1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <linux/unaligned.h>
21
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24
25 #include "internal.h"
26
27 /*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33 #undef LOG_DEVICE
34
35 #ifdef LOG_DEVICE
regmap_should_log(struct regmap * map)36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
regmap_should_log(struct regmap * map)41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43
44
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
regmap_reg_in_ranges(unsigned int reg,const struct regmap_range * ranges,unsigned int nranges)60 bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63 {
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
regmap_check_range_table(struct regmap * map,unsigned int reg,const struct regmap_access_table * table)74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76 {
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
regmap_writeable(struct regmap * map,unsigned int reg)90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 if (map->max_register_is_set && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102 }
103
regmap_cached(struct regmap * map,unsigned int reg)104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register_is_set && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125 }
126
regmap_readable(struct regmap * map,unsigned int reg)127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register_is_set && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145 }
146
regmap_volatile(struct regmap * map,unsigned int reg)147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162 }
163
regmap_precious(struct regmap * map,unsigned int reg)164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176 }
177
regmap_writeable_noinc(struct regmap * map,unsigned int reg)178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187 }
188
regmap_readable_noinc(struct regmap * map,unsigned int reg)189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198 }
199
regmap_volatile_range(struct regmap * map,unsigned int reg,size_t num)200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202 {
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
208
209 return true;
210 }
211
regmap_format_12_20_write(struct regmap * map,unsigned int reg,unsigned int val)212 static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214 {
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221 }
222
223
regmap_format_2_6_write(struct regmap * map,unsigned int reg,unsigned int val)224 static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226 {
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230 }
231
regmap_format_4_12_write(struct regmap * map,unsigned int reg,unsigned int val)232 static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234 {
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237 }
238
regmap_format_7_9_write(struct regmap * map,unsigned int reg,unsigned int val)239 static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241 {
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244 }
245
regmap_format_7_17_write(struct regmap * map,unsigned int reg,unsigned int val)246 static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248 {
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = val >> 8;
253 out[0] = (val >> 16) | (reg << 1);
254 }
255
regmap_format_10_14_write(struct regmap * map,unsigned int reg,unsigned int val)256 static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
258 {
259 u8 *out = map->work_buf;
260
261 out[2] = val;
262 out[1] = (val >> 8) | (reg << 6);
263 out[0] = reg >> 2;
264 }
265
regmap_format_8(void * buf,unsigned int val,unsigned int shift)266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 u8 *b = buf;
269
270 b[0] = val << shift;
271 }
272
regmap_format_16_be(void * buf,unsigned int val,unsigned int shift)273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 put_unaligned_be16(val << shift, buf);
276 }
277
regmap_format_16_le(void * buf,unsigned int val,unsigned int shift)278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 put_unaligned_le16(val << shift, buf);
281 }
282
regmap_format_16_native(void * buf,unsigned int val,unsigned int shift)283 static void regmap_format_16_native(void *buf, unsigned int val,
284 unsigned int shift)
285 {
286 u16 v = val << shift;
287
288 memcpy(buf, &v, sizeof(v));
289 }
290
regmap_format_24_be(void * buf,unsigned int val,unsigned int shift)291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292 {
293 put_unaligned_be24(val << shift, buf);
294 }
295
regmap_format_32_be(void * buf,unsigned int val,unsigned int shift)296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297 {
298 put_unaligned_be32(val << shift, buf);
299 }
300
regmap_format_32_le(void * buf,unsigned int val,unsigned int shift)301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302 {
303 put_unaligned_le32(val << shift, buf);
304 }
305
regmap_format_32_native(void * buf,unsigned int val,unsigned int shift)306 static void regmap_format_32_native(void *buf, unsigned int val,
307 unsigned int shift)
308 {
309 u32 v = val << shift;
310
311 memcpy(buf, &v, sizeof(v));
312 }
313
regmap_parse_inplace_noop(void * buf)314 static void regmap_parse_inplace_noop(void *buf)
315 {
316 }
317
regmap_parse_8(const void * buf)318 static unsigned int regmap_parse_8(const void *buf)
319 {
320 const u8 *b = buf;
321
322 return b[0];
323 }
324
regmap_parse_16_be(const void * buf)325 static unsigned int regmap_parse_16_be(const void *buf)
326 {
327 return get_unaligned_be16(buf);
328 }
329
regmap_parse_16_le(const void * buf)330 static unsigned int regmap_parse_16_le(const void *buf)
331 {
332 return get_unaligned_le16(buf);
333 }
334
regmap_parse_16_be_inplace(void * buf)335 static void regmap_parse_16_be_inplace(void *buf)
336 {
337 u16 v = get_unaligned_be16(buf);
338
339 memcpy(buf, &v, sizeof(v));
340 }
341
regmap_parse_16_le_inplace(void * buf)342 static void regmap_parse_16_le_inplace(void *buf)
343 {
344 u16 v = get_unaligned_le16(buf);
345
346 memcpy(buf, &v, sizeof(v));
347 }
348
regmap_parse_16_native(const void * buf)349 static unsigned int regmap_parse_16_native(const void *buf)
350 {
351 u16 v;
352
353 memcpy(&v, buf, sizeof(v));
354 return v;
355 }
356
regmap_parse_24_be(const void * buf)357 static unsigned int regmap_parse_24_be(const void *buf)
358 {
359 return get_unaligned_be24(buf);
360 }
361
regmap_parse_32_be(const void * buf)362 static unsigned int regmap_parse_32_be(const void *buf)
363 {
364 return get_unaligned_be32(buf);
365 }
366
regmap_parse_32_le(const void * buf)367 static unsigned int regmap_parse_32_le(const void *buf)
368 {
369 return get_unaligned_le32(buf);
370 }
371
regmap_parse_32_be_inplace(void * buf)372 static void regmap_parse_32_be_inplace(void *buf)
373 {
374 u32 v = get_unaligned_be32(buf);
375
376 memcpy(buf, &v, sizeof(v));
377 }
378
regmap_parse_32_le_inplace(void * buf)379 static void regmap_parse_32_le_inplace(void *buf)
380 {
381 u32 v = get_unaligned_le32(buf);
382
383 memcpy(buf, &v, sizeof(v));
384 }
385
regmap_parse_32_native(const void * buf)386 static unsigned int regmap_parse_32_native(const void *buf)
387 {
388 u32 v;
389
390 memcpy(&v, buf, sizeof(v));
391 return v;
392 }
393
regmap_lock_hwlock(void * __map)394 static void regmap_lock_hwlock(void *__map)
395 {
396 struct regmap *map = __map;
397
398 hwspin_lock_timeout(map->hwlock, UINT_MAX);
399 }
400
regmap_lock_hwlock_irq(void * __map)401 static void regmap_lock_hwlock_irq(void *__map)
402 {
403 struct regmap *map = __map;
404
405 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
406 }
407
regmap_lock_hwlock_irqsave(void * __map)408 static void regmap_lock_hwlock_irqsave(void *__map)
409 {
410 struct regmap *map = __map;
411 unsigned long flags = 0;
412
413 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
414 &flags);
415 map->spinlock_flags = flags;
416 }
417
regmap_unlock_hwlock(void * __map)418 static void regmap_unlock_hwlock(void *__map)
419 {
420 struct regmap *map = __map;
421
422 hwspin_unlock(map->hwlock);
423 }
424
regmap_unlock_hwlock_irq(void * __map)425 static void regmap_unlock_hwlock_irq(void *__map)
426 {
427 struct regmap *map = __map;
428
429 hwspin_unlock_irq(map->hwlock);
430 }
431
regmap_unlock_hwlock_irqrestore(void * __map)432 static void regmap_unlock_hwlock_irqrestore(void *__map)
433 {
434 struct regmap *map = __map;
435
436 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
437 }
438
regmap_lock_unlock_none(void * __map)439 static void regmap_lock_unlock_none(void *__map)
440 {
441
442 }
443
regmap_lock_mutex(void * __map)444 static void regmap_lock_mutex(void *__map)
445 {
446 struct regmap *map = __map;
447 mutex_lock(&map->mutex);
448 }
449
regmap_unlock_mutex(void * __map)450 static void regmap_unlock_mutex(void *__map)
451 {
452 struct regmap *map = __map;
453 mutex_unlock(&map->mutex);
454 }
455
regmap_lock_spinlock(void * __map)456 static void regmap_lock_spinlock(void *__map)
457 __acquires(&map->spinlock)
458 {
459 struct regmap *map = __map;
460 unsigned long flags;
461
462 spin_lock_irqsave(&map->spinlock, flags);
463 map->spinlock_flags = flags;
464 }
465
regmap_unlock_spinlock(void * __map)466 static void regmap_unlock_spinlock(void *__map)
467 __releases(&map->spinlock)
468 {
469 struct regmap *map = __map;
470 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
471 }
472
regmap_lock_raw_spinlock(void * __map)473 static void regmap_lock_raw_spinlock(void *__map)
474 __acquires(&map->raw_spinlock)
475 {
476 struct regmap *map = __map;
477 unsigned long flags;
478
479 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
480 map->raw_spinlock_flags = flags;
481 }
482
regmap_unlock_raw_spinlock(void * __map)483 static void regmap_unlock_raw_spinlock(void *__map)
484 __releases(&map->raw_spinlock)
485 {
486 struct regmap *map = __map;
487 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
488 }
489
dev_get_regmap_release(struct device * dev,void * res)490 static void dev_get_regmap_release(struct device *dev, void *res)
491 {
492 /*
493 * We don't actually have anything to do here; the goal here
494 * is not to manage the regmap but to provide a simple way to
495 * get the regmap back given a struct device.
496 */
497 }
498
_regmap_range_add(struct regmap * map,struct regmap_range_node * data)499 static bool _regmap_range_add(struct regmap *map,
500 struct regmap_range_node *data)
501 {
502 struct rb_root *root = &map->range_tree;
503 struct rb_node **new = &(root->rb_node), *parent = NULL;
504
505 while (*new) {
506 struct regmap_range_node *this =
507 rb_entry(*new, struct regmap_range_node, node);
508
509 parent = *new;
510 if (data->range_max < this->range_min)
511 new = &((*new)->rb_left);
512 else if (data->range_min > this->range_max)
513 new = &((*new)->rb_right);
514 else
515 return false;
516 }
517
518 rb_link_node(&data->node, parent, new);
519 rb_insert_color(&data->node, root);
520
521 return true;
522 }
523
_regmap_range_lookup(struct regmap * map,unsigned int reg)524 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
525 unsigned int reg)
526 {
527 struct rb_node *node = map->range_tree.rb_node;
528
529 while (node) {
530 struct regmap_range_node *this =
531 rb_entry(node, struct regmap_range_node, node);
532
533 if (reg < this->range_min)
534 node = node->rb_left;
535 else if (reg > this->range_max)
536 node = node->rb_right;
537 else
538 return this;
539 }
540
541 return NULL;
542 }
543
regmap_range_exit(struct regmap * map)544 static void regmap_range_exit(struct regmap *map)
545 {
546 struct rb_node *next;
547 struct regmap_range_node *range_node;
548
549 next = rb_first(&map->range_tree);
550 while (next) {
551 range_node = rb_entry(next, struct regmap_range_node, node);
552 next = rb_next(&range_node->node);
553 rb_erase(&range_node->node, &map->range_tree);
554 kfree(range_node);
555 }
556
557 kfree(map->selector_work_buf);
558 }
559
regmap_set_name(struct regmap * map,const struct regmap_config * config)560 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
561 {
562 if (config->name) {
563 const char *name = kstrdup_const(config->name, GFP_KERNEL);
564
565 if (!name)
566 return -ENOMEM;
567
568 kfree_const(map->name);
569 map->name = name;
570 }
571
572 return 0;
573 }
574
regmap_attach_dev(struct device * dev,struct regmap * map,const struct regmap_config * config)575 int regmap_attach_dev(struct device *dev, struct regmap *map,
576 const struct regmap_config *config)
577 {
578 struct regmap **m;
579 int ret;
580
581 map->dev = dev;
582
583 ret = regmap_set_name(map, config);
584 if (ret)
585 return ret;
586
587 regmap_debugfs_exit(map);
588 regmap_debugfs_init(map);
589
590 /* Add a devres resource for dev_get_regmap() */
591 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
592 if (!m) {
593 regmap_debugfs_exit(map);
594 return -ENOMEM;
595 }
596 *m = map;
597 devres_add(dev, m);
598
599 return 0;
600 }
601 EXPORT_SYMBOL_GPL(regmap_attach_dev);
602
603 static int dev_get_regmap_match(struct device *dev, void *res, void *data);
604
regmap_detach_dev(struct device * dev,struct regmap * map)605 static int regmap_detach_dev(struct device *dev, struct regmap *map)
606 {
607 if (!dev)
608 return 0;
609
610 return devres_release(dev, dev_get_regmap_release,
611 dev_get_regmap_match, (void *)map->name);
612 }
613
regmap_get_reg_endian(const struct regmap_bus * bus,const struct regmap_config * config)614 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
615 const struct regmap_config *config)
616 {
617 enum regmap_endian endian;
618
619 /* Retrieve the endianness specification from the regmap config */
620 endian = config->reg_format_endian;
621
622 /* If the regmap config specified a non-default value, use that */
623 if (endian != REGMAP_ENDIAN_DEFAULT)
624 return endian;
625
626 /* Retrieve the endianness specification from the bus config */
627 if (bus && bus->reg_format_endian_default)
628 endian = bus->reg_format_endian_default;
629
630 /* If the bus specified a non-default value, use that */
631 if (endian != REGMAP_ENDIAN_DEFAULT)
632 return endian;
633
634 /* Use this if no other value was found */
635 return REGMAP_ENDIAN_BIG;
636 }
637
regmap_get_val_endian(struct device * dev,const struct regmap_bus * bus,const struct regmap_config * config)638 enum regmap_endian regmap_get_val_endian(struct device *dev,
639 const struct regmap_bus *bus,
640 const struct regmap_config *config)
641 {
642 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
643 enum regmap_endian endian;
644
645 /* Retrieve the endianness specification from the regmap config */
646 endian = config->val_format_endian;
647
648 /* If the regmap config specified a non-default value, use that */
649 if (endian != REGMAP_ENDIAN_DEFAULT)
650 return endian;
651
652 /* If the firmware node exist try to get endianness from it */
653 if (fwnode_property_read_bool(fwnode, "big-endian"))
654 endian = REGMAP_ENDIAN_BIG;
655 else if (fwnode_property_read_bool(fwnode, "little-endian"))
656 endian = REGMAP_ENDIAN_LITTLE;
657 else if (fwnode_property_read_bool(fwnode, "native-endian"))
658 endian = REGMAP_ENDIAN_NATIVE;
659
660 /* If the endianness was specified in fwnode, use that */
661 if (endian != REGMAP_ENDIAN_DEFAULT)
662 return endian;
663
664 /* Retrieve the endianness specification from the bus config */
665 if (bus && bus->val_format_endian_default)
666 endian = bus->val_format_endian_default;
667
668 /* If the bus specified a non-default value, use that */
669 if (endian != REGMAP_ENDIAN_DEFAULT)
670 return endian;
671
672 /* Use this if no other value was found */
673 return REGMAP_ENDIAN_BIG;
674 }
675 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
676
__regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)677 struct regmap *__regmap_init(struct device *dev,
678 const struct regmap_bus *bus,
679 void *bus_context,
680 const struct regmap_config *config,
681 struct lock_class_key *lock_key,
682 const char *lock_name)
683 {
684 struct regmap *map;
685 int ret = -EINVAL;
686 enum regmap_endian reg_endian, val_endian;
687 int i, j;
688
689 if (!config)
690 goto err;
691
692 map = kzalloc(sizeof(*map), GFP_KERNEL);
693 if (map == NULL) {
694 ret = -ENOMEM;
695 goto err;
696 }
697
698 ret = regmap_set_name(map, config);
699 if (ret)
700 goto err_map;
701
702 ret = -EINVAL; /* Later error paths rely on this */
703
704 if (config->disable_locking) {
705 map->lock = map->unlock = regmap_lock_unlock_none;
706 map->can_sleep = config->can_sleep;
707 regmap_debugfs_disable(map);
708 } else if (config->lock && config->unlock) {
709 map->lock = config->lock;
710 map->unlock = config->unlock;
711 map->lock_arg = config->lock_arg;
712 map->can_sleep = config->can_sleep;
713 } else if (config->use_hwlock) {
714 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
715 if (!map->hwlock) {
716 ret = -ENXIO;
717 goto err_name;
718 }
719
720 switch (config->hwlock_mode) {
721 case HWLOCK_IRQSTATE:
722 map->lock = regmap_lock_hwlock_irqsave;
723 map->unlock = regmap_unlock_hwlock_irqrestore;
724 break;
725 case HWLOCK_IRQ:
726 map->lock = regmap_lock_hwlock_irq;
727 map->unlock = regmap_unlock_hwlock_irq;
728 break;
729 default:
730 map->lock = regmap_lock_hwlock;
731 map->unlock = regmap_unlock_hwlock;
732 break;
733 }
734
735 map->lock_arg = map;
736 } else {
737 if ((bus && bus->fast_io) ||
738 config->fast_io) {
739 if (config->use_raw_spinlock) {
740 raw_spin_lock_init(&map->raw_spinlock);
741 map->lock = regmap_lock_raw_spinlock;
742 map->unlock = regmap_unlock_raw_spinlock;
743 lockdep_set_class_and_name(&map->raw_spinlock,
744 lock_key, lock_name);
745 } else {
746 spin_lock_init(&map->spinlock);
747 map->lock = regmap_lock_spinlock;
748 map->unlock = regmap_unlock_spinlock;
749 lockdep_set_class_and_name(&map->spinlock,
750 lock_key, lock_name);
751 }
752 } else {
753 mutex_init(&map->mutex);
754 map->lock = regmap_lock_mutex;
755 map->unlock = regmap_unlock_mutex;
756 map->can_sleep = true;
757 lockdep_set_class_and_name(&map->mutex,
758 lock_key, lock_name);
759 }
760 map->lock_arg = map;
761 map->lock_key = lock_key;
762 }
763
764 /*
765 * When we write in fast-paths with regmap_bulk_write() don't allocate
766 * scratch buffers with sleeping allocations.
767 */
768 if ((bus && bus->fast_io) || config->fast_io)
769 map->alloc_flags = GFP_ATOMIC;
770 else
771 map->alloc_flags = GFP_KERNEL;
772
773 map->reg_base = config->reg_base;
774 map->reg_shift = config->pad_bits % 8;
775
776 map->format.pad_bytes = config->pad_bits / 8;
777 map->format.reg_shift = config->reg_shift;
778 map->format.reg_bytes = BITS_TO_BYTES(config->reg_bits);
779 map->format.val_bytes = BITS_TO_BYTES(config->val_bits);
780 map->format.buf_size = BITS_TO_BYTES(config->reg_bits + config->val_bits + config->pad_bits);
781 if (config->reg_stride)
782 map->reg_stride = config->reg_stride;
783 else
784 map->reg_stride = 1;
785 if (is_power_of_2(map->reg_stride))
786 map->reg_stride_order = ilog2(map->reg_stride);
787 else
788 map->reg_stride_order = -1;
789 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
790 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
791 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
792 if (bus) {
793 map->max_raw_read = bus->max_raw_read;
794 map->max_raw_write = bus->max_raw_write;
795 } else if (config->max_raw_read && config->max_raw_write) {
796 map->max_raw_read = config->max_raw_read;
797 map->max_raw_write = config->max_raw_write;
798 }
799 map->dev = dev;
800 map->bus = bus;
801 map->bus_context = bus_context;
802 map->max_register = config->max_register;
803 map->max_register_is_set = map->max_register ?: config->max_register_is_0;
804 map->wr_table = config->wr_table;
805 map->rd_table = config->rd_table;
806 map->volatile_table = config->volatile_table;
807 map->precious_table = config->precious_table;
808 map->wr_noinc_table = config->wr_noinc_table;
809 map->rd_noinc_table = config->rd_noinc_table;
810 map->writeable_reg = config->writeable_reg;
811 map->readable_reg = config->readable_reg;
812 map->volatile_reg = config->volatile_reg;
813 map->precious_reg = config->precious_reg;
814 map->writeable_noinc_reg = config->writeable_noinc_reg;
815 map->readable_noinc_reg = config->readable_noinc_reg;
816 map->cache_type = config->cache_type;
817
818 spin_lock_init(&map->async_lock);
819 INIT_LIST_HEAD(&map->async_list);
820 INIT_LIST_HEAD(&map->async_free);
821 init_waitqueue_head(&map->async_waitq);
822
823 if (config->read_flag_mask ||
824 config->write_flag_mask ||
825 config->zero_flag_mask) {
826 map->read_flag_mask = config->read_flag_mask;
827 map->write_flag_mask = config->write_flag_mask;
828 } else if (bus) {
829 map->read_flag_mask = bus->read_flag_mask;
830 }
831
832 if (config->read && config->write) {
833 map->reg_read = _regmap_bus_read;
834 if (config->reg_update_bits)
835 map->reg_update_bits = config->reg_update_bits;
836
837 /* Bulk read/write */
838 map->read = config->read;
839 map->write = config->write;
840
841 reg_endian = REGMAP_ENDIAN_NATIVE;
842 val_endian = REGMAP_ENDIAN_NATIVE;
843 } else if (!bus) {
844 map->reg_read = config->reg_read;
845 map->reg_write = config->reg_write;
846 map->reg_update_bits = config->reg_update_bits;
847
848 map->defer_caching = false;
849 goto skip_format_initialization;
850 } else if (!bus->read || !bus->write) {
851 map->reg_read = _regmap_bus_reg_read;
852 map->reg_write = _regmap_bus_reg_write;
853 map->reg_update_bits = bus->reg_update_bits;
854
855 map->defer_caching = false;
856 goto skip_format_initialization;
857 } else {
858 map->reg_read = _regmap_bus_read;
859 map->reg_update_bits = bus->reg_update_bits;
860 /* Bulk read/write */
861 map->read = bus->read;
862 map->write = bus->write;
863
864 reg_endian = regmap_get_reg_endian(bus, config);
865 val_endian = regmap_get_val_endian(dev, bus, config);
866 }
867
868 switch (config->reg_bits + map->reg_shift) {
869 case 2:
870 switch (config->val_bits) {
871 case 6:
872 map->format.format_write = regmap_format_2_6_write;
873 break;
874 default:
875 goto err_hwlock;
876 }
877 break;
878
879 case 4:
880 switch (config->val_bits) {
881 case 12:
882 map->format.format_write = regmap_format_4_12_write;
883 break;
884 default:
885 goto err_hwlock;
886 }
887 break;
888
889 case 7:
890 switch (config->val_bits) {
891 case 9:
892 map->format.format_write = regmap_format_7_9_write;
893 break;
894 case 17:
895 map->format.format_write = regmap_format_7_17_write;
896 break;
897 default:
898 goto err_hwlock;
899 }
900 break;
901
902 case 10:
903 switch (config->val_bits) {
904 case 14:
905 map->format.format_write = regmap_format_10_14_write;
906 break;
907 default:
908 goto err_hwlock;
909 }
910 break;
911
912 case 12:
913 switch (config->val_bits) {
914 case 20:
915 map->format.format_write = regmap_format_12_20_write;
916 break;
917 default:
918 goto err_hwlock;
919 }
920 break;
921
922 case 8:
923 map->format.format_reg = regmap_format_8;
924 break;
925
926 case 16:
927 switch (reg_endian) {
928 case REGMAP_ENDIAN_BIG:
929 map->format.format_reg = regmap_format_16_be;
930 break;
931 case REGMAP_ENDIAN_LITTLE:
932 map->format.format_reg = regmap_format_16_le;
933 break;
934 case REGMAP_ENDIAN_NATIVE:
935 map->format.format_reg = regmap_format_16_native;
936 break;
937 default:
938 goto err_hwlock;
939 }
940 break;
941
942 case 24:
943 switch (reg_endian) {
944 case REGMAP_ENDIAN_BIG:
945 map->format.format_reg = regmap_format_24_be;
946 break;
947 default:
948 goto err_hwlock;
949 }
950 break;
951
952 case 32:
953 switch (reg_endian) {
954 case REGMAP_ENDIAN_BIG:
955 map->format.format_reg = regmap_format_32_be;
956 break;
957 case REGMAP_ENDIAN_LITTLE:
958 map->format.format_reg = regmap_format_32_le;
959 break;
960 case REGMAP_ENDIAN_NATIVE:
961 map->format.format_reg = regmap_format_32_native;
962 break;
963 default:
964 goto err_hwlock;
965 }
966 break;
967
968 default:
969 goto err_hwlock;
970 }
971
972 if (val_endian == REGMAP_ENDIAN_NATIVE)
973 map->format.parse_inplace = regmap_parse_inplace_noop;
974
975 switch (config->val_bits) {
976 case 8:
977 map->format.format_val = regmap_format_8;
978 map->format.parse_val = regmap_parse_8;
979 map->format.parse_inplace = regmap_parse_inplace_noop;
980 break;
981 case 16:
982 switch (val_endian) {
983 case REGMAP_ENDIAN_BIG:
984 map->format.format_val = regmap_format_16_be;
985 map->format.parse_val = regmap_parse_16_be;
986 map->format.parse_inplace = regmap_parse_16_be_inplace;
987 break;
988 case REGMAP_ENDIAN_LITTLE:
989 map->format.format_val = regmap_format_16_le;
990 map->format.parse_val = regmap_parse_16_le;
991 map->format.parse_inplace = regmap_parse_16_le_inplace;
992 break;
993 case REGMAP_ENDIAN_NATIVE:
994 map->format.format_val = regmap_format_16_native;
995 map->format.parse_val = regmap_parse_16_native;
996 break;
997 default:
998 goto err_hwlock;
999 }
1000 break;
1001 case 24:
1002 switch (val_endian) {
1003 case REGMAP_ENDIAN_BIG:
1004 map->format.format_val = regmap_format_24_be;
1005 map->format.parse_val = regmap_parse_24_be;
1006 break;
1007 default:
1008 goto err_hwlock;
1009 }
1010 break;
1011 case 32:
1012 switch (val_endian) {
1013 case REGMAP_ENDIAN_BIG:
1014 map->format.format_val = regmap_format_32_be;
1015 map->format.parse_val = regmap_parse_32_be;
1016 map->format.parse_inplace = regmap_parse_32_be_inplace;
1017 break;
1018 case REGMAP_ENDIAN_LITTLE:
1019 map->format.format_val = regmap_format_32_le;
1020 map->format.parse_val = regmap_parse_32_le;
1021 map->format.parse_inplace = regmap_parse_32_le_inplace;
1022 break;
1023 case REGMAP_ENDIAN_NATIVE:
1024 map->format.format_val = regmap_format_32_native;
1025 map->format.parse_val = regmap_parse_32_native;
1026 break;
1027 default:
1028 goto err_hwlock;
1029 }
1030 break;
1031 }
1032
1033 if (map->format.format_write) {
1034 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1035 (val_endian != REGMAP_ENDIAN_BIG))
1036 goto err_hwlock;
1037 map->use_single_write = true;
1038 }
1039
1040 if (!map->format.format_write &&
1041 !(map->format.format_reg && map->format.format_val))
1042 goto err_hwlock;
1043
1044 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1045 if (map->work_buf == NULL) {
1046 ret = -ENOMEM;
1047 goto err_hwlock;
1048 }
1049
1050 if (map->format.format_write) {
1051 map->defer_caching = false;
1052 map->reg_write = _regmap_bus_formatted_write;
1053 } else if (map->format.format_val) {
1054 map->defer_caching = true;
1055 map->reg_write = _regmap_bus_raw_write;
1056 }
1057
1058 skip_format_initialization:
1059
1060 map->range_tree = RB_ROOT;
1061 for (i = 0; i < config->num_ranges; i++) {
1062 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1063 struct regmap_range_node *new;
1064
1065 /* Sanity check */
1066 if (range_cfg->range_max < range_cfg->range_min) {
1067 dev_err(map->dev, "Invalid range %d: %u < %u\n", i,
1068 range_cfg->range_max, range_cfg->range_min);
1069 goto err_range;
1070 }
1071
1072 if (range_cfg->range_max > map->max_register) {
1073 dev_err(map->dev, "Invalid range %d: %u > %u\n", i,
1074 range_cfg->range_max, map->max_register);
1075 goto err_range;
1076 }
1077
1078 if (range_cfg->selector_reg > map->max_register) {
1079 dev_err(map->dev,
1080 "Invalid range %d: selector out of map\n", i);
1081 goto err_range;
1082 }
1083
1084 if (range_cfg->window_len == 0) {
1085 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1086 i);
1087 goto err_range;
1088 }
1089
1090 /* Make sure, that this register range has no selector
1091 or data window within its boundary */
1092 for (j = 0; j < config->num_ranges; j++) {
1093 unsigned int sel_reg = config->ranges[j].selector_reg;
1094 unsigned int win_min = config->ranges[j].window_start;
1095 unsigned int win_max = win_min +
1096 config->ranges[j].window_len - 1;
1097
1098 /* Allow data window inside its own virtual range */
1099 if (j == i)
1100 continue;
1101
1102 if (range_cfg->range_min <= sel_reg &&
1103 sel_reg <= range_cfg->range_max) {
1104 dev_err(map->dev,
1105 "Range %d: selector for %d in window\n",
1106 i, j);
1107 goto err_range;
1108 }
1109
1110 if (!(win_max < range_cfg->range_min ||
1111 win_min > range_cfg->range_max)) {
1112 dev_err(map->dev,
1113 "Range %d: window for %d in window\n",
1114 i, j);
1115 goto err_range;
1116 }
1117 }
1118
1119 new = kzalloc(sizeof(*new), GFP_KERNEL);
1120 if (new == NULL) {
1121 ret = -ENOMEM;
1122 goto err_range;
1123 }
1124
1125 new->map = map;
1126 new->name = range_cfg->name;
1127 new->range_min = range_cfg->range_min;
1128 new->range_max = range_cfg->range_max;
1129 new->selector_reg = range_cfg->selector_reg;
1130 new->selector_mask = range_cfg->selector_mask;
1131 new->selector_shift = range_cfg->selector_shift;
1132 new->window_start = range_cfg->window_start;
1133 new->window_len = range_cfg->window_len;
1134
1135 if (!_regmap_range_add(map, new)) {
1136 dev_err(map->dev, "Failed to add range %d\n", i);
1137 kfree(new);
1138 goto err_range;
1139 }
1140
1141 if (map->selector_work_buf == NULL) {
1142 map->selector_work_buf =
1143 kzalloc(map->format.buf_size, GFP_KERNEL);
1144 if (map->selector_work_buf == NULL) {
1145 ret = -ENOMEM;
1146 goto err_range;
1147 }
1148 }
1149 }
1150
1151 ret = regcache_init(map, config);
1152 if (ret != 0)
1153 goto err_range;
1154
1155 if (dev) {
1156 ret = regmap_attach_dev(dev, map, config);
1157 if (ret != 0)
1158 goto err_regcache;
1159 } else {
1160 regmap_debugfs_init(map);
1161 }
1162
1163 return map;
1164
1165 err_regcache:
1166 regcache_exit(map);
1167 err_range:
1168 regmap_range_exit(map);
1169 kfree(map->work_buf);
1170 err_hwlock:
1171 if (map->hwlock)
1172 hwspin_lock_free(map->hwlock);
1173 err_name:
1174 kfree_const(map->name);
1175 err_map:
1176 kfree(map);
1177 err:
1178 if (bus && bus->free_on_exit)
1179 kfree(bus);
1180 return ERR_PTR(ret);
1181 }
1182 EXPORT_SYMBOL_GPL(__regmap_init);
1183
devm_regmap_release(struct device * dev,void * res)1184 static void devm_regmap_release(struct device *dev, void *res)
1185 {
1186 regmap_exit(*(struct regmap **)res);
1187 }
1188
__devm_regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)1189 struct regmap *__devm_regmap_init(struct device *dev,
1190 const struct regmap_bus *bus,
1191 void *bus_context,
1192 const struct regmap_config *config,
1193 struct lock_class_key *lock_key,
1194 const char *lock_name)
1195 {
1196 struct regmap **ptr, *regmap;
1197
1198 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1199 if (!ptr)
1200 return ERR_PTR(-ENOMEM);
1201
1202 regmap = __regmap_init(dev, bus, bus_context, config,
1203 lock_key, lock_name);
1204 if (!IS_ERR(regmap)) {
1205 *ptr = regmap;
1206 devres_add(dev, ptr);
1207 } else {
1208 devres_free(ptr);
1209 }
1210
1211 return regmap;
1212 }
1213 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1214
regmap_field_init(struct regmap_field * rm_field,struct regmap * regmap,struct reg_field reg_field)1215 static void regmap_field_init(struct regmap_field *rm_field,
1216 struct regmap *regmap, struct reg_field reg_field)
1217 {
1218 rm_field->regmap = regmap;
1219 rm_field->reg = reg_field.reg;
1220 rm_field->shift = reg_field.lsb;
1221 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1222
1223 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1224
1225 rm_field->id_size = reg_field.id_size;
1226 rm_field->id_offset = reg_field.id_offset;
1227 }
1228
1229 /**
1230 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1231 *
1232 * @dev: Device that will be interacted with
1233 * @regmap: regmap bank in which this register field is located.
1234 * @reg_field: Register field with in the bank.
1235 *
1236 * The return value will be an ERR_PTR() on error or a valid pointer
1237 * to a struct regmap_field. The regmap_field will be automatically freed
1238 * by the device management code.
1239 */
devm_regmap_field_alloc(struct device * dev,struct regmap * regmap,struct reg_field reg_field)1240 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1241 struct regmap *regmap, struct reg_field reg_field)
1242 {
1243 struct regmap_field *rm_field = devm_kzalloc(dev,
1244 sizeof(*rm_field), GFP_KERNEL);
1245 if (!rm_field)
1246 return ERR_PTR(-ENOMEM);
1247
1248 regmap_field_init(rm_field, regmap, reg_field);
1249
1250 return rm_field;
1251
1252 }
1253 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1254
1255
1256 /**
1257 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1258 *
1259 * @regmap: regmap bank in which this register field is located.
1260 * @rm_field: regmap register fields within the bank.
1261 * @reg_field: Register fields within the bank.
1262 * @num_fields: Number of register fields.
1263 *
1264 * The return value will be an -ENOMEM on error or zero for success.
1265 * Newly allocated regmap_fields should be freed by calling
1266 * regmap_field_bulk_free()
1267 */
regmap_field_bulk_alloc(struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1268 int regmap_field_bulk_alloc(struct regmap *regmap,
1269 struct regmap_field **rm_field,
1270 const struct reg_field *reg_field,
1271 int num_fields)
1272 {
1273 struct regmap_field *rf;
1274 int i;
1275
1276 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1277 if (!rf)
1278 return -ENOMEM;
1279
1280 for (i = 0; i < num_fields; i++) {
1281 regmap_field_init(&rf[i], regmap, reg_field[i]);
1282 rm_field[i] = &rf[i];
1283 }
1284
1285 return 0;
1286 }
1287 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1288
1289 /**
1290 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1291 * fields.
1292 *
1293 * @dev: Device that will be interacted with
1294 * @regmap: regmap bank in which this register field is located.
1295 * @rm_field: regmap register fields within the bank.
1296 * @reg_field: Register fields within the bank.
1297 * @num_fields: Number of register fields.
1298 *
1299 * The return value will be an -ENOMEM on error or zero for success.
1300 * Newly allocated regmap_fields will be automatically freed by the
1301 * device management code.
1302 */
devm_regmap_field_bulk_alloc(struct device * dev,struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1303 int devm_regmap_field_bulk_alloc(struct device *dev,
1304 struct regmap *regmap,
1305 struct regmap_field **rm_field,
1306 const struct reg_field *reg_field,
1307 int num_fields)
1308 {
1309 struct regmap_field *rf;
1310 int i;
1311
1312 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1313 if (!rf)
1314 return -ENOMEM;
1315
1316 for (i = 0; i < num_fields; i++) {
1317 regmap_field_init(&rf[i], regmap, reg_field[i]);
1318 rm_field[i] = &rf[i];
1319 }
1320
1321 return 0;
1322 }
1323 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1324
1325 /**
1326 * regmap_field_bulk_free() - Free register field allocated using
1327 * regmap_field_bulk_alloc.
1328 *
1329 * @field: regmap fields which should be freed.
1330 */
regmap_field_bulk_free(struct regmap_field * field)1331 void regmap_field_bulk_free(struct regmap_field *field)
1332 {
1333 kfree(field);
1334 }
1335 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1336
1337 /**
1338 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1339 * devm_regmap_field_bulk_alloc.
1340 *
1341 * @dev: Device that will be interacted with
1342 * @field: regmap field which should be freed.
1343 *
1344 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1345 * drivers need not call this function, as the memory allocated via devm
1346 * will be freed as per device-driver life-cycle.
1347 */
devm_regmap_field_bulk_free(struct device * dev,struct regmap_field * field)1348 void devm_regmap_field_bulk_free(struct device *dev,
1349 struct regmap_field *field)
1350 {
1351 devm_kfree(dev, field);
1352 }
1353 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1354
1355 /**
1356 * devm_regmap_field_free() - Free a register field allocated using
1357 * devm_regmap_field_alloc.
1358 *
1359 * @dev: Device that will be interacted with
1360 * @field: regmap field which should be freed.
1361 *
1362 * Free register field allocated using devm_regmap_field_alloc(). Usually
1363 * drivers need not call this function, as the memory allocated via devm
1364 * will be freed as per device-driver life-cyle.
1365 */
devm_regmap_field_free(struct device * dev,struct regmap_field * field)1366 void devm_regmap_field_free(struct device *dev,
1367 struct regmap_field *field)
1368 {
1369 devm_kfree(dev, field);
1370 }
1371 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1372
1373 /**
1374 * regmap_field_alloc() - Allocate and initialise a register field.
1375 *
1376 * @regmap: regmap bank in which this register field is located.
1377 * @reg_field: Register field with in the bank.
1378 *
1379 * The return value will be an ERR_PTR() on error or a valid pointer
1380 * to a struct regmap_field. The regmap_field should be freed by the
1381 * user once its finished working with it using regmap_field_free().
1382 */
regmap_field_alloc(struct regmap * regmap,struct reg_field reg_field)1383 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1384 struct reg_field reg_field)
1385 {
1386 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1387
1388 if (!rm_field)
1389 return ERR_PTR(-ENOMEM);
1390
1391 regmap_field_init(rm_field, regmap, reg_field);
1392
1393 return rm_field;
1394 }
1395 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1396
1397 /**
1398 * regmap_field_free() - Free register field allocated using
1399 * regmap_field_alloc.
1400 *
1401 * @field: regmap field which should be freed.
1402 */
regmap_field_free(struct regmap_field * field)1403 void regmap_field_free(struct regmap_field *field)
1404 {
1405 kfree(field);
1406 }
1407 EXPORT_SYMBOL_GPL(regmap_field_free);
1408
1409 /**
1410 * regmap_reinit_cache() - Reinitialise the current register cache
1411 *
1412 * @map: Register map to operate on.
1413 * @config: New configuration. Only the cache data will be used.
1414 *
1415 * Discard any existing register cache for the map and initialize a
1416 * new cache. This can be used to restore the cache to defaults or to
1417 * update the cache configuration to reflect runtime discovery of the
1418 * hardware.
1419 *
1420 * No explicit locking is done here, the user needs to ensure that
1421 * this function will not race with other calls to regmap.
1422 */
regmap_reinit_cache(struct regmap * map,const struct regmap_config * config)1423 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1424 {
1425 int ret;
1426
1427 regcache_exit(map);
1428 regmap_debugfs_exit(map);
1429
1430 map->max_register = config->max_register;
1431 map->max_register_is_set = map->max_register ?: config->max_register_is_0;
1432 map->writeable_reg = config->writeable_reg;
1433 map->readable_reg = config->readable_reg;
1434 map->volatile_reg = config->volatile_reg;
1435 map->precious_reg = config->precious_reg;
1436 map->writeable_noinc_reg = config->writeable_noinc_reg;
1437 map->readable_noinc_reg = config->readable_noinc_reg;
1438 map->cache_type = config->cache_type;
1439
1440 ret = regmap_set_name(map, config);
1441 if (ret)
1442 return ret;
1443
1444 regmap_debugfs_init(map);
1445
1446 map->cache_bypass = false;
1447 map->cache_only = false;
1448
1449 return regcache_init(map, config);
1450 }
1451 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1452
1453 /**
1454 * regmap_exit() - Free a previously allocated register map
1455 *
1456 * @map: Register map to operate on.
1457 */
regmap_exit(struct regmap * map)1458 void regmap_exit(struct regmap *map)
1459 {
1460 struct regmap_async *async;
1461
1462 regmap_detach_dev(map->dev, map);
1463 regcache_exit(map);
1464
1465 regmap_debugfs_exit(map);
1466 regmap_range_exit(map);
1467 if (map->bus && map->bus->free_context)
1468 map->bus->free_context(map->bus_context);
1469 kfree(map->work_buf);
1470 while (!list_empty(&map->async_free)) {
1471 async = list_first_entry_or_null(&map->async_free,
1472 struct regmap_async,
1473 list);
1474 list_del(&async->list);
1475 kfree(async->work_buf);
1476 kfree(async);
1477 }
1478 if (map->hwlock)
1479 hwspin_lock_free(map->hwlock);
1480 if (map->lock == regmap_lock_mutex)
1481 mutex_destroy(&map->mutex);
1482 kfree_const(map->name);
1483 kfree(map->patch);
1484 if (map->bus && map->bus->free_on_exit)
1485 kfree(map->bus);
1486 kfree(map);
1487 }
1488 EXPORT_SYMBOL_GPL(regmap_exit);
1489
dev_get_regmap_match(struct device * dev,void * res,void * data)1490 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1491 {
1492 struct regmap **r = res;
1493 if (!r || !*r) {
1494 WARN_ON(!r || !*r);
1495 return 0;
1496 }
1497
1498 /* If the user didn't specify a name match any */
1499 if (data)
1500 return (*r)->name && !strcmp((*r)->name, data);
1501 else
1502 return 1;
1503 }
1504
1505 /**
1506 * dev_get_regmap() - Obtain the regmap (if any) for a device
1507 *
1508 * @dev: Device to retrieve the map for
1509 * @name: Optional name for the register map, usually NULL.
1510 *
1511 * Returns the regmap for the device if one is present, or NULL. If
1512 * name is specified then it must match the name specified when
1513 * registering the device, if it is NULL then the first regmap found
1514 * will be used. Devices with multiple register maps are very rare,
1515 * generic code should normally not need to specify a name.
1516 */
dev_get_regmap(struct device * dev,const char * name)1517 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1518 {
1519 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1520 dev_get_regmap_match, (void *)name);
1521
1522 if (!r)
1523 return NULL;
1524 return *r;
1525 }
1526 EXPORT_SYMBOL_GPL(dev_get_regmap);
1527
1528 /**
1529 * regmap_get_device() - Obtain the device from a regmap
1530 *
1531 * @map: Register map to operate on.
1532 *
1533 * Returns the underlying device that the regmap has been created for.
1534 */
regmap_get_device(struct regmap * map)1535 struct device *regmap_get_device(struct regmap *map)
1536 {
1537 return map->dev;
1538 }
1539 EXPORT_SYMBOL_GPL(regmap_get_device);
1540
_regmap_select_page(struct regmap * map,unsigned int * reg,struct regmap_range_node * range,unsigned int val_num)1541 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1542 struct regmap_range_node *range,
1543 unsigned int val_num)
1544 {
1545 void *orig_work_buf;
1546 unsigned int win_offset;
1547 unsigned int win_page;
1548 bool page_chg;
1549 int ret;
1550
1551 win_offset = (*reg - range->range_min) % range->window_len;
1552 win_page = (*reg - range->range_min) / range->window_len;
1553
1554 if (val_num > 1) {
1555 /* Bulk write shouldn't cross range boundary */
1556 if (*reg + val_num - 1 > range->range_max)
1557 return -EINVAL;
1558
1559 /* ... or single page boundary */
1560 if (val_num > range->window_len - win_offset)
1561 return -EINVAL;
1562 }
1563
1564 /* It is possible to have selector register inside data window.
1565 In that case, selector register is located on every page and
1566 it needs no page switching, when accessed alone. */
1567 if (val_num > 1 ||
1568 range->window_start + win_offset != range->selector_reg) {
1569 /* Use separate work_buf during page switching */
1570 orig_work_buf = map->work_buf;
1571 map->work_buf = map->selector_work_buf;
1572
1573 ret = _regmap_update_bits(map, range->selector_reg,
1574 range->selector_mask,
1575 win_page << range->selector_shift,
1576 &page_chg, false);
1577
1578 map->work_buf = orig_work_buf;
1579
1580 if (ret != 0)
1581 return ret;
1582 }
1583
1584 *reg = range->window_start + win_offset;
1585
1586 return 0;
1587 }
1588
regmap_set_work_buf_flag_mask(struct regmap * map,int max_bytes,unsigned long mask)1589 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1590 unsigned long mask)
1591 {
1592 u8 *buf;
1593 int i;
1594
1595 if (!mask || !map->work_buf)
1596 return;
1597
1598 buf = map->work_buf;
1599
1600 for (i = 0; i < max_bytes; i++)
1601 buf[i] |= (mask >> (8 * i)) & 0xff;
1602 }
1603
regmap_reg_addr(struct regmap * map,unsigned int reg)1604 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1605 {
1606 reg += map->reg_base;
1607
1608 if (map->format.reg_shift > 0)
1609 reg >>= map->format.reg_shift;
1610 else if (map->format.reg_shift < 0)
1611 reg <<= -(map->format.reg_shift);
1612
1613 return reg;
1614 }
1615
_regmap_raw_write_impl(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)1616 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1617 const void *val, size_t val_len, bool noinc)
1618 {
1619 struct regmap_range_node *range;
1620 unsigned long flags;
1621 void *work_val = map->work_buf + map->format.reg_bytes +
1622 map->format.pad_bytes;
1623 void *buf;
1624 int ret = -ENOTSUPP;
1625 size_t len;
1626 int i;
1627
1628 /* Check for unwritable or noinc registers in range
1629 * before we start
1630 */
1631 if (!regmap_writeable_noinc(map, reg)) {
1632 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1633 unsigned int element =
1634 reg + regmap_get_offset(map, i);
1635 if (!regmap_writeable(map, element) ||
1636 regmap_writeable_noinc(map, element))
1637 return -EINVAL;
1638 }
1639 }
1640
1641 if (!map->cache_bypass && map->format.parse_val) {
1642 unsigned int ival, offset;
1643 int val_bytes = map->format.val_bytes;
1644
1645 /* Cache the last written value for noinc writes */
1646 i = noinc ? val_len - val_bytes : 0;
1647 for (; i < val_len; i += val_bytes) {
1648 ival = map->format.parse_val(val + i);
1649 offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1650 ret = regcache_write(map, reg + offset, ival);
1651 if (ret) {
1652 dev_err(map->dev,
1653 "Error in caching of register: %x ret: %d\n",
1654 reg + offset, ret);
1655 return ret;
1656 }
1657 }
1658 if (map->cache_only) {
1659 map->cache_dirty = true;
1660 return 0;
1661 }
1662 }
1663
1664 range = _regmap_range_lookup(map, reg);
1665 if (range) {
1666 int val_num = val_len / map->format.val_bytes;
1667 int win_offset = (reg - range->range_min) % range->window_len;
1668 int win_residue = range->window_len - win_offset;
1669
1670 /* If the write goes beyond the end of the window split it */
1671 while (val_num > win_residue) {
1672 dev_dbg(map->dev, "Writing window %d/%zu\n",
1673 win_residue, val_len / map->format.val_bytes);
1674 ret = _regmap_raw_write_impl(map, reg, val,
1675 win_residue *
1676 map->format.val_bytes, noinc);
1677 if (ret != 0)
1678 return ret;
1679
1680 reg += win_residue;
1681 val_num -= win_residue;
1682 val += win_residue * map->format.val_bytes;
1683 val_len -= win_residue * map->format.val_bytes;
1684
1685 win_offset = (reg - range->range_min) %
1686 range->window_len;
1687 win_residue = range->window_len - win_offset;
1688 }
1689
1690 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1691 if (ret != 0)
1692 return ret;
1693 }
1694
1695 reg = regmap_reg_addr(map, reg);
1696 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1697 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1698 map->write_flag_mask);
1699
1700 /*
1701 * Essentially all I/O mechanisms will be faster with a single
1702 * buffer to write. Since register syncs often generate raw
1703 * writes of single registers optimise that case.
1704 */
1705 if (val != work_val && val_len == map->format.val_bytes) {
1706 memcpy(work_val, val, map->format.val_bytes);
1707 val = work_val;
1708 }
1709
1710 if (map->async && map->bus && map->bus->async_write) {
1711 struct regmap_async *async;
1712
1713 trace_regmap_async_write_start(map, reg, val_len);
1714
1715 spin_lock_irqsave(&map->async_lock, flags);
1716 async = list_first_entry_or_null(&map->async_free,
1717 struct regmap_async,
1718 list);
1719 if (async)
1720 list_del(&async->list);
1721 spin_unlock_irqrestore(&map->async_lock, flags);
1722
1723 if (!async) {
1724 async = map->bus->async_alloc();
1725 if (!async)
1726 return -ENOMEM;
1727
1728 async->work_buf = kzalloc(map->format.buf_size,
1729 GFP_KERNEL | GFP_DMA);
1730 if (!async->work_buf) {
1731 kfree(async);
1732 return -ENOMEM;
1733 }
1734 }
1735
1736 async->map = map;
1737
1738 /* If the caller supplied the value we can use it safely. */
1739 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1740 map->format.reg_bytes + map->format.val_bytes);
1741
1742 spin_lock_irqsave(&map->async_lock, flags);
1743 list_add_tail(&async->list, &map->async_list);
1744 spin_unlock_irqrestore(&map->async_lock, flags);
1745
1746 if (val != work_val)
1747 ret = map->bus->async_write(map->bus_context,
1748 async->work_buf,
1749 map->format.reg_bytes +
1750 map->format.pad_bytes,
1751 val, val_len, async);
1752 else
1753 ret = map->bus->async_write(map->bus_context,
1754 async->work_buf,
1755 map->format.reg_bytes +
1756 map->format.pad_bytes +
1757 val_len, NULL, 0, async);
1758
1759 if (ret != 0) {
1760 dev_err(map->dev, "Failed to schedule write: %d\n",
1761 ret);
1762
1763 spin_lock_irqsave(&map->async_lock, flags);
1764 list_move(&async->list, &map->async_free);
1765 spin_unlock_irqrestore(&map->async_lock, flags);
1766 }
1767
1768 return ret;
1769 }
1770
1771 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1772
1773 /* If we're doing a single register write we can probably just
1774 * send the work_buf directly, otherwise try to do a gather
1775 * write.
1776 */
1777 if (val == work_val)
1778 ret = map->write(map->bus_context, map->work_buf,
1779 map->format.reg_bytes +
1780 map->format.pad_bytes +
1781 val_len);
1782 else if (map->bus && map->bus->gather_write)
1783 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1784 map->format.reg_bytes +
1785 map->format.pad_bytes,
1786 val, val_len);
1787 else
1788 ret = -ENOTSUPP;
1789
1790 /* If that didn't work fall back on linearising by hand. */
1791 if (ret == -ENOTSUPP) {
1792 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1793 buf = kzalloc(len, GFP_KERNEL);
1794 if (!buf)
1795 return -ENOMEM;
1796
1797 memcpy(buf, map->work_buf, map->format.reg_bytes);
1798 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1799 val, val_len);
1800 ret = map->write(map->bus_context, buf, len);
1801
1802 kfree(buf);
1803 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1804 /* regcache_drop_region() takes lock that we already have,
1805 * thus call map->cache_ops->drop() directly
1806 */
1807 if (map->cache_ops && map->cache_ops->drop)
1808 map->cache_ops->drop(map, reg, reg + 1);
1809 }
1810
1811 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1812
1813 return ret;
1814 }
1815
1816 /**
1817 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1818 *
1819 * @map: Map to check.
1820 */
regmap_can_raw_write(struct regmap * map)1821 bool regmap_can_raw_write(struct regmap *map)
1822 {
1823 return map->write && map->format.format_val && map->format.format_reg;
1824 }
1825 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1826
1827 /**
1828 * regmap_get_raw_read_max - Get the maximum size we can read
1829 *
1830 * @map: Map to check.
1831 */
regmap_get_raw_read_max(struct regmap * map)1832 size_t regmap_get_raw_read_max(struct regmap *map)
1833 {
1834 return map->max_raw_read;
1835 }
1836 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1837
1838 /**
1839 * regmap_get_raw_write_max - Get the maximum size we can read
1840 *
1841 * @map: Map to check.
1842 */
regmap_get_raw_write_max(struct regmap * map)1843 size_t regmap_get_raw_write_max(struct regmap *map)
1844 {
1845 return map->max_raw_write;
1846 }
1847 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1848
_regmap_bus_formatted_write(void * context,unsigned int reg,unsigned int val)1849 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1850 unsigned int val)
1851 {
1852 int ret;
1853 struct regmap_range_node *range;
1854 struct regmap *map = context;
1855
1856 WARN_ON(!map->format.format_write);
1857
1858 range = _regmap_range_lookup(map, reg);
1859 if (range) {
1860 ret = _regmap_select_page(map, ®, range, 1);
1861 if (ret != 0)
1862 return ret;
1863 }
1864
1865 reg = regmap_reg_addr(map, reg);
1866 map->format.format_write(map, reg, val);
1867
1868 trace_regmap_hw_write_start(map, reg, 1);
1869
1870 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1871
1872 trace_regmap_hw_write_done(map, reg, 1);
1873
1874 return ret;
1875 }
1876
_regmap_bus_reg_write(void * context,unsigned int reg,unsigned int val)1877 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1878 unsigned int val)
1879 {
1880 struct regmap *map = context;
1881 struct regmap_range_node *range;
1882 int ret;
1883
1884 range = _regmap_range_lookup(map, reg);
1885 if (range) {
1886 ret = _regmap_select_page(map, ®, range, 1);
1887 if (ret != 0)
1888 return ret;
1889 }
1890
1891 reg = regmap_reg_addr(map, reg);
1892 return map->bus->reg_write(map->bus_context, reg, val);
1893 }
1894
_regmap_bus_raw_write(void * context,unsigned int reg,unsigned int val)1895 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1896 unsigned int val)
1897 {
1898 struct regmap *map = context;
1899
1900 WARN_ON(!map->format.format_val);
1901
1902 map->format.format_val(map->work_buf + map->format.reg_bytes
1903 + map->format.pad_bytes, val, 0);
1904 return _regmap_raw_write_impl(map, reg,
1905 map->work_buf +
1906 map->format.reg_bytes +
1907 map->format.pad_bytes,
1908 map->format.val_bytes,
1909 false);
1910 }
1911
_regmap_map_get_context(struct regmap * map)1912 static inline void *_regmap_map_get_context(struct regmap *map)
1913 {
1914 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1915 }
1916
_regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1917 int _regmap_write(struct regmap *map, unsigned int reg,
1918 unsigned int val)
1919 {
1920 int ret;
1921 void *context = _regmap_map_get_context(map);
1922
1923 if (!regmap_writeable(map, reg))
1924 return -EIO;
1925
1926 if (!map->cache_bypass && !map->defer_caching) {
1927 ret = regcache_write(map, reg, val);
1928 if (ret != 0)
1929 return ret;
1930 if (map->cache_only) {
1931 map->cache_dirty = true;
1932 return 0;
1933 }
1934 }
1935
1936 ret = map->reg_write(context, reg, val);
1937 if (ret == 0) {
1938 if (regmap_should_log(map))
1939 dev_info(map->dev, "%x <= %x\n", reg, val);
1940
1941 trace_regmap_reg_write(map, reg, val);
1942 }
1943
1944 return ret;
1945 }
1946
1947 /**
1948 * regmap_write() - Write a value to a single register
1949 *
1950 * @map: Register map to write to
1951 * @reg: Register to write to
1952 * @val: Value to be written
1953 *
1954 * A value of zero will be returned on success, a negative errno will
1955 * be returned in error cases.
1956 */
regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1957 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1958 {
1959 int ret;
1960
1961 if (!IS_ALIGNED(reg, map->reg_stride))
1962 return -EINVAL;
1963
1964 map->lock(map->lock_arg);
1965
1966 ret = _regmap_write(map, reg, val);
1967
1968 map->unlock(map->lock_arg);
1969
1970 return ret;
1971 }
1972 EXPORT_SYMBOL_GPL(regmap_write);
1973
1974 /**
1975 * regmap_write_async() - Write a value to a single register asynchronously
1976 *
1977 * @map: Register map to write to
1978 * @reg: Register to write to
1979 * @val: Value to be written
1980 *
1981 * A value of zero will be returned on success, a negative errno will
1982 * be returned in error cases.
1983 */
regmap_write_async(struct regmap * map,unsigned int reg,unsigned int val)1984 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1985 {
1986 int ret;
1987
1988 if (!IS_ALIGNED(reg, map->reg_stride))
1989 return -EINVAL;
1990
1991 map->lock(map->lock_arg);
1992
1993 map->async = true;
1994
1995 ret = _regmap_write(map, reg, val);
1996
1997 map->async = false;
1998
1999 map->unlock(map->lock_arg);
2000
2001 return ret;
2002 }
2003 EXPORT_SYMBOL_GPL(regmap_write_async);
2004
_regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)2005 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2006 const void *val, size_t val_len, bool noinc)
2007 {
2008 size_t val_bytes = map->format.val_bytes;
2009 size_t val_count = val_len / val_bytes;
2010 size_t chunk_count, chunk_bytes;
2011 size_t chunk_regs = val_count;
2012 int ret, i;
2013
2014 if (!val_count)
2015 return -EINVAL;
2016
2017 if (map->use_single_write)
2018 chunk_regs = 1;
2019 else if (map->max_raw_write && val_len > map->max_raw_write)
2020 chunk_regs = map->max_raw_write / val_bytes;
2021
2022 chunk_count = val_count / chunk_regs;
2023 chunk_bytes = chunk_regs * val_bytes;
2024
2025 /* Write as many bytes as possible with chunk_size */
2026 for (i = 0; i < chunk_count; i++) {
2027 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2028 if (ret)
2029 return ret;
2030
2031 reg += regmap_get_offset(map, chunk_regs);
2032 val += chunk_bytes;
2033 val_len -= chunk_bytes;
2034 }
2035
2036 /* Write remaining bytes */
2037 if (val_len)
2038 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2039
2040 return ret;
2041 }
2042
2043 /**
2044 * regmap_raw_write() - Write raw values to one or more registers
2045 *
2046 * @map: Register map to write to
2047 * @reg: Initial register to write to
2048 * @val: Block of data to be written, laid out for direct transmission to the
2049 * device
2050 * @val_len: Length of data pointed to by val.
2051 *
2052 * This function is intended to be used for things like firmware
2053 * download where a large block of data needs to be transferred to the
2054 * device. No formatting will be done on the data provided.
2055 *
2056 * A value of zero will be returned on success, a negative errno will
2057 * be returned in error cases.
2058 */
regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2059 int regmap_raw_write(struct regmap *map, unsigned int reg,
2060 const void *val, size_t val_len)
2061 {
2062 int ret;
2063
2064 if (!regmap_can_raw_write(map))
2065 return -EINVAL;
2066 if (val_len % map->format.val_bytes)
2067 return -EINVAL;
2068
2069 map->lock(map->lock_arg);
2070
2071 ret = _regmap_raw_write(map, reg, val, val_len, false);
2072
2073 map->unlock(map->lock_arg);
2074
2075 return ret;
2076 }
2077 EXPORT_SYMBOL_GPL(regmap_raw_write);
2078
regmap_noinc_readwrite(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool write)2079 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2080 void *val, unsigned int val_len, bool write)
2081 {
2082 size_t val_bytes = map->format.val_bytes;
2083 size_t val_count = val_len / val_bytes;
2084 unsigned int lastval;
2085 u8 *u8p;
2086 u16 *u16p;
2087 u32 *u32p;
2088 int ret;
2089 int i;
2090
2091 switch (val_bytes) {
2092 case 1:
2093 u8p = val;
2094 if (write)
2095 lastval = (unsigned int)u8p[val_count - 1];
2096 break;
2097 case 2:
2098 u16p = val;
2099 if (write)
2100 lastval = (unsigned int)u16p[val_count - 1];
2101 break;
2102 case 4:
2103 u32p = val;
2104 if (write)
2105 lastval = (unsigned int)u32p[val_count - 1];
2106 break;
2107 default:
2108 return -EINVAL;
2109 }
2110
2111 /*
2112 * Update the cache with the last value we write, the rest is just
2113 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2114 * sure a single read from the cache will work.
2115 */
2116 if (write) {
2117 if (!map->cache_bypass && !map->defer_caching) {
2118 ret = regcache_write(map, reg, lastval);
2119 if (ret != 0)
2120 return ret;
2121 if (map->cache_only) {
2122 map->cache_dirty = true;
2123 return 0;
2124 }
2125 }
2126 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2127 } else {
2128 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2129 }
2130
2131 if (!ret && regmap_should_log(map)) {
2132 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2133 for (i = 0; i < val_count; i++) {
2134 switch (val_bytes) {
2135 case 1:
2136 pr_cont("%x", u8p[i]);
2137 break;
2138 case 2:
2139 pr_cont("%x", u16p[i]);
2140 break;
2141 case 4:
2142 pr_cont("%x", u32p[i]);
2143 break;
2144 default:
2145 break;
2146 }
2147 if (i == (val_count - 1))
2148 pr_cont("]\n");
2149 else
2150 pr_cont(",");
2151 }
2152 }
2153
2154 return 0;
2155 }
2156
2157 /**
2158 * regmap_noinc_write(): Write data to a register without incrementing the
2159 * register number
2160 *
2161 * @map: Register map to write to
2162 * @reg: Register to write to
2163 * @val: Pointer to data buffer
2164 * @val_len: Length of output buffer in bytes.
2165 *
2166 * The regmap API usually assumes that bulk bus write operations will write a
2167 * range of registers. Some devices have certain registers for which a write
2168 * operation can write to an internal FIFO.
2169 *
2170 * The target register must be volatile but registers after it can be
2171 * completely unrelated cacheable registers.
2172 *
2173 * This will attempt multiple writes as required to write val_len bytes.
2174 *
2175 * A value of zero will be returned on success, a negative errno will be
2176 * returned in error cases.
2177 */
regmap_noinc_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2178 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2179 const void *val, size_t val_len)
2180 {
2181 size_t write_len;
2182 int ret;
2183
2184 if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2185 return -EINVAL;
2186 if (val_len % map->format.val_bytes)
2187 return -EINVAL;
2188 if (!IS_ALIGNED(reg, map->reg_stride))
2189 return -EINVAL;
2190 if (val_len == 0)
2191 return -EINVAL;
2192
2193 map->lock(map->lock_arg);
2194
2195 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2196 ret = -EINVAL;
2197 goto out_unlock;
2198 }
2199
2200 /*
2201 * Use the accelerated operation if we can. The val drops the const
2202 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2203 */
2204 if (map->bus->reg_noinc_write) {
2205 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2206 goto out_unlock;
2207 }
2208
2209 while (val_len) {
2210 if (map->max_raw_write && map->max_raw_write < val_len)
2211 write_len = map->max_raw_write;
2212 else
2213 write_len = val_len;
2214 ret = _regmap_raw_write(map, reg, val, write_len, true);
2215 if (ret)
2216 goto out_unlock;
2217 val = ((u8 *)val) + write_len;
2218 val_len -= write_len;
2219 }
2220
2221 out_unlock:
2222 map->unlock(map->lock_arg);
2223 return ret;
2224 }
2225 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2226
2227 /**
2228 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2229 * register field.
2230 *
2231 * @field: Register field to write to
2232 * @mask: Bitmask to change
2233 * @val: Value to be written
2234 * @change: Boolean indicating if a write was done
2235 * @async: Boolean indicating asynchronously
2236 * @force: Boolean indicating use force update
2237 *
2238 * Perform a read/modify/write cycle on the register field with change,
2239 * async, force option.
2240 *
2241 * A value of zero will be returned on success, a negative errno will
2242 * be returned in error cases.
2243 */
regmap_field_update_bits_base(struct regmap_field * field,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2244 int regmap_field_update_bits_base(struct regmap_field *field,
2245 unsigned int mask, unsigned int val,
2246 bool *change, bool async, bool force)
2247 {
2248 mask = (mask << field->shift) & field->mask;
2249
2250 return regmap_update_bits_base(field->regmap, field->reg,
2251 mask, val << field->shift,
2252 change, async, force);
2253 }
2254 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2255
2256 /**
2257 * regmap_field_test_bits() - Check if all specified bits are set in a
2258 * register field.
2259 *
2260 * @field: Register field to operate on
2261 * @bits: Bits to test
2262 *
2263 * Returns negative errno if the underlying regmap_field_read() fails,
2264 * 0 if at least one of the tested bits is not set and 1 if all tested
2265 * bits are set.
2266 */
regmap_field_test_bits(struct regmap_field * field,unsigned int bits)2267 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2268 {
2269 unsigned int val;
2270 int ret;
2271
2272 ret = regmap_field_read(field, &val);
2273 if (ret)
2274 return ret;
2275
2276 return (val & bits) == bits;
2277 }
2278 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2279
2280 /**
2281 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2282 * register field with port ID
2283 *
2284 * @field: Register field to write to
2285 * @id: port ID
2286 * @mask: Bitmask to change
2287 * @val: Value to be written
2288 * @change: Boolean indicating if a write was done
2289 * @async: Boolean indicating asynchronously
2290 * @force: Boolean indicating use force update
2291 *
2292 * A value of zero will be returned on success, a negative errno will
2293 * be returned in error cases.
2294 */
regmap_fields_update_bits_base(struct regmap_field * field,unsigned int id,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2295 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2296 unsigned int mask, unsigned int val,
2297 bool *change, bool async, bool force)
2298 {
2299 if (id >= field->id_size)
2300 return -EINVAL;
2301
2302 mask = (mask << field->shift) & field->mask;
2303
2304 return regmap_update_bits_base(field->regmap,
2305 field->reg + (field->id_offset * id),
2306 mask, val << field->shift,
2307 change, async, force);
2308 }
2309 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2310
2311 /**
2312 * regmap_bulk_write() - Write multiple registers to the device
2313 *
2314 * @map: Register map to write to
2315 * @reg: First register to be write from
2316 * @val: Block of data to be written, in native register size for device
2317 * @val_count: Number of registers to write
2318 *
2319 * This function is intended to be used for writing a large block of
2320 * data to the device either in single transfer or multiple transfer.
2321 *
2322 * A value of zero will be returned on success, a negative errno will
2323 * be returned in error cases.
2324 */
regmap_bulk_write(struct regmap * map,unsigned int reg,const void * val,size_t val_count)2325 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2326 size_t val_count)
2327 {
2328 int ret = 0, i;
2329 size_t val_bytes = map->format.val_bytes;
2330
2331 if (!IS_ALIGNED(reg, map->reg_stride))
2332 return -EINVAL;
2333
2334 /*
2335 * Some devices don't support bulk write, for them we have a series of
2336 * single write operations.
2337 */
2338 if (!map->write || !map->format.parse_inplace) {
2339 map->lock(map->lock_arg);
2340 for (i = 0; i < val_count; i++) {
2341 unsigned int ival;
2342
2343 switch (val_bytes) {
2344 case 1:
2345 ival = *(u8 *)(val + (i * val_bytes));
2346 break;
2347 case 2:
2348 ival = *(u16 *)(val + (i * val_bytes));
2349 break;
2350 case 4:
2351 ival = *(u32 *)(val + (i * val_bytes));
2352 break;
2353 default:
2354 ret = -EINVAL;
2355 goto out;
2356 }
2357
2358 ret = _regmap_write(map,
2359 reg + regmap_get_offset(map, i),
2360 ival);
2361 if (ret != 0)
2362 goto out;
2363 }
2364 out:
2365 map->unlock(map->lock_arg);
2366 } else {
2367 void *wval;
2368
2369 wval = kmemdup_array(val, val_count, val_bytes, map->alloc_flags);
2370 if (!wval)
2371 return -ENOMEM;
2372
2373 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2374 map->format.parse_inplace(wval + i);
2375
2376 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2377
2378 kfree(wval);
2379 }
2380
2381 if (!ret)
2382 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2383
2384 return ret;
2385 }
2386 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2387
2388 /*
2389 * _regmap_raw_multi_reg_write()
2390 *
2391 * the (register,newvalue) pairs in regs have not been formatted, but
2392 * they are all in the same page and have been changed to being page
2393 * relative. The page register has been written if that was necessary.
2394 */
_regmap_raw_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2395 static int _regmap_raw_multi_reg_write(struct regmap *map,
2396 const struct reg_sequence *regs,
2397 size_t num_regs)
2398 {
2399 int ret;
2400 void *buf;
2401 int i;
2402 u8 *u8;
2403 size_t val_bytes = map->format.val_bytes;
2404 size_t reg_bytes = map->format.reg_bytes;
2405 size_t pad_bytes = map->format.pad_bytes;
2406 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2407 size_t len = pair_size * num_regs;
2408
2409 if (!len)
2410 return -EINVAL;
2411
2412 buf = kzalloc(len, GFP_KERNEL);
2413 if (!buf)
2414 return -ENOMEM;
2415
2416 /* We have to linearise by hand. */
2417
2418 u8 = buf;
2419
2420 for (i = 0; i < num_regs; i++) {
2421 unsigned int reg = regs[i].reg;
2422 unsigned int val = regs[i].def;
2423 trace_regmap_hw_write_start(map, reg, 1);
2424 reg = regmap_reg_addr(map, reg);
2425 map->format.format_reg(u8, reg, map->reg_shift);
2426 u8 += reg_bytes + pad_bytes;
2427 map->format.format_val(u8, val, 0);
2428 u8 += val_bytes;
2429 }
2430 u8 = buf;
2431 *u8 |= map->write_flag_mask;
2432
2433 ret = map->write(map->bus_context, buf, len);
2434
2435 kfree(buf);
2436
2437 for (i = 0; i < num_regs; i++) {
2438 int reg = regs[i].reg;
2439 trace_regmap_hw_write_done(map, reg, 1);
2440 }
2441 return ret;
2442 }
2443
_regmap_register_page(struct regmap * map,unsigned int reg,struct regmap_range_node * range)2444 static unsigned int _regmap_register_page(struct regmap *map,
2445 unsigned int reg,
2446 struct regmap_range_node *range)
2447 {
2448 unsigned int win_page = (reg - range->range_min) / range->window_len;
2449
2450 return win_page;
2451 }
2452
_regmap_range_multi_paged_reg_write(struct regmap * map,struct reg_sequence * regs,size_t num_regs)2453 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2454 struct reg_sequence *regs,
2455 size_t num_regs)
2456 {
2457 int ret;
2458 int i, n;
2459 struct reg_sequence *base;
2460 unsigned int this_page = 0;
2461 unsigned int page_change = 0;
2462 /*
2463 * the set of registers are not neccessarily in order, but
2464 * since the order of write must be preserved this algorithm
2465 * chops the set each time the page changes. This also applies
2466 * if there is a delay required at any point in the sequence.
2467 */
2468 base = regs;
2469 for (i = 0, n = 0; i < num_regs; i++, n++) {
2470 unsigned int reg = regs[i].reg;
2471 struct regmap_range_node *range;
2472
2473 range = _regmap_range_lookup(map, reg);
2474 if (range) {
2475 unsigned int win_page = _regmap_register_page(map, reg,
2476 range);
2477
2478 if (i == 0)
2479 this_page = win_page;
2480 if (win_page != this_page) {
2481 this_page = win_page;
2482 page_change = 1;
2483 }
2484 }
2485
2486 /* If we have both a page change and a delay make sure to
2487 * write the regs and apply the delay before we change the
2488 * page.
2489 */
2490
2491 if (page_change || regs[i].delay_us) {
2492
2493 /* For situations where the first write requires
2494 * a delay we need to make sure we don't call
2495 * raw_multi_reg_write with n=0
2496 * This can't occur with page breaks as we
2497 * never write on the first iteration
2498 */
2499 if (regs[i].delay_us && i == 0)
2500 n = 1;
2501
2502 ret = _regmap_raw_multi_reg_write(map, base, n);
2503 if (ret != 0)
2504 return ret;
2505
2506 if (regs[i].delay_us) {
2507 if (map->can_sleep)
2508 fsleep(regs[i].delay_us);
2509 else
2510 udelay(regs[i].delay_us);
2511 }
2512
2513 base += n;
2514 n = 0;
2515
2516 if (page_change) {
2517 ret = _regmap_select_page(map,
2518 &base[n].reg,
2519 range, 1);
2520 if (ret != 0)
2521 return ret;
2522
2523 page_change = 0;
2524 }
2525
2526 }
2527
2528 }
2529 if (n > 0)
2530 return _regmap_raw_multi_reg_write(map, base, n);
2531 return 0;
2532 }
2533
_regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2534 static int _regmap_multi_reg_write(struct regmap *map,
2535 const struct reg_sequence *regs,
2536 size_t num_regs)
2537 {
2538 int i;
2539 int ret;
2540
2541 if (!map->can_multi_write) {
2542 for (i = 0; i < num_regs; i++) {
2543 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2544 if (ret != 0)
2545 return ret;
2546
2547 if (regs[i].delay_us) {
2548 if (map->can_sleep)
2549 fsleep(regs[i].delay_us);
2550 else
2551 udelay(regs[i].delay_us);
2552 }
2553 }
2554 return 0;
2555 }
2556
2557 if (!map->format.parse_inplace)
2558 return -EINVAL;
2559
2560 if (map->writeable_reg)
2561 for (i = 0; i < num_regs; i++) {
2562 int reg = regs[i].reg;
2563 if (!map->writeable_reg(map->dev, reg))
2564 return -EINVAL;
2565 if (!IS_ALIGNED(reg, map->reg_stride))
2566 return -EINVAL;
2567 }
2568
2569 if (!map->cache_bypass) {
2570 for (i = 0; i < num_regs; i++) {
2571 unsigned int val = regs[i].def;
2572 unsigned int reg = regs[i].reg;
2573 ret = regcache_write(map, reg, val);
2574 if (ret) {
2575 dev_err(map->dev,
2576 "Error in caching of register: %x ret: %d\n",
2577 reg, ret);
2578 return ret;
2579 }
2580 }
2581 if (map->cache_only) {
2582 map->cache_dirty = true;
2583 return 0;
2584 }
2585 }
2586
2587 WARN_ON(!map->bus);
2588
2589 for (i = 0; i < num_regs; i++) {
2590 unsigned int reg = regs[i].reg;
2591 struct regmap_range_node *range;
2592
2593 /* Coalesce all the writes between a page break or a delay
2594 * in a sequence
2595 */
2596 range = _regmap_range_lookup(map, reg);
2597 if (range || regs[i].delay_us) {
2598 size_t len = sizeof(struct reg_sequence)*num_regs;
2599 struct reg_sequence *base = kmemdup(regs, len,
2600 GFP_KERNEL);
2601 if (!base)
2602 return -ENOMEM;
2603 ret = _regmap_range_multi_paged_reg_write(map, base,
2604 num_regs);
2605 kfree(base);
2606
2607 return ret;
2608 }
2609 }
2610 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2611 }
2612
2613 /**
2614 * regmap_multi_reg_write() - Write multiple registers to the device
2615 *
2616 * @map: Register map to write to
2617 * @regs: Array of structures containing register,value to be written
2618 * @num_regs: Number of registers to write
2619 *
2620 * Write multiple registers to the device where the set of register, value
2621 * pairs are supplied in any order, possibly not all in a single range.
2622 *
2623 * The 'normal' block write mode will send ultimately send data on the
2624 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2625 * addressed. However, this alternative block multi write mode will send
2626 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2627 * must of course support the mode.
2628 *
2629 * A value of zero will be returned on success, a negative errno will be
2630 * returned in error cases.
2631 */
regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,int num_regs)2632 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2633 int num_regs)
2634 {
2635 int ret;
2636
2637 map->lock(map->lock_arg);
2638
2639 ret = _regmap_multi_reg_write(map, regs, num_regs);
2640
2641 map->unlock(map->lock_arg);
2642
2643 return ret;
2644 }
2645 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2646
2647 /**
2648 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2649 * device but not the cache
2650 *
2651 * @map: Register map to write to
2652 * @regs: Array of structures containing register,value to be written
2653 * @num_regs: Number of registers to write
2654 *
2655 * Write multiple registers to the device but not the cache where the set
2656 * of register are supplied in any order.
2657 *
2658 * This function is intended to be used for writing a large block of data
2659 * atomically to the device in single transfer for those I2C client devices
2660 * that implement this alternative block write mode.
2661 *
2662 * A value of zero will be returned on success, a negative errno will
2663 * be returned in error cases.
2664 */
regmap_multi_reg_write_bypassed(struct regmap * map,const struct reg_sequence * regs,int num_regs)2665 int regmap_multi_reg_write_bypassed(struct regmap *map,
2666 const struct reg_sequence *regs,
2667 int num_regs)
2668 {
2669 int ret;
2670 bool bypass;
2671
2672 map->lock(map->lock_arg);
2673
2674 bypass = map->cache_bypass;
2675 map->cache_bypass = true;
2676
2677 ret = _regmap_multi_reg_write(map, regs, num_regs);
2678
2679 map->cache_bypass = bypass;
2680
2681 map->unlock(map->lock_arg);
2682
2683 return ret;
2684 }
2685 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2686
2687 /**
2688 * regmap_raw_write_async() - Write raw values to one or more registers
2689 * asynchronously
2690 *
2691 * @map: Register map to write to
2692 * @reg: Initial register to write to
2693 * @val: Block of data to be written, laid out for direct transmission to the
2694 * device. Must be valid until regmap_async_complete() is called.
2695 * @val_len: Length of data pointed to by val.
2696 *
2697 * This function is intended to be used for things like firmware
2698 * download where a large block of data needs to be transferred to the
2699 * device. No formatting will be done on the data provided.
2700 *
2701 * If supported by the underlying bus the write will be scheduled
2702 * asynchronously, helping maximise I/O speed on higher speed buses
2703 * like SPI. regmap_async_complete() can be called to ensure that all
2704 * asynchrnous writes have been completed.
2705 *
2706 * A value of zero will be returned on success, a negative errno will
2707 * be returned in error cases.
2708 */
regmap_raw_write_async(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2709 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2710 const void *val, size_t val_len)
2711 {
2712 int ret;
2713
2714 if (val_len % map->format.val_bytes)
2715 return -EINVAL;
2716 if (!IS_ALIGNED(reg, map->reg_stride))
2717 return -EINVAL;
2718
2719 map->lock(map->lock_arg);
2720
2721 map->async = true;
2722
2723 ret = _regmap_raw_write(map, reg, val, val_len, false);
2724
2725 map->async = false;
2726
2727 map->unlock(map->lock_arg);
2728
2729 return ret;
2730 }
2731 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2732
_regmap_raw_read(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool noinc)2733 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2734 unsigned int val_len, bool noinc)
2735 {
2736 struct regmap_range_node *range;
2737 int ret;
2738
2739 if (!map->read)
2740 return -EINVAL;
2741
2742 range = _regmap_range_lookup(map, reg);
2743 if (range) {
2744 ret = _regmap_select_page(map, ®, range,
2745 noinc ? 1 : val_len / map->format.val_bytes);
2746 if (ret != 0)
2747 return ret;
2748 }
2749
2750 reg = regmap_reg_addr(map, reg);
2751 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2752 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2753 map->read_flag_mask);
2754 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2755
2756 ret = map->read(map->bus_context, map->work_buf,
2757 map->format.reg_bytes + map->format.pad_bytes,
2758 val, val_len);
2759
2760 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2761
2762 return ret;
2763 }
2764
_regmap_bus_reg_read(void * context,unsigned int reg,unsigned int * val)2765 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2766 unsigned int *val)
2767 {
2768 struct regmap *map = context;
2769 struct regmap_range_node *range;
2770 int ret;
2771
2772 range = _regmap_range_lookup(map, reg);
2773 if (range) {
2774 ret = _regmap_select_page(map, ®, range, 1);
2775 if (ret != 0)
2776 return ret;
2777 }
2778
2779 reg = regmap_reg_addr(map, reg);
2780 return map->bus->reg_read(map->bus_context, reg, val);
2781 }
2782
_regmap_bus_read(void * context,unsigned int reg,unsigned int * val)2783 static int _regmap_bus_read(void *context, unsigned int reg,
2784 unsigned int *val)
2785 {
2786 int ret;
2787 struct regmap *map = context;
2788 void *work_val = map->work_buf + map->format.reg_bytes +
2789 map->format.pad_bytes;
2790
2791 if (!map->format.parse_val)
2792 return -EINVAL;
2793
2794 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2795 if (ret == 0)
2796 *val = map->format.parse_val(work_val);
2797
2798 return ret;
2799 }
2800
_regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2801 static int _regmap_read(struct regmap *map, unsigned int reg,
2802 unsigned int *val)
2803 {
2804 int ret;
2805 void *context = _regmap_map_get_context(map);
2806
2807 if (!map->cache_bypass) {
2808 ret = regcache_read(map, reg, val);
2809 if (ret == 0)
2810 return 0;
2811 }
2812
2813 if (map->cache_only)
2814 return -EBUSY;
2815
2816 if (!regmap_readable(map, reg))
2817 return -EIO;
2818
2819 ret = map->reg_read(context, reg, val);
2820 if (ret == 0) {
2821 if (regmap_should_log(map))
2822 dev_info(map->dev, "%x => %x\n", reg, *val);
2823
2824 trace_regmap_reg_read(map, reg, *val);
2825
2826 if (!map->cache_bypass)
2827 regcache_write(map, reg, *val);
2828 }
2829
2830 return ret;
2831 }
2832
2833 /**
2834 * regmap_read() - Read a value from a single register
2835 *
2836 * @map: Register map to read from
2837 * @reg: Register to be read from
2838 * @val: Pointer to store read value
2839 *
2840 * A value of zero will be returned on success, a negative errno will
2841 * be returned in error cases.
2842 */
regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2843 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2844 {
2845 int ret;
2846
2847 if (!IS_ALIGNED(reg, map->reg_stride))
2848 return -EINVAL;
2849
2850 map->lock(map->lock_arg);
2851
2852 ret = _regmap_read(map, reg, val);
2853
2854 map->unlock(map->lock_arg);
2855
2856 return ret;
2857 }
2858 EXPORT_SYMBOL_GPL(regmap_read);
2859
2860 /**
2861 * regmap_read_bypassed() - Read a value from a single register direct
2862 * from the device, bypassing the cache
2863 *
2864 * @map: Register map to read from
2865 * @reg: Register to be read from
2866 * @val: Pointer to store read value
2867 *
2868 * A value of zero will be returned on success, a negative errno will
2869 * be returned in error cases.
2870 */
regmap_read_bypassed(struct regmap * map,unsigned int reg,unsigned int * val)2871 int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val)
2872 {
2873 int ret;
2874 bool bypass, cache_only;
2875
2876 if (!IS_ALIGNED(reg, map->reg_stride))
2877 return -EINVAL;
2878
2879 map->lock(map->lock_arg);
2880
2881 bypass = map->cache_bypass;
2882 cache_only = map->cache_only;
2883 map->cache_bypass = true;
2884 map->cache_only = false;
2885
2886 ret = _regmap_read(map, reg, val);
2887
2888 map->cache_bypass = bypass;
2889 map->cache_only = cache_only;
2890
2891 map->unlock(map->lock_arg);
2892
2893 return ret;
2894 }
2895 EXPORT_SYMBOL_GPL(regmap_read_bypassed);
2896
2897 /**
2898 * regmap_raw_read() - Read raw data from the device
2899 *
2900 * @map: Register map to read from
2901 * @reg: First register to be read from
2902 * @val: Pointer to store read value
2903 * @val_len: Size of data to read
2904 *
2905 * A value of zero will be returned on success, a negative errno will
2906 * be returned in error cases.
2907 */
regmap_raw_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2908 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2909 size_t val_len)
2910 {
2911 size_t val_bytes = map->format.val_bytes;
2912 size_t val_count = val_len / val_bytes;
2913 unsigned int v;
2914 int ret, i;
2915
2916 if (val_len % map->format.val_bytes)
2917 return -EINVAL;
2918 if (!IS_ALIGNED(reg, map->reg_stride))
2919 return -EINVAL;
2920 if (val_count == 0)
2921 return -EINVAL;
2922
2923 map->lock(map->lock_arg);
2924
2925 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2926 map->cache_type == REGCACHE_NONE) {
2927 size_t chunk_count, chunk_bytes;
2928 size_t chunk_regs = val_count;
2929
2930 if (!map->cache_bypass && map->cache_only) {
2931 ret = -EBUSY;
2932 goto out;
2933 }
2934
2935 if (!map->read) {
2936 ret = -ENOTSUPP;
2937 goto out;
2938 }
2939
2940 if (map->use_single_read)
2941 chunk_regs = 1;
2942 else if (map->max_raw_read && val_len > map->max_raw_read)
2943 chunk_regs = map->max_raw_read / val_bytes;
2944
2945 chunk_count = val_count / chunk_regs;
2946 chunk_bytes = chunk_regs * val_bytes;
2947
2948 /* Read bytes that fit into whole chunks */
2949 for (i = 0; i < chunk_count; i++) {
2950 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2951 if (ret != 0)
2952 goto out;
2953
2954 reg += regmap_get_offset(map, chunk_regs);
2955 val += chunk_bytes;
2956 val_len -= chunk_bytes;
2957 }
2958
2959 /* Read remaining bytes */
2960 if (val_len) {
2961 ret = _regmap_raw_read(map, reg, val, val_len, false);
2962 if (ret != 0)
2963 goto out;
2964 }
2965 } else {
2966 /* Otherwise go word by word for the cache; should be low
2967 * cost as we expect to hit the cache.
2968 */
2969 for (i = 0; i < val_count; i++) {
2970 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2971 &v);
2972 if (ret != 0)
2973 goto out;
2974
2975 map->format.format_val(val + (i * val_bytes), v, 0);
2976 }
2977 }
2978
2979 out:
2980 map->unlock(map->lock_arg);
2981
2982 return ret;
2983 }
2984 EXPORT_SYMBOL_GPL(regmap_raw_read);
2985
2986 /**
2987 * regmap_noinc_read(): Read data from a register without incrementing the
2988 * register number
2989 *
2990 * @map: Register map to read from
2991 * @reg: Register to read from
2992 * @val: Pointer to data buffer
2993 * @val_len: Length of output buffer in bytes.
2994 *
2995 * The regmap API usually assumes that bulk read operations will read a
2996 * range of registers. Some devices have certain registers for which a read
2997 * operation read will read from an internal FIFO.
2998 *
2999 * The target register must be volatile but registers after it can be
3000 * completely unrelated cacheable registers.
3001 *
3002 * This will attempt multiple reads as required to read val_len bytes.
3003 *
3004 * A value of zero will be returned on success, a negative errno will be
3005 * returned in error cases.
3006 */
regmap_noinc_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)3007 int regmap_noinc_read(struct regmap *map, unsigned int reg,
3008 void *val, size_t val_len)
3009 {
3010 size_t read_len;
3011 int ret;
3012
3013 if (!map->read)
3014 return -ENOTSUPP;
3015
3016 if (val_len % map->format.val_bytes)
3017 return -EINVAL;
3018 if (!IS_ALIGNED(reg, map->reg_stride))
3019 return -EINVAL;
3020 if (val_len == 0)
3021 return -EINVAL;
3022
3023 map->lock(map->lock_arg);
3024
3025 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3026 ret = -EINVAL;
3027 goto out_unlock;
3028 }
3029
3030 /*
3031 * We have not defined the FIFO semantics for cache, as the
3032 * cache is just one value deep. Should we return the last
3033 * written value? Just avoid this by always reading the FIFO
3034 * even when using cache. Cache only will not work.
3035 */
3036 if (!map->cache_bypass && map->cache_only) {
3037 ret = -EBUSY;
3038 goto out_unlock;
3039 }
3040
3041 /* Use the accelerated operation if we can */
3042 if (map->bus->reg_noinc_read) {
3043 ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3044 goto out_unlock;
3045 }
3046
3047 while (val_len) {
3048 if (map->max_raw_read && map->max_raw_read < val_len)
3049 read_len = map->max_raw_read;
3050 else
3051 read_len = val_len;
3052 ret = _regmap_raw_read(map, reg, val, read_len, true);
3053 if (ret)
3054 goto out_unlock;
3055 val = ((u8 *)val) + read_len;
3056 val_len -= read_len;
3057 }
3058
3059 out_unlock:
3060 map->unlock(map->lock_arg);
3061 return ret;
3062 }
3063 EXPORT_SYMBOL_GPL(regmap_noinc_read);
3064
3065 /**
3066 * regmap_field_read(): Read a value to a single register field
3067 *
3068 * @field: Register field to read from
3069 * @val: Pointer to store read value
3070 *
3071 * A value of zero will be returned on success, a negative errno will
3072 * be returned in error cases.
3073 */
regmap_field_read(struct regmap_field * field,unsigned int * val)3074 int regmap_field_read(struct regmap_field *field, unsigned int *val)
3075 {
3076 int ret;
3077 unsigned int reg_val;
3078 ret = regmap_read(field->regmap, field->reg, ®_val);
3079 if (ret != 0)
3080 return ret;
3081
3082 reg_val &= field->mask;
3083 reg_val >>= field->shift;
3084 *val = reg_val;
3085
3086 return ret;
3087 }
3088 EXPORT_SYMBOL_GPL(regmap_field_read);
3089
3090 /**
3091 * regmap_fields_read() - Read a value to a single register field with port ID
3092 *
3093 * @field: Register field to read from
3094 * @id: port ID
3095 * @val: Pointer to store read value
3096 *
3097 * A value of zero will be returned on success, a negative errno will
3098 * be returned in error cases.
3099 */
regmap_fields_read(struct regmap_field * field,unsigned int id,unsigned int * val)3100 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3101 unsigned int *val)
3102 {
3103 int ret;
3104 unsigned int reg_val;
3105
3106 if (id >= field->id_size)
3107 return -EINVAL;
3108
3109 ret = regmap_read(field->regmap,
3110 field->reg + (field->id_offset * id),
3111 ®_val);
3112 if (ret != 0)
3113 return ret;
3114
3115 reg_val &= field->mask;
3116 reg_val >>= field->shift;
3117 *val = reg_val;
3118
3119 return ret;
3120 }
3121 EXPORT_SYMBOL_GPL(regmap_fields_read);
3122
_regmap_bulk_read(struct regmap * map,unsigned int reg,const unsigned int * regs,void * val,size_t val_count)3123 static int _regmap_bulk_read(struct regmap *map, unsigned int reg,
3124 const unsigned int *regs, void *val, size_t val_count)
3125 {
3126 u32 *u32 = val;
3127 u16 *u16 = val;
3128 u8 *u8 = val;
3129 int ret, i;
3130
3131 map->lock(map->lock_arg);
3132
3133 for (i = 0; i < val_count; i++) {
3134 unsigned int ival;
3135
3136 if (regs) {
3137 if (!IS_ALIGNED(regs[i], map->reg_stride)) {
3138 ret = -EINVAL;
3139 goto out;
3140 }
3141 ret = _regmap_read(map, regs[i], &ival);
3142 } else {
3143 ret = _regmap_read(map, reg + regmap_get_offset(map, i), &ival);
3144 }
3145 if (ret != 0)
3146 goto out;
3147
3148 switch (map->format.val_bytes) {
3149 case 4:
3150 u32[i] = ival;
3151 break;
3152 case 2:
3153 u16[i] = ival;
3154 break;
3155 case 1:
3156 u8[i] = ival;
3157 break;
3158 default:
3159 ret = -EINVAL;
3160 goto out;
3161 }
3162 }
3163 out:
3164 map->unlock(map->lock_arg);
3165 return ret;
3166 }
3167
3168 /**
3169 * regmap_bulk_read() - Read multiple sequential registers from the device
3170 *
3171 * @map: Register map to read from
3172 * @reg: First register to be read from
3173 * @val: Pointer to store read value, in native register size for device
3174 * @val_count: Number of registers to read
3175 *
3176 * A value of zero will be returned on success, a negative errno will
3177 * be returned in error cases.
3178 */
regmap_bulk_read(struct regmap * map,unsigned int reg,void * val,size_t val_count)3179 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3180 size_t val_count)
3181 {
3182 int ret, i;
3183 size_t val_bytes = map->format.val_bytes;
3184 bool vol = regmap_volatile_range(map, reg, val_count);
3185
3186 if (!IS_ALIGNED(reg, map->reg_stride))
3187 return -EINVAL;
3188 if (val_count == 0)
3189 return -EINVAL;
3190
3191 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3192 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3193 if (ret != 0)
3194 return ret;
3195
3196 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3197 map->format.parse_inplace(val + i);
3198 } else {
3199 ret = _regmap_bulk_read(map, reg, NULL, val, val_count);
3200 }
3201 if (!ret)
3202 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3203 return ret;
3204 }
3205 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3206
3207 /**
3208 * regmap_multi_reg_read() - Read multiple non-sequential registers from the device
3209 *
3210 * @map: Register map to read from
3211 * @regs: Array of registers to read from
3212 * @val: Pointer to store read value, in native register size for device
3213 * @val_count: Number of registers to read
3214 *
3215 * A value of zero will be returned on success, a negative errno will
3216 * be returned in error cases.
3217 */
regmap_multi_reg_read(struct regmap * map,const unsigned int * regs,void * val,size_t val_count)3218 int regmap_multi_reg_read(struct regmap *map, const unsigned int *regs, void *val,
3219 size_t val_count)
3220 {
3221 if (val_count == 0)
3222 return -EINVAL;
3223
3224 return _regmap_bulk_read(map, 0, regs, val, val_count);
3225 }
3226 EXPORT_SYMBOL_GPL(regmap_multi_reg_read);
3227
_regmap_update_bits(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool force_write)3228 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3229 unsigned int mask, unsigned int val,
3230 bool *change, bool force_write)
3231 {
3232 int ret;
3233 unsigned int tmp, orig;
3234
3235 if (change)
3236 *change = false;
3237
3238 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3239 reg = regmap_reg_addr(map, reg);
3240 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3241 if (ret == 0 && change)
3242 *change = true;
3243 } else {
3244 ret = _regmap_read(map, reg, &orig);
3245 if (ret != 0)
3246 return ret;
3247
3248 tmp = orig & ~mask;
3249 tmp |= val & mask;
3250
3251 if (force_write || (tmp != orig) || map->force_write_field) {
3252 ret = _regmap_write(map, reg, tmp);
3253 if (ret == 0 && change)
3254 *change = true;
3255 }
3256 }
3257
3258 return ret;
3259 }
3260
3261 /**
3262 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3263 *
3264 * @map: Register map to update
3265 * @reg: Register to update
3266 * @mask: Bitmask to change
3267 * @val: New value for bitmask
3268 * @change: Boolean indicating if a write was done
3269 * @async: Boolean indicating asynchronously
3270 * @force: Boolean indicating use force update
3271 *
3272 * Perform a read/modify/write cycle on a register map with change, async, force
3273 * options.
3274 *
3275 * If async is true:
3276 *
3277 * With most buses the read must be done synchronously so this is most useful
3278 * for devices with a cache which do not need to interact with the hardware to
3279 * determine the current register value.
3280 *
3281 * Returns zero for success, a negative number on error.
3282 */
regmap_update_bits_base(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool async,bool force)3283 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3284 unsigned int mask, unsigned int val,
3285 bool *change, bool async, bool force)
3286 {
3287 int ret;
3288
3289 map->lock(map->lock_arg);
3290
3291 map->async = async;
3292
3293 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3294
3295 map->async = false;
3296
3297 map->unlock(map->lock_arg);
3298
3299 return ret;
3300 }
3301 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3302
3303 /**
3304 * regmap_test_bits() - Check if all specified bits are set in a register.
3305 *
3306 * @map: Register map to operate on
3307 * @reg: Register to read from
3308 * @bits: Bits to test
3309 *
3310 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3311 * bits are set and a negative error number if the underlying regmap_read()
3312 * fails.
3313 */
regmap_test_bits(struct regmap * map,unsigned int reg,unsigned int bits)3314 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3315 {
3316 unsigned int val;
3317 int ret;
3318
3319 ret = regmap_read(map, reg, &val);
3320 if (ret)
3321 return ret;
3322
3323 return (val & bits) == bits;
3324 }
3325 EXPORT_SYMBOL_GPL(regmap_test_bits);
3326
regmap_async_complete_cb(struct regmap_async * async,int ret)3327 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3328 {
3329 struct regmap *map = async->map;
3330 bool wake;
3331
3332 trace_regmap_async_io_complete(map);
3333
3334 spin_lock(&map->async_lock);
3335 list_move(&async->list, &map->async_free);
3336 wake = list_empty(&map->async_list);
3337
3338 if (ret != 0)
3339 map->async_ret = ret;
3340
3341 spin_unlock(&map->async_lock);
3342
3343 if (wake)
3344 wake_up(&map->async_waitq);
3345 }
3346 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3347
regmap_async_is_done(struct regmap * map)3348 static int regmap_async_is_done(struct regmap *map)
3349 {
3350 unsigned long flags;
3351 int ret;
3352
3353 spin_lock_irqsave(&map->async_lock, flags);
3354 ret = list_empty(&map->async_list);
3355 spin_unlock_irqrestore(&map->async_lock, flags);
3356
3357 return ret;
3358 }
3359
3360 /**
3361 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3362 *
3363 * @map: Map to operate on.
3364 *
3365 * Blocks until any pending asynchronous I/O has completed. Returns
3366 * an error code for any failed I/O operations.
3367 */
regmap_async_complete(struct regmap * map)3368 int regmap_async_complete(struct regmap *map)
3369 {
3370 unsigned long flags;
3371 int ret;
3372
3373 /* Nothing to do with no async support */
3374 if (!map->bus || !map->bus->async_write)
3375 return 0;
3376
3377 trace_regmap_async_complete_start(map);
3378
3379 wait_event(map->async_waitq, regmap_async_is_done(map));
3380
3381 spin_lock_irqsave(&map->async_lock, flags);
3382 ret = map->async_ret;
3383 map->async_ret = 0;
3384 spin_unlock_irqrestore(&map->async_lock, flags);
3385
3386 trace_regmap_async_complete_done(map);
3387
3388 return ret;
3389 }
3390 EXPORT_SYMBOL_GPL(regmap_async_complete);
3391
3392 /**
3393 * regmap_register_patch - Register and apply register updates to be applied
3394 * on device initialistion
3395 *
3396 * @map: Register map to apply updates to.
3397 * @regs: Values to update.
3398 * @num_regs: Number of entries in regs.
3399 *
3400 * Register a set of register updates to be applied to the device
3401 * whenever the device registers are synchronised with the cache and
3402 * apply them immediately. Typically this is used to apply
3403 * corrections to be applied to the device defaults on startup, such
3404 * as the updates some vendors provide to undocumented registers.
3405 *
3406 * The caller must ensure that this function cannot be called
3407 * concurrently with either itself or regcache_sync().
3408 */
regmap_register_patch(struct regmap * map,const struct reg_sequence * regs,int num_regs)3409 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3410 int num_regs)
3411 {
3412 struct reg_sequence *p;
3413 int ret;
3414 bool bypass;
3415
3416 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3417 num_regs))
3418 return 0;
3419
3420 p = krealloc(map->patch,
3421 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3422 GFP_KERNEL);
3423 if (p) {
3424 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3425 map->patch = p;
3426 map->patch_regs += num_regs;
3427 } else {
3428 return -ENOMEM;
3429 }
3430
3431 map->lock(map->lock_arg);
3432
3433 bypass = map->cache_bypass;
3434
3435 map->cache_bypass = true;
3436 map->async = true;
3437
3438 ret = _regmap_multi_reg_write(map, regs, num_regs);
3439
3440 map->async = false;
3441 map->cache_bypass = bypass;
3442
3443 map->unlock(map->lock_arg);
3444
3445 regmap_async_complete(map);
3446
3447 return ret;
3448 }
3449 EXPORT_SYMBOL_GPL(regmap_register_patch);
3450
3451 /**
3452 * regmap_get_val_bytes() - Report the size of a register value
3453 *
3454 * @map: Register map to operate on.
3455 *
3456 * Report the size of a register value, mainly intended to for use by
3457 * generic infrastructure built on top of regmap.
3458 */
regmap_get_val_bytes(struct regmap * map)3459 int regmap_get_val_bytes(struct regmap *map)
3460 {
3461 if (map->format.format_write)
3462 return -EINVAL;
3463
3464 return map->format.val_bytes;
3465 }
3466 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3467
3468 /**
3469 * regmap_get_max_register() - Report the max register value
3470 *
3471 * @map: Register map to operate on.
3472 *
3473 * Report the max register value, mainly intended to for use by
3474 * generic infrastructure built on top of regmap.
3475 */
regmap_get_max_register(struct regmap * map)3476 int regmap_get_max_register(struct regmap *map)
3477 {
3478 return map->max_register_is_set ? map->max_register : -EINVAL;
3479 }
3480 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3481
3482 /**
3483 * regmap_get_reg_stride() - Report the register address stride
3484 *
3485 * @map: Register map to operate on.
3486 *
3487 * Report the register address stride, mainly intended to for use by
3488 * generic infrastructure built on top of regmap.
3489 */
regmap_get_reg_stride(struct regmap * map)3490 int regmap_get_reg_stride(struct regmap *map)
3491 {
3492 return map->reg_stride;
3493 }
3494 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3495
3496 /**
3497 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3498 *
3499 * @map: Register map to operate on.
3500 *
3501 * Returns true if an access to the register might sleep, else false.
3502 */
regmap_might_sleep(struct regmap * map)3503 bool regmap_might_sleep(struct regmap *map)
3504 {
3505 return map->can_sleep;
3506 }
3507 EXPORT_SYMBOL_GPL(regmap_might_sleep);
3508
regmap_parse_val(struct regmap * map,const void * buf,unsigned int * val)3509 int regmap_parse_val(struct regmap *map, const void *buf,
3510 unsigned int *val)
3511 {
3512 if (!map->format.parse_val)
3513 return -EINVAL;
3514
3515 *val = map->format.parse_val(buf);
3516
3517 return 0;
3518 }
3519 EXPORT_SYMBOL_GPL(regmap_parse_val);
3520
regmap_initcall(void)3521 static int __init regmap_initcall(void)
3522 {
3523 regmap_debugfs_initcall();
3524
3525 return 0;
3526 }
3527 postcore_initcall(regmap_initcall);
3528