return PTR_ERR(p);
2700
2701 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2702 if (ret < 0)
2703 goto out;
2704
2705 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2706 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2707
2708 ret = send_cmd(sctx);
2709
2710 tlv_put_failure:
2711 out:
2712 free_path_for_command(sctx, p);
2713 return ret;
2714 }
2715
send_chown(struct send_ctx * sctx,u64 ino,u64 gen,u64 uid,u64 gid)2716 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2717 {
2718 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2719 int ret = 0;
2720 struct fs_path *p;
2721
2722 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2723 ino, uid, gid);
2724
2725 p = get_path_for_command(sctx, ino, gen);
2726 if (IS_ERR(p))
2727 return PTR_ERR(p);
2728
2729 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2730 if (ret < 0)
2731 goto out;
2732
2733 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2734 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2735 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2736
2737 ret = send_cmd(sctx);
2738
2739 tlv_put_failure:
2740 out:
2741 free_path_for_command(sctx, p);
2742 return ret;
2743 }
2744
send_utimes(struct send_ctx * sctx,u64 ino,u64 gen)2745 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2746 {
2747 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2748 int ret = 0;
2749 struct fs_path *p = NULL;
2750 struct btrfs_inode_item *ii;
2751 struct btrfs_path *path = NULL;
2752 struct extent_buffer *eb;
2753 struct btrfs_key key;
2754 int slot;
2755
2756 btrfs_debug(fs_info, "send_utimes %llu", ino);
2757
2758 p = get_path_for_command(sctx, ino, gen);
2759 if (IS_ERR(p))
2760 return PTR_ERR(p);
2761
2762 path = alloc_path_for_send();
2763 if (!path) {
2764 ret = -ENOMEM;
2765 goto out;
2766 }
2767
2768 key.objectid = ino;
2769 key.type = BTRFS_INODE_ITEM_KEY;
2770 key.offset = 0;
2771 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2772 if (ret > 0)
2773 ret = -ENOENT;
2774 if (ret < 0)
2775 goto out;
2776
2777 eb = path->nodes[0];
2778 slot = path->slots[0];
2779 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2780
2781 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2782 if (ret < 0)
2783 goto out;
2784
2785 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2786 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2787 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2788 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2789 if (sctx->proto >= 2)
2790 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2791
2792 ret = send_cmd(sctx);
2793
2794 tlv_put_failure:
2795 out:
2796 free_path_for_command(sctx, p);
2797 btrfs_free_path(path);
2798 return ret;
2799 }
2800
2801 /*
2802 * If the cache is full, we can't remove entries from it and do a call to
2803 * send_utimes() for each respective inode, because we might be finishing
2804 * processing an inode that is a directory and it just got renamed, and existing
2805 * entries in the cache may refer to inodes that have the directory in their
2806 * full path - in which case we would generate outdated paths (pre-rename)
2807 * for the inodes that the cache entries point to. Instead of prunning the
2808 * cache when inserting, do it after we finish processing each inode at
2809 * finish_inode_if_needed().
2810 */
cache_dir_utimes(struct send_ctx * sctx,u64 dir,u64 gen)2811 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2812 {
2813 struct btrfs_lru_cache_entry *entry;
2814 int ret;
2815
2816 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2817 if (entry != NULL)
2818 return 0;
2819
2820 /* Caching is optional, don't fail if we can't allocate memory. */
2821 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2822 if (!entry)
2823 return send_utimes(sctx, dir, gen);
2824
2825 entry->key = dir;
2826 entry->gen = gen;
2827
2828 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2829 ASSERT(ret != -EEXIST);
2830 if (ret) {
2831 kfree(entry);
2832 return send_utimes(sctx, dir, gen);
2833 }
2834
2835 return 0;
2836 }
2837
trim_dir_utimes_cache(struct send_ctx * sctx)2838 static int trim_dir_utimes_cache(struct send_ctx *sctx)
2839 {
2840 while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2841 struct btrfs_lru_cache_entry *lru;
2842 int ret;
2843
2844 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2845 ASSERT(lru != NULL);
2846
2847 ret = send_utimes(sctx, lru->key, lru->gen);
2848 if (ret)
2849 return ret;
2850
2851 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2852 }
2853
2854 return 0;
2855 }
2856
2857 /*
2858 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2859 * a valid path yet because we did not process the refs yet. So, the inode
2860 * is created as orphan.
2861 */
send_create_inode(struct send_ctx * sctx,u64 ino)2862 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2863 {
2864 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2865 int ret = 0;
2866 struct fs_path *p;
2867 int cmd;
2868 struct btrfs_inode_info info;
2869 u64 gen;
2870 u64 mode;
2871 u64 rdev;
2872
2873 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2874
2875 p = fs_path_alloc();
2876 if (!p)
2877 return -ENOMEM;
2878
2879 if (ino != sctx->cur_ino) {
2880 ret = get_inode_info(sctx->send_root, ino, &info);
2881 if (ret < 0)
2882 goto out;
2883 gen = info.gen;
2884 mode = info.mode;
2885 rdev = info.rdev;
2886 } else {
2887 gen = sctx->cur_inode_gen;
2888 mode = sctx->cur_inode_mode;
2889 rdev = sctx->cur_inode_rdev;
2890 }
2891
2892 if (S_ISREG(mode)) {
2893 cmd = BTRFS_SEND_C_MKFILE;
2894 } else if (S_ISDIR(mode)) {
2895 cmd = BTRFS_SEND_C_MKDIR;
2896 } else if (S_ISLNK(mode)) {
2897 cmd = BTRFS_SEND_C_SYMLINK;
2898 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2899 cmd = BTRFS_SEND_C_MKNOD;
2900 } else if (S_ISFIFO(mode)) {
2901 cmd = BTRFS_SEND_C_MKFIFO;
2902 } else if (S_ISSOCK(mode)) {
2903 cmd = BTRFS_SEND_C_MKSOCK;
2904 } else {
2905 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2906 (int)(mode & S_IFMT));
2907 ret = -EOPNOTSUPP;
2908 goto out;
2909 }
2910
2911 ret = begin_cmd(sctx, cmd);
2912 if (ret < 0)
2913 goto out;
2914
2915 ret = gen_unique_name(sctx, ino, gen, p);
2916 if (ret < 0)
2917 goto out;
2918
2919 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2920 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2921
2922 if (S_ISLNK(mode)) {
2923 fs_path_reset(p);
2924 ret = read_symlink(sctx->send_root, ino, p);
2925 if (ret < 0)
2926 goto out;
2927 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2928 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2929 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2930 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2931 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2932 }
2933
2934 ret = send_cmd(sctx);
2935 if (ret < 0)
2936 goto out;
2937
2938
2939 tlv_put_failure:
2940 out:
2941 fs_path_free(p);
2942 return ret;
2943 }
2944
cache_dir_created(struct send_ctx * sctx,u64 dir)2945 static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2946 {
2947 struct btrfs_lru_cache_entry *entry;
2948 int ret;
2949
2950 /* Caching is optional, ignore any failures. */
2951 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2952 if (!entry)
2953 return;
2954
2955 entry->key = dir;
2956 entry->gen = 0;
2957 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2958 if (ret < 0)
2959 kfree(entry);
2960 }
2961
2962 /*
2963 * We need some special handling for inodes that get processed before the parent
2964 * directory got created. See process_recorded_refs for details.
2965 * This function does the check if we already created the dir out of order.
2966 */
did_create_dir(struct send_ctx * sctx,u64 dir)2967 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2968 {
2969 int ret = 0;
2970 int iter_ret = 0;
2971 struct btrfs_path *path = NULL;
2972 struct btrfs_key key;
2973 struct btrfs_key found_key;
2974 struct btrfs_key di_key;
2975 struct btrfs_dir_item *di;
2976
2977 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2978 return 1;
2979
2980 path = alloc_path_for_send();
2981 if (!path)
2982 return -ENOMEM;
2983
2984 key.objectid = dir;
2985 key.type = BTRFS_DIR_INDEX_KEY;
2986 key.offset = 0;
2987
2988 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2989 struct extent_buffer *eb = path->nodes[0];
2990
2991 if (found_key.objectid != key.objectid ||
2992 found_key.type != key.type) {
2993 ret = 0;
2994 break;
2995 }
2996
2997 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2998 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2999
3000 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
3001 di_key.objectid < sctx->send_progress) {
3002 ret = 1;
3003 cache_dir_created(sctx, dir);
3004 break;
3005 }
3006 }
3007 /* Catch error found during iteration */
3008 if (iter_ret < 0)
3009 ret = iter_ret;
3010
3011 btrfs_free_path(path);
3012 return ret;
3013 }
3014
3015 /*
3016 * Only creates the inode if it is:
3017 * 1. Not a directory
3018 * 2. Or a directory which was not created already due to out of order
3019 * directories. See did_create_dir and process_recorded_refs for details.
3020 */
send_create_inode_if_needed(struct send_ctx * sctx)3021 static int send_create_inode_if_needed(struct send_ctx *sctx)
3022 {
3023 int ret;
3024
3025 if (S_ISDIR(sctx->cur_inode_mode)) {
3026 ret = did_create_dir(sctx, sctx->cur_ino);
3027 if (ret < 0)
3028 return ret;
3029 else if (ret > 0)
3030 return 0;
3031 }
3032
3033 ret = send_create_inode(sctx, sctx->cur_ino);
3034
3035 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
3036 cache_dir_created(sctx, sctx->cur_ino);
3037
3038 return ret;
3039 }
3040
3041 struct recorded_ref {
3042 struct list_head list;
3043 char *name;
3044 struct fs_path *full_path;
3045 u64 dir;
3046 u64 dir_gen;
3047 int name_len;
3048 struct rb_node node;
3049 struct rb_root *root;
3050 };
3051
recorded_ref_alloc(void)3052 static struct recorded_ref *recorded_ref_alloc(void)
3053 {
3054 struct recorded_ref *ref;
3055
3056 ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3057 if (!ref)
3058 return NULL;
3059 RB_CLEAR_NODE(&ref->node);
3060 INIT_LIST_HEAD(&ref->list);
3061 return ref;
3062 }
3063
recorded_ref_free(struct recorded_ref * ref)3064 static void recorded_ref_free(struct recorded_ref *ref)
3065 {
3066 if (!ref)
3067 return;
3068 if (!RB_EMPTY_NODE(&ref->node))
3069 rb_erase(&ref->node, ref->root);
3070 list_del(&ref->list);
3071 fs_path_free(ref->full_path);
3072 kfree(ref);
3073 }
3074
set_ref_path(struct recorded_ref * ref,struct fs_path * path)3075 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3076 {
3077 ref->full_path = path;
3078 ref->name = (char *)kbasename(ref->full_path->start);
3079 ref->name_len = ref->full_path->end - ref->name;
3080 }
3081
dup_ref(struct recorded_ref * ref,struct list_head * list)3082 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3083 {
3084 struct recorded_ref *new;
3085
3086 new = recorded_ref_alloc();
3087 if (!new)
3088 return -ENOMEM;
3089
3090 new->dir = ref->dir;
3091 new->dir_gen = ref->dir_gen;
3092 list_add_tail(&new->list, list);
3093 return 0;
3094 }
3095
__free_recorded_refs(struct list_head * head)3096 static void __free_recorded_refs(struct list_head *head)
3097 {
3098 struct recorded_ref *cur;
3099
3100 while (!list_empty(head)) {
3101 cur = list_entry(head->next, struct recorded_ref, list);
3102 recorded_ref_free(cur);
3103 }
3104 }
3105
free_recorded_refs(struct send_ctx * sctx)3106 static void free_recorded_refs(struct send_ctx *sctx)
3107 {
3108 __free_recorded_refs(&sctx->new_refs);
3109 __free_recorded_refs(&sctx->deleted_refs);
3110 }
3111
3112 /*
3113 * Renames/moves a file/dir to its orphan name. Used when the first
3114 * ref of an unprocessed inode gets overwritten and for all non empty
3115 * directories.
3116 */
orphanize_inode(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * path)3117 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3118 struct fs_path *path)
3119 {
3120 int ret;
3121 struct fs_path *orphan;
3122
3123 orphan = fs_path_alloc();
3124 if (!orphan)
3125 return -ENOMEM;
3126
3127 ret = gen_unique_name(sctx, ino, gen, orphan);
3128 if (ret < 0)
3129 goto out;
3130
3131 ret = send_rename(sctx, path, orphan);
3132 if (ret < 0)
3133 goto out;
3134
3135 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen)
3136 ret = fs_path_copy(&sctx->cur_inode_path, orphan);
3137
3138 out:
3139 fs_path_free(orphan);
3140 return ret;
3141 }
3142
add_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 dir_gen)3143 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3144 u64 dir_ino, u64 dir_gen)
3145 {
3146 struct rb_node **p = &sctx->orphan_dirs.rb_node;
3147 struct rb_node *parent = NULL;
3148 struct orphan_dir_info *entry, *odi;
3149
3150 while (*p) {
3151 parent = *p;
3152 entry = rb_entry(parent, struct orphan_dir_info, node);
3153 if (dir_ino < entry->ino)
3154 p = &(*p)->rb_left;
3155 else if (dir_ino > entry->ino)
3156 p = &(*p)->rb_right;
3157 else if (dir_gen < entry->gen)
3158 p = &(*p)->rb_left;
3159 else if (dir_gen > entry->gen)
3160 p = &(*p)->rb_right;
3161 else
3162 return entry;
3163 }
3164
3165 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3166 if (!odi)
3167 return ERR_PTR(-ENOMEM);
3168 odi->ino = dir_ino;
3169 odi->gen = dir_gen;
3170 odi->last_dir_index_offset = 0;
3171 odi->dir_high_seq_ino = 0;
3172
3173 rb_link_node(&odi->node, parent, p);
3174 rb_insert_color(&odi->node, &sctx->orphan_dirs);
3175 return odi;
3176 }
3177
get_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 gen)3178 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3179 u64 dir_ino, u64 gen)
3180 {
3181 struct rb_node *n = sctx->orphan_dirs.rb_node;
3182 struct orphan_dir_info *entry;
3183
3184 while (n) {
3185 entry = rb_entry(n, struct orphan_dir_info, node);
3186 if (dir_ino < entry->ino)
3187 n = n->rb_left;
3188 else if (dir_ino > entry->ino)
3189 n = n->rb_right;
3190 else if (gen < entry->gen)
3191 n = n->rb_left;
3192 else if (gen > entry->gen)
3193 n = n->rb_right;
3194 else
3195 return entry;
3196 }
3197 return NULL;
3198 }
3199
is_waiting_for_rm(struct send_ctx * sctx,u64 dir_ino,u64 gen)3200 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3201 {
3202 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3203
3204 return odi != NULL;
3205 }
3206
free_orphan_dir_info(struct send_ctx * sctx,struct orphan_dir_info * odi)3207 static void free_orphan_dir_info(struct send_ctx *sctx,
3208 struct orphan_dir_info *odi)
3209 {
3210 if (!odi)
3211 return;
3212 rb_erase(&odi->node, &sctx->orphan_dirs);
3213 kfree(odi);
3214 }
3215
3216 /*
3217 * Returns 1 if a directory can be removed at this point in time.
3218 * We check this by iterating all dir items and checking if the inode behind
3219 * the dir item was already processed.
3220 */
can_rmdir(struct send_ctx * sctx,u64 dir,u64 dir_gen)3221 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3222 {
3223 int ret = 0;
3224 int iter_ret = 0;
3225 struct btrfs_root *root = sctx->parent_root;
3226 struct btrfs_path *path;
3227 struct btrfs_key key;
3228 struct btrfs_key found_key;
3229 struct btrfs_key loc;
3230 struct btrfs_dir_item *di;
3231 struct orphan_dir_info *odi = NULL;
3232 u64 dir_high_seq_ino = 0;
3233 u64 last_dir_index_offset = 0;
3234
3235 /*
3236 * Don't try to rmdir the top/root subvolume dir.
3237 */
3238 if (dir == BTRFS_FIRST_FREE_OBJECTID)
3239 return 0;
3240
3241 odi = get_orphan_dir_info(sctx, dir, dir_gen);
3242 if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3243 return 0;
3244
3245 path = alloc_path_for_send();
3246 if (!path)
3247 return -ENOMEM;
3248
3249 if (!odi) {
3250 /*
3251 * Find the inode number associated with the last dir index
3252 * entry. This is very likely the inode with the highest number
3253 * of all inodes that have an entry in the directory. We can
3254 * then use it to avoid future calls to can_rmdir(), when
3255 * processing inodes with a lower number, from having to search
3256 * the parent root b+tree for dir index keys.
3257 */
3258 key.objectid = dir;
3259 key.type = BTRFS_DIR_INDEX_KEY;
3260 key.offset = (u64)-1;
3261
3262 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3263 if (ret < 0) {
3264 goto out;
3265 } else if (ret > 0) {
3266 /* Can't happen, the root is never empty. */
3267 ASSERT(path->slots[0] > 0);
3268 if (WARN_ON(path->slots[0] == 0)) {
3269 ret = -EUCLEAN;
3270 goto out;
3271 }
3272 path->slots[0]--;
3273 }
3274
3275 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3276 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3277 /* No index keys, dir can be removed. */
3278 ret = 1;
3279 goto out;
3280 }
3281
3282 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3283 struct btrfs_dir_item);
3284 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3285 dir_high_seq_ino = loc.objectid;
3286 if (sctx->cur_ino < dir_high_seq_ino) {
3287 ret = 0;
3288 goto out;
3289 }
3290
3291 btrfs_release_path(path);
3292 }
3293
3294 key.objectid = dir;
3295 key.type = BTRFS_DIR_INDEX_KEY;
3296 key.offset = (odi ? odi->last_dir_index_offset : 0);
3297
3298 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3299 struct waiting_dir_move *dm;
3300
3301 if (found_key.objectid != key.objectid ||
3302 found_key.type != key.type)
3303 break;
3304
3305 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3306 struct btrfs_dir_item);
3307 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3308
3309 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3310 last_dir_index_offset = found_key.offset;
3311
3312 dm = get_waiting_dir_move(sctx, loc.objectid);
3313 if (dm) {
3314 dm->rmdir_ino = dir;
3315 dm->rmdir_gen = dir_gen;
3316 ret = 0;
3317 goto out;
3318 }
3319
3320 if (loc.objectid > sctx->cur_ino) {
3321 ret = 0;
3322 goto out;
3323 }
3324 }
3325 if (iter_ret < 0) {
3326 ret = iter_ret;
3327 goto out;
3328 }
3329 free_orphan_dir_info(sctx, odi);
3330
3331 ret = 1;
3332
3333 out:
3334 btrfs_free_path(path);
3335
3336 if (ret)
3337 return ret;
3338
3339 if (!odi) {
3340 odi = add_orphan_dir_info(sctx, dir, dir_gen);
3341 if (IS_ERR(odi))
3342 return PTR_ERR(odi);
3343
3344 odi->gen = dir_gen;
3345 }
3346
3347 odi->last_dir_index_offset = last_dir_index_offset;
3348 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3349
3350 return 0;
3351 }
3352
is_waiting_for_move(struct send_ctx * sctx,u64 ino)3353 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3354 {
3355 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3356
3357 return entry != NULL;
3358 }
3359
add_waiting_dir_move(struct send_ctx * sctx,u64 ino,bool orphanized)3360 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3361 {
3362 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3363 struct rb_node *parent = NULL;
3364 struct waiting_dir_move *entry, *dm;
3365
3366 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3367 if (!dm)
3368 return -ENOMEM;
3369 dm->ino = ino;
3370 dm->rmdir_ino = 0;
3371 dm->rmdir_gen = 0;
3372 dm->orphanized = orphanized;
3373
3374 while (*p) {
3375 parent = *p;
3376 entry = rb_entry(parent, struct waiting_dir_move, node);
3377 if (ino < entry->ino) {
3378 p = &(*p)->rb_left;
3379 } else if (ino > entry->ino) {
3380 p = &(*p)->rb_right;
3381 } else {
3382 kfree(dm);
3383 return -EEXIST;
3384 }
3385 }
3386
3387 rb_link_node(&dm->node, parent, p);
3388 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3389 return 0;
3390 }
3391
3392 static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx * sctx,u64 ino)3393 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3394 {
3395 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3396 struct waiting_dir_move *entry;
3397
3398 while (n) {
3399 entry = rb_entry(n, struct waiting_dir_move, node);
3400 if (ino < entry->ino)
3401 n = n->rb_left;
3402 else if (ino > entry->ino)
3403 n = n->rb_right;
3404 else
3405 return entry;
3406 }
3407 return NULL;
3408 }
3409
free_waiting_dir_move(struct send_ctx * sctx,struct waiting_dir_move * dm)3410 static void free_waiting_dir_move(struct send_ctx *sctx,
3411 struct waiting_dir_move *dm)
3412 {
3413 if (!dm)
3414 return;
3415 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3416 kfree(dm);
3417 }
3418
add_pending_dir_move(struct send_ctx * sctx,u64 ino,u64 ino_gen,u64 parent_ino,struct list_head * new_refs,struct list_head * deleted_refs,const bool is_orphan)3419 static int add_pending_dir_move(struct send_ctx *sctx,
3420 u64 ino,
3421 u64 ino_gen,
3422 u64 parent_ino,
3423 struct list_head *new_refs,
3424 struct list_head *deleted_refs,
3425 const bool is_orphan)
3426 {
3427 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3428 struct rb_node *parent = NULL;
3429 struct pending_dir_move *entry = NULL, *pm;
3430 struct recorded_ref *cur;
3431 int exists = 0;
3432 int ret;
3433
3434 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3435 if (!pm)
3436 return -ENOMEM;
3437 pm->parent_ino = parent_ino;
3438 pm->ino = ino;
3439 pm->gen = ino_gen;
3440 INIT_LIST_HEAD(&pm->list);
3441 INIT_LIST_HEAD(&pm->update_refs);
3442 RB_CLEAR_NODE(&pm->node);
3443
3444 while (*p) {
3445 parent = *p;
3446 entry = rb_entry(parent, struct pending_dir_move, node);
3447 if (parent_ino < entry->parent_ino) {
3448 p = &(*p)->rb_left;
3449 } else if (parent_ino > entry->parent_ino) {
3450 p = &(*p)->rb_right;
3451 } else {
3452 exists = 1;
3453 break;
3454 }
3455 }
3456
3457 list_for_each_entry(cur, deleted_refs, list) {
3458 ret = dup_ref(cur, &pm->update_refs);
3459 if (ret < 0)
3460 goto out;
3461 }
3462 list_for_each_entry(cur, new_refs, list) {
3463 ret = dup_ref(cur, &pm->update_refs);
3464 if (ret < 0)
3465 goto out;
3466 }
3467
3468 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3469 if (ret)
3470 goto out;
3471
3472 if (exists) {
3473 list_add_tail(&pm->list, &entry->list);
3474 } else {
3475 rb_link_node(&pm->node, parent, p);
3476 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3477 }
3478 ret = 0;
3479 out:
3480 if (ret) {
3481 __free_recorded_refs(&pm->update_refs);
3482 kfree(pm);
3483 }
3484 return ret;
3485 }
3486
get_pending_dir_moves(struct send_ctx * sctx,u64 parent_ino)3487 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3488 u64 parent_ino)
3489 {
3490 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3491 struct pending_dir_move *entry;
3492
3493 while (n) {
3494 entry = rb_entry(n, struct pending_dir_move, node);
3495 if (parent_ino < entry->parent_ino)
3496 n = n->rb_left;
3497 else if (parent_ino > entry->parent_ino)
3498 n = n->rb_right;
3499 else
3500 return entry;
3501 }
3502 return NULL;
3503 }
3504
path_loop(struct send_ctx * sctx,struct fs_path * name,u64 ino,u64 gen,u64 * ancestor_ino)3505 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3506 u64 ino, u64 gen, u64 *ancestor_ino)
3507 {
3508 int ret = 0;
3509 u64 parent_inode = 0;
3510 u64 parent_gen = 0;
3511 u64 start_ino = ino;
3512
3513 *ancestor_ino = 0;
3514 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3515 fs_path_reset(name);
3516
3517 if (is_waiting_for_rm(sctx, ino, gen))
3518 break;
3519 if (is_waiting_for_move(sctx, ino)) {
3520 if (*ancestor_ino == 0)
3521 *ancestor_ino = ino;
3522 ret = get_first_ref(sctx->parent_root, ino,
3523 &parent_inode, &parent_gen, name);
3524 } else {
3525 ret = __get_cur_name_and_parent(sctx, ino, gen,
3526 &parent_inode,
3527 &parent_gen, name);
3528 if (ret > 0) {
3529 ret = 0;
3530 break;
3531 }
3532 }
3533 if (ret < 0)
3534 break;
3535 if (parent_inode == start_ino) {
3536 ret = 1;
3537 if (*ancestor_ino == 0)
3538 *ancestor_ino = ino;
3539 break;
3540 }
3541 ino = parent_inode;
3542 gen = parent_gen;
3543 }
3544 return ret;
3545 }
3546
apply_dir_move(struct send_ctx * sctx,struct pending_dir_move * pm)3547 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3548 {
3549 struct fs_path *from_path = NULL;
3550 struct fs_path *to_path = NULL;
3551 struct fs_path *name = NULL;
3552 u64 orig_progress = sctx->send_progress;
3553 struct recorded_ref *cur;
3554 u64 parent_ino, parent_gen;
3555 struct waiting_dir_move *dm = NULL;
3556 u64 rmdir_ino = 0;
3557 u64 rmdir_gen;
3558 u64 ancestor;
3559 bool is_orphan;
3560 int ret;
3561
3562 name = fs_path_alloc();
3563 from_path = fs_path_alloc();
3564 if (!name || !from_path) {
3565 ret = -ENOMEM;
3566 goto out;
3567 }
3568
3569 dm = get_waiting_dir_move(sctx, pm->ino);
3570 ASSERT(dm);
3571 rmdir_ino = dm->rmdir_ino;
3572 rmdir_gen = dm->rmdir_gen;
3573 is_orphan = dm->orphanized;
3574 free_waiting_dir_move(sctx, dm);
3575
3576 if (is_orphan) {
3577 ret = gen_unique_name(sctx, pm->ino,
3578 pm->gen, from_path);
3579 } else {
3580 ret = get_first_ref(sctx->parent_root, pm->ino,
3581 &parent_ino, &parent_gen, name);
3582 if (ret < 0)
3583 goto out;
3584 ret = get_cur_path(sctx, parent_ino, parent_gen,
3585 from_path);
3586 if (ret < 0)
3587 goto out;
3588 ret = fs_path_add_path(from_path, name);
3589 }
3590 if (ret < 0)
3591 goto out;
3592
3593 sctx->send_progress = sctx->cur_ino + 1;
3594 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3595 if (ret < 0)
3596 goto out;
3597 if (ret) {
3598 LIST_HEAD(deleted_refs);
3599 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3600 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3601 &pm->update_refs, &deleted_refs,
3602 is_orphan);
3603 if (ret < 0)
3604 goto out;
3605 if (rmdir_ino) {
3606 dm = get_waiting_dir_move(sctx, pm->ino);
3607 ASSERT(dm);
3608 dm->rmdir_ino = rmdir_ino;
3609 dm->rmdir_gen = rmdir_gen;
3610 }
3611 goto out;
3612 }
3613 fs_path_reset(name);
3614 to_path = name;
3615 name = NULL;
3616 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3617 if (ret < 0)
3618 goto out;
3619
3620 ret = send_rename(sctx, from_path, to_path);
3621 if (ret < 0)
3622 goto out;
3623
3624 if (rmdir_ino) {
3625 struct orphan_dir_info *odi;
3626 u64 gen;
3627
3628 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3629 if (!odi) {
3630 /* already deleted */
3631 goto finish;
3632 }
3633 gen = odi->gen;
3634
3635 ret = can_rmdir(sctx, rmdir_ino, gen);
3636 if (ret < 0)
3637 goto out;
3638 if (!ret)
3639 goto finish;
3640
3641 name = fs_path_alloc();
3642 if (!name) {
3643 ret = -ENOMEM;
3644 goto out;
3645 }
3646 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3647 if (ret < 0)
3648 goto out;
3649 ret = send_rmdir(sctx, name);
3650 if (ret < 0)
3651 goto out;
3652 }
3653
3654 finish:
3655 ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3656 if (ret < 0)
3657 goto out;
3658
3659 /*
3660 * After rename/move, need to update the utimes of both new parent(s)
3661 * and old parent(s).
3662 */
3663 list_for_each_entry(cur, &pm->update_refs, list) {
3664 /*
3665 * The parent inode might have been deleted in the send snapshot
3666 */
3667 ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3668 if (ret == -ENOENT) {
3669 ret = 0;
3670 continue;
3671 }
3672 if (ret < 0)
3673 goto out;
3674
3675 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3676 if (ret < 0)
3677 goto out;
3678 }
3679
3680 out:
3681 fs_path_free(name);
3682 fs_path_free(from_path);
3683 fs_path_free(to_path);
3684 sctx->send_progress = orig_progress;
3685
3686 return ret;
3687 }
3688
free_pending_move(struct send_ctx * sctx,struct pending_dir_move * m)3689 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3690 {
3691 if (!list_empty(&m->list))
3692 list_del(&m->list);
3693 if (!RB_EMPTY_NODE(&m->node))
3694 rb_erase(&m->node, &sctx->pending_dir_moves);
3695 __free_recorded_refs(&m->update_refs);
3696 kfree(m);
3697 }
3698
tail_append_pending_moves(struct send_ctx * sctx,struct pending_dir_move * moves,struct list_head * stack)3699 static void tail_append_pending_moves(struct send_ctx *sctx,
3700 struct pending_dir_move *moves,
3701 struct list_head *stack)
3702 {
3703 if (list_empty(&moves->list)) {
3704 list_add_tail(&moves->list, stack);
3705 } else {
3706 LIST_HEAD(list);
3707 list_splice_init(&moves->list, &list);
3708 list_add_tail(&moves->list, stack);
3709 list_splice_tail(&list, stack);
3710 }
3711 if (!RB_EMPTY_NODE(&moves->node)) {
3712 rb_erase(&moves->node, &sctx->pending_dir_moves);
3713 RB_CLEAR_NODE(&moves->node);
3714 }
3715 }
3716
apply_children_dir_moves(struct send_ctx * sctx)3717 static int apply_children_dir_moves(struct send_ctx *sctx)
3718 {
3719 struct pending_dir_move *pm;
3720 LIST_HEAD(stack);
3721 u64 parent_ino = sctx->cur_ino;
3722 int ret = 0;
3723
3724 pm = get_pending_dir_moves(sctx, parent_ino);
3725 if (!pm)
3726 return 0;
3727
3728 tail_append_pending_moves(sctx, pm, &stack);
3729
3730 while (!list_empty(&stack)) {
3731 pm = list_first_entry(&stack, struct pending_dir_move, list);
3732 parent_ino = pm->ino;
3733 ret = apply_dir_move(sctx, pm);
3734 free_pending_move(sctx, pm);
3735 if (ret)
3736 goto out;
3737 pm = get_pending_dir_moves(sctx, parent_ino);
3738 if (pm)
3739 tail_append_pending_moves(sctx, pm, &stack);
3740 }
3741 return 0;
3742
3743 out:
3744 while (!list_empty(&stack)) {
3745 pm = list_first_entry(&stack, struct pending_dir_move, list);
3746 free_pending_move(sctx, pm);
3747 }
3748 return ret;
3749 }
3750
3751 /*
3752 * We might need to delay a directory rename even when no ancestor directory
3753 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3754 * renamed. This happens when we rename a directory to the old name (the name
3755 * in the parent root) of some other unrelated directory that got its rename
3756 * delayed due to some ancestor with higher number that got renamed.
3757 *
3758 * Example:
3759 *
3760 * Parent snapshot:
3761 * . (ino 256)
3762 * |---- a/ (ino 257)
3763 * | |---- file (ino 260)
3764 * |
3765 * |---- b/ (ino 258)
3766 * |---- c/ (ino 259)
3767 *
3768 * Send snapshot:
3769 * . (ino 256)
3770 * |---- a/ (ino 258)
3771 * |---- x/ (ino 259)
3772 * |---- y/ (ino 257)
3773 * |----- file (ino 260)
3774 *
3775 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3776 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3777 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3778 * must issue is:
3779 *
3780 * 1 - rename 259 from 'c' to 'x'
3781 * 2 - rename 257 from 'a' to 'x/y'
3782 * 3 - rename 258 from 'b' to 'a'
3783 *
3784 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3785 * be done right away and < 0 on error.
3786 */
wait_for_dest_dir_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3787 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3788 struct recorded_ref *parent_ref,
3789 const bool is_orphan)
3790 {
3791 struct btrfs_path *path;
3792 struct btrfs_key key;
3793 struct btrfs_key di_key;
3794 struct btrfs_dir_item *di;
3795 u64 left_gen;
3796 u64 right_gen;
3797 int ret = 0;
3798 struct waiting_dir_move *wdm;
3799
3800 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3801 return 0;
3802
3803 path = alloc_path_for_send();
3804 if (!path)
3805 return -ENOMEM;
3806
3807 key.objectid = parent_ref->dir;
3808 key.type = BTRFS_DIR_ITEM_KEY;
3809 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3810
3811 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3812 if (ret < 0) {
3813 goto out;
3814 } else if (ret > 0) {
3815 ret = 0;
3816 goto out;
3817 }
3818
3819 di = btrfs_match_dir_item_name(path, parent_ref->name,
3820 parent_ref->name_len);
3821 if (!di) {
3822 ret = 0;
3823 goto out;
3824 }
3825 /*
3826 * di_key.objectid has the number of the inode that has a dentry in the
3827 * parent directory with the same name that sctx->cur_ino is being
3828 * renamed to. We need to check if that inode is in the send root as
3829 * well and if it is currently marked as an inode with a pending rename,
3830 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3831 * that it happens after that other inode is renamed.
3832 */
3833 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3834 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3835 ret = 0;
3836 goto out;
3837 }
3838
3839 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3840 if (ret < 0)
3841 goto out;
3842 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3843 if (ret < 0) {
3844 if (ret == -ENOENT)
3845 ret = 0;
3846 goto out;
3847 }
3848
3849 /* Different inode, no need to delay the rename of sctx->cur_ino */
3850 if (right_gen != left_gen) {
3851 ret = 0;
3852 goto out;
3853 }
3854
3855 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3856 if (wdm && !wdm->orphanized) {
3857 ret = add_pending_dir_move(sctx,
3858 sctx->cur_ino,
3859 sctx->cur_inode_gen,
3860 di_key.objectid,
3861 &sctx->new_refs,
3862 &sctx->deleted_refs,
3863 is_orphan);
3864 if (!ret)
3865 ret = 1;
3866 }
3867 out:
3868 btrfs_free_path(path);
3869 return ret;
3870 }
3871
3872 /*
3873 * Check if inode ino2, or any of its ancestors, is inode ino1.
3874 * Return 1 if true, 0 if false and < 0 on error.
3875 */
check_ino_in_path(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,const u64 ino2_gen,struct fs_path * fs_path)3876 static int check_ino_in_path(struct btrfs_root *root,
3877 const u64 ino1,
3878 const u64 ino1_gen,
3879 const u64 ino2,
3880 const u64 ino2_gen,
3881 struct fs_path *fs_path)
3882 {
3883 u64 ino = ino2;
3884
3885 if (ino1 == ino2)
3886 return ino1_gen == ino2_gen;
3887
3888 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3889 u64 parent;
3890 u64 parent_gen;
3891 int ret;
3892
3893 fs_path_reset(fs_path);
3894 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3895 if (ret < 0)
3896 return ret;
3897 if (parent == ino1)
3898 return parent_gen == ino1_gen;
3899 ino = parent;
3900 }
3901 return 0;
3902 }
3903
3904 /*
3905 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3906 * possible path (in case ino2 is not a directory and has multiple hard links).
3907 * Return 1 if true, 0 if false and < 0 on error.
3908 */
is_ancestor(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,struct fs_path * fs_path)3909 static int is_ancestor(struct btrfs_root *root,
3910 const u64 ino1,
3911 const u64 ino1_gen,
3912 const u64 ino2,
3913 struct fs_path *fs_path)
3914 {
3915 bool free_fs_path = false;
3916 int ret = 0;
3917 int iter_ret = 0;
3918 struct btrfs_path *path = NULL;
3919 struct btrfs_key key;
3920
3921 if (!fs_path) {
3922 fs_path = fs_path_alloc();
3923 if (!fs_path)
3924 return -ENOMEM;
3925 free_fs_path = true;
3926 }
3927
3928 path = alloc_path_for_send();
3929 if (!path) {
3930 ret = -ENOMEM;
3931 goto out;
3932 }
3933
3934 key.objectid = ino2;
3935 key.type = BTRFS_INODE_REF_KEY;
3936 key.offset = 0;
3937
3938 btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3939 struct extent_buffer *leaf = path->nodes[0];
3940 int slot = path->slots[0];
3941 u32 cur_offset = 0;
3942 u32 item_size;
3943
3944 if (key.objectid != ino2)
3945 break;
3946 if (key.type != BTRFS_INODE_REF_KEY &&
3947 key.type != BTRFS_INODE_EXTREF_KEY)
3948 break;
3949
3950 item_size = btrfs_item_size(leaf, slot);
3951 while (cur_offset < item_size) {
3952 u64 parent;
3953 u64 parent_gen;
3954
3955 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3956 unsigned long ptr;
3957 struct btrfs_inode_extref *extref;
3958
3959 ptr = btrfs_item_ptr_offset(leaf, slot);
3960 extref = (struct btrfs_inode_extref *)
3961 (ptr + cur_offset);
3962 parent = btrfs_inode_extref_parent(leaf,
3963 extref);
3964 cur_offset += sizeof(*extref);
3965 cur_offset += btrfs_inode_extref_name_len(leaf,
3966 extref);
3967 } else {
3968 parent = key.offset;
3969 cur_offset = item_size;
3970 }
3971
3972 ret = get_inode_gen(root, parent, &parent_gen);
3973 if (ret < 0)
3974 goto out;
3975 ret = check_ino_in_path(root, ino1, ino1_gen,
3976 parent, parent_gen, fs_path);
3977 if (ret)
3978 goto out;
3979 }
3980 }
3981 ret = 0;
3982 if (iter_ret < 0)
3983 ret = iter_ret;
3984
3985 out:
3986 btrfs_free_path(path);
3987 if (free_fs_path)
3988 fs_path_free(fs_path);
3989 return ret;
3990 }
3991
wait_for_parent_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3992 static int wait_for_parent_move(struct send_ctx *sctx,
3993 struct recorded_ref *parent_ref,
3994 const bool is_orphan)
3995 {
3996 int ret = 0;
3997 u64 ino = parent_ref->dir;
3998 u64 ino_gen = parent_ref->dir_gen;
3999 u64 parent_ino_before, parent_ino_after;
4000 struct fs_path *path_before = NULL;
4001 struct fs_path *path_after = NULL;
4002 int len1, len2;
4003
4004 path_after = fs_path_alloc();
4005 path_before = fs_path_alloc();
4006 if (!path_after || !path_before) {
4007 ret = -ENOMEM;
4008 goto out;
4009 }
4010
4011 /*
4012 * Our current directory inode may not yet be renamed/moved because some
4013 * ancestor (immediate or not) has to be renamed/moved first. So find if
4014 * such ancestor exists and make sure our own rename/move happens after
4015 * that ancestor is processed to avoid path build infinite loops (done
4016 * at get_cur_path()).
4017 */
4018 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
4019 u64 parent_ino_after_gen;
4020
4021 if (is_waiting_for_move(sctx, ino)) {
4022 /*
4023 * If the current inode is an ancestor of ino in the
4024 * parent root, we need to delay the rename of the
4025 * current inode, otherwise don't delayed the rename
4026 * because we can end up with a circular dependency
4027 * of renames, resulting in some directories never
4028 * getting the respective rename operations issued in
4029 * the send stream or getting into infinite path build
4030 * loops.
4031 */
4032 ret = is_ancestor(sctx->parent_root,
4033 sctx->cur_ino, sctx->cur_inode_gen,
4034 ino, path_before);
4035 if (ret)
4036 break;
4037 }
4038
4039 fs_path_reset(path_before);
4040 fs_path_reset(path_after);
4041
4042 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
4043 &parent_ino_after_gen, path_after);
4044 if (ret < 0)
4045 goto out;
4046 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
4047 NULL, path_before);
4048 if (ret < 0 && ret != -ENOENT) {
4049 goto out;
4050 } else if (ret == -ENOENT) {
4051 ret = 0;
4052 break;
4053 }
4054
4055 len1 = fs_path_len(path_before);
4056 len2 = fs_path_len(path_after);
4057 if (ino > sctx->cur_ino &&
4058 (parent_ino_before != parent_ino_after || len1 != len2 ||
4059 memcmp(path_before->start, path_after->start, len1))) {
4060 u64 parent_ino_gen;
4061
4062 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4063 if (ret < 0)
4064 goto out;
4065 if (ino_gen == parent_ino_gen) {
4066 ret = 1;
4067 break;
4068 }
4069 }
4070 ino = parent_ino_after;
4071 ino_gen = parent_ino_after_gen;
4072 }
4073
4074 out:
4075 fs_path_free(path_before);
4076 fs_path_free(path_after);
4077
4078 if (ret == 1) {
4079 ret = add_pending_dir_move(sctx,
4080 sctx->cur_ino,
4081 sctx->cur_inode_gen,
4082 ino,
4083 &sctx->new_refs,
4084 &sctx->deleted_refs,
4085 is_orphan);
4086 if (!ret)
4087 ret = 1;
4088 }
4089
4090 return ret;
4091 }
4092
update_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4093 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4094 {
4095 int ret;
4096 struct fs_path *new_path;
4097
4098 /*
4099 * Our reference's name member points to its full_path member string, so
4100 * we use here a new path.
4101 */
4102 new_path = fs_path_alloc();
4103 if (!new_path)
4104 return -ENOMEM;
4105
4106 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4107 if (ret < 0) {
4108 fs_path_free(new_path);
4109 return ret;
4110 }
4111 ret = fs_path_add(new_path, ref->name, ref->name_len);
4112 if (ret < 0) {
4113 fs_path_free(new_path);
4114 return ret;
4115 }
4116
4117 fs_path_free(ref->full_path);
4118 set_ref_path(ref, new_path);
4119
4120 return 0;
4121 }
4122
4123 /*
4124 * When processing the new references for an inode we may orphanize an existing
4125 * directory inode because its old name conflicts with one of the new references
4126 * of the current inode. Later, when processing another new reference of our
4127 * inode, we might need to orphanize another inode, but the path we have in the
4128 * reference reflects the pre-orphanization name of the directory we previously
4129 * orphanized. For example:
4130 *
4131 * parent snapshot looks like:
4132 *
4133 * . (ino 256)
4134 * |----- f1 (ino 257)
4135 * |----- f2 (ino 258)
4136 * |----- d1/ (ino 259)
4137 * |----- d2/ (ino 260)
4138 *
4139 * send snapshot looks like:
4140 *
4141 * . (ino 256)
4142 * |----- d1 (ino 258)
4143 * |----- f2/ (ino 259)
4144 * |----- f2_link/ (ino 260)
4145 * | |----- f1 (ino 257)
4146 * |
4147 * |----- d2 (ino 258)
4148 *
4149 * When processing inode 257 we compute the name for inode 259 as "d1", and we
4150 * cache it in the name cache. Later when we start processing inode 258, when
4151 * collecting all its new references we set a full path of "d1/d2" for its new
4152 * reference with name "d2". When we start processing the new references we
4153 * start by processing the new reference with name "d1", and this results in
4154 * orphanizing inode 259, since its old reference causes a conflict. Then we
4155 * move on the next new reference, with name "d2", and we find out we must
4156 * orphanize inode 260, as its old reference conflicts with ours - but for the
4157 * orphanization we use a source path corresponding to the path we stored in the
4158 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4159 * receiver fail since the path component "d1/" no longer exists, it was renamed
4160 * to "o259-6-0/" when processing the previous new reference. So in this case we
4161 * must recompute the path in the new reference and use it for the new
4162 * orphanization operation.
4163 */
refresh_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4164 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4165 {
4166 char *name;
4167 int ret;
4168
4169 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4170 if (!name)
4171 return -ENOMEM;
4172
4173 fs_path_reset(ref->full_path);
4174 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4175 if (ret < 0)
4176 goto out;
4177
4178 ret = fs_path_add(ref->full_path, name, ref->name_len);
4179 if (ret < 0)
4180 goto out;
4181
4182 /* Update the reference's base name pointer. */
4183 set_ref_path(ref, ref->full_path);
4184 out:
4185 kfree(name);
4186 return ret;
4187 }
4188
rename_current_inode(struct send_ctx * sctx,struct fs_path * current_path,struct fs_path * new_path)4189 static int rename_current_inode(struct send_ctx *sctx,
4190 struct fs_path *current_path,
4191 struct fs_path *new_path)
4192 {
4193 int ret;
4194
4195 ret = send_rename(sctx, current_path, new_path);
4196 if (ret < 0)
4197 return ret;
4198
4199 ret = fs_path_copy(&sctx->cur_inode_path, new_path);
4200 if (ret < 0)
4201 return ret;
4202
4203 return fs_path_copy(current_path, new_path);
4204 }
4205
4206 /*
4207 * This does all the move/link/unlink/rmdir magic.
4208 */
process_recorded_refs(struct send_ctx * sctx,int * pending_move)4209 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4210 {
4211 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4212 int ret = 0;
4213 struct recorded_ref *cur;
4214 struct recorded_ref *cur2;
4215 LIST_HEAD(check_dirs);
4216 struct fs_path *valid_path = NULL;
4217 u64 ow_inode = 0;
4218 u64 ow_gen;
4219 u64 ow_mode;
4220 u64 last_dir_ino_rm = 0;
4221 bool did_overwrite = false;
4222 bool is_orphan = false;
4223 bool can_rename = true;
4224 bool orphanized_dir = false;
4225 bool orphanized_ancestor = false;
4226
4227 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4228
4229 /*
4230 * This should never happen as the root dir always has the same ref
4231 * which is always '..'
4232 */
4233 if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) {
4234 btrfs_err(fs_info,
4235 "send: unexpected inode %llu in process_recorded_refs()",
4236 sctx->cur_ino);
4237 ret = -EINVAL;
4238 goto out;
4239 }
4240
4241 valid_path = fs_path_alloc();
4242 if (!valid_path) {
4243 ret = -ENOMEM;
4244 goto out;
4245 }
4246
4247 /*
4248 * First, check if the first ref of the current inode was overwritten
4249 * before. If yes, we know that the current inode was already orphanized
4250 * and thus use the orphan name. If not, we can use get_cur_path to
4251 * get the path of the first ref as it would like while receiving at
4252 * this point in time.
4253 * New inodes are always orphan at the beginning, so force to use the
4254 * orphan name in this case.
4255 * The first ref is stored in valid_path and will be updated if it
4256 * gets moved around.
4257 */
4258 if (!sctx->cur_inode_new) {
4259 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4260 sctx->cur_inode_gen);
4261 if (ret < 0)
4262 goto out;
4263 if (ret)
4264 did_overwrite = true;
4265 }
4266 if (sctx->cur_inode_new || did_overwrite) {
4267 ret = gen_unique_name(sctx, sctx->cur_ino,
4268 sctx->cur_inode_gen, valid_path);
4269 if (ret < 0)
4270 goto out;
4271 is_orphan = true;
4272 } else {
4273 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4274 valid_path);
4275 if (ret < 0)
4276 goto out;
4277 }
4278
4279 /*
4280 * Before doing any rename and link operations, do a first pass on the
4281 * new references to orphanize any unprocessed inodes that may have a
4282 * reference that conflicts with one of the new references of the current
4283 * inode. This needs to happen first because a new reference may conflict
4284 * with the old reference of a parent directory, so we must make sure
4285 * that the path used for link and rename commands don't use an
4286 * orphanized name when an ancestor was not yet orphanized.
4287 *
4288 * Example:
4289 *
4290 * Parent snapshot:
4291 *
4292 * . (ino 256)
4293 * |----- testdir/ (ino 259)
4294 * | |----- a (ino 257)
4295 * |
4296 * |----- b (ino 258)
4297 *
4298 * Send snapshot:
4299 *
4300 * . (ino 256)
4301 * |----- testdir_2/ (ino 259)
4302 * | |----- a (ino 260)
4303 * |
4304 * |----- testdir (ino 257)
4305 * |----- b (ino 257)
4306 * |----- b2 (ino 258)
4307 *
4308 * Processing the new reference for inode 257 with name "b" may happen
4309 * before processing the new reference with name "testdir". If so, we
4310 * must make sure that by the time we send a link command to create the
4311 * hard link "b", inode 259 was already orphanized, since the generated
4312 * path in "valid_path" already contains the orphanized name for 259.
4313 * We are processing inode 257, so only later when processing 259 we do
4314 * the rename operation to change its temporary (orphanized) name to
4315 * "testdir_2".
4316 */
4317 list_for_each_entry(cur, &sctx->new_refs, list) {
4318 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4319 if (ret < 0)
4320 goto out;
4321 if (ret == inode_state_will_create)
4322 continue;
4323
4324 /*
4325 * Check if this new ref would overwrite the first ref of another
4326 * unprocessed inode. If yes, orphanize the overwritten inode.
4327 * If we find an overwritten ref that is not the first ref,
4328 * simply unlink it.
4329 */
4330 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4331 cur->name, cur->name_len,
4332 &ow_inode, &ow_gen, &ow_mode);
4333 if (ret < 0)
4334 goto out;
4335 if (ret) {
4336 ret = is_first_ref(sctx->parent_root,
4337 ow_inode, cur->dir, cur->name,
4338 cur->name_len);
4339 if (ret < 0)
4340 goto out;
4341 if (ret) {
4342 struct name_cache_entry *nce;
4343 struct waiting_dir_move *wdm;
4344
4345 if (orphanized_dir) {
4346 ret = refresh_ref_path(sctx, cur);
4347 if (ret < 0)
4348 goto out;
4349 }
4350
4351 ret = orphanize_inode(sctx, ow_inode, ow_gen,
4352 cur->full_path);
4353 if (ret < 0)
4354 goto out;
4355 if (S_ISDIR(ow_mode))
4356 orphanized_dir = true;
4357
4358 /*
4359 * If ow_inode has its rename operation delayed
4360 * make sure that its orphanized name is used in
4361 * the source path when performing its rename
4362 * operation.
4363 */
4364 wdm = get_waiting_dir_move(sctx, ow_inode);
4365 if (wdm)
4366 wdm->orphanized = true;
4367
4368 /*
4369 * Make sure we clear our orphanized inode's
4370 * name from the name cache. This is because the
4371 * inode ow_inode might be an ancestor of some
4372 * other inode that will be orphanized as well
4373 * later and has an inode number greater than
4374 * sctx->send_progress. We need to prevent
4375 * future name lookups from using the old name
4376 * and get instead the orphan name.
4377 */
4378 nce = name_cache_search(sctx, ow_inode, ow_gen);
4379 if (nce)
4380 btrfs_lru_cache_remove(&sctx->name_cache,
4381 &nce->entry);
4382
4383 /*
4384 * ow_inode might currently be an ancestor of
4385 * cur_ino, therefore compute valid_path (the
4386 * current path of cur_ino) again because it
4387 * might contain the pre-orphanization name of
4388 * ow_inode, which is no longer valid.
4389 */
4390 ret = is_ancestor(sctx->parent_root,
4391 ow_inode, ow_gen,
4392 sctx->cur_ino, NULL);
4393 if (ret > 0) {
4394 orphanized_ancestor = true;
4395 fs_path_reset(valid_path);
4396 fs_path_reset(&sctx->cur_inode_path);
4397 ret = get_cur_path(sctx, sctx->cur_ino,
4398 sctx->cur_inode_gen,
4399 valid_path);
4400 }
4401 if (ret < 0)
4402 goto out;
4403 } else {
4404 /*
4405 * If we previously orphanized a directory that
4406 * collided with a new reference that we already
4407 * processed, recompute the current path because
4408 * that directory may be part of the path.
4409 */
4410 if (orphanized_dir) {
4411 ret = refresh_ref_path(sctx, cur);
4412 if (ret < 0)
4413 goto out;
4414 }
4415 ret = send_unlink(sctx, cur->full_path);
4416 if (ret < 0)
4417 goto out;
4418 }
4419 }
4420
4421 }
4422
4423 list_for_each_entry(cur, &sctx->new_refs, list) {
4424 /*
4425 * We may have refs where the parent directory does not exist
4426 * yet. This happens if the parent directories inum is higher
4427 * than the current inum. To handle this case, we create the
4428 * parent directory out of order. But we need to check if this
4429 * did already happen before due to other refs in the same dir.
4430 */
4431 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4432 if (ret < 0)
4433 goto out;
4434 if (ret == inode_state_will_create) {
4435 ret = 0;
4436 /*
4437 * First check if any of the current inodes refs did
4438 * already create the dir.
4439 */
4440 list_for_each_entry(cur2, &sctx->new_refs, list) {
4441 if (cur == cur2)
4442 break;
4443 if (cur2->dir == cur->dir) {
4444 ret = 1;
4445 break;
4446 }
4447 }
4448
4449 /*
4450 * If that did not happen, check if a previous inode
4451 * did already create the dir.
4452 */
4453 if (!ret)
4454 ret = did_create_dir(sctx, cur->dir);
4455 if (ret < 0)
4456 goto out;
4457 if (!ret) {
4458 ret = send_create_inode(sctx, cur->dir);
4459 if (ret < 0)
4460 goto out;
4461 cache_dir_created(sctx, cur->dir);
4462 }
4463 }
4464
4465 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4466 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4467 if (ret < 0)
4468 goto out;
4469 if (ret == 1) {
4470 can_rename = false;
4471 *pending_move = 1;
4472 }
4473 }
4474
4475 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4476 can_rename) {
4477 ret = wait_for_parent_move(sctx, cur, is_orphan);
4478 if (ret < 0)
4479 goto out;
4480 if (ret == 1) {
4481 can_rename = false;
4482 *pending_move = 1;
4483 }
4484 }
4485
4486 /*
4487 * link/move the ref to the new place. If we have an orphan
4488 * inode, move it and update valid_path. If not, link or move
4489 * it depending on the inode mode.
4490 */
4491 if (is_orphan && can_rename) {
4492 ret = rename_current_inode(sctx, valid_path, cur->full_path);
4493 if (ret < 0)
4494 goto out;
4495 is_orphan = false;
4496 } else if (can_rename) {
4497 if (S_ISDIR(sctx->cur_inode_mode)) {
4498 /*
4499 * Dirs can't be linked, so move it. For moved
4500 * dirs, we always have one new and one deleted
4501 * ref. The deleted ref is ignored later.
4502 */
4503 ret = rename_current_inode(sctx, valid_path,
4504 cur->full_path);
4505 if (ret < 0)
4506 goto out;
4507 } else {
4508 /*
4509 * We might have previously orphanized an inode
4510 * which is an ancestor of our current inode,
4511 * so our reference's full path, which was
4512 * computed before any such orphanizations, must
4513 * be updated.
4514 */
4515 if (orphanized_dir) {
4516 ret = update_ref_path(sctx, cur);
4517 if (ret < 0)
4518 goto out;
4519 }
4520 ret = send_link(sctx, cur->full_path,
4521 valid_path);
4522 if (ret < 0)
4523 goto out;
4524 }
4525 }
4526 ret = dup_ref(cur, &check_dirs);
4527 if (ret < 0)
4528 goto out;
4529 }
4530
4531 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4532 /*
4533 * Check if we can already rmdir the directory. If not,
4534 * orphanize it. For every dir item inside that gets deleted
4535 * later, we do this check again and rmdir it then if possible.
4536 * See the use of check_dirs for more details.
4537 */
4538 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4539 if (ret < 0)
4540 goto out;
4541 if (ret) {
4542 ret = send_rmdir(sctx, valid_path);
4543 if (ret < 0)
4544 goto out;
4545 } else if (!is_orphan) {
4546 ret = orphanize_inode(sctx, sctx->cur_ino,
4547 sctx->cur_inode_gen, valid_path);
4548 if (ret < 0)
4549 goto out;
4550 is_orphan = true;
4551 }
4552
4553 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4554 ret = dup_ref(cur, &check_dirs);
4555 if (ret < 0)
4556 goto out;
4557 }
4558 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4559 !list_empty(&sctx->deleted_refs)) {
4560 /*
4561 * We have a moved dir. Add the old parent to check_dirs
4562 */
4563 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4564 list);
4565 ret = dup_ref(cur, &check_dirs);
4566 if (ret < 0)
4567 goto out;
4568 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4569 /*
4570 * We have a non dir inode. Go through all deleted refs and
4571 * unlink them if they were not already overwritten by other
4572 * inodes.
4573 */
4574 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4575 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4576 sctx->cur_ino, sctx->cur_inode_gen,
4577 cur->name, cur->name_len);
4578 if (ret < 0)
4579 goto out;
4580 if (!ret) {
4581 /*
4582 * If we orphanized any ancestor before, we need
4583 * to recompute the full path for deleted names,
4584 * since any such path was computed before we
4585 * processed any references and orphanized any
4586 * ancestor inode.
4587 */
4588 if (orphanized_ancestor) {
4589 ret = update_ref_path(sctx, cur);
4590 if (ret < 0)
4591 goto out;
4592 }
4593 ret = send_unlink(sctx, cur->full_path);
4594 if (ret < 0)
4595 goto out;
4596 if (is_current_inode_path(sctx, cur->full_path))
4597 fs_path_reset(&sctx->cur_inode_path);
4598 }
4599 ret = dup_ref(cur, &check_dirs);
4600 if (ret < 0)
4601 goto out;
4602 }
4603 /*
4604 * If the inode is still orphan, unlink the orphan. This may
4605 * happen when a previous inode did overwrite the first ref
4606 * of this inode and no new refs were added for the current
4607 * inode. Unlinking does not mean that the inode is deleted in
4608 * all cases. There may still be links to this inode in other
4609 * places.
4610 */
4611 if (is_orphan) {
4612 ret = send_unlink(sctx, valid_path);
4613 if (ret < 0)
4614 goto out;
4615 }
4616 }
4617
4618 /*
4619 * We did collect all parent dirs where cur_inode was once located. We
4620 * now go through all these dirs and check if they are pending for
4621 * deletion and if it's finally possible to perform the rmdir now.
4622 * We also update the inode stats of the parent dirs here.
4623 */
4624 list_for_each_entry(cur, &check_dirs, list) {
4625 /*
4626 * In case we had refs into dirs that were not processed yet,
4627 * we don't need to do the utime and rmdir logic for these dirs.
4628 * The dir will be processed later.
4629 */
4630 if (cur->dir > sctx->cur_ino)
4631 continue;
4632
4633 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4634 if (ret < 0)
4635 goto out;
4636
4637 if (ret == inode_state_did_create ||
4638 ret == inode_state_no_change) {
4639 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4640 if (ret < 0)
4641 goto out;
4642 } else if (ret == inode_state_did_delete &&
4643 cur->dir != last_dir_ino_rm) {
4644 ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4645 if (ret < 0)
4646 goto out;
4647 if (ret) {
4648 ret = get_cur_path(sctx, cur->dir,
4649 cur->dir_gen, valid_path);
4650 if (ret < 0)
4651 goto out;
4652 ret = send_rmdir(sctx, valid_path);
4653 if (ret < 0)
4654 goto out;
4655 last_dir_ino_rm = cur->dir;
4656 }
4657 }
4658 }
4659
4660 ret = 0;
4661
4662 out:
4663 __free_recorded_refs(&check_dirs);
4664 free_recorded_refs(sctx);
4665 fs_path_free(valid_path);
4666 return ret;
4667 }
4668
rbtree_ref_comp(const void * k,const struct rb_node * node)4669 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4670 {
4671 const struct recorded_ref *data = k;
4672 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4673 int result;
4674
4675 if (data->dir > ref->dir)
4676 return 1;
4677 if (data->dir < ref->dir)
4678 return -1;
4679 if (data->dir_gen > ref->dir_gen)
4680 return 1;
4681 if (data->dir_gen < ref->dir_gen)
4682 return -1;
4683 if (data->name_len > ref->name_len)
4684 return 1;
4685 if (data->name_len < ref->name_len)
4686 return -1;
4687 result = strcmp(data->name, ref->name);
4688 if (result > 0)
4689 return 1;
4690 if (result < 0)
4691 return -1;
4692 return 0;
4693 }
4694
rbtree_ref_less(struct rb_node * node,const struct rb_node * parent)4695 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4696 {
4697 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4698
4699 return rbtree_ref_comp(entry, parent) < 0;
4700 }
4701
record_ref_in_tree(struct rb_root * root,struct list_head * refs,struct fs_path * name,u64 dir,u64 dir_gen,struct send_ctx * sctx)4702 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4703 struct fs_path *name, u64 dir, u64 dir_gen,
4704 struct send_ctx *sctx)
4705 {
4706 int ret = 0;
4707 struct fs_path *path = NULL;
4708 struct recorded_ref *ref = NULL;
4709
4710 path = fs_path_alloc();
4711 if (!path) {
4712 ret = -ENOMEM;
4713 goto out;
4714 }
4715
4716 ref = recorded_ref_alloc();
4717 if (!ref) {
4718 ret = -ENOMEM;
4719 goto out;
4720 }
4721
4722 ret = get_cur_path(sctx, dir, dir_gen, path);
4723 if (ret < 0)
4724 goto out;
4725 ret = fs_path_add_path(path, name);
4726 if (ret < 0)
4727 goto out;
4728
4729 ref->dir = dir;
4730 ref->dir_gen = dir_gen;
4731 set_ref_path(ref, path);
4732 list_add_tail(&ref->list, refs);
4733 rb_add(&ref->node, root, rbtree_ref_less);
4734 ref->root = root;
4735 out:
4736 if (ret) {
4737 if (path && (!ref || !ref->full_path))
4738 fs_path_free(path);
4739 recorded_ref_free(ref);
4740 }
4741 return ret;
4742 }
4743
record_new_ref_if_needed(u64 dir,struct fs_path * name,void * ctx)4744 static int record_new_ref_if_needed(u64 dir, struct fs_path *name, void *ctx)
4745 {
4746 int ret;
4747 struct send_ctx *sctx = ctx;
4748 struct rb_node *node = NULL;
4749 struct recorded_ref data;
4750 struct recorded_ref *ref;
4751 u64 dir_gen;
4752
4753 ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4754 if (ret < 0)
4755 return ret;
4756
4757 data.dir = dir;
4758 data.dir_gen = dir_gen;
4759 set_ref_path(&data, name);
4760 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4761 if (node) {
4762 ref = rb_entry(node, struct recorded_ref, node);
4763 recorded_ref_free(ref);
4764 } else {
4765 ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4766 &sctx->new_refs, name, dir, dir_gen,
4767 sctx);
4768 }
4769
4770 return ret;
4771 }
4772
record_deleted_ref_if_needed(u64 dir,struct fs_path * name,void * ctx)4773 static int record_deleted_ref_if_needed(u64 dir, struct fs_path *name, void *ctx)
4774 {
4775 int ret;
4776 struct send_ctx *sctx = ctx;
4777 struct rb_node *node = NULL;
4778 struct recorded_ref data;
4779 struct recorded_ref *ref;
4780 u64 dir_gen;
4781
4782 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4783 if (ret < 0)
4784 return ret;
4785
4786 data.dir = dir;
4787 data.dir_gen = dir_gen;
4788 set_ref_path(&data, name);
4789 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4790 if (node) {
4791 ref = rb_entry(node, struct recorded_ref, node);
4792 recorded_ref_free(ref);
4793 } else {
4794 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4795 &sctx->deleted_refs, name, dir,
4796 dir_gen, sctx);
4797 }
4798
4799 return ret;
4800 }
4801
record_new_ref(struct send_ctx * sctx)4802 static int record_new_ref(struct send_ctx *sctx)
4803 {
4804 int ret;
4805
4806 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4807 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4808 if (ret < 0)
4809 return ret;
4810
4811 return 0;
4812 }
4813
record_deleted_ref(struct send_ctx * sctx)4814 static int record_deleted_ref(struct send_ctx *sctx)
4815 {
4816 int ret;
4817
4818 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4819 sctx->cmp_key, 0, record_deleted_ref_if_needed,
4820 sctx);
4821 if (ret < 0)
4822 return ret;
4823
4824 return 0;
4825 }
4826
record_changed_ref(struct send_ctx * sctx)4827 static int record_changed_ref(struct send_ctx *sctx)
4828 {
4829 int ret;
4830
4831 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4832 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4833 if (ret < 0)
4834 return ret;
4835 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4836 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4837 if (ret < 0)
4838 return ret;
4839
4840 return 0;
4841 }
4842
4843 /*
4844 * Record and process all refs at once. Needed when an inode changes the
4845 * generation number, which means that it was deleted and recreated.
4846 */
process_all_refs(struct send_ctx * sctx,enum btrfs_compare_tree_result cmd)4847 static int process_all_refs(struct send_ctx *sctx,
4848 enum btrfs_compare_tree_result cmd)
4849 {
4850 int ret = 0;
4851 int iter_ret = 0;
4852 struct btrfs_root *root;
4853 struct btrfs_path *path;
4854 struct btrfs_key key;
4855 struct btrfs_key found_key;
4856 iterate_inode_ref_t cb;
4857 int pending_move = 0;
4858
4859 path = alloc_path_for_send();
4860 if (!path)
4861 return -ENOMEM;
4862
4863 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4864 root = sctx->send_root;
4865 cb = record_new_ref_if_needed;
4866 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4867 root = sctx->parent_root;
4868 cb = record_deleted_ref_if_needed;
4869 } else {
4870 btrfs_err(sctx->send_root->fs_info,
4871 "Wrong command %d in process_all_refs", cmd);
4872 ret = -EINVAL;
4873 goto out;
4874 }
4875
4876 key.objectid = sctx->cmp_key->objectid;
4877 key.type = BTRFS_INODE_REF_KEY;
4878 key.offset = 0;
4879 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4880 if (found_key.objectid != key.objectid ||
4881 (found_key.type != BTRFS_INODE_REF_KEY &&
4882 found_key.type != BTRFS_INODE_EXTREF_KEY))
4883 break;
4884
4885 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4886 if (ret < 0)
4887 goto out;
4888 }
4889 /* Catch error found during iteration */
4890 if (iter_ret < 0) {
4891 ret = iter_ret;
4892 goto out;
4893 }
4894 btrfs_release_path(path);
4895
4896 /*
4897 * We don't actually care about pending_move as we are simply
4898 * re-creating this inode and will be rename'ing it into place once we
4899 * rename the parent directory.
4900 */
4901 ret = process_recorded_refs(sctx, &pending_move);
4902 out:
4903 btrfs_free_path(path);
4904 return ret;
4905 }
4906
send_set_xattr(struct send_ctx * sctx,const char * name,int name_len,const char * data,int data_len)4907 static int send_set_xattr(struct send_ctx *sctx,
4908 const char *name, int name_len,
4909 const char *data, int data_len)
4910 {
4911 struct fs_path *path;
4912 int ret;
4913
4914 path = get_cur_inode_path(sctx);
4915 if (IS_ERR(path))
4916 return PTR_ERR(path);
4917
4918 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4919 if (ret < 0)
4920 return ret;
4921
4922 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4923 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4924 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4925
4926 ret = send_cmd(sctx);
4927
4928 tlv_put_failure:
4929 return ret;
4930 }
4931
send_remove_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len)4932 static int send_remove_xattr(struct send_ctx *sctx,
4933 struct fs_path *path,
4934 const char *name, int name_len)
4935 {
4936 int ret;
4937
4938 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4939 if (ret < 0)
4940 return ret;
4941
4942 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4943 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4944
4945 ret = send_cmd(sctx);
4946
4947 tlv_put_failure:
4948 return ret;
4949 }
4950
__process_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4951 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4952 const char *name, int name_len, const char *data,
4953 int data_len, void *ctx)
4954 {
4955 struct send_ctx *sctx = ctx;
4956 struct posix_acl_xattr_header dummy_acl;
4957
4958 /* Capabilities are emitted by finish_inode_if_needed */
4959 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4960 return 0;
4961
4962 /*
4963 * This hack is needed because empty acls are stored as zero byte
4964 * data in xattrs. Problem with that is, that receiving these zero byte
4965 * acls will fail later. To fix this, we send a dummy acl list that
4966 * only contains the version number and no entries.
4967 */
4968 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4969 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4970 if (data_len == 0) {
4971 dummy_acl.a_version =
4972 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4973 data = (char *)&dummy_acl;
4974 data_len = sizeof(dummy_acl);
4975 }
4976 }
4977
4978 return send_set_xattr(sctx, name, name_len, data, data_len);
4979 }
4980
__process_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4981 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4982 const char *name, int name_len,
4983 const char *data, int data_len, void *ctx)
4984 {
4985 struct send_ctx *sctx = ctx;
4986 struct fs_path *p;
4987
4988 p = get_cur_inode_path(sctx);
4989 if (IS_ERR(p))
4990 return PTR_ERR(p);
4991
4992 return send_remove_xattr(sctx, p, name, name_len);
4993 }
4994
process_new_xattr(struct send_ctx * sctx)4995 static int process_new_xattr(struct send_ctx *sctx)
4996 {
4997 return iterate_dir_item(sctx->send_root, sctx->left_path,
4998 __process_new_xattr, sctx);
4999 }
5000
process_deleted_xattr(struct send_ctx * sctx)5001 static int process_deleted_xattr(struct send_ctx *sctx)
5002 {
5003 return iterate_dir_item(sctx->parent_root, sctx->right_path,
5004 __process_deleted_xattr, sctx);
5005 }
5006
5007 struct find_xattr_ctx {
5008 const char *name;
5009 int name_len;
5010 int found_idx;
5011 char *found_data;
5012 int found_data_len;
5013 };
5014
__find_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * vctx)5015 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
5016 int name_len, const char *data, int data_len, void *vctx)
5017 {
5018 struct find_xattr_ctx *ctx = vctx;
5019
5020 if (name_len == ctx->name_len &&
5021 strncmp(name, ctx->name, name_len) == 0) {
5022 ctx->found_idx = num;
5023 ctx->found_data_len = data_len;
5024 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
5025 if (!ctx->found_data)
5026 return -ENOMEM;
5027 return 1;
5028 }
5029 return 0;
5030 }
5031
find_xattr(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,const char * name,int name_len,char ** data,int * data_len)5032 static int find_xattr(struct btrfs_root *root,
5033 struct btrfs_path *path,
5034 struct btrfs_key *key,
5035 const char *name, int name_len,
5036 char **data, int *data_len)
5037 {
5038 int ret;
5039 struct find_xattr_ctx ctx;
5040
5041 ctx.name = name;
5042 ctx.name_len = name_len;
5043 ctx.found_idx = -1;
5044 ctx.found_data = NULL;
5045 ctx.found_data_len = 0;
5046
5047 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5048 if (ret < 0)
5049 return ret;
5050
5051 if (ctx.found_idx == -1)
5052 return -ENOENT;
5053 if (data) {
5054 *data = ctx.found_data;
5055 *data_len = ctx.found_data_len;
5056 } else {
5057 kfree(ctx.found_data);
5058 }
5059 return ctx.found_idx;
5060 }
5061
5062
__process_changed_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5063 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5064 const char *name, int name_len,
5065 const char *data, int data_len,
5066 void *ctx)
5067 {
5068 int ret;
5069 struct send_ctx *sctx = ctx;
5070 char *found_data = NULL;
5071 int found_data_len = 0;
5072
5073 ret = find_xattr(sctx->parent_root, sctx->right_path,
5074 sctx->cmp_key, name, name_len, &found_data,
5075 &found_data_len);
5076 if (ret == -ENOENT) {
5077 ret = __process_new_xattr(num, di_key, name, name_len, data,
5078 data_len, ctx);
5079 } else if (ret >= 0) {
5080 if (data_len != found_data_len ||
5081 memcmp(data, found_data, data_len)) {
5082 ret = __process_new_xattr(num, di_key, name, name_len,
5083 data, data_len, ctx);
5084 } else {
5085 ret = 0;
5086 }
5087 }
5088
5089 kfree(found_data);
5090 return ret;
5091 }
5092
__process_changed_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5093 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5094 const char *name, int name_len,
5095 const char *data, int data_len,
5096 void *ctx)
5097 {
5098 int ret;
5099 struct send_ctx *sctx = ctx;
5100
5101 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5102 name, name_len, NULL, NULL);
5103 if (ret == -ENOENT)
5104 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5105 data_len, ctx);
5106 else if (ret >= 0)
5107 ret = 0;
5108
5109 return ret;
5110 }
5111
process_changed_xattr(struct send_ctx * sctx)5112 static int process_changed_xattr(struct send_ctx *sctx)
5113 {
5114 int ret;
5115
5116 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5117 __process_changed_new_xattr, sctx);
5118 if (ret < 0)
5119 return ret;
5120
5121 return iterate_dir_item(sctx->parent_root, sctx->right_path,
5122 __process_changed_deleted_xattr, sctx);
5123 }
5124
process_all_new_xattrs(struct send_ctx * sctx)5125 static int process_all_new_xattrs(struct send_ctx *sctx)
5126 {
5127 int ret = 0;
5128 int iter_ret = 0;
5129 struct btrfs_root *root;
5130 struct btrfs_path *path;
5131 struct btrfs_key key;
5132 struct btrfs_key found_key;
5133
5134 path = alloc_path_for_send();
5135 if (!path)
5136 return -ENOMEM;
5137
5138 root = sctx->send_root;
5139
5140 key.objectid = sctx->cmp_key->objectid;
5141 key.type = BTRFS_XATTR_ITEM_KEY;
5142 key.offset = 0;
5143 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5144 if (found_key.objectid != key.objectid ||
5145 found_key.type != key.type) {
5146 ret = 0;
5147 break;
5148 }
5149
5150 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5151 if (ret < 0)
5152 break;
5153 }
5154 /* Catch error found during iteration */
5155 if (iter_ret < 0)
5156 ret = iter_ret;
5157
5158 btrfs_free_path(path);
5159 return ret;
5160 }
5161
send_verity(struct send_ctx * sctx,struct fs_path * path,struct fsverity_descriptor * desc)5162 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5163 struct fsverity_descriptor *desc)
5164 {
5165 int ret;
5166
5167 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5168 if (ret < 0)
5169 return ret;
5170
5171 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5172 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5173 le8_to_cpu(desc->hash_algorithm));
5174 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5175 1U << le8_to_cpu(desc->log_blocksize));
5176 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5177 le8_to_cpu(desc->salt_size));
5178 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5179 le32_to_cpu(desc->sig_size));
5180
5181 ret = send_cmd(sctx);
5182
5183 tlv_put_failure:
5184 return ret;
5185 }
5186
process_verity(struct send_ctx * sctx)5187 static int process_verity(struct send_ctx *sctx)
5188 {
5189 int ret = 0;
5190 struct btrfs_inode *inode;
5191 struct fs_path *p;
5192
5193 inode = btrfs_iget(sctx->cur_ino, sctx->send_root);
5194 if (IS_ERR(inode))
5195 return PTR_ERR(inode);
5196
5197 ret = btrfs_get_verity_descriptor(&inode->vfs_inode, NULL, 0);
5198 if (ret < 0)
5199 goto iput;
5200
5201 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5202 ret = -EMSGSIZE;
5203 goto iput;
5204 }
5205 if (!sctx->verity_descriptor) {
5206 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5207 GFP_KERNEL);
5208 if (!sctx->verity_descriptor) {
5209 ret = -ENOMEM;
5210 goto iput;
5211 }
5212 }
5213
5214 ret = btrfs_get_verity_descriptor(&inode->vfs_inode, sctx->verity_descriptor, ret);
5215 if (ret < 0)
5216 goto iput;
5217
5218 p = get_cur_inode_path(sctx);
5219 if (IS_ERR(p)) {
5220 ret = PTR_ERR(p);
5221 goto iput;
5222 }
5223
5224 ret = send_verity(sctx, p, sctx->verity_descriptor);
5225 iput:
5226 iput(&inode->vfs_inode);
5227 return ret;
5228 }
5229
max_send_read_size(const struct send_ctx * sctx)5230 static inline u64 max_send_read_size(const struct send_ctx *sctx)
5231 {
5232 return sctx->send_max_size - SZ_16K;
5233 }
5234
put_data_header(struct send_ctx * sctx,u32 len)5235 static int put_data_header(struct send_ctx *sctx, u32 len)
5236 {
5237 if (WARN_ON_ONCE(sctx->put_data))
5238 return -EINVAL;
5239 sctx->put_data = true;
5240 if (sctx->proto >= 2) {
5241 /*
5242 * Since v2, the data attribute header doesn't include a length,
5243 * it is implicitly to the end of the command.
5244 */
5245 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5246 return -EOVERFLOW;
5247 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5248 sctx->send_size += sizeof(__le16);
5249 } else {
5250 struct btrfs_tlv_header *hdr;
5251
5252 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5253 return -EOVERFLOW;
5254 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5255 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5256 put_unaligned_le16(len, &hdr->tlv_len);
5257 sctx->send_size += sizeof(*hdr);
5258 }
5259 return 0;
5260 }
5261
put_file_data(struct send_ctx * sctx,u64 offset,u32 len)5262 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5263 {
5264 struct btrfs_root *root = sctx->send_root;
5265 struct btrfs_fs_info *fs_info = root->fs_info;
5266 struct folio *folio;
5267 pgoff_t index = offset >> PAGE_SHIFT;
5268 pgoff_t last_index;
5269 unsigned pg_offset = offset_in_page(offset);
5270 struct address_space *mapping = sctx->cur_inode->i_mapping;
5271 int ret;
5272
5273 ret = put_data_header(sctx, len);
5274 if (ret)
5275 return ret;
5276
5277 last_index = (offset + len - 1) >> PAGE_SHIFT;
5278
5279 while (index <= last_index) {
5280 unsigned cur_len = min_t(unsigned, len,
5281 PAGE_SIZE - pg_offset);
5282
5283 again:
5284 folio = filemap_lock_folio(mapping, index);
5285 if (IS_ERR(folio)) {
5286 page_cache_sync_readahead(mapping,
5287 &sctx->ra, NULL, index,
5288 last_index + 1 - index);
5289
5290 folio = filemap_grab_folio(mapping, index);
5291 if (IS_ERR(folio)) {
5292 ret = PTR_ERR(folio);
5293 break;
5294 }
5295 }
5296
5297 WARN_ON(folio_order(folio));
5298
5299 if (folio_test_readahead(folio))
5300 page_cache_async_readahead(mapping, &sctx->ra, NULL, folio,
5301 last_index + 1 - index);
5302
5303 if (!folio_test_uptodate(folio)) {
5304 btrfs_read_folio(NULL, folio);
5305 folio_lock(folio);
5306 if (!folio_test_uptodate(folio)) {
5307 folio_unlock(folio);
5308 btrfs_err(fs_info,
5309 "send: IO error at offset %llu for inode %llu root %llu",
5310 folio_pos(folio), sctx->cur_ino,
5311 btrfs_root_id(sctx->send_root));
5312 folio_put(folio);
5313 ret = -EIO;
5314 break;
5315 }
5316 if (folio->mapping != mapping) {
5317 folio_unlock(folio);
5318 folio_put(folio);
5319 goto again;
5320 }
5321 }
5322
5323 memcpy_from_folio(sctx->send_buf + sctx->send_size, folio,
5324 pg_offset, cur_len);
5325 folio_unlock(folio);
5326 folio_put(folio);
5327 index++;
5328 pg_offset = 0;
5329 len -= cur_len;
5330 sctx->send_size += cur_len;
5331 }
5332
5333 return ret;
5334 }
5335
5336 /*
5337 * Read some bytes from the current inode/file and send a write command to
5338 * user space.
5339 */
send_write(struct send_ctx * sctx,u64 offset,u32 len)5340 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5341 {
5342 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5343 int ret = 0;
5344 struct fs_path *p;
5345
5346 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5347
5348 p = get_cur_inode_path(sctx);
5349 if (IS_ERR(p))
5350 return PTR_ERR(p);
5351
5352 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5353 if (ret < 0)
5354 return ret;
5355
5356 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5357 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5358 ret = put_file_data(sctx, offset, len);
5359 if (ret < 0)
5360 return ret;
5361
5362 ret = send_cmd(sctx);
5363
5364 tlv_put_failure:
5365 return ret;
5366 }
5367
5368 /*
5369 * Send a clone command to user space.
5370 */
send_clone(struct send_ctx * sctx,u64 offset,u32 len,struct clone_root * clone_root)5371 static int send_clone(struct send_ctx *sctx,
5372 u64 offset, u32 len,
5373 struct clone_root *clone_root)
5374 {
5375 int ret = 0;
5376 struct fs_path *p;
5377 struct fs_path *cur_inode_path;
5378 u64 gen;
5379
5380 btrfs_debug(sctx->send_root->fs_info,
5381 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5382 offset, len, btrfs_root_id(clone_root->root),
5383 clone_root->ino, clone_root->offset);
5384
5385 cur_inode_path = get_cur_inode_path(sctx);
5386 if (IS_ERR(cur_inode_path))
5387 return PTR_ERR(cur_inode_path);
5388
5389 p = fs_path_alloc();
5390 if (!p)
5391 return -ENOMEM;
5392
5393 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5394 if (ret < 0)
5395 goto out;
5396
5397 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5398 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5399 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, cur_inode_path);
5400
5401 if (clone_root->root == sctx->send_root) {
5402 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5403 if (ret < 0)
5404 goto out;
5405 ret = get_cur_path(sctx, clone_root->ino, gen, p);
5406 } else {
5407 ret = get_inode_path(clone_root->root, clone_root->ino, p);
5408 }
5409 if (ret < 0)
5410 goto out;
5411
5412 /*
5413 * If the parent we're using has a received_uuid set then use that as
5414 * our clone source as that is what we will look for when doing a
5415 * receive.
5416 *
5417 * This covers the case that we create a snapshot off of a received
5418 * subvolume and then use that as the parent and try to receive on a
5419 * different host.
5420 */
5421 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5422 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5423 clone_root->root->root_item.received_uuid);
5424 else
5425 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5426 clone_root->root->root_item.uuid);
5427 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5428 btrfs_root_ctransid(&clone_root->root->root_item));
5429 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5430 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5431 clone_root->offset);
5432
5433 ret = send_cmd(sctx);
5434
5435 tlv_put_failure:
5436 out:
5437 fs_path_free(p);
5438 return ret;
5439 }
5440
5441 /*
5442 * Send an update extent command to user space.
5443 */
send_update_extent(struct send_ctx * sctx,u64 offset,u32 len)5444 static int send_update_extent(struct send_ctx *sctx,
5445 u64 offset, u32 len)
5446 {
5447 int ret = 0;
5448 struct fs_path *p;
5449
5450 p = get_cur_inode_path(sctx);
5451 if (IS_ERR(p))
5452 return PTR_ERR(p);
5453
5454 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5455 if (ret < 0)
5456 return ret;
5457
5458 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5459 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5460 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5461
5462 ret = send_cmd(sctx);
5463
5464 tlv_put_failure:
5465 return ret;
5466 }
5467
send_hole(struct send_ctx * sctx,u64 end)5468 static int send_hole(struct send_ctx *sctx, u64 end)
5469 {
5470 struct fs_path *p = NULL;
5471 u64 read_size = max_send_read_size(sctx);
5472 u64 offset = sctx->cur_inode_last_extent;
5473 int ret = 0;
5474
5475 /*
5476 * A hole that starts at EOF or beyond it. Since we do not yet support
5477 * fallocate (for extent preallocation and hole punching), sending a
5478 * write of zeroes starting at EOF or beyond would later require issuing
5479 * a truncate operation which would undo the write and achieve nothing.
5480 */
5481 if (offset >= sctx->cur_inode_size)
5482 return 0;
5483
5484 /*
5485 * Don't go beyond the inode's i_size due to prealloc extents that start
5486 * after the i_size.
5487 */
5488 end = min_t(u64, end, sctx->cur_inode_size);
5489
5490 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5491 return send_update_extent(sctx, offset, end - offset);
5492
5493 p = get_cur_inode_path(sctx);
5494 if (IS_ERR(p))
5495 return PTR_ERR(p);
5496
5497 while (offset < end) {
5498 u64 len = min(end - offset, read_size);
5499
5500 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5501 if (ret < 0)
5502 break;
5503 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5504 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5505 ret = put_data_header(sctx, len);
5506 if (ret < 0)
5507 break;
5508 memset(sctx->send_buf + sctx->send_size, 0, len);
5509 sctx->send_size += len;
5510 ret = send_cmd(sctx);
5511 if (ret < 0)
5512 break;
5513 offset += len;
5514 }
5515 sctx->cur_inode_next_write_offset = offset;
5516 tlv_put_failure:
5517 return ret;
5518 }
5519
send_encoded_inline_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5520 static int send_encoded_inline_extent(struct send_ctx *sctx,
5521 struct btrfs_path *path, u64 offset,
5522 u64 len)
5523 {
5524 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5525 struct fs_path *fspath;
5526 struct extent_buffer *leaf = path->nodes[0];
5527 struct btrfs_key key;
5528 struct btrfs_file_extent_item *ei;
5529 u64 ram_bytes;
5530 size_t inline_size;
5531 int ret;
5532
5533 fspath = get_cur_inode_path(sctx);
5534 if (IS_ERR(fspath))
5535 return PTR_ERR(fspath);
5536
5537 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5538 if (ret < 0)
5539 return ret;
5540
5541 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5542 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5543 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5544 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5545
5546 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5547 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5548 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5549 min(key.offset + ram_bytes - offset, len));
5550 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5551 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5552 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5553 btrfs_file_extent_compression(leaf, ei));
5554 if (ret < 0)
5555 return ret;
5556 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5557
5558 ret = put_data_header(sctx, inline_size);
5559 if (ret < 0)
5560 return ret;
5561 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5562 btrfs_file_extent_inline_start(ei), inline_size);
5563 sctx->send_size += inline_size;
5564
5565 ret = send_cmd(sctx);
5566
5567 tlv_put_failure:
5568 return ret;
5569 }
5570
send_encoded_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5571 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5572 u64 offset, u64 len)
5573 {
5574 struct btrfs_root *root = sctx->send_root;
5575 struct btrfs_fs_info *fs_info = root->fs_info;
5576 struct btrfs_inode *inode;
5577 struct fs_path *fspath;
5578 struct extent_buffer *leaf = path->nodes[0];
5579 struct btrfs_key key;
5580 struct btrfs_file_extent_item *ei;
5581 u64 disk_bytenr, disk_num_bytes;
5582 u32 data_offset;
5583 struct btrfs_cmd_header *hdr;
5584 u32 crc;
5585 int ret;
5586
5587 inode = btrfs_iget(sctx->cur_ino, root);
5588 if (IS_ERR(inode))
5589 return PTR_ERR(inode);
5590
5591 fspath = get_cur_inode_path(sctx);
5592 if (IS_ERR(fspath)) {
5593 ret = PTR_ERR(fspath);
5594 goto out;
5595 }
5596
5597 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5598 if (ret < 0)
5599 goto out;
5600
5601 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5602 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5603 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5604 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5605
5606 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5607 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5608 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5609 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5610 len));
5611 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5612 btrfs_file_extent_ram_bytes(leaf, ei));
5613 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5614 offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5615 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5616 btrfs_file_extent_compression(leaf, ei));
5617 if (ret < 0)
5618 goto out;
5619 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5620 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5621
5622 ret = put_data_header(sctx, disk_num_bytes);
5623 if (ret < 0)
5624 goto out;
5625
5626 /*
5627 * We want to do I/O directly into the send buffer, so get the next page
5628 * boundary in the send buffer. This means that there may be a gap
5629 * between the beginning of the command and the file data.
5630 */
5631 data_offset = PAGE_ALIGN(sctx->send_size);
5632 if (data_offset > sctx->send_max_size ||
5633 sctx->send_max_size - data_offset < disk_num_bytes) {
5634 ret = -EOVERFLOW;
5635 goto out;
5636 }
5637
5638 /*
5639 * Note that send_buf is a mapping of send_buf_pages, so this is really
5640 * reading into send_buf.
5641 */
5642 ret = btrfs_encoded_read_regular_fill_pages(inode,
5643 disk_bytenr, disk_num_bytes,
5644 sctx->send_buf_pages +
5645 (data_offset >> PAGE_SHIFT),
5646 NULL);
5647 if (ret)
5648 goto out;
5649
5650 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5651 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5652 hdr->crc = 0;
5653 crc = crc32c(0, sctx->send_buf, sctx->send_size);
5654 crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5655 hdr->crc = cpu_to_le32(crc);
5656
5657 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5658 &sctx->send_off);
5659 if (!ret) {
5660 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5661 disk_num_bytes, &sctx->send_off);
5662 }
5663 sctx->send_size = 0;
5664 sctx->put_data = false;
5665
5666 tlv_put_failure:
5667 out:
5668 iput(&inode->vfs_inode);
5669 return ret;
5670 }
5671
send_extent_data(struct send_ctx * sctx,struct btrfs_path * path,const u64 offset,const u64 len)5672 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5673 const u64 offset, const u64 len)
5674 {
5675 const u64 end = offset + len;
5676 struct extent_buffer *leaf = path->nodes[0];
5677 struct btrfs_file_extent_item *ei;
5678 u64 read_size = max_send_read_size(sctx);
5679 u64 sent = 0;
5680
5681 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5682 return send_update_extent(sctx, offset, len);
5683
5684 ei = btrfs_item_ptr(leaf, path->slots[0],
5685 struct btrfs_file_extent_item);
5686 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5687 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5688 bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5689 BTRFS_FILE_EXTENT_INLINE);
5690
5691 /*
5692 * Send the compressed extent unless the compressed data is
5693 * larger than the decompressed data. This can happen if we're
5694 * not sending the entire extent, either because it has been
5695 * partially overwritten/truncated or because this is a part of
5696 * the extent that we couldn't clone in clone_range().
5697 */
5698 if (is_inline &&
5699 btrfs_file_extent_inline_item_len(leaf,
5700 path->slots[0]) <= len) {
5701 return send_encoded_inline_extent(sctx, path, offset,
5702 len);
5703 } else if (!is_inline &&
5704 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5705 return send_encoded_extent(sctx, path, offset, len);
5706 }
5707 }
5708
5709 if (sctx->cur_inode == NULL) {
5710 struct btrfs_inode *btrfs_inode;
5711 struct btrfs_root *root = sctx->send_root;
5712
5713 btrfs_inode = btrfs_iget(sctx->cur_ino, root);
5714 if (IS_ERR(btrfs_inode))
5715 return PTR_ERR(btrfs_inode);
5716
5717 sctx->cur_inode = &btrfs_inode->vfs_inode;
5718 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5719 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5720
5721 /*
5722 * It's very likely there are no pages from this inode in the page
5723 * cache, so after reading extents and sending their data, we clean
5724 * the page cache to avoid trashing the page cache (adding pressure
5725 * to the page cache and forcing eviction of other data more useful
5726 * for applications).
5727 *
5728 * We decide if we should clean the page cache simply by checking
5729 * if the inode's mapping nrpages is 0 when we first open it, and
5730 * not by using something like filemap_range_has_page() before
5731 * reading an extent because when we ask the readahead code to
5732 * read a given file range, it may (and almost always does) read
5733 * pages from beyond that range (see the documentation for
5734 * page_cache_sync_readahead()), so it would not be reliable,
5735 * because after reading the first extent future calls to
5736 * filemap_range_has_page() would return true because the readahead
5737 * on the previous extent resulted in reading pages of the current
5738 * extent as well.
5739 */
5740 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5741 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5742 }
5743
5744 while (sent < len) {
5745 u64 size = min(len - sent, read_size);
5746 int ret;
5747
5748 ret = send_write(sctx, offset + sent, size);
5749 if (ret < 0)
5750 return ret;
5751 sent += size;
5752 }
5753
5754 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5755 /*
5756 * Always operate only on ranges that are a multiple of the page
5757 * size. This is not only to prevent zeroing parts of a page in
5758 * the case of subpage sector size, but also to guarantee we evict
5759 * pages, as passing a range that is smaller than page size does
5760 * not evict the respective page (only zeroes part of its content).
5761 *
5762 * Always start from the end offset of the last range cleared.
5763 * This is because the readahead code may (and very often does)
5764 * reads pages beyond the range we request for readahead. So if
5765 * we have an extent layout like this:
5766 *
5767 * [ extent A ] [ extent B ] [ extent C ]
5768 *
5769 * When we ask page_cache_sync_readahead() to read extent A, it
5770 * may also trigger reads for pages of extent B. If we are doing
5771 * an incremental send and extent B has not changed between the
5772 * parent and send snapshots, some or all of its pages may end
5773 * up being read and placed in the page cache. So when truncating
5774 * the page cache we always start from the end offset of the
5775 * previously processed extent up to the end of the current
5776 * extent.
5777 */
5778 truncate_inode_pages_range(&sctx->cur_inode->i_data,
5779 sctx->page_cache_clear_start,
5780 end - 1);
5781 sctx->page_cache_clear_start = end;
5782 }
5783
5784 return 0;
5785 }
5786
5787 /*
5788 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5789 * found, call send_set_xattr function to emit it.
5790 *
5791 * Return 0 if there isn't a capability, or when the capability was emitted
5792 * successfully, or < 0 if an error occurred.
5793 */
send_capabilities(struct send_ctx * sctx)5794 static int send_capabilities(struct send_ctx *sctx)
5795 {
5796 struct btrfs_path *path;
5797 struct btrfs_dir_item *di;
5798 struct extent_buffer *leaf;
5799 unsigned long data_ptr;
5800 char *buf = NULL;
5801 int buf_len;
5802 int ret = 0;
5803
5804 path = alloc_path_for_send();
5805 if (!path)
5806 return -ENOMEM;
5807
5808 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5809 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5810 if (!di) {
5811 /* There is no xattr for this inode */
5812 goto out;
5813 } else if (IS_ERR(di)) {
5814 ret = PTR_ERR(di);
5815 goto out;
5816 }
5817
5818 leaf = path->nodes[0];
5819 buf_len = btrfs_dir_data_len(leaf, di);
5820
5821 buf = kmalloc(buf_len, GFP_KERNEL);
5822 if (!buf) {
5823 ret = -ENOMEM;
5824 goto out;
5825 }
5826
5827 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5828 read_extent_buffer(leaf, buf, data_ptr, buf_len);
5829
5830 ret = send_set_xattr(sctx, XATTR_NAME_CAPS,
5831 strlen(XATTR_NAME_CAPS), buf, buf_len);
5832 out:
5833 kfree(buf);
5834 btrfs_free_path(path);
5835 return ret;
5836 }
5837
clone_range(struct send_ctx * sctx,struct btrfs_path * dst_path,struct clone_root * clone_root,const u64 disk_byte,u64 data_offset,u64 offset,u64 len)5838 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5839 struct clone_root *clone_root, const u64 disk_byte,
5840 u64 data_offset, u64 offset, u64 len)
5841 {
5842 struct btrfs_path *path;
5843 struct btrfs_key key;
5844 int ret;
5845 struct btrfs_inode_info info;
5846 u64 clone_src_i_size = 0;
5847
5848 /*
5849 * Prevent cloning from a zero offset with a length matching the sector
5850 * size because in some scenarios this will make the receiver fail.
5851 *
5852 * For example, if in the source filesystem the extent at offset 0
5853 * has a length of sectorsize and it was written using direct IO, then
5854 * it can never be an inline extent (even if compression is enabled).
5855 * Then this extent can be cloned in the original filesystem to a non
5856 * zero file offset, but it may not be possible to clone in the
5857 * destination filesystem because it can be inlined due to compression
5858 * on the destination filesystem (as the receiver's write operations are
5859 * always done using buffered IO). The same happens when the original
5860 * filesystem does not have compression enabled but the destination
5861 * filesystem has.
5862 */
5863 if (clone_root->offset == 0 &&
5864 len == sctx->send_root->fs_info->sectorsize)
5865 return send_extent_data(sctx, dst_path, offset, len);
5866
5867 path = alloc_path_for_send();
5868 if (!path)
5869 return -ENOMEM;
5870
5871 /*
5872 * There are inodes that have extents that lie behind its i_size. Don't
5873 * accept clones from these extents.
5874 */
5875 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5876 btrfs_release_path(path);
5877 if (ret < 0)
5878 goto out;
5879 clone_src_i_size = info.size;
5880
5881 /*
5882 * We can't send a clone operation for the entire range if we find
5883 * extent items in the respective range in the source file that
5884 * refer to different extents or if we find holes.
5885 * So check for that and do a mix of clone and regular write/copy
5886 * operations if needed.
5887 *
5888 * Example:
5889 *
5890 * mkfs.btrfs -f /dev/sda
5891 * mount /dev/sda /mnt
5892 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5893 * cp --reflink=always /mnt/foo /mnt/bar
5894 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5895 * btrfs subvolume snapshot -r /mnt /mnt/snap
5896 *
5897 * If when we send the snapshot and we are processing file bar (which
5898 * has a higher inode number than foo) we blindly send a clone operation
5899 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5900 * a file bar that matches the content of file foo - iow, doesn't match
5901 * the content from bar in the original filesystem.
5902 */
5903 key.objectid = clone_root->ino;
5904 key.type = BTRFS_EXTENT_DATA_KEY;
5905 key.offset = clone_root->offset;
5906 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5907 if (ret < 0)
5908 goto out;
5909 if (ret > 0 && path->slots[0] > 0) {
5910 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5911 if (key.objectid == clone_root->ino &&
5912 key.type == BTRFS_EXTENT_DATA_KEY)
5913 path->slots[0]--;
5914 }
5915
5916 while (true) {
5917 struct extent_buffer *leaf = path->nodes[0];
5918 int slot = path->slots[0];
5919 struct btrfs_file_extent_item *ei;
5920 u8 type;
5921 u64 ext_len;
5922 u64 clone_len;
5923 u64 clone_data_offset;
5924 bool crossed_src_i_size = false;
5925
5926 if (slot >= btrfs_header_nritems(leaf)) {
5927 ret = btrfs_next_leaf(clone_root->root, path);
5928 if (ret < 0)
5929 goto out;
5930 else if (ret > 0)
5931 break;
5932 continue;
5933 }
5934
5935 btrfs_item_key_to_cpu(leaf, &key, slot);
5936
5937 /*
5938 * We might have an implicit trailing hole (NO_HOLES feature
5939 * enabled). We deal with it after leaving this loop.
5940 */
5941 if (key.objectid != clone_root->ino ||
5942 key.type != BTRFS_EXTENT_DATA_KEY)
5943 break;
5944
5945 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5946 type = btrfs_file_extent_type(leaf, ei);
5947 if (type == BTRFS_FILE_EXTENT_INLINE) {
5948 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5949 ext_len = PAGE_ALIGN(ext_len);
5950 } else {
5951 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5952 }
5953
5954 if (key.offset + ext_len <= clone_root->offset)
5955 goto next;
5956
5957 if (key.offset > clone_root->offset) {
5958 /* Implicit hole, NO_HOLES feature enabled. */
5959 u64 hole_len = key.offset - clone_root->offset;
5960
5961 if (hole_len > len)
5962 hole_len = len;
5963 ret = send_extent_data(sctx, dst_path, offset,
5964 hole_len);
5965 if (ret < 0)
5966 goto out;
5967
5968 len -= hole_len;
5969 if (len == 0)
5970 break;
5971 offset += hole_len;
5972 clone_root->offset += hole_len;
5973 data_offset += hole_len;
5974 }
5975
5976 if (key.offset >= clone_root->offset + len)
5977 break;
5978
5979 if (key.offset >= clone_src_i_size)
5980 break;
5981
5982 if (key.offset + ext_len > clone_src_i_size) {
5983 ext_len = clone_src_i_size - key.offset;
5984 crossed_src_i_size = true;
5985 }
5986
5987 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5988 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5989 clone_root->offset = key.offset;
5990 if (clone_data_offset < data_offset &&
5991 clone_data_offset + ext_len > data_offset) {
5992 u64 extent_offset;
5993
5994 extent_offset = data_offset - clone_data_offset;
5995 ext_len -= extent_offset;
5996 clone_data_offset += extent_offset;
5997 clone_root->offset += extent_offset;
5998 }
5999 }
6000
6001 clone_len = min_t(u64, ext_len, len);
6002
6003 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6004 clone_data_offset == data_offset) {
6005 const u64 src_end = clone_root->offset + clone_len;
6006 const u64 sectorsize = SZ_64K;
6007
6008 /*
6009 * We can't clone the last block, when its size is not
6010 * sector size aligned, into the middle of a file. If we
6011 * do so, the receiver will get a failure (-EINVAL) when
6012 * trying to clone or will silently corrupt the data in
6013 * the destination file if it's on a kernel without the
6014 * fix introduced by commit ac765f83f1397646
6015 * ("Btrfs: fix data corruption due to cloning of eof
6016 * block).
6017 *
6018 * So issue a clone of the aligned down range plus a
6019 * regular write for the eof block, if we hit that case.
6020 *
6021 * Also, we use the maximum possible sector size, 64K,
6022 * because we don't know what's the sector size of the
6023 * filesystem that receives the stream, so we have to
6024 * assume the largest possible sector size.
6025 */
6026 if (src_end == clone_src_i_size &&
6027 !IS_ALIGNED(src_end, sectorsize) &&
6028 offset + clone_len < sctx->cur_inode_size) {
6029 u64 slen;
6030
6031 slen = ALIGN_DOWN(src_end - clone_root->offset,
6032 sectorsize);
6033 if (slen > 0) {
6034 ret = send_clone(sctx, offset, slen,
6035 clone_root);
6036 if (ret < 0)
6037 goto out;
6038 }
6039 ret = send_extent_data(sctx, dst_path,
6040 offset + slen,
6041 clone_len - slen);
6042 } else {
6043 ret = send_clone(sctx, offset, clone_len,
6044 clone_root);
6045 }
6046 } else if (crossed_src_i_size && clone_len < len) {
6047 /*
6048 * If we are at i_size of the clone source inode and we
6049 * can not clone from it, terminate the loop. This is
6050 * to avoid sending two write operations, one with a
6051 * length matching clone_len and the final one after
6052 * this loop with a length of len - clone_len.
6053 *
6054 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6055 * was passed to the send ioctl), this helps avoid
6056 * sending an encoded write for an offset that is not
6057 * sector size aligned, in case the i_size of the source
6058 * inode is not sector size aligned. That will make the
6059 * receiver fallback to decompression of the data and
6060 * writing it using regular buffered IO, therefore while
6061 * not incorrect, it's not optimal due decompression and
6062 * possible re-compression at the receiver.
6063 */
6064 break;
6065 } else {
6066 ret = send_extent_data(sctx, dst_path, offset,
6067 clone_len);
6068 }
6069
6070 if (ret < 0)
6071 goto out;
6072
6073 len -= clone_len;
6074 if (len == 0)
6075 break;
6076 offset += clone_len;
6077 clone_root->offset += clone_len;
6078
6079 /*
6080 * If we are cloning from the file we are currently processing,
6081 * and using the send root as the clone root, we must stop once
6082 * the current clone offset reaches the current eof of the file
6083 * at the receiver, otherwise we would issue an invalid clone
6084 * operation (source range going beyond eof) and cause the
6085 * receiver to fail. So if we reach the current eof, bail out
6086 * and fallback to a regular write.
6087 */
6088 if (clone_root->root == sctx->send_root &&
6089 clone_root->ino == sctx->cur_ino &&
6090 clone_root->offset >= sctx->cur_inode_next_write_offset)
6091 break;
6092
6093 data_offset += clone_len;
6094 next:
6095 path->slots[0]++;
6096 }
6097
6098 if (len > 0)
6099 ret = send_extent_data(sctx, dst_path, offset, len);
6100 else
6101 ret = 0;
6102 out:
6103 btrfs_free_path(path);
6104 return ret;
6105 }
6106
send_write_or_clone(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key,struct clone_root * clone_root)6107 static int send_write_or_clone(struct send_ctx *sctx,
6108 struct btrfs_path *path,
6109 struct btrfs_key *key,
6110 struct clone_root *clone_root)
6111 {
6112 int ret = 0;
6113 u64 offset = key->offset;
6114 u64 end;
6115 u64 bs = sctx->send_root->fs_info->sectorsize;
6116 struct btrfs_file_extent_item *ei;
6117 u64 disk_byte;
6118 u64 data_offset;
6119 u64 num_bytes;
6120 struct btrfs_inode_info info = { 0 };
6121
6122 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6123 if (offset >= end)
6124 return 0;
6125
6126 num_bytes = end - offset;
6127
6128 if (!clone_root)
6129 goto write_data;
6130
6131 if (IS_ALIGNED(end, bs))
6132 goto clone_data;
6133
6134 /*
6135 * If the extent end is not aligned, we can clone if the extent ends at
6136 * the i_size of the inode and the clone range ends at the i_size of the
6137 * source inode, otherwise the clone operation fails with -EINVAL.
6138 */
6139 if (end != sctx->cur_inode_size)
6140 goto write_data;
6141
6142 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
6143 if (ret < 0)
6144 return ret;
6145
6146 if (clone_root->offset + num_bytes == info.size) {
6147 /*
6148 * The final size of our file matches the end offset, but it may
6149 * be that its current size is larger, so we have to truncate it
6150 * to any value between the start offset of the range and the
6151 * final i_size, otherwise the clone operation is invalid
6152 * because it's unaligned and it ends before the current EOF.
6153 * We do this truncate to the final i_size when we finish
6154 * processing the inode, but it's too late by then. And here we
6155 * truncate to the start offset of the range because it's always
6156 * sector size aligned while if it were the final i_size it
6157 * would result in dirtying part of a page, filling part of a
6158 * page with zeroes and then having the clone operation at the
6159 * receiver trigger IO and wait for it due to the dirty page.
6160 */
6161 if (sctx->parent_root != NULL) {
6162 ret = send_truncate(sctx, sctx->cur_ino,
6163 sctx->cur_inode_gen, offset);
6164 if (ret < 0)
6165 return ret;
6166 }
6167 goto clone_data;
6168 }
6169
6170 write_data:
6171 ret = send_extent_data(sctx, path, offset, num_bytes);
6172 sctx->cur_inode_next_write_offset = end;
6173 return ret;
6174
6175 clone_data:
6176 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6177 struct btrfs_file_extent_item);
6178 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6179 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6180 ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset,
6181 num_bytes);
6182 sctx->cur_inode_next_write_offset = end;
6183 return ret;
6184 }
6185
is_extent_unchanged(struct send_ctx * sctx,struct btrfs_path * left_path,struct btrfs_key * ekey)6186 static int is_extent_unchanged(struct send_ctx *sctx,
6187 struct btrfs_path *left_path,
6188 struct btrfs_key *ekey)
6189 {
6190 int ret = 0;
6191 struct btrfs_key key;
6192 struct btrfs_path *path = NULL;
6193 struct extent_buffer *eb;
6194 int slot;
6195 struct btrfs_key found_key;
6196 struct btrfs_file_extent_item *ei;
6197 u64 left_disknr;
6198 u64 right_disknr;
6199 u64 left_offset;
6200 u64 right_offset;
6201 u64 left_offset_fixed;
6202 u64 left_len;
6203 u64 right_len;
6204 u64 left_gen;
6205 u64 right_gen;
6206 u8 left_type;
6207 u8 right_type;
6208
6209 path = alloc_path_for_send();
6210 if (!path)
6211 return -ENOMEM;
6212
6213 eb = left_path->nodes[0];
6214 slot = left_path->slots[0];
6215 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6216 left_type = btrfs_file_extent_type(eb, ei);
6217
6218 if (left_type != BTRFS_FILE_EXTENT_REG) {
6219 ret = 0;
6220 goto out;
6221 }
6222 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6223 left_len = btrfs_file_extent_num_bytes(eb, ei);
6224 left_offset = btrfs_file_extent_offset(eb, ei);
6225 left_gen = btrfs_file_extent_generation(eb, ei);
6226
6227 /*
6228 * Following comments will refer to these graphics. L is the left
6229 * extents which we are checking at the moment. 1-8 are the right
6230 * extents that we iterate.
6231 *
6232 * |-----L-----|
6233 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6234 *
6235 * |-----L-----|
6236 * |--1--|-2b-|...(same as above)
6237 *
6238 * Alternative situation. Happens on files where extents got split.
6239 * |-----L-----|
6240 * |-----------7-----------|-6-|
6241 *
6242 * Alternative situation. Happens on files which got larger.
6243 * |-----L-----|
6244 * |-8-|
6245 * Nothing follows after 8.
6246 */
6247
6248 key.objectid = ekey->objectid;
6249 key.type = BTRFS_EXTENT_DATA_KEY;
6250 key.offset = ekey->offset;
6251 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6252 if (ret < 0)
6253 goto out;
6254 if (ret) {
6255 ret = 0;
6256 goto out;
6257 }
6258
6259 /*
6260 * Handle special case where the right side has no extents at all.
6261 */
6262 eb = path->nodes[0];
6263 slot = path->slots[0];
6264 btrfs_item_key_to_cpu(eb, &found_key, slot);
6265 if (found_key.objectid != key.objectid ||
6266 found_key.type != key.type) {
6267 /* If we're a hole then just pretend nothing changed */
6268 ret = (left_disknr) ? 0 : 1;
6269 goto out;
6270 }
6271
6272 /*
6273 * We're now on 2a, 2b or 7.
6274 */
6275 key = found_key;
6276 while (key.offset < ekey->offset + left_len) {
6277 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6278 right_type = btrfs_file_extent_type(eb, ei);
6279 if (right_type != BTRFS_FILE_EXTENT_REG &&
6280 right_type != BTRFS_FILE_EXTENT_INLINE) {
6281 ret = 0;
6282 goto out;
6283 }
6284
6285 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6286 right_len = btrfs_file_extent_ram_bytes(eb, ei);
6287 right_len = PAGE_ALIGN(right_len);
6288 } else {
6289 right_len = btrfs_file_extent_num_bytes(eb, ei);
6290 }
6291
6292 /*
6293 * Are we at extent 8? If yes, we know the extent is changed.
6294 * This may only happen on the first iteration.
6295 */
6296 if (found_key.offset + right_len <= ekey->offset) {
6297 /* If we're a hole just pretend nothing changed */
6298 ret = (left_disknr) ? 0 : 1;
6299 goto out;
6300 }
6301
6302 /*
6303 * We just wanted to see if when we have an inline extent, what
6304 * follows it is a regular extent (wanted to check the above
6305 * condition for inline extents too). This should normally not
6306 * happen but it's possible for example when we have an inline
6307 * compressed extent representing data with a size matching
6308 * the page size (currently the same as sector size).
6309 */
6310 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6311 ret = 0;
6312 goto out;
6313 }
6314
6315 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6316 right_offset = btrfs_file_extent_offset(eb, ei);
6317 right_gen = btrfs_file_extent_generation(eb, ei);
6318
6319 left_offset_fixed = left_offset;
6320 if (key.offset < ekey->offset) {
6321 /* Fix the right offset for 2a and 7. */
6322 right_offset += ekey->offset - key.offset;
6323 } else {
6324 /* Fix the left offset for all behind 2a and 2b */
6325 left_offset_fixed += key.offset - ekey->offset;
6326 }
6327
6328 /*
6329 * Check if we have the same extent.
6330 */
6331 if (left_disknr != right_disknr ||
6332 left_offset_fixed != right_offset ||
6333 left_gen != right_gen) {
6334 ret = 0;
6335 goto out;
6336 }
6337
6338 /*
6339 * Go to the next extent.
6340 */
6341 ret = btrfs_next_item(sctx->parent_root, path);
6342 if (ret < 0)
6343 goto out;
6344 if (!ret) {
6345 eb = path->nodes[0];
6346 slot = path->slots[0];
6347 btrfs_item_key_to_cpu(eb, &found_key, slot);
6348 }
6349 if (ret || found_key.objectid != key.objectid ||
6350 found_key.type != key.type) {
6351 key.offset += right_len;
6352 break;
6353 }
6354 if (found_key.offset != key.offset + right_len) {
6355 ret = 0;
6356 goto out;
6357 }
6358 key = found_key;
6359 }
6360
6361 /*
6362 * We're now behind the left extent (treat as unchanged) or at the end
6363 * of the right side (treat as changed).
6364 */
6365 if (key.offset >= ekey->offset + left_len)
6366 ret = 1;
6367 else
6368 ret = 0;
6369
6370
6371 out:
6372 btrfs_free_path(path);
6373 return ret;
6374 }
6375
get_last_extent(struct send_ctx * sctx,u64 offset)6376 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6377 {
6378 struct btrfs_path *path;
6379 struct btrfs_root *root = sctx->send_root;
6380 struct btrfs_key key;
6381 int ret;
6382
6383 path = alloc_path_for_send();
6384 if (!path)
6385 return -ENOMEM;
6386
6387 sctx->cur_inode_last_extent = 0;
6388
6389 key.objectid = sctx->cur_ino;
6390 key.type = BTRFS_EXTENT_DATA_KEY;
6391 key.offset = offset;
6392 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6393 if (ret < 0)
6394 goto out;
6395 ret = 0;
6396 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6397 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6398 goto out;
6399
6400 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6401 out:
6402 btrfs_free_path(path);
6403 return ret;
6404 }
6405
range_is_hole_in_parent(struct send_ctx * sctx,const u64 start,const u64 end)6406 static int range_is_hole_in_parent(struct send_ctx *sctx,
6407 const u64 start,
6408 const u64 end)
6409 {
6410 struct btrfs_path *path;
6411 struct btrfs_key key;
6412 struct btrfs_root *root = sctx->parent_root;
6413 u64 search_start = start;
6414 int ret;
6415
6416 path = alloc_path_for_send();
6417 if (!path)
6418 return -ENOMEM;
6419
6420 key.objectid = sctx->cur_ino;
6421 key.type = BTRFS_EXTENT_DATA_KEY;
6422 key.offset = search_start;
6423 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6424 if (ret < 0)
6425 goto out;
6426 if (ret > 0 && path->slots[0] > 0)
6427 path->slots[0]--;
6428
6429 while (search_start < end) {
6430 struct extent_buffer *leaf = path->nodes[0];
6431 int slot = path->slots[0];
6432 struct btrfs_file_extent_item *fi;
6433 u64 extent_end;
6434
6435 if (slot >= btrfs_header_nritems(leaf)) {
6436 ret = btrfs_next_leaf(root, path);
6437 if (ret < 0)
6438 goto out;
6439 else if (ret > 0)
6440 break;
6441 continue;
6442 }
6443
6444 btrfs_item_key_to_cpu(leaf, &key, slot);
6445 if (key.objectid < sctx->cur_ino ||
6446 key.type < BTRFS_EXTENT_DATA_KEY)
6447 goto next;
6448 if (key.objectid > sctx->cur_ino ||
6449 key.type > BTRFS_EXTENT_DATA_KEY ||
6450 key.offset >= end)
6451 break;
6452
6453 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6454 extent_end = btrfs_file_extent_end(path);
6455 if (extent_end <= start)
6456 goto next;
6457 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6458 search_start = extent_end;
6459 goto next;
6460 }
6461 ret = 0;
6462 goto out;
6463 next:
6464 path->slots[0]++;
6465 }
6466 ret = 1;
6467 out:
6468 btrfs_free_path(path);
6469 return ret;
6470 }
6471
maybe_send_hole(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6472 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6473 struct btrfs_key *key)
6474 {
6475 int ret = 0;
6476
6477 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6478 return 0;
6479
6480 /*
6481 * Get last extent's end offset (exclusive) if we haven't determined it
6482 * yet (we're processing the first file extent item that is new), or if
6483 * we're at the first slot of a leaf and the last extent's end is less
6484 * than the current extent's offset, because we might have skipped
6485 * entire leaves that contained only file extent items for our current
6486 * inode. These leaves have a generation number smaller (older) than the
6487 * one in the current leaf and the leaf our last extent came from, and
6488 * are located between these 2 leaves.
6489 */
6490 if ((sctx->cur_inode_last_extent == (u64)-1) ||
6491 (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) {
6492 ret = get_last_extent(sctx, key->offset - 1);
6493 if (ret)
6494 return ret;
6495 }
6496
6497 if (sctx->cur_inode_last_extent < key->offset) {
6498 ret = range_is_hole_in_parent(sctx,
6499 sctx->cur_inode_last_extent,
6500 key->offset);
6501 if (ret < 0)
6502 return ret;
6503 else if (ret == 0)
6504 ret = send_hole(sctx, key->offset);
6505 else
6506 ret = 0;
6507 }
6508 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6509 return ret;
6510 }
6511
process_extent(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6512 static int process_extent(struct send_ctx *sctx,
6513 struct btrfs_path *path,
6514 struct btrfs_key *key)
6515 {
6516 struct clone_root *found_clone = NULL;
6517 int ret = 0;
6518
6519 if (S_ISLNK(sctx->cur_inode_mode))
6520 return 0;
6521
6522 if (sctx->parent_root && !sctx->cur_inode_new) {
6523 ret = is_extent_unchanged(sctx, path, key);
6524 if (ret < 0)
6525 goto out;
6526 if (ret) {
6527 ret = 0;
6528 goto out_hole;
6529 }
6530 } else {
6531 struct btrfs_file_extent_item *ei;
6532 u8 type;
6533
6534 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6535 struct btrfs_file_extent_item);
6536 type = btrfs_file_extent_type(path->nodes[0], ei);
6537 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6538 type == BTRFS_FILE_EXTENT_REG) {
6539 /*
6540 * The send spec does not have a prealloc command yet,
6541 * so just leave a hole for prealloc'ed extents until
6542 * we have enough commands queued up to justify rev'ing
6543 * the send spec.
6544 */
6545 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6546 ret = 0;
6547 goto out;
6548 }
6549
6550 /* Have a hole, just skip it. */
6551 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6552 ret = 0;
6553 goto out;
6554 }
6555 }
6556 }
6557
6558 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6559 sctx->cur_inode_size, &found_clone);
6560 if (ret != -ENOENT && ret < 0)
6561 goto out;
6562
6563 ret = send_write_or_clone(sctx, path, key, found_clone);
6564 if (ret)
6565 goto out;
6566 out_hole:
6567 ret = maybe_send_hole(sctx, path, key);
6568 out:
6569 return ret;
6570 }
6571
process_all_extents(struct send_ctx * sctx)6572 static int process_all_extents(struct send_ctx *sctx)
6573 {
6574 int ret = 0;
6575 int iter_ret = 0;
6576 struct btrfs_root *root;
6577 struct btrfs_path *path;
6578 struct btrfs_key key;
6579 struct btrfs_key found_key;
6580
6581 root = sctx->send_root;
6582 path = alloc_path_for_send();
6583 if (!path)
6584 return -ENOMEM;
6585
6586 key.objectid = sctx->cmp_key->objectid;
6587 key.type = BTRFS_EXTENT_DATA_KEY;
6588 key.offset = 0;
6589 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6590 if (found_key.objectid != key.objectid ||
6591 found_key.type != key.type) {
6592 ret = 0;
6593 break;
6594 }
6595
6596 ret = process_extent(sctx, path, &found_key);
6597 if (ret < 0)
6598 break;
6599 }
6600 /* Catch error found during iteration */
6601 if (iter_ret < 0)
6602 ret = iter_ret;
6603
6604 btrfs_free_path(path);
6605 return ret;
6606 }
6607
process_recorded_refs_if_needed(struct send_ctx * sctx,int at_end,int * pending_move,int * refs_processed)6608 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6609 int *pending_move,
6610 int *refs_processed)
6611 {
6612 int ret = 0;
6613
6614 if (sctx->cur_ino == 0)
6615 goto out;
6616 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6617 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6618 goto out;
6619 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6620 goto out;
6621
6622 ret = process_recorded_refs(sctx, pending_move);
6623 if (ret < 0)
6624 goto out;
6625
6626 *refs_processed = 1;
6627 out:
6628 return ret;
6629 }
6630
finish_inode_if_needed(struct send_ctx * sctx,int at_end)6631 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6632 {
6633 int ret = 0;
6634 struct btrfs_inode_info info;
6635 u64 left_mode;
6636 u64 left_uid;
6637 u64 left_gid;
6638 u64 left_fileattr;
6639 u64 right_mode;
6640 u64 right_uid;
6641 u64 right_gid;
6642 u64 right_fileattr;
6643 int need_chmod = 0;
6644 int need_chown = 0;
6645 bool need_fileattr = false;
6646 int need_truncate = 1;
6647 int pending_move = 0;
6648 int refs_processed = 0;
6649
6650 if (sctx->ignore_cur_inode)
6651 return 0;
6652
6653 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6654 &refs_processed);
6655 if (ret < 0)
6656 goto out;
6657
6658 /*
6659 * We have processed the refs and thus need to advance send_progress.
6660 * Now, calls to get_cur_xxx will take the updated refs of the current
6661 * inode into account.
6662 *
6663 * On the other hand, if our current inode is a directory and couldn't
6664 * be moved/renamed because its parent was renamed/moved too and it has
6665 * a higher inode number, we can only move/rename our current inode
6666 * after we moved/renamed its parent. Therefore in this case operate on
6667 * the old path (pre move/rename) of our current inode, and the
6668 * move/rename will be performed later.
6669 */
6670 if (refs_processed && !pending_move)
6671 sctx->send_progress = sctx->cur_ino + 1;
6672
6673 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6674 goto out;
6675 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6676 goto out;
6677 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6678 if (ret < 0)
6679 goto out;
6680 left_mode = info.mode;
6681 left_uid = info.uid;
6682 left_gid = info.gid;
6683 left_fileattr = info.fileattr;
6684
6685 if (!sctx->parent_root || sctx->cur_inode_new) {
6686 need_chown = 1;
6687 if (!S_ISLNK(sctx->cur_inode_mode))
6688 need_chmod = 1;
6689 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6690 need_truncate = 0;
6691 } else {
6692 u64 old_size;
6693
6694 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6695 if (ret < 0)
6696 goto out;
6697 old_size = info.size;
6698 right_mode = info.mode;
6699 right_uid = info.uid;
6700 right_gid = info.gid;
6701 right_fileattr = info.fileattr;
6702
6703 if (left_uid != right_uid || left_gid != right_gid)
6704 need_chown = 1;
6705 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6706 need_chmod = 1;
6707 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6708 need_fileattr = true;
6709 if ((old_size == sctx->cur_inode_size) ||
6710 (sctx->cur_inode_size > old_size &&
6711 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6712 need_truncate = 0;
6713 }
6714
6715 if (S_ISREG(sctx->cur_inode_mode)) {
6716 if (need_send_hole(sctx)) {
6717 if (sctx->cur_inode_last_extent == (u64)-1 ||
6718 sctx->cur_inode_last_extent <
6719 sctx->cur_inode_size) {
6720 ret = get_last_extent(sctx, (u64)-1);
6721 if (ret)
6722 goto out;
6723 }
6724 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) {
6725 ret = range_is_hole_in_parent(sctx,
6726 sctx->cur_inode_last_extent,
6727 sctx->cur_inode_size);
6728 if (ret < 0) {
6729 goto out;
6730 } else if (ret == 0) {
6731 ret = send_hole(sctx, sctx->cur_inode_size);
6732 if (ret < 0)
6733 goto out;
6734 } else {
6735 /* Range is already a hole, skip. */
6736 ret = 0;
6737 }
6738 }
6739 }
6740 if (need_truncate) {
6741 ret = send_truncate(sctx, sctx->cur_ino,
6742 sctx->cur_inode_gen,
6743 sctx->cur_inode_size);
6744 if (ret < 0)
6745 goto out;
6746 }
6747 }
6748
6749 if (need_chown) {
6750 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6751 left_uid, left_gid);
6752 if (ret < 0)
6753 goto out;
6754 }
6755 if (need_chmod) {
6756 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6757 left_mode);
6758 if (ret < 0)
6759 goto out;
6760 }
6761 if (need_fileattr) {
6762 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6763 left_fileattr);
6764 if (ret < 0)
6765 goto out;
6766 }
6767
6768 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6769 && sctx->cur_inode_needs_verity) {
6770 ret = process_verity(sctx);
6771 if (ret < 0)
6772 goto out;
6773 }
6774
6775 ret = send_capabilities(sctx);
6776 if (ret < 0)
6777 goto out;
6778
6779 /*
6780 * If other directory inodes depended on our current directory
6781 * inode's move/rename, now do their move/rename operations.
6782 */
6783 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6784 ret = apply_children_dir_moves(sctx);
6785 if (ret)
6786 goto out;
6787 /*
6788 * Need to send that every time, no matter if it actually
6789 * changed between the two trees as we have done changes to
6790 * the inode before. If our inode is a directory and it's
6791 * waiting to be moved/renamed, we will send its utimes when
6792 * it's moved/renamed, therefore we don't need to do it here.
6793 */
6794 sctx->send_progress = sctx->cur_ino + 1;
6795
6796 /*
6797 * If the current inode is a non-empty directory, delay issuing
6798 * the utimes command for it, as it's very likely we have inodes
6799 * with an higher number inside it. We want to issue the utimes
6800 * command only after adding all dentries to it.
6801 */
6802 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6803 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6804 else
6805 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6806
6807 if (ret < 0)
6808 goto out;
6809 }
6810
6811 out:
6812 if (!ret)
6813 ret = trim_dir_utimes_cache(sctx);
6814
6815 return ret;
6816 }
6817
close_current_inode(struct send_ctx * sctx)6818 static void close_current_inode(struct send_ctx *sctx)
6819 {
6820 u64 i_size;
6821
6822 if (sctx->cur_inode == NULL)
6823 return;
6824
6825 i_size = i_size_read(sctx->cur_inode);
6826
6827 /*
6828 * If we are doing an incremental send, we may have extents between the
6829 * last processed extent and the i_size that have not been processed
6830 * because they haven't changed but we may have read some of their pages
6831 * through readahead, see the comments at send_extent_data().
6832 */
6833 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6834 truncate_inode_pages_range(&sctx->cur_inode->i_data,
6835 sctx->page_cache_clear_start,
6836 round_up(i_size, PAGE_SIZE) - 1);
6837
6838 iput(sctx->cur_inode);
6839 sctx->cur_inode = NULL;
6840 }
6841
changed_inode(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6842 static int changed_inode(struct send_ctx *sctx,
6843 enum btrfs_compare_tree_result result)
6844 {
6845 int ret = 0;
6846 struct btrfs_key *key = sctx->cmp_key;
6847 struct btrfs_inode_item *left_ii = NULL;
6848 struct btrfs_inode_item *right_ii = NULL;
6849 u64 left_gen = 0;
6850 u64 right_gen = 0;
6851
6852 close_current_inode(sctx);
6853
6854 sctx->cur_ino = key->objectid;
6855 sctx->cur_inode_new_gen = false;
6856 sctx->cur_inode_last_extent = (u64)-1;
6857 sctx->cur_inode_next_write_offset = 0;
6858 sctx->ignore_cur_inode = false;
6859 fs_path_reset(&sctx->cur_inode_path);
6860
6861 /*
6862 * Set send_progress to current inode. This will tell all get_cur_xxx
6863 * functions that the current inode's refs are not updated yet. Later,
6864 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6865 */
6866 sctx->send_progress = sctx->cur_ino;
6867
6868 if (result == BTRFS_COMPARE_TREE_NEW ||
6869 result == BTRFS_COMPARE_TREE_CHANGED) {
6870 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6871 sctx->left_path->slots[0],
6872 struct btrfs_inode_item);
6873 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6874 left_ii);
6875 } else {
6876 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6877 sctx->right_path->slots[0],
6878 struct btrfs_inode_item);
6879 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6880 right_ii);
6881 }
6882 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6883 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6884 sctx->right_path->slots[0],
6885 struct btrfs_inode_item);
6886
6887 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6888 right_ii);
6889
6890 /*
6891 * The cur_ino = root dir case is special here. We can't treat
6892 * the inode as deleted+reused because it would generate a
6893 * stream that tries to delete/mkdir the root dir.
6894 */
6895 if (left_gen != right_gen &&
6896 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6897 sctx->cur_inode_new_gen = true;
6898 }
6899
6900 /*
6901 * Normally we do not find inodes with a link count of zero (orphans)
6902 * because the most common case is to create a snapshot and use it
6903 * for a send operation. However other less common use cases involve
6904 * using a subvolume and send it after turning it to RO mode just
6905 * after deleting all hard links of a file while holding an open
6906 * file descriptor against it or turning a RO snapshot into RW mode,
6907 * keep an open file descriptor against a file, delete it and then
6908 * turn the snapshot back to RO mode before using it for a send
6909 * operation. The former is what the receiver operation does.
6910 * Therefore, if we want to send these snapshots soon after they're
6911 * received, we need to handle orphan inodes as well. Moreover, orphans
6912 * can appear not only in the send snapshot but also in the parent
6913 * snapshot. Here are several cases:
6914 *
6915 * Case 1: BTRFS_COMPARE_TREE_NEW
6916 * | send snapshot | action
6917 * --------------------------------
6918 * nlink | 0 | ignore
6919 *
6920 * Case 2: BTRFS_COMPARE_TREE_DELETED
6921 * | parent snapshot | action
6922 * ----------------------------------
6923 * nlink | 0 | as usual
6924 * Note: No unlinks will be sent because there're no paths for it.
6925 *
6926 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6927 * | | parent snapshot | send snapshot | action
6928 * -----------------------------------------------------------------------
6929 * subcase 1 | nlink | 0 | 0 | ignore
6930 * subcase 2 | nlink | >0 | 0 | new_gen(deletion)
6931 * subcase 3 | nlink | 0 | >0 | new_gen(creation)
6932 *
6933 */
6934 if (result == BTRFS_COMPARE_TREE_NEW) {
6935 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6936 sctx->ignore_cur_inode = true;
6937 goto out;
6938 }
6939 sctx->cur_inode_gen = left_gen;
6940 sctx->cur_inode_new = true;
6941 sctx->cur_inode_deleted = false;
6942 sctx->cur_inode_size = btrfs_inode_size(
6943 sctx->left_path->nodes[0], left_ii);
6944 sctx->cur_inode_mode = btrfs_inode_mode(
6945 sctx->left_path->nodes[0], left_ii);
6946 sctx->cur_inode_rdev = btrfs_inode_rdev(
6947 sctx->left_path->nodes[0], left_ii);
6948 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6949 ret = send_create_inode_if_needed(sctx);
6950 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6951 sctx->cur_inode_gen = right_gen;
6952 sctx->cur_inode_new = false;
6953 sctx->cur_inode_deleted = true;
6954 sctx->cur_inode_size = btrfs_inode_size(
6955 sctx->right_path->nodes[0], right_ii);
6956 sctx->cur_inode_mode = btrfs_inode_mode(
6957 sctx->right_path->nodes[0], right_ii);
6958 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6959 u32 new_nlinks, old_nlinks;
6960
6961 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6962 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
6963 if (new_nlinks == 0 && old_nlinks == 0) {
6964 sctx->ignore_cur_inode = true;
6965 goto out;
6966 } else if (new_nlinks == 0 || old_nlinks == 0) {
6967 sctx->cur_inode_new_gen = 1;
6968 }
6969 /*
6970 * We need to do some special handling in case the inode was
6971 * reported as changed with a changed generation number. This
6972 * means that the original inode was deleted and new inode
6973 * reused the same inum. So we have to treat the old inode as
6974 * deleted and the new one as new.
6975 */
6976 if (sctx->cur_inode_new_gen) {
6977 /*
6978 * First, process the inode as if it was deleted.
6979 */
6980 if (old_nlinks > 0) {
6981 sctx->cur_inode_gen = right_gen;
6982 sctx->cur_inode_new = false;
6983 sctx->cur_inode_deleted = true;
6984 sctx->cur_inode_size = btrfs_inode_size(
6985 sctx->right_path->nodes[0], right_ii);
6986 sctx->cur_inode_mode = btrfs_inode_mode(
6987 sctx->right_path->nodes[0], right_ii);
6988 ret = process_all_refs(sctx,
6989 BTRFS_COMPARE_TREE_DELETED);
6990 if (ret < 0)
6991 goto out;
6992 }
6993
6994 /*
6995 * Now process the inode as if it was new.
6996 */
6997 if (new_nlinks > 0) {
6998 sctx->cur_inode_gen = left_gen;
6999 sctx->cur_inode_new = true;
7000 sctx->cur_inode_deleted = false;
7001 sctx->cur_inode_size = btrfs_inode_size(
7002 sctx->left_path->nodes[0],
7003 left_ii);
7004 sctx->cur_inode_mode = btrfs_inode_mode(
7005 sctx->left_path->nodes[0],
7006 left_ii);
7007 sctx->cur_inode_rdev = btrfs_inode_rdev(
7008 sctx->left_path->nodes[0],
7009 left_ii);
7010 ret = send_create_inode_if_needed(sctx);
7011 if (ret < 0)
7012 goto out;
7013
7014 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
7015 if (ret < 0)
7016 goto out;
7017 /*
7018 * Advance send_progress now as we did not get
7019 * into process_recorded_refs_if_needed in the
7020 * new_gen case.
7021 */
7022 sctx->send_progress = sctx->cur_ino + 1;
7023
7024 /*
7025 * Now process all extents and xattrs of the
7026 * inode as if they were all new.
7027 */
7028 ret = process_all_extents(sctx);
7029 if (ret < 0)
7030 goto out;
7031 ret = process_all_new_xattrs(sctx);
7032 if (ret < 0)
7033 goto out;
7034 }
7035 } else {
7036 sctx->cur_inode_gen = left_gen;
7037 sctx->cur_inode_new = false;
7038 sctx->cur_inode_new_gen = false;
7039 sctx->cur_inode_deleted = false;
7040 sctx->cur_inode_size = btrfs_inode_size(
7041 sctx->left_path->nodes[0], left_ii);
7042 sctx->cur_inode_mode = btrfs_inode_mode(
7043 sctx->left_path->nodes[0], left_ii);
7044 }
7045 }
7046
7047 out:
7048 return ret;
7049 }
7050
7051 /*
7052 * We have to process new refs before deleted refs, but compare_trees gives us
7053 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7054 * first and later process them in process_recorded_refs.
7055 * For the cur_inode_new_gen case, we skip recording completely because
7056 * changed_inode did already initiate processing of refs. The reason for this is
7057 * that in this case, compare_tree actually compares the refs of 2 different
7058 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7059 * refs of the right tree as deleted and all refs of the left tree as new.
7060 */
changed_ref(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7061 static int changed_ref(struct send_ctx *sctx,
7062 enum btrfs_compare_tree_result result)
7063 {
7064 int ret = 0;
7065
7066 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7067 inconsistent_snapshot_error(sctx, result, "reference");
7068 return -EIO;
7069 }
7070
7071 if (!sctx->cur_inode_new_gen &&
7072 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7073 if (result == BTRFS_COMPARE_TREE_NEW)
7074 ret = record_new_ref(sctx);
7075 else if (result == BTRFS_COMPARE_TREE_DELETED)
7076 ret = record_deleted_ref(sctx);
7077 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7078 ret = record_changed_ref(sctx);
7079 }
7080
7081 return ret;
7082 }
7083
7084 /*
7085 * Process new/deleted/changed xattrs. We skip processing in the
7086 * cur_inode_new_gen case because changed_inode did already initiate processing
7087 * of xattrs. The reason is the same as in changed_ref
7088 */
changed_xattr(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7089 static int changed_xattr(struct send_ctx *sctx,
7090 enum btrfs_compare_tree_result result)
7091 {
7092 int ret = 0;
7093
7094 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7095 inconsistent_snapshot_error(sctx, result, "xattr");
7096 return -EIO;
7097 }
7098
7099 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7100 if (result == BTRFS_COMPARE_TREE_NEW)
7101 ret = process_new_xattr(sctx);
7102 else if (result == BTRFS_COMPARE_TREE_DELETED)
7103 ret = process_deleted_xattr(sctx);
7104 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7105 ret = process_changed_xattr(sctx);
7106 }
7107
7108 return ret;
7109 }
7110
7111 /*
7112 * Process new/deleted/changed extents. We skip processing in the
7113 * cur_inode_new_gen case because changed_inode did already initiate processing
7114 * of extents. The reason is the same as in changed_ref
7115 */
changed_extent(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7116 static int changed_extent(struct send_ctx *sctx,
7117 enum btrfs_compare_tree_result result)
7118 {
7119 int ret = 0;
7120
7121 /*
7122 * We have found an extent item that changed without the inode item
7123 * having changed. This can happen either after relocation (where the
7124 * disk_bytenr of an extent item is replaced at
7125 * relocation.c:replace_file_extents()) or after deduplication into a
7126 * file in both the parent and send snapshots (where an extent item can
7127 * get modified or replaced with a new one). Note that deduplication
7128 * updates the inode item, but it only changes the iversion (sequence
7129 * field in the inode item) of the inode, so if a file is deduplicated
7130 * the same amount of times in both the parent and send snapshots, its
7131 * iversion becomes the same in both snapshots, whence the inode item is
7132 * the same on both snapshots.
7133 */
7134 if (sctx->cur_ino != sctx->cmp_key->objectid)
7135 return 0;
7136
7137 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7138 if (result != BTRFS_COMPARE_TREE_DELETED)
7139 ret = process_extent(sctx, sctx->left_path,
7140 sctx->cmp_key);
7141 }
7142
7143 return ret;
7144 }
7145
changed_verity(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7146 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7147 {
7148 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7149 if (result == BTRFS_COMPARE_TREE_NEW)
7150 sctx->cur_inode_needs_verity = true;
7151 }
7152 return 0;
7153 }
7154
dir_changed(struct send_ctx * sctx,u64 dir)7155 static int dir_changed(struct send_ctx *sctx, u64 dir)
7156 {
7157 u64 orig_gen, new_gen;
7158 int ret;
7159
7160 ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7161 if (ret)
7162 return ret;
7163
7164 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7165 if (ret)
7166 return ret;
7167
7168 return (orig_gen != new_gen) ? 1 : 0;
7169 }
7170
compare_refs(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)7171 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7172 struct btrfs_key *key)
7173 {
7174 struct btrfs_inode_extref *extref;
7175 struct extent_buffer *leaf;
7176 u64 dirid = 0, last_dirid = 0;
7177 unsigned long ptr;
7178 u32 item_size;
7179 u32 cur_offset = 0;
7180 int ref_name_len;
7181 int ret = 0;
7182
7183 /* Easy case, just check this one dirid */
7184 if (key->type == BTRFS_INODE_REF_KEY) {
7185 dirid = key->offset;
7186
7187 ret = dir_changed(sctx, dirid);
7188 goto out;
7189 }
7190
7191 leaf = path->nodes[0];
7192 item_size = btrfs_item_size(leaf, path->slots[0]);
7193 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7194 while (cur_offset < item_size) {
7195 extref = (struct btrfs_inode_extref *)(ptr +
7196 cur_offset);
7197 dirid = btrfs_inode_extref_parent(leaf, extref);
7198 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7199 cur_offset += ref_name_len + sizeof(*extref);
7200 if (dirid == last_dirid)
7201 continue;
7202 ret = dir_changed(sctx, dirid);
7203 if (ret)
7204 break;
7205 last_dirid = dirid;
7206 }
7207 out:
7208 return ret;
7209 }
7210
7211 /*
7212 * Updates compare related fields in sctx and simply forwards to the actual
7213 * changed_xxx functions.
7214 */
changed_cb(struct btrfs_path * left_path,struct btrfs_path * right_path,struct btrfs_key * key,enum btrfs_compare_tree_result result,struct send_ctx * sctx)7215 static int changed_cb(struct btrfs_path *left_path,
7216 struct btrfs_path *right_path,
7217 struct btrfs_key *key,
7218 enum btrfs_compare_tree_result result,
7219 struct send_ctx *sctx)
7220 {
7221 int ret;
7222
7223 /*
7224 * We can not hold the commit root semaphore here. This is because in
7225 * the case of sending and receiving to the same filesystem, using a
7226 * pipe, could result in a deadlock:
7227 *
7228 * 1) The task running send blocks on the pipe because it's full;
7229 *
7230 * 2) The task running receive, which is the only consumer of the pipe,
7231 * is waiting for a transaction commit (for example due to a space
7232 * reservation when doing a write or triggering a transaction commit
7233 * when creating a subvolume);
7234 *
7235 * 3) The transaction is waiting to write lock the commit root semaphore,
7236 * but can not acquire it since it's being held at 1).
7237 *
7238 * Down this call chain we write to the pipe through kernel_write().
7239 * The same type of problem can also happen when sending to a file that
7240 * is stored in the same filesystem - when reserving space for a write
7241 * into the file, we can trigger a transaction commit.
7242 *
7243 * Our caller has supplied us with clones of leaves from the send and
7244 * parent roots, so we're safe here from a concurrent relocation and
7245 * further reallocation of metadata extents while we are here. Below we
7246 * also assert that the leaves are clones.
7247 */
7248 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7249
7250 /*
7251 * We always have a send root, so left_path is never NULL. We will not
7252 * have a leaf when we have reached the end of the send root but have
7253 * not yet reached the end of the parent root.
7254 */
7255 if (left_path->nodes[0])
7256 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7257 &left_path->nodes[0]->bflags));
7258 /*
7259 * When doing a full send we don't have a parent root, so right_path is
7260 * NULL. When doing an incremental send, we may have reached the end of
7261 * the parent root already, so we don't have a leaf at right_path.
7262 */
7263 if (right_path && right_path->nodes[0])
7264 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7265 &right_path->nodes[0]->bflags));
7266
7267 if (result == BTRFS_COMPARE_TREE_SAME) {
7268 if (key->type == BTRFS_INODE_REF_KEY ||
7269 key->type == BTRFS_INODE_EXTREF_KEY) {
7270 ret = compare_refs(sctx, left_path, key);
7271 if (!ret)
7272 return 0;
7273 if (ret < 0)
7274 return ret;
7275 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7276 return maybe_send_hole(sctx, left_path, key);
7277 } else {
7278 return 0;
7279 }
7280 result = BTRFS_COMPARE_TREE_CHANGED;
7281 }
7282
7283 sctx->left_path = left_path;
7284 sctx->right_path = right_path;
7285 sctx->cmp_key = key;
7286
7287 ret = finish_inode_if_needed(sctx, 0);
7288 if (ret < 0)
7289 goto out;
7290
7291 /* Ignore non-FS objects */
7292 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7293 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7294 goto out;
7295
7296 if (key->type == BTRFS_INODE_ITEM_KEY) {
7297 ret = changed_inode(sctx, result);
7298 } else if (!sctx->ignore_cur_inode) {
7299 if (key->type == BTRFS_INODE_REF_KEY ||
7300 key->type == BTRFS_INODE_EXTREF_KEY)
7301 ret = changed_ref(sctx, result);
7302 else if (key->type == BTRFS_XATTR_ITEM_KEY)
7303 ret = changed_xattr(sctx, result);
7304 else if (key->type == BTRFS_EXTENT_DATA_KEY)
7305 ret = changed_extent(sctx, result);
7306 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7307 key->offset == 0)
7308 ret = changed_verity(sctx, result);
7309 }
7310
7311 out:
7312 return ret;
7313 }
7314
search_key_again(const struct send_ctx * sctx,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key)7315 static int search_key_again(const struct send_ctx *sctx,
7316 struct btrfs_root *root,
7317 struct btrfs_path *path,
7318 const struct btrfs_key *key)
7319 {
7320 int ret;
7321
7322 if (!path->need_commit_sem)
7323 lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7324
7325 /*
7326 * Roots used for send operations are readonly and no one can add,
7327 * update or remove keys from them, so we should be able to find our
7328 * key again. The only exception is deduplication, which can operate on
7329 * readonly roots and add, update or remove keys to/from them - but at
7330 * the moment we don't allow it to run in parallel with send.
7331 */
7332 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7333 ASSERT(ret <= 0);
7334 if (ret > 0) {
7335 btrfs_print_tree(path->nodes[path->lowest_level], false);
7336 btrfs_err(root->fs_info,
7337 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7338 key->objectid, key->type, key->offset,
7339 (root == sctx->parent_root ? "parent" : "send"),
7340 btrfs_root_id(root), path->lowest_level,
7341 path->slots[path->lowest_level]);
7342 return -EUCLEAN;
7343 }
7344
7345 return ret;
7346 }
7347
full_send_tree(struct send_ctx * sctx)7348 static int full_send_tree(struct send_ctx *sctx)
7349 {
7350 int ret;
7351 struct btrfs_root *send_root = sctx->send_root;
7352 struct btrfs_key key;
7353 struct btrfs_fs_info *fs_info = send_root->fs_info;
7354 struct btrfs_path *path;
7355
7356 path = alloc_path_for_send();
7357 if (!path)
7358 return -ENOMEM;
7359 path->reada = READA_FORWARD_ALWAYS;
7360
7361 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7362 key.type = BTRFS_INODE_ITEM_KEY;
7363 key.offset = 0;
7364
7365 down_read(&fs_info->commit_root_sem);
7366 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7367 up_read(&fs_info->commit_root_sem);
7368
7369 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7370 if (ret < 0)
7371 goto out;
7372 if (ret)
7373 goto out_finish;
7374
7375 while (1) {
7376 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7377
7378 ret = changed_cb(path, NULL, &key,
7379 BTRFS_COMPARE_TREE_NEW, sctx);
7380 if (ret < 0)
7381 goto out;
7382
7383 down_read(&fs_info->commit_root_sem);
7384 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7385 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7386 up_read(&fs_info->commit_root_sem);
7387 /*
7388 * A transaction used for relocating a block group was
7389 * committed or is about to finish its commit. Release
7390 * our path (leaf) and restart the search, so that we
7391 * avoid operating on any file extent items that are
7392 * stale, with a disk_bytenr that reflects a pre
7393 * relocation value. This way we avoid as much as
7394 * possible to fallback to regular writes when checking
7395 * if we can clone file ranges.
7396 */
7397 btrfs_release_path(path);
7398 ret = search_key_again(sctx, send_root, path, &key);
7399 if (ret < 0)
7400 goto out;
7401 } else {
7402 up_read(&fs_info->commit_root_sem);
7403 }
7404
7405 ret = btrfs_next_item(send_root, path);
7406 if (ret < 0)
7407 goto out;
7408 if (ret) {
7409 ret = 0;
7410 break;
7411 }
7412 }
7413
7414 out_finish:
7415 ret = finish_inode_if_needed(sctx, 1);
7416
7417 out:
7418 btrfs_free_path(path);
7419 return ret;
7420 }
7421
replace_node_with_clone(struct btrfs_path * path,int level)7422 static int replace_node_with_clone(struct btrfs_path *path, int level)
7423 {
7424 struct extent_buffer *clone;
7425
7426 clone = btrfs_clone_extent_buffer(path->nodes[level]);
7427 if (!clone)
7428 return -ENOMEM;
7429
7430 free_extent_buffer(path->nodes[level]);
7431 path->nodes[level] = clone;
7432
7433 return 0;
7434 }
7435
tree_move_down(struct btrfs_path * path,int * level,u64 reada_min_gen)7436 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7437 {
7438 struct extent_buffer *eb;
7439 struct extent_buffer *parent = path->nodes[*level];
7440 int slot = path->slots[*level];
7441 const int nritems = btrfs_header_nritems(parent);
7442 u64 reada_max;
7443 u64 reada_done = 0;
7444
7445 lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7446 ASSERT(*level != 0);
7447
7448 eb = btrfs_read_node_slot(parent, slot);
7449 if (IS_ERR(eb))
7450 return PTR_ERR(eb);
7451
7452 /*
7453 * Trigger readahead for the next leaves we will process, so that it is
7454 * very likely that when we need them they are already in memory and we
7455 * will not block on disk IO. For nodes we only do readahead for one,
7456 * since the time window between processing nodes is typically larger.
7457 */
7458 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7459
7460 for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7461 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7462 btrfs_readahead_node_child(parent, slot);
7463 reada_done += eb->fs_info->nodesize;
7464 }
7465 }
7466
7467 path->nodes[*level - 1] = eb;
7468 path->slots[*level - 1] = 0;
7469 (*level)--;
7470
7471 if (*level == 0)
7472 return replace_node_with_clone(path, 0);
7473
7474 return 0;
7475 }
7476
tree_move_next_or_upnext(struct btrfs_path * path,int * level,int root_level)7477 static int tree_move_next_or_upnext(struct btrfs_path *path,
7478 int *level, int root_level)
7479 {
7480 int ret = 0;
7481 int nritems;
7482 nritems = btrfs_header_nritems(path->nodes[*level]);
7483
7484 path->slots[*level]++;
7485
7486 while (path->slots[*level] >= nritems) {
7487 if (*level == root_level) {
7488 path->slots[*level] = nritems - 1;
7489 return -1;
7490 }
7491
7492 /* move upnext */
7493 path->slots[*level] = 0;
7494 free_extent_buffer(path->nodes[*level]);
7495 path->nodes[*level] = NULL;
7496 (*level)++;
7497 path->slots[*level]++;
7498
7499 nritems = btrfs_header_nritems(path->nodes[*level]);
7500 ret = 1;
7501 }
7502 return ret;
7503 }
7504
7505 /*
7506 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7507 * or down.
7508 */
tree_advance(struct btrfs_path * path,int * level,int root_level,int allow_down,struct btrfs_key * key,u64 reada_min_gen)7509 static int tree_advance(struct btrfs_path *path,
7510 int *level, int root_level,
7511 int allow_down,
7512 struct btrfs_key *key,
7513 u64 reada_min_gen)
7514 {
7515 int ret;
7516
7517 if (*level == 0 || !allow_down) {
7518 ret = tree_move_next_or_upnext(path, level, root_level);
7519 } else {
7520 ret = tree_move_down(path, level, reada_min_gen);
7521 }
7522
7523 /*
7524 * Even if we have reached the end of a tree, ret is -1, update the key
7525 * anyway, so that in case we need to restart due to a block group
7526 * relocation, we can assert that the last key of the root node still
7527 * exists in the tree.
7528 */
7529 if (*level == 0)
7530 btrfs_item_key_to_cpu(path->nodes[*level], key,
7531 path->slots[*level]);
7532 else
7533 btrfs_node_key_to_cpu(path->nodes[*level], key,
7534 path->slots[*level]);
7535
7536 return ret;
7537 }
7538
tree_compare_item(struct btrfs_path * left_path,struct btrfs_path * right_path,char * tmp_buf)7539 static int tree_compare_item(struct btrfs_path *left_path,
7540 struct btrfs_path *right_path,
7541 char *tmp_buf)
7542 {
7543 int cmp;
7544 int len1, len2;
7545 unsigned long off1, off2;
7546
7547 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7548 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7549 if (len1 != len2)
7550 return 1;
7551
7552 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7553 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7554 right_path->slots[0]);
7555
7556 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7557
7558 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7559 if (cmp)
7560 return 1;
7561 return 0;
7562 }
7563
7564 /*
7565 * A transaction used for relocating a block group was committed or is about to
7566 * finish its commit. Release our paths and restart the search, so that we are
7567 * not using stale extent buffers:
7568 *
7569 * 1) For levels > 0, we are only holding references of extent buffers, without
7570 * any locks on them, which does not prevent them from having been relocated
7571 * and reallocated after the last time we released the commit root semaphore.
7572 * The exception are the root nodes, for which we always have a clone, see
7573 * the comment at btrfs_compare_trees();
7574 *
7575 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7576 * we are safe from the concurrent relocation and reallocation. However they
7577 * can have file extent items with a pre relocation disk_bytenr value, so we
7578 * restart the start from the current commit roots and clone the new leaves so
7579 * that we get the post relocation disk_bytenr values. Not doing so, could
7580 * make us clone the wrong data in case there are new extents using the old
7581 * disk_bytenr that happen to be shared.
7582 */
restart_after_relocation(struct btrfs_path * left_path,struct btrfs_path * right_path,const struct btrfs_key * left_key,const struct btrfs_key * right_key,int left_level,int right_level,const struct send_ctx * sctx)7583 static int restart_after_relocation(struct btrfs_path *left_path,
7584 struct btrfs_path *right_path,
7585 const struct btrfs_key *left_key,
7586 const struct btrfs_key *right_key,
7587 int left_level,
7588 int right_level,
7589 const struct send_ctx *sctx)
7590 {
7591 int root_level;
7592 int ret;
7593
7594 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7595
7596 btrfs_release_path(left_path);
7597 btrfs_release_path(right_path);
7598
7599 /*
7600 * Since keys can not be added or removed to/from our roots because they
7601 * are readonly and we do not allow deduplication to run in parallel
7602 * (which can add, remove or change keys), the layout of the trees should
7603 * not change.
7604 */
7605 left_path->lowest_level = left_level;
7606 ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7607 if (ret < 0)
7608 return ret;
7609
7610 right_path->lowest_level = right_level;
7611 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7612 if (ret < 0)
7613 return ret;
7614
7615 /*
7616 * If the lowest level nodes are leaves, clone them so that they can be
7617 * safely used by changed_cb() while not under the protection of the
7618 * commit root semaphore, even if relocation and reallocation happens in
7619 * parallel.
7620 */
7621 if (left_level == 0) {
7622 ret = replace_node_with_clone(left_path, 0);
7623 if (ret < 0)
7624 return ret;
7625 }
7626
7627 if (right_level == 0) {
7628 ret = replace_node_with_clone(right_path, 0);
7629 if (ret < 0)
7630 return ret;
7631 }
7632
7633 /*
7634 * Now clone the root nodes (unless they happen to be the leaves we have
7635 * already cloned). This is to protect against concurrent snapshotting of
7636 * the send and parent roots (see the comment at btrfs_compare_trees()).
7637 */
7638 root_level = btrfs_header_level(sctx->send_root->commit_root);
7639 if (root_level > 0) {
7640 ret = replace_node_with_clone(left_path, root_level);
7641 if (ret < 0)
7642 return ret;
7643 }
7644
7645 root_level = btrfs_header_level(sctx->parent_root->commit_root);
7646 if (root_level > 0) {
7647 ret = replace_node_with_clone(right_path, root_level);
7648 if (ret < 0)
7649 return ret;
7650 }
7651
7652 return 0;
7653 }
7654
7655 /*
7656 * This function compares two trees and calls the provided callback for
7657 * every changed/new/deleted item it finds.
7658 * If shared tree blocks are encountered, whole subtrees are skipped, making
7659 * the compare pretty fast on snapshotted subvolumes.
7660 *
7661 * This currently works on commit roots only. As commit roots are read only,
7662 * we don't do any locking. The commit roots are protected with transactions.
7663 * Transactions are ended and rejoined when a commit is tried in between.
7664 *
7665 * This function checks for modifications done to the trees while comparing.
7666 * If it detects a change, it aborts immediately.
7667 */
btrfs_compare_trees(struct btrfs_root * left_root,struct btrfs_root * right_root,struct send_ctx * sctx)7668 static int btrfs_compare_trees(struct btrfs_root *left_root,
7669 struct btrfs_root *right_root, struct send_ctx *sctx)
7670 {
7671 struct btrfs_fs_info *fs_info = left_root->fs_info;
7672 int ret;
7673 int cmp;
7674 struct btrfs_path *left_path = NULL;
7675 struct btrfs_path *right_path = NULL;
7676 struct btrfs_key left_key;
7677 struct btrfs_key right_key;
7678 char *tmp_buf = NULL;
7679 int left_root_level;
7680 int right_root_level;
7681 int left_level;
7682 int right_level;
7683 int left_end_reached = 0;
7684 int right_end_reached = 0;
7685 int advance_left = 0;
7686 int advance_right = 0;
7687 u64 left_blockptr;
7688 u64 right_blockptr;
7689 u64 left_gen;
7690 u64 right_gen;
7691 u64 reada_min_gen;
7692
7693 left_path = btrfs_alloc_path();
7694 if (!left_path) {
7695 ret = -ENOMEM;
7696 goto out;
7697 }
7698 right_path = btrfs_alloc_path();
7699 if (!right_path) {
7700 ret = -ENOMEM;
7701 goto out;
7702 }
7703
7704 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7705 if (!tmp_buf) {
7706 ret = -ENOMEM;
7707 goto out;
7708 }
7709
7710 left_path->search_commit_root = 1;
7711 left_path->skip_locking = 1;
7712 right_path->search_commit_root = 1;
7713 right_path->skip_locking = 1;
7714
7715 /*
7716 * Strategy: Go to the first items of both trees. Then do
7717 *
7718 * If both trees are at level 0
7719 * Compare keys of current items
7720 * If left < right treat left item as new, advance left tree
7721 * and repeat
7722 * If left > right treat right item as deleted, advance right tree
7723 * and repeat
7724 * If left == right do deep compare of items, treat as changed if
7725 * needed, advance both trees and repeat
7726 * If both trees are at the same level but not at level 0
7727 * Compare keys of current nodes/leafs
7728 * If left < right advance left tree and repeat
7729 * If left > right advance right tree and repeat
7730 * If left == right compare blockptrs of the next nodes/leafs
7731 * If they match advance both trees but stay at the same level
7732 * and repeat
7733 * If they don't match advance both trees while allowing to go
7734 * deeper and repeat
7735 * If tree levels are different
7736 * Advance the tree that needs it and repeat
7737 *
7738 * Advancing a tree means:
7739 * If we are at level 0, try to go to the next slot. If that's not
7740 * possible, go one level up and repeat. Stop when we found a level
7741 * where we could go to the next slot. We may at this point be on a
7742 * node or a leaf.
7743 *
7744 * If we are not at level 0 and not on shared tree blocks, go one
7745 * level deeper.
7746 *
7747 * If we are not at level 0 and on shared tree blocks, go one slot to
7748 * the right if possible or go up and right.
7749 */
7750
7751 down_read(&fs_info->commit_root_sem);
7752 left_level = btrfs_header_level(left_root->commit_root);
7753 left_root_level = left_level;
7754 /*
7755 * We clone the root node of the send and parent roots to prevent races
7756 * with snapshot creation of these roots. Snapshot creation COWs the
7757 * root node of a tree, so after the transaction is committed the old
7758 * extent can be reallocated while this send operation is still ongoing.
7759 * So we clone them, under the commit root semaphore, to be race free.
7760 */
7761 left_path->nodes[left_level] =
7762 btrfs_clone_extent_buffer(left_root->commit_root);
7763 if (!left_path->nodes[left_level]) {
7764 ret = -ENOMEM;
7765 goto out_unlock;
7766 }
7767
7768 right_level = btrfs_header_level(right_root->commit_root);
7769 right_root_level = right_level;
7770 right_path->nodes[right_level] =
7771 btrfs_clone_extent_buffer(right_root->commit_root);
7772 if (!right_path->nodes[right_level]) {
7773 ret = -ENOMEM;
7774 goto out_unlock;
7775 }
7776 /*
7777 * Our right root is the parent root, while the left root is the "send"
7778 * root. We know that all new nodes/leaves in the left root must have
7779 * a generation greater than the right root's generation, so we trigger
7780 * readahead for those nodes and leaves of the left root, as we know we
7781 * will need to read them at some point.
7782 */
7783 reada_min_gen = btrfs_header_generation(right_root->commit_root);
7784
7785 if (left_level == 0)
7786 btrfs_item_key_to_cpu(left_path->nodes[left_level],
7787 &left_key, left_path->slots[left_level]);
7788 else
7789 btrfs_node_key_to_cpu(left_path->nodes[left_level],
7790 &left_key, left_path->slots[left_level]);
7791 if (right_level == 0)
7792 btrfs_item_key_to_cpu(right_path->nodes[right_level],
7793 &right_key, right_path->slots[right_level]);
7794 else
7795 btrfs_node_key_to_cpu(right_path->nodes[right_level],
7796 &right_key, right_path->slots[right_level]);
7797
7798 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7799
7800 while (1) {
7801 if (need_resched() ||
7802 rwsem_is_contended(&fs_info->commit_root_sem)) {
7803 up_read(&fs_info->commit_root_sem);
7804 cond_resched();
7805 down_read(&fs_info->commit_root_sem);
7806 }
7807
7808 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7809 ret = restart_after_relocation(left_path, right_path,
7810 &left_key, &right_key,
7811 left_level, right_level,
7812 sctx);
7813 if (ret < 0)
7814 goto out_unlock;
7815 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7816 }
7817
7818 if (advance_left && !left_end_reached) {
7819 ret = tree_advance(left_path, &left_level,
7820 left_root_level,
7821 advance_left != ADVANCE_ONLY_NEXT,
7822 &left_key, reada_min_gen);
7823 if (ret == -1)
7824 left_end_reached = ADVANCE;
7825 else if (ret < 0)
7826 goto out_unlock;
7827 advance_left = 0;
7828 }
7829 if (advance_right && !right_end_reached) {
7830 ret = tree_advance(right_path, &right_level,
7831 right_root_level,
7832 advance_right != ADVANCE_ONLY_NEXT,
7833 &right_key, reada_min_gen);
7834 if (ret == -1)
7835 right_end_reached = ADVANCE;
7836 else if (ret < 0)
7837 goto out_unlock;
7838 advance_right = 0;
7839 }
7840
7841 if (left_end_reached && right_end_reached) {
7842 ret = 0;
7843 goto out_unlock;
7844 } else if (left_end_reached) {
7845 if (right_level == 0) {
7846 up_read(&fs_info->commit_root_sem);
7847 ret = changed_cb(left_path, right_path,
7848 &right_key,
7849 BTRFS_COMPARE_TREE_DELETED,
7850 sctx);
7851 if (ret < 0)
7852 goto out;
7853 down_read(&fs_info->commit_root_sem);
7854 }
7855 advance_right = ADVANCE;
7856 continue;
7857 } else if (right_end_reached) {
7858 if (left_level == 0) {
7859 up_read(&fs_info->commit_root_sem);
7860 ret = changed_cb(left_path, right_path,
7861 &left_key,
7862 BTRFS_COMPARE_TREE_NEW,
7863 sctx);
7864 if (ret < 0)
7865 goto out;
7866 down_read(&fs_info->commit_root_sem);
7867 }
7868 advance_left = ADVANCE;
7869 continue;
7870 }
7871
7872 if (left_level == 0 && right_level == 0) {
7873 up_read(&fs_info->commit_root_sem);
7874 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7875 if (cmp < 0) {
7876 ret = changed_cb(left_path, right_path,
7877 &left_key,
7878 BTRFS_COMPARE_TREE_NEW,
7879 sctx);
7880 advance_left = ADVANCE;
7881 } else if (cmp > 0) {
7882 ret = changed_cb(left_path, right_path,
7883 &right_key,
7884 BTRFS_COMPARE_TREE_DELETED,
7885 sctx);
7886 advance_right = ADVANCE;
7887 } else {
7888 enum btrfs_compare_tree_result result;
7889
7890 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7891 ret = tree_compare_item(left_path, right_path,
7892 tmp_buf);
7893 if (ret)
7894 result = BTRFS_COMPARE_TREE_CHANGED;
7895 else
7896 result = BTRFS_COMPARE_TREE_SAME;
7897 ret = changed_cb(left_path, right_path,
7898 &left_key, result, sctx);
7899 advance_left = ADVANCE;
7900 advance_right = ADVANCE;
7901 }
7902
7903 if (ret < 0)
7904 goto out;
7905 down_read(&fs_info->commit_root_sem);
7906 } else if (left_level == right_level) {
7907 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7908 if (cmp < 0) {
7909 advance_left = ADVANCE;
7910 } else if (cmp > 0) {
7911 advance_right = ADVANCE;
7912 } else {
7913 left_blockptr = btrfs_node_blockptr(
7914 left_path->nodes[left_level],
7915 left_path->slots[left_level]);
7916 right_blockptr = btrfs_node_blockptr(
7917 right_path->nodes[right_level],
7918 right_path->slots[right_level]);
7919 left_gen = btrfs_node_ptr_generation(
7920 left_path->nodes[left_level],
7921 left_path->slots[left_level]);
7922 right_gen = btrfs_node_ptr_generation(
7923 right_path->nodes[right_level],
7924 right_path->slots[right_level]);
7925 if (left_blockptr == right_blockptr &&
7926 left_gen == right_gen) {
7927 /*
7928 * As we're on a shared block, don't
7929 * allow to go deeper.
7930 */
7931 advance_left = ADVANCE_ONLY_NEXT;
7932 advance_right = ADVANCE_ONLY_NEXT;
7933 } else {
7934 advance_left = ADVANCE;
7935 advance_right = ADVANCE;
7936 }
7937 }
7938 } else if (left_level < right_level) {
7939 advance_right = ADVANCE;
7940 } else {
7941 advance_left = ADVANCE;
7942 }
7943 }
7944
7945 out_unlock:
7946 up_read(&fs_info->commit_root_sem);
7947 out:
7948 btrfs_free_path(left_path);
7949 btrfs_free_path(right_path);
7950 kvfree(tmp_buf);
7951 return ret;
7952 }
7953
send_subvol(struct send_ctx * sctx)7954 static int send_subvol(struct send_ctx *sctx)
7955 {
7956 int ret;
7957
7958 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7959 ret = send_header(sctx);
7960 if (ret < 0)
7961 goto out;
7962 }
7963
7964 ret = send_subvol_begin(sctx);
7965 if (ret < 0)
7966 goto out;
7967
7968 if (sctx->parent_root) {
7969 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7970 if (ret < 0)
7971 goto out;
7972 ret = finish_inode_if_needed(sctx, 1);
7973 if (ret < 0)
7974 goto out;
7975 } else {
7976 ret = full_send_tree(sctx);
7977 if (ret < 0)
7978 goto out;
7979 }
7980
7981 out:
7982 free_recorded_refs(sctx);
7983 return ret;
7984 }
7985
7986 /*
7987 * If orphan cleanup did remove any orphans from a root, it means the tree
7988 * was modified and therefore the commit root is not the same as the current
7989 * root anymore. This is a problem, because send uses the commit root and
7990 * therefore can see inode items that don't exist in the current root anymore,
7991 * and for example make calls to btrfs_iget, which will do tree lookups based
7992 * on the current root and not on the commit root. Those lookups will fail,
7993 * returning a -ESTALE error, and making send fail with that error. So make
7994 * sure a send does not see any orphans we have just removed, and that it will
7995 * see the same inodes regardless of whether a transaction commit happened
7996 * before it started (meaning that the commit root will be the same as the
7997 * current root) or not.
7998 */
ensure_commit_roots_uptodate(struct send_ctx * sctx)7999 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
8000 {
8001 struct btrfs_root *root = sctx->parent_root;
8002
8003 if (root && root->node != root->commit_root)
8004 return btrfs_commit_current_transaction(root);
8005
8006 for (int i = 0; i < sctx->clone_roots_cnt; i++) {
8007 root = sctx->clone_roots[i].root;
8008 if (root->node != root->commit_root)
8009 return btrfs_commit_current_transaction(root);
8010 }
8011
8012 return 0;
8013 }
8014
8015 /*
8016 * Make sure any existing dellaloc is flushed for any root used by a send
8017 * operation so that we do not miss any data and we do not race with writeback
8018 * finishing and changing a tree while send is using the tree. This could
8019 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
8020 * a send operation then uses the subvolume.
8021 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
8022 */
flush_delalloc_roots(struct send_ctx * sctx)8023 static int flush_delalloc_roots(struct send_ctx *sctx)
8024 {
8025 struct btrfs_root *root = sctx->parent_root;
8026 int ret;
8027 int i;
8028
8029 if (root) {
8030 ret = btrfs_start_delalloc_snapshot(root, false);
8031 if (ret)
8032 return ret;
8033 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8034 }
8035
8036 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8037 root = sctx->clone_roots[i].root;
8038 ret = btrfs_start_delalloc_snapshot(root, false);
8039 if (ret)
8040 return ret;
8041 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8042 }
8043
8044 return 0;
8045 }
8046
btrfs_root_dec_send_in_progress(struct btrfs_root * root)8047 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8048 {
8049 spin_lock(&root->root_item_lock);
8050 root->send_in_progress--;
8051 /*
8052 * Not much left to do, we don't know why it's unbalanced and
8053 * can't blindly reset it to 0.
8054 */
8055 if (root->send_in_progress < 0)
8056 btrfs_err(root->fs_info,
8057 "send_in_progress unbalanced %d root %llu",
8058 root->send_in_progress, btrfs_root_id(root));
8059 spin_unlock(&root->root_item_lock);
8060 }
8061
dedupe_in_progress_warn(const struct btrfs_root * root)8062 static void dedupe_in_progress_warn(const struct btrfs_root *root)
8063 {
8064 btrfs_warn_rl(root->fs_info,
8065 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8066 btrfs_root_id(root), root->dedupe_in_progress);
8067 }
8068
btrfs_ioctl_send(struct btrfs_root * send_root,const struct btrfs_ioctl_send_args * arg)8069 long btrfs_ioctl_send(struct btrfs_root *send_root, const struct btrfs_ioctl_send_args *arg)
8070 {
8071 int ret = 0;
8072 struct btrfs_fs_info *fs_info = send_root->fs_info;
8073 struct btrfs_root *clone_root;
8074 struct send_ctx *sctx = NULL;
8075 u32 i;
8076 u64 *clone_sources_tmp = NULL;
8077 int clone_sources_to_rollback = 0;
8078 size_t alloc_size;
8079 int sort_clone_roots = 0;
8080 struct btrfs_lru_cache_entry *entry;
8081 struct btrfs_lru_cache_entry *tmp;
8082
8083 if (!capable(CAP_SYS_ADMIN))
8084 return -EPERM;
8085
8086 /*
8087 * The subvolume must remain read-only during send, protect against
8088 * making it RW. This also protects against deletion.
8089 */
8090 spin_lock(&send_root->root_item_lock);
8091 /*
8092 * Unlikely but possible, if the subvolume is marked for deletion but
8093 * is slow to remove the directory entry, send can still be started.
8094 */
8095 if (btrfs_root_dead(send_root)) {
8096 spin_unlock(&send_root->root_item_lock);
8097 return -EPERM;
8098 }
8099 /* Userspace tools do the checks and warn the user if it's not RO. */
8100 if (!btrfs_root_readonly(send_root)) {
8101 spin_unlock(&send_root->root_item_lock);
8102 return -EPERM;
8103 }
8104 if (send_root->dedupe_in_progress) {
8105 dedupe_in_progress_warn(send_root);
8106 spin_unlock(&send_root->root_item_lock);
8107 return -EAGAIN;
8108 }
8109 send_root->send_in_progress++;
8110 spin_unlock(&send_root->root_item_lock);
8111
8112 /*
8113 * Check that we don't overflow at later allocations, we request
8114 * clone_sources_count + 1 items, and compare to unsigned long inside
8115 * access_ok. Also set an upper limit for allocation size so this can't
8116 * easily exhaust memory. Max number of clone sources is about 200K.
8117 */
8118 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8119 ret = -EINVAL;
8120 goto out;
8121 }
8122
8123 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8124 ret = -EOPNOTSUPP;
8125 goto out;
8126 }
8127
8128 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8129 if (!sctx) {
8130 ret = -ENOMEM;
8131 goto out;
8132 }
8133
8134 init_path(&sctx->cur_inode_path);
8135 INIT_LIST_HEAD(&sctx->new_refs);
8136 INIT_LIST_HEAD(&sctx->deleted_refs);
8137
8138 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8139 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8140 btrfs_lru_cache_init(&sctx->dir_created_cache,
8141 SEND_MAX_DIR_CREATED_CACHE_SIZE);
8142 /*
8143 * This cache is periodically trimmed to a fixed size elsewhere, see
8144 * cache_dir_utimes() and trim_dir_utimes_cache().
8145 */
8146 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8147
8148 sctx->pending_dir_moves = RB_ROOT;
8149 sctx->waiting_dir_moves = RB_ROOT;
8150 sctx->orphan_dirs = RB_ROOT;
8151 sctx->rbtree_new_refs = RB_ROOT;
8152 sctx->rbtree_deleted_refs = RB_ROOT;
8153
8154 sctx->flags = arg->flags;
8155
8156 if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8157 if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8158 ret = -EPROTO;
8159 goto out;
8160 }
8161 /* Zero means "use the highest version" */
8162 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8163 } else {
8164 sctx->proto = 1;
8165 }
8166 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8167 ret = -EINVAL;
8168 goto out;
8169 }
8170
8171 sctx->send_filp = fget(arg->send_fd);
8172 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
8173 ret = -EBADF;
8174 goto out;
8175 }
8176
8177 sctx->send_root = send_root;
8178 sctx->clone_roots_cnt = arg->clone_sources_count;
8179
8180 if (sctx->proto >= 2) {
8181 u32 send_buf_num_pages;
8182
8183 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8184 sctx->send_buf = vmalloc(sctx->send_max_size);
8185 if (!sctx->send_buf) {
8186 ret = -ENOMEM;
8187 goto out;
8188 }
8189 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8190 sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8191 sizeof(*sctx->send_buf_pages),
8192 GFP_KERNEL);
8193 if (!sctx->send_buf_pages) {
8194 ret = -ENOMEM;
8195 goto out;
8196 }
8197 for (i = 0; i < send_buf_num_pages; i++) {
8198 sctx->send_buf_pages[i] =
8199 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8200 }
8201 } else {
8202 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8203 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8204 }
8205 if (!sctx->send_buf) {
8206 ret = -ENOMEM;
8207 goto out;
8208 }
8209
8210 sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1,
8211 sizeof(*sctx->clone_roots),
8212 GFP_KERNEL);
8213 if (!sctx->clone_roots) {
8214 ret = -ENOMEM;
8215 goto out;
8216 }
8217
8218 alloc_size = array_size(sizeof(*arg->clone_sources),
8219 arg->clone_sources_count);
8220
8221 if (arg->clone_sources_count) {
8222 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8223 if (!clone_sources_tmp) {
8224 ret = -ENOMEM;
8225 goto out;
8226 }
8227
8228 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8229 alloc_size);
8230 if (ret) {
8231 ret = -EFAULT;
8232 goto out;
8233 }
8234
8235 for (i = 0; i < arg->clone_sources_count; i++) {
8236 clone_root = btrfs_get_fs_root(fs_info,
8237 clone_sources_tmp[i], true);
8238 if (IS_ERR(clone_root)) {
8239 ret = PTR_ERR(clone_root);
8240 goto out;
8241 }
8242 spin_lock(&clone_root->root_item_lock);
8243 if (!btrfs_root_readonly(clone_root) ||
8244 btrfs_root_dead(clone_root)) {
8245 spin_unlock(&clone_root->root_item_lock);
8246 btrfs_put_root(clone_root);
8247 ret = -EPERM;
8248 goto out;
8249 }
8250 if (clone_root->dedupe_in_progress) {
8251 dedupe_in_progress_warn(clone_root);
8252 spin_unlock(&clone_root->root_item_lock);
8253 btrfs_put_root(clone_root);
8254 ret = -EAGAIN;
8255 goto out;
8256 }
8257 clone_root->send_in_progress++;
8258 spin_unlock(&clone_root->root_item_lock);
8259
8260 sctx->clone_roots[i].root = clone_root;
8261 clone_sources_to_rollback = i + 1;
8262 }
8263 kvfree(clone_sources_tmp);
8264 clone_sources_tmp = NULL;
8265 }
8266
8267 if (arg->parent_root) {
8268 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8269 true);
8270 if (IS_ERR(sctx->parent_root)) {
8271 ret = PTR_ERR(sctx->parent_root);
8272 goto out;
8273 }
8274
8275 spin_lock(&sctx->parent_root->root_item_lock);
8276 sctx->parent_root->send_in_progress++;
8277 if (!btrfs_root_readonly(sctx->parent_root) ||
8278 btrfs_root_dead(sctx->parent_root)) {
8279 spin_unlock(&sctx->parent_root->root_item_lock);
8280 ret = -EPERM;
8281 goto out;
8282 }
8283 if (sctx->parent_root->dedupe_in_progress) {
8284 dedupe_in_progress_warn(sctx->parent_root);
8285 spin_unlock(&sctx->parent_root->root_item_lock);
8286 ret = -EAGAIN;
8287 goto out;
8288 }
8289 spin_unlock(&sctx->parent_root->root_item_lock);
8290 }
8291
8292 /*
8293 * Clones from send_root are allowed, but only if the clone source
8294 * is behind the current send position. This is checked while searching
8295 * for possible clone sources.
8296 */
8297 sctx->clone_roots[sctx->clone_roots_cnt++].root =
8298 btrfs_grab_root(sctx->send_root);
8299
8300 /* We do a bsearch later */
8301 sort(sctx->clone_roots, sctx->clone_roots_cnt,
8302 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8303 NULL);
8304 sort_clone_roots = 1;
8305
8306 ret = flush_delalloc_roots(sctx);
8307 if (ret)
8308 goto out;
8309
8310 ret = ensure_commit_roots_uptodate(sctx);
8311 if (ret)
8312 goto out;
8313
8314 ret = send_subvol(sctx);
8315 if (ret < 0)
8316 goto out;
8317
8318 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8319 ret = send_utimes(sctx, entry->key, entry->gen);
8320 if (ret < 0)
8321 goto out;
8322 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8323 }
8324
8325 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8326 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8327 if (ret < 0)
8328 goto out;
8329 ret = send_cmd(sctx);
8330 if (ret < 0)
8331 goto out;
8332 }
8333
8334 out:
8335 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8336 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8337 struct rb_node *n;
8338 struct pending_dir_move *pm;
8339
8340 n = rb_first(&sctx->pending_dir_moves);
8341 pm = rb_entry(n, struct pending_dir_move, node);
8342 while (!list_empty(&pm->list)) {
8343 struct pending_dir_move *pm2;
8344
8345 pm2 = list_first_entry(&pm->list,
8346 struct pending_dir_move, list);
8347 free_pending_move(sctx, pm2);
8348 }
8349 free_pending_move(sctx, pm);
8350 }
8351
8352 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8353 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8354 struct rb_node *n;
8355 struct waiting_dir_move *dm;
8356
8357 n = rb_first(&sctx->waiting_dir_moves);
8358 dm = rb_entry(n, struct waiting_dir_move, node);
8359 rb_erase(&dm->node, &sctx->waiting_dir_moves);
8360 kfree(dm);
8361 }
8362
8363 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8364 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8365 struct rb_node *n;
8366 struct orphan_dir_info *odi;
8367
8368 n = rb_first(&sctx->orphan_dirs);
8369 odi = rb_entry(n, struct orphan_dir_info, node);
8370 free_orphan_dir_info(sctx, odi);
8371 }
8372
8373 if (sort_clone_roots) {
8374 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8375 btrfs_root_dec_send_in_progress(
8376 sctx->clone_roots[i].root);
8377 btrfs_put_root(sctx->clone_roots[i].root);
8378 }
8379 } else {
8380 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8381 btrfs_root_dec_send_in_progress(
8382 sctx->clone_roots[i].root);
8383 btrfs_put_root(sctx->clone_roots[i].root);
8384 }
8385
8386 btrfs_root_dec_send_in_progress(send_root);
8387 }
8388 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8389 btrfs_root_dec_send_in_progress(sctx->parent_root);
8390 btrfs_put_root(sctx->parent_root);
8391 }
8392
8393 kvfree(clone_sources_tmp);
8394
8395 if (sctx) {
8396 if (sctx->send_filp)
8397 fput(sctx->send_filp);
8398
8399 kvfree(sctx->clone_roots);
8400 kfree(sctx->send_buf_pages);
8401 kvfree(sctx->send_buf);
8402 kvfree(sctx->verity_descriptor);
8403
8404 close_current_inode(sctx);
8405
8406 btrfs_lru_cache_clear(&sctx->name_cache);
8407 btrfs_lru_cache_clear(&sctx->backref_cache);
8408 btrfs_lru_cache_clear(&sctx->dir_created_cache);
8409 btrfs_lru_cache_clear(&sctx->dir_utimes_cache);
8410
8411 if (sctx->cur_inode_path.buf != sctx->cur_inode_path.inline_buf)
8412 kfree(sctx->cur_inode_path.buf);
8413
8414 kfree(sctx);
8415 }
8416
8417 return ret;
8418 }
8419