xref: /linux/drivers/base/power/main.c (revision be54f8c558027a218423134dd9b8c7c46d92204a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/power/main.c - Where the driver meets power management.
4  *
5  * Copyright (c) 2003 Patrick Mochel
6  * Copyright (c) 2003 Open Source Development Lab
7  *
8  * The driver model core calls device_pm_add() when a device is registered.
9  * This will initialize the embedded device_pm_info object in the device
10  * and add it to the list of power-controlled devices. sysfs entries for
11  * controlling device power management will also be added.
12  *
13  * A separate list is used for keeping track of power info, because the power
14  * domain dependencies may differ from the ancestral dependencies that the
15  * subsystem list maintains.
16  */
17 
18 #define pr_fmt(fmt) "PM: " fmt
19 #define dev_fmt pr_fmt
20 
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/sched/debug.h>
31 #include <linux/async.h>
32 #include <linux/suspend.h>
33 #include <trace/events/power.h>
34 #include <linux/cpufreq.h>
35 #include <linux/devfreq.h>
36 #include <linux/timer.h>
37 
38 #include "../base.h"
39 #include "power.h"
40 
41 typedef int (*pm_callback_t)(struct device *);
42 
43 #define list_for_each_entry_rcu_locked(pos, head, member) \
44 	list_for_each_entry_rcu(pos, head, member, \
45 			device_links_read_lock_held())
46 
47 /*
48  * The entries in the dpm_list list are in a depth first order, simply
49  * because children are guaranteed to be discovered after parents, and
50  * are inserted at the back of the list on discovery.
51  *
52  * Since device_pm_add() may be called with a device lock held,
53  * we must never try to acquire a device lock while holding
54  * dpm_list_mutex.
55  */
56 
57 LIST_HEAD(dpm_list);
58 static LIST_HEAD(dpm_prepared_list);
59 static LIST_HEAD(dpm_suspended_list);
60 static LIST_HEAD(dpm_late_early_list);
61 static LIST_HEAD(dpm_noirq_list);
62 
63 static DEFINE_MUTEX(dpm_list_mtx);
64 static pm_message_t pm_transition;
65 
66 static DEFINE_MUTEX(async_wip_mtx);
67 static int async_error;
68 
pm_verb(int event)69 static const char *pm_verb(int event)
70 {
71 	switch (event) {
72 	case PM_EVENT_SUSPEND:
73 		return "suspend";
74 	case PM_EVENT_RESUME:
75 		return "resume";
76 	case PM_EVENT_FREEZE:
77 		return "freeze";
78 	case PM_EVENT_QUIESCE:
79 		return "quiesce";
80 	case PM_EVENT_HIBERNATE:
81 		return "hibernate";
82 	case PM_EVENT_THAW:
83 		return "thaw";
84 	case PM_EVENT_RESTORE:
85 		return "restore";
86 	case PM_EVENT_RECOVER:
87 		return "recover";
88 	default:
89 		return "(unknown PM event)";
90 	}
91 }
92 
93 /**
94  * device_pm_sleep_init - Initialize system suspend-related device fields.
95  * @dev: Device object being initialized.
96  */
device_pm_sleep_init(struct device * dev)97 void device_pm_sleep_init(struct device *dev)
98 {
99 	dev->power.is_prepared = false;
100 	dev->power.is_suspended = false;
101 	dev->power.is_noirq_suspended = false;
102 	dev->power.is_late_suspended = false;
103 	init_completion(&dev->power.completion);
104 	complete_all(&dev->power.completion);
105 	dev->power.wakeup = NULL;
106 	INIT_LIST_HEAD(&dev->power.entry);
107 }
108 
109 /**
110  * device_pm_lock - Lock the list of active devices used by the PM core.
111  */
device_pm_lock(void)112 void device_pm_lock(void)
113 {
114 	mutex_lock(&dpm_list_mtx);
115 }
116 
117 /**
118  * device_pm_unlock - Unlock the list of active devices used by the PM core.
119  */
device_pm_unlock(void)120 void device_pm_unlock(void)
121 {
122 	mutex_unlock(&dpm_list_mtx);
123 }
124 
125 /**
126  * device_pm_add - Add a device to the PM core's list of active devices.
127  * @dev: Device to add to the list.
128  */
device_pm_add(struct device * dev)129 void device_pm_add(struct device *dev)
130 {
131 	/* Skip PM setup/initialization. */
132 	if (device_pm_not_required(dev))
133 		return;
134 
135 	pr_debug("Adding info for %s:%s\n",
136 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
137 	device_pm_check_callbacks(dev);
138 	mutex_lock(&dpm_list_mtx);
139 	if (dev->parent && dev->parent->power.is_prepared)
140 		dev_warn(dev, "parent %s should not be sleeping\n",
141 			dev_name(dev->parent));
142 	list_add_tail(&dev->power.entry, &dpm_list);
143 	dev->power.in_dpm_list = true;
144 	mutex_unlock(&dpm_list_mtx);
145 }
146 
147 /**
148  * device_pm_remove - Remove a device from the PM core's list of active devices.
149  * @dev: Device to be removed from the list.
150  */
device_pm_remove(struct device * dev)151 void device_pm_remove(struct device *dev)
152 {
153 	if (device_pm_not_required(dev))
154 		return;
155 
156 	pr_debug("Removing info for %s:%s\n",
157 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
158 	complete_all(&dev->power.completion);
159 	mutex_lock(&dpm_list_mtx);
160 	list_del_init(&dev->power.entry);
161 	dev->power.in_dpm_list = false;
162 	mutex_unlock(&dpm_list_mtx);
163 	device_wakeup_disable(dev);
164 	pm_runtime_remove(dev);
165 	device_pm_check_callbacks(dev);
166 }
167 
168 /**
169  * device_pm_move_before - Move device in the PM core's list of active devices.
170  * @deva: Device to move in dpm_list.
171  * @devb: Device @deva should come before.
172  */
device_pm_move_before(struct device * deva,struct device * devb)173 void device_pm_move_before(struct device *deva, struct device *devb)
174 {
175 	pr_debug("Moving %s:%s before %s:%s\n",
176 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
177 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
178 	/* Delete deva from dpm_list and reinsert before devb. */
179 	list_move_tail(&deva->power.entry, &devb->power.entry);
180 }
181 
182 /**
183  * device_pm_move_after - Move device in the PM core's list of active devices.
184  * @deva: Device to move in dpm_list.
185  * @devb: Device @deva should come after.
186  */
device_pm_move_after(struct device * deva,struct device * devb)187 void device_pm_move_after(struct device *deva, struct device *devb)
188 {
189 	pr_debug("Moving %s:%s after %s:%s\n",
190 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
191 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
192 	/* Delete deva from dpm_list and reinsert after devb. */
193 	list_move(&deva->power.entry, &devb->power.entry);
194 }
195 
196 /**
197  * device_pm_move_last - Move device to end of the PM core's list of devices.
198  * @dev: Device to move in dpm_list.
199  */
device_pm_move_last(struct device * dev)200 void device_pm_move_last(struct device *dev)
201 {
202 	pr_debug("Moving %s:%s to end of list\n",
203 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
204 	list_move_tail(&dev->power.entry, &dpm_list);
205 }
206 
initcall_debug_start(struct device * dev,void * cb)207 static ktime_t initcall_debug_start(struct device *dev, void *cb)
208 {
209 	if (!pm_print_times_enabled)
210 		return 0;
211 
212 	dev_info(dev, "calling %ps @ %i, parent: %s\n", cb,
213 		 task_pid_nr(current),
214 		 dev->parent ? dev_name(dev->parent) : "none");
215 	return ktime_get();
216 }
217 
initcall_debug_report(struct device * dev,ktime_t calltime,void * cb,int error)218 static void initcall_debug_report(struct device *dev, ktime_t calltime,
219 				  void *cb, int error)
220 {
221 	ktime_t rettime;
222 
223 	if (!pm_print_times_enabled)
224 		return;
225 
226 	rettime = ktime_get();
227 	dev_info(dev, "%ps returned %d after %Ld usecs\n", cb, error,
228 		 (unsigned long long)ktime_us_delta(rettime, calltime));
229 }
230 
231 /**
232  * dpm_wait - Wait for a PM operation to complete.
233  * @dev: Device to wait for.
234  * @async: If unset, wait only if the device's power.async_suspend flag is set.
235  */
dpm_wait(struct device * dev,bool async)236 static void dpm_wait(struct device *dev, bool async)
237 {
238 	if (!dev)
239 		return;
240 
241 	if (async || (pm_async_enabled && dev->power.async_suspend))
242 		wait_for_completion(&dev->power.completion);
243 }
244 
dpm_wait_fn(struct device * dev,void * async_ptr)245 static int dpm_wait_fn(struct device *dev, void *async_ptr)
246 {
247 	dpm_wait(dev, *((bool *)async_ptr));
248 	return 0;
249 }
250 
dpm_wait_for_children(struct device * dev,bool async)251 static void dpm_wait_for_children(struct device *dev, bool async)
252 {
253 	device_for_each_child(dev, &async, dpm_wait_fn);
254 }
255 
dpm_wait_for_suppliers(struct device * dev,bool async)256 static void dpm_wait_for_suppliers(struct device *dev, bool async)
257 {
258 	struct device_link *link;
259 	int idx;
260 
261 	idx = device_links_read_lock();
262 
263 	/*
264 	 * If the supplier goes away right after we've checked the link to it,
265 	 * we'll wait for its completion to change the state, but that's fine,
266 	 * because the only things that will block as a result are the SRCU
267 	 * callbacks freeing the link objects for the links in the list we're
268 	 * walking.
269 	 */
270 	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
271 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
272 			dpm_wait(link->supplier, async);
273 
274 	device_links_read_unlock(idx);
275 }
276 
dpm_wait_for_superior(struct device * dev,bool async)277 static bool dpm_wait_for_superior(struct device *dev, bool async)
278 {
279 	struct device *parent;
280 
281 	/*
282 	 * If the device is resumed asynchronously and the parent's callback
283 	 * deletes both the device and the parent itself, the parent object may
284 	 * be freed while this function is running, so avoid that by reference
285 	 * counting the parent once more unless the device has been deleted
286 	 * already (in which case return right away).
287 	 */
288 	mutex_lock(&dpm_list_mtx);
289 
290 	if (!device_pm_initialized(dev)) {
291 		mutex_unlock(&dpm_list_mtx);
292 		return false;
293 	}
294 
295 	parent = get_device(dev->parent);
296 
297 	mutex_unlock(&dpm_list_mtx);
298 
299 	dpm_wait(parent, async);
300 	put_device(parent);
301 
302 	dpm_wait_for_suppliers(dev, async);
303 
304 	/*
305 	 * If the parent's callback has deleted the device, attempting to resume
306 	 * it would be invalid, so avoid doing that then.
307 	 */
308 	return device_pm_initialized(dev);
309 }
310 
dpm_wait_for_consumers(struct device * dev,bool async)311 static void dpm_wait_for_consumers(struct device *dev, bool async)
312 {
313 	struct device_link *link;
314 	int idx;
315 
316 	idx = device_links_read_lock();
317 
318 	/*
319 	 * The status of a device link can only be changed from "dormant" by a
320 	 * probe, but that cannot happen during system suspend/resume.  In
321 	 * theory it can change to "dormant" at that time, but then it is
322 	 * reasonable to wait for the target device anyway (eg. if it goes
323 	 * away, it's better to wait for it to go away completely and then
324 	 * continue instead of trying to continue in parallel with its
325 	 * unregistration).
326 	 */
327 	list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node)
328 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
329 			dpm_wait(link->consumer, async);
330 
331 	device_links_read_unlock(idx);
332 }
333 
dpm_wait_for_subordinate(struct device * dev,bool async)334 static void dpm_wait_for_subordinate(struct device *dev, bool async)
335 {
336 	dpm_wait_for_children(dev, async);
337 	dpm_wait_for_consumers(dev, async);
338 }
339 
340 /**
341  * pm_op - Return the PM operation appropriate for given PM event.
342  * @ops: PM operations to choose from.
343  * @state: PM transition of the system being carried out.
344  */
pm_op(const struct dev_pm_ops * ops,pm_message_t state)345 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
346 {
347 	switch (state.event) {
348 #ifdef CONFIG_SUSPEND
349 	case PM_EVENT_SUSPEND:
350 		return ops->suspend;
351 	case PM_EVENT_RESUME:
352 		return ops->resume;
353 #endif /* CONFIG_SUSPEND */
354 #ifdef CONFIG_HIBERNATE_CALLBACKS
355 	case PM_EVENT_FREEZE:
356 	case PM_EVENT_QUIESCE:
357 		return ops->freeze;
358 	case PM_EVENT_HIBERNATE:
359 		return ops->poweroff;
360 	case PM_EVENT_THAW:
361 	case PM_EVENT_RECOVER:
362 		return ops->thaw;
363 	case PM_EVENT_RESTORE:
364 		return ops->restore;
365 #endif /* CONFIG_HIBERNATE_CALLBACKS */
366 	}
367 
368 	return NULL;
369 }
370 
371 /**
372  * pm_late_early_op - Return the PM operation appropriate for given PM event.
373  * @ops: PM operations to choose from.
374  * @state: PM transition of the system being carried out.
375  *
376  * Runtime PM is disabled for @dev while this function is being executed.
377  */
pm_late_early_op(const struct dev_pm_ops * ops,pm_message_t state)378 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
379 				      pm_message_t state)
380 {
381 	switch (state.event) {
382 #ifdef CONFIG_SUSPEND
383 	case PM_EVENT_SUSPEND:
384 		return ops->suspend_late;
385 	case PM_EVENT_RESUME:
386 		return ops->resume_early;
387 #endif /* CONFIG_SUSPEND */
388 #ifdef CONFIG_HIBERNATE_CALLBACKS
389 	case PM_EVENT_FREEZE:
390 	case PM_EVENT_QUIESCE:
391 		return ops->freeze_late;
392 	case PM_EVENT_HIBERNATE:
393 		return ops->poweroff_late;
394 	case PM_EVENT_THAW:
395 	case PM_EVENT_RECOVER:
396 		return ops->thaw_early;
397 	case PM_EVENT_RESTORE:
398 		return ops->restore_early;
399 #endif /* CONFIG_HIBERNATE_CALLBACKS */
400 	}
401 
402 	return NULL;
403 }
404 
405 /**
406  * pm_noirq_op - Return the PM operation appropriate for given PM event.
407  * @ops: PM operations to choose from.
408  * @state: PM transition of the system being carried out.
409  *
410  * The driver of @dev will not receive interrupts while this function is being
411  * executed.
412  */
pm_noirq_op(const struct dev_pm_ops * ops,pm_message_t state)413 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
414 {
415 	switch (state.event) {
416 #ifdef CONFIG_SUSPEND
417 	case PM_EVENT_SUSPEND:
418 		return ops->suspend_noirq;
419 	case PM_EVENT_RESUME:
420 		return ops->resume_noirq;
421 #endif /* CONFIG_SUSPEND */
422 #ifdef CONFIG_HIBERNATE_CALLBACKS
423 	case PM_EVENT_FREEZE:
424 	case PM_EVENT_QUIESCE:
425 		return ops->freeze_noirq;
426 	case PM_EVENT_HIBERNATE:
427 		return ops->poweroff_noirq;
428 	case PM_EVENT_THAW:
429 	case PM_EVENT_RECOVER:
430 		return ops->thaw_noirq;
431 	case PM_EVENT_RESTORE:
432 		return ops->restore_noirq;
433 #endif /* CONFIG_HIBERNATE_CALLBACKS */
434 	}
435 
436 	return NULL;
437 }
438 
pm_dev_dbg(struct device * dev,pm_message_t state,const char * info)439 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
440 {
441 	dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event),
442 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
443 		", may wakeup" : "", dev->power.driver_flags);
444 }
445 
pm_dev_err(struct device * dev,pm_message_t state,const char * info,int error)446 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
447 			int error)
448 {
449 	dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info,
450 		error);
451 }
452 
dpm_show_time(ktime_t starttime,pm_message_t state,int error,const char * info)453 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
454 			  const char *info)
455 {
456 	ktime_t calltime;
457 	u64 usecs64;
458 	int usecs;
459 
460 	calltime = ktime_get();
461 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
462 	do_div(usecs64, NSEC_PER_USEC);
463 	usecs = usecs64;
464 	if (usecs == 0)
465 		usecs = 1;
466 
467 	pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
468 		  info ?: "", info ? " " : "", pm_verb(state.event),
469 		  error ? "aborted" : "complete",
470 		  usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
471 }
472 
dpm_run_callback(pm_callback_t cb,struct device * dev,pm_message_t state,const char * info)473 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
474 			    pm_message_t state, const char *info)
475 {
476 	ktime_t calltime;
477 	int error;
478 
479 	if (!cb)
480 		return 0;
481 
482 	calltime = initcall_debug_start(dev, cb);
483 
484 	pm_dev_dbg(dev, state, info);
485 	trace_device_pm_callback_start(dev, info, state.event);
486 	error = cb(dev);
487 	trace_device_pm_callback_end(dev, error);
488 	suspend_report_result(dev, cb, error);
489 
490 	initcall_debug_report(dev, calltime, cb, error);
491 
492 	return error;
493 }
494 
495 #ifdef CONFIG_DPM_WATCHDOG
496 struct dpm_watchdog {
497 	struct device		*dev;
498 	struct task_struct	*tsk;
499 	struct timer_list	timer;
500 	bool			fatal;
501 };
502 
503 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
504 	struct dpm_watchdog wd
505 
506 /**
507  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
508  * @t: The timer that PM watchdog depends on.
509  *
510  * Called when a driver has timed out suspending or resuming.
511  * There's not much we can do here to recover so panic() to
512  * capture a crash-dump in pstore.
513  */
dpm_watchdog_handler(struct timer_list * t)514 static void dpm_watchdog_handler(struct timer_list *t)
515 {
516 	struct dpm_watchdog *wd = timer_container_of(wd, t, timer);
517 	struct timer_list *timer = &wd->timer;
518 	unsigned int time_left;
519 
520 	if (wd->fatal) {
521 		dev_emerg(wd->dev, "**** DPM device timeout ****\n");
522 		show_stack(wd->tsk, NULL, KERN_EMERG);
523 		panic("%s %s: unrecoverable failure\n",
524 			dev_driver_string(wd->dev), dev_name(wd->dev));
525 	}
526 
527 	time_left = CONFIG_DPM_WATCHDOG_TIMEOUT - CONFIG_DPM_WATCHDOG_WARNING_TIMEOUT;
528 	dev_warn(wd->dev, "**** DPM device timeout after %u seconds; %u seconds until panic ****\n",
529 		 CONFIG_DPM_WATCHDOG_WARNING_TIMEOUT, time_left);
530 	show_stack(wd->tsk, NULL, KERN_WARNING);
531 
532 	wd->fatal = true;
533 	mod_timer(timer, jiffies + HZ * time_left);
534 }
535 
536 /**
537  * dpm_watchdog_set - Enable pm watchdog for given device.
538  * @wd: Watchdog. Must be allocated on the stack.
539  * @dev: Device to handle.
540  */
dpm_watchdog_set(struct dpm_watchdog * wd,struct device * dev)541 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
542 {
543 	struct timer_list *timer = &wd->timer;
544 
545 	wd->dev = dev;
546 	wd->tsk = current;
547 	wd->fatal = CONFIG_DPM_WATCHDOG_TIMEOUT == CONFIG_DPM_WATCHDOG_WARNING_TIMEOUT;
548 
549 	timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
550 	/* use same timeout value for both suspend and resume */
551 	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_WARNING_TIMEOUT;
552 	add_timer(timer);
553 }
554 
555 /**
556  * dpm_watchdog_clear - Disable suspend/resume watchdog.
557  * @wd: Watchdog to disable.
558  */
dpm_watchdog_clear(struct dpm_watchdog * wd)559 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
560 {
561 	struct timer_list *timer = &wd->timer;
562 
563 	timer_delete_sync(timer);
564 	timer_destroy_on_stack(timer);
565 }
566 #else
567 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
568 #define dpm_watchdog_set(x, y)
569 #define dpm_watchdog_clear(x)
570 #endif
571 
572 /*------------------------- Resume routines -------------------------*/
573 
574 /**
575  * dev_pm_skip_resume - System-wide device resume optimization check.
576  * @dev: Target device.
577  *
578  * Return:
579  * - %false if the transition under way is RESTORE.
580  * - Return value of dev_pm_skip_suspend() if the transition under way is THAW.
581  * - The logical negation of %power.must_resume otherwise (that is, when the
582  *   transition under way is RESUME).
583  */
dev_pm_skip_resume(struct device * dev)584 bool dev_pm_skip_resume(struct device *dev)
585 {
586 	if (pm_transition.event == PM_EVENT_RESTORE)
587 		return false;
588 
589 	if (pm_transition.event == PM_EVENT_THAW)
590 		return dev_pm_skip_suspend(dev);
591 
592 	return !dev->power.must_resume;
593 }
594 
is_async(struct device * dev)595 static bool is_async(struct device *dev)
596 {
597 	return dev->power.async_suspend && pm_async_enabled
598 		&& !pm_trace_is_enabled();
599 }
600 
__dpm_async(struct device * dev,async_func_t func)601 static bool __dpm_async(struct device *dev, async_func_t func)
602 {
603 	if (dev->power.work_in_progress)
604 		return true;
605 
606 	if (!is_async(dev))
607 		return false;
608 
609 	dev->power.work_in_progress = true;
610 
611 	get_device(dev);
612 
613 	if (async_schedule_dev_nocall(func, dev))
614 		return true;
615 
616 	put_device(dev);
617 
618 	return false;
619 }
620 
dpm_async_fn(struct device * dev,async_func_t func)621 static bool dpm_async_fn(struct device *dev, async_func_t func)
622 {
623 	guard(mutex)(&async_wip_mtx);
624 
625 	return __dpm_async(dev, func);
626 }
627 
dpm_async_with_cleanup(struct device * dev,void * fn)628 static int dpm_async_with_cleanup(struct device *dev, void *fn)
629 {
630 	guard(mutex)(&async_wip_mtx);
631 
632 	if (!__dpm_async(dev, fn))
633 		dev->power.work_in_progress = false;
634 
635 	return 0;
636 }
637 
dpm_async_resume_children(struct device * dev,async_func_t func)638 static void dpm_async_resume_children(struct device *dev, async_func_t func)
639 {
640 	/*
641 	 * Prevent racing with dpm_clear_async_state() during initial list
642 	 * walks in dpm_noirq_resume_devices(), dpm_resume_early(), and
643 	 * dpm_resume().
644 	 */
645 	guard(mutex)(&dpm_list_mtx);
646 
647 	/*
648 	 * Start processing "async" children of the device unless it's been
649 	 * started already for them.
650 	 *
651 	 * This could have been done for the device's "async" consumers too, but
652 	 * they either need to wait for their parents or the processing has
653 	 * already started for them after their parents were processed.
654 	 */
655 	device_for_each_child(dev, func, dpm_async_with_cleanup);
656 }
657 
dpm_clear_async_state(struct device * dev)658 static void dpm_clear_async_state(struct device *dev)
659 {
660 	reinit_completion(&dev->power.completion);
661 	dev->power.work_in_progress = false;
662 }
663 
dpm_root_device(struct device * dev)664 static bool dpm_root_device(struct device *dev)
665 {
666 	return !dev->parent;
667 }
668 
669 static void async_resume_noirq(void *data, async_cookie_t cookie);
670 
671 /**
672  * device_resume_noirq - Execute a "noirq resume" callback for given device.
673  * @dev: Device to handle.
674  * @state: PM transition of the system being carried out.
675  * @async: If true, the device is being resumed asynchronously.
676  *
677  * The driver of @dev will not receive interrupts while this function is being
678  * executed.
679  */
device_resume_noirq(struct device * dev,pm_message_t state,bool async)680 static void device_resume_noirq(struct device *dev, pm_message_t state, bool async)
681 {
682 	pm_callback_t callback = NULL;
683 	const char *info = NULL;
684 	bool skip_resume;
685 	int error = 0;
686 
687 	TRACE_DEVICE(dev);
688 	TRACE_RESUME(0);
689 
690 	if (dev->power.syscore || dev->power.direct_complete)
691 		goto Out;
692 
693 	if (!dev->power.is_noirq_suspended)
694 		goto Out;
695 
696 	if (!dpm_wait_for_superior(dev, async))
697 		goto Out;
698 
699 	skip_resume = dev_pm_skip_resume(dev);
700 	/*
701 	 * If the driver callback is skipped below or by the middle layer
702 	 * callback and device_resume_early() also skips the driver callback for
703 	 * this device later, it needs to appear as "suspended" to PM-runtime,
704 	 * so change its status accordingly.
705 	 *
706 	 * Otherwise, the device is going to be resumed, so set its PM-runtime
707 	 * status to "active" unless its power.smart_suspend flag is clear, in
708 	 * which case it is not necessary to update its PM-runtime status.
709 	 */
710 	if (skip_resume)
711 		pm_runtime_set_suspended(dev);
712 	else if (dev_pm_smart_suspend(dev))
713 		pm_runtime_set_active(dev);
714 
715 	if (dev->pm_domain) {
716 		info = "noirq power domain ";
717 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
718 	} else if (dev->type && dev->type->pm) {
719 		info = "noirq type ";
720 		callback = pm_noirq_op(dev->type->pm, state);
721 	} else if (dev->class && dev->class->pm) {
722 		info = "noirq class ";
723 		callback = pm_noirq_op(dev->class->pm, state);
724 	} else if (dev->bus && dev->bus->pm) {
725 		info = "noirq bus ";
726 		callback = pm_noirq_op(dev->bus->pm, state);
727 	}
728 	if (callback)
729 		goto Run;
730 
731 	if (skip_resume)
732 		goto Skip;
733 
734 	if (dev->driver && dev->driver->pm) {
735 		info = "noirq driver ";
736 		callback = pm_noirq_op(dev->driver->pm, state);
737 	}
738 
739 Run:
740 	error = dpm_run_callback(callback, dev, state, info);
741 
742 Skip:
743 	dev->power.is_noirq_suspended = false;
744 
745 Out:
746 	complete_all(&dev->power.completion);
747 	TRACE_RESUME(error);
748 
749 	if (error) {
750 		async_error = error;
751 		dpm_save_failed_dev(dev_name(dev));
752 		pm_dev_err(dev, state, async ? " async noirq" : " noirq", error);
753 	}
754 
755 	dpm_async_resume_children(dev, async_resume_noirq);
756 }
757 
async_resume_noirq(void * data,async_cookie_t cookie)758 static void async_resume_noirq(void *data, async_cookie_t cookie)
759 {
760 	struct device *dev = data;
761 
762 	device_resume_noirq(dev, pm_transition, true);
763 	put_device(dev);
764 }
765 
dpm_noirq_resume_devices(pm_message_t state)766 static void dpm_noirq_resume_devices(pm_message_t state)
767 {
768 	struct device *dev;
769 	ktime_t starttime = ktime_get();
770 
771 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
772 
773 	async_error = 0;
774 	pm_transition = state;
775 
776 	mutex_lock(&dpm_list_mtx);
777 
778 	/*
779 	 * Start processing "async" root devices upfront so they don't wait for
780 	 * the "sync" devices they don't depend on.
781 	 */
782 	list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
783 		dpm_clear_async_state(dev);
784 		if (dpm_root_device(dev))
785 			dpm_async_with_cleanup(dev, async_resume_noirq);
786 	}
787 
788 	while (!list_empty(&dpm_noirq_list)) {
789 		dev = to_device(dpm_noirq_list.next);
790 		list_move_tail(&dev->power.entry, &dpm_late_early_list);
791 
792 		if (!dpm_async_fn(dev, async_resume_noirq)) {
793 			get_device(dev);
794 
795 			mutex_unlock(&dpm_list_mtx);
796 
797 			device_resume_noirq(dev, state, false);
798 
799 			put_device(dev);
800 
801 			mutex_lock(&dpm_list_mtx);
802 		}
803 	}
804 	mutex_unlock(&dpm_list_mtx);
805 	async_synchronize_full();
806 	dpm_show_time(starttime, state, 0, "noirq");
807 	if (async_error)
808 		dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
809 
810 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
811 }
812 
813 /**
814  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
815  * @state: PM transition of the system being carried out.
816  *
817  * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
818  * allow device drivers' interrupt handlers to be called.
819  */
dpm_resume_noirq(pm_message_t state)820 void dpm_resume_noirq(pm_message_t state)
821 {
822 	dpm_noirq_resume_devices(state);
823 
824 	resume_device_irqs();
825 	device_wakeup_disarm_wake_irqs();
826 }
827 
828 static void async_resume_early(void *data, async_cookie_t cookie);
829 
830 /**
831  * device_resume_early - Execute an "early resume" callback for given device.
832  * @dev: Device to handle.
833  * @state: PM transition of the system being carried out.
834  * @async: If true, the device is being resumed asynchronously.
835  *
836  * Runtime PM is disabled for @dev while this function is being executed.
837  */
device_resume_early(struct device * dev,pm_message_t state,bool async)838 static void device_resume_early(struct device *dev, pm_message_t state, bool async)
839 {
840 	pm_callback_t callback = NULL;
841 	const char *info = NULL;
842 	int error = 0;
843 
844 	TRACE_DEVICE(dev);
845 	TRACE_RESUME(0);
846 
847 	if (dev->power.syscore || dev->power.direct_complete)
848 		goto Out;
849 
850 	if (!dev->power.is_late_suspended)
851 		goto Out;
852 
853 	if (!dpm_wait_for_superior(dev, async))
854 		goto Out;
855 
856 	if (dev->pm_domain) {
857 		info = "early power domain ";
858 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
859 	} else if (dev->type && dev->type->pm) {
860 		info = "early type ";
861 		callback = pm_late_early_op(dev->type->pm, state);
862 	} else if (dev->class && dev->class->pm) {
863 		info = "early class ";
864 		callback = pm_late_early_op(dev->class->pm, state);
865 	} else if (dev->bus && dev->bus->pm) {
866 		info = "early bus ";
867 		callback = pm_late_early_op(dev->bus->pm, state);
868 	}
869 	if (callback)
870 		goto Run;
871 
872 	if (dev_pm_skip_resume(dev))
873 		goto Skip;
874 
875 	if (dev->driver && dev->driver->pm) {
876 		info = "early driver ";
877 		callback = pm_late_early_op(dev->driver->pm, state);
878 	}
879 
880 Run:
881 	error = dpm_run_callback(callback, dev, state, info);
882 
883 Skip:
884 	dev->power.is_late_suspended = false;
885 
886 Out:
887 	TRACE_RESUME(error);
888 
889 	pm_runtime_enable(dev);
890 	complete_all(&dev->power.completion);
891 
892 	if (error) {
893 		async_error = error;
894 		dpm_save_failed_dev(dev_name(dev));
895 		pm_dev_err(dev, state, async ? " async early" : " early", error);
896 	}
897 
898 	dpm_async_resume_children(dev, async_resume_early);
899 }
900 
async_resume_early(void * data,async_cookie_t cookie)901 static void async_resume_early(void *data, async_cookie_t cookie)
902 {
903 	struct device *dev = data;
904 
905 	device_resume_early(dev, pm_transition, true);
906 	put_device(dev);
907 }
908 
909 /**
910  * dpm_resume_early - Execute "early resume" callbacks for all devices.
911  * @state: PM transition of the system being carried out.
912  */
dpm_resume_early(pm_message_t state)913 void dpm_resume_early(pm_message_t state)
914 {
915 	struct device *dev;
916 	ktime_t starttime = ktime_get();
917 
918 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
919 
920 	async_error = 0;
921 	pm_transition = state;
922 
923 	mutex_lock(&dpm_list_mtx);
924 
925 	/*
926 	 * Start processing "async" root devices upfront so they don't wait for
927 	 * the "sync" devices they don't depend on.
928 	 */
929 	list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
930 		dpm_clear_async_state(dev);
931 		if (dpm_root_device(dev))
932 			dpm_async_with_cleanup(dev, async_resume_early);
933 	}
934 
935 	while (!list_empty(&dpm_late_early_list)) {
936 		dev = to_device(dpm_late_early_list.next);
937 		list_move_tail(&dev->power.entry, &dpm_suspended_list);
938 
939 		if (!dpm_async_fn(dev, async_resume_early)) {
940 			get_device(dev);
941 
942 			mutex_unlock(&dpm_list_mtx);
943 
944 			device_resume_early(dev, state, false);
945 
946 			put_device(dev);
947 
948 			mutex_lock(&dpm_list_mtx);
949 		}
950 	}
951 	mutex_unlock(&dpm_list_mtx);
952 	async_synchronize_full();
953 	dpm_show_time(starttime, state, 0, "early");
954 	if (async_error)
955 		dpm_save_failed_step(SUSPEND_RESUME_EARLY);
956 
957 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
958 }
959 
960 /**
961  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
962  * @state: PM transition of the system being carried out.
963  */
dpm_resume_start(pm_message_t state)964 void dpm_resume_start(pm_message_t state)
965 {
966 	dpm_resume_noirq(state);
967 	dpm_resume_early(state);
968 }
969 EXPORT_SYMBOL_GPL(dpm_resume_start);
970 
971 static void async_resume(void *data, async_cookie_t cookie);
972 
973 /**
974  * device_resume - Execute "resume" callbacks for given device.
975  * @dev: Device to handle.
976  * @state: PM transition of the system being carried out.
977  * @async: If true, the device is being resumed asynchronously.
978  */
device_resume(struct device * dev,pm_message_t state,bool async)979 static void device_resume(struct device *dev, pm_message_t state, bool async)
980 {
981 	pm_callback_t callback = NULL;
982 	const char *info = NULL;
983 	int error = 0;
984 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
985 
986 	TRACE_DEVICE(dev);
987 	TRACE_RESUME(0);
988 
989 	if (dev->power.syscore)
990 		goto Complete;
991 
992 	if (!dev->power.is_suspended)
993 		goto Complete;
994 
995 	dev->power.is_suspended = false;
996 
997 	if (dev->power.direct_complete) {
998 		/*
999 		 * Allow new children to be added under the device after this
1000 		 * point if it has no PM callbacks.
1001 		 */
1002 		if (dev->power.no_pm_callbacks)
1003 			dev->power.is_prepared = false;
1004 
1005 		/* Match the pm_runtime_disable() in device_suspend(). */
1006 		pm_runtime_enable(dev);
1007 		goto Complete;
1008 	}
1009 
1010 	if (!dpm_wait_for_superior(dev, async))
1011 		goto Complete;
1012 
1013 	dpm_watchdog_set(&wd, dev);
1014 	device_lock(dev);
1015 
1016 	/*
1017 	 * This is a fib.  But we'll allow new children to be added below
1018 	 * a resumed device, even if the device hasn't been completed yet.
1019 	 */
1020 	dev->power.is_prepared = false;
1021 
1022 	if (dev->pm_domain) {
1023 		info = "power domain ";
1024 		callback = pm_op(&dev->pm_domain->ops, state);
1025 		goto Driver;
1026 	}
1027 
1028 	if (dev->type && dev->type->pm) {
1029 		info = "type ";
1030 		callback = pm_op(dev->type->pm, state);
1031 		goto Driver;
1032 	}
1033 
1034 	if (dev->class && dev->class->pm) {
1035 		info = "class ";
1036 		callback = pm_op(dev->class->pm, state);
1037 		goto Driver;
1038 	}
1039 
1040 	if (dev->bus) {
1041 		if (dev->bus->pm) {
1042 			info = "bus ";
1043 			callback = pm_op(dev->bus->pm, state);
1044 		} else if (dev->bus->resume) {
1045 			info = "legacy bus ";
1046 			callback = dev->bus->resume;
1047 			goto End;
1048 		}
1049 	}
1050 
1051  Driver:
1052 	if (!callback && dev->driver && dev->driver->pm) {
1053 		info = "driver ";
1054 		callback = pm_op(dev->driver->pm, state);
1055 	}
1056 
1057  End:
1058 	error = dpm_run_callback(callback, dev, state, info);
1059 
1060 	device_unlock(dev);
1061 	dpm_watchdog_clear(&wd);
1062 
1063  Complete:
1064 	complete_all(&dev->power.completion);
1065 
1066 	TRACE_RESUME(error);
1067 
1068 	if (error) {
1069 		async_error = error;
1070 		dpm_save_failed_dev(dev_name(dev));
1071 		pm_dev_err(dev, state, async ? " async" : "", error);
1072 	}
1073 
1074 	dpm_async_resume_children(dev, async_resume);
1075 }
1076 
async_resume(void * data,async_cookie_t cookie)1077 static void async_resume(void *data, async_cookie_t cookie)
1078 {
1079 	struct device *dev = data;
1080 
1081 	device_resume(dev, pm_transition, true);
1082 	put_device(dev);
1083 }
1084 
1085 /**
1086  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
1087  * @state: PM transition of the system being carried out.
1088  *
1089  * Execute the appropriate "resume" callback for all devices whose status
1090  * indicates that they are suspended.
1091  */
dpm_resume(pm_message_t state)1092 void dpm_resume(pm_message_t state)
1093 {
1094 	struct device *dev;
1095 	ktime_t starttime = ktime_get();
1096 
1097 	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1098 	might_sleep();
1099 
1100 	pm_transition = state;
1101 	async_error = 0;
1102 
1103 	mutex_lock(&dpm_list_mtx);
1104 
1105 	/*
1106 	 * Start processing "async" root devices upfront so they don't wait for
1107 	 * the "sync" devices they don't depend on.
1108 	 */
1109 	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
1110 		dpm_clear_async_state(dev);
1111 		if (dpm_root_device(dev))
1112 			dpm_async_with_cleanup(dev, async_resume);
1113 	}
1114 
1115 	while (!list_empty(&dpm_suspended_list)) {
1116 		dev = to_device(dpm_suspended_list.next);
1117 		list_move_tail(&dev->power.entry, &dpm_prepared_list);
1118 
1119 		if (!dpm_async_fn(dev, async_resume)) {
1120 			get_device(dev);
1121 
1122 			mutex_unlock(&dpm_list_mtx);
1123 
1124 			device_resume(dev, state, false);
1125 
1126 			put_device(dev);
1127 
1128 			mutex_lock(&dpm_list_mtx);
1129 		}
1130 	}
1131 	mutex_unlock(&dpm_list_mtx);
1132 	async_synchronize_full();
1133 	dpm_show_time(starttime, state, 0, NULL);
1134 	if (async_error)
1135 		dpm_save_failed_step(SUSPEND_RESUME);
1136 
1137 	cpufreq_resume();
1138 	devfreq_resume();
1139 	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1140 }
1141 
1142 /**
1143  * device_complete - Complete a PM transition for given device.
1144  * @dev: Device to handle.
1145  * @state: PM transition of the system being carried out.
1146  */
device_complete(struct device * dev,pm_message_t state)1147 static void device_complete(struct device *dev, pm_message_t state)
1148 {
1149 	void (*callback)(struct device *) = NULL;
1150 	const char *info = NULL;
1151 
1152 	if (dev->power.syscore)
1153 		goto out;
1154 
1155 	device_lock(dev);
1156 
1157 	if (dev->pm_domain) {
1158 		info = "completing power domain ";
1159 		callback = dev->pm_domain->ops.complete;
1160 	} else if (dev->type && dev->type->pm) {
1161 		info = "completing type ";
1162 		callback = dev->type->pm->complete;
1163 	} else if (dev->class && dev->class->pm) {
1164 		info = "completing class ";
1165 		callback = dev->class->pm->complete;
1166 	} else if (dev->bus && dev->bus->pm) {
1167 		info = "completing bus ";
1168 		callback = dev->bus->pm->complete;
1169 	}
1170 
1171 	if (!callback && dev->driver && dev->driver->pm) {
1172 		info = "completing driver ";
1173 		callback = dev->driver->pm->complete;
1174 	}
1175 
1176 	if (callback) {
1177 		pm_dev_dbg(dev, state, info);
1178 		callback(dev);
1179 	}
1180 
1181 	device_unlock(dev);
1182 
1183 out:
1184 	/* If enabling runtime PM for the device is blocked, unblock it. */
1185 	pm_runtime_unblock(dev);
1186 	pm_runtime_put(dev);
1187 }
1188 
1189 /**
1190  * dpm_complete - Complete a PM transition for all non-sysdev devices.
1191  * @state: PM transition of the system being carried out.
1192  *
1193  * Execute the ->complete() callbacks for all devices whose PM status is not
1194  * DPM_ON (this allows new devices to be registered).
1195  */
dpm_complete(pm_message_t state)1196 void dpm_complete(pm_message_t state)
1197 {
1198 	struct list_head list;
1199 
1200 	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1201 	might_sleep();
1202 
1203 	INIT_LIST_HEAD(&list);
1204 	mutex_lock(&dpm_list_mtx);
1205 	while (!list_empty(&dpm_prepared_list)) {
1206 		struct device *dev = to_device(dpm_prepared_list.prev);
1207 
1208 		get_device(dev);
1209 		dev->power.is_prepared = false;
1210 		list_move(&dev->power.entry, &list);
1211 
1212 		mutex_unlock(&dpm_list_mtx);
1213 
1214 		trace_device_pm_callback_start(dev, "", state.event);
1215 		device_complete(dev, state);
1216 		trace_device_pm_callback_end(dev, 0);
1217 
1218 		put_device(dev);
1219 
1220 		mutex_lock(&dpm_list_mtx);
1221 	}
1222 	list_splice(&list, &dpm_list);
1223 	mutex_unlock(&dpm_list_mtx);
1224 
1225 	/* Allow device probing and trigger re-probing of deferred devices */
1226 	device_unblock_probing();
1227 	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1228 }
1229 
1230 /**
1231  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1232  * @state: PM transition of the system being carried out.
1233  *
1234  * Execute "resume" callbacks for all devices and complete the PM transition of
1235  * the system.
1236  */
dpm_resume_end(pm_message_t state)1237 void dpm_resume_end(pm_message_t state)
1238 {
1239 	dpm_resume(state);
1240 	dpm_complete(state);
1241 }
1242 EXPORT_SYMBOL_GPL(dpm_resume_end);
1243 
1244 
1245 /*------------------------- Suspend routines -------------------------*/
1246 
dpm_leaf_device(struct device * dev)1247 static bool dpm_leaf_device(struct device *dev)
1248 {
1249 	struct device *child;
1250 
1251 	lockdep_assert_held(&dpm_list_mtx);
1252 
1253 	child = device_find_any_child(dev);
1254 	if (child) {
1255 		put_device(child);
1256 
1257 		return false;
1258 	}
1259 
1260 	return true;
1261 }
1262 
dpm_async_suspend_parent(struct device * dev,async_func_t func)1263 static void dpm_async_suspend_parent(struct device *dev, async_func_t func)
1264 {
1265 	guard(mutex)(&dpm_list_mtx);
1266 
1267 	/*
1268 	 * If the device is suspended asynchronously and the parent's callback
1269 	 * deletes both the device and the parent itself, the parent object may
1270 	 * be freed while this function is running, so avoid that by checking
1271 	 * if the device has been deleted already as the parent cannot be
1272 	 * deleted before it.
1273 	 */
1274 	if (!device_pm_initialized(dev))
1275 		return;
1276 
1277 	/* Start processing the device's parent if it is "async". */
1278 	if (dev->parent)
1279 		dpm_async_with_cleanup(dev->parent, func);
1280 }
1281 
1282 /**
1283  * resume_event - Return a "resume" message for given "suspend" sleep state.
1284  * @sleep_state: PM message representing a sleep state.
1285  *
1286  * Return a PM message representing the resume event corresponding to given
1287  * sleep state.
1288  */
resume_event(pm_message_t sleep_state)1289 static pm_message_t resume_event(pm_message_t sleep_state)
1290 {
1291 	switch (sleep_state.event) {
1292 	case PM_EVENT_SUSPEND:
1293 		return PMSG_RESUME;
1294 	case PM_EVENT_FREEZE:
1295 	case PM_EVENT_QUIESCE:
1296 		return PMSG_RECOVER;
1297 	case PM_EVENT_HIBERNATE:
1298 		return PMSG_RESTORE;
1299 	}
1300 	return PMSG_ON;
1301 }
1302 
dpm_superior_set_must_resume(struct device * dev)1303 static void dpm_superior_set_must_resume(struct device *dev)
1304 {
1305 	struct device_link *link;
1306 	int idx;
1307 
1308 	if (dev->parent)
1309 		dev->parent->power.must_resume = true;
1310 
1311 	idx = device_links_read_lock();
1312 
1313 	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
1314 		link->supplier->power.must_resume = true;
1315 
1316 	device_links_read_unlock(idx);
1317 }
1318 
1319 static void async_suspend_noirq(void *data, async_cookie_t cookie);
1320 
1321 /**
1322  * device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1323  * @dev: Device to handle.
1324  * @state: PM transition of the system being carried out.
1325  * @async: If true, the device is being suspended asynchronously.
1326  *
1327  * The driver of @dev will not receive interrupts while this function is being
1328  * executed.
1329  */
device_suspend_noirq(struct device * dev,pm_message_t state,bool async)1330 static int device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1331 {
1332 	pm_callback_t callback = NULL;
1333 	const char *info = NULL;
1334 	int error = 0;
1335 
1336 	TRACE_DEVICE(dev);
1337 	TRACE_SUSPEND(0);
1338 
1339 	dpm_wait_for_subordinate(dev, async);
1340 
1341 	if (async_error)
1342 		goto Complete;
1343 
1344 	if (dev->power.syscore || dev->power.direct_complete)
1345 		goto Complete;
1346 
1347 	if (dev->pm_domain) {
1348 		info = "noirq power domain ";
1349 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1350 	} else if (dev->type && dev->type->pm) {
1351 		info = "noirq type ";
1352 		callback = pm_noirq_op(dev->type->pm, state);
1353 	} else if (dev->class && dev->class->pm) {
1354 		info = "noirq class ";
1355 		callback = pm_noirq_op(dev->class->pm, state);
1356 	} else if (dev->bus && dev->bus->pm) {
1357 		info = "noirq bus ";
1358 		callback = pm_noirq_op(dev->bus->pm, state);
1359 	}
1360 	if (callback)
1361 		goto Run;
1362 
1363 	if (dev_pm_skip_suspend(dev))
1364 		goto Skip;
1365 
1366 	if (dev->driver && dev->driver->pm) {
1367 		info = "noirq driver ";
1368 		callback = pm_noirq_op(dev->driver->pm, state);
1369 	}
1370 
1371 Run:
1372 	error = dpm_run_callback(callback, dev, state, info);
1373 	if (error) {
1374 		async_error = error;
1375 		dpm_save_failed_dev(dev_name(dev));
1376 		pm_dev_err(dev, state, async ? " async noirq" : " noirq", error);
1377 		goto Complete;
1378 	}
1379 
1380 Skip:
1381 	dev->power.is_noirq_suspended = true;
1382 
1383 	/*
1384 	 * Devices must be resumed unless they are explicitly allowed to be left
1385 	 * in suspend, but even in that case skipping the resume of devices that
1386 	 * were in use right before the system suspend (as indicated by their
1387 	 * runtime PM usage counters and child counters) would be suboptimal.
1388 	 */
1389 	if (!(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) &&
1390 	      dev->power.may_skip_resume) || !pm_runtime_need_not_resume(dev))
1391 		dev->power.must_resume = true;
1392 
1393 	if (dev->power.must_resume)
1394 		dpm_superior_set_must_resume(dev);
1395 
1396 Complete:
1397 	complete_all(&dev->power.completion);
1398 	TRACE_SUSPEND(error);
1399 
1400 	if (error || async_error)
1401 		return error;
1402 
1403 	dpm_async_suspend_parent(dev, async_suspend_noirq);
1404 
1405 	return 0;
1406 }
1407 
async_suspend_noirq(void * data,async_cookie_t cookie)1408 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1409 {
1410 	struct device *dev = data;
1411 
1412 	device_suspend_noirq(dev, pm_transition, true);
1413 	put_device(dev);
1414 }
1415 
dpm_noirq_suspend_devices(pm_message_t state)1416 static int dpm_noirq_suspend_devices(pm_message_t state)
1417 {
1418 	ktime_t starttime = ktime_get();
1419 	struct device *dev;
1420 	int error = 0;
1421 
1422 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1423 
1424 	pm_transition = state;
1425 	async_error = 0;
1426 
1427 	mutex_lock(&dpm_list_mtx);
1428 
1429 	/*
1430 	 * Start processing "async" leaf devices upfront so they don't need to
1431 	 * wait for the "sync" devices they don't depend on.
1432 	 */
1433 	list_for_each_entry_reverse(dev, &dpm_late_early_list, power.entry) {
1434 		dpm_clear_async_state(dev);
1435 		if (dpm_leaf_device(dev))
1436 			dpm_async_with_cleanup(dev, async_suspend_noirq);
1437 	}
1438 
1439 	while (!list_empty(&dpm_late_early_list)) {
1440 		dev = to_device(dpm_late_early_list.prev);
1441 
1442 		list_move(&dev->power.entry, &dpm_noirq_list);
1443 
1444 		if (dpm_async_fn(dev, async_suspend_noirq))
1445 			continue;
1446 
1447 		get_device(dev);
1448 
1449 		mutex_unlock(&dpm_list_mtx);
1450 
1451 		error = device_suspend_noirq(dev, state, false);
1452 
1453 		put_device(dev);
1454 
1455 		mutex_lock(&dpm_list_mtx);
1456 
1457 		if (error || async_error) {
1458 			/*
1459 			 * Move all devices to the target list to resume them
1460 			 * properly.
1461 			 */
1462 			list_splice_init(&dpm_late_early_list, &dpm_noirq_list);
1463 			break;
1464 		}
1465 	}
1466 
1467 	mutex_unlock(&dpm_list_mtx);
1468 
1469 	async_synchronize_full();
1470 	if (!error)
1471 		error = async_error;
1472 
1473 	if (error)
1474 		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1475 
1476 	dpm_show_time(starttime, state, error, "noirq");
1477 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1478 	return error;
1479 }
1480 
1481 /**
1482  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1483  * @state: PM transition of the system being carried out.
1484  *
1485  * Prevent device drivers' interrupt handlers from being called and invoke
1486  * "noirq" suspend callbacks for all non-sysdev devices.
1487  */
dpm_suspend_noirq(pm_message_t state)1488 int dpm_suspend_noirq(pm_message_t state)
1489 {
1490 	int ret;
1491 
1492 	device_wakeup_arm_wake_irqs();
1493 	suspend_device_irqs();
1494 
1495 	ret = dpm_noirq_suspend_devices(state);
1496 	if (ret)
1497 		dpm_resume_noirq(resume_event(state));
1498 
1499 	return ret;
1500 }
1501 
dpm_propagate_wakeup_to_parent(struct device * dev)1502 static void dpm_propagate_wakeup_to_parent(struct device *dev)
1503 {
1504 	struct device *parent = dev->parent;
1505 
1506 	if (!parent)
1507 		return;
1508 
1509 	spin_lock_irq(&parent->power.lock);
1510 
1511 	if (device_wakeup_path(dev) && !parent->power.ignore_children)
1512 		parent->power.wakeup_path = true;
1513 
1514 	spin_unlock_irq(&parent->power.lock);
1515 }
1516 
1517 static void async_suspend_late(void *data, async_cookie_t cookie);
1518 
1519 /**
1520  * device_suspend_late - Execute a "late suspend" callback for given device.
1521  * @dev: Device to handle.
1522  * @state: PM transition of the system being carried out.
1523  * @async: If true, the device is being suspended asynchronously.
1524  *
1525  * Runtime PM is disabled for @dev while this function is being executed.
1526  */
device_suspend_late(struct device * dev,pm_message_t state,bool async)1527 static int device_suspend_late(struct device *dev, pm_message_t state, bool async)
1528 {
1529 	pm_callback_t callback = NULL;
1530 	const char *info = NULL;
1531 	int error = 0;
1532 
1533 	TRACE_DEVICE(dev);
1534 	TRACE_SUSPEND(0);
1535 
1536 	/*
1537 	 * Disable runtime PM for the device without checking if there is a
1538 	 * pending resume request for it.
1539 	 */
1540 	__pm_runtime_disable(dev, false);
1541 
1542 	dpm_wait_for_subordinate(dev, async);
1543 
1544 	if (async_error)
1545 		goto Complete;
1546 
1547 	if (pm_wakeup_pending()) {
1548 		async_error = -EBUSY;
1549 		goto Complete;
1550 	}
1551 
1552 	if (dev->power.syscore || dev->power.direct_complete)
1553 		goto Complete;
1554 
1555 	if (dev->pm_domain) {
1556 		info = "late power domain ";
1557 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1558 	} else if (dev->type && dev->type->pm) {
1559 		info = "late type ";
1560 		callback = pm_late_early_op(dev->type->pm, state);
1561 	} else if (dev->class && dev->class->pm) {
1562 		info = "late class ";
1563 		callback = pm_late_early_op(dev->class->pm, state);
1564 	} else if (dev->bus && dev->bus->pm) {
1565 		info = "late bus ";
1566 		callback = pm_late_early_op(dev->bus->pm, state);
1567 	}
1568 	if (callback)
1569 		goto Run;
1570 
1571 	if (dev_pm_skip_suspend(dev))
1572 		goto Skip;
1573 
1574 	if (dev->driver && dev->driver->pm) {
1575 		info = "late driver ";
1576 		callback = pm_late_early_op(dev->driver->pm, state);
1577 	}
1578 
1579 Run:
1580 	error = dpm_run_callback(callback, dev, state, info);
1581 	if (error) {
1582 		async_error = error;
1583 		dpm_save_failed_dev(dev_name(dev));
1584 		pm_dev_err(dev, state, async ? " async late" : " late", error);
1585 		goto Complete;
1586 	}
1587 	dpm_propagate_wakeup_to_parent(dev);
1588 
1589 Skip:
1590 	dev->power.is_late_suspended = true;
1591 
1592 Complete:
1593 	TRACE_SUSPEND(error);
1594 	complete_all(&dev->power.completion);
1595 
1596 	if (error || async_error)
1597 		return error;
1598 
1599 	dpm_async_suspend_parent(dev, async_suspend_late);
1600 
1601 	return 0;
1602 }
1603 
async_suspend_late(void * data,async_cookie_t cookie)1604 static void async_suspend_late(void *data, async_cookie_t cookie)
1605 {
1606 	struct device *dev = data;
1607 
1608 	device_suspend_late(dev, pm_transition, true);
1609 	put_device(dev);
1610 }
1611 
1612 /**
1613  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1614  * @state: PM transition of the system being carried out.
1615  */
dpm_suspend_late(pm_message_t state)1616 int dpm_suspend_late(pm_message_t state)
1617 {
1618 	ktime_t starttime = ktime_get();
1619 	struct device *dev;
1620 	int error = 0;
1621 
1622 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1623 
1624 	pm_transition = state;
1625 	async_error = 0;
1626 
1627 	wake_up_all_idle_cpus();
1628 
1629 	mutex_lock(&dpm_list_mtx);
1630 
1631 	/*
1632 	 * Start processing "async" leaf devices upfront so they don't need to
1633 	 * wait for the "sync" devices they don't depend on.
1634 	 */
1635 	list_for_each_entry_reverse(dev, &dpm_suspended_list, power.entry) {
1636 		dpm_clear_async_state(dev);
1637 		if (dpm_leaf_device(dev))
1638 			dpm_async_with_cleanup(dev, async_suspend_late);
1639 	}
1640 
1641 	while (!list_empty(&dpm_suspended_list)) {
1642 		dev = to_device(dpm_suspended_list.prev);
1643 
1644 		list_move(&dev->power.entry, &dpm_late_early_list);
1645 
1646 		if (dpm_async_fn(dev, async_suspend_late))
1647 			continue;
1648 
1649 		get_device(dev);
1650 
1651 		mutex_unlock(&dpm_list_mtx);
1652 
1653 		error = device_suspend_late(dev, state, false);
1654 
1655 		put_device(dev);
1656 
1657 		mutex_lock(&dpm_list_mtx);
1658 
1659 		if (error || async_error) {
1660 			/*
1661 			 * Move all devices to the target list to resume them
1662 			 * properly.
1663 			 */
1664 			list_splice_init(&dpm_suspended_list, &dpm_late_early_list);
1665 			break;
1666 		}
1667 	}
1668 
1669 	mutex_unlock(&dpm_list_mtx);
1670 
1671 	async_synchronize_full();
1672 	if (!error)
1673 		error = async_error;
1674 
1675 	if (error) {
1676 		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1677 		dpm_resume_early(resume_event(state));
1678 	}
1679 	dpm_show_time(starttime, state, error, "late");
1680 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1681 	return error;
1682 }
1683 
1684 /**
1685  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1686  * @state: PM transition of the system being carried out.
1687  */
dpm_suspend_end(pm_message_t state)1688 int dpm_suspend_end(pm_message_t state)
1689 {
1690 	ktime_t starttime = ktime_get();
1691 	int error;
1692 
1693 	error = dpm_suspend_late(state);
1694 	if (error)
1695 		goto out;
1696 
1697 	error = dpm_suspend_noirq(state);
1698 	if (error)
1699 		dpm_resume_early(resume_event(state));
1700 
1701 out:
1702 	dpm_show_time(starttime, state, error, "end");
1703 	return error;
1704 }
1705 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1706 
1707 /**
1708  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1709  * @dev: Device to suspend.
1710  * @state: PM transition of the system being carried out.
1711  * @cb: Suspend callback to execute.
1712  * @info: string description of caller.
1713  */
legacy_suspend(struct device * dev,pm_message_t state,int (* cb)(struct device * dev,pm_message_t state),const char * info)1714 static int legacy_suspend(struct device *dev, pm_message_t state,
1715 			  int (*cb)(struct device *dev, pm_message_t state),
1716 			  const char *info)
1717 {
1718 	int error;
1719 	ktime_t calltime;
1720 
1721 	calltime = initcall_debug_start(dev, cb);
1722 
1723 	trace_device_pm_callback_start(dev, info, state.event);
1724 	error = cb(dev, state);
1725 	trace_device_pm_callback_end(dev, error);
1726 	suspend_report_result(dev, cb, error);
1727 
1728 	initcall_debug_report(dev, calltime, cb, error);
1729 
1730 	return error;
1731 }
1732 
dpm_clear_superiors_direct_complete(struct device * dev)1733 static void dpm_clear_superiors_direct_complete(struct device *dev)
1734 {
1735 	struct device_link *link;
1736 	int idx;
1737 
1738 	if (dev->parent) {
1739 		spin_lock_irq(&dev->parent->power.lock);
1740 		dev->parent->power.direct_complete = false;
1741 		spin_unlock_irq(&dev->parent->power.lock);
1742 	}
1743 
1744 	idx = device_links_read_lock();
1745 
1746 	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) {
1747 		spin_lock_irq(&link->supplier->power.lock);
1748 		link->supplier->power.direct_complete = false;
1749 		spin_unlock_irq(&link->supplier->power.lock);
1750 	}
1751 
1752 	device_links_read_unlock(idx);
1753 }
1754 
1755 static void async_suspend(void *data, async_cookie_t cookie);
1756 
1757 /**
1758  * device_suspend - Execute "suspend" callbacks for given device.
1759  * @dev: Device to handle.
1760  * @state: PM transition of the system being carried out.
1761  * @async: If true, the device is being suspended asynchronously.
1762  */
device_suspend(struct device * dev,pm_message_t state,bool async)1763 static int device_suspend(struct device *dev, pm_message_t state, bool async)
1764 {
1765 	pm_callback_t callback = NULL;
1766 	const char *info = NULL;
1767 	int error = 0;
1768 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1769 
1770 	TRACE_DEVICE(dev);
1771 	TRACE_SUSPEND(0);
1772 
1773 	dpm_wait_for_subordinate(dev, async);
1774 
1775 	if (async_error) {
1776 		dev->power.direct_complete = false;
1777 		goto Complete;
1778 	}
1779 
1780 	/*
1781 	 * Wait for possible runtime PM transitions of the device in progress
1782 	 * to complete and if there's a runtime resume request pending for it,
1783 	 * resume it before proceeding with invoking the system-wide suspend
1784 	 * callbacks for it.
1785 	 *
1786 	 * If the system-wide suspend callbacks below change the configuration
1787 	 * of the device, they must disable runtime PM for it or otherwise
1788 	 * ensure that its runtime-resume callbacks will not be confused by that
1789 	 * change in case they are invoked going forward.
1790 	 */
1791 	pm_runtime_barrier(dev);
1792 
1793 	if (pm_wakeup_pending()) {
1794 		dev->power.direct_complete = false;
1795 		async_error = -EBUSY;
1796 		goto Complete;
1797 	}
1798 
1799 	if (dev->power.syscore)
1800 		goto Complete;
1801 
1802 	/* Avoid direct_complete to let wakeup_path propagate. */
1803 	if (device_may_wakeup(dev) || device_wakeup_path(dev))
1804 		dev->power.direct_complete = false;
1805 
1806 	if (dev->power.direct_complete) {
1807 		if (pm_runtime_status_suspended(dev)) {
1808 			pm_runtime_disable(dev);
1809 			if (pm_runtime_status_suspended(dev)) {
1810 				pm_dev_dbg(dev, state, "direct-complete ");
1811 				dev->power.is_suspended = true;
1812 				goto Complete;
1813 			}
1814 
1815 			pm_runtime_enable(dev);
1816 		}
1817 		dev->power.direct_complete = false;
1818 	}
1819 
1820 	dev->power.may_skip_resume = true;
1821 	dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME);
1822 
1823 	dpm_watchdog_set(&wd, dev);
1824 	device_lock(dev);
1825 
1826 	if (dev->pm_domain) {
1827 		info = "power domain ";
1828 		callback = pm_op(&dev->pm_domain->ops, state);
1829 		goto Run;
1830 	}
1831 
1832 	if (dev->type && dev->type->pm) {
1833 		info = "type ";
1834 		callback = pm_op(dev->type->pm, state);
1835 		goto Run;
1836 	}
1837 
1838 	if (dev->class && dev->class->pm) {
1839 		info = "class ";
1840 		callback = pm_op(dev->class->pm, state);
1841 		goto Run;
1842 	}
1843 
1844 	if (dev->bus) {
1845 		if (dev->bus->pm) {
1846 			info = "bus ";
1847 			callback = pm_op(dev->bus->pm, state);
1848 		} else if (dev->bus->suspend) {
1849 			pm_dev_dbg(dev, state, "legacy bus ");
1850 			error = legacy_suspend(dev, state, dev->bus->suspend,
1851 						"legacy bus ");
1852 			goto End;
1853 		}
1854 	}
1855 
1856  Run:
1857 	if (!callback && dev->driver && dev->driver->pm) {
1858 		info = "driver ";
1859 		callback = pm_op(dev->driver->pm, state);
1860 	}
1861 
1862 	error = dpm_run_callback(callback, dev, state, info);
1863 
1864  End:
1865 	if (!error) {
1866 		dev->power.is_suspended = true;
1867 		if (device_may_wakeup(dev))
1868 			dev->power.wakeup_path = true;
1869 
1870 		dpm_propagate_wakeup_to_parent(dev);
1871 		dpm_clear_superiors_direct_complete(dev);
1872 	}
1873 
1874 	device_unlock(dev);
1875 	dpm_watchdog_clear(&wd);
1876 
1877  Complete:
1878 	if (error) {
1879 		async_error = error;
1880 		dpm_save_failed_dev(dev_name(dev));
1881 		pm_dev_err(dev, state, async ? " async" : "", error);
1882 	}
1883 
1884 	complete_all(&dev->power.completion);
1885 	TRACE_SUSPEND(error);
1886 
1887 	if (error || async_error)
1888 		return error;
1889 
1890 	dpm_async_suspend_parent(dev, async_suspend);
1891 
1892 	return 0;
1893 }
1894 
async_suspend(void * data,async_cookie_t cookie)1895 static void async_suspend(void *data, async_cookie_t cookie)
1896 {
1897 	struct device *dev = data;
1898 
1899 	device_suspend(dev, pm_transition, true);
1900 	put_device(dev);
1901 }
1902 
1903 /**
1904  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1905  * @state: PM transition of the system being carried out.
1906  */
dpm_suspend(pm_message_t state)1907 int dpm_suspend(pm_message_t state)
1908 {
1909 	ktime_t starttime = ktime_get();
1910 	struct device *dev;
1911 	int error = 0;
1912 
1913 	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1914 	might_sleep();
1915 
1916 	devfreq_suspend();
1917 	cpufreq_suspend();
1918 
1919 	pm_transition = state;
1920 	async_error = 0;
1921 
1922 	mutex_lock(&dpm_list_mtx);
1923 
1924 	/*
1925 	 * Start processing "async" leaf devices upfront so they don't need to
1926 	 * wait for the "sync" devices they don't depend on.
1927 	 */
1928 	list_for_each_entry_reverse(dev, &dpm_prepared_list, power.entry) {
1929 		dpm_clear_async_state(dev);
1930 		if (dpm_leaf_device(dev))
1931 			dpm_async_with_cleanup(dev, async_suspend);
1932 	}
1933 
1934 	while (!list_empty(&dpm_prepared_list)) {
1935 		dev = to_device(dpm_prepared_list.prev);
1936 
1937 		list_move(&dev->power.entry, &dpm_suspended_list);
1938 
1939 		if (dpm_async_fn(dev, async_suspend))
1940 			continue;
1941 
1942 		get_device(dev);
1943 
1944 		mutex_unlock(&dpm_list_mtx);
1945 
1946 		error = device_suspend(dev, state, false);
1947 
1948 		put_device(dev);
1949 
1950 		mutex_lock(&dpm_list_mtx);
1951 
1952 		if (error || async_error) {
1953 			/*
1954 			 * Move all devices to the target list to resume them
1955 			 * properly.
1956 			 */
1957 			list_splice_init(&dpm_prepared_list, &dpm_suspended_list);
1958 			break;
1959 		}
1960 	}
1961 
1962 	mutex_unlock(&dpm_list_mtx);
1963 
1964 	async_synchronize_full();
1965 	if (!error)
1966 		error = async_error;
1967 
1968 	if (error)
1969 		dpm_save_failed_step(SUSPEND_SUSPEND);
1970 
1971 	dpm_show_time(starttime, state, error, NULL);
1972 	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1973 	return error;
1974 }
1975 
device_prepare_smart_suspend(struct device * dev)1976 static bool device_prepare_smart_suspend(struct device *dev)
1977 {
1978 	struct device_link *link;
1979 	bool ret = true;
1980 	int idx;
1981 
1982 	/*
1983 	 * The "smart suspend" feature is enabled for devices whose drivers ask
1984 	 * for it and for devices without PM callbacks.
1985 	 *
1986 	 * However, if "smart suspend" is not enabled for the device's parent
1987 	 * or any of its suppliers that take runtime PM into account, it cannot
1988 	 * be enabled for the device either.
1989 	 */
1990 	if (!dev->power.no_pm_callbacks &&
1991 	    !dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND))
1992 		return false;
1993 
1994 	if (dev->parent && !dev_pm_smart_suspend(dev->parent) &&
1995 	    !dev->parent->power.ignore_children && !pm_runtime_blocked(dev->parent))
1996 		return false;
1997 
1998 	idx = device_links_read_lock();
1999 
2000 	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) {
2001 		if (!(link->flags & DL_FLAG_PM_RUNTIME))
2002 			continue;
2003 
2004 		if (!dev_pm_smart_suspend(link->supplier) &&
2005 		    !pm_runtime_blocked(link->supplier)) {
2006 			ret = false;
2007 			break;
2008 		}
2009 	}
2010 
2011 	device_links_read_unlock(idx);
2012 
2013 	return ret;
2014 }
2015 
2016 /**
2017  * device_prepare - Prepare a device for system power transition.
2018  * @dev: Device to handle.
2019  * @state: PM transition of the system being carried out.
2020  *
2021  * Execute the ->prepare() callback(s) for given device.  No new children of the
2022  * device may be registered after this function has returned.
2023  */
device_prepare(struct device * dev,pm_message_t state)2024 static int device_prepare(struct device *dev, pm_message_t state)
2025 {
2026 	int (*callback)(struct device *) = NULL;
2027 	bool smart_suspend;
2028 	int ret = 0;
2029 
2030 	/*
2031 	 * If a device's parent goes into runtime suspend at the wrong time,
2032 	 * it won't be possible to resume the device.  To prevent this we
2033 	 * block runtime suspend here, during the prepare phase, and allow
2034 	 * it again during the complete phase.
2035 	 */
2036 	pm_runtime_get_noresume(dev);
2037 	/*
2038 	 * If runtime PM is disabled for the device at this point and it has
2039 	 * never been enabled so far, it should not be enabled until this system
2040 	 * suspend-resume cycle is complete, so prepare to trigger a warning on
2041 	 * subsequent attempts to enable it.
2042 	 */
2043 	smart_suspend = !pm_runtime_block_if_disabled(dev);
2044 
2045 	if (dev->power.syscore)
2046 		return 0;
2047 
2048 	device_lock(dev);
2049 
2050 	dev->power.wakeup_path = false;
2051 
2052 	if (dev->power.no_pm_callbacks)
2053 		goto unlock;
2054 
2055 	if (dev->pm_domain)
2056 		callback = dev->pm_domain->ops.prepare;
2057 	else if (dev->type && dev->type->pm)
2058 		callback = dev->type->pm->prepare;
2059 	else if (dev->class && dev->class->pm)
2060 		callback = dev->class->pm->prepare;
2061 	else if (dev->bus && dev->bus->pm)
2062 		callback = dev->bus->pm->prepare;
2063 
2064 	if (!callback && dev->driver && dev->driver->pm)
2065 		callback = dev->driver->pm->prepare;
2066 
2067 	if (callback)
2068 		ret = callback(dev);
2069 
2070 unlock:
2071 	device_unlock(dev);
2072 
2073 	if (ret < 0) {
2074 		suspend_report_result(dev, callback, ret);
2075 		pm_runtime_put(dev);
2076 		return ret;
2077 	}
2078 	/* Do not enable "smart suspend" for devices with disabled runtime PM. */
2079 	if (smart_suspend)
2080 		smart_suspend = device_prepare_smart_suspend(dev);
2081 
2082 	spin_lock_irq(&dev->power.lock);
2083 
2084 	dev->power.smart_suspend = smart_suspend;
2085 	/*
2086 	 * A positive return value from ->prepare() means "this device appears
2087 	 * to be runtime-suspended and its state is fine, so if it really is
2088 	 * runtime-suspended, you can leave it in that state provided that you
2089 	 * will do the same thing with all of its descendants".  This only
2090 	 * applies to suspend transitions, however.
2091 	 */
2092 	dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
2093 		(ret > 0 || dev->power.no_pm_callbacks) &&
2094 		!dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
2095 
2096 	spin_unlock_irq(&dev->power.lock);
2097 
2098 	return 0;
2099 }
2100 
2101 /**
2102  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
2103  * @state: PM transition of the system being carried out.
2104  *
2105  * Execute the ->prepare() callback(s) for all devices.
2106  */
dpm_prepare(pm_message_t state)2107 int dpm_prepare(pm_message_t state)
2108 {
2109 	int error = 0;
2110 
2111 	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
2112 	might_sleep();
2113 
2114 	/*
2115 	 * Give a chance for the known devices to complete their probes, before
2116 	 * disable probing of devices. This sync point is important at least
2117 	 * at boot time + hibernation restore.
2118 	 */
2119 	wait_for_device_probe();
2120 	/*
2121 	 * It is unsafe if probing of devices will happen during suspend or
2122 	 * hibernation and system behavior will be unpredictable in this case.
2123 	 * So, let's prohibit device's probing here and defer their probes
2124 	 * instead. The normal behavior will be restored in dpm_complete().
2125 	 */
2126 	device_block_probing();
2127 
2128 	mutex_lock(&dpm_list_mtx);
2129 	while (!list_empty(&dpm_list) && !error) {
2130 		struct device *dev = to_device(dpm_list.next);
2131 
2132 		get_device(dev);
2133 
2134 		mutex_unlock(&dpm_list_mtx);
2135 
2136 		trace_device_pm_callback_start(dev, "", state.event);
2137 		error = device_prepare(dev, state);
2138 		trace_device_pm_callback_end(dev, error);
2139 
2140 		mutex_lock(&dpm_list_mtx);
2141 
2142 		if (!error) {
2143 			dev->power.is_prepared = true;
2144 			if (!list_empty(&dev->power.entry))
2145 				list_move_tail(&dev->power.entry, &dpm_prepared_list);
2146 		} else if (error == -EAGAIN) {
2147 			error = 0;
2148 		} else {
2149 			dev_info(dev, "not prepared for power transition: code %d\n",
2150 				 error);
2151 		}
2152 
2153 		mutex_unlock(&dpm_list_mtx);
2154 
2155 		put_device(dev);
2156 
2157 		mutex_lock(&dpm_list_mtx);
2158 	}
2159 	mutex_unlock(&dpm_list_mtx);
2160 	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
2161 	return error;
2162 }
2163 
2164 /**
2165  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
2166  * @state: PM transition of the system being carried out.
2167  *
2168  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
2169  * callbacks for them.
2170  */
dpm_suspend_start(pm_message_t state)2171 int dpm_suspend_start(pm_message_t state)
2172 {
2173 	ktime_t starttime = ktime_get();
2174 	int error;
2175 
2176 	error = dpm_prepare(state);
2177 	if (error)
2178 		dpm_save_failed_step(SUSPEND_PREPARE);
2179 	else
2180 		error = dpm_suspend(state);
2181 
2182 	dpm_show_time(starttime, state, error, "start");
2183 	return error;
2184 }
2185 EXPORT_SYMBOL_GPL(dpm_suspend_start);
2186 
__suspend_report_result(const char * function,struct device * dev,void * fn,int ret)2187 void __suspend_report_result(const char *function, struct device *dev, void *fn, int ret)
2188 {
2189 	if (ret)
2190 		dev_err(dev, "%s(): %ps returns %d\n", function, fn, ret);
2191 }
2192 EXPORT_SYMBOL_GPL(__suspend_report_result);
2193 
2194 /**
2195  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
2196  * @subordinate: Device that needs to wait for @dev.
2197  * @dev: Device to wait for.
2198  */
device_pm_wait_for_dev(struct device * subordinate,struct device * dev)2199 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
2200 {
2201 	dpm_wait(dev, subordinate->power.async_suspend);
2202 	return async_error;
2203 }
2204 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
2205 
2206 /**
2207  * dpm_for_each_dev - device iterator.
2208  * @data: data for the callback.
2209  * @fn: function to be called for each device.
2210  *
2211  * Iterate over devices in dpm_list, and call @fn for each device,
2212  * passing it @data.
2213  */
dpm_for_each_dev(void * data,void (* fn)(struct device *,void *))2214 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
2215 {
2216 	struct device *dev;
2217 
2218 	if (!fn)
2219 		return;
2220 
2221 	device_pm_lock();
2222 	list_for_each_entry(dev, &dpm_list, power.entry)
2223 		fn(dev, data);
2224 	device_pm_unlock();
2225 }
2226 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
2227 
pm_ops_is_empty(const struct dev_pm_ops * ops)2228 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
2229 {
2230 	if (!ops)
2231 		return true;
2232 
2233 	return !ops->prepare &&
2234 	       !ops->suspend &&
2235 	       !ops->suspend_late &&
2236 	       !ops->suspend_noirq &&
2237 	       !ops->resume_noirq &&
2238 	       !ops->resume_early &&
2239 	       !ops->resume &&
2240 	       !ops->complete;
2241 }
2242 
device_pm_check_callbacks(struct device * dev)2243 void device_pm_check_callbacks(struct device *dev)
2244 {
2245 	unsigned long flags;
2246 
2247 	spin_lock_irqsave(&dev->power.lock, flags);
2248 	dev->power.no_pm_callbacks =
2249 		(!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2250 		 !dev->bus->suspend && !dev->bus->resume)) &&
2251 		(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2252 		(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2253 		(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2254 		(!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2255 		 !dev->driver->suspend && !dev->driver->resume));
2256 	spin_unlock_irqrestore(&dev->power.lock, flags);
2257 }
2258 
dev_pm_skip_suspend(struct device * dev)2259 bool dev_pm_skip_suspend(struct device *dev)
2260 {
2261 	return dev_pm_smart_suspend(dev) && pm_runtime_status_suspended(dev);
2262 }
2263