1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file is the ADC part of the STM32 DFSDM driver
4 *
5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
7 */
8
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iio/adc/stm32-dfsdm-adc.h>
12 #include <linux/iio/backend.h>
13 #include <linux/iio/buffer.h>
14 #include <linux/iio/hw-consumer.h>
15 #include <linux/iio/sysfs.h>
16 #include <linux/iio/timer/stm32-lptim-trigger.h>
17 #include <linux/iio/timer/stm32-timer-trigger.h>
18 #include <linux/iio/trigger.h>
19 #include <linux/iio/trigger_consumer.h>
20 #include <linux/iio/triggered_buffer.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_platform.h>
25 #include <linux/platform_device.h>
26 #include <linux/regmap.h>
27 #include <linux/slab.h>
28
29 #include "stm32-dfsdm.h"
30
31 #define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
32
33 /* Conversion timeout */
34 #define DFSDM_TIMEOUT_US 100000
35 #define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
36
37 /* Oversampling attribute default */
38 #define DFSDM_DEFAULT_OVERSAMPLING 100
39
40 /* Oversampling max values */
41 #define DFSDM_MAX_INT_OVERSAMPLING 256
42 #define DFSDM_MAX_FL_OVERSAMPLING 1024
43
44 /* Limit filter output resolution to 31 bits. (i.e. sample range is +/-2^30) */
45 #define DFSDM_DATA_MAX BIT(30)
46 /*
47 * Data are output as two's complement data in a 24 bit field.
48 * Data from filters are in the range +/-2^(n-1)
49 * 2^(n-1) maximum positive value cannot be coded in 2's complement n bits
50 * An extra bit is required to avoid wrap-around of the binary code for 2^(n-1)
51 * So, the resolution of samples from filter is actually limited to 23 bits
52 */
53 #define DFSDM_DATA_RES 24
54
55 /* Filter configuration */
56 #define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
57 DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
58 DFSDM_CR1_JSCAN_MASK)
59
60 enum sd_converter_type {
61 DFSDM_AUDIO,
62 DFSDM_IIO,
63 };
64
65 struct stm32_dfsdm_dev_data {
66 int type;
67 int (*init)(struct device *dev, struct iio_dev *indio_dev);
68 unsigned int num_channels;
69 const struct regmap_config *regmap_cfg;
70 };
71
72 struct stm32_dfsdm_adc {
73 struct stm32_dfsdm *dfsdm;
74 const struct stm32_dfsdm_dev_data *dev_data;
75 unsigned int fl_id;
76 unsigned int nconv;
77 unsigned long smask;
78
79 /* ADC specific */
80 unsigned int oversamp;
81 struct iio_hw_consumer *hwc;
82 struct iio_backend **backend;
83 struct completion completion;
84 u32 *buffer;
85
86 /* Audio specific */
87 unsigned int spi_freq; /* SPI bus clock frequency */
88 unsigned int sample_freq; /* Sample frequency after filter decimation */
89 int (*cb)(const void *data, size_t size, void *cb_priv);
90 void *cb_priv;
91
92 /* DMA */
93 u8 *rx_buf;
94 unsigned int bufi; /* Buffer current position */
95 unsigned int buf_sz; /* Buffer size */
96 struct dma_chan *dma_chan;
97 dma_addr_t dma_buf;
98 };
99
100 struct stm32_dfsdm_str2field {
101 const char *name;
102 unsigned int val;
103 };
104
105 /* DFSDM channel serial interface type */
106 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
107 { "SPI_R", 0 }, /* SPI with data on rising edge */
108 { "SPI_F", 1 }, /* SPI with data on falling edge */
109 { "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
110 { "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
111 {},
112 };
113
114 /* DFSDM channel clock source */
115 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
116 /* External SPI clock (CLKIN x) */
117 { "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
118 /* Internal SPI clock (CLKOUT) */
119 { "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
120 /* Internal SPI clock divided by 2 (falling edge) */
121 { "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
122 /* Internal SPI clock divided by 2 (falling edge) */
123 { "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
124 {},
125 };
126
stm32_dfsdm_str2val(const char * str,const struct stm32_dfsdm_str2field * list)127 static int stm32_dfsdm_str2val(const char *str,
128 const struct stm32_dfsdm_str2field *list)
129 {
130 const struct stm32_dfsdm_str2field *p = list;
131
132 for (p = list; p && p->name; p++)
133 if (!strcmp(p->name, str))
134 return p->val;
135
136 return -EINVAL;
137 }
138
139 /**
140 * struct stm32_dfsdm_trig_info - DFSDM trigger info
141 * @name: name of the trigger, corresponding to its source
142 * @jextsel: trigger signal selection
143 */
144 struct stm32_dfsdm_trig_info {
145 const char *name;
146 unsigned int jextsel;
147 };
148
149 /* hardware injected trigger enable, edge selection */
150 enum stm32_dfsdm_jexten {
151 STM32_DFSDM_JEXTEN_DISABLED,
152 STM32_DFSDM_JEXTEN_RISING_EDGE,
153 STM32_DFSDM_JEXTEN_FALLING_EDGE,
154 STM32_DFSDM_EXTEN_BOTH_EDGES,
155 };
156
157 static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
158 { TIM1_TRGO, 0 },
159 { TIM1_TRGO2, 1 },
160 { TIM8_TRGO, 2 },
161 { TIM8_TRGO2, 3 },
162 { TIM3_TRGO, 4 },
163 { TIM4_TRGO, 5 },
164 { TIM16_OC1, 6 },
165 { TIM6_TRGO, 7 },
166 { TIM7_TRGO, 8 },
167 { LPTIM1_OUT, 26 },
168 { LPTIM2_OUT, 27 },
169 { LPTIM3_OUT, 28 },
170 {},
171 };
172
stm32_dfsdm_get_jextsel(struct iio_dev * indio_dev,struct iio_trigger * trig)173 static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
174 struct iio_trigger *trig)
175 {
176 int i;
177
178 /* lookup triggers registered by stm32 timer trigger driver */
179 for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
180 /**
181 * Checking both stm32 timer trigger type and trig name
182 * should be safe against arbitrary trigger names.
183 */
184 if ((is_stm32_timer_trigger(trig) ||
185 is_stm32_lptim_trigger(trig)) &&
186 !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
187 return stm32_dfsdm_trigs[i].jextsel;
188 }
189 }
190
191 return -EINVAL;
192 }
193
stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter * fl,unsigned int fast,unsigned int oversamp)194 static int stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter *fl,
195 unsigned int fast, unsigned int oversamp)
196 {
197 unsigned int i, d, fosr, iosr;
198 u64 res, max;
199 int bits, shift;
200 unsigned int m = 1; /* multiplication factor */
201 unsigned int p = fl->ford; /* filter order (ford) */
202 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fast];
203
204 pr_debug("Requested oversampling: %d\n", oversamp);
205 /*
206 * This function tries to compute filter oversampling and integrator
207 * oversampling, base on oversampling ratio requested by user.
208 *
209 * Decimation d depends on the filter order and the oversampling ratios.
210 * ford: filter order
211 * fosr: filter over sampling ratio
212 * iosr: integrator over sampling ratio
213 */
214 if (fl->ford == DFSDM_FASTSINC_ORDER) {
215 m = 2;
216 p = 2;
217 }
218
219 /*
220 * Look for filter and integrator oversampling ratios which allows
221 * to maximize data output resolution.
222 */
223 for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
224 for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
225 if (fast)
226 d = fosr * iosr;
227 else if (fl->ford == DFSDM_FASTSINC_ORDER)
228 d = fosr * (iosr + 3) + 2;
229 else
230 d = fosr * (iosr - 1 + p) + p;
231
232 if (d > oversamp)
233 break;
234 else if (d != oversamp)
235 continue;
236 /*
237 * Check resolution (limited to signed 32 bits)
238 * res <= 2^31
239 * Sincx filters:
240 * res = m * fosr^p x iosr (with m=1, p=ford)
241 * FastSinc filter
242 * res = m * fosr^p x iosr (with m=2, p=2)
243 */
244 res = fosr;
245 for (i = p - 1; i > 0; i--) {
246 res = res * (u64)fosr;
247 if (res > DFSDM_DATA_MAX)
248 break;
249 }
250 if (res > DFSDM_DATA_MAX)
251 continue;
252
253 res = res * (u64)m * (u64)iosr;
254 if (res > DFSDM_DATA_MAX)
255 continue;
256
257 if (res >= flo->res) {
258 flo->res = res;
259 flo->fosr = fosr;
260 flo->iosr = iosr;
261
262 bits = fls(flo->res);
263 /* 8 LBSs in data register contain chan info */
264 max = flo->res << 8;
265
266 /* if resolution is not a power of two */
267 if (flo->res > BIT(bits - 1))
268 bits++;
269 else
270 max--;
271
272 shift = DFSDM_DATA_RES - bits;
273 /*
274 * Compute right/left shift
275 * Right shift is performed by hardware
276 * when transferring samples to data register.
277 * Left shift is done by software on buffer
278 */
279 if (shift > 0) {
280 /* Resolution is lower than 24 bits */
281 flo->rshift = 0;
282 flo->lshift = shift;
283 } else {
284 /*
285 * If resolution is 24 bits or more,
286 * max positive value may be ambiguous
287 * (equal to max negative value as sign
288 * bit is dropped).
289 * Reduce resolution to 23 bits (rshift)
290 * to keep the sign on bit 23 and treat
291 * saturation before rescaling on 24
292 * bits (lshift).
293 */
294 flo->rshift = 1 - shift;
295 flo->lshift = 1;
296 max >>= flo->rshift;
297 }
298 flo->max = (s32)max;
299 flo->bits = bits;
300
301 pr_debug("fast %d, fosr %d, iosr %d, res 0x%llx/%d bits, rshift %d, lshift %d\n",
302 fast, flo->fosr, flo->iosr,
303 flo->res, bits, flo->rshift,
304 flo->lshift);
305 }
306 }
307 }
308
309 if (!flo->res)
310 return -EINVAL;
311
312 return 0;
313 }
314
stm32_dfsdm_compute_all_osrs(struct iio_dev * indio_dev,unsigned int oversamp)315 static int stm32_dfsdm_compute_all_osrs(struct iio_dev *indio_dev,
316 unsigned int oversamp)
317 {
318 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
319 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
320 int ret0, ret1;
321
322 memset(&fl->flo[0], 0, sizeof(fl->flo[0]));
323 memset(&fl->flo[1], 0, sizeof(fl->flo[1]));
324
325 ret0 = stm32_dfsdm_compute_osrs(fl, 0, oversamp);
326 ret1 = stm32_dfsdm_compute_osrs(fl, 1, oversamp);
327 if (ret0 < 0 && ret1 < 0) {
328 dev_err(&indio_dev->dev,
329 "Filter parameters not found: errors %d/%d\n",
330 ret0, ret1);
331 return -EINVAL;
332 }
333
334 return 0;
335 }
336
stm32_dfsdm_start_channel(struct iio_dev * indio_dev)337 static int stm32_dfsdm_start_channel(struct iio_dev *indio_dev)
338 {
339 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
340 struct regmap *regmap = adc->dfsdm->regmap;
341 const struct iio_chan_spec *chan;
342 unsigned int bit;
343 int ret;
344
345 for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
346 chan = indio_dev->channels + bit;
347 ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
348 DFSDM_CHCFGR1_CHEN_MASK,
349 DFSDM_CHCFGR1_CHEN(1));
350 if (ret < 0)
351 return ret;
352 }
353
354 return 0;
355 }
356
stm32_dfsdm_stop_channel(struct iio_dev * indio_dev)357 static void stm32_dfsdm_stop_channel(struct iio_dev *indio_dev)
358 {
359 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
360 struct regmap *regmap = adc->dfsdm->regmap;
361 const struct iio_chan_spec *chan;
362 unsigned int bit;
363
364 for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
365 chan = indio_dev->channels + bit;
366 regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
367 DFSDM_CHCFGR1_CHEN_MASK,
368 DFSDM_CHCFGR1_CHEN(0));
369 }
370 }
371
stm32_dfsdm_chan_configure(struct stm32_dfsdm * dfsdm,struct stm32_dfsdm_channel * ch)372 static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
373 struct stm32_dfsdm_channel *ch)
374 {
375 unsigned int id = ch->id;
376 struct regmap *regmap = dfsdm->regmap;
377 int ret;
378
379 ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
380 DFSDM_CHCFGR1_SITP_MASK,
381 DFSDM_CHCFGR1_SITP(ch->type));
382 if (ret < 0)
383 return ret;
384 ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
385 DFSDM_CHCFGR1_SPICKSEL_MASK,
386 DFSDM_CHCFGR1_SPICKSEL(ch->src));
387 if (ret < 0)
388 return ret;
389 return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
390 DFSDM_CHCFGR1_CHINSEL_MASK,
391 DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
392 }
393
stm32_dfsdm_start_filter(struct stm32_dfsdm_adc * adc,unsigned int fl_id,struct iio_trigger * trig)394 static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
395 unsigned int fl_id,
396 struct iio_trigger *trig)
397 {
398 struct stm32_dfsdm *dfsdm = adc->dfsdm;
399 int ret;
400
401 /* Enable filter */
402 ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
403 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
404 if (ret < 0)
405 return ret;
406
407 /* Nothing more to do for injected (scan mode/triggered) conversions */
408 if (adc->nconv > 1 || trig)
409 return 0;
410
411 /* Software start (single or continuous) regular conversion */
412 return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
413 DFSDM_CR1_RSWSTART_MASK,
414 DFSDM_CR1_RSWSTART(1));
415 }
416
stm32_dfsdm_stop_filter(struct stm32_dfsdm * dfsdm,unsigned int fl_id)417 static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
418 unsigned int fl_id)
419 {
420 /* Disable conversion */
421 regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
422 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
423 }
424
stm32_dfsdm_filter_set_trig(struct iio_dev * indio_dev,unsigned int fl_id,struct iio_trigger * trig)425 static int stm32_dfsdm_filter_set_trig(struct iio_dev *indio_dev,
426 unsigned int fl_id,
427 struct iio_trigger *trig)
428 {
429 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
430 struct regmap *regmap = adc->dfsdm->regmap;
431 u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
432 int ret;
433
434 if (trig) {
435 ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
436 if (ret < 0)
437 return ret;
438
439 /* set trigger source and polarity (default to rising edge) */
440 jextsel = ret;
441 jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
442 }
443
444 ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
445 DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
446 DFSDM_CR1_JEXTSEL(jextsel) |
447 DFSDM_CR1_JEXTEN(jexten));
448 if (ret < 0)
449 return ret;
450
451 return 0;
452 }
453
stm32_dfsdm_channels_configure(struct iio_dev * indio_dev,unsigned int fl_id,struct iio_trigger * trig)454 static int stm32_dfsdm_channels_configure(struct iio_dev *indio_dev,
455 unsigned int fl_id,
456 struct iio_trigger *trig)
457 {
458 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
459 struct regmap *regmap = adc->dfsdm->regmap;
460 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
461 struct stm32_dfsdm_filter_osr *flo = &fl->flo[0];
462 const struct iio_chan_spec *chan;
463 unsigned int bit;
464 int ret;
465
466 fl->fast = 0;
467
468 /*
469 * In continuous mode, use fast mode configuration,
470 * if it provides a better resolution.
471 */
472 if (adc->nconv == 1 && !trig && iio_buffer_enabled(indio_dev)) {
473 if (fl->flo[1].res >= fl->flo[0].res) {
474 fl->fast = 1;
475 flo = &fl->flo[1];
476 }
477 }
478
479 if (!flo->res)
480 return -EINVAL;
481
482 dev_dbg(&indio_dev->dev, "Samples actual resolution: %d bits",
483 min(flo->bits, (u32)DFSDM_DATA_RES - 1));
484
485 for_each_set_bit(bit, &adc->smask,
486 sizeof(adc->smask) * BITS_PER_BYTE) {
487 chan = indio_dev->channels + bit;
488
489 ret = regmap_update_bits(regmap,
490 DFSDM_CHCFGR2(chan->channel),
491 DFSDM_CHCFGR2_DTRBS_MASK,
492 DFSDM_CHCFGR2_DTRBS(flo->rshift));
493 if (ret)
494 return ret;
495 }
496
497 return 0;
498 }
499
stm32_dfsdm_filter_configure(struct iio_dev * indio_dev,unsigned int fl_id,struct iio_trigger * trig)500 static int stm32_dfsdm_filter_configure(struct iio_dev *indio_dev,
501 unsigned int fl_id,
502 struct iio_trigger *trig)
503 {
504 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
505 struct regmap *regmap = adc->dfsdm->regmap;
506 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
507 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
508 u32 cr1;
509 const struct iio_chan_spec *chan;
510 unsigned int bit, jchg = 0;
511 int ret;
512
513 /* Average integrator oversampling */
514 ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
515 DFSDM_FCR_IOSR(flo->iosr - 1));
516 if (ret)
517 return ret;
518
519 /* Filter order and Oversampling */
520 ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
521 DFSDM_FCR_FOSR(flo->fosr - 1));
522 if (ret)
523 return ret;
524
525 ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
526 DFSDM_FCR_FORD(fl->ford));
527 if (ret)
528 return ret;
529
530 ret = stm32_dfsdm_filter_set_trig(indio_dev, fl_id, trig);
531 if (ret)
532 return ret;
533
534 ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
535 DFSDM_CR1_FAST_MASK,
536 DFSDM_CR1_FAST(fl->fast));
537 if (ret)
538 return ret;
539
540 /*
541 * DFSDM modes configuration W.R.T audio/iio type modes
542 * ----------------------------------------------------------------
543 * Modes | regular | regular | injected | injected |
544 * | | continuous | | + scan |
545 * --------------|---------|--------------|----------|------------|
546 * single conv | x | | | |
547 * (1 chan) | | | | |
548 * --------------|---------|--------------|----------|------------|
549 * 1 Audio chan | | sample freq | | |
550 * | | or sync_mode | | |
551 * --------------|---------|--------------|----------|------------|
552 * 1 IIO chan | | sample freq | trigger | |
553 * | | or sync_mode | | |
554 * --------------|---------|--------------|----------|------------|
555 * 2+ IIO chans | | | | trigger or |
556 * | | | | sync_mode |
557 * ----------------------------------------------------------------
558 */
559 if (adc->nconv == 1 && !trig) {
560 bit = __ffs(adc->smask);
561 chan = indio_dev->channels + bit;
562
563 /* Use regular conversion for single channel without trigger */
564 cr1 = DFSDM_CR1_RCH(chan->channel);
565
566 /* Continuous conversions triggered by SPI clk in buffer mode */
567 if (iio_buffer_enabled(indio_dev))
568 cr1 |= DFSDM_CR1_RCONT(1);
569
570 cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
571 } else {
572 /* Use injected conversion for multiple channels */
573 for_each_set_bit(bit, &adc->smask,
574 sizeof(adc->smask) * BITS_PER_BYTE) {
575 chan = indio_dev->channels + bit;
576 jchg |= BIT(chan->channel);
577 }
578 ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
579 if (ret < 0)
580 return ret;
581
582 /* Use scan mode for multiple channels */
583 cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
584
585 /*
586 * Continuous conversions not supported in injected mode,
587 * either use:
588 * - conversions in sync with filter 0
589 * - triggered conversions
590 */
591 if (!fl->sync_mode && !trig)
592 return -EINVAL;
593 cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
594 }
595
596 return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
597 cr1);
598 }
599
stm32_dfsdm_channel_parse_of(struct stm32_dfsdm * dfsdm,struct iio_dev * indio_dev,struct iio_chan_spec * ch)600 static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
601 struct iio_dev *indio_dev,
602 struct iio_chan_spec *ch)
603 {
604 struct stm32_dfsdm_channel *df_ch;
605 const char *of_str;
606 int chan_idx = ch->scan_index;
607 int ret, val;
608
609 ret = of_property_read_u32_index(indio_dev->dev.of_node,
610 "st,adc-channels", chan_idx,
611 &ch->channel);
612 if (ret < 0) {
613 dev_err(&indio_dev->dev,
614 " Error parsing 'st,adc-channels' for idx %d\n",
615 chan_idx);
616 return ret;
617 }
618 if (ch->channel >= dfsdm->num_chs) {
619 dev_err(&indio_dev->dev,
620 " Error bad channel number %d (max = %d)\n",
621 ch->channel, dfsdm->num_chs);
622 return -EINVAL;
623 }
624
625 ret = of_property_read_string_index(indio_dev->dev.of_node,
626 "st,adc-channel-names", chan_idx,
627 &ch->datasheet_name);
628 if (ret < 0) {
629 dev_err(&indio_dev->dev,
630 " Error parsing 'st,adc-channel-names' for idx %d\n",
631 chan_idx);
632 return ret;
633 }
634
635 df_ch = &dfsdm->ch_list[ch->channel];
636 df_ch->id = ch->channel;
637
638 ret = of_property_read_string_index(indio_dev->dev.of_node,
639 "st,adc-channel-types", chan_idx,
640 &of_str);
641 if (!ret) {
642 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
643 if (val < 0)
644 return val;
645 } else {
646 val = 0;
647 }
648 df_ch->type = val;
649
650 ret = of_property_read_string_index(indio_dev->dev.of_node,
651 "st,adc-channel-clk-src", chan_idx,
652 &of_str);
653 if (!ret) {
654 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
655 if (val < 0)
656 return val;
657 } else {
658 val = 0;
659 }
660 df_ch->src = val;
661
662 ret = of_property_read_u32_index(indio_dev->dev.of_node,
663 "st,adc-alt-channel", chan_idx,
664 &df_ch->alt_si);
665 if (ret < 0)
666 df_ch->alt_si = 0;
667
668 return 0;
669 }
670
stm32_dfsdm_generic_channel_parse_of(struct stm32_dfsdm * dfsdm,struct iio_dev * indio_dev,struct iio_chan_spec * ch,struct fwnode_handle * node)671 static int stm32_dfsdm_generic_channel_parse_of(struct stm32_dfsdm *dfsdm,
672 struct iio_dev *indio_dev,
673 struct iio_chan_spec *ch,
674 struct fwnode_handle *node)
675 {
676 struct stm32_dfsdm_channel *df_ch;
677 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
678 struct iio_backend *backend;
679 const char *of_str;
680 int ret, val;
681
682 ret = fwnode_property_read_u32(node, "reg", &ch->channel);
683 if (ret < 0) {
684 dev_err(&indio_dev->dev, "Missing channel index %d\n", ret);
685 return ret;
686 }
687
688 if (ch->channel >= dfsdm->num_chs) {
689 dev_err(&indio_dev->dev, " Error bad channel number %d (max = %d)\n",
690 ch->channel, dfsdm->num_chs);
691 return -EINVAL;
692 }
693
694 ret = fwnode_property_read_string(node, "label", &ch->datasheet_name);
695 if (ret < 0) {
696 dev_err(&indio_dev->dev,
697 " Error parsing 'label' for idx %d\n", ch->channel);
698 return ret;
699 }
700
701 df_ch = &dfsdm->ch_list[ch->channel];
702 df_ch->id = ch->channel;
703
704 ret = fwnode_property_read_string(node, "st,adc-channel-type", &of_str);
705 if (!ret) {
706 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
707 if (val < 0)
708 return val;
709 } else {
710 val = 0;
711 }
712 df_ch->type = val;
713
714 ret = fwnode_property_read_string(node, "st,adc-channel-clk-src", &of_str);
715 if (!ret) {
716 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
717 if (val < 0)
718 return val;
719 } else {
720 val = 0;
721 }
722 df_ch->src = val;
723
724 ret = fwnode_property_read_u32(node, "st,adc-alt-channel", &df_ch->alt_si);
725 if (ret != -EINVAL)
726 df_ch->alt_si = 0;
727
728 if (adc->dev_data->type == DFSDM_IIO) {
729 backend = devm_iio_backend_fwnode_get(&indio_dev->dev, NULL, node);
730 if (IS_ERR(backend))
731 return dev_err_probe(&indio_dev->dev, PTR_ERR(backend),
732 "Failed to get backend\n");
733 adc->backend[ch->scan_index] = backend;
734 }
735
736 return 0;
737 }
738
dfsdm_adc_audio_get_spiclk(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)739 static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
740 uintptr_t priv,
741 const struct iio_chan_spec *chan,
742 char *buf)
743 {
744 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
745
746 return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
747 }
748
dfsdm_adc_set_samp_freq(struct iio_dev * indio_dev,unsigned int sample_freq,unsigned int spi_freq)749 static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
750 unsigned int sample_freq,
751 unsigned int spi_freq)
752 {
753 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
754 unsigned int oversamp;
755 int ret;
756
757 oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
758 if (spi_freq % sample_freq)
759 dev_dbg(&indio_dev->dev,
760 "Rate not accurate. requested (%u), actual (%u)\n",
761 sample_freq, spi_freq / oversamp);
762
763 ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp);
764 if (ret < 0)
765 return ret;
766
767 adc->sample_freq = spi_freq / oversamp;
768 adc->oversamp = oversamp;
769
770 return 0;
771 }
772
dfsdm_adc_audio_set_spiclk(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,const char * buf,size_t len)773 static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
774 uintptr_t priv,
775 const struct iio_chan_spec *chan,
776 const char *buf, size_t len)
777 {
778 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
779 struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
780 unsigned int sample_freq = adc->sample_freq;
781 unsigned int spi_freq;
782 int ret;
783
784 dev_err(&indio_dev->dev, "enter %s\n", __func__);
785 /* If DFSDM is master on SPI, SPI freq can not be updated */
786 if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
787 return -EPERM;
788
789 ret = kstrtoint(buf, 0, &spi_freq);
790 if (ret)
791 return ret;
792
793 if (!spi_freq)
794 return -EINVAL;
795
796 if (sample_freq) {
797 ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
798 if (ret < 0)
799 return ret;
800 }
801 adc->spi_freq = spi_freq;
802
803 return len;
804 }
805
stm32_dfsdm_start_conv(struct iio_dev * indio_dev,struct iio_trigger * trig)806 static int stm32_dfsdm_start_conv(struct iio_dev *indio_dev,
807 struct iio_trigger *trig)
808 {
809 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
810 struct regmap *regmap = adc->dfsdm->regmap;
811 int ret;
812
813 ret = stm32_dfsdm_channels_configure(indio_dev, adc->fl_id, trig);
814 if (ret < 0)
815 return ret;
816
817 ret = stm32_dfsdm_start_channel(indio_dev);
818 if (ret < 0)
819 return ret;
820
821 ret = stm32_dfsdm_filter_configure(indio_dev, adc->fl_id, trig);
822 if (ret < 0)
823 goto stop_channels;
824
825 ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
826 if (ret < 0)
827 goto filter_unconfigure;
828
829 return 0;
830
831 filter_unconfigure:
832 regmap_clear_bits(regmap, DFSDM_CR1(adc->fl_id), DFSDM_CR1_CFG_MASK);
833 stop_channels:
834 stm32_dfsdm_stop_channel(indio_dev);
835
836 return ret;
837 }
838
stm32_dfsdm_stop_conv(struct iio_dev * indio_dev)839 static void stm32_dfsdm_stop_conv(struct iio_dev *indio_dev)
840 {
841 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
842 struct regmap *regmap = adc->dfsdm->regmap;
843
844 stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
845
846 regmap_clear_bits(regmap, DFSDM_CR1(adc->fl_id), DFSDM_CR1_CFG_MASK);
847
848 stm32_dfsdm_stop_channel(indio_dev);
849 }
850
stm32_dfsdm_set_watermark(struct iio_dev * indio_dev,unsigned int val)851 static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
852 unsigned int val)
853 {
854 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
855 unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
856 unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
857
858 /*
859 * DMA cyclic transfers are used, buffer is split into two periods.
860 * There should be :
861 * - always one buffer (period) DMA is working on
862 * - one buffer (period) driver pushed to ASoC side.
863 */
864 watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
865 adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
866
867 return 0;
868 }
869
stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc * adc)870 static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
871 {
872 struct dma_tx_state state;
873 enum dma_status status;
874
875 status = dmaengine_tx_status(adc->dma_chan,
876 adc->dma_chan->cookie,
877 &state);
878 if (status == DMA_IN_PROGRESS) {
879 /* Residue is size in bytes from end of buffer */
880 unsigned int i = adc->buf_sz - state.residue;
881 unsigned int size;
882
883 /* Return available bytes */
884 if (i >= adc->bufi)
885 size = i - adc->bufi;
886 else
887 size = adc->buf_sz + i - adc->bufi;
888
889 return size;
890 }
891
892 return 0;
893 }
894
stm32_dfsdm_process_data(struct stm32_dfsdm_adc * adc,s32 * buffer)895 static inline void stm32_dfsdm_process_data(struct stm32_dfsdm_adc *adc,
896 s32 *buffer)
897 {
898 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
899 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
900 unsigned int i = adc->nconv;
901 s32 *ptr = buffer;
902
903 while (i--) {
904 /* Mask 8 LSB that contains the channel ID */
905 *ptr &= 0xFFFFFF00;
906 /* Convert 2^(n-1) sample to 2^(n-1)-1 to avoid wrap-around */
907 if (*ptr > flo->max)
908 *ptr -= 1;
909 /*
910 * Samples from filter are retrieved with 23 bits resolution
911 * or less. Shift left to align MSB on 24 bits.
912 */
913 *ptr <<= flo->lshift;
914
915 ptr++;
916 }
917 }
918
stm32_dfsdm_dma_buffer_done(void * data)919 static void stm32_dfsdm_dma_buffer_done(void *data)
920 {
921 struct iio_dev *indio_dev = data;
922 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
923 int available = stm32_dfsdm_adc_dma_residue(adc);
924 size_t old_pos;
925
926 /*
927 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
928 * offers only an interface to push data samples per samples.
929 * For this reason IIO buffer interface is not used and interface is
930 * bypassed using a private callback registered by ASoC.
931 * This should be a temporary solution waiting a cyclic DMA engine
932 * support in IIO.
933 */
934
935 dev_dbg(&indio_dev->dev, "pos = %d, available = %d\n",
936 adc->bufi, available);
937 old_pos = adc->bufi;
938
939 while (available >= indio_dev->scan_bytes) {
940 s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
941
942 stm32_dfsdm_process_data(adc, buffer);
943
944 available -= indio_dev->scan_bytes;
945 adc->bufi += indio_dev->scan_bytes;
946 if (adc->bufi >= adc->buf_sz) {
947 if (adc->cb)
948 adc->cb(&adc->rx_buf[old_pos],
949 adc->buf_sz - old_pos, adc->cb_priv);
950 adc->bufi = 0;
951 old_pos = 0;
952 }
953 /*
954 * In DMA mode the trigger services of IIO are not used
955 * (e.g. no call to iio_trigger_poll).
956 * Calling irq handler associated to the hardware trigger is not
957 * relevant as the conversions have already been done. Data
958 * transfers are performed directly in DMA callback instead.
959 * This implementation avoids to call trigger irq handler that
960 * may sleep, in an atomic context (DMA irq handler context).
961 */
962 if (adc->dev_data->type == DFSDM_IIO)
963 iio_push_to_buffers(indio_dev, buffer);
964 }
965 if (adc->cb)
966 adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
967 adc->cb_priv);
968 }
969
stm32_dfsdm_adc_dma_start(struct iio_dev * indio_dev)970 static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
971 {
972 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
973 /*
974 * The DFSDM supports half-word transfers. However, for 16 bits record,
975 * 4 bytes buswidth is kept, to avoid losing samples LSBs when left
976 * shift is required.
977 */
978 struct dma_slave_config config = {
979 .src_addr = (dma_addr_t)adc->dfsdm->phys_base,
980 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
981 };
982 struct dma_async_tx_descriptor *desc;
983 dma_cookie_t cookie;
984 int ret;
985
986 if (!adc->dma_chan)
987 return -EINVAL;
988
989 dev_dbg(&indio_dev->dev, "size=%d watermark=%d\n",
990 adc->buf_sz, adc->buf_sz / 2);
991
992 if (adc->nconv == 1 && !indio_dev->trig)
993 config.src_addr += DFSDM_RDATAR(adc->fl_id);
994 else
995 config.src_addr += DFSDM_JDATAR(adc->fl_id);
996 ret = dmaengine_slave_config(adc->dma_chan, &config);
997 if (ret)
998 return ret;
999
1000 /* Prepare a DMA cyclic transaction */
1001 desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1002 adc->dma_buf,
1003 adc->buf_sz, adc->buf_sz / 2,
1004 DMA_DEV_TO_MEM,
1005 DMA_PREP_INTERRUPT);
1006 if (!desc)
1007 return -EBUSY;
1008
1009 desc->callback = stm32_dfsdm_dma_buffer_done;
1010 desc->callback_param = indio_dev;
1011
1012 cookie = dmaengine_submit(desc);
1013 ret = dma_submit_error(cookie);
1014 if (ret)
1015 goto err_stop_dma;
1016
1017 /* Issue pending DMA requests */
1018 dma_async_issue_pending(adc->dma_chan);
1019
1020 if (adc->nconv == 1 && !indio_dev->trig) {
1021 /* Enable regular DMA transfer*/
1022 ret = regmap_set_bits(adc->dfsdm->regmap,
1023 DFSDM_CR1(adc->fl_id),
1024 DFSDM_CR1_RDMAEN_MASK);
1025 } else {
1026 /* Enable injected DMA transfer*/
1027 ret = regmap_set_bits(adc->dfsdm->regmap,
1028 DFSDM_CR1(adc->fl_id),
1029 DFSDM_CR1_JDMAEN_MASK);
1030 }
1031
1032 if (ret < 0)
1033 goto err_stop_dma;
1034
1035 return 0;
1036
1037 err_stop_dma:
1038 dmaengine_terminate_all(adc->dma_chan);
1039
1040 return ret;
1041 }
1042
stm32_dfsdm_adc_dma_stop(struct iio_dev * indio_dev)1043 static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
1044 {
1045 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1046
1047 if (!adc->dma_chan)
1048 return;
1049
1050 regmap_clear_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
1051 DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK);
1052 dmaengine_terminate_all(adc->dma_chan);
1053 }
1054
stm32_dfsdm_update_scan_mode(struct iio_dev * indio_dev,const unsigned long * scan_mask)1055 static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
1056 const unsigned long *scan_mask)
1057 {
1058 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1059
1060 adc->nconv = bitmap_weight(scan_mask, iio_get_masklength(indio_dev));
1061 adc->smask = *scan_mask;
1062
1063 dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
1064
1065 return 0;
1066 }
1067
stm32_dfsdm_postenable(struct iio_dev * indio_dev)1068 static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
1069 {
1070 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1071 int i = 0;
1072 int ret;
1073
1074 /* Reset adc buffer index */
1075 adc->bufi = 0;
1076
1077 if (adc->hwc) {
1078 ret = iio_hw_consumer_enable(adc->hwc);
1079 if (ret < 0)
1080 return ret;
1081 }
1082
1083 if (adc->backend) {
1084 while (adc->backend[i]) {
1085 ret = iio_backend_enable(adc->backend[i]);
1086 if (ret < 0)
1087 return ret;
1088 i++;
1089 }
1090 }
1091
1092 ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1093 if (ret < 0)
1094 goto err_stop_hwc;
1095
1096 ret = stm32_dfsdm_adc_dma_start(indio_dev);
1097 if (ret) {
1098 dev_err(&indio_dev->dev, "Can't start DMA\n");
1099 goto stop_dfsdm;
1100 }
1101
1102 ret = stm32_dfsdm_start_conv(indio_dev, indio_dev->trig);
1103 if (ret) {
1104 dev_err(&indio_dev->dev, "Can't start conversion\n");
1105 goto err_stop_dma;
1106 }
1107
1108 return 0;
1109
1110 err_stop_dma:
1111 stm32_dfsdm_adc_dma_stop(indio_dev);
1112 stop_dfsdm:
1113 stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1114 err_stop_hwc:
1115 if (adc->hwc)
1116 iio_hw_consumer_disable(adc->hwc);
1117
1118 return ret;
1119 }
1120
stm32_dfsdm_predisable(struct iio_dev * indio_dev)1121 static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1122 {
1123 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1124 int i = 0;
1125
1126 stm32_dfsdm_stop_conv(indio_dev);
1127
1128 stm32_dfsdm_adc_dma_stop(indio_dev);
1129
1130 stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1131
1132 if (adc->backend) {
1133 while (adc->backend[i]) {
1134 iio_backend_disable(adc->backend[i]);
1135 i++;
1136 }
1137 }
1138
1139 if (adc->hwc)
1140 iio_hw_consumer_disable(adc->hwc);
1141
1142 return 0;
1143 }
1144
1145 static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
1146 .postenable = &stm32_dfsdm_postenable,
1147 .predisable = &stm32_dfsdm_predisable,
1148 };
1149
1150 /**
1151 * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
1152 * DMA transfer period is achieved.
1153 *
1154 * @iio_dev: Handle to IIO device.
1155 * @cb: Pointer to callback function:
1156 * - data: pointer to data buffer
1157 * - size: size in byte of the data buffer
1158 * - private: pointer to consumer private structure.
1159 * @private: Pointer to consumer private structure.
1160 */
stm32_dfsdm_get_buff_cb(struct iio_dev * iio_dev,int (* cb)(const void * data,size_t size,void * private),void * private)1161 int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
1162 int (*cb)(const void *data, size_t size,
1163 void *private),
1164 void *private)
1165 {
1166 struct stm32_dfsdm_adc *adc;
1167
1168 if (!iio_dev)
1169 return -EINVAL;
1170 adc = iio_priv(iio_dev);
1171
1172 adc->cb = cb;
1173 adc->cb_priv = private;
1174
1175 return 0;
1176 }
1177 EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
1178
1179 /**
1180 * stm32_dfsdm_release_buff_cb - unregister buffer callback
1181 *
1182 * @iio_dev: Handle to IIO device.
1183 */
stm32_dfsdm_release_buff_cb(struct iio_dev * iio_dev)1184 int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
1185 {
1186 struct stm32_dfsdm_adc *adc;
1187
1188 if (!iio_dev)
1189 return -EINVAL;
1190 adc = iio_priv(iio_dev);
1191
1192 adc->cb = NULL;
1193 adc->cb_priv = NULL;
1194
1195 return 0;
1196 }
1197 EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
1198
stm32_dfsdm_single_conv(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int * res)1199 static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
1200 const struct iio_chan_spec *chan, int *res)
1201 {
1202 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1203 long time_left;
1204 int ret;
1205
1206 reinit_completion(&adc->completion);
1207
1208 adc->buffer = res;
1209
1210 ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1211 if (ret < 0)
1212 return ret;
1213
1214 ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1215 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
1216 if (ret < 0)
1217 goto stop_dfsdm;
1218
1219 adc->nconv = 1;
1220 adc->smask = BIT(chan->scan_index);
1221 ret = stm32_dfsdm_start_conv(indio_dev, NULL);
1222 if (ret < 0) {
1223 regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1224 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1225 goto stop_dfsdm;
1226 }
1227
1228 time_left = wait_for_completion_interruptible_timeout(&adc->completion,
1229 DFSDM_TIMEOUT);
1230
1231 /* Mask IRQ for regular conversion achievement*/
1232 regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1233 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1234
1235 if (time_left == 0)
1236 ret = -ETIMEDOUT;
1237 else if (time_left < 0)
1238 ret = time_left;
1239 else
1240 ret = IIO_VAL_INT;
1241
1242 stm32_dfsdm_stop_conv(indio_dev);
1243
1244 stm32_dfsdm_process_data(adc, res);
1245
1246 stop_dfsdm:
1247 stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1248
1249 return ret;
1250 }
1251
stm32_dfsdm_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)1252 static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
1253 struct iio_chan_spec const *chan,
1254 int val, int val2, long mask)
1255 {
1256 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1257 struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
1258 unsigned int spi_freq;
1259 int ret = -EINVAL;
1260
1261 switch (ch->src) {
1262 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
1263 spi_freq = adc->dfsdm->spi_master_freq;
1264 break;
1265 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
1266 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
1267 spi_freq = adc->dfsdm->spi_master_freq / 2;
1268 break;
1269 default:
1270 spi_freq = adc->spi_freq;
1271 }
1272
1273 switch (mask) {
1274 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1275 ret = iio_device_claim_direct_mode(indio_dev);
1276 if (ret)
1277 return ret;
1278
1279 ret = stm32_dfsdm_compute_all_osrs(indio_dev, val);
1280 if (!ret) {
1281 dev_dbg(&indio_dev->dev,
1282 "Sampling rate changed from (%u) to (%u)\n",
1283 adc->sample_freq, spi_freq / val);
1284 adc->oversamp = val;
1285 adc->sample_freq = spi_freq / val;
1286 }
1287 iio_device_release_direct_mode(indio_dev);
1288 return ret;
1289
1290 case IIO_CHAN_INFO_SAMP_FREQ:
1291 if (!val)
1292 return -EINVAL;
1293
1294 ret = iio_device_claim_direct_mode(indio_dev);
1295 if (ret)
1296 return ret;
1297
1298 ret = dfsdm_adc_set_samp_freq(indio_dev, val, spi_freq);
1299 iio_device_release_direct_mode(indio_dev);
1300 return ret;
1301 }
1302
1303 return -EINVAL;
1304 }
1305
stm32_dfsdm_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)1306 static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
1307 struct iio_chan_spec const *chan, int *val,
1308 int *val2, long mask)
1309 {
1310 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1311
1312 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
1313 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
1314 u32 max = flo->max << (flo->lshift - chan->scan_type.shift);
1315 int idx = chan->scan_index;
1316 int ret;
1317
1318 if (flo->lshift < chan->scan_type.shift)
1319 max = flo->max >> (chan->scan_type.shift - flo->lshift);
1320
1321 switch (mask) {
1322 case IIO_CHAN_INFO_RAW:
1323 ret = iio_device_claim_direct_mode(indio_dev);
1324 if (ret)
1325 return ret;
1326 if (adc->hwc)
1327 ret = iio_hw_consumer_enable(adc->hwc);
1328 if (adc->backend)
1329 ret = iio_backend_enable(adc->backend[idx]);
1330 if (ret < 0) {
1331 dev_err(&indio_dev->dev,
1332 "%s: IIO enable failed (channel %d)\n",
1333 __func__, chan->channel);
1334 iio_device_release_direct_mode(indio_dev);
1335 return ret;
1336 }
1337 ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
1338 if (adc->hwc)
1339 iio_hw_consumer_disable(adc->hwc);
1340 if (adc->backend)
1341 iio_backend_disable(adc->backend[idx]);
1342 if (ret < 0) {
1343 dev_err(&indio_dev->dev,
1344 "%s: Conversion failed (channel %d)\n",
1345 __func__, chan->channel);
1346 iio_device_release_direct_mode(indio_dev);
1347 return ret;
1348 }
1349 iio_device_release_direct_mode(indio_dev);
1350 return IIO_VAL_INT;
1351
1352 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1353 *val = adc->oversamp;
1354
1355 return IIO_VAL_INT;
1356
1357 case IIO_CHAN_INFO_SAMP_FREQ:
1358 *val = adc->sample_freq;
1359
1360 return IIO_VAL_INT;
1361
1362 case IIO_CHAN_INFO_SCALE:
1363 /*
1364 * Scale is expressed in mV.
1365 * When fast mode is disabled, actual resolution may be lower
1366 * than 2^n, where n = realbits - 1.
1367 * This leads to underestimating the input voltage.
1368 * To compensate this deviation, the voltage reference can be
1369 * corrected with a factor = realbits resolution / actual max
1370 */
1371 if (adc->backend) {
1372 ret = iio_backend_read_scale(adc->backend[idx], chan, val, NULL);
1373 if (ret < 0)
1374 return ret;
1375
1376 *val = div_u64((u64)*val * (u64)BIT(DFSDM_DATA_RES - 1), max);
1377 *val2 = chan->scan_type.realbits;
1378 if (chan->differential)
1379 *val *= 2;
1380 }
1381 return IIO_VAL_FRACTIONAL_LOG2;
1382
1383 case IIO_CHAN_INFO_OFFSET:
1384 /*
1385 * DFSDM output data are in the range [-2^n, 2^n],
1386 * with n = realbits - 1.
1387 * - Differential modulator:
1388 * Offset correspond to SD modulator offset.
1389 * - Single ended modulator:
1390 * Input is in [0V, Vref] range,
1391 * where 0V corresponds to -2^n, and Vref to 2^n.
1392 * Add 2^n to offset. (i.e. middle of input range)
1393 * offset = offset(sd) * vref / res(sd) * max / vref.
1394 */
1395 if (adc->backend) {
1396 ret = iio_backend_read_offset(adc->backend[idx], chan, val, NULL);
1397 if (ret < 0)
1398 return ret;
1399
1400 *val = div_u64((u64)max * *val, BIT(*val2 - 1));
1401 if (!chan->differential)
1402 *val += max;
1403 }
1404 return IIO_VAL_INT;
1405 }
1406
1407 return -EINVAL;
1408 }
1409
stm32_dfsdm_validate_trigger(struct iio_dev * indio_dev,struct iio_trigger * trig)1410 static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
1411 struct iio_trigger *trig)
1412 {
1413 return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1414 }
1415
1416 static const struct iio_info stm32_dfsdm_info_audio = {
1417 .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1418 .read_raw = stm32_dfsdm_read_raw,
1419 .write_raw = stm32_dfsdm_write_raw,
1420 .update_scan_mode = stm32_dfsdm_update_scan_mode,
1421 };
1422
1423 static const struct iio_info stm32_dfsdm_info_adc = {
1424 .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1425 .read_raw = stm32_dfsdm_read_raw,
1426 .write_raw = stm32_dfsdm_write_raw,
1427 .update_scan_mode = stm32_dfsdm_update_scan_mode,
1428 .validate_trigger = stm32_dfsdm_validate_trigger,
1429 };
1430
stm32_dfsdm_irq(int irq,void * arg)1431 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
1432 {
1433 struct iio_dev *indio_dev = arg;
1434 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1435 struct regmap *regmap = adc->dfsdm->regmap;
1436 unsigned int status, int_en;
1437
1438 regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
1439 regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
1440
1441 if (status & DFSDM_ISR_REOCF_MASK) {
1442 /* Read the data register clean the IRQ status */
1443 regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
1444 complete(&adc->completion);
1445 }
1446
1447 if (status & DFSDM_ISR_ROVRF_MASK) {
1448 if (int_en & DFSDM_CR2_ROVRIE_MASK)
1449 dev_warn(&indio_dev->dev, "Overrun detected\n");
1450 regmap_set_bits(regmap, DFSDM_ICR(adc->fl_id),
1451 DFSDM_ICR_CLRROVRF_MASK);
1452 }
1453
1454 return IRQ_HANDLED;
1455 }
1456
1457 /*
1458 * Define external info for SPI Frequency and audio sampling rate that can be
1459 * configured by ASoC driver through consumer.h API
1460 */
1461 static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
1462 /* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
1463 {
1464 .name = "spi_clk_freq",
1465 .shared = IIO_SHARED_BY_TYPE,
1466 .read = dfsdm_adc_audio_get_spiclk,
1467 .write = dfsdm_adc_audio_set_spiclk,
1468 },
1469 { }
1470 };
1471
stm32_dfsdm_dma_release(struct iio_dev * indio_dev)1472 static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
1473 {
1474 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1475
1476 if (adc->dma_chan) {
1477 dma_free_coherent(adc->dma_chan->device->dev,
1478 DFSDM_DMA_BUFFER_SIZE,
1479 adc->rx_buf, adc->dma_buf);
1480 dma_release_channel(adc->dma_chan);
1481 }
1482 }
1483
stm32_dfsdm_dma_request(struct device * dev,struct iio_dev * indio_dev)1484 static int stm32_dfsdm_dma_request(struct device *dev,
1485 struct iio_dev *indio_dev)
1486 {
1487 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1488
1489 adc->dma_chan = dma_request_chan(dev, "rx");
1490 if (IS_ERR(adc->dma_chan)) {
1491 int ret = PTR_ERR(adc->dma_chan);
1492
1493 adc->dma_chan = NULL;
1494 return ret;
1495 }
1496
1497 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1498 DFSDM_DMA_BUFFER_SIZE,
1499 &adc->dma_buf, GFP_KERNEL);
1500 if (!adc->rx_buf) {
1501 dma_release_channel(adc->dma_chan);
1502 return -ENOMEM;
1503 }
1504
1505 indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1506 indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1507
1508 return 0;
1509 }
1510
stm32_dfsdm_adc_chan_init_one(struct iio_dev * indio_dev,struct iio_chan_spec * ch,struct fwnode_handle * child)1511 static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev, struct iio_chan_spec *ch,
1512 struct fwnode_handle *child)
1513 {
1514 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1515 int ret;
1516
1517 if (child)
1518 ret = stm32_dfsdm_generic_channel_parse_of(adc->dfsdm, indio_dev, ch, child);
1519 else /* Legacy binding */
1520 ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
1521 if (ret < 0)
1522 return dev_err_probe(&indio_dev->dev, ret, "Failed to parse channel\n");
1523
1524 ch->type = IIO_VOLTAGE;
1525 ch->indexed = 1;
1526
1527 /*
1528 * IIO_CHAN_INFO_RAW: used to compute regular conversion
1529 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
1530 */
1531 if (child) {
1532 ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
1533 BIT(IIO_CHAN_INFO_SCALE) |
1534 BIT(IIO_CHAN_INFO_OFFSET);
1535 } else {
1536 /* Legacy. Scaling not supported */
1537 ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1538 }
1539
1540 ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
1541 BIT(IIO_CHAN_INFO_SAMP_FREQ);
1542
1543 if (adc->dev_data->type == DFSDM_AUDIO) {
1544 ch->ext_info = dfsdm_adc_audio_ext_info;
1545 ch->scan_index = 0;
1546 } else {
1547 ch->scan_type.shift = 8;
1548 }
1549 ch->scan_type.sign = 's';
1550 ch->scan_type.realbits = 24;
1551 ch->scan_type.storagebits = 32;
1552
1553 return stm32_dfsdm_chan_configure(adc->dfsdm,
1554 &adc->dfsdm->ch_list[ch->channel]);
1555 }
1556
stm32_dfsdm_chan_init(struct iio_dev * indio_dev,struct iio_chan_spec * channels)1557 static int stm32_dfsdm_chan_init(struct iio_dev *indio_dev, struct iio_chan_spec *channels)
1558 {
1559 int num_ch = indio_dev->num_channels;
1560 int chan_idx = 0;
1561 int ret;
1562
1563 for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1564 channels[chan_idx].scan_index = chan_idx;
1565 ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &channels[chan_idx], NULL);
1566 if (ret < 0)
1567 return dev_err_probe(&indio_dev->dev, ret, "Channels init failed\n");
1568 }
1569
1570 return 0;
1571 }
1572
stm32_dfsdm_generic_chan_init(struct iio_dev * indio_dev,struct iio_chan_spec * channels)1573 static int stm32_dfsdm_generic_chan_init(struct iio_dev *indio_dev, struct iio_chan_spec *channels)
1574 {
1575 int chan_idx = 0, ret;
1576
1577 device_for_each_child_node_scoped(&indio_dev->dev, child) {
1578 /* Skip DAI node in DFSDM audio nodes */
1579 if (fwnode_property_present(child, "compatible"))
1580 continue;
1581
1582 channels[chan_idx].scan_index = chan_idx;
1583 ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &channels[chan_idx], child);
1584 if (ret < 0)
1585 return dev_err_probe(&indio_dev->dev, ret, "Channels init failed\n");
1586
1587 chan_idx++;
1588 }
1589
1590 return chan_idx;
1591 }
1592
stm32_dfsdm_audio_init(struct device * dev,struct iio_dev * indio_dev)1593 static int stm32_dfsdm_audio_init(struct device *dev, struct iio_dev *indio_dev)
1594 {
1595 struct iio_chan_spec *ch;
1596 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1597 struct stm32_dfsdm_channel *d_ch;
1598 bool legacy = false;
1599 int num_ch, ret;
1600
1601 /* If st,adc-channels is defined legacy binding is used. Else assume generic binding. */
1602 num_ch = of_property_count_u32_elems(indio_dev->dev.of_node, "st,adc-channels");
1603 if (num_ch == 1)
1604 legacy = true;
1605
1606 ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1607 if (!ch)
1608 return -ENOMEM;
1609
1610 indio_dev->num_channels = 1;
1611 indio_dev->channels = ch;
1612
1613 if (legacy)
1614 ret = stm32_dfsdm_chan_init(indio_dev, ch);
1615 else
1616 ret = stm32_dfsdm_generic_chan_init(indio_dev, ch);
1617
1618 if (ret < 0) {
1619 dev_err(&indio_dev->dev, "Channels init failed\n");
1620 return ret;
1621 }
1622 ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1623
1624 d_ch = &adc->dfsdm->ch_list[ch->channel];
1625 if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1626 adc->spi_freq = adc->dfsdm->spi_master_freq;
1627
1628 return stm32_dfsdm_dma_request(dev, indio_dev);
1629 }
1630
stm32_dfsdm_adc_init(struct device * dev,struct iio_dev * indio_dev)1631 static int stm32_dfsdm_adc_init(struct device *dev, struct iio_dev *indio_dev)
1632 {
1633 struct iio_chan_spec *ch;
1634 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1635 int num_ch, ret;
1636 bool legacy = false;
1637
1638 adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1639 ret = stm32_dfsdm_compute_all_osrs(indio_dev, adc->oversamp);
1640 if (ret < 0)
1641 return ret;
1642
1643 num_ch = device_get_child_node_count(&indio_dev->dev);
1644 if (!num_ch) {
1645 /* No channels nodes found. Assume legacy binding */
1646 num_ch = of_property_count_u32_elems(indio_dev->dev.of_node, "st,adc-channels");
1647 if (num_ch < 0) {
1648 dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1649 return num_ch;
1650 }
1651
1652 legacy = true;
1653 }
1654
1655 if (num_ch > adc->dfsdm->num_chs) {
1656 dev_err(&indio_dev->dev, "Number of channel [%d] exceeds [%d]\n",
1657 num_ch, adc->dfsdm->num_chs);
1658 return -EINVAL;
1659 }
1660 indio_dev->num_channels = num_ch;
1661
1662 if (legacy) {
1663 /* Bind to SD modulator IIO device. */
1664 adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1665 if (IS_ERR(adc->hwc))
1666 return dev_err_probe(&indio_dev->dev, -EPROBE_DEFER,
1667 "waiting for SD modulator\n");
1668 } else {
1669 /* Generic binding. SD modulator IIO device not used. Use SD modulator backend. */
1670 adc->hwc = NULL;
1671
1672 adc->backend = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*adc->backend),
1673 GFP_KERNEL);
1674 if (!adc->backend)
1675 return -ENOMEM;
1676 }
1677
1678 ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch), GFP_KERNEL);
1679 if (!ch)
1680 return -ENOMEM;
1681 indio_dev->channels = ch;
1682
1683 if (legacy)
1684 ret = stm32_dfsdm_chan_init(indio_dev, ch);
1685 else
1686 ret = stm32_dfsdm_generic_chan_init(indio_dev, ch);
1687 if (ret < 0)
1688 return ret;
1689
1690 init_completion(&adc->completion);
1691
1692 /* Optionally request DMA */
1693 ret = stm32_dfsdm_dma_request(dev, indio_dev);
1694 if (ret) {
1695 if (ret != -ENODEV)
1696 return dev_err_probe(dev, ret,
1697 "DMA channel request failed with\n");
1698
1699 dev_dbg(dev, "No DMA support\n");
1700 return 0;
1701 }
1702
1703 ret = iio_triggered_buffer_setup(indio_dev,
1704 &iio_pollfunc_store_time, NULL,
1705 &stm32_dfsdm_buffer_setup_ops);
1706 if (ret) {
1707 stm32_dfsdm_dma_release(indio_dev);
1708 dev_err(&indio_dev->dev, "buffer setup failed\n");
1709 return ret;
1710 }
1711
1712 /* lptimer/timer hardware triggers */
1713 indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
1714
1715 return 0;
1716 }
1717
1718 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1719 .type = DFSDM_IIO,
1720 .init = stm32_dfsdm_adc_init,
1721 };
1722
1723 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1724 .type = DFSDM_AUDIO,
1725 .init = stm32_dfsdm_audio_init,
1726 };
1727
1728 static const struct of_device_id stm32_dfsdm_adc_match[] = {
1729 {
1730 .compatible = "st,stm32-dfsdm-adc",
1731 .data = &stm32h7_dfsdm_adc_data,
1732 },
1733 {
1734 .compatible = "st,stm32-dfsdm-dmic",
1735 .data = &stm32h7_dfsdm_audio_data,
1736 },
1737 {}
1738 };
1739 MODULE_DEVICE_TABLE(of, stm32_dfsdm_adc_match);
1740
stm32_dfsdm_adc_probe(struct platform_device * pdev)1741 static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1742 {
1743 struct device *dev = &pdev->dev;
1744 struct stm32_dfsdm_adc *adc;
1745 struct device_node *np = dev->of_node;
1746 const struct stm32_dfsdm_dev_data *dev_data;
1747 struct iio_dev *iio;
1748 char *name;
1749 int ret, irq, val;
1750
1751 dev_data = of_device_get_match_data(dev);
1752 iio = devm_iio_device_alloc(dev, sizeof(*adc));
1753 if (!iio) {
1754 dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1755 return -ENOMEM;
1756 }
1757
1758 adc = iio_priv(iio);
1759 adc->dfsdm = dev_get_drvdata(dev->parent);
1760
1761 iio->dev.of_node = np;
1762 iio->modes = INDIO_DIRECT_MODE;
1763
1764 platform_set_drvdata(pdev, iio);
1765
1766 ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1767 if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1768 dev_err(dev, "Missing or bad reg property\n");
1769 return -EINVAL;
1770 }
1771
1772 name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1773 if (!name)
1774 return -ENOMEM;
1775 if (dev_data->type == DFSDM_AUDIO) {
1776 iio->info = &stm32_dfsdm_info_audio;
1777 snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1778 } else {
1779 iio->info = &stm32_dfsdm_info_adc;
1780 snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1781 }
1782 iio->name = name;
1783
1784 /*
1785 * In a first step IRQs generated for channels are not treated.
1786 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1787 */
1788 irq = platform_get_irq(pdev, 0);
1789 if (irq < 0)
1790 return irq;
1791
1792 ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1793 0, pdev->name, iio);
1794 if (ret < 0) {
1795 dev_err(dev, "Failed to request IRQ\n");
1796 return ret;
1797 }
1798
1799 ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1800 if (ret < 0) {
1801 dev_err(dev, "Failed to set filter order\n");
1802 return ret;
1803 }
1804
1805 adc->dfsdm->fl_list[adc->fl_id].ford = val;
1806
1807 ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1808 if (!ret)
1809 adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1810
1811 adc->dev_data = dev_data;
1812 ret = dev_data->init(dev, iio);
1813 if (ret < 0)
1814 return ret;
1815
1816 ret = iio_device_register(iio);
1817 if (ret < 0)
1818 goto err_cleanup;
1819
1820 if (dev_data->type == DFSDM_AUDIO) {
1821 ret = of_platform_populate(np, NULL, NULL, dev);
1822 if (ret < 0) {
1823 dev_err(dev, "Failed to find an audio DAI\n");
1824 goto err_unregister;
1825 }
1826 }
1827
1828 return 0;
1829
1830 err_unregister:
1831 iio_device_unregister(iio);
1832 err_cleanup:
1833 stm32_dfsdm_dma_release(iio);
1834
1835 return ret;
1836 }
1837
stm32_dfsdm_adc_remove(struct platform_device * pdev)1838 static void stm32_dfsdm_adc_remove(struct platform_device *pdev)
1839 {
1840 struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1841 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1842
1843 if (adc->dev_data->type == DFSDM_AUDIO)
1844 of_platform_depopulate(&pdev->dev);
1845 iio_device_unregister(indio_dev);
1846 stm32_dfsdm_dma_release(indio_dev);
1847 }
1848
stm32_dfsdm_adc_suspend(struct device * dev)1849 static int stm32_dfsdm_adc_suspend(struct device *dev)
1850 {
1851 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1852
1853 if (iio_buffer_enabled(indio_dev))
1854 stm32_dfsdm_predisable(indio_dev);
1855
1856 return 0;
1857 }
1858
stm32_dfsdm_adc_resume(struct device * dev)1859 static int stm32_dfsdm_adc_resume(struct device *dev)
1860 {
1861 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1862 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1863 const struct iio_chan_spec *chan;
1864 struct stm32_dfsdm_channel *ch;
1865 int i, ret;
1866
1867 /* restore channels configuration */
1868 for (i = 0; i < indio_dev->num_channels; i++) {
1869 chan = indio_dev->channels + i;
1870 ch = &adc->dfsdm->ch_list[chan->channel];
1871 ret = stm32_dfsdm_chan_configure(adc->dfsdm, ch);
1872 if (ret)
1873 return ret;
1874 }
1875
1876 if (iio_buffer_enabled(indio_dev))
1877 stm32_dfsdm_postenable(indio_dev);
1878
1879 return 0;
1880 }
1881
1882 static DEFINE_SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
1883 stm32_dfsdm_adc_suspend,
1884 stm32_dfsdm_adc_resume);
1885
1886 static struct platform_driver stm32_dfsdm_adc_driver = {
1887 .driver = {
1888 .name = "stm32-dfsdm-adc",
1889 .of_match_table = stm32_dfsdm_adc_match,
1890 .pm = pm_sleep_ptr(&stm32_dfsdm_adc_pm_ops),
1891 },
1892 .probe = stm32_dfsdm_adc_probe,
1893 .remove_new = stm32_dfsdm_adc_remove,
1894 };
1895 module_platform_driver(stm32_dfsdm_adc_driver);
1896
1897 MODULE_DESCRIPTION("STM32 sigma delta ADC");
1898 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1899 MODULE_LICENSE("GPL v2");
1900 MODULE_IMPORT_NS(IIO_BACKEND);
1901