1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/ratelimit.h>
26 #include <linux/printk.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/types.h>
30 #include <linux/bitops.h>
31 #include <linux/sched.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_mqd_manager.h"
35 #include "cik_regs.h"
36 #include "kfd_kernel_queue.h"
37 #include "amdgpu_amdkfd.h"
38 #include "amdgpu_reset.h"
39 #include "amdgpu_sdma.h"
40 #include "mes_v11_api_def.h"
41 #include "kfd_debug.h"
42
43 /* Size of the per-pipe EOP queue */
44 #define CIK_HPD_EOP_BYTES_LOG2 11
45 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
46 /* See unmap_queues_cpsch() */
47 #define USE_DEFAULT_GRACE_PERIOD 0xffffffff
48
49 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
50 u32 pasid, unsigned int vmid);
51
52 static int execute_queues_cpsch(struct device_queue_manager *dqm,
53 enum kfd_unmap_queues_filter filter,
54 uint32_t filter_param,
55 uint32_t grace_period);
56 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
57 enum kfd_unmap_queues_filter filter,
58 uint32_t filter_param,
59 uint32_t grace_period,
60 bool reset);
61
62 static int map_queues_cpsch(struct device_queue_manager *dqm);
63
64 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
65 struct queue *q);
66
67 static inline void deallocate_hqd(struct device_queue_manager *dqm,
68 struct queue *q);
69 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
70 static int allocate_sdma_queue(struct device_queue_manager *dqm,
71 struct queue *q, const uint32_t *restore_sdma_id);
72
73 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma);
74
75 static inline
get_mqd_type_from_queue_type(enum kfd_queue_type type)76 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
77 {
78 if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
79 return KFD_MQD_TYPE_SDMA;
80 return KFD_MQD_TYPE_CP;
81 }
82
is_pipe_enabled(struct device_queue_manager * dqm,int mec,int pipe)83 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
84 {
85 int i;
86 int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec
87 + pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe;
88
89 /* queue is available for KFD usage if bit is 1 */
90 for (i = 0; i < dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i)
91 if (test_bit(pipe_offset + i,
92 dqm->dev->kfd->shared_resources.cp_queue_bitmap))
93 return true;
94 return false;
95 }
96
get_cp_queues_num(struct device_queue_manager * dqm)97 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
98 {
99 return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap,
100 AMDGPU_MAX_QUEUES);
101 }
102
get_queues_per_pipe(struct device_queue_manager * dqm)103 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
104 {
105 return dqm->dev->kfd->shared_resources.num_queue_per_pipe;
106 }
107
get_pipes_per_mec(struct device_queue_manager * dqm)108 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
109 {
110 return dqm->dev->kfd->shared_resources.num_pipe_per_mec;
111 }
112
get_num_all_sdma_engines(struct device_queue_manager * dqm)113 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
114 {
115 return kfd_get_num_sdma_engines(dqm->dev) +
116 kfd_get_num_xgmi_sdma_engines(dqm->dev);
117 }
118
get_num_sdma_queues(struct device_queue_manager * dqm)119 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
120 {
121 return kfd_get_num_sdma_engines(dqm->dev) *
122 dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
123 }
124
get_num_xgmi_sdma_queues(struct device_queue_manager * dqm)125 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
126 {
127 return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
128 dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
129 }
130
init_sdma_bitmaps(struct device_queue_manager * dqm)131 static void init_sdma_bitmaps(struct device_queue_manager *dqm)
132 {
133 bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES);
134 bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm));
135
136 bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES);
137 bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm));
138
139 /* Mask out the reserved queues */
140 bitmap_clear(dqm->sdma_bitmap, 0, kfd_get_num_sdma_engines(dqm->dev) *
141 dqm->dev->kfd->device_info.num_reserved_sdma_queues_per_engine);
142 bitmap_clear(dqm->xgmi_sdma_bitmap, 0, kfd_get_num_xgmi_sdma_engines(dqm->dev) *
143 dqm->dev->kfd->device_info.num_reserved_sdma_queues_per_engine);
144 }
145
program_sh_mem_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)146 void program_sh_mem_settings(struct device_queue_manager *dqm,
147 struct qcm_process_device *qpd)
148 {
149 uint32_t xcc_mask = dqm->dev->xcc_mask;
150 int xcc_id;
151
152 for_each_inst(xcc_id, xcc_mask)
153 dqm->dev->kfd2kgd->program_sh_mem_settings(
154 dqm->dev->adev, qpd->vmid, qpd->sh_mem_config,
155 qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit,
156 qpd->sh_mem_bases, xcc_id);
157 }
158
kfd_hws_hang(struct device_queue_manager * dqm)159 static void kfd_hws_hang(struct device_queue_manager *dqm)
160 {
161 struct device_process_node *cur;
162 struct qcm_process_device *qpd;
163 struct queue *q;
164
165 /* Mark all device queues as reset. */
166 list_for_each_entry(cur, &dqm->queues, list) {
167 qpd = cur->qpd;
168 list_for_each_entry(q, &qpd->queues_list, list) {
169 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
170
171 pdd->has_reset_queue = true;
172 }
173 }
174
175 /*
176 * Issue a GPU reset if HWS is unresponsive
177 */
178 amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
179 }
180
convert_to_mes_queue_type(int queue_type)181 static int convert_to_mes_queue_type(int queue_type)
182 {
183 int mes_queue_type;
184
185 switch (queue_type) {
186 case KFD_QUEUE_TYPE_COMPUTE:
187 mes_queue_type = MES_QUEUE_TYPE_COMPUTE;
188 break;
189 case KFD_QUEUE_TYPE_SDMA:
190 mes_queue_type = MES_QUEUE_TYPE_SDMA;
191 break;
192 default:
193 WARN(1, "Invalid queue type %d", queue_type);
194 mes_queue_type = -EINVAL;
195 break;
196 }
197
198 return mes_queue_type;
199 }
200
add_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)201 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q,
202 struct qcm_process_device *qpd)
203 {
204 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
205 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
206 struct mes_add_queue_input queue_input;
207 int r, queue_type;
208 uint64_t wptr_addr_off;
209
210 if (!dqm->sched_running || dqm->sched_halt)
211 return 0;
212 if (!down_read_trylock(&adev->reset_domain->sem))
213 return -EIO;
214
215 memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input));
216 queue_input.process_id = pdd->pasid;
217 queue_input.page_table_base_addr = qpd->page_table_base;
218 queue_input.process_va_start = 0;
219 queue_input.process_va_end = adev->vm_manager.max_pfn - 1;
220 /* MES unit for quantum is 100ns */
221 queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM; /* Equivalent to 10ms. */
222 queue_input.process_context_addr = pdd->proc_ctx_gpu_addr;
223 queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */
224 queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
225 queue_input.inprocess_gang_priority = q->properties.priority;
226 queue_input.gang_global_priority_level =
227 AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
228 queue_input.doorbell_offset = q->properties.doorbell_off;
229 queue_input.mqd_addr = q->gart_mqd_addr;
230 queue_input.wptr_addr = (uint64_t)q->properties.write_ptr;
231
232 wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1);
233 queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->properties.wptr_bo) + wptr_addr_off;
234
235 queue_input.is_kfd_process = 1;
236 queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL);
237 queue_input.queue_size = q->properties.queue_size >> 2;
238
239 queue_input.paging = false;
240 queue_input.tba_addr = qpd->tba_addr;
241 queue_input.tma_addr = qpd->tma_addr;
242 queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device);
243 queue_input.skip_process_ctx_clear =
244 qpd->pqm->process->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED &&
245 (qpd->pqm->process->debug_trap_enabled ||
246 kfd_dbg_has_ttmps_always_setup(q->device));
247
248 queue_type = convert_to_mes_queue_type(q->properties.type);
249 if (queue_type < 0) {
250 dev_err(adev->dev, "Queue type not supported with MES, queue:%d\n",
251 q->properties.type);
252 up_read(&adev->reset_domain->sem);
253 return -EINVAL;
254 }
255 queue_input.queue_type = (uint32_t)queue_type;
256
257 queue_input.exclusively_scheduled = q->properties.is_gws;
258 queue_input.sh_mem_config_data = qpd->sh_mem_config;
259 queue_input.vm_cntx_cntl = qpd->vm_cntx_cntl;
260 queue_input.xcc_id = ffs(dqm->dev->xcc_mask) - 1;
261
262 amdgpu_mes_lock(&adev->mes);
263 r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
264 amdgpu_mes_unlock(&adev->mes);
265 up_read(&adev->reset_domain->sem);
266 if (r) {
267 dev_err(adev->dev, "failed to add hardware queue to MES, doorbell=0x%x\n",
268 q->properties.doorbell_off);
269 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
270 kfd_hws_hang(dqm);
271 }
272
273 return r;
274 }
275
remove_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)276 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q,
277 struct qcm_process_device *qpd)
278 {
279 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
280 int r;
281 struct mes_remove_queue_input queue_input;
282
283 if (!dqm->sched_running || dqm->sched_halt)
284 return 0;
285 if (!down_read_trylock(&adev->reset_domain->sem))
286 return -EIO;
287
288 memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input));
289 queue_input.doorbell_offset = q->properties.doorbell_off;
290 queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
291 queue_input.xcc_id = ffs(dqm->dev->xcc_mask) - 1;
292
293 amdgpu_mes_lock(&adev->mes);
294 r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
295 amdgpu_mes_unlock(&adev->mes);
296 up_read(&adev->reset_domain->sem);
297
298 if (r) {
299 dev_err(adev->dev, "failed to remove hardware queue from MES, doorbell=0x%x\n",
300 q->properties.doorbell_off);
301 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
302 kfd_hws_hang(dqm);
303 }
304
305 return r;
306 }
307
remove_all_kfd_queues_mes(struct device_queue_manager * dqm)308 static int remove_all_kfd_queues_mes(struct device_queue_manager *dqm)
309 {
310 struct device_process_node *cur;
311 struct device *dev = dqm->dev->adev->dev;
312 struct qcm_process_device *qpd;
313 struct queue *q;
314 int retval = 0;
315
316 list_for_each_entry(cur, &dqm->queues, list) {
317 qpd = cur->qpd;
318 list_for_each_entry(q, &qpd->queues_list, list) {
319 if (q->properties.is_active) {
320 retval = remove_queue_mes(dqm, q, qpd);
321 if (retval) {
322 dev_err(dev, "%s: Failed to remove queue %d for dev %d",
323 __func__,
324 q->properties.queue_id,
325 dqm->dev->id);
326 return retval;
327 }
328 }
329 }
330 }
331
332 return retval;
333 }
334
add_all_kfd_queues_mes(struct device_queue_manager * dqm)335 static int add_all_kfd_queues_mes(struct device_queue_manager *dqm)
336 {
337 struct device_process_node *cur;
338 struct device *dev = dqm->dev->adev->dev;
339 struct qcm_process_device *qpd;
340 struct queue *q;
341 int retval = 0;
342
343 list_for_each_entry(cur, &dqm->queues, list) {
344 qpd = cur->qpd;
345 list_for_each_entry(q, &qpd->queues_list, list) {
346 if (!q->properties.is_active)
347 continue;
348 retval = add_queue_mes(dqm, q, qpd);
349 if (retval) {
350 dev_err(dev, "%s: Failed to add queue %d for dev %d",
351 __func__,
352 q->properties.queue_id,
353 dqm->dev->id);
354 return retval;
355 }
356 }
357 }
358
359 return retval;
360 }
361
suspend_all_queues_mes(struct device_queue_manager * dqm)362 static int suspend_all_queues_mes(struct device_queue_manager *dqm)
363 {
364 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
365 int r = 0;
366
367 if (!down_read_trylock(&adev->reset_domain->sem))
368 return -EIO;
369
370 r = amdgpu_mes_suspend(adev);
371 up_read(&adev->reset_domain->sem);
372
373 if (r) {
374 dev_err(adev->dev, "failed to suspend gangs from MES\n");
375 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
376 kfd_hws_hang(dqm);
377 }
378
379 return r;
380 }
381
resume_all_queues_mes(struct device_queue_manager * dqm)382 static int resume_all_queues_mes(struct device_queue_manager *dqm)
383 {
384 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
385 int r = 0;
386
387 if (!down_read_trylock(&adev->reset_domain->sem))
388 return -EIO;
389
390 r = amdgpu_mes_resume(adev);
391 up_read(&adev->reset_domain->sem);
392
393 if (r) {
394 dev_err(adev->dev, "failed to resume gangs from MES\n");
395 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
396 kfd_hws_hang(dqm);
397 }
398
399 return r;
400 }
401
increment_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)402 static void increment_queue_count(struct device_queue_manager *dqm,
403 struct qcm_process_device *qpd,
404 struct queue *q)
405 {
406 dqm->active_queue_count++;
407 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
408 dqm->active_cp_queue_count++;
409
410 if (q->properties.is_gws) {
411 dqm->gws_queue_count++;
412 qpd->mapped_gws_queue = true;
413 }
414 }
415
decrement_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)416 static void decrement_queue_count(struct device_queue_manager *dqm,
417 struct qcm_process_device *qpd,
418 struct queue *q)
419 {
420 dqm->active_queue_count--;
421 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
422 dqm->active_cp_queue_count--;
423
424 if (q->properties.is_gws) {
425 dqm->gws_queue_count--;
426 qpd->mapped_gws_queue = false;
427 }
428 }
429
430 /*
431 * Allocate a doorbell ID to this queue.
432 * If doorbell_id is passed in, make sure requested ID is valid then allocate it.
433 */
allocate_doorbell(struct qcm_process_device * qpd,struct queue * q,uint32_t const * restore_id)434 static int allocate_doorbell(struct qcm_process_device *qpd,
435 struct queue *q,
436 uint32_t const *restore_id)
437 {
438 struct kfd_node *dev = qpd->dqm->dev;
439
440 if (!KFD_IS_SOC15(dev)) {
441 /* On pre-SOC15 chips we need to use the queue ID to
442 * preserve the user mode ABI.
443 */
444
445 if (restore_id && *restore_id != q->properties.queue_id)
446 return -EINVAL;
447
448 q->doorbell_id = q->properties.queue_id;
449 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
450 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
451 /* For SDMA queues on SOC15 with 8-byte doorbell, use static
452 * doorbell assignments based on the engine and queue id.
453 * The doobell index distance between RLC (2*i) and (2*i+1)
454 * for a SDMA engine is 512.
455 */
456
457 uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx;
458
459 /*
460 * q->properties.sdma_engine_id corresponds to the virtual
461 * sdma engine number. However, for doorbell allocation,
462 * we need the physical sdma engine id in order to get the
463 * correct doorbell offset.
464 */
465 uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id *
466 get_num_all_sdma_engines(qpd->dqm) +
467 q->properties.sdma_engine_id]
468 + (q->properties.sdma_queue_id & 1)
469 * KFD_QUEUE_DOORBELL_MIRROR_OFFSET
470 + (q->properties.sdma_queue_id >> 1);
471
472 if (restore_id && *restore_id != valid_id)
473 return -EINVAL;
474 q->doorbell_id = valid_id;
475 } else {
476 /* For CP queues on SOC15 */
477 if (restore_id) {
478 /* make sure that ID is free */
479 if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
480 return -EINVAL;
481
482 q->doorbell_id = *restore_id;
483 } else {
484 /* or reserve a free doorbell ID */
485 unsigned int found;
486
487 found = find_first_zero_bit(qpd->doorbell_bitmap,
488 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
489 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
490 pr_debug("No doorbells available");
491 return -EBUSY;
492 }
493 set_bit(found, qpd->doorbell_bitmap);
494 q->doorbell_id = found;
495 }
496 }
497
498 q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev,
499 qpd->proc_doorbells,
500 q->doorbell_id,
501 dev->kfd->device_info.doorbell_size);
502 return 0;
503 }
504
deallocate_doorbell(struct qcm_process_device * qpd,struct queue * q)505 static void deallocate_doorbell(struct qcm_process_device *qpd,
506 struct queue *q)
507 {
508 unsigned int old;
509 struct kfd_node *dev = qpd->dqm->dev;
510
511 if (!KFD_IS_SOC15(dev) ||
512 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
513 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
514 return;
515
516 old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
517 WARN_ON(!old);
518 }
519
program_trap_handler_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)520 static void program_trap_handler_settings(struct device_queue_manager *dqm,
521 struct qcm_process_device *qpd)
522 {
523 uint32_t xcc_mask = dqm->dev->xcc_mask;
524 int xcc_id;
525
526 if (dqm->dev->kfd2kgd->program_trap_handler_settings)
527 for_each_inst(xcc_id, xcc_mask)
528 dqm->dev->kfd2kgd->program_trap_handler_settings(
529 dqm->dev->adev, qpd->vmid, qpd->tba_addr,
530 qpd->tma_addr, xcc_id);
531 }
532
allocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)533 static int allocate_vmid(struct device_queue_manager *dqm,
534 struct qcm_process_device *qpd,
535 struct queue *q)
536 {
537 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
538 struct device *dev = dqm->dev->adev->dev;
539 int allocated_vmid = -1, i;
540
541 for (i = dqm->dev->vm_info.first_vmid_kfd;
542 i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
543 if (!dqm->vmid_pasid[i]) {
544 allocated_vmid = i;
545 break;
546 }
547 }
548
549 if (allocated_vmid < 0) {
550 dev_err(dev, "no more vmid to allocate\n");
551 return -ENOSPC;
552 }
553
554 pr_debug("vmid allocated: %d\n", allocated_vmid);
555
556 dqm->vmid_pasid[allocated_vmid] = pdd->pasid;
557
558 set_pasid_vmid_mapping(dqm, pdd->pasid, allocated_vmid);
559
560 qpd->vmid = allocated_vmid;
561 q->properties.vmid = allocated_vmid;
562
563 program_sh_mem_settings(dqm, qpd);
564
565 if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled)
566 program_trap_handler_settings(dqm, qpd);
567
568 /* qpd->page_table_base is set earlier when register_process()
569 * is called, i.e. when the first queue is created.
570 */
571 dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
572 qpd->vmid,
573 qpd->page_table_base);
574 /* invalidate the VM context after pasid and vmid mapping is set up */
575 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
576
577 if (dqm->dev->kfd2kgd->set_scratch_backing_va)
578 dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
579 qpd->sh_hidden_private_base, qpd->vmid);
580
581 return 0;
582 }
583
flush_texture_cache_nocpsch(struct kfd_node * kdev,struct qcm_process_device * qpd)584 static int flush_texture_cache_nocpsch(struct kfd_node *kdev,
585 struct qcm_process_device *qpd)
586 {
587 const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
588 int ret;
589
590 if (!qpd->ib_kaddr)
591 return -ENOMEM;
592
593 ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
594 if (ret)
595 return ret;
596
597 return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
598 qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
599 pmf->release_mem_size / sizeof(uint32_t));
600 }
601
deallocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)602 static void deallocate_vmid(struct device_queue_manager *dqm,
603 struct qcm_process_device *qpd,
604 struct queue *q)
605 {
606 struct device *dev = dqm->dev->adev->dev;
607
608 /* On GFX v7, CP doesn't flush TC at dequeue */
609 if (q->device->adev->asic_type == CHIP_HAWAII)
610 if (flush_texture_cache_nocpsch(q->device, qpd))
611 dev_err(dev, "Failed to flush TC\n");
612
613 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
614
615 /* Release the vmid mapping */
616 set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
617 dqm->vmid_pasid[qpd->vmid] = 0;
618
619 qpd->vmid = 0;
620 q->properties.vmid = 0;
621 }
622
create_queue_nocpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)623 static int create_queue_nocpsch(struct device_queue_manager *dqm,
624 struct queue *q,
625 struct qcm_process_device *qpd,
626 const struct kfd_criu_queue_priv_data *qd,
627 const void *restore_mqd, const void *restore_ctl_stack)
628 {
629 struct mqd_manager *mqd_mgr;
630 int retval;
631
632 dqm_lock(dqm);
633
634 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
635 pr_warn("Can't create new usermode queue because %d queues were already created\n",
636 dqm->total_queue_count);
637 retval = -EPERM;
638 goto out_unlock;
639 }
640
641 if (list_empty(&qpd->queues_list)) {
642 retval = allocate_vmid(dqm, qpd, q);
643 if (retval)
644 goto out_unlock;
645 }
646 q->properties.vmid = qpd->vmid;
647 /*
648 * Eviction state logic: mark all queues as evicted, even ones
649 * not currently active. Restoring inactive queues later only
650 * updates the is_evicted flag but is a no-op otherwise.
651 */
652 q->properties.is_evicted = !!qpd->evicted;
653
654 q->properties.tba_addr = qpd->tba_addr;
655 q->properties.tma_addr = qpd->tma_addr;
656
657 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
658 q->properties.type)];
659 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
660 retval = allocate_hqd(dqm, q);
661 if (retval)
662 goto deallocate_vmid;
663 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
664 q->pipe, q->queue);
665 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
666 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
667 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
668 if (retval)
669 goto deallocate_vmid;
670 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
671 }
672
673 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
674 if (retval)
675 goto out_deallocate_hqd;
676
677 /* Temporarily release dqm lock to avoid a circular lock dependency */
678 dqm_unlock(dqm);
679 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr, &q->properties);
680 dqm_lock(dqm);
681
682 if (!q->mqd_mem_obj) {
683 retval = -ENOMEM;
684 goto out_deallocate_doorbell;
685 }
686
687 if (qd)
688 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
689 &q->properties, restore_mqd, restore_ctl_stack,
690 qd->ctl_stack_size);
691 else
692 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
693 &q->gart_mqd_addr, &q->properties);
694
695 if (q->properties.is_active) {
696 if (!dqm->sched_running) {
697 WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
698 goto add_queue_to_list;
699 }
700
701 if (WARN(q->process->mm != current->mm,
702 "should only run in user thread"))
703 retval = -EFAULT;
704 else
705 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
706 q->queue, &q->properties, current->mm);
707 if (retval)
708 goto out_free_mqd;
709 }
710
711 add_queue_to_list:
712 list_add(&q->list, &qpd->queues_list);
713 qpd->queue_count++;
714 if (q->properties.is_active)
715 increment_queue_count(dqm, qpd, q);
716
717 /*
718 * Unconditionally increment this counter, regardless of the queue's
719 * type or whether the queue is active.
720 */
721 dqm->total_queue_count++;
722 pr_debug("Total of %d queues are accountable so far\n",
723 dqm->total_queue_count);
724 goto out_unlock;
725
726 out_free_mqd:
727 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
728 out_deallocate_doorbell:
729 deallocate_doorbell(qpd, q);
730 out_deallocate_hqd:
731 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
732 deallocate_hqd(dqm, q);
733 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
734 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
735 deallocate_sdma_queue(dqm, q);
736 deallocate_vmid:
737 if (list_empty(&qpd->queues_list))
738 deallocate_vmid(dqm, qpd, q);
739 out_unlock:
740 dqm_unlock(dqm);
741 return retval;
742 }
743
allocate_hqd(struct device_queue_manager * dqm,struct queue * q)744 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
745 {
746 bool set;
747 int pipe, bit, i;
748
749 set = false;
750
751 for (pipe = dqm->next_pipe_to_allocate, i = 0;
752 i < get_pipes_per_mec(dqm);
753 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
754
755 if (!is_pipe_enabled(dqm, 0, pipe))
756 continue;
757
758 if (dqm->allocated_queues[pipe] != 0) {
759 bit = ffs(dqm->allocated_queues[pipe]) - 1;
760 dqm->allocated_queues[pipe] &= ~(1 << bit);
761 q->pipe = pipe;
762 q->queue = bit;
763 set = true;
764 break;
765 }
766 }
767
768 if (!set)
769 return -EBUSY;
770
771 pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
772 /* horizontal hqd allocation */
773 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
774
775 return 0;
776 }
777
deallocate_hqd(struct device_queue_manager * dqm,struct queue * q)778 static inline void deallocate_hqd(struct device_queue_manager *dqm,
779 struct queue *q)
780 {
781 dqm->allocated_queues[q->pipe] |= (1 << q->queue);
782 }
783
784 #define SQ_IND_CMD_CMD_KILL 0x00000003
785 #define SQ_IND_CMD_MODE_BROADCAST 0x00000001
786
dbgdev_wave_reset_wavefronts(struct kfd_node * dev,struct kfd_process * p)787 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p)
788 {
789 int status = 0;
790 unsigned int vmid;
791 uint16_t queried_pasid;
792 union SQ_CMD_BITS reg_sq_cmd;
793 union GRBM_GFX_INDEX_BITS reg_gfx_index;
794 struct kfd_process_device *pdd;
795 int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
796 int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
797 uint32_t xcc_mask = dev->xcc_mask;
798 int xcc_id;
799
800 reg_sq_cmd.u32All = 0;
801 reg_gfx_index.u32All = 0;
802
803 pr_debug("Killing all process wavefronts\n");
804
805 if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) {
806 dev_err(dev->adev->dev, "no vmid pasid mapping supported\n");
807 return -EOPNOTSUPP;
808 }
809
810 /* taking the VMID for that process on the safe way using PDD */
811 pdd = kfd_get_process_device_data(dev, p);
812 if (!pdd)
813 return -EFAULT;
814
815 /* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
816 * ATC_VMID15_PASID_MAPPING
817 * to check which VMID the current process is mapped to.
818 */
819
820 for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
821 status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
822 (dev->adev, vmid, &queried_pasid);
823
824 if (status && queried_pasid == pdd->pasid) {
825 pr_debug("Killing wave fronts of vmid %d and process pid %d\n",
826 vmid, p->lead_thread->pid);
827 break;
828 }
829 }
830
831 if (vmid > last_vmid_to_scan) {
832 dev_err(dev->adev->dev, "Didn't find vmid for process pid %d\n",
833 p->lead_thread->pid);
834 return -EFAULT;
835 }
836
837 reg_gfx_index.bits.sh_broadcast_writes = 1;
838 reg_gfx_index.bits.se_broadcast_writes = 1;
839 reg_gfx_index.bits.instance_broadcast_writes = 1;
840 reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
841 reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
842 reg_sq_cmd.bits.vm_id = vmid;
843
844 for_each_inst(xcc_id, xcc_mask)
845 dev->kfd2kgd->wave_control_execute(
846 dev->adev, reg_gfx_index.u32All,
847 reg_sq_cmd.u32All, xcc_id);
848
849 return 0;
850 }
851
852 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
853 * to avoid asynchronized access
854 */
destroy_queue_nocpsch_locked(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)855 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
856 struct qcm_process_device *qpd,
857 struct queue *q)
858 {
859 int retval;
860 struct mqd_manager *mqd_mgr;
861
862 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
863
864 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
865 deallocate_hqd(dqm, q);
866 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
867 deallocate_sdma_queue(dqm, q);
868 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
869 deallocate_sdma_queue(dqm, q);
870 else {
871 pr_debug("q->properties.type %d is invalid\n",
872 q->properties.type);
873 return -EINVAL;
874 }
875 dqm->total_queue_count--;
876
877 deallocate_doorbell(qpd, q);
878
879 if (!dqm->sched_running) {
880 WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
881 return 0;
882 }
883
884 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
885 KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
886 KFD_UNMAP_LATENCY_MS,
887 q->pipe, q->queue);
888 if (retval == -ETIME)
889 qpd->reset_wavefronts = true;
890
891 list_del(&q->list);
892 if (list_empty(&qpd->queues_list)) {
893 if (qpd->reset_wavefronts) {
894 pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
895 dqm->dev);
896 /* dbgdev_wave_reset_wavefronts has to be called before
897 * deallocate_vmid(), i.e. when vmid is still in use.
898 */
899 dbgdev_wave_reset_wavefronts(dqm->dev,
900 qpd->pqm->process);
901 qpd->reset_wavefronts = false;
902 }
903
904 deallocate_vmid(dqm, qpd, q);
905 }
906 qpd->queue_count--;
907 if (q->properties.is_active)
908 decrement_queue_count(dqm, qpd, q);
909
910 return retval;
911 }
912
destroy_queue_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)913 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
914 struct qcm_process_device *qpd,
915 struct queue *q)
916 {
917 int retval;
918 uint64_t sdma_val = 0;
919 struct device *dev = dqm->dev->adev->dev;
920 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
921 struct mqd_manager *mqd_mgr =
922 dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
923
924 /* Get the SDMA queue stats */
925 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
926 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
927 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
928 &sdma_val);
929 if (retval)
930 dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
931 q->properties.queue_id);
932 }
933
934 dqm_lock(dqm);
935 retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
936 if (!retval)
937 pdd->sdma_past_activity_counter += sdma_val;
938 dqm_unlock(dqm);
939
940 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
941
942 return retval;
943 }
944
update_queue(struct device_queue_manager * dqm,struct queue * q,struct mqd_update_info * minfo)945 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
946 struct mqd_update_info *minfo)
947 {
948 int retval = 0;
949 struct device *dev = dqm->dev->adev->dev;
950 struct mqd_manager *mqd_mgr;
951 struct kfd_process_device *pdd;
952 bool prev_active = false;
953
954 dqm_lock(dqm);
955 pdd = kfd_get_process_device_data(q->device, q->process);
956 if (!pdd) {
957 retval = -ENODEV;
958 goto out_unlock;
959 }
960 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
961 q->properties.type)];
962
963 /* Save previous activity state for counters */
964 prev_active = q->properties.is_active;
965
966 /* Make sure the queue is unmapped before updating the MQD */
967 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
968 if (!dqm->dev->kfd->shared_resources.enable_mes)
969 retval = unmap_queues_cpsch(dqm,
970 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
971 else if (prev_active)
972 retval = remove_queue_mes(dqm, q, &pdd->qpd);
973
974 /* queue is reset so inaccessable */
975 if (pdd->has_reset_queue) {
976 retval = -EACCES;
977 goto out_unlock;
978 }
979
980 if (retval) {
981 dev_err(dev, "unmap queue failed\n");
982 goto out_unlock;
983 }
984 } else if (prev_active &&
985 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
986 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
987 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
988
989 if (!dqm->sched_running) {
990 WARN_ONCE(1, "Update non-HWS queue while stopped\n");
991 goto out_unlock;
992 }
993
994 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
995 (dqm->dev->kfd->cwsr_enabled ?
996 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
997 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
998 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
999 if (retval) {
1000 dev_err(dev, "destroy mqd failed\n");
1001 goto out_unlock;
1002 }
1003 }
1004
1005 mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
1006
1007 /*
1008 * check active state vs. the previous state and modify
1009 * counter accordingly. map_queues_cpsch uses the
1010 * dqm->active_queue_count to determine whether a new runlist must be
1011 * uploaded.
1012 */
1013 if (q->properties.is_active && !prev_active) {
1014 increment_queue_count(dqm, &pdd->qpd, q);
1015 } else if (!q->properties.is_active && prev_active) {
1016 decrement_queue_count(dqm, &pdd->qpd, q);
1017 } else if (q->gws && !q->properties.is_gws) {
1018 if (q->properties.is_active) {
1019 dqm->gws_queue_count++;
1020 pdd->qpd.mapped_gws_queue = true;
1021 }
1022 q->properties.is_gws = true;
1023 } else if (!q->gws && q->properties.is_gws) {
1024 if (q->properties.is_active) {
1025 dqm->gws_queue_count--;
1026 pdd->qpd.mapped_gws_queue = false;
1027 }
1028 q->properties.is_gws = false;
1029 }
1030
1031 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
1032 if (!dqm->dev->kfd->shared_resources.enable_mes)
1033 retval = map_queues_cpsch(dqm);
1034 else if (q->properties.is_active)
1035 retval = add_queue_mes(dqm, q, &pdd->qpd);
1036 } else if (q->properties.is_active &&
1037 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
1038 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1039 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1040 if (WARN(q->process->mm != current->mm,
1041 "should only run in user thread"))
1042 retval = -EFAULT;
1043 else
1044 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
1045 q->pipe, q->queue,
1046 &q->properties, current->mm);
1047 }
1048
1049 out_unlock:
1050 dqm_unlock(dqm);
1051 return retval;
1052 }
1053
1054 /* suspend_single_queue does not lock the dqm like the
1055 * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should
1056 * lock the dqm before calling, and unlock after calling.
1057 *
1058 * The reason we don't lock the dqm is because this function may be
1059 * called on multiple queues in a loop, so rather than locking/unlocking
1060 * multiple times, we will just keep the dqm locked for all of the calls.
1061 */
suspend_single_queue(struct device_queue_manager * dqm,struct kfd_process_device * pdd,struct queue * q)1062 static int suspend_single_queue(struct device_queue_manager *dqm,
1063 struct kfd_process_device *pdd,
1064 struct queue *q)
1065 {
1066 bool is_new;
1067
1068 if (q->properties.is_suspended)
1069 return 0;
1070
1071 pr_debug("Suspending process pid %d queue [%i]\n",
1072 pdd->process->lead_thread->pid,
1073 q->properties.queue_id);
1074
1075 is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW);
1076
1077 if (is_new || q->properties.is_being_destroyed) {
1078 pr_debug("Suspend: skip %s queue id %i\n",
1079 is_new ? "new" : "destroyed",
1080 q->properties.queue_id);
1081 return -EBUSY;
1082 }
1083
1084 q->properties.is_suspended = true;
1085 if (q->properties.is_active) {
1086 if (dqm->dev->kfd->shared_resources.enable_mes) {
1087 int r = remove_queue_mes(dqm, q, &pdd->qpd);
1088
1089 if (r)
1090 return r;
1091 }
1092
1093 decrement_queue_count(dqm, &pdd->qpd, q);
1094 q->properties.is_active = false;
1095 }
1096
1097 return 0;
1098 }
1099
1100 /* resume_single_queue does not lock the dqm like the functions
1101 * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should
1102 * lock the dqm before calling, and unlock after calling.
1103 *
1104 * The reason we don't lock the dqm is because this function may be
1105 * called on multiple queues in a loop, so rather than locking/unlocking
1106 * multiple times, we will just keep the dqm locked for all of the calls.
1107 */
resume_single_queue(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)1108 static int resume_single_queue(struct device_queue_manager *dqm,
1109 struct qcm_process_device *qpd,
1110 struct queue *q)
1111 {
1112 struct kfd_process_device *pdd;
1113
1114 if (!q->properties.is_suspended)
1115 return 0;
1116
1117 pdd = qpd_to_pdd(qpd);
1118
1119 pr_debug("Restoring from suspend process pid %d queue [%i]\n",
1120 pdd->process->lead_thread->pid,
1121 q->properties.queue_id);
1122
1123 q->properties.is_suspended = false;
1124
1125 if (QUEUE_IS_ACTIVE(q->properties)) {
1126 if (dqm->dev->kfd->shared_resources.enable_mes) {
1127 int r = add_queue_mes(dqm, q, &pdd->qpd);
1128
1129 if (r)
1130 return r;
1131 }
1132
1133 q->properties.is_active = true;
1134 increment_queue_count(dqm, qpd, q);
1135 }
1136
1137 return 0;
1138 }
1139
evict_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1140 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
1141 struct qcm_process_device *qpd)
1142 {
1143 struct queue *q;
1144 struct mqd_manager *mqd_mgr;
1145 struct kfd_process_device *pdd;
1146 int retval, ret = 0;
1147
1148 dqm_lock(dqm);
1149 if (qpd->evicted++ > 0) /* already evicted, do nothing */
1150 goto out;
1151
1152 pdd = qpd_to_pdd(qpd);
1153 pr_debug_ratelimited("Evicting process pid %d queues\n",
1154 pdd->process->lead_thread->pid);
1155
1156 pdd->last_evict_timestamp = get_jiffies_64();
1157 /* Mark all queues as evicted. Deactivate all active queues on
1158 * the qpd.
1159 */
1160 list_for_each_entry(q, &qpd->queues_list, list) {
1161 q->properties.is_evicted = true;
1162 if (!q->properties.is_active)
1163 continue;
1164
1165 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1166 q->properties.type)];
1167 q->properties.is_active = false;
1168 decrement_queue_count(dqm, qpd, q);
1169
1170 if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
1171 continue;
1172
1173 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
1174 (dqm->dev->kfd->cwsr_enabled ?
1175 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
1176 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
1177 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
1178 if (retval && !ret)
1179 /* Return the first error, but keep going to
1180 * maintain a consistent eviction state
1181 */
1182 ret = retval;
1183 }
1184
1185 out:
1186 dqm_unlock(dqm);
1187 return ret;
1188 }
1189
evict_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1190 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
1191 struct qcm_process_device *qpd)
1192 {
1193 struct queue *q;
1194 struct device *dev = dqm->dev->adev->dev;
1195 struct kfd_process_device *pdd;
1196 int retval = 0;
1197
1198 dqm_lock(dqm);
1199 if (qpd->evicted++ > 0) /* already evicted, do nothing */
1200 goto out;
1201
1202 pdd = qpd_to_pdd(qpd);
1203
1204 /* The debugger creates processes that temporarily have not acquired
1205 * all VMs for all devices and has no VMs itself.
1206 * Skip queue eviction on process eviction.
1207 */
1208 if (!pdd->drm_priv)
1209 goto out;
1210
1211 pr_debug_ratelimited("Evicting process pid %d queues\n",
1212 pdd->process->lead_thread->pid);
1213
1214 if (dqm->dev->kfd->shared_resources.enable_mes)
1215 pdd->last_evict_timestamp = get_jiffies_64();
1216
1217 /* Mark all queues as evicted. Deactivate all active queues on
1218 * the qpd.
1219 */
1220 list_for_each_entry(q, &qpd->queues_list, list) {
1221 q->properties.is_evicted = true;
1222 if (!q->properties.is_active)
1223 continue;
1224
1225 q->properties.is_active = false;
1226 decrement_queue_count(dqm, qpd, q);
1227
1228 if (dqm->dev->kfd->shared_resources.enable_mes) {
1229 retval = remove_queue_mes(dqm, q, qpd);
1230 if (retval) {
1231 dev_err(dev, "Failed to evict queue %d\n",
1232 q->properties.queue_id);
1233 goto out;
1234 }
1235 }
1236 }
1237
1238 if (!dqm->dev->kfd->shared_resources.enable_mes) {
1239 pdd->last_evict_timestamp = get_jiffies_64();
1240 retval = execute_queues_cpsch(dqm,
1241 qpd->is_debug ?
1242 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
1243 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1244 USE_DEFAULT_GRACE_PERIOD);
1245 }
1246
1247 out:
1248 dqm_unlock(dqm);
1249 return retval;
1250 }
1251
restore_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1252 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
1253 struct qcm_process_device *qpd)
1254 {
1255 struct mm_struct *mm = NULL;
1256 struct queue *q;
1257 struct mqd_manager *mqd_mgr;
1258 struct kfd_process_device *pdd;
1259 uint64_t pd_base;
1260 uint64_t eviction_duration;
1261 int retval, ret = 0;
1262
1263 pdd = qpd_to_pdd(qpd);
1264 /* Retrieve PD base */
1265 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1266
1267 dqm_lock(dqm);
1268 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1269 goto out;
1270 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1271 qpd->evicted--;
1272 goto out;
1273 }
1274
1275 pr_debug_ratelimited("Restoring process pid %d queues\n",
1276 pdd->process->lead_thread->pid);
1277
1278 /* Update PD Base in QPD */
1279 qpd->page_table_base = pd_base;
1280 pr_debug("Updated PD address to 0x%llx\n", pd_base);
1281
1282 if (!list_empty(&qpd->queues_list)) {
1283 dqm->dev->kfd2kgd->set_vm_context_page_table_base(
1284 dqm->dev->adev,
1285 qpd->vmid,
1286 qpd->page_table_base);
1287 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1288 }
1289
1290 /* Take a safe reference to the mm_struct, which may otherwise
1291 * disappear even while the kfd_process is still referenced.
1292 */
1293 mm = get_task_mm(pdd->process->lead_thread);
1294 if (!mm) {
1295 ret = -EFAULT;
1296 goto out;
1297 }
1298
1299 /* Remove the eviction flags. Activate queues that are not
1300 * inactive for other reasons.
1301 */
1302 list_for_each_entry(q, &qpd->queues_list, list) {
1303 q->properties.is_evicted = false;
1304 if (!QUEUE_IS_ACTIVE(q->properties))
1305 continue;
1306
1307 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1308 q->properties.type)];
1309 q->properties.is_active = true;
1310 increment_queue_count(dqm, qpd, q);
1311
1312 if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
1313 continue;
1314
1315 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
1316 q->queue, &q->properties, mm);
1317 if (retval && !ret)
1318 /* Return the first error, but keep going to
1319 * maintain a consistent eviction state
1320 */
1321 ret = retval;
1322 }
1323 qpd->evicted = 0;
1324 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1325 atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1326 out:
1327 if (mm)
1328 mmput(mm);
1329 dqm_unlock(dqm);
1330 return ret;
1331 }
1332
restore_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1333 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
1334 struct qcm_process_device *qpd)
1335 {
1336 struct queue *q;
1337 struct device *dev = dqm->dev->adev->dev;
1338 struct kfd_process_device *pdd;
1339 uint64_t eviction_duration;
1340 int retval = 0;
1341
1342 pdd = qpd_to_pdd(qpd);
1343
1344 dqm_lock(dqm);
1345 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1346 goto out;
1347 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1348 qpd->evicted--;
1349 goto out;
1350 }
1351
1352 /* The debugger creates processes that temporarily have not acquired
1353 * all VMs for all devices and has no VMs itself.
1354 * Skip queue restore on process restore.
1355 */
1356 if (!pdd->drm_priv)
1357 goto vm_not_acquired;
1358
1359 pr_debug_ratelimited("Restoring process pid %d queues\n",
1360 pdd->process->lead_thread->pid);
1361
1362 /* Update PD Base in QPD */
1363 qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1364 pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base);
1365
1366 /* activate all active queues on the qpd */
1367 list_for_each_entry(q, &qpd->queues_list, list) {
1368 q->properties.is_evicted = false;
1369 if (!QUEUE_IS_ACTIVE(q->properties))
1370 continue;
1371
1372 q->properties.is_active = true;
1373 increment_queue_count(dqm, &pdd->qpd, q);
1374
1375 if (dqm->dev->kfd->shared_resources.enable_mes) {
1376 retval = add_queue_mes(dqm, q, qpd);
1377 if (retval) {
1378 dev_err(dev, "Failed to restore queue %d\n",
1379 q->properties.queue_id);
1380 goto out;
1381 }
1382 }
1383 }
1384 if (!dqm->dev->kfd->shared_resources.enable_mes)
1385 retval = execute_queues_cpsch(dqm,
1386 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1387 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1388 atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1389 vm_not_acquired:
1390 qpd->evicted = 0;
1391 out:
1392 dqm_unlock(dqm);
1393 return retval;
1394 }
1395
register_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1396 static int register_process(struct device_queue_manager *dqm,
1397 struct qcm_process_device *qpd)
1398 {
1399 struct device_process_node *n;
1400 struct kfd_process_device *pdd;
1401 uint64_t pd_base;
1402 int retval;
1403
1404 n = kzalloc_obj(*n, GFP_KERNEL);
1405 if (!n)
1406 return -ENOMEM;
1407
1408 n->qpd = qpd;
1409
1410 pdd = qpd_to_pdd(qpd);
1411 /* Retrieve PD base */
1412 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1413
1414 dqm_lock(dqm);
1415 list_add(&n->list, &dqm->queues);
1416
1417 /* Update PD Base in QPD */
1418 qpd->page_table_base = pd_base;
1419 pr_debug("Updated PD address to 0x%llx\n", pd_base);
1420
1421 retval = dqm->asic_ops.update_qpd(dqm, qpd);
1422
1423 dqm->processes_count++;
1424
1425 dqm_unlock(dqm);
1426
1427 /* Outside the DQM lock because under the DQM lock we can't do
1428 * reclaim or take other locks that others hold while reclaiming.
1429 */
1430 kfd_inc_compute_active(dqm->dev);
1431
1432 return retval;
1433 }
1434
unregister_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1435 static int unregister_process(struct device_queue_manager *dqm,
1436 struct qcm_process_device *qpd)
1437 {
1438 int retval = 0;
1439 struct device_process_node *cur, *next;
1440
1441 pr_debug("qpd->queues_list is %s\n",
1442 list_empty(&qpd->queues_list) ? "empty" : "not empty");
1443
1444 dqm_lock(dqm);
1445
1446 list_for_each_entry_safe(cur, next, &dqm->queues, list) {
1447 if (qpd == cur->qpd) {
1448 list_del(&cur->list);
1449 kfree(cur);
1450 dqm->processes_count--;
1451 goto out;
1452 }
1453 }
1454 /* qpd not found in dqm list */
1455 retval = 1;
1456 out:
1457 dqm_unlock(dqm);
1458
1459 /* Outside the DQM lock because under the DQM lock we can't do
1460 * reclaim or take other locks that others hold while reclaiming.
1461 */
1462 if (!retval)
1463 kfd_dec_compute_active(dqm->dev);
1464
1465 return retval;
1466 }
1467
1468 static int
set_pasid_vmid_mapping(struct device_queue_manager * dqm,u32 pasid,unsigned int vmid)1469 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
1470 unsigned int vmid)
1471 {
1472 uint32_t xcc_mask = dqm->dev->xcc_mask;
1473 int xcc_id, ret = 0;
1474
1475 for_each_inst(xcc_id, xcc_mask) {
1476 ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
1477 dqm->dev->adev, pasid, vmid, xcc_id);
1478 if (ret)
1479 break;
1480 }
1481
1482 return ret;
1483 }
1484
init_interrupts(struct device_queue_manager * dqm)1485 static void init_interrupts(struct device_queue_manager *dqm)
1486 {
1487 uint32_t xcc_mask = dqm->dev->xcc_mask;
1488 unsigned int i, xcc_id;
1489
1490 for_each_inst(xcc_id, xcc_mask) {
1491 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) {
1492 if (is_pipe_enabled(dqm, 0, i)) {
1493 dqm->dev->kfd2kgd->init_interrupts(
1494 dqm->dev->adev, i, xcc_id);
1495 }
1496 }
1497 }
1498 }
1499
initialize_nocpsch(struct device_queue_manager * dqm)1500 static int initialize_nocpsch(struct device_queue_manager *dqm)
1501 {
1502 int pipe, queue;
1503
1504 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1505
1506 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
1507 sizeof(unsigned int), GFP_KERNEL);
1508 if (!dqm->allocated_queues)
1509 return -ENOMEM;
1510
1511 mutex_init(&dqm->lock_hidden);
1512 INIT_LIST_HEAD(&dqm->queues);
1513 dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
1514 dqm->active_cp_queue_count = 0;
1515 dqm->gws_queue_count = 0;
1516
1517 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1518 int pipe_offset = pipe * get_queues_per_pipe(dqm);
1519
1520 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
1521 if (test_bit(pipe_offset + queue,
1522 dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1523 dqm->allocated_queues[pipe] |= 1 << queue;
1524 }
1525
1526 memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
1527
1528 init_sdma_bitmaps(dqm);
1529
1530 return 0;
1531 }
1532
uninitialize(struct device_queue_manager * dqm)1533 static void uninitialize(struct device_queue_manager *dqm)
1534 {
1535 int i;
1536
1537 WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1538
1539 kfree(dqm->allocated_queues);
1540 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1541 kfree(dqm->mqd_mgrs[i]);
1542 mutex_destroy(&dqm->lock_hidden);
1543 }
1544
start_nocpsch(struct device_queue_manager * dqm)1545 static int start_nocpsch(struct device_queue_manager *dqm)
1546 {
1547 int r = 0;
1548
1549 pr_info("SW scheduler is used");
1550 init_interrupts(dqm);
1551
1552 if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1553 r = pm_init(&dqm->packet_mgr, dqm);
1554 if (!r)
1555 dqm->sched_running = true;
1556
1557 return r;
1558 }
1559
stop_nocpsch(struct device_queue_manager * dqm)1560 static int stop_nocpsch(struct device_queue_manager *dqm)
1561 {
1562 dqm_lock(dqm);
1563 if (!dqm->sched_running) {
1564 dqm_unlock(dqm);
1565 return 0;
1566 }
1567
1568 if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1569 pm_uninit(&dqm->packet_mgr);
1570 dqm->sched_running = false;
1571 dqm_unlock(dqm);
1572
1573 return 0;
1574 }
1575
allocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q,const uint32_t * restore_sdma_id)1576 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1577 struct queue *q, const uint32_t *restore_sdma_id)
1578 {
1579 struct device *dev = dqm->dev->adev->dev;
1580 int bit;
1581
1582 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1583 if (bitmap_empty(dqm->sdma_bitmap, get_num_sdma_queues(dqm))) {
1584 dev_warn(dev, "No more SDMA queue to allocate (%d total queues)\n",
1585 get_num_sdma_queues(dqm));
1586 return -ENOMEM;
1587 }
1588
1589 if (restore_sdma_id) {
1590 /* Re-use existing sdma_id */
1591 if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) {
1592 dev_err(dev, "SDMA queue already in use\n");
1593 return -EBUSY;
1594 }
1595 clear_bit(*restore_sdma_id, dqm->sdma_bitmap);
1596 q->sdma_id = *restore_sdma_id;
1597 } else {
1598 /* Find first available sdma_id */
1599 bit = find_first_bit(dqm->sdma_bitmap,
1600 get_num_sdma_queues(dqm));
1601 clear_bit(bit, dqm->sdma_bitmap);
1602 q->sdma_id = bit;
1603 }
1604
1605 q->properties.sdma_engine_id =
1606 q->sdma_id % kfd_get_num_sdma_engines(dqm->dev);
1607 q->properties.sdma_queue_id = q->sdma_id /
1608 kfd_get_num_sdma_engines(dqm->dev);
1609 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1610 if (bitmap_empty(dqm->xgmi_sdma_bitmap, get_num_xgmi_sdma_queues(dqm))) {
1611 dev_warn(dev, "No more XGMI SDMA queue to allocate (%d total queues)\n",
1612 get_num_xgmi_sdma_queues(dqm));
1613 return -ENOMEM;
1614 }
1615 if (restore_sdma_id) {
1616 /* Re-use existing sdma_id */
1617 if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) {
1618 dev_err(dev, "SDMA queue already in use\n");
1619 return -EBUSY;
1620 }
1621 clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap);
1622 q->sdma_id = *restore_sdma_id;
1623 } else {
1624 bit = find_first_bit(dqm->xgmi_sdma_bitmap,
1625 get_num_xgmi_sdma_queues(dqm));
1626 clear_bit(bit, dqm->xgmi_sdma_bitmap);
1627 q->sdma_id = bit;
1628 }
1629 /* sdma_engine_id is sdma id including
1630 * both PCIe-optimized SDMAs and XGMI-
1631 * optimized SDMAs. The calculation below
1632 * assumes the first N engines are always
1633 * PCIe-optimized ones
1634 */
1635 q->properties.sdma_engine_id =
1636 kfd_get_num_sdma_engines(dqm->dev) +
1637 q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
1638 q->properties.sdma_queue_id = q->sdma_id /
1639 kfd_get_num_xgmi_sdma_engines(dqm->dev);
1640 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1641 int i, num_queues, num_engines, eng_offset = 0, start_engine;
1642 bool free_bit_found = false, is_xgmi = false;
1643
1644 if (q->properties.sdma_engine_id < kfd_get_num_sdma_engines(dqm->dev)) {
1645 num_queues = get_num_sdma_queues(dqm);
1646 num_engines = kfd_get_num_sdma_engines(dqm->dev);
1647 q->properties.type = KFD_QUEUE_TYPE_SDMA;
1648 } else {
1649 num_queues = get_num_xgmi_sdma_queues(dqm);
1650 num_engines = kfd_get_num_xgmi_sdma_engines(dqm->dev);
1651 eng_offset = kfd_get_num_sdma_engines(dqm->dev);
1652 q->properties.type = KFD_QUEUE_TYPE_SDMA_XGMI;
1653 is_xgmi = true;
1654 }
1655
1656 /* Scan available bit based on target engine ID. */
1657 start_engine = q->properties.sdma_engine_id - eng_offset;
1658 for (i = start_engine; i < num_queues; i += num_engines) {
1659
1660 if (!test_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap))
1661 continue;
1662
1663 clear_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap);
1664 q->sdma_id = i;
1665 q->properties.sdma_queue_id = q->sdma_id / num_engines;
1666 free_bit_found = true;
1667 break;
1668 }
1669
1670 if (!free_bit_found) {
1671 dev_warn(dev, "No more SDMA queue to allocate for target ID %i (%d total queues)\n",
1672 q->properties.sdma_engine_id, num_queues);
1673 return -ENOMEM;
1674 }
1675 }
1676
1677 pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1678 pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1679
1680 return 0;
1681 }
1682
deallocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q)1683 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1684 struct queue *q)
1685 {
1686 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1687 if (q->sdma_id >= get_num_sdma_queues(dqm))
1688 return;
1689 set_bit(q->sdma_id, dqm->sdma_bitmap);
1690 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1691 if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1692 return;
1693 set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap);
1694 }
1695 }
1696
1697 /*
1698 * Device Queue Manager implementation for cp scheduler
1699 */
1700
set_sched_resources(struct device_queue_manager * dqm)1701 static int set_sched_resources(struct device_queue_manager *dqm)
1702 {
1703 int i, mec;
1704 struct scheduling_resources res;
1705 struct device *dev = dqm->dev->adev->dev;
1706
1707 res.vmid_mask = dqm->dev->compute_vmid_bitmap;
1708
1709 res.queue_mask = 0;
1710 for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
1711 mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
1712 / dqm->dev->kfd->shared_resources.num_pipe_per_mec;
1713
1714 if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1715 continue;
1716
1717 /* only acquire queues from the first MEC */
1718 if (mec > 0)
1719 continue;
1720
1721 /* This situation may be hit in the future if a new HW
1722 * generation exposes more than 64 queues. If so, the
1723 * definition of res.queue_mask needs updating
1724 */
1725 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1726 dev_err(dev, "Invalid queue enabled by amdgpu: %d\n", i);
1727 break;
1728 }
1729
1730 res.queue_mask |= 1ull
1731 << amdgpu_queue_mask_bit_to_set_resource_bit(
1732 dqm->dev->adev, i);
1733 }
1734 res.gws_mask = ~0ull;
1735 res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1736
1737 pr_debug("Scheduling resources:\n"
1738 "vmid mask: 0x%8X\n"
1739 "queue mask: 0x%8llX\n",
1740 res.vmid_mask, res.queue_mask);
1741
1742 return pm_send_set_resources(&dqm->packet_mgr, &res);
1743 }
1744
initialize_cpsch(struct device_queue_manager * dqm)1745 static int initialize_cpsch(struct device_queue_manager *dqm)
1746 {
1747 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1748
1749 mutex_init(&dqm->lock_hidden);
1750 INIT_LIST_HEAD(&dqm->queues);
1751 dqm->active_queue_count = dqm->processes_count = 0;
1752 dqm->active_cp_queue_count = 0;
1753 dqm->gws_queue_count = 0;
1754 dqm->active_runlist = false;
1755 dqm->trap_debug_vmid = 0;
1756
1757 init_sdma_bitmaps(dqm);
1758
1759 update_dqm_wait_times(dqm);
1760 return 0;
1761 }
1762
1763 /* halt_cpsch:
1764 * Unmap queues so the schedule doesn't continue remaining jobs in the queue.
1765 * Then set dqm->sched_halt so queues don't map to runlist until unhalt_cpsch
1766 * is called.
1767 */
halt_cpsch(struct device_queue_manager * dqm)1768 static int halt_cpsch(struct device_queue_manager *dqm)
1769 {
1770 int ret = 0;
1771
1772 dqm_lock(dqm);
1773 if (!dqm->sched_running) {
1774 dqm_unlock(dqm);
1775 return 0;
1776 }
1777
1778 WARN_ONCE(dqm->sched_halt, "Scheduling is already on halt\n");
1779
1780 if (!dqm->is_hws_hang) {
1781 if (!dqm->dev->kfd->shared_resources.enable_mes)
1782 ret = unmap_queues_cpsch(dqm,
1783 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1784 USE_DEFAULT_GRACE_PERIOD, false);
1785 else
1786 ret = remove_all_kfd_queues_mes(dqm);
1787 }
1788 dqm->sched_halt = true;
1789 dqm_unlock(dqm);
1790
1791 return ret;
1792 }
1793
1794 /* unhalt_cpsch
1795 * Unset dqm->sched_halt and map queues back to runlist
1796 */
unhalt_cpsch(struct device_queue_manager * dqm)1797 static int unhalt_cpsch(struct device_queue_manager *dqm)
1798 {
1799 int ret = 0;
1800
1801 dqm_lock(dqm);
1802 if (!dqm->sched_running || !dqm->sched_halt) {
1803 WARN_ONCE(!dqm->sched_halt, "Scheduling is not on halt.\n");
1804 dqm_unlock(dqm);
1805 return 0;
1806 }
1807 dqm->sched_halt = false;
1808 if (!dqm->dev->kfd->shared_resources.enable_mes)
1809 ret = execute_queues_cpsch(dqm,
1810 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
1811 0, USE_DEFAULT_GRACE_PERIOD);
1812 else
1813 ret = add_all_kfd_queues_mes(dqm);
1814
1815 dqm_unlock(dqm);
1816
1817 return ret;
1818 }
1819
start_cpsch(struct device_queue_manager * dqm)1820 static int start_cpsch(struct device_queue_manager *dqm)
1821 {
1822 struct device *dev = dqm->dev->adev->dev;
1823 int retval, num_hw_queue_slots;
1824
1825 dqm_lock(dqm);
1826
1827 if (!dqm->dev->kfd->shared_resources.enable_mes) {
1828 retval = pm_init(&dqm->packet_mgr, dqm);
1829 if (retval)
1830 goto fail_packet_manager_init;
1831
1832 retval = set_sched_resources(dqm);
1833 if (retval)
1834 goto fail_set_sched_resources;
1835 }
1836 pr_debug("Allocating fence memory\n");
1837
1838 /* allocate fence memory on the gart */
1839 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1840 &dqm->fence_mem);
1841
1842 if (retval)
1843 goto fail_allocate_vidmem;
1844
1845 dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1846 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1847
1848 init_interrupts(dqm);
1849
1850 /* clear hang status when driver try to start the hw scheduler */
1851 dqm->sched_running = true;
1852
1853 if (!dqm->dev->kfd->shared_resources.enable_mes) {
1854 if (pm_config_dequeue_wait_counts(&dqm->packet_mgr,
1855 KFD_DEQUEUE_WAIT_INIT, 0 /* unused */))
1856 dev_err(dev, "Setting optimized dequeue wait failed. Using default values\n");
1857 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1858 }
1859
1860 /* setup per-queue reset detection buffer */
1861 num_hw_queue_slots = dqm->dev->kfd->shared_resources.num_queue_per_pipe *
1862 dqm->dev->kfd->shared_resources.num_pipe_per_mec *
1863 NUM_XCC(dqm->dev->xcc_mask);
1864
1865 dqm->detect_hang_info_size = num_hw_queue_slots * sizeof(struct dqm_detect_hang_info);
1866 dqm->detect_hang_info = kzalloc(dqm->detect_hang_info_size, GFP_KERNEL);
1867
1868 if (!dqm->detect_hang_info) {
1869 retval = -ENOMEM;
1870 goto fail_detect_hang_buffer;
1871 }
1872
1873 dqm_unlock(dqm);
1874
1875 return 0;
1876 fail_detect_hang_buffer:
1877 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1878 fail_allocate_vidmem:
1879 fail_set_sched_resources:
1880 if (!dqm->dev->kfd->shared_resources.enable_mes)
1881 pm_uninit(&dqm->packet_mgr);
1882 fail_packet_manager_init:
1883 dqm_unlock(dqm);
1884 return retval;
1885 }
1886
stop_cpsch(struct device_queue_manager * dqm)1887 static int stop_cpsch(struct device_queue_manager *dqm)
1888 {
1889 int ret = 0;
1890
1891 dqm_lock(dqm);
1892 if (!dqm->sched_running) {
1893 dqm_unlock(dqm);
1894 return 0;
1895 }
1896
1897 if (!dqm->dev->kfd->shared_resources.enable_mes)
1898 ret = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
1899 0, USE_DEFAULT_GRACE_PERIOD, false);
1900 else
1901 ret = remove_all_kfd_queues_mes(dqm);
1902
1903 dqm->sched_running = false;
1904
1905 if (!dqm->dev->kfd->shared_resources.enable_mes)
1906 pm_release_ib(&dqm->packet_mgr);
1907
1908 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1909 if (!dqm->dev->kfd->shared_resources.enable_mes)
1910 pm_uninit(&dqm->packet_mgr);
1911 kfree(dqm->detect_hang_info);
1912 dqm->detect_hang_info = NULL;
1913 dqm_unlock(dqm);
1914
1915 return ret;
1916 }
1917
create_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1918 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1919 struct kernel_queue *kq,
1920 struct qcm_process_device *qpd)
1921 {
1922 dqm_lock(dqm);
1923 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1924 pr_warn("Can't create new kernel queue because %d queues were already created\n",
1925 dqm->total_queue_count);
1926 dqm_unlock(dqm);
1927 return -EPERM;
1928 }
1929
1930 /*
1931 * Unconditionally increment this counter, regardless of the queue's
1932 * type or whether the queue is active.
1933 */
1934 dqm->total_queue_count++;
1935 pr_debug("Total of %d queues are accountable so far\n",
1936 dqm->total_queue_count);
1937
1938 list_add(&kq->list, &qpd->priv_queue_list);
1939 increment_queue_count(dqm, qpd, kq->queue);
1940 qpd->is_debug = true;
1941 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1942 USE_DEFAULT_GRACE_PERIOD);
1943 dqm_unlock(dqm);
1944
1945 return 0;
1946 }
1947
destroy_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1948 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1949 struct kernel_queue *kq,
1950 struct qcm_process_device *qpd)
1951 {
1952 dqm_lock(dqm);
1953 list_del(&kq->list);
1954 decrement_queue_count(dqm, qpd, kq->queue);
1955 qpd->is_debug = false;
1956 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1957 USE_DEFAULT_GRACE_PERIOD);
1958 /*
1959 * Unconditionally decrement this counter, regardless of the queue's
1960 * type.
1961 */
1962 dqm->total_queue_count--;
1963 pr_debug("Total of %d queues are accountable so far\n",
1964 dqm->total_queue_count);
1965 dqm_unlock(dqm);
1966 }
1967
create_queue_cpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)1968 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1969 struct qcm_process_device *qpd,
1970 const struct kfd_criu_queue_priv_data *qd,
1971 const void *restore_mqd, const void *restore_ctl_stack)
1972 {
1973 int retval;
1974 struct mqd_manager *mqd_mgr;
1975
1976 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1977 pr_warn("Can't create new usermode queue because %d queues were already created\n",
1978 dqm->total_queue_count);
1979 retval = -EPERM;
1980 goto out;
1981 }
1982
1983 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1984 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI ||
1985 q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1986 dqm_lock(dqm);
1987 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
1988 dqm_unlock(dqm);
1989 if (retval)
1990 goto out;
1991 }
1992
1993 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
1994 if (retval)
1995 goto out_deallocate_sdma_queue;
1996
1997 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1998 q->properties.type)];
1999
2000 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2001 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2002 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
2003 q->properties.tba_addr = qpd->tba_addr;
2004 q->properties.tma_addr = qpd->tma_addr;
2005 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr, &q->properties);
2006 if (!q->mqd_mem_obj) {
2007 retval = -ENOMEM;
2008 goto out_deallocate_doorbell;
2009 }
2010
2011 dqm_lock(dqm);
2012 /*
2013 * Eviction state logic: mark all queues as evicted, even ones
2014 * not currently active. Restoring inactive queues later only
2015 * updates the is_evicted flag but is a no-op otherwise.
2016 */
2017 q->properties.is_evicted = !!qpd->evicted;
2018 q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled &&
2019 kfd_dbg_has_cwsr_workaround(q->device);
2020
2021 if (qd)
2022 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
2023 &q->properties, restore_mqd, restore_ctl_stack,
2024 qd->ctl_stack_size);
2025 else
2026 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
2027 &q->gart_mqd_addr, &q->properties);
2028
2029 list_add(&q->list, &qpd->queues_list);
2030 qpd->queue_count++;
2031
2032 if (q->properties.is_active) {
2033 increment_queue_count(dqm, qpd, q);
2034
2035 if (!dqm->dev->kfd->shared_resources.enable_mes)
2036 retval = execute_queues_cpsch(dqm,
2037 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
2038 else
2039 retval = add_queue_mes(dqm, q, qpd);
2040 if (retval)
2041 goto cleanup_queue;
2042 }
2043
2044 /*
2045 * Unconditionally increment this counter, regardless of the queue's
2046 * type or whether the queue is active.
2047 */
2048 dqm->total_queue_count++;
2049
2050 pr_debug("Total of %d queues are accountable so far\n",
2051 dqm->total_queue_count);
2052
2053 dqm_unlock(dqm);
2054 return retval;
2055
2056 cleanup_queue:
2057 qpd->queue_count--;
2058 list_del(&q->list);
2059 if (q->properties.is_active)
2060 decrement_queue_count(dqm, qpd, q);
2061 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2062 dqm_unlock(dqm);
2063 out_deallocate_doorbell:
2064 deallocate_doorbell(qpd, q);
2065 out_deallocate_sdma_queue:
2066 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2067 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
2068 dqm_lock(dqm);
2069 deallocate_sdma_queue(dqm, q);
2070 dqm_unlock(dqm);
2071 }
2072 out:
2073 return retval;
2074 }
2075
amdkfd_fence_wait_timeout(struct device_queue_manager * dqm,uint64_t fence_value,unsigned int timeout_ms)2076 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm,
2077 uint64_t fence_value,
2078 unsigned int timeout_ms)
2079 {
2080 unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
2081 struct device *dev = dqm->dev->adev->dev;
2082 uint64_t *fence_addr = dqm->fence_addr;
2083
2084 while (*fence_addr != fence_value) {
2085 /* Fatal err detected, this response won't come */
2086 if (amdgpu_amdkfd_is_fed(dqm->dev->adev) ||
2087 amdgpu_in_reset(dqm->dev->adev))
2088 return -EIO;
2089
2090 if (time_after(jiffies, end_jiffies)) {
2091 dev_err(dev, "qcm fence wait loop timeout expired\n");
2092 /* In HWS case, this is used to halt the driver thread
2093 * in order not to mess up CP states before doing
2094 * scandumps for FW debugging.
2095 */
2096 while (halt_if_hws_hang)
2097 schedule();
2098
2099 return -ETIME;
2100 }
2101 schedule();
2102 }
2103
2104 return 0;
2105 }
2106
2107 /* dqm->lock mutex has to be locked before calling this function */
map_queues_cpsch(struct device_queue_manager * dqm)2108 static int map_queues_cpsch(struct device_queue_manager *dqm)
2109 {
2110 struct device *dev = dqm->dev->adev->dev;
2111 int retval;
2112
2113 if (!dqm->sched_running || dqm->sched_halt)
2114 return 0;
2115 if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
2116 return 0;
2117 if (dqm->active_runlist)
2118 return 0;
2119
2120 retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
2121 pr_debug("%s sent runlist\n", __func__);
2122 if (retval) {
2123 dev_err(dev, "failed to execute runlist\n");
2124 return retval;
2125 }
2126 dqm->active_runlist = true;
2127
2128 return retval;
2129 }
2130
set_queue_as_reset(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)2131 static void set_queue_as_reset(struct device_queue_manager *dqm, struct queue *q,
2132 struct qcm_process_device *qpd)
2133 {
2134 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2135
2136 dev_err(dqm->dev->adev->dev, "queue id 0x%0x at pasid %d is reset\n",
2137 q->properties.queue_id, pdd->process->lead_thread->pid);
2138
2139 pdd->has_reset_queue = true;
2140 if (q->properties.is_active) {
2141 q->properties.is_active = false;
2142 decrement_queue_count(dqm, qpd, q);
2143 }
2144 }
2145
detect_queue_hang(struct device_queue_manager * dqm)2146 static int detect_queue_hang(struct device_queue_manager *dqm)
2147 {
2148 int i;
2149
2150 /* detect should be used only in dqm locked queue reset */
2151 if (WARN_ON(dqm->detect_hang_count > 0))
2152 return 0;
2153
2154 memset(dqm->detect_hang_info, 0, dqm->detect_hang_info_size);
2155
2156 for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
2157 uint32_t mec, pipe, queue;
2158 int xcc_id;
2159
2160 mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
2161 / dqm->dev->kfd->shared_resources.num_pipe_per_mec;
2162
2163 if (mec || !test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
2164 continue;
2165
2166 amdgpu_queue_mask_bit_to_mec_queue(dqm->dev->adev, i, &mec, &pipe, &queue);
2167
2168 for_each_inst(xcc_id, dqm->dev->xcc_mask) {
2169 uint64_t queue_addr = dqm->dev->kfd2kgd->hqd_get_pq_addr(
2170 dqm->dev->adev, pipe, queue, xcc_id);
2171 struct dqm_detect_hang_info hang_info;
2172
2173 if (!queue_addr)
2174 continue;
2175
2176 hang_info.pipe_id = pipe;
2177 hang_info.queue_id = queue;
2178 hang_info.xcc_id = xcc_id;
2179 hang_info.queue_address = queue_addr;
2180
2181 dqm->detect_hang_info[dqm->detect_hang_count] = hang_info;
2182 dqm->detect_hang_count++;
2183 }
2184 }
2185
2186 return dqm->detect_hang_count;
2187 }
2188
find_queue_by_address(struct device_queue_manager * dqm,uint64_t queue_address)2189 static struct queue *find_queue_by_address(struct device_queue_manager *dqm, uint64_t queue_address)
2190 {
2191 struct device_process_node *cur;
2192 struct qcm_process_device *qpd;
2193 struct queue *q;
2194
2195 list_for_each_entry(cur, &dqm->queues, list) {
2196 qpd = cur->qpd;
2197 list_for_each_entry(q, &qpd->queues_list, list) {
2198 if (queue_address == q->properties.queue_address)
2199 return q;
2200 }
2201 }
2202
2203 return NULL;
2204 }
2205
reset_hung_queues(struct device_queue_manager * dqm)2206 static int reset_hung_queues(struct device_queue_manager *dqm)
2207 {
2208 int r = 0, reset_count = 0, i;
2209
2210 if (!dqm->detect_hang_info || dqm->is_hws_hang)
2211 return -EIO;
2212
2213 /* assume dqm locked. */
2214 if (!detect_queue_hang(dqm))
2215 return -ENOTRECOVERABLE;
2216
2217 for (i = 0; i < dqm->detect_hang_count; i++) {
2218 struct dqm_detect_hang_info hang_info = dqm->detect_hang_info[i];
2219 struct queue *q = find_queue_by_address(dqm, hang_info.queue_address);
2220 struct kfd_process_device *pdd;
2221 uint64_t queue_addr = 0;
2222
2223 if (!q) {
2224 r = -ENOTRECOVERABLE;
2225 goto reset_fail;
2226 }
2227
2228 pdd = kfd_get_process_device_data(dqm->dev, q->process);
2229 if (!pdd) {
2230 r = -ENOTRECOVERABLE;
2231 goto reset_fail;
2232 }
2233
2234 queue_addr = dqm->dev->kfd2kgd->hqd_reset(dqm->dev->adev,
2235 hang_info.pipe_id, hang_info.queue_id, hang_info.xcc_id,
2236 KFD_UNMAP_LATENCY_MS);
2237
2238 /* either reset failed or we reset an unexpected queue. */
2239 if (queue_addr != q->properties.queue_address) {
2240 r = -ENOTRECOVERABLE;
2241 goto reset_fail;
2242 }
2243
2244 set_queue_as_reset(dqm, q, &pdd->qpd);
2245 reset_count++;
2246 }
2247
2248 if (reset_count == dqm->detect_hang_count)
2249 kfd_signal_reset_event(dqm->dev);
2250 else
2251 r = -ENOTRECOVERABLE;
2252
2253 reset_fail:
2254 dqm->detect_hang_count = 0;
2255
2256 return r;
2257 }
2258
sdma_has_hang(struct device_queue_manager * dqm)2259 static bool sdma_has_hang(struct device_queue_manager *dqm)
2260 {
2261 int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
2262 int engine_end = engine_start + get_num_all_sdma_engines(dqm);
2263 int num_queues_per_eng = dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
2264 int i, j;
2265
2266 for (i = engine_start; i < engine_end; i++) {
2267 for (j = 0; j < num_queues_per_eng; j++) {
2268 if (!dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j))
2269 continue;
2270
2271 return true;
2272 }
2273 }
2274
2275 return false;
2276 }
2277
set_sdma_queue_as_reset(struct device_queue_manager * dqm,uint32_t doorbell_off)2278 static bool set_sdma_queue_as_reset(struct device_queue_manager *dqm,
2279 uint32_t doorbell_off)
2280 {
2281 struct device_process_node *cur;
2282 struct qcm_process_device *qpd;
2283 struct queue *q;
2284
2285 list_for_each_entry(cur, &dqm->queues, list) {
2286 qpd = cur->qpd;
2287 list_for_each_entry(q, &qpd->queues_list, list) {
2288 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2289 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) &&
2290 q->properties.doorbell_off == doorbell_off) {
2291 set_queue_as_reset(dqm, q, qpd);
2292 return true;
2293 }
2294 }
2295 }
2296
2297 return false;
2298 }
2299
reset_hung_queues_sdma(struct device_queue_manager * dqm)2300 static int reset_hung_queues_sdma(struct device_queue_manager *dqm)
2301 {
2302 int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
2303 int engine_end = engine_start + get_num_all_sdma_engines(dqm);
2304 int num_queues_per_eng = dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
2305 int r = 0, i, j;
2306
2307 if (dqm->is_hws_hang)
2308 return -EIO;
2309
2310 /* Scan for hung HW queues and reset engine. */
2311 dqm->detect_hang_count = 0;
2312 for (i = engine_start; i < engine_end; i++) {
2313 for (j = 0; j < num_queues_per_eng; j++) {
2314 uint32_t doorbell_off =
2315 dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j);
2316
2317 if (!doorbell_off)
2318 continue;
2319
2320 /* Reset engine and check. */
2321 if (amdgpu_sdma_reset_engine(dqm->dev->adev, i, false) ||
2322 dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j) ||
2323 !set_sdma_queue_as_reset(dqm, doorbell_off)) {
2324 r = -ENOTRECOVERABLE;
2325 goto reset_fail;
2326 }
2327
2328 /* Should only expect one queue active per engine */
2329 dqm->detect_hang_count++;
2330 break;
2331 }
2332 }
2333
2334 /* Signal process reset */
2335 if (dqm->detect_hang_count)
2336 kfd_signal_reset_event(dqm->dev);
2337 else
2338 r = -ENOTRECOVERABLE;
2339
2340 reset_fail:
2341 dqm->detect_hang_count = 0;
2342
2343 return r;
2344 }
2345
reset_queues_on_hws_hang(struct device_queue_manager * dqm,bool is_sdma)2346 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma)
2347 {
2348 struct amdgpu_device *adev = dqm->dev->adev;
2349
2350 while (halt_if_hws_hang)
2351 schedule();
2352
2353 if (adev->debug_disable_gpu_ring_reset) {
2354 dev_info_once(adev->dev,
2355 "%s queue hung, but ring reset disabled",
2356 is_sdma ? "sdma" : "compute");
2357
2358 return -EPERM;
2359 }
2360 if (!amdgpu_gpu_recovery)
2361 return -ENOTRECOVERABLE;
2362
2363 return is_sdma ? reset_hung_queues_sdma(dqm) : reset_hung_queues(dqm);
2364 }
2365
2366 /* dqm->lock mutex has to be locked before calling this function
2367 *
2368 * @grace_period: If USE_DEFAULT_GRACE_PERIOD then default wait time
2369 * for context switch latency. Lower values are used by debugger
2370 * since context switching are triggered at high frequency.
2371 * This is configured by setting CP_IQ_WAIT_TIME2.SCH_WAVE
2372 *
2373 */
unmap_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period,bool reset)2374 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
2375 enum kfd_unmap_queues_filter filter,
2376 uint32_t filter_param,
2377 uint32_t grace_period,
2378 bool reset)
2379 {
2380 struct device *dev = dqm->dev->adev->dev;
2381 struct mqd_manager *mqd_mgr;
2382 int retval;
2383
2384 if (!dqm->sched_running)
2385 return 0;
2386 if (!dqm->active_runlist)
2387 return 0;
2388 if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2389 return -EIO;
2390
2391 if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2392 retval = pm_config_dequeue_wait_counts(&dqm->packet_mgr,
2393 KFD_DEQUEUE_WAIT_SET_SCH_WAVE, grace_period);
2394 if (retval)
2395 goto out;
2396 }
2397
2398 retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
2399 if (retval)
2400 goto out;
2401
2402 *dqm->fence_addr = KFD_FENCE_INIT;
2403 mb();
2404 pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
2405 KFD_FENCE_COMPLETED);
2406 /* should be timed out */
2407 retval = amdkfd_fence_wait_timeout(dqm, KFD_FENCE_COMPLETED,
2408 queue_preemption_timeout_ms);
2409 if (retval) {
2410 dev_err(dev, "The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
2411 kfd_hws_hang(dqm);
2412 goto out;
2413 }
2414
2415 /* In the current MEC firmware implementation, if compute queue
2416 * doesn't response to the preemption request in time, HIQ will
2417 * abandon the unmap request without returning any timeout error
2418 * to driver. Instead, MEC firmware will log the doorbell of the
2419 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
2420 * To make sure the queue unmap was successful, driver need to
2421 * check those fields
2422 */
2423 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
2424 if (mqd_mgr->check_preemption_failed(mqd_mgr, dqm->packet_mgr.priv_queue->queue->mqd) &&
2425 reset_queues_on_hws_hang(dqm, false))
2426 goto reset_fail;
2427
2428 /* Check for SDMA hang and attempt SDMA reset */
2429 if (sdma_has_hang(dqm) && reset_queues_on_hws_hang(dqm, true))
2430 goto reset_fail;
2431
2432 /* We need to reset the grace period value for this device */
2433 if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2434 if (pm_config_dequeue_wait_counts(&dqm->packet_mgr,
2435 KFD_DEQUEUE_WAIT_RESET, 0 /* unused */))
2436 dev_err(dev, "Failed to reset grace period\n");
2437 }
2438
2439 pm_release_ib(&dqm->packet_mgr);
2440 dqm->active_runlist = false;
2441 out:
2442 up_read(&dqm->dev->adev->reset_domain->sem);
2443 return retval;
2444
2445 reset_fail:
2446 dqm->is_hws_hang = true;
2447 kfd_hws_hang(dqm);
2448 up_read(&dqm->dev->adev->reset_domain->sem);
2449 return -ETIME;
2450 }
2451
2452 /* only for compute queue */
reset_queues_cpsch(struct device_queue_manager * dqm,uint16_t pasid)2453 static int reset_queues_cpsch(struct device_queue_manager *dqm, uint16_t pasid)
2454 {
2455 int retval;
2456
2457 dqm_lock(dqm);
2458
2459 retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
2460 pasid, USE_DEFAULT_GRACE_PERIOD, true);
2461
2462 dqm_unlock(dqm);
2463 return retval;
2464 }
2465
2466 /* dqm->lock mutex has to be locked before calling this function */
execute_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period)2467 static int execute_queues_cpsch(struct device_queue_manager *dqm,
2468 enum kfd_unmap_queues_filter filter,
2469 uint32_t filter_param,
2470 uint32_t grace_period)
2471 {
2472 int retval;
2473
2474 if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2475 return -EIO;
2476 retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false);
2477 if (!retval)
2478 retval = map_queues_cpsch(dqm);
2479 up_read(&dqm->dev->adev->reset_domain->sem);
2480 return retval;
2481 }
2482
wait_on_destroy_queue(struct device_queue_manager * dqm,struct queue * q)2483 static int wait_on_destroy_queue(struct device_queue_manager *dqm,
2484 struct queue *q)
2485 {
2486 struct kfd_process_device *pdd = kfd_get_process_device_data(q->device,
2487 q->process);
2488 int ret = 0;
2489
2490 if (WARN_ON(!pdd))
2491 return ret;
2492
2493 if (pdd->qpd.is_debug)
2494 return ret;
2495
2496 q->properties.is_being_destroyed = true;
2497
2498 if (pdd->process->debug_trap_enabled && q->properties.is_suspended) {
2499 dqm_unlock(dqm);
2500 mutex_unlock(&q->process->mutex);
2501 ret = wait_event_interruptible(dqm->destroy_wait,
2502 !q->properties.is_suspended);
2503
2504 mutex_lock(&q->process->mutex);
2505 dqm_lock(dqm);
2506 }
2507
2508 return ret;
2509 }
2510
destroy_queue_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)2511 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
2512 struct qcm_process_device *qpd,
2513 struct queue *q)
2514 {
2515 int retval;
2516 struct mqd_manager *mqd_mgr;
2517 uint64_t sdma_val = 0;
2518 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2519 struct device *dev = dqm->dev->adev->dev;
2520
2521 /* Get the SDMA queue stats */
2522 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2523 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2524 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
2525 &sdma_val);
2526 if (retval)
2527 dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
2528 q->properties.queue_id);
2529 }
2530
2531 /* remove queue from list to prevent rescheduling after preemption */
2532 dqm_lock(dqm);
2533
2534 retval = wait_on_destroy_queue(dqm, q);
2535
2536 if (retval) {
2537 dqm_unlock(dqm);
2538 return retval;
2539 }
2540
2541 if (qpd->is_debug) {
2542 /*
2543 * error, currently we do not allow to destroy a queue
2544 * of a currently debugged process
2545 */
2546 retval = -EBUSY;
2547 goto failed_try_destroy_debugged_queue;
2548
2549 }
2550
2551 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2552 q->properties.type)];
2553
2554 deallocate_doorbell(qpd, q);
2555
2556 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2557 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2558 deallocate_sdma_queue(dqm, q);
2559 pdd->sdma_past_activity_counter += sdma_val;
2560 }
2561
2562 if (q->properties.is_active) {
2563 decrement_queue_count(dqm, qpd, q);
2564 q->properties.is_active = false;
2565 if (!dqm->dev->kfd->shared_resources.enable_mes) {
2566 retval = execute_queues_cpsch(dqm,
2567 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
2568 USE_DEFAULT_GRACE_PERIOD);
2569 if (retval == -ETIME)
2570 qpd->reset_wavefronts = true;
2571 } else {
2572 retval = remove_queue_mes(dqm, q, qpd);
2573 }
2574 }
2575 list_del(&q->list);
2576 qpd->queue_count--;
2577
2578 /*
2579 * Unconditionally decrement this counter, regardless of the queue's
2580 * type
2581 */
2582 dqm->total_queue_count--;
2583 pr_debug("Total of %d queues are accountable so far\n",
2584 dqm->total_queue_count);
2585
2586 dqm_unlock(dqm);
2587
2588 /*
2589 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid
2590 * circular locking
2591 */
2592 kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE),
2593 qpd->pqm->process, q->device,
2594 -1, false, NULL, 0);
2595
2596 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2597
2598 return retval;
2599
2600 failed_try_destroy_debugged_queue:
2601
2602 dqm_unlock(dqm);
2603 return retval;
2604 }
2605
set_cache_memory_policy(struct device_queue_manager * dqm,struct qcm_process_device * qpd,enum cache_policy default_policy,enum cache_policy alternate_policy,void __user * alternate_aperture_base,uint64_t alternate_aperture_size,u32 misc_process_properties)2606 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
2607 struct qcm_process_device *qpd,
2608 enum cache_policy default_policy,
2609 enum cache_policy alternate_policy,
2610 void __user *alternate_aperture_base,
2611 uint64_t alternate_aperture_size,
2612 u32 misc_process_properties)
2613 {
2614 bool retval = true;
2615
2616 if (!dqm->asic_ops.set_cache_memory_policy)
2617 return retval;
2618
2619 dqm_lock(dqm);
2620
2621 retval = dqm->asic_ops.set_cache_memory_policy(
2622 dqm,
2623 qpd,
2624 default_policy,
2625 alternate_policy,
2626 alternate_aperture_base,
2627 alternate_aperture_size,
2628 misc_process_properties);
2629
2630 if (retval)
2631 goto out;
2632
2633 if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
2634 program_sh_mem_settings(dqm, qpd);
2635
2636 pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
2637 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
2638 qpd->sh_mem_ape1_limit);
2639
2640 out:
2641 dqm_unlock(dqm);
2642 return retval;
2643 }
2644
process_termination_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2645 static int process_termination_nocpsch(struct device_queue_manager *dqm,
2646 struct qcm_process_device *qpd)
2647 {
2648 struct queue *q;
2649 struct device_process_node *cur, *next_dpn;
2650 int retval = 0;
2651 bool found = false;
2652
2653 dqm_lock(dqm);
2654
2655 /* Clear all user mode queues */
2656 while (!list_empty(&qpd->queues_list)) {
2657 struct mqd_manager *mqd_mgr;
2658 int ret;
2659
2660 q = list_first_entry(&qpd->queues_list, struct queue, list);
2661 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2662 q->properties.type)];
2663 ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
2664 if (ret)
2665 retval = ret;
2666 dqm_unlock(dqm);
2667 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2668 dqm_lock(dqm);
2669 }
2670
2671 /* Unregister process */
2672 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2673 if (qpd == cur->qpd) {
2674 list_del(&cur->list);
2675 kfree(cur);
2676 dqm->processes_count--;
2677 found = true;
2678 break;
2679 }
2680 }
2681
2682 dqm_unlock(dqm);
2683
2684 /* Outside the DQM lock because under the DQM lock we can't do
2685 * reclaim or take other locks that others hold while reclaiming.
2686 */
2687 if (found)
2688 kfd_dec_compute_active(dqm->dev);
2689
2690 return retval;
2691 }
2692
get_wave_state(struct device_queue_manager * dqm,struct queue * q,void __user * ctl_stack,u32 * ctl_stack_used_size,u32 * save_area_used_size)2693 static int get_wave_state(struct device_queue_manager *dqm,
2694 struct queue *q,
2695 void __user *ctl_stack,
2696 u32 *ctl_stack_used_size,
2697 u32 *save_area_used_size)
2698 {
2699 struct mqd_manager *mqd_mgr;
2700
2701 dqm_lock(dqm);
2702
2703 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2704
2705 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
2706 q->properties.is_active || !q->device->kfd->cwsr_enabled ||
2707 !mqd_mgr->get_wave_state) {
2708 dqm_unlock(dqm);
2709 return -EINVAL;
2710 }
2711
2712 dqm_unlock(dqm);
2713
2714 /*
2715 * get_wave_state is outside the dqm lock to prevent circular locking
2716 * and the queue should be protected against destruction by the process
2717 * lock.
2718 */
2719 return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties,
2720 ctl_stack, ctl_stack_used_size, save_area_used_size);
2721 }
2722
get_queue_checkpoint_info(struct device_queue_manager * dqm,const struct queue * q,u32 * mqd_size,u32 * ctl_stack_size)2723 static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
2724 const struct queue *q,
2725 u32 *mqd_size,
2726 u32 *ctl_stack_size)
2727 {
2728 struct mqd_manager *mqd_mgr;
2729 enum KFD_MQD_TYPE mqd_type =
2730 get_mqd_type_from_queue_type(q->properties.type);
2731
2732 dqm_lock(dqm);
2733 mqd_mgr = dqm->mqd_mgrs[mqd_type];
2734 *mqd_size = mqd_mgr->mqd_size * NUM_XCC(mqd_mgr->dev->xcc_mask);
2735 *ctl_stack_size = 0;
2736
2737 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
2738 mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
2739
2740 dqm_unlock(dqm);
2741 }
2742
checkpoint_mqd(struct device_queue_manager * dqm,const struct queue * q,void * mqd,void * ctl_stack)2743 static int checkpoint_mqd(struct device_queue_manager *dqm,
2744 const struct queue *q,
2745 void *mqd,
2746 void *ctl_stack)
2747 {
2748 struct mqd_manager *mqd_mgr;
2749 int r = 0;
2750 enum KFD_MQD_TYPE mqd_type =
2751 get_mqd_type_from_queue_type(q->properties.type);
2752
2753 dqm_lock(dqm);
2754
2755 if (q->properties.is_active || !q->device->kfd->cwsr_enabled) {
2756 r = -EINVAL;
2757 goto dqm_unlock;
2758 }
2759
2760 mqd_mgr = dqm->mqd_mgrs[mqd_type];
2761 if (!mqd_mgr->checkpoint_mqd) {
2762 r = -EOPNOTSUPP;
2763 goto dqm_unlock;
2764 }
2765
2766 mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
2767
2768 dqm_unlock:
2769 dqm_unlock(dqm);
2770 return r;
2771 }
2772
process_termination_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2773 static int process_termination_cpsch(struct device_queue_manager *dqm,
2774 struct qcm_process_device *qpd)
2775 {
2776 int retval = 0;
2777 struct queue *q;
2778 struct device *dev = dqm->dev->adev->dev;
2779 struct kernel_queue *kq, *kq_next;
2780 struct mqd_manager *mqd_mgr;
2781 struct device_process_node *cur, *next_dpn;
2782 enum kfd_unmap_queues_filter filter =
2783 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
2784 bool found = false;
2785
2786 dqm_lock(dqm);
2787
2788 /* Clean all kernel queues */
2789 list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
2790 list_del(&kq->list);
2791 decrement_queue_count(dqm, qpd, kq->queue);
2792 qpd->is_debug = false;
2793 dqm->total_queue_count--;
2794 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
2795 }
2796
2797 /* Clear all user mode queues */
2798 list_for_each_entry(q, &qpd->queues_list, list) {
2799 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
2800 deallocate_sdma_queue(dqm, q);
2801 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2802 deallocate_sdma_queue(dqm, q);
2803
2804 if (q->properties.is_active) {
2805 decrement_queue_count(dqm, qpd, q);
2806
2807 if (dqm->dev->kfd->shared_resources.enable_mes) {
2808 retval = remove_queue_mes(dqm, q, qpd);
2809 if (retval)
2810 dev_err(dev, "Failed to remove queue %d\n",
2811 q->properties.queue_id);
2812 }
2813 }
2814
2815 dqm->total_queue_count--;
2816 }
2817
2818 /* Unregister process */
2819 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2820 if (qpd == cur->qpd) {
2821 list_del(&cur->list);
2822 kfree(cur);
2823 dqm->processes_count--;
2824 found = true;
2825 break;
2826 }
2827 }
2828
2829 if (!dqm->dev->kfd->shared_resources.enable_mes)
2830 retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD);
2831
2832 if ((retval || qpd->reset_wavefronts) &&
2833 down_read_trylock(&dqm->dev->adev->reset_domain->sem)) {
2834 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
2835 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
2836 qpd->reset_wavefronts = false;
2837 up_read(&dqm->dev->adev->reset_domain->sem);
2838 }
2839
2840 /* Lastly, free mqd resources.
2841 * Do free_mqd() after dqm_unlock to avoid circular locking.
2842 */
2843 while (!list_empty(&qpd->queues_list)) {
2844 q = list_first_entry(&qpd->queues_list, struct queue, list);
2845 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2846 q->properties.type)];
2847 list_del(&q->list);
2848 qpd->queue_count--;
2849 dqm_unlock(dqm);
2850 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2851 dqm_lock(dqm);
2852 }
2853 dqm_unlock(dqm);
2854
2855 /* Outside the DQM lock because under the DQM lock we can't do
2856 * reclaim or take other locks that others hold while reclaiming.
2857 */
2858 if (found)
2859 kfd_dec_compute_active(dqm->dev);
2860
2861 return retval;
2862 }
2863
init_mqd_managers(struct device_queue_manager * dqm)2864 static int init_mqd_managers(struct device_queue_manager *dqm)
2865 {
2866 int i, j;
2867 struct device *dev = dqm->dev->adev->dev;
2868 struct mqd_manager *mqd_mgr;
2869
2870 for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
2871 mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
2872 if (!mqd_mgr) {
2873 dev_err(dev, "mqd manager [%d] initialization failed\n", i);
2874 goto out_free;
2875 }
2876 dqm->mqd_mgrs[i] = mqd_mgr;
2877 }
2878
2879 return 0;
2880
2881 out_free:
2882 for (j = 0; j < i; j++) {
2883 kfree(dqm->mqd_mgrs[j]);
2884 dqm->mqd_mgrs[j] = NULL;
2885 }
2886
2887 return -ENOMEM;
2888 }
2889
2890 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
allocate_hiq_sdma_mqd(struct device_queue_manager * dqm)2891 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
2892 {
2893 int retval;
2894 struct kfd_node *dev = dqm->dev;
2895 struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
2896 uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
2897 get_num_all_sdma_engines(dqm) *
2898 dev->kfd->device_info.num_sdma_queues_per_engine +
2899 (dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size *
2900 NUM_XCC(dqm->dev->xcc_mask));
2901
2902 retval = amdgpu_amdkfd_alloc_kernel_mem(dev->adev, size,
2903 AMDGPU_GEM_DOMAIN_GTT,
2904 &(mem_obj->mem), &(mem_obj->gpu_addr),
2905 (void *)&(mem_obj->cpu_ptr), false);
2906
2907 return retval;
2908 }
2909
deallocate_hiq_sdma_mqd(struct kfd_node * dev,struct kfd_mem_obj * mqd)2910 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev,
2911 struct kfd_mem_obj *mqd)
2912 {
2913 WARN(!mqd, "No hiq sdma mqd trunk to free");
2914
2915 amdgpu_amdkfd_free_kernel_mem(dev->adev, &mqd->mem);
2916 }
2917
device_queue_manager_init(struct kfd_node * dev)2918 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev)
2919 {
2920 struct device_queue_manager *dqm;
2921
2922 pr_debug("Loading device queue manager\n");
2923
2924 dqm = kzalloc_obj(*dqm, GFP_KERNEL);
2925 if (!dqm)
2926 return NULL;
2927
2928 switch (dev->adev->asic_type) {
2929 /* HWS is not available on Hawaii. */
2930 case CHIP_HAWAII:
2931 /* HWS depends on CWSR for timely dequeue. CWSR is not
2932 * available on Tonga.
2933 *
2934 * FIXME: This argument also applies to Kaveri.
2935 */
2936 case CHIP_TONGA:
2937 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
2938 break;
2939 default:
2940 dqm->sched_policy = sched_policy;
2941 break;
2942 }
2943
2944 dqm->dev = dev;
2945 switch (dqm->sched_policy) {
2946 case KFD_SCHED_POLICY_HWS:
2947 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
2948 /* initialize dqm for cp scheduling */
2949 dqm->ops.create_queue = create_queue_cpsch;
2950 dqm->ops.initialize = initialize_cpsch;
2951 dqm->ops.start = start_cpsch;
2952 dqm->ops.stop = stop_cpsch;
2953 dqm->ops.halt = halt_cpsch;
2954 dqm->ops.unhalt = unhalt_cpsch;
2955 dqm->ops.destroy_queue = destroy_queue_cpsch;
2956 dqm->ops.update_queue = update_queue;
2957 dqm->ops.register_process = register_process;
2958 dqm->ops.unregister_process = unregister_process;
2959 dqm->ops.uninitialize = uninitialize;
2960 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
2961 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
2962 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2963 dqm->ops.process_termination = process_termination_cpsch;
2964 dqm->ops.evict_process_queues = evict_process_queues_cpsch;
2965 dqm->ops.restore_process_queues = restore_process_queues_cpsch;
2966 dqm->ops.get_wave_state = get_wave_state;
2967 dqm->ops.reset_queues = reset_queues_cpsch;
2968 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2969 dqm->ops.checkpoint_mqd = checkpoint_mqd;
2970 break;
2971 case KFD_SCHED_POLICY_NO_HWS:
2972 /* initialize dqm for no cp scheduling */
2973 dqm->ops.start = start_nocpsch;
2974 dqm->ops.stop = stop_nocpsch;
2975 dqm->ops.create_queue = create_queue_nocpsch;
2976 dqm->ops.destroy_queue = destroy_queue_nocpsch;
2977 dqm->ops.update_queue = update_queue;
2978 dqm->ops.register_process = register_process;
2979 dqm->ops.unregister_process = unregister_process;
2980 dqm->ops.initialize = initialize_nocpsch;
2981 dqm->ops.uninitialize = uninitialize;
2982 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2983 dqm->ops.process_termination = process_termination_nocpsch;
2984 dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
2985 dqm->ops.restore_process_queues =
2986 restore_process_queues_nocpsch;
2987 dqm->ops.get_wave_state = get_wave_state;
2988 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2989 dqm->ops.checkpoint_mqd = checkpoint_mqd;
2990 break;
2991 default:
2992 dev_err(dev->adev->dev, "Invalid scheduling policy %d\n", dqm->sched_policy);
2993 goto out_free;
2994 }
2995
2996 switch (dev->adev->asic_type) {
2997 case CHIP_KAVERI:
2998 case CHIP_HAWAII:
2999 device_queue_manager_init_cik(&dqm->asic_ops);
3000 break;
3001
3002 case CHIP_CARRIZO:
3003 case CHIP_TONGA:
3004 case CHIP_FIJI:
3005 case CHIP_POLARIS10:
3006 case CHIP_POLARIS11:
3007 case CHIP_POLARIS12:
3008 case CHIP_VEGAM:
3009 device_queue_manager_init_vi(&dqm->asic_ops);
3010 break;
3011
3012 default:
3013 if (KFD_GC_VERSION(dev) >= IP_VERSION(12, 1, 0))
3014 device_queue_manager_init_v12_1(&dqm->asic_ops);
3015 else if (KFD_GC_VERSION(dev) >= IP_VERSION(12, 0, 0))
3016 device_queue_manager_init_v12(&dqm->asic_ops);
3017 else if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0))
3018 device_queue_manager_init_v11(&dqm->asic_ops);
3019 else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
3020 device_queue_manager_init_v10(&dqm->asic_ops);
3021 else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
3022 device_queue_manager_init_v9(&dqm->asic_ops);
3023 else {
3024 WARN(1, "Unexpected ASIC family %u",
3025 dev->adev->asic_type);
3026 goto out_free;
3027 }
3028 }
3029
3030 if (init_mqd_managers(dqm))
3031 goto out_free;
3032
3033 if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) {
3034 dev_err(dev->adev->dev, "Failed to allocate hiq sdma mqd trunk buffer\n");
3035 goto out_free;
3036 }
3037
3038 if (!dqm->ops.initialize(dqm)) {
3039 init_waitqueue_head(&dqm->destroy_wait);
3040 return dqm;
3041 }
3042
3043 if (!dev->kfd->shared_resources.enable_mes)
3044 deallocate_hiq_sdma_mqd(dev, &dqm->hiq_sdma_mqd);
3045
3046 out_free:
3047 kfree(dqm);
3048 return NULL;
3049 }
3050
device_queue_manager_uninit(struct device_queue_manager * dqm)3051 void device_queue_manager_uninit(struct device_queue_manager *dqm)
3052 {
3053 dqm->ops.stop(dqm);
3054 dqm->ops.uninitialize(dqm);
3055 if (!dqm->dev->kfd->shared_resources.enable_mes)
3056 deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
3057 kfree(dqm);
3058 }
3059
kfd_dqm_suspend_bad_queue_mes(struct kfd_node * knode,u32 pasid,u32 doorbell_id)3060 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id)
3061 {
3062 struct kfd_process_device *pdd = NULL;
3063 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid, &pdd);
3064 struct device_queue_manager *dqm = knode->dqm;
3065 struct device *dev = dqm->dev->adev->dev;
3066 struct qcm_process_device *qpd;
3067 struct queue *q = NULL;
3068 int ret = 0;
3069
3070 if (!pdd)
3071 return -EINVAL;
3072
3073 dqm_lock(dqm);
3074
3075 if (pdd) {
3076 qpd = &pdd->qpd;
3077
3078 list_for_each_entry(q, &qpd->queues_list, list) {
3079 if (q->doorbell_id == doorbell_id && q->properties.is_active) {
3080 ret = suspend_all_queues_mes(dqm);
3081 if (ret) {
3082 dev_err(dev, "Suspending all queues failed");
3083 goto out;
3084 }
3085
3086 q->properties.is_evicted = true;
3087 q->properties.is_active = false;
3088 decrement_queue_count(dqm, qpd, q);
3089
3090 ret = remove_queue_mes(dqm, q, qpd);
3091 if (ret) {
3092 dev_err(dev, "Removing bad queue failed");
3093 goto out;
3094 }
3095
3096 ret = resume_all_queues_mes(dqm);
3097 if (ret)
3098 dev_err(dev, "Resuming all queues failed");
3099
3100 break;
3101 }
3102 }
3103 }
3104
3105 out:
3106 dqm_unlock(dqm);
3107 kfd_unref_process(p);
3108 return ret;
3109 }
3110
kfd_evict_process_device(struct kfd_process_device * pdd)3111 int kfd_evict_process_device(struct kfd_process_device *pdd)
3112 {
3113 struct device_queue_manager *dqm;
3114 struct kfd_process *p;
3115
3116 p = pdd->process;
3117 dqm = pdd->dev->dqm;
3118
3119 WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
3120
3121 return dqm->ops.evict_process_queues(dqm, &pdd->qpd);
3122 }
3123
reserve_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)3124 int reserve_debug_trap_vmid(struct device_queue_manager *dqm,
3125 struct qcm_process_device *qpd)
3126 {
3127 int r;
3128 struct device *dev = dqm->dev->adev->dev;
3129 int updated_vmid_mask;
3130
3131 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3132 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3133 return -EINVAL;
3134 }
3135
3136 dqm_lock(dqm);
3137
3138 if (dqm->trap_debug_vmid != 0) {
3139 dev_err(dev, "Trap debug id already reserved\n");
3140 r = -EBUSY;
3141 goto out_unlock;
3142 }
3143
3144 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3145 USE_DEFAULT_GRACE_PERIOD, false);
3146 if (r)
3147 goto out_unlock;
3148
3149 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3150 updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd);
3151
3152 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3153 dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd;
3154 r = set_sched_resources(dqm);
3155 if (r)
3156 goto out_unlock;
3157
3158 r = map_queues_cpsch(dqm);
3159 if (r)
3160 goto out_unlock;
3161
3162 pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid);
3163
3164 out_unlock:
3165 dqm_unlock(dqm);
3166 return r;
3167 }
3168
3169 /*
3170 * Releases vmid for the trap debugger
3171 */
release_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)3172 int release_debug_trap_vmid(struct device_queue_manager *dqm,
3173 struct qcm_process_device *qpd)
3174 {
3175 struct device *dev = dqm->dev->adev->dev;
3176 int r;
3177 int updated_vmid_mask;
3178 uint32_t trap_debug_vmid;
3179
3180 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3181 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3182 return -EINVAL;
3183 }
3184
3185 dqm_lock(dqm);
3186 trap_debug_vmid = dqm->trap_debug_vmid;
3187 if (dqm->trap_debug_vmid == 0) {
3188 dev_err(dev, "Trap debug id is not reserved\n");
3189 r = -EINVAL;
3190 goto out_unlock;
3191 }
3192
3193 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3194 USE_DEFAULT_GRACE_PERIOD, false);
3195 if (r)
3196 goto out_unlock;
3197
3198 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3199 updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd);
3200
3201 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3202 dqm->trap_debug_vmid = 0;
3203 r = set_sched_resources(dqm);
3204 if (r)
3205 goto out_unlock;
3206
3207 r = map_queues_cpsch(dqm);
3208 if (r)
3209 goto out_unlock;
3210
3211 pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid);
3212
3213 out_unlock:
3214 dqm_unlock(dqm);
3215 return r;
3216 }
3217
3218 #define QUEUE_NOT_FOUND -1
3219 /* invalidate queue operation in array */
q_array_invalidate(uint32_t num_queues,uint32_t * queue_ids)3220 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids)
3221 {
3222 int i;
3223
3224 for (i = 0; i < num_queues; i++)
3225 queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK;
3226 }
3227
3228 /* find queue index in array */
q_array_get_index(unsigned int queue_id,uint32_t num_queues,uint32_t * queue_ids)3229 static int q_array_get_index(unsigned int queue_id,
3230 uint32_t num_queues,
3231 uint32_t *queue_ids)
3232 {
3233 int i;
3234
3235 for (i = 0; i < num_queues; i++)
3236 if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK))
3237 return i;
3238
3239 return QUEUE_NOT_FOUND;
3240 }
3241
3242 struct copy_context_work_handler_workarea {
3243 struct work_struct copy_context_work;
3244 struct kfd_process *p;
3245 };
3246
copy_context_work_handler(struct work_struct * work)3247 static void copy_context_work_handler(struct work_struct *work)
3248 {
3249 struct copy_context_work_handler_workarea *workarea;
3250 struct mqd_manager *mqd_mgr;
3251 struct queue *q;
3252 struct mm_struct *mm;
3253 struct kfd_process *p;
3254 uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size;
3255 int i;
3256
3257 workarea = container_of(work,
3258 struct copy_context_work_handler_workarea,
3259 copy_context_work);
3260
3261 p = workarea->p;
3262 mm = get_task_mm(p->lead_thread);
3263
3264 if (!mm)
3265 return;
3266
3267 kthread_use_mm(mm);
3268 for (i = 0; i < p->n_pdds; i++) {
3269 struct kfd_process_device *pdd = p->pdds[i];
3270 struct device_queue_manager *dqm = pdd->dev->dqm;
3271 struct qcm_process_device *qpd = &pdd->qpd;
3272
3273 list_for_each_entry(q, &qpd->queues_list, list) {
3274 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE)
3275 continue;
3276
3277 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
3278
3279 /* We ignore the return value from get_wave_state
3280 * because
3281 * i) right now, it always returns 0, and
3282 * ii) if we hit an error, we would continue to the
3283 * next queue anyway.
3284 */
3285 mqd_mgr->get_wave_state(mqd_mgr,
3286 q->mqd,
3287 &q->properties,
3288 (void __user *) q->properties.ctx_save_restore_area_address,
3289 &tmp_ctl_stack_used_size,
3290 &tmp_save_area_used_size);
3291 }
3292 }
3293 kthread_unuse_mm(mm);
3294 mmput(mm);
3295 }
3296
get_queue_ids(uint32_t num_queues,uint32_t * usr_queue_id_array)3297 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array)
3298 {
3299 size_t array_size = num_queues * sizeof(uint32_t);
3300
3301 if (!usr_queue_id_array)
3302 return NULL;
3303
3304 return memdup_user(usr_queue_id_array, array_size);
3305 }
3306
resume_queues(struct kfd_process * p,uint32_t num_queues,uint32_t * usr_queue_id_array)3307 int resume_queues(struct kfd_process *p,
3308 uint32_t num_queues,
3309 uint32_t *usr_queue_id_array)
3310 {
3311 uint32_t *queue_ids = NULL;
3312 int total_resumed = 0;
3313 int i;
3314
3315 if (usr_queue_id_array) {
3316 queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3317
3318 if (IS_ERR(queue_ids))
3319 return PTR_ERR(queue_ids);
3320
3321 /* mask all queues as invalid. unmask per successful request */
3322 q_array_invalidate(num_queues, queue_ids);
3323 }
3324
3325 for (i = 0; i < p->n_pdds; i++) {
3326 struct kfd_process_device *pdd = p->pdds[i];
3327 struct device_queue_manager *dqm = pdd->dev->dqm;
3328 struct device *dev = dqm->dev->adev->dev;
3329 struct qcm_process_device *qpd = &pdd->qpd;
3330 struct queue *q;
3331 int r, per_device_resumed = 0;
3332
3333 dqm_lock(dqm);
3334
3335 /* unmask queues that resume or already resumed as valid */
3336 list_for_each_entry(q, &qpd->queues_list, list) {
3337 int q_idx = QUEUE_NOT_FOUND;
3338
3339 if (queue_ids)
3340 q_idx = q_array_get_index(
3341 q->properties.queue_id,
3342 num_queues,
3343 queue_ids);
3344
3345 if (!queue_ids || q_idx != QUEUE_NOT_FOUND) {
3346 int err = resume_single_queue(dqm, &pdd->qpd, q);
3347
3348 if (queue_ids) {
3349 if (!err) {
3350 queue_ids[q_idx] &=
3351 ~KFD_DBG_QUEUE_INVALID_MASK;
3352 } else {
3353 queue_ids[q_idx] |=
3354 KFD_DBG_QUEUE_ERROR_MASK;
3355 break;
3356 }
3357 }
3358
3359 if (dqm->dev->kfd->shared_resources.enable_mes) {
3360 wake_up_all(&dqm->destroy_wait);
3361 if (!err)
3362 total_resumed++;
3363 } else {
3364 per_device_resumed++;
3365 }
3366 }
3367 }
3368
3369 if (!per_device_resumed) {
3370 dqm_unlock(dqm);
3371 continue;
3372 }
3373
3374 r = execute_queues_cpsch(dqm,
3375 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
3376 0,
3377 USE_DEFAULT_GRACE_PERIOD);
3378 if (r) {
3379 dev_err(dev, "Failed to resume process queues\n");
3380 if (queue_ids) {
3381 list_for_each_entry(q, &qpd->queues_list, list) {
3382 int q_idx = q_array_get_index(
3383 q->properties.queue_id,
3384 num_queues,
3385 queue_ids);
3386
3387 /* mask queue as error on resume fail */
3388 if (q_idx != QUEUE_NOT_FOUND)
3389 queue_ids[q_idx] |=
3390 KFD_DBG_QUEUE_ERROR_MASK;
3391 }
3392 }
3393 } else {
3394 wake_up_all(&dqm->destroy_wait);
3395 total_resumed += per_device_resumed;
3396 }
3397
3398 dqm_unlock(dqm);
3399 }
3400
3401 if (queue_ids) {
3402 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3403 num_queues * sizeof(uint32_t)))
3404 pr_err("copy_to_user failed on queue resume\n");
3405
3406 kfree(queue_ids);
3407 }
3408
3409 return total_resumed;
3410 }
3411
suspend_queues(struct kfd_process * p,uint32_t num_queues,uint32_t grace_period,uint64_t exception_clear_mask,uint32_t * usr_queue_id_array)3412 int suspend_queues(struct kfd_process *p,
3413 uint32_t num_queues,
3414 uint32_t grace_period,
3415 uint64_t exception_clear_mask,
3416 uint32_t *usr_queue_id_array)
3417 {
3418 uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3419 int total_suspended = 0;
3420 int i;
3421
3422 if (IS_ERR(queue_ids))
3423 return PTR_ERR(queue_ids);
3424
3425 /* mask all queues as invalid. umask on successful request */
3426 q_array_invalidate(num_queues, queue_ids);
3427
3428 for (i = 0; i < p->n_pdds; i++) {
3429 struct kfd_process_device *pdd = p->pdds[i];
3430 struct device_queue_manager *dqm = pdd->dev->dqm;
3431 struct device *dev = dqm->dev->adev->dev;
3432 struct qcm_process_device *qpd = &pdd->qpd;
3433 struct queue *q;
3434 int r, per_device_suspended = 0;
3435
3436 mutex_lock(&p->event_mutex);
3437 dqm_lock(dqm);
3438
3439 /* unmask queues that suspend or already suspended */
3440 list_for_each_entry(q, &qpd->queues_list, list) {
3441 int q_idx = q_array_get_index(q->properties.queue_id,
3442 num_queues,
3443 queue_ids);
3444
3445 if (q_idx != QUEUE_NOT_FOUND) {
3446 int err = suspend_single_queue(dqm, pdd, q);
3447 bool is_mes = dqm->dev->kfd->shared_resources.enable_mes;
3448
3449 if (!err) {
3450 queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK;
3451 if (exception_clear_mask && is_mes)
3452 q->properties.exception_status &=
3453 ~exception_clear_mask;
3454
3455 if (is_mes)
3456 total_suspended++;
3457 else
3458 per_device_suspended++;
3459 } else if (err != -EBUSY) {
3460 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3461 break;
3462 }
3463 }
3464 }
3465
3466 if (!per_device_suspended) {
3467 dqm_unlock(dqm);
3468 mutex_unlock(&p->event_mutex);
3469 if (total_suspended)
3470 amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev);
3471 continue;
3472 }
3473
3474 r = execute_queues_cpsch(dqm,
3475 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
3476 grace_period);
3477
3478 if (r)
3479 dev_err(dev, "Failed to suspend process queues.\n");
3480 else
3481 total_suspended += per_device_suspended;
3482
3483 list_for_each_entry(q, &qpd->queues_list, list) {
3484 int q_idx = q_array_get_index(q->properties.queue_id,
3485 num_queues, queue_ids);
3486
3487 if (q_idx == QUEUE_NOT_FOUND)
3488 continue;
3489
3490 /* mask queue as error on suspend fail */
3491 if (r)
3492 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3493 else if (exception_clear_mask)
3494 q->properties.exception_status &=
3495 ~exception_clear_mask;
3496 }
3497
3498 dqm_unlock(dqm);
3499 mutex_unlock(&p->event_mutex);
3500 amdgpu_device_flush_hdp(dqm->dev->adev, NULL);
3501 }
3502
3503 if (total_suspended) {
3504 struct copy_context_work_handler_workarea copy_context_worker;
3505
3506 INIT_WORK_ONSTACK(
3507 ©_context_worker.copy_context_work,
3508 copy_context_work_handler);
3509
3510 copy_context_worker.p = p;
3511
3512 schedule_work(©_context_worker.copy_context_work);
3513
3514
3515 flush_work(©_context_worker.copy_context_work);
3516 destroy_work_on_stack(©_context_worker.copy_context_work);
3517 }
3518
3519 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3520 num_queues * sizeof(uint32_t)))
3521 pr_err("copy_to_user failed on queue suspend\n");
3522
3523 kfree(queue_ids);
3524
3525 return total_suspended;
3526 }
3527
set_queue_type_for_user(struct queue_properties * q_props)3528 static uint32_t set_queue_type_for_user(struct queue_properties *q_props)
3529 {
3530 switch (q_props->type) {
3531 case KFD_QUEUE_TYPE_COMPUTE:
3532 return q_props->format == KFD_QUEUE_FORMAT_PM4
3533 ? KFD_IOC_QUEUE_TYPE_COMPUTE
3534 : KFD_IOC_QUEUE_TYPE_COMPUTE_AQL;
3535 case KFD_QUEUE_TYPE_SDMA:
3536 return KFD_IOC_QUEUE_TYPE_SDMA;
3537 case KFD_QUEUE_TYPE_SDMA_XGMI:
3538 return KFD_IOC_QUEUE_TYPE_SDMA_XGMI;
3539 default:
3540 WARN_ONCE(true, "queue type not recognized!");
3541 return 0xffffffff;
3542 };
3543 }
3544
set_queue_snapshot_entry(struct queue * q,uint64_t exception_clear_mask,struct kfd_queue_snapshot_entry * qss_entry)3545 void set_queue_snapshot_entry(struct queue *q,
3546 uint64_t exception_clear_mask,
3547 struct kfd_queue_snapshot_entry *qss_entry)
3548 {
3549 qss_entry->ring_base_address = q->properties.queue_address;
3550 qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr;
3551 qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr;
3552 qss_entry->ctx_save_restore_address =
3553 q->properties.ctx_save_restore_area_address;
3554 qss_entry->ctx_save_restore_area_size =
3555 q->properties.ctx_save_restore_area_size;
3556 qss_entry->exception_status = q->properties.exception_status;
3557 qss_entry->queue_id = q->properties.queue_id;
3558 qss_entry->gpu_id = q->device->id;
3559 qss_entry->ring_size = (uint32_t)q->properties.queue_size;
3560 qss_entry->queue_type = set_queue_type_for_user(&q->properties);
3561 q->properties.exception_status &= ~exception_clear_mask;
3562 }
3563
debug_lock_and_unmap(struct device_queue_manager * dqm)3564 int debug_lock_and_unmap(struct device_queue_manager *dqm)
3565 {
3566 struct device *dev = dqm->dev->adev->dev;
3567 int r;
3568
3569 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3570 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3571 return -EINVAL;
3572 }
3573
3574 if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3575 return 0;
3576
3577 dqm_lock(dqm);
3578
3579 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false);
3580 if (r)
3581 dqm_unlock(dqm);
3582
3583 return r;
3584 }
3585
debug_map_and_unlock(struct device_queue_manager * dqm)3586 int debug_map_and_unlock(struct device_queue_manager *dqm)
3587 {
3588 struct device *dev = dqm->dev->adev->dev;
3589 int r;
3590
3591 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3592 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3593 return -EINVAL;
3594 }
3595
3596 if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3597 return 0;
3598
3599 r = map_queues_cpsch(dqm);
3600
3601 dqm_unlock(dqm);
3602
3603 return r;
3604 }
3605
debug_refresh_runlist(struct device_queue_manager * dqm)3606 int debug_refresh_runlist(struct device_queue_manager *dqm)
3607 {
3608 int r = debug_lock_and_unmap(dqm);
3609
3610 if (r)
3611 return r;
3612
3613 return debug_map_and_unlock(dqm);
3614 }
3615
kfd_dqm_is_queue_in_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd,int doorbell_off,u32 * queue_format)3616 bool kfd_dqm_is_queue_in_process(struct device_queue_manager *dqm,
3617 struct qcm_process_device *qpd,
3618 int doorbell_off, u32 *queue_format)
3619 {
3620 struct queue *q;
3621 bool r = false;
3622
3623 if (!queue_format)
3624 return r;
3625
3626 dqm_lock(dqm);
3627
3628 list_for_each_entry(q, &qpd->queues_list, list) {
3629 if (q->properties.doorbell_off == doorbell_off) {
3630 *queue_format = q->properties.format;
3631 r = true;
3632 goto out;
3633 }
3634 }
3635
3636 out:
3637 dqm_unlock(dqm);
3638 return r;
3639 }
3640 #if defined(CONFIG_DEBUG_FS)
3641
seq_reg_dump(struct seq_file * m,uint32_t (* dump)[2],uint32_t n_regs)3642 static void seq_reg_dump(struct seq_file *m,
3643 uint32_t (*dump)[2], uint32_t n_regs)
3644 {
3645 uint32_t i, count;
3646
3647 for (i = 0, count = 0; i < n_regs; i++) {
3648 if (count == 0 ||
3649 dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
3650 seq_printf(m, "%s %08x: %08x",
3651 i ? "\n" : "",
3652 dump[i][0], dump[i][1]);
3653 count = 7;
3654 } else {
3655 seq_printf(m, " %08x", dump[i][1]);
3656 count--;
3657 }
3658 }
3659
3660 seq_puts(m, "\n");
3661 }
3662
dqm_debugfs_hqds(struct seq_file * m,void * data)3663 int dqm_debugfs_hqds(struct seq_file *m, void *data)
3664 {
3665 struct device_queue_manager *dqm = data;
3666 uint32_t xcc_mask = dqm->dev->xcc_mask;
3667 uint32_t (*dump)[2], n_regs;
3668 int pipe, queue;
3669 int r = 0, xcc_id;
3670 uint32_t sdma_engine_start;
3671
3672 if (!dqm->sched_running) {
3673 seq_puts(m, " Device is stopped\n");
3674 return 0;
3675 }
3676
3677 for_each_inst(xcc_id, xcc_mask) {
3678 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3679 KFD_CIK_HIQ_PIPE,
3680 KFD_CIK_HIQ_QUEUE, &dump,
3681 &n_regs, xcc_id);
3682 if (!r) {
3683 seq_printf(
3684 m,
3685 " Inst %d, HIQ on MEC %d Pipe %d Queue %d\n",
3686 xcc_id,
3687 KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1,
3688 KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm),
3689 KFD_CIK_HIQ_QUEUE);
3690 seq_reg_dump(m, dump, n_regs);
3691
3692 kfree(dump);
3693 }
3694
3695 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
3696 int pipe_offset = pipe * get_queues_per_pipe(dqm);
3697
3698 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
3699 if (!test_bit(pipe_offset + queue,
3700 dqm->dev->kfd->shared_resources.cp_queue_bitmap))
3701 continue;
3702
3703 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3704 pipe, queue,
3705 &dump, &n_regs,
3706 xcc_id);
3707 if (r)
3708 break;
3709
3710 seq_printf(m,
3711 " Inst %d, CP Pipe %d, Queue %d\n",
3712 xcc_id, pipe, queue);
3713 seq_reg_dump(m, dump, n_regs);
3714
3715 kfree(dump);
3716 }
3717 }
3718 }
3719
3720 sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
3721 for (pipe = sdma_engine_start;
3722 pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm));
3723 pipe++) {
3724 for (queue = 0;
3725 queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
3726 queue++) {
3727 r = dqm->dev->kfd2kgd->hqd_sdma_dump(
3728 dqm->dev->adev, pipe, queue, &dump, &n_regs);
3729 if (r)
3730 break;
3731
3732 seq_printf(m, " SDMA Engine %d, RLC %d\n",
3733 pipe, queue);
3734 seq_reg_dump(m, dump, n_regs);
3735
3736 kfree(dump);
3737 }
3738 }
3739
3740 return r;
3741 }
3742
dqm_debugfs_hang_hws(struct device_queue_manager * dqm)3743 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
3744 {
3745 int r = 0;
3746
3747 dqm_lock(dqm);
3748 r = pm_debugfs_hang_hws(&dqm->packet_mgr);
3749 if (r) {
3750 dqm_unlock(dqm);
3751 return r;
3752 }
3753 dqm->active_runlist = true;
3754 r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
3755 0, USE_DEFAULT_GRACE_PERIOD);
3756 dqm_unlock(dqm);
3757
3758 return r;
3759 }
3760
3761 #endif
3762