1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2
3 /* COMMON Applications Kept Enhanced (CAKE) discipline
4 *
5 * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com>
6 * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk>
7 * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com>
8 * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de>
9 * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk>
10 * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au>
11 *
12 * The CAKE Principles:
13 * (or, how to have your cake and eat it too)
14 *
15 * This is a combination of several shaping, AQM and FQ techniques into one
16 * easy-to-use package:
17 *
18 * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE
19 * equipment and bloated MACs. This operates in deficit mode (as in sch_fq),
20 * eliminating the need for any sort of burst parameter (eg. token bucket
21 * depth). Burst support is limited to that necessary to overcome scheduling
22 * latency.
23 *
24 * - A Diffserv-aware priority queue, giving more priority to certain classes,
25 * up to a specified fraction of bandwidth. Above that bandwidth threshold,
26 * the priority is reduced to avoid starving other tins.
27 *
28 * - Each priority tin has a separate Flow Queue system, to isolate traffic
29 * flows from each other. This prevents a burst on one flow from increasing
30 * the delay to another. Flows are distributed to queues using a
31 * set-associative hash function.
32 *
33 * - Each queue is actively managed by Cobalt, which is a combination of the
34 * Codel and Blue AQM algorithms. This serves flows fairly, and signals
35 * congestion early via ECN (if available) and/or packet drops, to keep
36 * latency low. The codel parameters are auto-tuned based on the bandwidth
37 * setting, as is necessary at low bandwidths.
38 *
39 * The configuration parameters are kept deliberately simple for ease of use.
40 * Everything has sane defaults. Complete generality of configuration is *not*
41 * a goal.
42 *
43 * The priority queue operates according to a weighted DRR scheme, combined with
44 * a bandwidth tracker which reuses the shaper logic to detect which side of the
45 * bandwidth sharing threshold the tin is operating. This determines whether a
46 * priority-based weight (high) or a bandwidth-based weight (low) is used for
47 * that tin in the current pass.
48 *
49 * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly
50 * granted us permission to leverage.
51 */
52
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/kernel.h>
56 #include <linux/jiffies.h>
57 #include <linux/string.h>
58 #include <linux/in.h>
59 #include <linux/errno.h>
60 #include <linux/init.h>
61 #include <linux/skbuff.h>
62 #include <linux/jhash.h>
63 #include <linux/slab.h>
64 #include <linux/vmalloc.h>
65 #include <linux/reciprocal_div.h>
66 #include <net/netlink.h>
67 #include <linux/if_vlan.h>
68 #include <net/gso.h>
69 #include <net/pkt_sched.h>
70 #include <net/pkt_cls.h>
71 #include <net/tcp.h>
72 #include <net/flow_dissector.h>
73
74 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
75 #include <net/netfilter/nf_conntrack_core.h>
76 #endif
77
78 #define CAKE_SET_WAYS (8)
79 #define CAKE_MAX_TINS (8)
80 #define CAKE_QUEUES (1024)
81 #define CAKE_FLOW_MASK 63
82 #define CAKE_FLOW_NAT_FLAG 64
83
84 /* struct cobalt_params - contains codel and blue parameters
85 * @interval: codel initial drop rate
86 * @target: maximum persistent sojourn time & blue update rate
87 * @mtu_time: serialisation delay of maximum-size packet
88 * @p_inc: increment of blue drop probability (0.32 fxp)
89 * @p_dec: decrement of blue drop probability (0.32 fxp)
90 */
91 struct cobalt_params {
92 u64 interval;
93 u64 target;
94 u64 mtu_time;
95 u32 p_inc;
96 u32 p_dec;
97 };
98
99 /* struct cobalt_vars - contains codel and blue variables
100 * @count: codel dropping frequency
101 * @rec_inv_sqrt: reciprocal value of sqrt(count) >> 1
102 * @drop_next: time to drop next packet, or when we dropped last
103 * @blue_timer: Blue time to next drop
104 * @p_drop: BLUE drop probability (0.32 fxp)
105 * @dropping: set if in dropping state
106 * @ecn_marked: set if marked
107 */
108 struct cobalt_vars {
109 u32 count;
110 u32 rec_inv_sqrt;
111 ktime_t drop_next;
112 ktime_t blue_timer;
113 u32 p_drop;
114 bool dropping;
115 bool ecn_marked;
116 };
117
118 enum {
119 CAKE_SET_NONE = 0,
120 CAKE_SET_SPARSE,
121 CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */
122 CAKE_SET_BULK,
123 CAKE_SET_DECAYING
124 };
125
126 struct cake_flow {
127 /* this stuff is all needed per-flow at dequeue time */
128 struct sk_buff *head;
129 struct sk_buff *tail;
130 struct list_head flowchain;
131 s32 deficit;
132 u32 dropped;
133 struct cobalt_vars cvars;
134 u16 srchost; /* index into cake_host table */
135 u16 dsthost;
136 u8 set;
137 }; /* please try to keep this structure <= 64 bytes */
138
139 struct cake_host {
140 u32 srchost_tag;
141 u32 dsthost_tag;
142 u16 srchost_bulk_flow_count;
143 u16 dsthost_bulk_flow_count;
144 };
145
146 struct cake_heap_entry {
147 u16 t:3, b:10;
148 };
149
150 struct cake_tin_data {
151 struct cake_flow flows[CAKE_QUEUES];
152 u32 backlogs[CAKE_QUEUES];
153 u32 tags[CAKE_QUEUES]; /* for set association */
154 u16 overflow_idx[CAKE_QUEUES];
155 struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */
156 u16 flow_quantum;
157
158 struct cobalt_params cparams;
159 u32 drop_overlimit;
160 u16 bulk_flow_count;
161 u16 sparse_flow_count;
162 u16 decaying_flow_count;
163 u16 unresponsive_flow_count;
164
165 u32 max_skblen;
166
167 struct list_head new_flows;
168 struct list_head old_flows;
169 struct list_head decaying_flows;
170
171 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
172 ktime_t time_next_packet;
173 u64 tin_rate_ns;
174 u64 tin_rate_bps;
175 u16 tin_rate_shft;
176
177 u16 tin_quantum;
178 s32 tin_deficit;
179 u32 tin_backlog;
180 u32 tin_dropped;
181 u32 tin_ecn_mark;
182
183 u32 packets;
184 u64 bytes;
185
186 u32 ack_drops;
187
188 /* moving averages */
189 u64 avge_delay;
190 u64 peak_delay;
191 u64 base_delay;
192
193 /* hash function stats */
194 u32 way_directs;
195 u32 way_hits;
196 u32 way_misses;
197 u32 way_collisions;
198 }; /* number of tins is small, so size of this struct doesn't matter much */
199
200 struct cake_sched_data {
201 struct tcf_proto __rcu *filter_list; /* optional external classifier */
202 struct tcf_block *block;
203 struct cake_tin_data *tins;
204
205 struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS];
206 u16 overflow_timeout;
207
208 u16 tin_cnt;
209 u8 tin_mode;
210 u8 flow_mode;
211 u8 ack_filter;
212 u8 atm_mode;
213
214 u32 fwmark_mask;
215 u16 fwmark_shft;
216
217 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
218 u16 rate_shft;
219 ktime_t time_next_packet;
220 ktime_t failsafe_next_packet;
221 u64 rate_ns;
222 u64 rate_bps;
223 u16 rate_flags;
224 s16 rate_overhead;
225 u16 rate_mpu;
226 u64 interval;
227 u64 target;
228
229 /* resource tracking */
230 u32 buffer_used;
231 u32 buffer_max_used;
232 u32 buffer_limit;
233 u32 buffer_config_limit;
234
235 /* indices for dequeue */
236 u16 cur_tin;
237 u16 cur_flow;
238
239 struct qdisc_watchdog watchdog;
240 const u8 *tin_index;
241 const u8 *tin_order;
242
243 /* bandwidth capacity estimate */
244 ktime_t last_packet_time;
245 ktime_t avg_window_begin;
246 u64 avg_packet_interval;
247 u64 avg_window_bytes;
248 u64 avg_peak_bandwidth;
249 ktime_t last_reconfig_time;
250
251 /* packet length stats */
252 u32 avg_netoff;
253 u16 max_netlen;
254 u16 max_adjlen;
255 u16 min_netlen;
256 u16 min_adjlen;
257 };
258
259 enum {
260 CAKE_FLAG_OVERHEAD = BIT(0),
261 CAKE_FLAG_AUTORATE_INGRESS = BIT(1),
262 CAKE_FLAG_INGRESS = BIT(2),
263 CAKE_FLAG_WASH = BIT(3),
264 CAKE_FLAG_SPLIT_GSO = BIT(4)
265 };
266
267 /* COBALT operates the Codel and BLUE algorithms in parallel, in order to
268 * obtain the best features of each. Codel is excellent on flows which
269 * respond to congestion signals in a TCP-like way. BLUE is more effective on
270 * unresponsive flows.
271 */
272
273 struct cobalt_skb_cb {
274 ktime_t enqueue_time;
275 u32 adjusted_len;
276 };
277
us_to_ns(u64 us)278 static u64 us_to_ns(u64 us)
279 {
280 return us * NSEC_PER_USEC;
281 }
282
get_cobalt_cb(const struct sk_buff * skb)283 static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb)
284 {
285 qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb));
286 return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data;
287 }
288
cobalt_get_enqueue_time(const struct sk_buff * skb)289 static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb)
290 {
291 return get_cobalt_cb(skb)->enqueue_time;
292 }
293
cobalt_set_enqueue_time(struct sk_buff * skb,ktime_t now)294 static void cobalt_set_enqueue_time(struct sk_buff *skb,
295 ktime_t now)
296 {
297 get_cobalt_cb(skb)->enqueue_time = now;
298 }
299
300 static u16 quantum_div[CAKE_QUEUES + 1] = {0};
301
302 /* Diffserv lookup tables */
303
304 static const u8 precedence[] = {
305 0, 0, 0, 0, 0, 0, 0, 0,
306 1, 1, 1, 1, 1, 1, 1, 1,
307 2, 2, 2, 2, 2, 2, 2, 2,
308 3, 3, 3, 3, 3, 3, 3, 3,
309 4, 4, 4, 4, 4, 4, 4, 4,
310 5, 5, 5, 5, 5, 5, 5, 5,
311 6, 6, 6, 6, 6, 6, 6, 6,
312 7, 7, 7, 7, 7, 7, 7, 7,
313 };
314
315 static const u8 diffserv8[] = {
316 2, 0, 1, 2, 4, 2, 2, 2,
317 1, 2, 1, 2, 1, 2, 1, 2,
318 5, 2, 4, 2, 4, 2, 4, 2,
319 3, 2, 3, 2, 3, 2, 3, 2,
320 6, 2, 3, 2, 3, 2, 3, 2,
321 6, 2, 2, 2, 6, 2, 6, 2,
322 7, 2, 2, 2, 2, 2, 2, 2,
323 7, 2, 2, 2, 2, 2, 2, 2,
324 };
325
326 static const u8 diffserv4[] = {
327 0, 1, 0, 0, 2, 0, 0, 0,
328 1, 0, 0, 0, 0, 0, 0, 0,
329 2, 0, 2, 0, 2, 0, 2, 0,
330 2, 0, 2, 0, 2, 0, 2, 0,
331 3, 0, 2, 0, 2, 0, 2, 0,
332 3, 0, 0, 0, 3, 0, 3, 0,
333 3, 0, 0, 0, 0, 0, 0, 0,
334 3, 0, 0, 0, 0, 0, 0, 0,
335 };
336
337 static const u8 diffserv3[] = {
338 0, 1, 0, 0, 2, 0, 0, 0,
339 1, 0, 0, 0, 0, 0, 0, 0,
340 0, 0, 0, 0, 0, 0, 0, 0,
341 0, 0, 0, 0, 0, 0, 0, 0,
342 0, 0, 0, 0, 0, 0, 0, 0,
343 0, 0, 0, 0, 2, 0, 2, 0,
344 2, 0, 0, 0, 0, 0, 0, 0,
345 2, 0, 0, 0, 0, 0, 0, 0,
346 };
347
348 static const u8 besteffort[] = {
349 0, 0, 0, 0, 0, 0, 0, 0,
350 0, 0, 0, 0, 0, 0, 0, 0,
351 0, 0, 0, 0, 0, 0, 0, 0,
352 0, 0, 0, 0, 0, 0, 0, 0,
353 0, 0, 0, 0, 0, 0, 0, 0,
354 0, 0, 0, 0, 0, 0, 0, 0,
355 0, 0, 0, 0, 0, 0, 0, 0,
356 0, 0, 0, 0, 0, 0, 0, 0,
357 };
358
359 /* tin priority order for stats dumping */
360
361 static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7};
362 static const u8 bulk_order[] = {1, 0, 2, 3};
363
364 /* There is a big difference in timing between the accurate values placed in the
365 * cache and the approximations given by a single Newton step for small count
366 * values, particularly when stepping from count 1 to 2 or vice versa. Hence,
367 * these values are calculated using eight Newton steps, using the
368 * implementation below. Above 16, a single Newton step gives sufficient
369 * accuracy in either direction, given the precision stored.
370 *
371 * The magnitude of the error when stepping up to count 2 is such as to give the
372 * value that *should* have been produced at count 4.
373 */
374
375 #define REC_INV_SQRT_CACHE (16)
376 static const u32 inv_sqrt_cache[REC_INV_SQRT_CACHE] = {
377 ~0, ~0, 3037000500, 2479700525,
378 2147483647, 1920767767, 1753413056, 1623345051,
379 1518500250, 1431655765, 1358187914, 1294981364,
380 1239850263, 1191209601, 1147878294, 1108955788
381 };
382
383 /* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
384 * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
385 *
386 * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
387 */
388
cobalt_newton_step(struct cobalt_vars * vars)389 static void cobalt_newton_step(struct cobalt_vars *vars)
390 {
391 u32 invsqrt, invsqrt2;
392 u64 val;
393
394 invsqrt = vars->rec_inv_sqrt;
395 invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
396 val = (3LL << 32) - ((u64)vars->count * invsqrt2);
397
398 val >>= 2; /* avoid overflow in following multiply */
399 val = (val * invsqrt) >> (32 - 2 + 1);
400
401 vars->rec_inv_sqrt = val;
402 }
403
cobalt_invsqrt(struct cobalt_vars * vars)404 static void cobalt_invsqrt(struct cobalt_vars *vars)
405 {
406 if (vars->count < REC_INV_SQRT_CACHE)
407 vars->rec_inv_sqrt = inv_sqrt_cache[vars->count];
408 else
409 cobalt_newton_step(vars);
410 }
411
cobalt_vars_init(struct cobalt_vars * vars)412 static void cobalt_vars_init(struct cobalt_vars *vars)
413 {
414 memset(vars, 0, sizeof(*vars));
415 }
416
417 /* CoDel control_law is t + interval/sqrt(count)
418 * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
419 * both sqrt() and divide operation.
420 */
cobalt_control(ktime_t t,u64 interval,u32 rec_inv_sqrt)421 static ktime_t cobalt_control(ktime_t t,
422 u64 interval,
423 u32 rec_inv_sqrt)
424 {
425 return ktime_add_ns(t, reciprocal_scale(interval,
426 rec_inv_sqrt));
427 }
428
429 /* Call this when a packet had to be dropped due to queue overflow. Returns
430 * true if the BLUE state was quiescent before but active after this call.
431 */
cobalt_queue_full(struct cobalt_vars * vars,struct cobalt_params * p,ktime_t now)432 static bool cobalt_queue_full(struct cobalt_vars *vars,
433 struct cobalt_params *p,
434 ktime_t now)
435 {
436 bool up = false;
437
438 if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
439 up = !vars->p_drop;
440 vars->p_drop += p->p_inc;
441 if (vars->p_drop < p->p_inc)
442 vars->p_drop = ~0;
443 vars->blue_timer = now;
444 }
445 vars->dropping = true;
446 vars->drop_next = now;
447 if (!vars->count)
448 vars->count = 1;
449
450 return up;
451 }
452
453 /* Call this when the queue was serviced but turned out to be empty. Returns
454 * true if the BLUE state was active before but quiescent after this call.
455 */
cobalt_queue_empty(struct cobalt_vars * vars,struct cobalt_params * p,ktime_t now)456 static bool cobalt_queue_empty(struct cobalt_vars *vars,
457 struct cobalt_params *p,
458 ktime_t now)
459 {
460 bool down = false;
461
462 if (vars->p_drop &&
463 ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
464 if (vars->p_drop < p->p_dec)
465 vars->p_drop = 0;
466 else
467 vars->p_drop -= p->p_dec;
468 vars->blue_timer = now;
469 down = !vars->p_drop;
470 }
471 vars->dropping = false;
472
473 if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) {
474 vars->count--;
475 cobalt_invsqrt(vars);
476 vars->drop_next = cobalt_control(vars->drop_next,
477 p->interval,
478 vars->rec_inv_sqrt);
479 }
480
481 return down;
482 }
483
484 /* Call this with a freshly dequeued packet for possible congestion marking.
485 * Returns true as an instruction to drop the packet, false for delivery.
486 */
cobalt_should_drop(struct cobalt_vars * vars,struct cobalt_params * p,ktime_t now,struct sk_buff * skb,u32 bulk_flows)487 static bool cobalt_should_drop(struct cobalt_vars *vars,
488 struct cobalt_params *p,
489 ktime_t now,
490 struct sk_buff *skb,
491 u32 bulk_flows)
492 {
493 bool next_due, over_target, drop = false;
494 ktime_t schedule;
495 u64 sojourn;
496
497 /* The 'schedule' variable records, in its sign, whether 'now' is before or
498 * after 'drop_next'. This allows 'drop_next' to be updated before the next
499 * scheduling decision is actually branched, without destroying that
500 * information. Similarly, the first 'schedule' value calculated is preserved
501 * in the boolean 'next_due'.
502 *
503 * As for 'drop_next', we take advantage of the fact that 'interval' is both
504 * the delay between first exceeding 'target' and the first signalling event,
505 * *and* the scaling factor for the signalling frequency. It's therefore very
506 * natural to use a single mechanism for both purposes, and eliminates a
507 * significant amount of reference Codel's spaghetti code. To help with this,
508 * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close
509 * as possible to 1.0 in fixed-point.
510 */
511
512 sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
513 schedule = ktime_sub(now, vars->drop_next);
514 over_target = sojourn > p->target &&
515 sojourn > p->mtu_time * bulk_flows * 2 &&
516 sojourn > p->mtu_time * 4;
517 next_due = vars->count && ktime_to_ns(schedule) >= 0;
518
519 vars->ecn_marked = false;
520
521 if (over_target) {
522 if (!vars->dropping) {
523 vars->dropping = true;
524 vars->drop_next = cobalt_control(now,
525 p->interval,
526 vars->rec_inv_sqrt);
527 }
528 if (!vars->count)
529 vars->count = 1;
530 } else if (vars->dropping) {
531 vars->dropping = false;
532 }
533
534 if (next_due && vars->dropping) {
535 /* Use ECN mark if possible, otherwise drop */
536 drop = !(vars->ecn_marked = INET_ECN_set_ce(skb));
537
538 vars->count++;
539 if (!vars->count)
540 vars->count--;
541 cobalt_invsqrt(vars);
542 vars->drop_next = cobalt_control(vars->drop_next,
543 p->interval,
544 vars->rec_inv_sqrt);
545 schedule = ktime_sub(now, vars->drop_next);
546 } else {
547 while (next_due) {
548 vars->count--;
549 cobalt_invsqrt(vars);
550 vars->drop_next = cobalt_control(vars->drop_next,
551 p->interval,
552 vars->rec_inv_sqrt);
553 schedule = ktime_sub(now, vars->drop_next);
554 next_due = vars->count && ktime_to_ns(schedule) >= 0;
555 }
556 }
557
558 /* Simple BLUE implementation. Lack of ECN is deliberate. */
559 if (vars->p_drop)
560 drop |= (get_random_u32() < vars->p_drop);
561
562 /* Overload the drop_next field as an activity timeout */
563 if (!vars->count)
564 vars->drop_next = ktime_add_ns(now, p->interval);
565 else if (ktime_to_ns(schedule) > 0 && !drop)
566 vars->drop_next = now;
567
568 return drop;
569 }
570
cake_update_flowkeys(struct flow_keys * keys,const struct sk_buff * skb)571 static bool cake_update_flowkeys(struct flow_keys *keys,
572 const struct sk_buff *skb)
573 {
574 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
575 struct nf_conntrack_tuple tuple = {};
576 bool rev = !skb->_nfct, upd = false;
577 __be32 ip;
578
579 if (skb_protocol(skb, true) != htons(ETH_P_IP))
580 return false;
581
582 if (!nf_ct_get_tuple_skb(&tuple, skb))
583 return false;
584
585 ip = rev ? tuple.dst.u3.ip : tuple.src.u3.ip;
586 if (ip != keys->addrs.v4addrs.src) {
587 keys->addrs.v4addrs.src = ip;
588 upd = true;
589 }
590 ip = rev ? tuple.src.u3.ip : tuple.dst.u3.ip;
591 if (ip != keys->addrs.v4addrs.dst) {
592 keys->addrs.v4addrs.dst = ip;
593 upd = true;
594 }
595
596 if (keys->ports.ports) {
597 __be16 port;
598
599 port = rev ? tuple.dst.u.all : tuple.src.u.all;
600 if (port != keys->ports.src) {
601 keys->ports.src = port;
602 upd = true;
603 }
604 port = rev ? tuple.src.u.all : tuple.dst.u.all;
605 if (port != keys->ports.dst) {
606 port = keys->ports.dst;
607 upd = true;
608 }
609 }
610 return upd;
611 #else
612 return false;
613 #endif
614 }
615
616 /* Cake has several subtle multiple bit settings. In these cases you
617 * would be matching triple isolate mode as well.
618 */
619
cake_dsrc(int flow_mode)620 static bool cake_dsrc(int flow_mode)
621 {
622 return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC;
623 }
624
cake_ddst(int flow_mode)625 static bool cake_ddst(int flow_mode)
626 {
627 return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST;
628 }
629
cake_hash(struct cake_tin_data * q,const struct sk_buff * skb,int flow_mode,u16 flow_override,u16 host_override)630 static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb,
631 int flow_mode, u16 flow_override, u16 host_override)
632 {
633 bool hash_flows = (!flow_override && !!(flow_mode & CAKE_FLOW_FLOWS));
634 bool hash_hosts = (!host_override && !!(flow_mode & CAKE_FLOW_HOSTS));
635 bool nat_enabled = !!(flow_mode & CAKE_FLOW_NAT_FLAG);
636 u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0;
637 u16 reduced_hash, srchost_idx, dsthost_idx;
638 struct flow_keys keys, host_keys;
639 bool use_skbhash = skb->l4_hash;
640
641 if (unlikely(flow_mode == CAKE_FLOW_NONE))
642 return 0;
643
644 /* If both overrides are set, or we can use the SKB hash and nat mode is
645 * disabled, we can skip packet dissection entirely. If nat mode is
646 * enabled there's another check below after doing the conntrack lookup.
647 */
648 if ((!hash_flows || (use_skbhash && !nat_enabled)) && !hash_hosts)
649 goto skip_hash;
650
651 skb_flow_dissect_flow_keys(skb, &keys,
652 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
653
654 /* Don't use the SKB hash if we change the lookup keys from conntrack */
655 if (nat_enabled && cake_update_flowkeys(&keys, skb))
656 use_skbhash = false;
657
658 /* If we can still use the SKB hash and don't need the host hash, we can
659 * skip the rest of the hashing procedure
660 */
661 if (use_skbhash && !hash_hosts)
662 goto skip_hash;
663
664 /* flow_hash_from_keys() sorts the addresses by value, so we have
665 * to preserve their order in a separate data structure to treat
666 * src and dst host addresses as independently selectable.
667 */
668 host_keys = keys;
669 host_keys.ports.ports = 0;
670 host_keys.basic.ip_proto = 0;
671 host_keys.keyid.keyid = 0;
672 host_keys.tags.flow_label = 0;
673
674 switch (host_keys.control.addr_type) {
675 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
676 host_keys.addrs.v4addrs.src = 0;
677 dsthost_hash = flow_hash_from_keys(&host_keys);
678 host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
679 host_keys.addrs.v4addrs.dst = 0;
680 srchost_hash = flow_hash_from_keys(&host_keys);
681 break;
682
683 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
684 memset(&host_keys.addrs.v6addrs.src, 0,
685 sizeof(host_keys.addrs.v6addrs.src));
686 dsthost_hash = flow_hash_from_keys(&host_keys);
687 host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
688 memset(&host_keys.addrs.v6addrs.dst, 0,
689 sizeof(host_keys.addrs.v6addrs.dst));
690 srchost_hash = flow_hash_from_keys(&host_keys);
691 break;
692
693 default:
694 dsthost_hash = 0;
695 srchost_hash = 0;
696 }
697
698 /* This *must* be after the above switch, since as a
699 * side-effect it sorts the src and dst addresses.
700 */
701 if (hash_flows && !use_skbhash)
702 flow_hash = flow_hash_from_keys(&keys);
703
704 skip_hash:
705 if (flow_override)
706 flow_hash = flow_override - 1;
707 else if (use_skbhash && (flow_mode & CAKE_FLOW_FLOWS))
708 flow_hash = skb->hash;
709 if (host_override) {
710 dsthost_hash = host_override - 1;
711 srchost_hash = host_override - 1;
712 }
713
714 if (!(flow_mode & CAKE_FLOW_FLOWS)) {
715 if (flow_mode & CAKE_FLOW_SRC_IP)
716 flow_hash ^= srchost_hash;
717
718 if (flow_mode & CAKE_FLOW_DST_IP)
719 flow_hash ^= dsthost_hash;
720 }
721
722 reduced_hash = flow_hash % CAKE_QUEUES;
723
724 /* set-associative hashing */
725 /* fast path if no hash collision (direct lookup succeeds) */
726 if (likely(q->tags[reduced_hash] == flow_hash &&
727 q->flows[reduced_hash].set)) {
728 q->way_directs++;
729 } else {
730 u32 inner_hash = reduced_hash % CAKE_SET_WAYS;
731 u32 outer_hash = reduced_hash - inner_hash;
732 bool allocate_src = false;
733 bool allocate_dst = false;
734 u32 i, k;
735
736 /* check if any active queue in the set is reserved for
737 * this flow.
738 */
739 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
740 i++, k = (k + 1) % CAKE_SET_WAYS) {
741 if (q->tags[outer_hash + k] == flow_hash) {
742 if (i)
743 q->way_hits++;
744
745 if (!q->flows[outer_hash + k].set) {
746 /* need to increment host refcnts */
747 allocate_src = cake_dsrc(flow_mode);
748 allocate_dst = cake_ddst(flow_mode);
749 }
750
751 goto found;
752 }
753 }
754
755 /* no queue is reserved for this flow, look for an
756 * empty one.
757 */
758 for (i = 0; i < CAKE_SET_WAYS;
759 i++, k = (k + 1) % CAKE_SET_WAYS) {
760 if (!q->flows[outer_hash + k].set) {
761 q->way_misses++;
762 allocate_src = cake_dsrc(flow_mode);
763 allocate_dst = cake_ddst(flow_mode);
764 goto found;
765 }
766 }
767
768 /* With no empty queues, default to the original
769 * queue, accept the collision, update the host tags.
770 */
771 q->way_collisions++;
772 allocate_src = cake_dsrc(flow_mode);
773 allocate_dst = cake_ddst(flow_mode);
774
775 if (q->flows[outer_hash + k].set == CAKE_SET_BULK) {
776 if (allocate_src)
777 q->hosts[q->flows[reduced_hash].srchost].srchost_bulk_flow_count--;
778 if (allocate_dst)
779 q->hosts[q->flows[reduced_hash].dsthost].dsthost_bulk_flow_count--;
780 }
781 found:
782 /* reserve queue for future packets in same flow */
783 reduced_hash = outer_hash + k;
784 q->tags[reduced_hash] = flow_hash;
785
786 if (allocate_src) {
787 srchost_idx = srchost_hash % CAKE_QUEUES;
788 inner_hash = srchost_idx % CAKE_SET_WAYS;
789 outer_hash = srchost_idx - inner_hash;
790 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
791 i++, k = (k + 1) % CAKE_SET_WAYS) {
792 if (q->hosts[outer_hash + k].srchost_tag ==
793 srchost_hash)
794 goto found_src;
795 }
796 for (i = 0; i < CAKE_SET_WAYS;
797 i++, k = (k + 1) % CAKE_SET_WAYS) {
798 if (!q->hosts[outer_hash + k].srchost_bulk_flow_count)
799 break;
800 }
801 q->hosts[outer_hash + k].srchost_tag = srchost_hash;
802 found_src:
803 srchost_idx = outer_hash + k;
804 if (q->flows[reduced_hash].set == CAKE_SET_BULK)
805 q->hosts[srchost_idx].srchost_bulk_flow_count++;
806 q->flows[reduced_hash].srchost = srchost_idx;
807 }
808
809 if (allocate_dst) {
810 dsthost_idx = dsthost_hash % CAKE_QUEUES;
811 inner_hash = dsthost_idx % CAKE_SET_WAYS;
812 outer_hash = dsthost_idx - inner_hash;
813 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
814 i++, k = (k + 1) % CAKE_SET_WAYS) {
815 if (q->hosts[outer_hash + k].dsthost_tag ==
816 dsthost_hash)
817 goto found_dst;
818 }
819 for (i = 0; i < CAKE_SET_WAYS;
820 i++, k = (k + 1) % CAKE_SET_WAYS) {
821 if (!q->hosts[outer_hash + k].dsthost_bulk_flow_count)
822 break;
823 }
824 q->hosts[outer_hash + k].dsthost_tag = dsthost_hash;
825 found_dst:
826 dsthost_idx = outer_hash + k;
827 if (q->flows[reduced_hash].set == CAKE_SET_BULK)
828 q->hosts[dsthost_idx].dsthost_bulk_flow_count++;
829 q->flows[reduced_hash].dsthost = dsthost_idx;
830 }
831 }
832
833 return reduced_hash;
834 }
835
836 /* helper functions : might be changed when/if skb use a standard list_head */
837 /* remove one skb from head of slot queue */
838
dequeue_head(struct cake_flow * flow)839 static struct sk_buff *dequeue_head(struct cake_flow *flow)
840 {
841 struct sk_buff *skb = flow->head;
842
843 if (skb) {
844 flow->head = skb->next;
845 skb_mark_not_on_list(skb);
846 }
847
848 return skb;
849 }
850
851 /* add skb to flow queue (tail add) */
852
flow_queue_add(struct cake_flow * flow,struct sk_buff * skb)853 static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb)
854 {
855 if (!flow->head)
856 flow->head = skb;
857 else
858 flow->tail->next = skb;
859 flow->tail = skb;
860 skb->next = NULL;
861 }
862
cake_get_iphdr(const struct sk_buff * skb,struct ipv6hdr * buf)863 static struct iphdr *cake_get_iphdr(const struct sk_buff *skb,
864 struct ipv6hdr *buf)
865 {
866 unsigned int offset = skb_network_offset(skb);
867 struct iphdr *iph;
868
869 iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf);
870
871 if (!iph)
872 return NULL;
873
874 if (iph->version == 4 && iph->protocol == IPPROTO_IPV6)
875 return skb_header_pointer(skb, offset + iph->ihl * 4,
876 sizeof(struct ipv6hdr), buf);
877
878 else if (iph->version == 4)
879 return iph;
880
881 else if (iph->version == 6)
882 return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr),
883 buf);
884
885 return NULL;
886 }
887
cake_get_tcphdr(const struct sk_buff * skb,void * buf,unsigned int bufsize)888 static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb,
889 void *buf, unsigned int bufsize)
890 {
891 unsigned int offset = skb_network_offset(skb);
892 const struct ipv6hdr *ipv6h;
893 const struct tcphdr *tcph;
894 const struct iphdr *iph;
895 struct ipv6hdr _ipv6h;
896 struct tcphdr _tcph;
897
898 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
899
900 if (!ipv6h)
901 return NULL;
902
903 if (ipv6h->version == 4) {
904 iph = (struct iphdr *)ipv6h;
905 offset += iph->ihl * 4;
906
907 /* special-case 6in4 tunnelling, as that is a common way to get
908 * v6 connectivity in the home
909 */
910 if (iph->protocol == IPPROTO_IPV6) {
911 ipv6h = skb_header_pointer(skb, offset,
912 sizeof(_ipv6h), &_ipv6h);
913
914 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
915 return NULL;
916
917 offset += sizeof(struct ipv6hdr);
918
919 } else if (iph->protocol != IPPROTO_TCP) {
920 return NULL;
921 }
922
923 } else if (ipv6h->version == 6) {
924 if (ipv6h->nexthdr != IPPROTO_TCP)
925 return NULL;
926
927 offset += sizeof(struct ipv6hdr);
928 } else {
929 return NULL;
930 }
931
932 tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
933 if (!tcph || tcph->doff < 5)
934 return NULL;
935
936 return skb_header_pointer(skb, offset,
937 min(__tcp_hdrlen(tcph), bufsize), buf);
938 }
939
cake_get_tcpopt(const struct tcphdr * tcph,int code,int * oplen)940 static const void *cake_get_tcpopt(const struct tcphdr *tcph,
941 int code, int *oplen)
942 {
943 /* inspired by tcp_parse_options in tcp_input.c */
944 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
945 const u8 *ptr = (const u8 *)(tcph + 1);
946
947 while (length > 0) {
948 int opcode = *ptr++;
949 int opsize;
950
951 if (opcode == TCPOPT_EOL)
952 break;
953 if (opcode == TCPOPT_NOP) {
954 length--;
955 continue;
956 }
957 if (length < 2)
958 break;
959 opsize = *ptr++;
960 if (opsize < 2 || opsize > length)
961 break;
962
963 if (opcode == code) {
964 *oplen = opsize;
965 return ptr;
966 }
967
968 ptr += opsize - 2;
969 length -= opsize;
970 }
971
972 return NULL;
973 }
974
975 /* Compare two SACK sequences. A sequence is considered greater if it SACKs more
976 * bytes than the other. In the case where both sequences ACKs bytes that the
977 * other doesn't, A is considered greater. DSACKs in A also makes A be
978 * considered greater.
979 *
980 * @return -1, 0 or 1 as normal compare functions
981 */
cake_tcph_sack_compare(const struct tcphdr * tcph_a,const struct tcphdr * tcph_b)982 static int cake_tcph_sack_compare(const struct tcphdr *tcph_a,
983 const struct tcphdr *tcph_b)
984 {
985 const struct tcp_sack_block_wire *sack_a, *sack_b;
986 u32 ack_seq_a = ntohl(tcph_a->ack_seq);
987 u32 bytes_a = 0, bytes_b = 0;
988 int oplen_a, oplen_b;
989 bool first = true;
990
991 sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a);
992 sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b);
993
994 /* pointers point to option contents */
995 oplen_a -= TCPOLEN_SACK_BASE;
996 oplen_b -= TCPOLEN_SACK_BASE;
997
998 if (sack_a && oplen_a >= sizeof(*sack_a) &&
999 (!sack_b || oplen_b < sizeof(*sack_b)))
1000 return -1;
1001 else if (sack_b && oplen_b >= sizeof(*sack_b) &&
1002 (!sack_a || oplen_a < sizeof(*sack_a)))
1003 return 1;
1004 else if ((!sack_a || oplen_a < sizeof(*sack_a)) &&
1005 (!sack_b || oplen_b < sizeof(*sack_b)))
1006 return 0;
1007
1008 while (oplen_a >= sizeof(*sack_a)) {
1009 const struct tcp_sack_block_wire *sack_tmp = sack_b;
1010 u32 start_a = get_unaligned_be32(&sack_a->start_seq);
1011 u32 end_a = get_unaligned_be32(&sack_a->end_seq);
1012 int oplen_tmp = oplen_b;
1013 bool found = false;
1014
1015 /* DSACK; always considered greater to prevent dropping */
1016 if (before(start_a, ack_seq_a))
1017 return -1;
1018
1019 bytes_a += end_a - start_a;
1020
1021 while (oplen_tmp >= sizeof(*sack_tmp)) {
1022 u32 start_b = get_unaligned_be32(&sack_tmp->start_seq);
1023 u32 end_b = get_unaligned_be32(&sack_tmp->end_seq);
1024
1025 /* first time through we count the total size */
1026 if (first)
1027 bytes_b += end_b - start_b;
1028
1029 if (!after(start_b, start_a) && !before(end_b, end_a)) {
1030 found = true;
1031 if (!first)
1032 break;
1033 }
1034 oplen_tmp -= sizeof(*sack_tmp);
1035 sack_tmp++;
1036 }
1037
1038 if (!found)
1039 return -1;
1040
1041 oplen_a -= sizeof(*sack_a);
1042 sack_a++;
1043 first = false;
1044 }
1045
1046 /* If we made it this far, all ranges SACKed by A are covered by B, so
1047 * either the SACKs are equal, or B SACKs more bytes.
1048 */
1049 return bytes_b > bytes_a ? 1 : 0;
1050 }
1051
cake_tcph_get_tstamp(const struct tcphdr * tcph,u32 * tsval,u32 * tsecr)1052 static void cake_tcph_get_tstamp(const struct tcphdr *tcph,
1053 u32 *tsval, u32 *tsecr)
1054 {
1055 const u8 *ptr;
1056 int opsize;
1057
1058 ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize);
1059
1060 if (ptr && opsize == TCPOLEN_TIMESTAMP) {
1061 *tsval = get_unaligned_be32(ptr);
1062 *tsecr = get_unaligned_be32(ptr + 4);
1063 }
1064 }
1065
cake_tcph_may_drop(const struct tcphdr * tcph,u32 tstamp_new,u32 tsecr_new)1066 static bool cake_tcph_may_drop(const struct tcphdr *tcph,
1067 u32 tstamp_new, u32 tsecr_new)
1068 {
1069 /* inspired by tcp_parse_options in tcp_input.c */
1070 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
1071 const u8 *ptr = (const u8 *)(tcph + 1);
1072 u32 tstamp, tsecr;
1073
1074 /* 3 reserved flags must be unset to avoid future breakage
1075 * ACK must be set
1076 * ECE/CWR are handled separately
1077 * All other flags URG/PSH/RST/SYN/FIN must be unset
1078 * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero)
1079 * 0x00C00000 = CWR/ECE (handled separately)
1080 * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000
1081 */
1082 if (((tcp_flag_word(tcph) &
1083 cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK))
1084 return false;
1085
1086 while (length > 0) {
1087 int opcode = *ptr++;
1088 int opsize;
1089
1090 if (opcode == TCPOPT_EOL)
1091 break;
1092 if (opcode == TCPOPT_NOP) {
1093 length--;
1094 continue;
1095 }
1096 if (length < 2)
1097 break;
1098 opsize = *ptr++;
1099 if (opsize < 2 || opsize > length)
1100 break;
1101
1102 switch (opcode) {
1103 case TCPOPT_MD5SIG: /* doesn't influence state */
1104 break;
1105
1106 case TCPOPT_SACK: /* stricter checking performed later */
1107 if (opsize % 8 != 2)
1108 return false;
1109 break;
1110
1111 case TCPOPT_TIMESTAMP:
1112 /* only drop timestamps lower than new */
1113 if (opsize != TCPOLEN_TIMESTAMP)
1114 return false;
1115 tstamp = get_unaligned_be32(ptr);
1116 tsecr = get_unaligned_be32(ptr + 4);
1117 if (after(tstamp, tstamp_new) ||
1118 after(tsecr, tsecr_new))
1119 return false;
1120 break;
1121
1122 case TCPOPT_MSS: /* these should only be set on SYN */
1123 case TCPOPT_WINDOW:
1124 case TCPOPT_SACK_PERM:
1125 case TCPOPT_FASTOPEN:
1126 case TCPOPT_EXP:
1127 default: /* don't drop if any unknown options are present */
1128 return false;
1129 }
1130
1131 ptr += opsize - 2;
1132 length -= opsize;
1133 }
1134
1135 return true;
1136 }
1137
cake_ack_filter(struct cake_sched_data * q,struct cake_flow * flow)1138 static struct sk_buff *cake_ack_filter(struct cake_sched_data *q,
1139 struct cake_flow *flow)
1140 {
1141 bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE;
1142 struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL;
1143 struct sk_buff *skb_check, *skb_prev = NULL;
1144 const struct ipv6hdr *ipv6h, *ipv6h_check;
1145 unsigned char _tcph[64], _tcph_check[64];
1146 const struct tcphdr *tcph, *tcph_check;
1147 const struct iphdr *iph, *iph_check;
1148 struct ipv6hdr _iph, _iph_check;
1149 const struct sk_buff *skb;
1150 int seglen, num_found = 0;
1151 u32 tstamp = 0, tsecr = 0;
1152 __be32 elig_flags = 0;
1153 int sack_comp;
1154
1155 /* no other possible ACKs to filter */
1156 if (flow->head == flow->tail)
1157 return NULL;
1158
1159 skb = flow->tail;
1160 tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph));
1161 iph = cake_get_iphdr(skb, &_iph);
1162 if (!tcph)
1163 return NULL;
1164
1165 cake_tcph_get_tstamp(tcph, &tstamp, &tsecr);
1166
1167 /* the 'triggering' packet need only have the ACK flag set.
1168 * also check that SYN is not set, as there won't be any previous ACKs.
1169 */
1170 if ((tcp_flag_word(tcph) &
1171 (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK)
1172 return NULL;
1173
1174 /* the 'triggering' ACK is at the tail of the queue, we have already
1175 * returned if it is the only packet in the flow. loop through the rest
1176 * of the queue looking for pure ACKs with the same 5-tuple as the
1177 * triggering one.
1178 */
1179 for (skb_check = flow->head;
1180 skb_check && skb_check != skb;
1181 skb_prev = skb_check, skb_check = skb_check->next) {
1182 iph_check = cake_get_iphdr(skb_check, &_iph_check);
1183 tcph_check = cake_get_tcphdr(skb_check, &_tcph_check,
1184 sizeof(_tcph_check));
1185
1186 /* only TCP packets with matching 5-tuple are eligible, and only
1187 * drop safe headers
1188 */
1189 if (!tcph_check || iph->version != iph_check->version ||
1190 tcph_check->source != tcph->source ||
1191 tcph_check->dest != tcph->dest)
1192 continue;
1193
1194 if (iph_check->version == 4) {
1195 if (iph_check->saddr != iph->saddr ||
1196 iph_check->daddr != iph->daddr)
1197 continue;
1198
1199 seglen = iph_totlen(skb, iph_check) -
1200 (4 * iph_check->ihl);
1201 } else if (iph_check->version == 6) {
1202 ipv6h = (struct ipv6hdr *)iph;
1203 ipv6h_check = (struct ipv6hdr *)iph_check;
1204
1205 if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) ||
1206 ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr))
1207 continue;
1208
1209 seglen = ntohs(ipv6h_check->payload_len);
1210 } else {
1211 WARN_ON(1); /* shouldn't happen */
1212 continue;
1213 }
1214
1215 /* If the ECE/CWR flags changed from the previous eligible
1216 * packet in the same flow, we should no longer be dropping that
1217 * previous packet as this would lose information.
1218 */
1219 if (elig_ack && (tcp_flag_word(tcph_check) &
1220 (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) {
1221 elig_ack = NULL;
1222 elig_ack_prev = NULL;
1223 num_found--;
1224 }
1225
1226 /* Check TCP options and flags, don't drop ACKs with segment
1227 * data, and don't drop ACKs with a higher cumulative ACK
1228 * counter than the triggering packet. Check ACK seqno here to
1229 * avoid parsing SACK options of packets we are going to exclude
1230 * anyway.
1231 */
1232 if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) ||
1233 (seglen - __tcp_hdrlen(tcph_check)) != 0 ||
1234 after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq)))
1235 continue;
1236
1237 /* Check SACK options. The triggering packet must SACK more data
1238 * than the ACK under consideration, or SACK the same range but
1239 * have a larger cumulative ACK counter. The latter is a
1240 * pathological case, but is contained in the following check
1241 * anyway, just to be safe.
1242 */
1243 sack_comp = cake_tcph_sack_compare(tcph_check, tcph);
1244
1245 if (sack_comp < 0 ||
1246 (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) &&
1247 sack_comp == 0))
1248 continue;
1249
1250 /* At this point we have found an eligible pure ACK to drop; if
1251 * we are in aggressive mode, we are done. Otherwise, keep
1252 * searching unless this is the second eligible ACK we
1253 * found.
1254 *
1255 * Since we want to drop ACK closest to the head of the queue,
1256 * save the first eligible ACK we find, even if we need to loop
1257 * again.
1258 */
1259 if (!elig_ack) {
1260 elig_ack = skb_check;
1261 elig_ack_prev = skb_prev;
1262 elig_flags = (tcp_flag_word(tcph_check)
1263 & (TCP_FLAG_ECE | TCP_FLAG_CWR));
1264 }
1265
1266 if (num_found++ > 0)
1267 goto found;
1268 }
1269
1270 /* We made it through the queue without finding two eligible ACKs . If
1271 * we found a single eligible ACK we can drop it in aggressive mode if
1272 * we can guarantee that this does not interfere with ECN flag
1273 * information. We ensure this by dropping it only if the enqueued
1274 * packet is consecutive with the eligible ACK, and their flags match.
1275 */
1276 if (elig_ack && aggressive && elig_ack->next == skb &&
1277 (elig_flags == (tcp_flag_word(tcph) &
1278 (TCP_FLAG_ECE | TCP_FLAG_CWR))))
1279 goto found;
1280
1281 return NULL;
1282
1283 found:
1284 if (elig_ack_prev)
1285 elig_ack_prev->next = elig_ack->next;
1286 else
1287 flow->head = elig_ack->next;
1288
1289 skb_mark_not_on_list(elig_ack);
1290
1291 return elig_ack;
1292 }
1293
cake_ewma(u64 avg,u64 sample,u32 shift)1294 static u64 cake_ewma(u64 avg, u64 sample, u32 shift)
1295 {
1296 avg -= avg >> shift;
1297 avg += sample >> shift;
1298 return avg;
1299 }
1300
cake_calc_overhead(struct cake_sched_data * q,u32 len,u32 off)1301 static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off)
1302 {
1303 if (q->rate_flags & CAKE_FLAG_OVERHEAD)
1304 len -= off;
1305
1306 if (q->max_netlen < len)
1307 q->max_netlen = len;
1308 if (q->min_netlen > len)
1309 q->min_netlen = len;
1310
1311 len += q->rate_overhead;
1312
1313 if (len < q->rate_mpu)
1314 len = q->rate_mpu;
1315
1316 if (q->atm_mode == CAKE_ATM_ATM) {
1317 len += 47;
1318 len /= 48;
1319 len *= 53;
1320 } else if (q->atm_mode == CAKE_ATM_PTM) {
1321 /* Add one byte per 64 bytes or part thereof.
1322 * This is conservative and easier to calculate than the
1323 * precise value.
1324 */
1325 len += (len + 63) / 64;
1326 }
1327
1328 if (q->max_adjlen < len)
1329 q->max_adjlen = len;
1330 if (q->min_adjlen > len)
1331 q->min_adjlen = len;
1332
1333 return len;
1334 }
1335
cake_overhead(struct cake_sched_data * q,const struct sk_buff * skb)1336 static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb)
1337 {
1338 const struct skb_shared_info *shinfo = skb_shinfo(skb);
1339 unsigned int hdr_len, last_len = 0;
1340 u32 off = skb_network_offset(skb);
1341 u32 len = qdisc_pkt_len(skb);
1342 u16 segs = 1;
1343
1344 q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8);
1345
1346 if (!shinfo->gso_size)
1347 return cake_calc_overhead(q, len, off);
1348
1349 /* borrowed from qdisc_pkt_len_init() */
1350 hdr_len = skb_transport_offset(skb);
1351
1352 /* + transport layer */
1353 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 |
1354 SKB_GSO_TCPV6))) {
1355 const struct tcphdr *th;
1356 struct tcphdr _tcphdr;
1357
1358 th = skb_header_pointer(skb, hdr_len,
1359 sizeof(_tcphdr), &_tcphdr);
1360 if (likely(th))
1361 hdr_len += __tcp_hdrlen(th);
1362 } else {
1363 struct udphdr _udphdr;
1364
1365 if (skb_header_pointer(skb, hdr_len,
1366 sizeof(_udphdr), &_udphdr))
1367 hdr_len += sizeof(struct udphdr);
1368 }
1369
1370 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY))
1371 segs = DIV_ROUND_UP(skb->len - hdr_len,
1372 shinfo->gso_size);
1373 else
1374 segs = shinfo->gso_segs;
1375
1376 len = shinfo->gso_size + hdr_len;
1377 last_len = skb->len - shinfo->gso_size * (segs - 1);
1378
1379 return (cake_calc_overhead(q, len, off) * (segs - 1) +
1380 cake_calc_overhead(q, last_len, off));
1381 }
1382
cake_heap_swap(struct cake_sched_data * q,u16 i,u16 j)1383 static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j)
1384 {
1385 struct cake_heap_entry ii = q->overflow_heap[i];
1386 struct cake_heap_entry jj = q->overflow_heap[j];
1387
1388 q->overflow_heap[i] = jj;
1389 q->overflow_heap[j] = ii;
1390
1391 q->tins[ii.t].overflow_idx[ii.b] = j;
1392 q->tins[jj.t].overflow_idx[jj.b] = i;
1393 }
1394
cake_heap_get_backlog(const struct cake_sched_data * q,u16 i)1395 static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i)
1396 {
1397 struct cake_heap_entry ii = q->overflow_heap[i];
1398
1399 return q->tins[ii.t].backlogs[ii.b];
1400 }
1401
cake_heapify(struct cake_sched_data * q,u16 i)1402 static void cake_heapify(struct cake_sched_data *q, u16 i)
1403 {
1404 static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES;
1405 u32 mb = cake_heap_get_backlog(q, i);
1406 u32 m = i;
1407
1408 while (m < a) {
1409 u32 l = m + m + 1;
1410 u32 r = l + 1;
1411
1412 if (l < a) {
1413 u32 lb = cake_heap_get_backlog(q, l);
1414
1415 if (lb > mb) {
1416 m = l;
1417 mb = lb;
1418 }
1419 }
1420
1421 if (r < a) {
1422 u32 rb = cake_heap_get_backlog(q, r);
1423
1424 if (rb > mb) {
1425 m = r;
1426 mb = rb;
1427 }
1428 }
1429
1430 if (m != i) {
1431 cake_heap_swap(q, i, m);
1432 i = m;
1433 } else {
1434 break;
1435 }
1436 }
1437 }
1438
cake_heapify_up(struct cake_sched_data * q,u16 i)1439 static void cake_heapify_up(struct cake_sched_data *q, u16 i)
1440 {
1441 while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) {
1442 u16 p = (i - 1) >> 1;
1443 u32 ib = cake_heap_get_backlog(q, i);
1444 u32 pb = cake_heap_get_backlog(q, p);
1445
1446 if (ib > pb) {
1447 cake_heap_swap(q, i, p);
1448 i = p;
1449 } else {
1450 break;
1451 }
1452 }
1453 }
1454
cake_advance_shaper(struct cake_sched_data * q,struct cake_tin_data * b,struct sk_buff * skb,ktime_t now,bool drop)1455 static int cake_advance_shaper(struct cake_sched_data *q,
1456 struct cake_tin_data *b,
1457 struct sk_buff *skb,
1458 ktime_t now, bool drop)
1459 {
1460 u32 len = get_cobalt_cb(skb)->adjusted_len;
1461
1462 /* charge packet bandwidth to this tin
1463 * and to the global shaper.
1464 */
1465 if (q->rate_ns) {
1466 u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft;
1467 u64 global_dur = (len * q->rate_ns) >> q->rate_shft;
1468 u64 failsafe_dur = global_dur + (global_dur >> 1);
1469
1470 if (ktime_before(b->time_next_packet, now))
1471 b->time_next_packet = ktime_add_ns(b->time_next_packet,
1472 tin_dur);
1473
1474 else if (ktime_before(b->time_next_packet,
1475 ktime_add_ns(now, tin_dur)))
1476 b->time_next_packet = ktime_add_ns(now, tin_dur);
1477
1478 q->time_next_packet = ktime_add_ns(q->time_next_packet,
1479 global_dur);
1480 if (!drop)
1481 q->failsafe_next_packet = \
1482 ktime_add_ns(q->failsafe_next_packet,
1483 failsafe_dur);
1484 }
1485 return len;
1486 }
1487
cake_drop(struct Qdisc * sch,struct sk_buff ** to_free)1488 static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free)
1489 {
1490 struct cake_sched_data *q = qdisc_priv(sch);
1491 ktime_t now = ktime_get();
1492 u32 idx = 0, tin = 0, len;
1493 struct cake_heap_entry qq;
1494 struct cake_tin_data *b;
1495 struct cake_flow *flow;
1496 struct sk_buff *skb;
1497
1498 if (!q->overflow_timeout) {
1499 int i;
1500 /* Build fresh max-heap */
1501 for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2 - 1; i >= 0; i--)
1502 cake_heapify(q, i);
1503 }
1504 q->overflow_timeout = 65535;
1505
1506 /* select longest queue for pruning */
1507 qq = q->overflow_heap[0];
1508 tin = qq.t;
1509 idx = qq.b;
1510
1511 b = &q->tins[tin];
1512 flow = &b->flows[idx];
1513 skb = dequeue_head(flow);
1514 if (unlikely(!skb)) {
1515 /* heap has gone wrong, rebuild it next time */
1516 q->overflow_timeout = 0;
1517 return idx + (tin << 16);
1518 }
1519
1520 if (cobalt_queue_full(&flow->cvars, &b->cparams, now))
1521 b->unresponsive_flow_count++;
1522
1523 len = qdisc_pkt_len(skb);
1524 q->buffer_used -= skb->truesize;
1525 b->backlogs[idx] -= len;
1526 b->tin_backlog -= len;
1527 sch->qstats.backlog -= len;
1528 qdisc_tree_reduce_backlog(sch, 1, len);
1529
1530 flow->dropped++;
1531 b->tin_dropped++;
1532 sch->qstats.drops++;
1533
1534 if (q->rate_flags & CAKE_FLAG_INGRESS)
1535 cake_advance_shaper(q, b, skb, now, true);
1536
1537 __qdisc_drop(skb, to_free);
1538 sch->q.qlen--;
1539
1540 cake_heapify(q, 0);
1541
1542 return idx + (tin << 16);
1543 }
1544
cake_handle_diffserv(struct sk_buff * skb,bool wash)1545 static u8 cake_handle_diffserv(struct sk_buff *skb, bool wash)
1546 {
1547 const int offset = skb_network_offset(skb);
1548 u16 *buf, buf_;
1549 u8 dscp;
1550
1551 switch (skb_protocol(skb, true)) {
1552 case htons(ETH_P_IP):
1553 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1554 if (unlikely(!buf))
1555 return 0;
1556
1557 /* ToS is in the second byte of iphdr */
1558 dscp = ipv4_get_dsfield((struct iphdr *)buf) >> 2;
1559
1560 if (wash && dscp) {
1561 const int wlen = offset + sizeof(struct iphdr);
1562
1563 if (!pskb_may_pull(skb, wlen) ||
1564 skb_try_make_writable(skb, wlen))
1565 return 0;
1566
1567 ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
1568 }
1569
1570 return dscp;
1571
1572 case htons(ETH_P_IPV6):
1573 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1574 if (unlikely(!buf))
1575 return 0;
1576
1577 /* Traffic class is in the first and second bytes of ipv6hdr */
1578 dscp = ipv6_get_dsfield((struct ipv6hdr *)buf) >> 2;
1579
1580 if (wash && dscp) {
1581 const int wlen = offset + sizeof(struct ipv6hdr);
1582
1583 if (!pskb_may_pull(skb, wlen) ||
1584 skb_try_make_writable(skb, wlen))
1585 return 0;
1586
1587 ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
1588 }
1589
1590 return dscp;
1591
1592 case htons(ETH_P_ARP):
1593 return 0x38; /* CS7 - Net Control */
1594
1595 default:
1596 /* If there is no Diffserv field, treat as best-effort */
1597 return 0;
1598 }
1599 }
1600
cake_select_tin(struct Qdisc * sch,struct sk_buff * skb)1601 static struct cake_tin_data *cake_select_tin(struct Qdisc *sch,
1602 struct sk_buff *skb)
1603 {
1604 struct cake_sched_data *q = qdisc_priv(sch);
1605 u32 tin, mark;
1606 bool wash;
1607 u8 dscp;
1608
1609 /* Tin selection: Default to diffserv-based selection, allow overriding
1610 * using firewall marks or skb->priority. Call DSCP parsing early if
1611 * wash is enabled, otherwise defer to below to skip unneeded parsing.
1612 */
1613 mark = (skb->mark & q->fwmark_mask) >> q->fwmark_shft;
1614 wash = !!(q->rate_flags & CAKE_FLAG_WASH);
1615 if (wash)
1616 dscp = cake_handle_diffserv(skb, wash);
1617
1618 if (q->tin_mode == CAKE_DIFFSERV_BESTEFFORT)
1619 tin = 0;
1620
1621 else if (mark && mark <= q->tin_cnt)
1622 tin = q->tin_order[mark - 1];
1623
1624 else if (TC_H_MAJ(skb->priority) == sch->handle &&
1625 TC_H_MIN(skb->priority) > 0 &&
1626 TC_H_MIN(skb->priority) <= q->tin_cnt)
1627 tin = q->tin_order[TC_H_MIN(skb->priority) - 1];
1628
1629 else {
1630 if (!wash)
1631 dscp = cake_handle_diffserv(skb, wash);
1632 tin = q->tin_index[dscp];
1633
1634 if (unlikely(tin >= q->tin_cnt))
1635 tin = 0;
1636 }
1637
1638 return &q->tins[tin];
1639 }
1640
cake_classify(struct Qdisc * sch,struct cake_tin_data ** t,struct sk_buff * skb,int flow_mode,int * qerr)1641 static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t,
1642 struct sk_buff *skb, int flow_mode, int *qerr)
1643 {
1644 struct cake_sched_data *q = qdisc_priv(sch);
1645 struct tcf_proto *filter;
1646 struct tcf_result res;
1647 u16 flow = 0, host = 0;
1648 int result;
1649
1650 filter = rcu_dereference_bh(q->filter_list);
1651 if (!filter)
1652 goto hash;
1653
1654 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1655 result = tcf_classify(skb, NULL, filter, &res, false);
1656
1657 if (result >= 0) {
1658 #ifdef CONFIG_NET_CLS_ACT
1659 switch (result) {
1660 case TC_ACT_STOLEN:
1661 case TC_ACT_QUEUED:
1662 case TC_ACT_TRAP:
1663 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1664 fallthrough;
1665 case TC_ACT_SHOT:
1666 return 0;
1667 }
1668 #endif
1669 if (TC_H_MIN(res.classid) <= CAKE_QUEUES)
1670 flow = TC_H_MIN(res.classid);
1671 if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16))
1672 host = TC_H_MAJ(res.classid) >> 16;
1673 }
1674 hash:
1675 *t = cake_select_tin(sch, skb);
1676 return cake_hash(*t, skb, flow_mode, flow, host) + 1;
1677 }
1678
1679 static void cake_reconfigure(struct Qdisc *sch);
1680
cake_enqueue(struct sk_buff * skb,struct Qdisc * sch,struct sk_buff ** to_free)1681 static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1682 struct sk_buff **to_free)
1683 {
1684 struct cake_sched_data *q = qdisc_priv(sch);
1685 int len = qdisc_pkt_len(skb);
1686 int ret;
1687 struct sk_buff *ack = NULL;
1688 ktime_t now = ktime_get();
1689 struct cake_tin_data *b;
1690 struct cake_flow *flow;
1691 u32 idx;
1692
1693 /* choose flow to insert into */
1694 idx = cake_classify(sch, &b, skb, q->flow_mode, &ret);
1695 if (idx == 0) {
1696 if (ret & __NET_XMIT_BYPASS)
1697 qdisc_qstats_drop(sch);
1698 __qdisc_drop(skb, to_free);
1699 return ret;
1700 }
1701 idx--;
1702 flow = &b->flows[idx];
1703
1704 /* ensure shaper state isn't stale */
1705 if (!b->tin_backlog) {
1706 if (ktime_before(b->time_next_packet, now))
1707 b->time_next_packet = now;
1708
1709 if (!sch->q.qlen) {
1710 if (ktime_before(q->time_next_packet, now)) {
1711 q->failsafe_next_packet = now;
1712 q->time_next_packet = now;
1713 } else if (ktime_after(q->time_next_packet, now) &&
1714 ktime_after(q->failsafe_next_packet, now)) {
1715 u64 next = \
1716 min(ktime_to_ns(q->time_next_packet),
1717 ktime_to_ns(
1718 q->failsafe_next_packet));
1719 sch->qstats.overlimits++;
1720 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1721 }
1722 }
1723 }
1724
1725 if (unlikely(len > b->max_skblen))
1726 b->max_skblen = len;
1727
1728 if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) {
1729 struct sk_buff *segs, *nskb;
1730 netdev_features_t features = netif_skb_features(skb);
1731 unsigned int slen = 0, numsegs = 0;
1732
1733 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
1734 if (IS_ERR_OR_NULL(segs))
1735 return qdisc_drop(skb, sch, to_free);
1736
1737 skb_list_walk_safe(segs, segs, nskb) {
1738 skb_mark_not_on_list(segs);
1739 qdisc_skb_cb(segs)->pkt_len = segs->len;
1740 cobalt_set_enqueue_time(segs, now);
1741 get_cobalt_cb(segs)->adjusted_len = cake_overhead(q,
1742 segs);
1743 flow_queue_add(flow, segs);
1744
1745 sch->q.qlen++;
1746 numsegs++;
1747 slen += segs->len;
1748 q->buffer_used += segs->truesize;
1749 b->packets++;
1750 }
1751
1752 /* stats */
1753 b->bytes += slen;
1754 b->backlogs[idx] += slen;
1755 b->tin_backlog += slen;
1756 sch->qstats.backlog += slen;
1757 q->avg_window_bytes += slen;
1758
1759 qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen);
1760 consume_skb(skb);
1761 } else {
1762 /* not splitting */
1763 cobalt_set_enqueue_time(skb, now);
1764 get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb);
1765 flow_queue_add(flow, skb);
1766
1767 if (q->ack_filter)
1768 ack = cake_ack_filter(q, flow);
1769
1770 if (ack) {
1771 b->ack_drops++;
1772 sch->qstats.drops++;
1773 b->bytes += qdisc_pkt_len(ack);
1774 len -= qdisc_pkt_len(ack);
1775 q->buffer_used += skb->truesize - ack->truesize;
1776 if (q->rate_flags & CAKE_FLAG_INGRESS)
1777 cake_advance_shaper(q, b, ack, now, true);
1778
1779 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack));
1780 consume_skb(ack);
1781 } else {
1782 sch->q.qlen++;
1783 q->buffer_used += skb->truesize;
1784 }
1785
1786 /* stats */
1787 b->packets++;
1788 b->bytes += len;
1789 b->backlogs[idx] += len;
1790 b->tin_backlog += len;
1791 sch->qstats.backlog += len;
1792 q->avg_window_bytes += len;
1793 }
1794
1795 if (q->overflow_timeout)
1796 cake_heapify_up(q, b->overflow_idx[idx]);
1797
1798 /* incoming bandwidth capacity estimate */
1799 if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) {
1800 u64 packet_interval = \
1801 ktime_to_ns(ktime_sub(now, q->last_packet_time));
1802
1803 if (packet_interval > NSEC_PER_SEC)
1804 packet_interval = NSEC_PER_SEC;
1805
1806 /* filter out short-term bursts, eg. wifi aggregation */
1807 q->avg_packet_interval = \
1808 cake_ewma(q->avg_packet_interval,
1809 packet_interval,
1810 (packet_interval > q->avg_packet_interval ?
1811 2 : 8));
1812
1813 q->last_packet_time = now;
1814
1815 if (packet_interval > q->avg_packet_interval) {
1816 u64 window_interval = \
1817 ktime_to_ns(ktime_sub(now,
1818 q->avg_window_begin));
1819 u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC;
1820
1821 b = div64_u64(b, window_interval);
1822 q->avg_peak_bandwidth =
1823 cake_ewma(q->avg_peak_bandwidth, b,
1824 b > q->avg_peak_bandwidth ? 2 : 8);
1825 q->avg_window_bytes = 0;
1826 q->avg_window_begin = now;
1827
1828 if (ktime_after(now,
1829 ktime_add_ms(q->last_reconfig_time,
1830 250))) {
1831 q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4;
1832 cake_reconfigure(sch);
1833 }
1834 }
1835 } else {
1836 q->avg_window_bytes = 0;
1837 q->last_packet_time = now;
1838 }
1839
1840 /* flowchain */
1841 if (!flow->set || flow->set == CAKE_SET_DECAYING) {
1842 struct cake_host *srchost = &b->hosts[flow->srchost];
1843 struct cake_host *dsthost = &b->hosts[flow->dsthost];
1844 u16 host_load = 1;
1845
1846 if (!flow->set) {
1847 list_add_tail(&flow->flowchain, &b->new_flows);
1848 } else {
1849 b->decaying_flow_count--;
1850 list_move_tail(&flow->flowchain, &b->new_flows);
1851 }
1852 flow->set = CAKE_SET_SPARSE;
1853 b->sparse_flow_count++;
1854
1855 if (cake_dsrc(q->flow_mode))
1856 host_load = max(host_load, srchost->srchost_bulk_flow_count);
1857
1858 if (cake_ddst(q->flow_mode))
1859 host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
1860
1861 flow->deficit = (b->flow_quantum *
1862 quantum_div[host_load]) >> 16;
1863 } else if (flow->set == CAKE_SET_SPARSE_WAIT) {
1864 struct cake_host *srchost = &b->hosts[flow->srchost];
1865 struct cake_host *dsthost = &b->hosts[flow->dsthost];
1866
1867 /* this flow was empty, accounted as a sparse flow, but actually
1868 * in the bulk rotation.
1869 */
1870 flow->set = CAKE_SET_BULK;
1871 b->sparse_flow_count--;
1872 b->bulk_flow_count++;
1873
1874 if (cake_dsrc(q->flow_mode))
1875 srchost->srchost_bulk_flow_count++;
1876
1877 if (cake_ddst(q->flow_mode))
1878 dsthost->dsthost_bulk_flow_count++;
1879
1880 }
1881
1882 if (q->buffer_used > q->buffer_max_used)
1883 q->buffer_max_used = q->buffer_used;
1884
1885 if (q->buffer_used > q->buffer_limit) {
1886 u32 dropped = 0;
1887
1888 while (q->buffer_used > q->buffer_limit) {
1889 dropped++;
1890 cake_drop(sch, to_free);
1891 }
1892 b->drop_overlimit += dropped;
1893 }
1894 return NET_XMIT_SUCCESS;
1895 }
1896
cake_dequeue_one(struct Qdisc * sch)1897 static struct sk_buff *cake_dequeue_one(struct Qdisc *sch)
1898 {
1899 struct cake_sched_data *q = qdisc_priv(sch);
1900 struct cake_tin_data *b = &q->tins[q->cur_tin];
1901 struct cake_flow *flow = &b->flows[q->cur_flow];
1902 struct sk_buff *skb = NULL;
1903 u32 len;
1904
1905 if (flow->head) {
1906 skb = dequeue_head(flow);
1907 len = qdisc_pkt_len(skb);
1908 b->backlogs[q->cur_flow] -= len;
1909 b->tin_backlog -= len;
1910 sch->qstats.backlog -= len;
1911 q->buffer_used -= skb->truesize;
1912 sch->q.qlen--;
1913
1914 if (q->overflow_timeout)
1915 cake_heapify(q, b->overflow_idx[q->cur_flow]);
1916 }
1917 return skb;
1918 }
1919
1920 /* Discard leftover packets from a tin no longer in use. */
cake_clear_tin(struct Qdisc * sch,u16 tin)1921 static void cake_clear_tin(struct Qdisc *sch, u16 tin)
1922 {
1923 struct cake_sched_data *q = qdisc_priv(sch);
1924 struct sk_buff *skb;
1925
1926 q->cur_tin = tin;
1927 for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++)
1928 while (!!(skb = cake_dequeue_one(sch)))
1929 kfree_skb(skb);
1930 }
1931
cake_dequeue(struct Qdisc * sch)1932 static struct sk_buff *cake_dequeue(struct Qdisc *sch)
1933 {
1934 struct cake_sched_data *q = qdisc_priv(sch);
1935 struct cake_tin_data *b = &q->tins[q->cur_tin];
1936 struct cake_host *srchost, *dsthost;
1937 ktime_t now = ktime_get();
1938 struct cake_flow *flow;
1939 struct list_head *head;
1940 bool first_flow = true;
1941 struct sk_buff *skb;
1942 u16 host_load;
1943 u64 delay;
1944 u32 len;
1945
1946 begin:
1947 if (!sch->q.qlen)
1948 return NULL;
1949
1950 /* global hard shaper */
1951 if (ktime_after(q->time_next_packet, now) &&
1952 ktime_after(q->failsafe_next_packet, now)) {
1953 u64 next = min(ktime_to_ns(q->time_next_packet),
1954 ktime_to_ns(q->failsafe_next_packet));
1955
1956 sch->qstats.overlimits++;
1957 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1958 return NULL;
1959 }
1960
1961 /* Choose a class to work on. */
1962 if (!q->rate_ns) {
1963 /* In unlimited mode, can't rely on shaper timings, just balance
1964 * with DRR
1965 */
1966 bool wrapped = false, empty = true;
1967
1968 while (b->tin_deficit < 0 ||
1969 !(b->sparse_flow_count + b->bulk_flow_count)) {
1970 if (b->tin_deficit <= 0)
1971 b->tin_deficit += b->tin_quantum;
1972 if (b->sparse_flow_count + b->bulk_flow_count)
1973 empty = false;
1974
1975 q->cur_tin++;
1976 b++;
1977 if (q->cur_tin >= q->tin_cnt) {
1978 q->cur_tin = 0;
1979 b = q->tins;
1980
1981 if (wrapped) {
1982 /* It's possible for q->qlen to be
1983 * nonzero when we actually have no
1984 * packets anywhere.
1985 */
1986 if (empty)
1987 return NULL;
1988 } else {
1989 wrapped = true;
1990 }
1991 }
1992 }
1993 } else {
1994 /* In shaped mode, choose:
1995 * - Highest-priority tin with queue and meeting schedule, or
1996 * - The earliest-scheduled tin with queue.
1997 */
1998 ktime_t best_time = KTIME_MAX;
1999 int tin, best_tin = 0;
2000
2001 for (tin = 0; tin < q->tin_cnt; tin++) {
2002 b = q->tins + tin;
2003 if ((b->sparse_flow_count + b->bulk_flow_count) > 0) {
2004 ktime_t time_to_pkt = \
2005 ktime_sub(b->time_next_packet, now);
2006
2007 if (ktime_to_ns(time_to_pkt) <= 0 ||
2008 ktime_compare(time_to_pkt,
2009 best_time) <= 0) {
2010 best_time = time_to_pkt;
2011 best_tin = tin;
2012 }
2013 }
2014 }
2015
2016 q->cur_tin = best_tin;
2017 b = q->tins + best_tin;
2018
2019 /* No point in going further if no packets to deliver. */
2020 if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count)))
2021 return NULL;
2022 }
2023
2024 retry:
2025 /* service this class */
2026 head = &b->decaying_flows;
2027 if (!first_flow || list_empty(head)) {
2028 head = &b->new_flows;
2029 if (list_empty(head)) {
2030 head = &b->old_flows;
2031 if (unlikely(list_empty(head))) {
2032 head = &b->decaying_flows;
2033 if (unlikely(list_empty(head)))
2034 goto begin;
2035 }
2036 }
2037 }
2038 flow = list_first_entry(head, struct cake_flow, flowchain);
2039 q->cur_flow = flow - b->flows;
2040 first_flow = false;
2041
2042 /* triple isolation (modified DRR++) */
2043 srchost = &b->hosts[flow->srchost];
2044 dsthost = &b->hosts[flow->dsthost];
2045 host_load = 1;
2046
2047 /* flow isolation (DRR++) */
2048 if (flow->deficit <= 0) {
2049 /* Keep all flows with deficits out of the sparse and decaying
2050 * rotations. No non-empty flow can go into the decaying
2051 * rotation, so they can't get deficits
2052 */
2053 if (flow->set == CAKE_SET_SPARSE) {
2054 if (flow->head) {
2055 b->sparse_flow_count--;
2056 b->bulk_flow_count++;
2057
2058 if (cake_dsrc(q->flow_mode))
2059 srchost->srchost_bulk_flow_count++;
2060
2061 if (cake_ddst(q->flow_mode))
2062 dsthost->dsthost_bulk_flow_count++;
2063
2064 flow->set = CAKE_SET_BULK;
2065 } else {
2066 /* we've moved it to the bulk rotation for
2067 * correct deficit accounting but we still want
2068 * to count it as a sparse flow, not a bulk one.
2069 */
2070 flow->set = CAKE_SET_SPARSE_WAIT;
2071 }
2072 }
2073
2074 if (cake_dsrc(q->flow_mode))
2075 host_load = max(host_load, srchost->srchost_bulk_flow_count);
2076
2077 if (cake_ddst(q->flow_mode))
2078 host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
2079
2080 WARN_ON(host_load > CAKE_QUEUES);
2081
2082 /* The get_random_u16() is a way to apply dithering to avoid
2083 * accumulating roundoff errors
2084 */
2085 flow->deficit += (b->flow_quantum * quantum_div[host_load] +
2086 get_random_u16()) >> 16;
2087 list_move_tail(&flow->flowchain, &b->old_flows);
2088
2089 goto retry;
2090 }
2091
2092 /* Retrieve a packet via the AQM */
2093 while (1) {
2094 skb = cake_dequeue_one(sch);
2095 if (!skb) {
2096 /* this queue was actually empty */
2097 if (cobalt_queue_empty(&flow->cvars, &b->cparams, now))
2098 b->unresponsive_flow_count--;
2099
2100 if (flow->cvars.p_drop || flow->cvars.count ||
2101 ktime_before(now, flow->cvars.drop_next)) {
2102 /* keep in the flowchain until the state has
2103 * decayed to rest
2104 */
2105 list_move_tail(&flow->flowchain,
2106 &b->decaying_flows);
2107 if (flow->set == CAKE_SET_BULK) {
2108 b->bulk_flow_count--;
2109
2110 if (cake_dsrc(q->flow_mode))
2111 srchost->srchost_bulk_flow_count--;
2112
2113 if (cake_ddst(q->flow_mode))
2114 dsthost->dsthost_bulk_flow_count--;
2115
2116 b->decaying_flow_count++;
2117 } else if (flow->set == CAKE_SET_SPARSE ||
2118 flow->set == CAKE_SET_SPARSE_WAIT) {
2119 b->sparse_flow_count--;
2120 b->decaying_flow_count++;
2121 }
2122 flow->set = CAKE_SET_DECAYING;
2123 } else {
2124 /* remove empty queue from the flowchain */
2125 list_del_init(&flow->flowchain);
2126 if (flow->set == CAKE_SET_SPARSE ||
2127 flow->set == CAKE_SET_SPARSE_WAIT)
2128 b->sparse_flow_count--;
2129 else if (flow->set == CAKE_SET_BULK) {
2130 b->bulk_flow_count--;
2131
2132 if (cake_dsrc(q->flow_mode))
2133 srchost->srchost_bulk_flow_count--;
2134
2135 if (cake_ddst(q->flow_mode))
2136 dsthost->dsthost_bulk_flow_count--;
2137
2138 } else
2139 b->decaying_flow_count--;
2140
2141 flow->set = CAKE_SET_NONE;
2142 }
2143 goto begin;
2144 }
2145
2146 /* Last packet in queue may be marked, shouldn't be dropped */
2147 if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb,
2148 (b->bulk_flow_count *
2149 !!(q->rate_flags &
2150 CAKE_FLAG_INGRESS))) ||
2151 !flow->head)
2152 break;
2153
2154 /* drop this packet, get another one */
2155 if (q->rate_flags & CAKE_FLAG_INGRESS) {
2156 len = cake_advance_shaper(q, b, skb,
2157 now, true);
2158 flow->deficit -= len;
2159 b->tin_deficit -= len;
2160 }
2161 flow->dropped++;
2162 b->tin_dropped++;
2163 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
2164 qdisc_qstats_drop(sch);
2165 kfree_skb(skb);
2166 if (q->rate_flags & CAKE_FLAG_INGRESS)
2167 goto retry;
2168 }
2169
2170 b->tin_ecn_mark += !!flow->cvars.ecn_marked;
2171 qdisc_bstats_update(sch, skb);
2172
2173 /* collect delay stats */
2174 delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
2175 b->avge_delay = cake_ewma(b->avge_delay, delay, 8);
2176 b->peak_delay = cake_ewma(b->peak_delay, delay,
2177 delay > b->peak_delay ? 2 : 8);
2178 b->base_delay = cake_ewma(b->base_delay, delay,
2179 delay < b->base_delay ? 2 : 8);
2180
2181 len = cake_advance_shaper(q, b, skb, now, false);
2182 flow->deficit -= len;
2183 b->tin_deficit -= len;
2184
2185 if (ktime_after(q->time_next_packet, now) && sch->q.qlen) {
2186 u64 next = min(ktime_to_ns(q->time_next_packet),
2187 ktime_to_ns(q->failsafe_next_packet));
2188
2189 qdisc_watchdog_schedule_ns(&q->watchdog, next);
2190 } else if (!sch->q.qlen) {
2191 int i;
2192
2193 for (i = 0; i < q->tin_cnt; i++) {
2194 if (q->tins[i].decaying_flow_count) {
2195 ktime_t next = \
2196 ktime_add_ns(now,
2197 q->tins[i].cparams.target);
2198
2199 qdisc_watchdog_schedule_ns(&q->watchdog,
2200 ktime_to_ns(next));
2201 break;
2202 }
2203 }
2204 }
2205
2206 if (q->overflow_timeout)
2207 q->overflow_timeout--;
2208
2209 return skb;
2210 }
2211
cake_reset(struct Qdisc * sch)2212 static void cake_reset(struct Qdisc *sch)
2213 {
2214 struct cake_sched_data *q = qdisc_priv(sch);
2215 u32 c;
2216
2217 if (!q->tins)
2218 return;
2219
2220 for (c = 0; c < CAKE_MAX_TINS; c++)
2221 cake_clear_tin(sch, c);
2222 }
2223
2224 static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = {
2225 [TCA_CAKE_BASE_RATE64] = { .type = NLA_U64 },
2226 [TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 },
2227 [TCA_CAKE_ATM] = { .type = NLA_U32 },
2228 [TCA_CAKE_FLOW_MODE] = { .type = NLA_U32 },
2229 [TCA_CAKE_OVERHEAD] = { .type = NLA_S32 },
2230 [TCA_CAKE_RTT] = { .type = NLA_U32 },
2231 [TCA_CAKE_TARGET] = { .type = NLA_U32 },
2232 [TCA_CAKE_AUTORATE] = { .type = NLA_U32 },
2233 [TCA_CAKE_MEMORY] = { .type = NLA_U32 },
2234 [TCA_CAKE_NAT] = { .type = NLA_U32 },
2235 [TCA_CAKE_RAW] = { .type = NLA_U32 },
2236 [TCA_CAKE_WASH] = { .type = NLA_U32 },
2237 [TCA_CAKE_MPU] = { .type = NLA_U32 },
2238 [TCA_CAKE_INGRESS] = { .type = NLA_U32 },
2239 [TCA_CAKE_ACK_FILTER] = { .type = NLA_U32 },
2240 [TCA_CAKE_SPLIT_GSO] = { .type = NLA_U32 },
2241 [TCA_CAKE_FWMARK] = { .type = NLA_U32 },
2242 };
2243
cake_set_rate(struct cake_tin_data * b,u64 rate,u32 mtu,u64 target_ns,u64 rtt_est_ns)2244 static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu,
2245 u64 target_ns, u64 rtt_est_ns)
2246 {
2247 /* convert byte-rate into time-per-byte
2248 * so it will always unwedge in reasonable time.
2249 */
2250 static const u64 MIN_RATE = 64;
2251 u32 byte_target = mtu;
2252 u64 byte_target_ns;
2253 u8 rate_shft = 0;
2254 u64 rate_ns = 0;
2255
2256 b->flow_quantum = 1514;
2257 if (rate) {
2258 b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL);
2259 rate_shft = 34;
2260 rate_ns = ((u64)NSEC_PER_SEC) << rate_shft;
2261 rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate));
2262 while (!!(rate_ns >> 34)) {
2263 rate_ns >>= 1;
2264 rate_shft--;
2265 }
2266 } /* else unlimited, ie. zero delay */
2267
2268 b->tin_rate_bps = rate;
2269 b->tin_rate_ns = rate_ns;
2270 b->tin_rate_shft = rate_shft;
2271
2272 byte_target_ns = (byte_target * rate_ns) >> rate_shft;
2273
2274 b->cparams.target = max((byte_target_ns * 3) / 2, target_ns);
2275 b->cparams.interval = max(rtt_est_ns +
2276 b->cparams.target - target_ns,
2277 b->cparams.target * 2);
2278 b->cparams.mtu_time = byte_target_ns;
2279 b->cparams.p_inc = 1 << 24; /* 1/256 */
2280 b->cparams.p_dec = 1 << 20; /* 1/4096 */
2281 }
2282
cake_config_besteffort(struct Qdisc * sch)2283 static int cake_config_besteffort(struct Qdisc *sch)
2284 {
2285 struct cake_sched_data *q = qdisc_priv(sch);
2286 struct cake_tin_data *b = &q->tins[0];
2287 u32 mtu = psched_mtu(qdisc_dev(sch));
2288 u64 rate = q->rate_bps;
2289
2290 q->tin_cnt = 1;
2291
2292 q->tin_index = besteffort;
2293 q->tin_order = normal_order;
2294
2295 cake_set_rate(b, rate, mtu,
2296 us_to_ns(q->target), us_to_ns(q->interval));
2297 b->tin_quantum = 65535;
2298
2299 return 0;
2300 }
2301
cake_config_precedence(struct Qdisc * sch)2302 static int cake_config_precedence(struct Qdisc *sch)
2303 {
2304 /* convert high-level (user visible) parameters into internal format */
2305 struct cake_sched_data *q = qdisc_priv(sch);
2306 u32 mtu = psched_mtu(qdisc_dev(sch));
2307 u64 rate = q->rate_bps;
2308 u32 quantum = 256;
2309 u32 i;
2310
2311 q->tin_cnt = 8;
2312 q->tin_index = precedence;
2313 q->tin_order = normal_order;
2314
2315 for (i = 0; i < q->tin_cnt; i++) {
2316 struct cake_tin_data *b = &q->tins[i];
2317
2318 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2319 us_to_ns(q->interval));
2320
2321 b->tin_quantum = max_t(u16, 1U, quantum);
2322
2323 /* calculate next class's parameters */
2324 rate *= 7;
2325 rate >>= 3;
2326
2327 quantum *= 7;
2328 quantum >>= 3;
2329 }
2330
2331 return 0;
2332 }
2333
2334 /* List of known Diffserv codepoints:
2335 *
2336 * Default Forwarding (DF/CS0) - Best Effort
2337 * Max Throughput (TOS2)
2338 * Min Delay (TOS4)
2339 * LLT "La" (TOS5)
2340 * Assured Forwarding 1 (AF1x) - x3
2341 * Assured Forwarding 2 (AF2x) - x3
2342 * Assured Forwarding 3 (AF3x) - x3
2343 * Assured Forwarding 4 (AF4x) - x3
2344 * Precedence Class 1 (CS1)
2345 * Precedence Class 2 (CS2)
2346 * Precedence Class 3 (CS3)
2347 * Precedence Class 4 (CS4)
2348 * Precedence Class 5 (CS5)
2349 * Precedence Class 6 (CS6)
2350 * Precedence Class 7 (CS7)
2351 * Voice Admit (VA)
2352 * Expedited Forwarding (EF)
2353 * Lower Effort (LE)
2354 *
2355 * Total 26 codepoints.
2356 */
2357
2358 /* List of traffic classes in RFC 4594, updated by RFC 8622:
2359 * (roughly descending order of contended priority)
2360 * (roughly ascending order of uncontended throughput)
2361 *
2362 * Network Control (CS6,CS7) - routing traffic
2363 * Telephony (EF,VA) - aka. VoIP streams
2364 * Signalling (CS5) - VoIP setup
2365 * Multimedia Conferencing (AF4x) - aka. video calls
2366 * Realtime Interactive (CS4) - eg. games
2367 * Multimedia Streaming (AF3x) - eg. YouTube, NetFlix, Twitch
2368 * Broadcast Video (CS3)
2369 * Low-Latency Data (AF2x,TOS4) - eg. database
2370 * Ops, Admin, Management (CS2) - eg. ssh
2371 * Standard Service (DF & unrecognised codepoints)
2372 * High-Throughput Data (AF1x,TOS2) - eg. web traffic
2373 * Low-Priority Data (LE,CS1) - eg. BitTorrent
2374 *
2375 * Total 12 traffic classes.
2376 */
2377
cake_config_diffserv8(struct Qdisc * sch)2378 static int cake_config_diffserv8(struct Qdisc *sch)
2379 {
2380 /* Pruned list of traffic classes for typical applications:
2381 *
2382 * Network Control (CS6, CS7)
2383 * Minimum Latency (EF, VA, CS5, CS4)
2384 * Interactive Shell (CS2)
2385 * Low Latency Transactions (AF2x, TOS4)
2386 * Video Streaming (AF4x, AF3x, CS3)
2387 * Bog Standard (DF etc.)
2388 * High Throughput (AF1x, TOS2, CS1)
2389 * Background Traffic (LE)
2390 *
2391 * Total 8 traffic classes.
2392 */
2393
2394 struct cake_sched_data *q = qdisc_priv(sch);
2395 u32 mtu = psched_mtu(qdisc_dev(sch));
2396 u64 rate = q->rate_bps;
2397 u32 quantum = 256;
2398 u32 i;
2399
2400 q->tin_cnt = 8;
2401
2402 /* codepoint to class mapping */
2403 q->tin_index = diffserv8;
2404 q->tin_order = normal_order;
2405
2406 /* class characteristics */
2407 for (i = 0; i < q->tin_cnt; i++) {
2408 struct cake_tin_data *b = &q->tins[i];
2409
2410 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2411 us_to_ns(q->interval));
2412
2413 b->tin_quantum = max_t(u16, 1U, quantum);
2414
2415 /* calculate next class's parameters */
2416 rate *= 7;
2417 rate >>= 3;
2418
2419 quantum *= 7;
2420 quantum >>= 3;
2421 }
2422
2423 return 0;
2424 }
2425
cake_config_diffserv4(struct Qdisc * sch)2426 static int cake_config_diffserv4(struct Qdisc *sch)
2427 {
2428 /* Further pruned list of traffic classes for four-class system:
2429 *
2430 * Latency Sensitive (CS7, CS6, EF, VA, CS5, CS4)
2431 * Streaming Media (AF4x, AF3x, CS3, AF2x, TOS4, CS2)
2432 * Best Effort (DF, AF1x, TOS2, and those not specified)
2433 * Background Traffic (LE, CS1)
2434 *
2435 * Total 4 traffic classes.
2436 */
2437
2438 struct cake_sched_data *q = qdisc_priv(sch);
2439 u32 mtu = psched_mtu(qdisc_dev(sch));
2440 u64 rate = q->rate_bps;
2441 u32 quantum = 1024;
2442
2443 q->tin_cnt = 4;
2444
2445 /* codepoint to class mapping */
2446 q->tin_index = diffserv4;
2447 q->tin_order = bulk_order;
2448
2449 /* class characteristics */
2450 cake_set_rate(&q->tins[0], rate, mtu,
2451 us_to_ns(q->target), us_to_ns(q->interval));
2452 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2453 us_to_ns(q->target), us_to_ns(q->interval));
2454 cake_set_rate(&q->tins[2], rate >> 1, mtu,
2455 us_to_ns(q->target), us_to_ns(q->interval));
2456 cake_set_rate(&q->tins[3], rate >> 2, mtu,
2457 us_to_ns(q->target), us_to_ns(q->interval));
2458
2459 /* bandwidth-sharing weights */
2460 q->tins[0].tin_quantum = quantum;
2461 q->tins[1].tin_quantum = quantum >> 4;
2462 q->tins[2].tin_quantum = quantum >> 1;
2463 q->tins[3].tin_quantum = quantum >> 2;
2464
2465 return 0;
2466 }
2467
cake_config_diffserv3(struct Qdisc * sch)2468 static int cake_config_diffserv3(struct Qdisc *sch)
2469 {
2470 /* Simplified Diffserv structure with 3 tins.
2471 * Latency Sensitive (CS7, CS6, EF, VA, TOS4)
2472 * Best Effort
2473 * Low Priority (LE, CS1)
2474 */
2475 struct cake_sched_data *q = qdisc_priv(sch);
2476 u32 mtu = psched_mtu(qdisc_dev(sch));
2477 u64 rate = q->rate_bps;
2478 u32 quantum = 1024;
2479
2480 q->tin_cnt = 3;
2481
2482 /* codepoint to class mapping */
2483 q->tin_index = diffserv3;
2484 q->tin_order = bulk_order;
2485
2486 /* class characteristics */
2487 cake_set_rate(&q->tins[0], rate, mtu,
2488 us_to_ns(q->target), us_to_ns(q->interval));
2489 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2490 us_to_ns(q->target), us_to_ns(q->interval));
2491 cake_set_rate(&q->tins[2], rate >> 2, mtu,
2492 us_to_ns(q->target), us_to_ns(q->interval));
2493
2494 /* bandwidth-sharing weights */
2495 q->tins[0].tin_quantum = quantum;
2496 q->tins[1].tin_quantum = quantum >> 4;
2497 q->tins[2].tin_quantum = quantum >> 2;
2498
2499 return 0;
2500 }
2501
cake_reconfigure(struct Qdisc * sch)2502 static void cake_reconfigure(struct Qdisc *sch)
2503 {
2504 struct cake_sched_data *q = qdisc_priv(sch);
2505 int c, ft;
2506
2507 switch (q->tin_mode) {
2508 case CAKE_DIFFSERV_BESTEFFORT:
2509 ft = cake_config_besteffort(sch);
2510 break;
2511
2512 case CAKE_DIFFSERV_PRECEDENCE:
2513 ft = cake_config_precedence(sch);
2514 break;
2515
2516 case CAKE_DIFFSERV_DIFFSERV8:
2517 ft = cake_config_diffserv8(sch);
2518 break;
2519
2520 case CAKE_DIFFSERV_DIFFSERV4:
2521 ft = cake_config_diffserv4(sch);
2522 break;
2523
2524 case CAKE_DIFFSERV_DIFFSERV3:
2525 default:
2526 ft = cake_config_diffserv3(sch);
2527 break;
2528 }
2529
2530 for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) {
2531 cake_clear_tin(sch, c);
2532 q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time;
2533 }
2534
2535 q->rate_ns = q->tins[ft].tin_rate_ns;
2536 q->rate_shft = q->tins[ft].tin_rate_shft;
2537
2538 if (q->buffer_config_limit) {
2539 q->buffer_limit = q->buffer_config_limit;
2540 } else if (q->rate_bps) {
2541 u64 t = q->rate_bps * q->interval;
2542
2543 do_div(t, USEC_PER_SEC / 4);
2544 q->buffer_limit = max_t(u32, t, 4U << 20);
2545 } else {
2546 q->buffer_limit = ~0;
2547 }
2548
2549 sch->flags &= ~TCQ_F_CAN_BYPASS;
2550
2551 q->buffer_limit = min(q->buffer_limit,
2552 max(sch->limit * psched_mtu(qdisc_dev(sch)),
2553 q->buffer_config_limit));
2554 }
2555
cake_change(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)2556 static int cake_change(struct Qdisc *sch, struct nlattr *opt,
2557 struct netlink_ext_ack *extack)
2558 {
2559 struct cake_sched_data *q = qdisc_priv(sch);
2560 struct nlattr *tb[TCA_CAKE_MAX + 1];
2561 u16 rate_flags;
2562 u8 flow_mode;
2563 int err;
2564
2565 err = nla_parse_nested_deprecated(tb, TCA_CAKE_MAX, opt, cake_policy,
2566 extack);
2567 if (err < 0)
2568 return err;
2569
2570 flow_mode = q->flow_mode;
2571 if (tb[TCA_CAKE_NAT]) {
2572 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
2573 flow_mode &= ~CAKE_FLOW_NAT_FLAG;
2574 flow_mode |= CAKE_FLOW_NAT_FLAG *
2575 !!nla_get_u32(tb[TCA_CAKE_NAT]);
2576 #else
2577 NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT],
2578 "No conntrack support in kernel");
2579 return -EOPNOTSUPP;
2580 #endif
2581 }
2582
2583 if (tb[TCA_CAKE_BASE_RATE64])
2584 WRITE_ONCE(q->rate_bps,
2585 nla_get_u64(tb[TCA_CAKE_BASE_RATE64]));
2586
2587 if (tb[TCA_CAKE_DIFFSERV_MODE])
2588 WRITE_ONCE(q->tin_mode,
2589 nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]));
2590
2591 rate_flags = q->rate_flags;
2592 if (tb[TCA_CAKE_WASH]) {
2593 if (!!nla_get_u32(tb[TCA_CAKE_WASH]))
2594 rate_flags |= CAKE_FLAG_WASH;
2595 else
2596 rate_flags &= ~CAKE_FLAG_WASH;
2597 }
2598
2599 if (tb[TCA_CAKE_FLOW_MODE])
2600 flow_mode = ((flow_mode & CAKE_FLOW_NAT_FLAG) |
2601 (nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) &
2602 CAKE_FLOW_MASK));
2603
2604 if (tb[TCA_CAKE_ATM])
2605 WRITE_ONCE(q->atm_mode,
2606 nla_get_u32(tb[TCA_CAKE_ATM]));
2607
2608 if (tb[TCA_CAKE_OVERHEAD]) {
2609 WRITE_ONCE(q->rate_overhead,
2610 nla_get_s32(tb[TCA_CAKE_OVERHEAD]));
2611 rate_flags |= CAKE_FLAG_OVERHEAD;
2612
2613 q->max_netlen = 0;
2614 q->max_adjlen = 0;
2615 q->min_netlen = ~0;
2616 q->min_adjlen = ~0;
2617 }
2618
2619 if (tb[TCA_CAKE_RAW]) {
2620 rate_flags &= ~CAKE_FLAG_OVERHEAD;
2621
2622 q->max_netlen = 0;
2623 q->max_adjlen = 0;
2624 q->min_netlen = ~0;
2625 q->min_adjlen = ~0;
2626 }
2627
2628 if (tb[TCA_CAKE_MPU])
2629 WRITE_ONCE(q->rate_mpu,
2630 nla_get_u32(tb[TCA_CAKE_MPU]));
2631
2632 if (tb[TCA_CAKE_RTT]) {
2633 u32 interval = nla_get_u32(tb[TCA_CAKE_RTT]);
2634
2635 WRITE_ONCE(q->interval, max(interval, 1U));
2636 }
2637
2638 if (tb[TCA_CAKE_TARGET]) {
2639 u32 target = nla_get_u32(tb[TCA_CAKE_TARGET]);
2640
2641 WRITE_ONCE(q->target, max(target, 1U));
2642 }
2643
2644 if (tb[TCA_CAKE_AUTORATE]) {
2645 if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE]))
2646 rate_flags |= CAKE_FLAG_AUTORATE_INGRESS;
2647 else
2648 rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS;
2649 }
2650
2651 if (tb[TCA_CAKE_INGRESS]) {
2652 if (!!nla_get_u32(tb[TCA_CAKE_INGRESS]))
2653 rate_flags |= CAKE_FLAG_INGRESS;
2654 else
2655 rate_flags &= ~CAKE_FLAG_INGRESS;
2656 }
2657
2658 if (tb[TCA_CAKE_ACK_FILTER])
2659 WRITE_ONCE(q->ack_filter,
2660 nla_get_u32(tb[TCA_CAKE_ACK_FILTER]));
2661
2662 if (tb[TCA_CAKE_MEMORY])
2663 WRITE_ONCE(q->buffer_config_limit,
2664 nla_get_u32(tb[TCA_CAKE_MEMORY]));
2665
2666 if (tb[TCA_CAKE_SPLIT_GSO]) {
2667 if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO]))
2668 rate_flags |= CAKE_FLAG_SPLIT_GSO;
2669 else
2670 rate_flags &= ~CAKE_FLAG_SPLIT_GSO;
2671 }
2672
2673 if (tb[TCA_CAKE_FWMARK]) {
2674 WRITE_ONCE(q->fwmark_mask, nla_get_u32(tb[TCA_CAKE_FWMARK]));
2675 WRITE_ONCE(q->fwmark_shft,
2676 q->fwmark_mask ? __ffs(q->fwmark_mask) : 0);
2677 }
2678
2679 WRITE_ONCE(q->rate_flags, rate_flags);
2680 WRITE_ONCE(q->flow_mode, flow_mode);
2681 if (q->tins) {
2682 sch_tree_lock(sch);
2683 cake_reconfigure(sch);
2684 sch_tree_unlock(sch);
2685 }
2686
2687 return 0;
2688 }
2689
cake_destroy(struct Qdisc * sch)2690 static void cake_destroy(struct Qdisc *sch)
2691 {
2692 struct cake_sched_data *q = qdisc_priv(sch);
2693
2694 qdisc_watchdog_cancel(&q->watchdog);
2695 tcf_block_put(q->block);
2696 kvfree(q->tins);
2697 }
2698
cake_init(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)2699 static int cake_init(struct Qdisc *sch, struct nlattr *opt,
2700 struct netlink_ext_ack *extack)
2701 {
2702 struct cake_sched_data *q = qdisc_priv(sch);
2703 int i, j, err;
2704
2705 sch->limit = 10240;
2706 q->tin_mode = CAKE_DIFFSERV_DIFFSERV3;
2707 q->flow_mode = CAKE_FLOW_TRIPLE;
2708
2709 q->rate_bps = 0; /* unlimited by default */
2710
2711 q->interval = 100000; /* 100ms default */
2712 q->target = 5000; /* 5ms: codel RFC argues
2713 * for 5 to 10% of interval
2714 */
2715 q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2716 q->cur_tin = 0;
2717 q->cur_flow = 0;
2718
2719 qdisc_watchdog_init(&q->watchdog, sch);
2720
2721 if (opt) {
2722 err = cake_change(sch, opt, extack);
2723
2724 if (err)
2725 return err;
2726 }
2727
2728 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
2729 if (err)
2730 return err;
2731
2732 quantum_div[0] = ~0;
2733 for (i = 1; i <= CAKE_QUEUES; i++)
2734 quantum_div[i] = 65535 / i;
2735
2736 q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data),
2737 GFP_KERNEL);
2738 if (!q->tins)
2739 return -ENOMEM;
2740
2741 for (i = 0; i < CAKE_MAX_TINS; i++) {
2742 struct cake_tin_data *b = q->tins + i;
2743
2744 INIT_LIST_HEAD(&b->new_flows);
2745 INIT_LIST_HEAD(&b->old_flows);
2746 INIT_LIST_HEAD(&b->decaying_flows);
2747 b->sparse_flow_count = 0;
2748 b->bulk_flow_count = 0;
2749 b->decaying_flow_count = 0;
2750
2751 for (j = 0; j < CAKE_QUEUES; j++) {
2752 struct cake_flow *flow = b->flows + j;
2753 u32 k = j * CAKE_MAX_TINS + i;
2754
2755 INIT_LIST_HEAD(&flow->flowchain);
2756 cobalt_vars_init(&flow->cvars);
2757
2758 q->overflow_heap[k].t = i;
2759 q->overflow_heap[k].b = j;
2760 b->overflow_idx[j] = k;
2761 }
2762 }
2763
2764 cake_reconfigure(sch);
2765 q->avg_peak_bandwidth = q->rate_bps;
2766 q->min_netlen = ~0;
2767 q->min_adjlen = ~0;
2768 return 0;
2769 }
2770
cake_dump(struct Qdisc * sch,struct sk_buff * skb)2771 static int cake_dump(struct Qdisc *sch, struct sk_buff *skb)
2772 {
2773 struct cake_sched_data *q = qdisc_priv(sch);
2774 struct nlattr *opts;
2775 u16 rate_flags;
2776 u8 flow_mode;
2777
2778 opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
2779 if (!opts)
2780 goto nla_put_failure;
2781
2782 if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64,
2783 READ_ONCE(q->rate_bps), TCA_CAKE_PAD))
2784 goto nla_put_failure;
2785
2786 flow_mode = READ_ONCE(q->flow_mode);
2787 if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE, flow_mode & CAKE_FLOW_MASK))
2788 goto nla_put_failure;
2789
2790 if (nla_put_u32(skb, TCA_CAKE_RTT, READ_ONCE(q->interval)))
2791 goto nla_put_failure;
2792
2793 if (nla_put_u32(skb, TCA_CAKE_TARGET, READ_ONCE(q->target)))
2794 goto nla_put_failure;
2795
2796 if (nla_put_u32(skb, TCA_CAKE_MEMORY,
2797 READ_ONCE(q->buffer_config_limit)))
2798 goto nla_put_failure;
2799
2800 rate_flags = READ_ONCE(q->rate_flags);
2801 if (nla_put_u32(skb, TCA_CAKE_AUTORATE,
2802 !!(rate_flags & CAKE_FLAG_AUTORATE_INGRESS)))
2803 goto nla_put_failure;
2804
2805 if (nla_put_u32(skb, TCA_CAKE_INGRESS,
2806 !!(rate_flags & CAKE_FLAG_INGRESS)))
2807 goto nla_put_failure;
2808
2809 if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, READ_ONCE(q->ack_filter)))
2810 goto nla_put_failure;
2811
2812 if (nla_put_u32(skb, TCA_CAKE_NAT,
2813 !!(flow_mode & CAKE_FLOW_NAT_FLAG)))
2814 goto nla_put_failure;
2815
2816 if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, READ_ONCE(q->tin_mode)))
2817 goto nla_put_failure;
2818
2819 if (nla_put_u32(skb, TCA_CAKE_WASH,
2820 !!(rate_flags & CAKE_FLAG_WASH)))
2821 goto nla_put_failure;
2822
2823 if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, READ_ONCE(q->rate_overhead)))
2824 goto nla_put_failure;
2825
2826 if (!(rate_flags & CAKE_FLAG_OVERHEAD))
2827 if (nla_put_u32(skb, TCA_CAKE_RAW, 0))
2828 goto nla_put_failure;
2829
2830 if (nla_put_u32(skb, TCA_CAKE_ATM, READ_ONCE(q->atm_mode)))
2831 goto nla_put_failure;
2832
2833 if (nla_put_u32(skb, TCA_CAKE_MPU, READ_ONCE(q->rate_mpu)))
2834 goto nla_put_failure;
2835
2836 if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO,
2837 !!(rate_flags & CAKE_FLAG_SPLIT_GSO)))
2838 goto nla_put_failure;
2839
2840 if (nla_put_u32(skb, TCA_CAKE_FWMARK, READ_ONCE(q->fwmark_mask)))
2841 goto nla_put_failure;
2842
2843 return nla_nest_end(skb, opts);
2844
2845 nla_put_failure:
2846 return -1;
2847 }
2848
cake_dump_stats(struct Qdisc * sch,struct gnet_dump * d)2849 static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2850 {
2851 struct nlattr *stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
2852 struct cake_sched_data *q = qdisc_priv(sch);
2853 struct nlattr *tstats, *ts;
2854 int i;
2855
2856 if (!stats)
2857 return -1;
2858
2859 #define PUT_STAT_U32(attr, data) do { \
2860 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2861 goto nla_put_failure; \
2862 } while (0)
2863 #define PUT_STAT_U64(attr, data) do { \
2864 if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
2865 data, TCA_CAKE_STATS_PAD)) \
2866 goto nla_put_failure; \
2867 } while (0)
2868
2869 PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth);
2870 PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit);
2871 PUT_STAT_U32(MEMORY_USED, q->buffer_max_used);
2872 PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16));
2873 PUT_STAT_U32(MAX_NETLEN, q->max_netlen);
2874 PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen);
2875 PUT_STAT_U32(MIN_NETLEN, q->min_netlen);
2876 PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen);
2877
2878 #undef PUT_STAT_U32
2879 #undef PUT_STAT_U64
2880
2881 tstats = nla_nest_start_noflag(d->skb, TCA_CAKE_STATS_TIN_STATS);
2882 if (!tstats)
2883 goto nla_put_failure;
2884
2885 #define PUT_TSTAT_U32(attr, data) do { \
2886 if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
2887 goto nla_put_failure; \
2888 } while (0)
2889 #define PUT_TSTAT_U64(attr, data) do { \
2890 if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
2891 data, TCA_CAKE_TIN_STATS_PAD)) \
2892 goto nla_put_failure; \
2893 } while (0)
2894
2895 for (i = 0; i < q->tin_cnt; i++) {
2896 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
2897
2898 ts = nla_nest_start_noflag(d->skb, i + 1);
2899 if (!ts)
2900 goto nla_put_failure;
2901
2902 PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps);
2903 PUT_TSTAT_U64(SENT_BYTES64, b->bytes);
2904 PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog);
2905
2906 PUT_TSTAT_U32(TARGET_US,
2907 ktime_to_us(ns_to_ktime(b->cparams.target)));
2908 PUT_TSTAT_U32(INTERVAL_US,
2909 ktime_to_us(ns_to_ktime(b->cparams.interval)));
2910
2911 PUT_TSTAT_U32(SENT_PACKETS, b->packets);
2912 PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped);
2913 PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark);
2914 PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops);
2915
2916 PUT_TSTAT_U32(PEAK_DELAY_US,
2917 ktime_to_us(ns_to_ktime(b->peak_delay)));
2918 PUT_TSTAT_U32(AVG_DELAY_US,
2919 ktime_to_us(ns_to_ktime(b->avge_delay)));
2920 PUT_TSTAT_U32(BASE_DELAY_US,
2921 ktime_to_us(ns_to_ktime(b->base_delay)));
2922
2923 PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits);
2924 PUT_TSTAT_U32(WAY_MISSES, b->way_misses);
2925 PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions);
2926
2927 PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count +
2928 b->decaying_flow_count);
2929 PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count);
2930 PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count);
2931 PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen);
2932
2933 PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum);
2934 nla_nest_end(d->skb, ts);
2935 }
2936
2937 #undef PUT_TSTAT_U32
2938 #undef PUT_TSTAT_U64
2939
2940 nla_nest_end(d->skb, tstats);
2941 return nla_nest_end(d->skb, stats);
2942
2943 nla_put_failure:
2944 nla_nest_cancel(d->skb, stats);
2945 return -1;
2946 }
2947
cake_leaf(struct Qdisc * sch,unsigned long arg)2948 static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg)
2949 {
2950 return NULL;
2951 }
2952
cake_find(struct Qdisc * sch,u32 classid)2953 static unsigned long cake_find(struct Qdisc *sch, u32 classid)
2954 {
2955 return 0;
2956 }
2957
cake_bind(struct Qdisc * sch,unsigned long parent,u32 classid)2958 static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent,
2959 u32 classid)
2960 {
2961 return 0;
2962 }
2963
cake_unbind(struct Qdisc * q,unsigned long cl)2964 static void cake_unbind(struct Qdisc *q, unsigned long cl)
2965 {
2966 }
2967
cake_tcf_block(struct Qdisc * sch,unsigned long cl,struct netlink_ext_ack * extack)2968 static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl,
2969 struct netlink_ext_ack *extack)
2970 {
2971 struct cake_sched_data *q = qdisc_priv(sch);
2972
2973 if (cl)
2974 return NULL;
2975 return q->block;
2976 }
2977
cake_dump_class(struct Qdisc * sch,unsigned long cl,struct sk_buff * skb,struct tcmsg * tcm)2978 static int cake_dump_class(struct Qdisc *sch, unsigned long cl,
2979 struct sk_buff *skb, struct tcmsg *tcm)
2980 {
2981 tcm->tcm_handle |= TC_H_MIN(cl);
2982 return 0;
2983 }
2984
cake_dump_class_stats(struct Qdisc * sch,unsigned long cl,struct gnet_dump * d)2985 static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2986 struct gnet_dump *d)
2987 {
2988 struct cake_sched_data *q = qdisc_priv(sch);
2989 const struct cake_flow *flow = NULL;
2990 struct gnet_stats_queue qs = { 0 };
2991 struct nlattr *stats;
2992 u32 idx = cl - 1;
2993
2994 if (idx < CAKE_QUEUES * q->tin_cnt) {
2995 const struct cake_tin_data *b = \
2996 &q->tins[q->tin_order[idx / CAKE_QUEUES]];
2997 const struct sk_buff *skb;
2998
2999 flow = &b->flows[idx % CAKE_QUEUES];
3000
3001 if (flow->head) {
3002 sch_tree_lock(sch);
3003 skb = flow->head;
3004 while (skb) {
3005 qs.qlen++;
3006 skb = skb->next;
3007 }
3008 sch_tree_unlock(sch);
3009 }
3010 qs.backlog = b->backlogs[idx % CAKE_QUEUES];
3011 qs.drops = flow->dropped;
3012 }
3013 if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
3014 return -1;
3015 if (flow) {
3016 ktime_t now = ktime_get();
3017
3018 stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
3019 if (!stats)
3020 return -1;
3021
3022 #define PUT_STAT_U32(attr, data) do { \
3023 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
3024 goto nla_put_failure; \
3025 } while (0)
3026 #define PUT_STAT_S32(attr, data) do { \
3027 if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
3028 goto nla_put_failure; \
3029 } while (0)
3030
3031 PUT_STAT_S32(DEFICIT, flow->deficit);
3032 PUT_STAT_U32(DROPPING, flow->cvars.dropping);
3033 PUT_STAT_U32(COBALT_COUNT, flow->cvars.count);
3034 PUT_STAT_U32(P_DROP, flow->cvars.p_drop);
3035 if (flow->cvars.p_drop) {
3036 PUT_STAT_S32(BLUE_TIMER_US,
3037 ktime_to_us(
3038 ktime_sub(now,
3039 flow->cvars.blue_timer)));
3040 }
3041 if (flow->cvars.dropping) {
3042 PUT_STAT_S32(DROP_NEXT_US,
3043 ktime_to_us(
3044 ktime_sub(now,
3045 flow->cvars.drop_next)));
3046 }
3047
3048 if (nla_nest_end(d->skb, stats) < 0)
3049 return -1;
3050 }
3051
3052 return 0;
3053
3054 nla_put_failure:
3055 nla_nest_cancel(d->skb, stats);
3056 return -1;
3057 }
3058
cake_walk(struct Qdisc * sch,struct qdisc_walker * arg)3059 static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg)
3060 {
3061 struct cake_sched_data *q = qdisc_priv(sch);
3062 unsigned int i, j;
3063
3064 if (arg->stop)
3065 return;
3066
3067 for (i = 0; i < q->tin_cnt; i++) {
3068 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
3069
3070 for (j = 0; j < CAKE_QUEUES; j++) {
3071 if (list_empty(&b->flows[j].flowchain)) {
3072 arg->count++;
3073 continue;
3074 }
3075 if (!tc_qdisc_stats_dump(sch, i * CAKE_QUEUES + j + 1,
3076 arg))
3077 break;
3078 }
3079 }
3080 }
3081
3082 static const struct Qdisc_class_ops cake_class_ops = {
3083 .leaf = cake_leaf,
3084 .find = cake_find,
3085 .tcf_block = cake_tcf_block,
3086 .bind_tcf = cake_bind,
3087 .unbind_tcf = cake_unbind,
3088 .dump = cake_dump_class,
3089 .dump_stats = cake_dump_class_stats,
3090 .walk = cake_walk,
3091 };
3092
3093 static struct Qdisc_ops cake_qdisc_ops __read_mostly = {
3094 .cl_ops = &cake_class_ops,
3095 .id = "cake",
3096 .priv_size = sizeof(struct cake_sched_data),
3097 .enqueue = cake_enqueue,
3098 .dequeue = cake_dequeue,
3099 .peek = qdisc_peek_dequeued,
3100 .init = cake_init,
3101 .reset = cake_reset,
3102 .destroy = cake_destroy,
3103 .change = cake_change,
3104 .dump = cake_dump,
3105 .dump_stats = cake_dump_stats,
3106 .owner = THIS_MODULE,
3107 };
3108 MODULE_ALIAS_NET_SCH("cake");
3109
cake_module_init(void)3110 static int __init cake_module_init(void)
3111 {
3112 return register_qdisc(&cake_qdisc_ops);
3113 }
3114
cake_module_exit(void)3115 static void __exit cake_module_exit(void)
3116 {
3117 unregister_qdisc(&cake_qdisc_ops);
3118 }
3119
3120 module_init(cake_module_init)
3121 module_exit(cake_module_exit)
3122 MODULE_AUTHOR("Jonathan Morton");
3123 MODULE_LICENSE("Dual BSD/GPL");
3124 MODULE_DESCRIPTION("The CAKE shaper.");
3125