xref: /linux/drivers/base/devres.c (revision 2ab002c755bfa88777e3f2db884d531f3010736c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/devres.c - device resource management
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/percpu.h>
13 
14 #include <asm/sections.h>
15 
16 #include "base.h"
17 #include "trace.h"
18 
19 struct devres_node {
20 	struct list_head		entry;
21 	dr_release_t			release;
22 	const char			*name;
23 	size_t				size;
24 };
25 
26 struct devres {
27 	struct devres_node		node;
28 	/*
29 	 * Some archs want to perform DMA into kmalloc caches
30 	 * and need a guaranteed alignment larger than
31 	 * the alignment of a 64-bit integer.
32 	 * Thus we use ARCH_DMA_MINALIGN for data[] which will force the same
33 	 * alignment for struct devres when allocated by kmalloc().
34 	 */
35 	u8 __aligned(ARCH_DMA_MINALIGN) data[];
36 };
37 
38 struct devres_group {
39 	struct devres_node		node[2];
40 	void				*id;
41 	int				color;
42 	/* -- 8 pointers */
43 };
44 
45 static void set_node_dbginfo(struct devres_node *node, const char *name,
46 			     size_t size)
47 {
48 	node->name = name;
49 	node->size = size;
50 }
51 
52 #ifdef CONFIG_DEBUG_DEVRES
53 static int log_devres = 0;
54 module_param_named(log, log_devres, int, S_IRUGO | S_IWUSR);
55 
56 static void devres_dbg(struct device *dev, struct devres_node *node,
57 		       const char *op)
58 {
59 	if (unlikely(log_devres))
60 		dev_err(dev, "DEVRES %3s %p %s (%zu bytes)\n",
61 			op, node, node->name, node->size);
62 }
63 #else /* CONFIG_DEBUG_DEVRES */
64 #define devres_dbg(dev, node, op)	do {} while (0)
65 #endif /* CONFIG_DEBUG_DEVRES */
66 
67 static void devres_log(struct device *dev, struct devres_node *node,
68 		       const char *op)
69 {
70 	trace_devres_log(dev, op, node, node->name, node->size);
71 	devres_dbg(dev, node, op);
72 }
73 
74 /*
75  * Release functions for devres group.  These callbacks are used only
76  * for identification.
77  */
78 static void group_open_release(struct device *dev, void *res)
79 {
80 	/* noop */
81 }
82 
83 static void group_close_release(struct device *dev, void *res)
84 {
85 	/* noop */
86 }
87 
88 static struct devres_group *node_to_group(struct devres_node *node)
89 {
90 	if (node->release == &group_open_release)
91 		return container_of(node, struct devres_group, node[0]);
92 	if (node->release == &group_close_release)
93 		return container_of(node, struct devres_group, node[1]);
94 	return NULL;
95 }
96 
97 static bool check_dr_size(size_t size, size_t *tot_size)
98 {
99 	/* We must catch any near-SIZE_MAX cases that could overflow. */
100 	if (unlikely(check_add_overflow(sizeof(struct devres),
101 					size, tot_size)))
102 		return false;
103 
104 	/* Actually allocate the full kmalloc bucket size. */
105 	*tot_size = kmalloc_size_roundup(*tot_size);
106 
107 	return true;
108 }
109 
110 static __always_inline struct devres *alloc_dr(dr_release_t release,
111 					       size_t size, gfp_t gfp, int nid)
112 {
113 	size_t tot_size;
114 	struct devres *dr;
115 
116 	if (!check_dr_size(size, &tot_size))
117 		return NULL;
118 
119 	dr = kmalloc_node_track_caller(tot_size, gfp, nid);
120 	if (unlikely(!dr))
121 		return NULL;
122 
123 	/* No need to clear memory twice */
124 	if (!(gfp & __GFP_ZERO))
125 		memset(dr, 0, offsetof(struct devres, data));
126 
127 	INIT_LIST_HEAD(&dr->node.entry);
128 	dr->node.release = release;
129 	return dr;
130 }
131 
132 static void add_dr(struct device *dev, struct devres_node *node)
133 {
134 	devres_log(dev, node, "ADD");
135 	BUG_ON(!list_empty(&node->entry));
136 	list_add_tail(&node->entry, &dev->devres_head);
137 }
138 
139 static void replace_dr(struct device *dev,
140 		       struct devres_node *old, struct devres_node *new)
141 {
142 	devres_log(dev, old, "REPLACE");
143 	BUG_ON(!list_empty(&new->entry));
144 	list_replace(&old->entry, &new->entry);
145 }
146 
147 /**
148  * __devres_alloc_node - Allocate device resource data
149  * @release: Release function devres will be associated with
150  * @size: Allocation size
151  * @gfp: Allocation flags
152  * @nid: NUMA node
153  * @name: Name of the resource
154  *
155  * Allocate devres of @size bytes.  The allocated area is zeroed, then
156  * associated with @release.  The returned pointer can be passed to
157  * other devres_*() functions.
158  *
159  * RETURNS:
160  * Pointer to allocated devres on success, NULL on failure.
161  */
162 void *__devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid,
163 			  const char *name)
164 {
165 	struct devres *dr;
166 
167 	dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid);
168 	if (unlikely(!dr))
169 		return NULL;
170 	set_node_dbginfo(&dr->node, name, size);
171 	return dr->data;
172 }
173 EXPORT_SYMBOL_GPL(__devres_alloc_node);
174 
175 /**
176  * devres_for_each_res - Resource iterator
177  * @dev: Device to iterate resource from
178  * @release: Look for resources associated with this release function
179  * @match: Match function (optional)
180  * @match_data: Data for the match function
181  * @fn: Function to be called for each matched resource.
182  * @data: Data for @fn, the 3rd parameter of @fn
183  *
184  * Call @fn for each devres of @dev which is associated with @release
185  * and for which @match returns 1.
186  *
187  * RETURNS:
188  * 	void
189  */
190 void devres_for_each_res(struct device *dev, dr_release_t release,
191 			dr_match_t match, void *match_data,
192 			void (*fn)(struct device *, void *, void *),
193 			void *data)
194 {
195 	struct devres_node *node;
196 	struct devres_node *tmp;
197 	unsigned long flags;
198 
199 	if (!fn)
200 		return;
201 
202 	spin_lock_irqsave(&dev->devres_lock, flags);
203 	list_for_each_entry_safe_reverse(node, tmp,
204 			&dev->devres_head, entry) {
205 		struct devres *dr = container_of(node, struct devres, node);
206 
207 		if (node->release != release)
208 			continue;
209 		if (match && !match(dev, dr->data, match_data))
210 			continue;
211 		fn(dev, dr->data, data);
212 	}
213 	spin_unlock_irqrestore(&dev->devres_lock, flags);
214 }
215 EXPORT_SYMBOL_GPL(devres_for_each_res);
216 
217 /**
218  * devres_free - Free device resource data
219  * @res: Pointer to devres data to free
220  *
221  * Free devres created with devres_alloc().
222  */
223 void devres_free(void *res)
224 {
225 	if (res) {
226 		struct devres *dr = container_of(res, struct devres, data);
227 
228 		BUG_ON(!list_empty(&dr->node.entry));
229 		kfree(dr);
230 	}
231 }
232 EXPORT_SYMBOL_GPL(devres_free);
233 
234 /**
235  * devres_add - Register device resource
236  * @dev: Device to add resource to
237  * @res: Resource to register
238  *
239  * Register devres @res to @dev.  @res should have been allocated
240  * using devres_alloc().  On driver detach, the associated release
241  * function will be invoked and devres will be freed automatically.
242  */
243 void devres_add(struct device *dev, void *res)
244 {
245 	struct devres *dr = container_of(res, struct devres, data);
246 	unsigned long flags;
247 
248 	spin_lock_irqsave(&dev->devres_lock, flags);
249 	add_dr(dev, &dr->node);
250 	spin_unlock_irqrestore(&dev->devres_lock, flags);
251 }
252 EXPORT_SYMBOL_GPL(devres_add);
253 
254 static struct devres *find_dr(struct device *dev, dr_release_t release,
255 			      dr_match_t match, void *match_data)
256 {
257 	struct devres_node *node;
258 
259 	list_for_each_entry_reverse(node, &dev->devres_head, entry) {
260 		struct devres *dr = container_of(node, struct devres, node);
261 
262 		if (node->release != release)
263 			continue;
264 		if (match && !match(dev, dr->data, match_data))
265 			continue;
266 		return dr;
267 	}
268 
269 	return NULL;
270 }
271 
272 /**
273  * devres_find - Find device resource
274  * @dev: Device to lookup resource from
275  * @release: Look for resources associated with this release function
276  * @match: Match function (optional)
277  * @match_data: Data for the match function
278  *
279  * Find the latest devres of @dev which is associated with @release
280  * and for which @match returns 1.  If @match is NULL, it's considered
281  * to match all.
282  *
283  * RETURNS:
284  * Pointer to found devres, NULL if not found.
285  */
286 void *devres_find(struct device *dev, dr_release_t release,
287 		  dr_match_t match, void *match_data)
288 {
289 	struct devres *dr;
290 	unsigned long flags;
291 
292 	spin_lock_irqsave(&dev->devres_lock, flags);
293 	dr = find_dr(dev, release, match, match_data);
294 	spin_unlock_irqrestore(&dev->devres_lock, flags);
295 
296 	if (dr)
297 		return dr->data;
298 	return NULL;
299 }
300 EXPORT_SYMBOL_GPL(devres_find);
301 
302 /**
303  * devres_get - Find devres, if non-existent, add one atomically
304  * @dev: Device to lookup or add devres for
305  * @new_res: Pointer to new initialized devres to add if not found
306  * @match: Match function (optional)
307  * @match_data: Data for the match function
308  *
309  * Find the latest devres of @dev which has the same release function
310  * as @new_res and for which @match return 1.  If found, @new_res is
311  * freed; otherwise, @new_res is added atomically.
312  *
313  * RETURNS:
314  * Pointer to found or added devres.
315  */
316 void *devres_get(struct device *dev, void *new_res,
317 		 dr_match_t match, void *match_data)
318 {
319 	struct devres *new_dr = container_of(new_res, struct devres, data);
320 	struct devres *dr;
321 	unsigned long flags;
322 
323 	spin_lock_irqsave(&dev->devres_lock, flags);
324 	dr = find_dr(dev, new_dr->node.release, match, match_data);
325 	if (!dr) {
326 		add_dr(dev, &new_dr->node);
327 		dr = new_dr;
328 		new_res = NULL;
329 	}
330 	spin_unlock_irqrestore(&dev->devres_lock, flags);
331 	devres_free(new_res);
332 
333 	return dr->data;
334 }
335 EXPORT_SYMBOL_GPL(devres_get);
336 
337 /**
338  * devres_remove - Find a device resource and remove it
339  * @dev: Device to find resource from
340  * @release: Look for resources associated with this release function
341  * @match: Match function (optional)
342  * @match_data: Data for the match function
343  *
344  * Find the latest devres of @dev associated with @release and for
345  * which @match returns 1.  If @match is NULL, it's considered to
346  * match all.  If found, the resource is removed atomically and
347  * returned.
348  *
349  * RETURNS:
350  * Pointer to removed devres on success, NULL if not found.
351  */
352 void *devres_remove(struct device *dev, dr_release_t release,
353 		    dr_match_t match, void *match_data)
354 {
355 	struct devres *dr;
356 	unsigned long flags;
357 
358 	spin_lock_irqsave(&dev->devres_lock, flags);
359 	dr = find_dr(dev, release, match, match_data);
360 	if (dr) {
361 		list_del_init(&dr->node.entry);
362 		devres_log(dev, &dr->node, "REM");
363 	}
364 	spin_unlock_irqrestore(&dev->devres_lock, flags);
365 
366 	if (dr)
367 		return dr->data;
368 	return NULL;
369 }
370 EXPORT_SYMBOL_GPL(devres_remove);
371 
372 /**
373  * devres_destroy - Find a device resource and destroy it
374  * @dev: Device to find resource from
375  * @release: Look for resources associated with this release function
376  * @match: Match function (optional)
377  * @match_data: Data for the match function
378  *
379  * Find the latest devres of @dev associated with @release and for
380  * which @match returns 1.  If @match is NULL, it's considered to
381  * match all.  If found, the resource is removed atomically and freed.
382  *
383  * Note that the release function for the resource will not be called,
384  * only the devres-allocated data will be freed.  The caller becomes
385  * responsible for freeing any other data.
386  *
387  * RETURNS:
388  * 0 if devres is found and freed, -ENOENT if not found.
389  */
390 int devres_destroy(struct device *dev, dr_release_t release,
391 		   dr_match_t match, void *match_data)
392 {
393 	void *res;
394 
395 	res = devres_remove(dev, release, match, match_data);
396 	if (unlikely(!res))
397 		return -ENOENT;
398 
399 	devres_free(res);
400 	return 0;
401 }
402 EXPORT_SYMBOL_GPL(devres_destroy);
403 
404 
405 /**
406  * devres_release - Find a device resource and destroy it, calling release
407  * @dev: Device to find resource from
408  * @release: Look for resources associated with this release function
409  * @match: Match function (optional)
410  * @match_data: Data for the match function
411  *
412  * Find the latest devres of @dev associated with @release and for
413  * which @match returns 1.  If @match is NULL, it's considered to
414  * match all.  If found, the resource is removed atomically, the
415  * release function called and the resource freed.
416  *
417  * RETURNS:
418  * 0 if devres is found and freed, -ENOENT if not found.
419  */
420 int devres_release(struct device *dev, dr_release_t release,
421 		   dr_match_t match, void *match_data)
422 {
423 	void *res;
424 
425 	res = devres_remove(dev, release, match, match_data);
426 	if (unlikely(!res))
427 		return -ENOENT;
428 
429 	(*release)(dev, res);
430 	devres_free(res);
431 	return 0;
432 }
433 EXPORT_SYMBOL_GPL(devres_release);
434 
435 static int remove_nodes(struct device *dev,
436 			struct list_head *first, struct list_head *end,
437 			struct list_head *todo)
438 {
439 	struct devres_node *node, *n;
440 	int cnt = 0, nr_groups = 0;
441 
442 	/* First pass - move normal devres entries to @todo and clear
443 	 * devres_group colors.
444 	 */
445 	node = list_entry(first, struct devres_node, entry);
446 	list_for_each_entry_safe_from(node, n, end, entry) {
447 		struct devres_group *grp;
448 
449 		grp = node_to_group(node);
450 		if (grp) {
451 			/* clear color of group markers in the first pass */
452 			grp->color = 0;
453 			nr_groups++;
454 		} else {
455 			/* regular devres entry */
456 			if (&node->entry == first)
457 				first = first->next;
458 			list_move_tail(&node->entry, todo);
459 			cnt++;
460 		}
461 	}
462 
463 	if (!nr_groups)
464 		return cnt;
465 
466 	/* Second pass - Scan groups and color them.  A group gets
467 	 * color value of two iff the group is wholly contained in
468 	 * [current node, end). That is, for a closed group, both opening
469 	 * and closing markers should be in the range, while just the
470 	 * opening marker is enough for an open group.
471 	 */
472 	node = list_entry(first, struct devres_node, entry);
473 	list_for_each_entry_safe_from(node, n, end, entry) {
474 		struct devres_group *grp;
475 
476 		grp = node_to_group(node);
477 		BUG_ON(!grp || list_empty(&grp->node[0].entry));
478 
479 		grp->color++;
480 		if (list_empty(&grp->node[1].entry))
481 			grp->color++;
482 
483 		BUG_ON(grp->color <= 0 || grp->color > 2);
484 		if (grp->color == 2) {
485 			/* No need to update current node or end. The removed
486 			 * nodes are always before both.
487 			 */
488 			list_move_tail(&grp->node[0].entry, todo);
489 			list_del_init(&grp->node[1].entry);
490 		}
491 	}
492 
493 	return cnt;
494 }
495 
496 static void release_nodes(struct device *dev, struct list_head *todo)
497 {
498 	struct devres *dr, *tmp;
499 
500 	/* Release.  Note that both devres and devres_group are
501 	 * handled as devres in the following loop.  This is safe.
502 	 */
503 	list_for_each_entry_safe_reverse(dr, tmp, todo, node.entry) {
504 		devres_log(dev, &dr->node, "REL");
505 		dr->node.release(dev, dr->data);
506 		kfree(dr);
507 	}
508 }
509 
510 /**
511  * devres_release_all - Release all managed resources
512  * @dev: Device to release resources for
513  *
514  * Release all resources associated with @dev.  This function is
515  * called on driver detach.
516  */
517 int devres_release_all(struct device *dev)
518 {
519 	unsigned long flags;
520 	LIST_HEAD(todo);
521 	int cnt;
522 
523 	/* Looks like an uninitialized device structure */
524 	if (WARN_ON(dev->devres_head.next == NULL))
525 		return -ENODEV;
526 
527 	/* Nothing to release if list is empty */
528 	if (list_empty(&dev->devres_head))
529 		return 0;
530 
531 	spin_lock_irqsave(&dev->devres_lock, flags);
532 	cnt = remove_nodes(dev, dev->devres_head.next, &dev->devres_head, &todo);
533 	spin_unlock_irqrestore(&dev->devres_lock, flags);
534 
535 	release_nodes(dev, &todo);
536 	return cnt;
537 }
538 
539 /**
540  * devres_open_group - Open a new devres group
541  * @dev: Device to open devres group for
542  * @id: Separator ID
543  * @gfp: Allocation flags
544  *
545  * Open a new devres group for @dev with @id.  For @id, using a
546  * pointer to an object which won't be used for another group is
547  * recommended.  If @id is NULL, address-wise unique ID is created.
548  *
549  * RETURNS:
550  * ID of the new group, NULL on failure.
551  */
552 void *devres_open_group(struct device *dev, void *id, gfp_t gfp)
553 {
554 	struct devres_group *grp;
555 	unsigned long flags;
556 
557 	grp = kmalloc(sizeof(*grp), gfp);
558 	if (unlikely(!grp))
559 		return NULL;
560 
561 	grp->node[0].release = &group_open_release;
562 	grp->node[1].release = &group_close_release;
563 	INIT_LIST_HEAD(&grp->node[0].entry);
564 	INIT_LIST_HEAD(&grp->node[1].entry);
565 	set_node_dbginfo(&grp->node[0], "grp<", 0);
566 	set_node_dbginfo(&grp->node[1], "grp>", 0);
567 	grp->id = grp;
568 	if (id)
569 		grp->id = id;
570 	grp->color = 0;
571 
572 	spin_lock_irqsave(&dev->devres_lock, flags);
573 	add_dr(dev, &grp->node[0]);
574 	spin_unlock_irqrestore(&dev->devres_lock, flags);
575 	return grp->id;
576 }
577 EXPORT_SYMBOL_GPL(devres_open_group);
578 
579 /* Find devres group with ID @id.  If @id is NULL, look for the latest. */
580 static struct devres_group *find_group(struct device *dev, void *id)
581 {
582 	struct devres_node *node;
583 
584 	list_for_each_entry_reverse(node, &dev->devres_head, entry) {
585 		struct devres_group *grp;
586 
587 		if (node->release != &group_open_release)
588 			continue;
589 
590 		grp = container_of(node, struct devres_group, node[0]);
591 
592 		if (id) {
593 			if (grp->id == id)
594 				return grp;
595 		} else if (list_empty(&grp->node[1].entry))
596 			return grp;
597 	}
598 
599 	return NULL;
600 }
601 
602 /**
603  * devres_close_group - Close a devres group
604  * @dev: Device to close devres group for
605  * @id: ID of target group, can be NULL
606  *
607  * Close the group identified by @id.  If @id is NULL, the latest open
608  * group is selected.
609  */
610 void devres_close_group(struct device *dev, void *id)
611 {
612 	struct devres_group *grp;
613 	unsigned long flags;
614 
615 	spin_lock_irqsave(&dev->devres_lock, flags);
616 
617 	grp = find_group(dev, id);
618 	if (grp)
619 		add_dr(dev, &grp->node[1]);
620 	else
621 		WARN_ON(1);
622 
623 	spin_unlock_irqrestore(&dev->devres_lock, flags);
624 }
625 EXPORT_SYMBOL_GPL(devres_close_group);
626 
627 /**
628  * devres_remove_group - Remove a devres group
629  * @dev: Device to remove group for
630  * @id: ID of target group, can be NULL
631  *
632  * Remove the group identified by @id.  If @id is NULL, the latest
633  * open group is selected.  Note that removing a group doesn't affect
634  * any other resources.
635  */
636 void devres_remove_group(struct device *dev, void *id)
637 {
638 	struct devres_group *grp;
639 	unsigned long flags;
640 
641 	spin_lock_irqsave(&dev->devres_lock, flags);
642 
643 	grp = find_group(dev, id);
644 	if (grp) {
645 		list_del_init(&grp->node[0].entry);
646 		list_del_init(&grp->node[1].entry);
647 		devres_log(dev, &grp->node[0], "REM");
648 	} else
649 		WARN_ON(1);
650 
651 	spin_unlock_irqrestore(&dev->devres_lock, flags);
652 
653 	kfree(grp);
654 }
655 EXPORT_SYMBOL_GPL(devres_remove_group);
656 
657 /**
658  * devres_release_group - Release resources in a devres group
659  * @dev: Device to release group for
660  * @id: ID of target group, can be NULL
661  *
662  * Release all resources in the group identified by @id.  If @id is
663  * NULL, the latest open group is selected.  The selected group and
664  * groups properly nested inside the selected group are removed.
665  *
666  * RETURNS:
667  * The number of released non-group resources.
668  */
669 int devres_release_group(struct device *dev, void *id)
670 {
671 	struct devres_group *grp;
672 	unsigned long flags;
673 	LIST_HEAD(todo);
674 	int cnt = 0;
675 
676 	spin_lock_irqsave(&dev->devres_lock, flags);
677 
678 	grp = find_group(dev, id);
679 	if (grp) {
680 		struct list_head *first = &grp->node[0].entry;
681 		struct list_head *end = &dev->devres_head;
682 
683 		if (!list_empty(&grp->node[1].entry))
684 			end = grp->node[1].entry.next;
685 
686 		cnt = remove_nodes(dev, first, end, &todo);
687 		spin_unlock_irqrestore(&dev->devres_lock, flags);
688 
689 		release_nodes(dev, &todo);
690 	} else {
691 		WARN_ON(1);
692 		spin_unlock_irqrestore(&dev->devres_lock, flags);
693 	}
694 
695 	return cnt;
696 }
697 EXPORT_SYMBOL_GPL(devres_release_group);
698 
699 /*
700  * Custom devres actions allow inserting a simple function call
701  * into the teardown sequence.
702  */
703 
704 struct action_devres {
705 	void *data;
706 	void (*action)(void *);
707 };
708 
709 static int devm_action_match(struct device *dev, void *res, void *p)
710 {
711 	struct action_devres *devres = res;
712 	struct action_devres *target = p;
713 
714 	return devres->action == target->action &&
715 	       devres->data == target->data;
716 }
717 
718 static void devm_action_release(struct device *dev, void *res)
719 {
720 	struct action_devres *devres = res;
721 
722 	devres->action(devres->data);
723 }
724 
725 /**
726  * __devm_add_action() - add a custom action to list of managed resources
727  * @dev: Device that owns the action
728  * @action: Function that should be called
729  * @data: Pointer to data passed to @action implementation
730  * @name: Name of the resource (for debugging purposes)
731  *
732  * This adds a custom action to the list of managed resources so that
733  * it gets executed as part of standard resource unwinding.
734  */
735 int __devm_add_action(struct device *dev, void (*action)(void *), void *data, const char *name)
736 {
737 	struct action_devres *devres;
738 
739 	devres = __devres_alloc_node(devm_action_release, sizeof(struct action_devres),
740 				     GFP_KERNEL, NUMA_NO_NODE, name);
741 	if (!devres)
742 		return -ENOMEM;
743 
744 	devres->data = data;
745 	devres->action = action;
746 
747 	devres_add(dev, devres);
748 	return 0;
749 }
750 EXPORT_SYMBOL_GPL(__devm_add_action);
751 
752 /**
753  * devm_remove_action_nowarn() - removes previously added custom action
754  * @dev: Device that owns the action
755  * @action: Function implementing the action
756  * @data: Pointer to data passed to @action implementation
757  *
758  * Removes instance of @action previously added by devm_add_action().
759  * Both action and data should match one of the existing entries.
760  *
761  * In contrast to devm_remove_action(), this function does not WARN() if no
762  * entry could have been found.
763  *
764  * This should only be used if the action is contained in an object with
765  * independent lifetime management, e.g. the Devres rust abstraction.
766  *
767  * Causing the warning from regular driver code most likely indicates an abuse
768  * of the devres API.
769  *
770  * Returns: 0 on success, -ENOENT if no entry could have been found.
771  */
772 int devm_remove_action_nowarn(struct device *dev,
773 			      void (*action)(void *),
774 			      void *data)
775 {
776 	struct action_devres devres = {
777 		.data = data,
778 		.action = action,
779 	};
780 
781 	return devres_destroy(dev, devm_action_release, devm_action_match,
782 			      &devres);
783 }
784 EXPORT_SYMBOL_GPL(devm_remove_action_nowarn);
785 
786 /**
787  * devm_release_action() - release previously added custom action
788  * @dev: Device that owns the action
789  * @action: Function implementing the action
790  * @data: Pointer to data passed to @action implementation
791  *
792  * Releases and removes instance of @action previously added by
793  * devm_add_action().  Both action and data should match one of the
794  * existing entries.
795  */
796 void devm_release_action(struct device *dev, void (*action)(void *), void *data)
797 {
798 	struct action_devres devres = {
799 		.data = data,
800 		.action = action,
801 	};
802 
803 	WARN_ON(devres_release(dev, devm_action_release, devm_action_match,
804 			       &devres));
805 
806 }
807 EXPORT_SYMBOL_GPL(devm_release_action);
808 
809 /*
810  * Managed kmalloc/kfree
811  */
812 static void devm_kmalloc_release(struct device *dev, void *res)
813 {
814 	/* noop */
815 }
816 
817 static int devm_kmalloc_match(struct device *dev, void *res, void *data)
818 {
819 	return res == data;
820 }
821 
822 /**
823  * devm_kmalloc - Resource-managed kmalloc
824  * @dev: Device to allocate memory for
825  * @size: Allocation size
826  * @gfp: Allocation gfp flags
827  *
828  * Managed kmalloc.  Memory allocated with this function is
829  * automatically freed on driver detach.  Like all other devres
830  * resources, guaranteed alignment is unsigned long long.
831  *
832  * RETURNS:
833  * Pointer to allocated memory on success, NULL on failure.
834  */
835 void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp)
836 {
837 	struct devres *dr;
838 
839 	if (unlikely(!size))
840 		return ZERO_SIZE_PTR;
841 
842 	/* use raw alloc_dr for kmalloc caller tracing */
843 	dr = alloc_dr(devm_kmalloc_release, size, gfp, dev_to_node(dev));
844 	if (unlikely(!dr))
845 		return NULL;
846 
847 	/*
848 	 * This is named devm_kzalloc_release for historical reasons
849 	 * The initial implementation did not support kmalloc, only kzalloc
850 	 */
851 	set_node_dbginfo(&dr->node, "devm_kzalloc_release", size);
852 	devres_add(dev, dr->data);
853 	return dr->data;
854 }
855 EXPORT_SYMBOL_GPL(devm_kmalloc);
856 
857 /**
858  * devm_krealloc - Resource-managed krealloc()
859  * @dev: Device to re-allocate memory for
860  * @ptr: Pointer to the memory chunk to re-allocate
861  * @new_size: New allocation size
862  * @gfp: Allocation gfp flags
863  *
864  * Managed krealloc(). Resizes the memory chunk allocated with devm_kmalloc().
865  * Behaves similarly to regular krealloc(): if @ptr is NULL or ZERO_SIZE_PTR,
866  * it's the equivalent of devm_kmalloc(). If new_size is zero, it frees the
867  * previously allocated memory and returns ZERO_SIZE_PTR. This function doesn't
868  * change the order in which the release callback for the re-alloc'ed devres
869  * will be called (except when falling back to devm_kmalloc() or when freeing
870  * resources when new_size is zero). The contents of the memory are preserved
871  * up to the lesser of new and old sizes.
872  */
873 void *devm_krealloc(struct device *dev, void *ptr, size_t new_size, gfp_t gfp)
874 {
875 	size_t total_new_size, total_old_size;
876 	struct devres *old_dr, *new_dr;
877 	unsigned long flags;
878 
879 	if (unlikely(!new_size)) {
880 		devm_kfree(dev, ptr);
881 		return ZERO_SIZE_PTR;
882 	}
883 
884 	if (unlikely(ZERO_OR_NULL_PTR(ptr)))
885 		return devm_kmalloc(dev, new_size, gfp);
886 
887 	if (WARN_ON(is_kernel_rodata((unsigned long)ptr)))
888 		/*
889 		 * We cannot reliably realloc a const string returned by
890 		 * devm_kstrdup_const().
891 		 */
892 		return NULL;
893 
894 	if (!check_dr_size(new_size, &total_new_size))
895 		return NULL;
896 
897 	total_old_size = ksize(container_of(ptr, struct devres, data));
898 	if (total_old_size == 0) {
899 		WARN(1, "Pointer doesn't point to dynamically allocated memory.");
900 		return NULL;
901 	}
902 
903 	/*
904 	 * If new size is smaller or equal to the actual number of bytes
905 	 * allocated previously - just return the same pointer.
906 	 */
907 	if (total_new_size <= total_old_size)
908 		return ptr;
909 
910 	/*
911 	 * Otherwise: allocate new, larger chunk. We need to allocate before
912 	 * taking the lock as most probably the caller uses GFP_KERNEL.
913 	 * alloc_dr() will call check_dr_size() to reserve extra memory
914 	 * for struct devres automatically, so size @new_size user request
915 	 * is delivered to it directly as devm_kmalloc() does.
916 	 */
917 	new_dr = alloc_dr(devm_kmalloc_release,
918 			  new_size, gfp, dev_to_node(dev));
919 	if (!new_dr)
920 		return NULL;
921 
922 	/*
923 	 * The spinlock protects the linked list against concurrent
924 	 * modifications but not the resource itself.
925 	 */
926 	spin_lock_irqsave(&dev->devres_lock, flags);
927 
928 	old_dr = find_dr(dev, devm_kmalloc_release, devm_kmalloc_match, ptr);
929 	if (!old_dr) {
930 		spin_unlock_irqrestore(&dev->devres_lock, flags);
931 		kfree(new_dr);
932 		WARN(1, "Memory chunk not managed or managed by a different device.");
933 		return NULL;
934 	}
935 
936 	replace_dr(dev, &old_dr->node, &new_dr->node);
937 
938 	spin_unlock_irqrestore(&dev->devres_lock, flags);
939 
940 	/*
941 	 * We can copy the memory contents after releasing the lock as we're
942 	 * no longer modifying the list links.
943 	 */
944 	memcpy(new_dr->data, old_dr->data,
945 	       total_old_size - offsetof(struct devres, data));
946 	/*
947 	 * Same for releasing the old devres - it's now been removed from the
948 	 * list. This is also the reason why we must not use devm_kfree() - the
949 	 * links are no longer valid.
950 	 */
951 	kfree(old_dr);
952 
953 	return new_dr->data;
954 }
955 EXPORT_SYMBOL_GPL(devm_krealloc);
956 
957 /**
958  * devm_kstrdup - Allocate resource managed space and
959  *                copy an existing string into that.
960  * @dev: Device to allocate memory for
961  * @s: the string to duplicate
962  * @gfp: the GFP mask used in the devm_kmalloc() call when
963  *       allocating memory
964  * RETURNS:
965  * Pointer to allocated string on success, NULL on failure.
966  */
967 char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp)
968 {
969 	size_t size;
970 	char *buf;
971 
972 	if (!s)
973 		return NULL;
974 
975 	size = strlen(s) + 1;
976 	buf = devm_kmalloc(dev, size, gfp);
977 	if (buf)
978 		memcpy(buf, s, size);
979 	return buf;
980 }
981 EXPORT_SYMBOL_GPL(devm_kstrdup);
982 
983 /**
984  * devm_kstrdup_const - resource managed conditional string duplication
985  * @dev: device for which to duplicate the string
986  * @s: the string to duplicate
987  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
988  *
989  * Strings allocated by devm_kstrdup_const will be automatically freed when
990  * the associated device is detached.
991  *
992  * RETURNS:
993  * Source string if it is in .rodata section otherwise it falls back to
994  * devm_kstrdup.
995  */
996 const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp)
997 {
998 	if (is_kernel_rodata((unsigned long)s))
999 		return s;
1000 
1001 	return devm_kstrdup(dev, s, gfp);
1002 }
1003 EXPORT_SYMBOL_GPL(devm_kstrdup_const);
1004 
1005 /**
1006  * devm_kvasprintf - Allocate resource managed space and format a string
1007  *		     into that.
1008  * @dev: Device to allocate memory for
1009  * @gfp: the GFP mask used in the devm_kmalloc() call when
1010  *       allocating memory
1011  * @fmt: The printf()-style format string
1012  * @ap: Arguments for the format string
1013  * RETURNS:
1014  * Pointer to allocated string on success, NULL on failure.
1015  */
1016 char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt,
1017 		      va_list ap)
1018 {
1019 	unsigned int len;
1020 	char *p;
1021 	va_list aq;
1022 
1023 	va_copy(aq, ap);
1024 	len = vsnprintf(NULL, 0, fmt, aq);
1025 	va_end(aq);
1026 
1027 	p = devm_kmalloc(dev, len+1, gfp);
1028 	if (!p)
1029 		return NULL;
1030 
1031 	vsnprintf(p, len+1, fmt, ap);
1032 
1033 	return p;
1034 }
1035 EXPORT_SYMBOL(devm_kvasprintf);
1036 
1037 /**
1038  * devm_kasprintf - Allocate resource managed space and format a string
1039  *		    into that.
1040  * @dev: Device to allocate memory for
1041  * @gfp: the GFP mask used in the devm_kmalloc() call when
1042  *       allocating memory
1043  * @fmt: The printf()-style format string
1044  * @...: Arguments for the format string
1045  * RETURNS:
1046  * Pointer to allocated string on success, NULL on failure.
1047  */
1048 char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1049 {
1050 	va_list ap;
1051 	char *p;
1052 
1053 	va_start(ap, fmt);
1054 	p = devm_kvasprintf(dev, gfp, fmt, ap);
1055 	va_end(ap);
1056 
1057 	return p;
1058 }
1059 EXPORT_SYMBOL_GPL(devm_kasprintf);
1060 
1061 /**
1062  * devm_kfree - Resource-managed kfree
1063  * @dev: Device this memory belongs to
1064  * @p: Memory to free
1065  *
1066  * Free memory allocated with devm_kmalloc().
1067  */
1068 void devm_kfree(struct device *dev, const void *p)
1069 {
1070 	int rc;
1071 
1072 	/*
1073 	 * Special cases: pointer to a string in .rodata returned by
1074 	 * devm_kstrdup_const() or NULL/ZERO ptr.
1075 	 */
1076 	if (unlikely(is_kernel_rodata((unsigned long)p) || ZERO_OR_NULL_PTR(p)))
1077 		return;
1078 
1079 	rc = devres_destroy(dev, devm_kmalloc_release,
1080 			    devm_kmalloc_match, (void *)p);
1081 	WARN_ON(rc);
1082 }
1083 EXPORT_SYMBOL_GPL(devm_kfree);
1084 
1085 /**
1086  * devm_kmemdup - Resource-managed kmemdup
1087  * @dev: Device this memory belongs to
1088  * @src: Memory region to duplicate
1089  * @len: Memory region length
1090  * @gfp: GFP mask to use
1091  *
1092  * Duplicate region of a memory using resource managed kmalloc
1093  */
1094 void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp)
1095 {
1096 	void *p;
1097 
1098 	p = devm_kmalloc(dev, len, gfp);
1099 	if (p)
1100 		memcpy(p, src, len);
1101 
1102 	return p;
1103 }
1104 EXPORT_SYMBOL_GPL(devm_kmemdup);
1105 
1106 struct pages_devres {
1107 	unsigned long addr;
1108 	unsigned int order;
1109 };
1110 
1111 static int devm_pages_match(struct device *dev, void *res, void *p)
1112 {
1113 	struct pages_devres *devres = res;
1114 	struct pages_devres *target = p;
1115 
1116 	return devres->addr == target->addr;
1117 }
1118 
1119 static void devm_pages_release(struct device *dev, void *res)
1120 {
1121 	struct pages_devres *devres = res;
1122 
1123 	free_pages(devres->addr, devres->order);
1124 }
1125 
1126 /**
1127  * devm_get_free_pages - Resource-managed __get_free_pages
1128  * @dev: Device to allocate memory for
1129  * @gfp_mask: Allocation gfp flags
1130  * @order: Allocation size is (1 << order) pages
1131  *
1132  * Managed get_free_pages.  Memory allocated with this function is
1133  * automatically freed on driver detach.
1134  *
1135  * RETURNS:
1136  * Address of allocated memory on success, 0 on failure.
1137  */
1138 
1139 unsigned long devm_get_free_pages(struct device *dev,
1140 				  gfp_t gfp_mask, unsigned int order)
1141 {
1142 	struct pages_devres *devres;
1143 	unsigned long addr;
1144 
1145 	addr = __get_free_pages(gfp_mask, order);
1146 
1147 	if (unlikely(!addr))
1148 		return 0;
1149 
1150 	devres = devres_alloc(devm_pages_release,
1151 			      sizeof(struct pages_devres), GFP_KERNEL);
1152 	if (unlikely(!devres)) {
1153 		free_pages(addr, order);
1154 		return 0;
1155 	}
1156 
1157 	devres->addr = addr;
1158 	devres->order = order;
1159 
1160 	devres_add(dev, devres);
1161 	return addr;
1162 }
1163 EXPORT_SYMBOL_GPL(devm_get_free_pages);
1164 
1165 /**
1166  * devm_free_pages - Resource-managed free_pages
1167  * @dev: Device this memory belongs to
1168  * @addr: Memory to free
1169  *
1170  * Free memory allocated with devm_get_free_pages(). Unlike free_pages,
1171  * there is no need to supply the @order.
1172  */
1173 void devm_free_pages(struct device *dev, unsigned long addr)
1174 {
1175 	struct pages_devres devres = { .addr = addr };
1176 
1177 	WARN_ON(devres_release(dev, devm_pages_release, devm_pages_match,
1178 			       &devres));
1179 }
1180 EXPORT_SYMBOL_GPL(devm_free_pages);
1181 
1182 static void devm_percpu_release(struct device *dev, void *pdata)
1183 {
1184 	void __percpu *p;
1185 
1186 	p = *(void __percpu **)pdata;
1187 	free_percpu(p);
1188 }
1189 
1190 static int devm_percpu_match(struct device *dev, void *data, void *p)
1191 {
1192 	struct devres *devr = container_of(data, struct devres, data);
1193 
1194 	return *(void **)devr->data == p;
1195 }
1196 
1197 /**
1198  * __devm_alloc_percpu - Resource-managed alloc_percpu
1199  * @dev: Device to allocate per-cpu memory for
1200  * @size: Size of per-cpu memory to allocate
1201  * @align: Alignment of per-cpu memory to allocate
1202  *
1203  * Managed alloc_percpu. Per-cpu memory allocated with this function is
1204  * automatically freed on driver detach.
1205  *
1206  * RETURNS:
1207  * Pointer to allocated memory on success, NULL on failure.
1208  */
1209 void __percpu *__devm_alloc_percpu(struct device *dev, size_t size,
1210 		size_t align)
1211 {
1212 	void *p;
1213 	void __percpu *pcpu;
1214 
1215 	pcpu = __alloc_percpu(size, align);
1216 	if (!pcpu)
1217 		return NULL;
1218 
1219 	p = devres_alloc(devm_percpu_release, sizeof(void *), GFP_KERNEL);
1220 	if (!p) {
1221 		free_percpu(pcpu);
1222 		return NULL;
1223 	}
1224 
1225 	*(void __percpu **)p = pcpu;
1226 
1227 	devres_add(dev, p);
1228 
1229 	return pcpu;
1230 }
1231 EXPORT_SYMBOL_GPL(__devm_alloc_percpu);
1232 
1233 /**
1234  * devm_free_percpu - Resource-managed free_percpu
1235  * @dev: Device this memory belongs to
1236  * @pdata: Per-cpu memory to free
1237  *
1238  * Free memory allocated with devm_alloc_percpu().
1239  */
1240 void devm_free_percpu(struct device *dev, void __percpu *pdata)
1241 {
1242 	/*
1243 	 * Use devres_release() to prevent memory leakage as
1244 	 * devm_free_pages() does.
1245 	 */
1246 	WARN_ON(devres_release(dev, devm_percpu_release, devm_percpu_match,
1247 			       (void *)(__force unsigned long)pdata));
1248 }
1249 EXPORT_SYMBOL_GPL(devm_free_percpu);
1250