xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c (revision e02fcf73081b7fc941aa6de007b0239e67688e15)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/ratelimit.h>
26 #include <linux/printk.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/types.h>
30 #include <linux/bitops.h>
31 #include <linux/sched.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_mqd_manager.h"
35 #include "cik_regs.h"
36 #include "kfd_kernel_queue.h"
37 #include "amdgpu_amdkfd.h"
38 #include "amdgpu_reset.h"
39 #include "amdgpu_sdma.h"
40 #include "mes_v11_api_def.h"
41 #include "kfd_debug.h"
42 
43 /* Size of the per-pipe EOP queue */
44 #define CIK_HPD_EOP_BYTES_LOG2 11
45 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
46 /* See unmap_queues_cpsch() */
47 #define USE_DEFAULT_GRACE_PERIOD 0xffffffff
48 
49 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
50 				  u32 pasid, unsigned int vmid);
51 
52 static int execute_queues_cpsch(struct device_queue_manager *dqm,
53 				enum kfd_unmap_queues_filter filter,
54 				uint32_t filter_param,
55 				uint32_t grace_period);
56 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
57 				enum kfd_unmap_queues_filter filter,
58 				uint32_t filter_param,
59 				uint32_t grace_period,
60 				bool reset);
61 
62 static int map_queues_cpsch(struct device_queue_manager *dqm);
63 
64 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
65 				struct queue *q);
66 
67 static inline void deallocate_hqd(struct device_queue_manager *dqm,
68 				struct queue *q);
69 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
70 static int allocate_sdma_queue(struct device_queue_manager *dqm,
71 				struct queue *q, const uint32_t *restore_sdma_id);
72 
73 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma);
74 
75 static inline
76 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
77 {
78 	if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
79 		return KFD_MQD_TYPE_SDMA;
80 	return KFD_MQD_TYPE_CP;
81 }
82 
83 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
84 {
85 	int i;
86 	int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec
87 		+ pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe;
88 
89 	/* queue is available for KFD usage if bit is 1 */
90 	for (i = 0; i <  dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i)
91 		if (test_bit(pipe_offset + i,
92 			      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
93 			return true;
94 	return false;
95 }
96 
97 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
98 {
99 	return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap,
100 				AMDGPU_MAX_QUEUES);
101 }
102 
103 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
104 {
105 	return dqm->dev->kfd->shared_resources.num_queue_per_pipe;
106 }
107 
108 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
109 {
110 	return dqm->dev->kfd->shared_resources.num_pipe_per_mec;
111 }
112 
113 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
114 {
115 	return kfd_get_num_sdma_engines(dqm->dev) +
116 		kfd_get_num_xgmi_sdma_engines(dqm->dev);
117 }
118 
119 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
120 {
121 	return kfd_get_num_sdma_engines(dqm->dev) *
122 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
123 }
124 
125 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
126 {
127 	return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
128 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
129 }
130 
131 static void init_sdma_bitmaps(struct device_queue_manager *dqm)
132 {
133 	bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES);
134 	bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm));
135 
136 	bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES);
137 	bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm));
138 
139 	/* Mask out the reserved queues */
140 	bitmap_andnot(dqm->sdma_bitmap, dqm->sdma_bitmap,
141 		      dqm->dev->kfd->device_info.reserved_sdma_queues_bitmap,
142 		      KFD_MAX_SDMA_QUEUES);
143 }
144 
145 void program_sh_mem_settings(struct device_queue_manager *dqm,
146 					struct qcm_process_device *qpd)
147 {
148 	uint32_t xcc_mask = dqm->dev->xcc_mask;
149 	int xcc_id;
150 
151 	for_each_inst(xcc_id, xcc_mask)
152 		dqm->dev->kfd2kgd->program_sh_mem_settings(
153 			dqm->dev->adev, qpd->vmid, qpd->sh_mem_config,
154 			qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit,
155 			qpd->sh_mem_bases, xcc_id);
156 }
157 
158 static void kfd_hws_hang(struct device_queue_manager *dqm)
159 {
160 	struct device_process_node *cur;
161 	struct qcm_process_device *qpd;
162 	struct queue *q;
163 
164 	/* Mark all device queues as reset. */
165 	list_for_each_entry(cur, &dqm->queues, list) {
166 		qpd = cur->qpd;
167 		list_for_each_entry(q, &qpd->queues_list, list) {
168 			struct kfd_process_device *pdd = qpd_to_pdd(qpd);
169 
170 			pdd->has_reset_queue = true;
171 		}
172 	}
173 
174 	/*
175 	 * Issue a GPU reset if HWS is unresponsive
176 	 */
177 	amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
178 }
179 
180 static int convert_to_mes_queue_type(int queue_type)
181 {
182 	int mes_queue_type;
183 
184 	switch (queue_type) {
185 	case KFD_QUEUE_TYPE_COMPUTE:
186 		mes_queue_type = MES_QUEUE_TYPE_COMPUTE;
187 		break;
188 	case KFD_QUEUE_TYPE_SDMA:
189 		mes_queue_type = MES_QUEUE_TYPE_SDMA;
190 		break;
191 	default:
192 		WARN(1, "Invalid queue type %d", queue_type);
193 		mes_queue_type = -EINVAL;
194 		break;
195 	}
196 
197 	return mes_queue_type;
198 }
199 
200 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q,
201 			 struct qcm_process_device *qpd)
202 {
203 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
204 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
205 	struct mes_add_queue_input queue_input;
206 	int r, queue_type;
207 	uint64_t wptr_addr_off;
208 
209 	if (!dqm->sched_running || dqm->sched_halt)
210 		return 0;
211 	if (!down_read_trylock(&adev->reset_domain->sem))
212 		return -EIO;
213 
214 	memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input));
215 	queue_input.process_id = pdd->pasid;
216 	queue_input.page_table_base_addr =  qpd->page_table_base;
217 	queue_input.process_va_start = 0;
218 	queue_input.process_va_end = adev->vm_manager.max_pfn - 1;
219 	/* MES unit for quantum is 100ns */
220 	queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM;  /* Equivalent to 10ms. */
221 	queue_input.process_context_addr = pdd->proc_ctx_gpu_addr;
222 	queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */
223 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
224 	queue_input.inprocess_gang_priority = q->properties.priority;
225 	queue_input.gang_global_priority_level =
226 					AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
227 	queue_input.doorbell_offset = q->properties.doorbell_off;
228 	queue_input.mqd_addr = q->gart_mqd_addr;
229 	queue_input.wptr_addr = (uint64_t)q->properties.write_ptr;
230 
231 	wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1);
232 	queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->properties.wptr_bo) + wptr_addr_off;
233 
234 	queue_input.is_kfd_process = 1;
235 	queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL);
236 	queue_input.queue_size = q->properties.queue_size >> 2;
237 
238 	queue_input.paging = false;
239 	queue_input.tba_addr = qpd->tba_addr;
240 	queue_input.tma_addr = qpd->tma_addr;
241 	queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device);
242 	queue_input.skip_process_ctx_clear =
243 		qpd->pqm->process->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED &&
244 						(qpd->pqm->process->debug_trap_enabled ||
245 						 kfd_dbg_has_ttmps_always_setup(q->device));
246 
247 	queue_type = convert_to_mes_queue_type(q->properties.type);
248 	if (queue_type < 0) {
249 		dev_err(adev->dev, "Queue type not supported with MES, queue:%d\n",
250 			q->properties.type);
251 		up_read(&adev->reset_domain->sem);
252 		return -EINVAL;
253 	}
254 	queue_input.queue_type = (uint32_t)queue_type;
255 
256 	queue_input.exclusively_scheduled = q->properties.is_gws;
257 
258 	amdgpu_mes_lock(&adev->mes);
259 	r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
260 	amdgpu_mes_unlock(&adev->mes);
261 	up_read(&adev->reset_domain->sem);
262 	if (r) {
263 		dev_err(adev->dev, "failed to add hardware queue to MES, doorbell=0x%x\n",
264 			q->properties.doorbell_off);
265 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
266 		kfd_hws_hang(dqm);
267 	}
268 
269 	return r;
270 }
271 
272 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q,
273 			struct qcm_process_device *qpd)
274 {
275 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
276 	int r;
277 	struct mes_remove_queue_input queue_input;
278 
279 	if (!dqm->sched_running || dqm->sched_halt)
280 		return 0;
281 	if (!down_read_trylock(&adev->reset_domain->sem))
282 		return -EIO;
283 
284 	memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input));
285 	queue_input.doorbell_offset = q->properties.doorbell_off;
286 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
287 
288 	amdgpu_mes_lock(&adev->mes);
289 	r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
290 	amdgpu_mes_unlock(&adev->mes);
291 	up_read(&adev->reset_domain->sem);
292 
293 	if (r) {
294 		dev_err(adev->dev, "failed to remove hardware queue from MES, doorbell=0x%x\n",
295 			q->properties.doorbell_off);
296 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
297 		kfd_hws_hang(dqm);
298 	}
299 
300 	return r;
301 }
302 
303 static int remove_all_kfd_queues_mes(struct device_queue_manager *dqm)
304 {
305 	struct device_process_node *cur;
306 	struct device *dev = dqm->dev->adev->dev;
307 	struct qcm_process_device *qpd;
308 	struct queue *q;
309 	int retval = 0;
310 
311 	list_for_each_entry(cur, &dqm->queues, list) {
312 		qpd = cur->qpd;
313 		list_for_each_entry(q, &qpd->queues_list, list) {
314 			if (q->properties.is_active) {
315 				retval = remove_queue_mes(dqm, q, qpd);
316 				if (retval) {
317 					dev_err(dev, "%s: Failed to remove queue %d for dev %d",
318 						__func__,
319 						q->properties.queue_id,
320 						dqm->dev->id);
321 					return retval;
322 				}
323 			}
324 		}
325 	}
326 
327 	return retval;
328 }
329 
330 static int add_all_kfd_queues_mes(struct device_queue_manager *dqm)
331 {
332 	struct device_process_node *cur;
333 	struct device *dev = dqm->dev->adev->dev;
334 	struct qcm_process_device *qpd;
335 	struct queue *q;
336 	int retval = 0;
337 
338 	list_for_each_entry(cur, &dqm->queues, list) {
339 		qpd = cur->qpd;
340 		list_for_each_entry(q, &qpd->queues_list, list) {
341 			if (!q->properties.is_active)
342 				continue;
343 			retval = add_queue_mes(dqm, q, qpd);
344 			if (retval) {
345 				dev_err(dev, "%s: Failed to add queue %d for dev %d",
346 					__func__,
347 					q->properties.queue_id,
348 					dqm->dev->id);
349 				return retval;
350 			}
351 		}
352 	}
353 
354 	return retval;
355 }
356 
357 static int suspend_all_queues_mes(struct device_queue_manager *dqm)
358 {
359 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
360 	int r = 0;
361 
362 	if (!down_read_trylock(&adev->reset_domain->sem))
363 		return -EIO;
364 
365 	r = amdgpu_mes_suspend(adev);
366 	up_read(&adev->reset_domain->sem);
367 
368 	if (r) {
369 		dev_err(adev->dev, "failed to suspend gangs from MES\n");
370 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
371 		kfd_hws_hang(dqm);
372 	}
373 
374 	return r;
375 }
376 
377 static int resume_all_queues_mes(struct device_queue_manager *dqm)
378 {
379 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
380 	int r = 0;
381 
382 	if (!down_read_trylock(&adev->reset_domain->sem))
383 		return -EIO;
384 
385 	r = amdgpu_mes_resume(adev);
386 	up_read(&adev->reset_domain->sem);
387 
388 	if (r) {
389 		dev_err(adev->dev, "failed to resume gangs from MES\n");
390 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
391 		kfd_hws_hang(dqm);
392 	}
393 
394 	return r;
395 }
396 
397 static void increment_queue_count(struct device_queue_manager *dqm,
398 				  struct qcm_process_device *qpd,
399 				  struct queue *q)
400 {
401 	dqm->active_queue_count++;
402 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
403 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
404 		dqm->active_cp_queue_count++;
405 
406 	if (q->properties.is_gws) {
407 		dqm->gws_queue_count++;
408 		qpd->mapped_gws_queue = true;
409 	}
410 }
411 
412 static void decrement_queue_count(struct device_queue_manager *dqm,
413 				  struct qcm_process_device *qpd,
414 				  struct queue *q)
415 {
416 	dqm->active_queue_count--;
417 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
418 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
419 		dqm->active_cp_queue_count--;
420 
421 	if (q->properties.is_gws) {
422 		dqm->gws_queue_count--;
423 		qpd->mapped_gws_queue = false;
424 	}
425 }
426 
427 /*
428  * Allocate a doorbell ID to this queue.
429  * If doorbell_id is passed in, make sure requested ID is valid then allocate it.
430  */
431 static int allocate_doorbell(struct qcm_process_device *qpd,
432 			     struct queue *q,
433 			     uint32_t const *restore_id)
434 {
435 	struct kfd_node *dev = qpd->dqm->dev;
436 
437 	if (!KFD_IS_SOC15(dev)) {
438 		/* On pre-SOC15 chips we need to use the queue ID to
439 		 * preserve the user mode ABI.
440 		 */
441 
442 		if (restore_id && *restore_id != q->properties.queue_id)
443 			return -EINVAL;
444 
445 		q->doorbell_id = q->properties.queue_id;
446 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
447 			q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
448 		/* For SDMA queues on SOC15 with 8-byte doorbell, use static
449 		 * doorbell assignments based on the engine and queue id.
450 		 * The doobell index distance between RLC (2*i) and (2*i+1)
451 		 * for a SDMA engine is 512.
452 		 */
453 
454 		uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx;
455 
456 		/*
457 		 * q->properties.sdma_engine_id corresponds to the virtual
458 		 * sdma engine number. However, for doorbell allocation,
459 		 * we need the physical sdma engine id in order to get the
460 		 * correct doorbell offset.
461 		 */
462 		uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id *
463 					       get_num_all_sdma_engines(qpd->dqm) +
464 					       q->properties.sdma_engine_id]
465 						+ (q->properties.sdma_queue_id & 1)
466 						* KFD_QUEUE_DOORBELL_MIRROR_OFFSET
467 						+ (q->properties.sdma_queue_id >> 1);
468 
469 		if (restore_id && *restore_id != valid_id)
470 			return -EINVAL;
471 		q->doorbell_id = valid_id;
472 	} else {
473 		/* For CP queues on SOC15 */
474 		if (restore_id) {
475 			/* make sure that ID is free  */
476 			if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
477 				return -EINVAL;
478 
479 			q->doorbell_id = *restore_id;
480 		} else {
481 			/* or reserve a free doorbell ID */
482 			unsigned int found;
483 
484 			found = find_first_zero_bit(qpd->doorbell_bitmap,
485 						    KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
486 			if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
487 				pr_debug("No doorbells available");
488 				return -EBUSY;
489 			}
490 			set_bit(found, qpd->doorbell_bitmap);
491 			q->doorbell_id = found;
492 		}
493 	}
494 
495 	q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev,
496 								  qpd->proc_doorbells,
497 								  q->doorbell_id,
498 								  dev->kfd->device_info.doorbell_size);
499 	return 0;
500 }
501 
502 static void deallocate_doorbell(struct qcm_process_device *qpd,
503 				struct queue *q)
504 {
505 	unsigned int old;
506 	struct kfd_node *dev = qpd->dqm->dev;
507 
508 	if (!KFD_IS_SOC15(dev) ||
509 	    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
510 	    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
511 		return;
512 
513 	old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
514 	WARN_ON(!old);
515 }
516 
517 static void program_trap_handler_settings(struct device_queue_manager *dqm,
518 				struct qcm_process_device *qpd)
519 {
520 	uint32_t xcc_mask = dqm->dev->xcc_mask;
521 	int xcc_id;
522 
523 	if (dqm->dev->kfd2kgd->program_trap_handler_settings)
524 		for_each_inst(xcc_id, xcc_mask)
525 			dqm->dev->kfd2kgd->program_trap_handler_settings(
526 				dqm->dev->adev, qpd->vmid, qpd->tba_addr,
527 				qpd->tma_addr, xcc_id);
528 }
529 
530 static int allocate_vmid(struct device_queue_manager *dqm,
531 			struct qcm_process_device *qpd,
532 			struct queue *q)
533 {
534 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
535 	struct device *dev = dqm->dev->adev->dev;
536 	int allocated_vmid = -1, i;
537 
538 	for (i = dqm->dev->vm_info.first_vmid_kfd;
539 			i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
540 		if (!dqm->vmid_pasid[i]) {
541 			allocated_vmid = i;
542 			break;
543 		}
544 	}
545 
546 	if (allocated_vmid < 0) {
547 		dev_err(dev, "no more vmid to allocate\n");
548 		return -ENOSPC;
549 	}
550 
551 	pr_debug("vmid allocated: %d\n", allocated_vmid);
552 
553 	dqm->vmid_pasid[allocated_vmid] = pdd->pasid;
554 
555 	set_pasid_vmid_mapping(dqm, pdd->pasid, allocated_vmid);
556 
557 	qpd->vmid = allocated_vmid;
558 	q->properties.vmid = allocated_vmid;
559 
560 	program_sh_mem_settings(dqm, qpd);
561 
562 	if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled)
563 		program_trap_handler_settings(dqm, qpd);
564 
565 	/* qpd->page_table_base is set earlier when register_process()
566 	 * is called, i.e. when the first queue is created.
567 	 */
568 	dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
569 			qpd->vmid,
570 			qpd->page_table_base);
571 	/* invalidate the VM context after pasid and vmid mapping is set up */
572 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
573 
574 	if (dqm->dev->kfd2kgd->set_scratch_backing_va)
575 		dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
576 				qpd->sh_hidden_private_base, qpd->vmid);
577 
578 	return 0;
579 }
580 
581 static int flush_texture_cache_nocpsch(struct kfd_node *kdev,
582 				struct qcm_process_device *qpd)
583 {
584 	const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
585 	int ret;
586 
587 	if (!qpd->ib_kaddr)
588 		return -ENOMEM;
589 
590 	ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
591 	if (ret)
592 		return ret;
593 
594 	return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
595 				qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
596 				pmf->release_mem_size / sizeof(uint32_t));
597 }
598 
599 static void deallocate_vmid(struct device_queue_manager *dqm,
600 				struct qcm_process_device *qpd,
601 				struct queue *q)
602 {
603 	struct device *dev = dqm->dev->adev->dev;
604 
605 	/* On GFX v7, CP doesn't flush TC at dequeue */
606 	if (q->device->adev->asic_type == CHIP_HAWAII)
607 		if (flush_texture_cache_nocpsch(q->device, qpd))
608 			dev_err(dev, "Failed to flush TC\n");
609 
610 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
611 
612 	/* Release the vmid mapping */
613 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
614 	dqm->vmid_pasid[qpd->vmid] = 0;
615 
616 	qpd->vmid = 0;
617 	q->properties.vmid = 0;
618 }
619 
620 static int create_queue_nocpsch(struct device_queue_manager *dqm,
621 				struct queue *q,
622 				struct qcm_process_device *qpd,
623 				const struct kfd_criu_queue_priv_data *qd,
624 				const void *restore_mqd, const void *restore_ctl_stack)
625 {
626 	struct mqd_manager *mqd_mgr;
627 	int retval;
628 
629 	dqm_lock(dqm);
630 
631 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
632 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
633 				dqm->total_queue_count);
634 		retval = -EPERM;
635 		goto out_unlock;
636 	}
637 
638 	if (list_empty(&qpd->queues_list)) {
639 		retval = allocate_vmid(dqm, qpd, q);
640 		if (retval)
641 			goto out_unlock;
642 	}
643 	q->properties.vmid = qpd->vmid;
644 	/*
645 	 * Eviction state logic: mark all queues as evicted, even ones
646 	 * not currently active. Restoring inactive queues later only
647 	 * updates the is_evicted flag but is a no-op otherwise.
648 	 */
649 	q->properties.is_evicted = !!qpd->evicted;
650 
651 	q->properties.tba_addr = qpd->tba_addr;
652 	q->properties.tma_addr = qpd->tma_addr;
653 
654 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
655 			q->properties.type)];
656 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
657 		retval = allocate_hqd(dqm, q);
658 		if (retval)
659 			goto deallocate_vmid;
660 		pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
661 			q->pipe, q->queue);
662 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
663 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
664 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
665 		if (retval)
666 			goto deallocate_vmid;
667 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
668 	}
669 
670 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
671 	if (retval)
672 		goto out_deallocate_hqd;
673 
674 	/* Temporarily release dqm lock to avoid a circular lock dependency */
675 	dqm_unlock(dqm);
676 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
677 	dqm_lock(dqm);
678 
679 	if (!q->mqd_mem_obj) {
680 		retval = -ENOMEM;
681 		goto out_deallocate_doorbell;
682 	}
683 
684 	if (qd)
685 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
686 				     &q->properties, restore_mqd, restore_ctl_stack,
687 				     qd->ctl_stack_size);
688 	else
689 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
690 					&q->gart_mqd_addr, &q->properties);
691 
692 	if (q->properties.is_active) {
693 		if (!dqm->sched_running) {
694 			WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
695 			goto add_queue_to_list;
696 		}
697 
698 		if (WARN(q->process->mm != current->mm,
699 					"should only run in user thread"))
700 			retval = -EFAULT;
701 		else
702 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
703 					q->queue, &q->properties, current->mm);
704 		if (retval)
705 			goto out_free_mqd;
706 	}
707 
708 add_queue_to_list:
709 	list_add(&q->list, &qpd->queues_list);
710 	qpd->queue_count++;
711 	if (q->properties.is_active)
712 		increment_queue_count(dqm, qpd, q);
713 
714 	/*
715 	 * Unconditionally increment this counter, regardless of the queue's
716 	 * type or whether the queue is active.
717 	 */
718 	dqm->total_queue_count++;
719 	pr_debug("Total of %d queues are accountable so far\n",
720 			dqm->total_queue_count);
721 	goto out_unlock;
722 
723 out_free_mqd:
724 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
725 out_deallocate_doorbell:
726 	deallocate_doorbell(qpd, q);
727 out_deallocate_hqd:
728 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
729 		deallocate_hqd(dqm, q);
730 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
731 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
732 		deallocate_sdma_queue(dqm, q);
733 deallocate_vmid:
734 	if (list_empty(&qpd->queues_list))
735 		deallocate_vmid(dqm, qpd, q);
736 out_unlock:
737 	dqm_unlock(dqm);
738 	return retval;
739 }
740 
741 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
742 {
743 	bool set;
744 	int pipe, bit, i;
745 
746 	set = false;
747 
748 	for (pipe = dqm->next_pipe_to_allocate, i = 0;
749 			i < get_pipes_per_mec(dqm);
750 			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
751 
752 		if (!is_pipe_enabled(dqm, 0, pipe))
753 			continue;
754 
755 		if (dqm->allocated_queues[pipe] != 0) {
756 			bit = ffs(dqm->allocated_queues[pipe]) - 1;
757 			dqm->allocated_queues[pipe] &= ~(1 << bit);
758 			q->pipe = pipe;
759 			q->queue = bit;
760 			set = true;
761 			break;
762 		}
763 	}
764 
765 	if (!set)
766 		return -EBUSY;
767 
768 	pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
769 	/* horizontal hqd allocation */
770 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
771 
772 	return 0;
773 }
774 
775 static inline void deallocate_hqd(struct device_queue_manager *dqm,
776 				struct queue *q)
777 {
778 	dqm->allocated_queues[q->pipe] |= (1 << q->queue);
779 }
780 
781 #define SQ_IND_CMD_CMD_KILL		0x00000003
782 #define SQ_IND_CMD_MODE_BROADCAST	0x00000001
783 
784 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p)
785 {
786 	int status = 0;
787 	unsigned int vmid;
788 	uint16_t queried_pasid;
789 	union SQ_CMD_BITS reg_sq_cmd;
790 	union GRBM_GFX_INDEX_BITS reg_gfx_index;
791 	struct kfd_process_device *pdd;
792 	int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
793 	int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
794 	uint32_t xcc_mask = dev->xcc_mask;
795 	int xcc_id;
796 
797 	reg_sq_cmd.u32All = 0;
798 	reg_gfx_index.u32All = 0;
799 
800 	pr_debug("Killing all process wavefronts\n");
801 
802 	if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) {
803 		dev_err(dev->adev->dev, "no vmid pasid mapping supported\n");
804 		return -EOPNOTSUPP;
805 	}
806 
807 	/* taking the VMID for that process on the safe way using PDD */
808 	pdd = kfd_get_process_device_data(dev, p);
809 	if (!pdd)
810 		return -EFAULT;
811 
812 	/* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
813 	 * ATC_VMID15_PASID_MAPPING
814 	 * to check which VMID the current process is mapped to.
815 	 */
816 
817 	for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
818 		status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
819 				(dev->adev, vmid, &queried_pasid);
820 
821 		if (status && queried_pasid == pdd->pasid) {
822 			pr_debug("Killing wave fronts of vmid %d and process pid %d\n",
823 					vmid, p->lead_thread->pid);
824 			break;
825 		}
826 	}
827 
828 	if (vmid > last_vmid_to_scan) {
829 		dev_err(dev->adev->dev, "Didn't find vmid for process pid %d\n",
830 				p->lead_thread->pid);
831 		return -EFAULT;
832 	}
833 
834 	reg_gfx_index.bits.sh_broadcast_writes = 1;
835 	reg_gfx_index.bits.se_broadcast_writes = 1;
836 	reg_gfx_index.bits.instance_broadcast_writes = 1;
837 	reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
838 	reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
839 	reg_sq_cmd.bits.vm_id = vmid;
840 
841 	for_each_inst(xcc_id, xcc_mask)
842 		dev->kfd2kgd->wave_control_execute(
843 			dev->adev, reg_gfx_index.u32All,
844 			reg_sq_cmd.u32All, xcc_id);
845 
846 	return 0;
847 }
848 
849 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
850  * to avoid asynchronized access
851  */
852 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
853 				struct qcm_process_device *qpd,
854 				struct queue *q)
855 {
856 	int retval;
857 	struct mqd_manager *mqd_mgr;
858 
859 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
860 			q->properties.type)];
861 
862 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
863 		deallocate_hqd(dqm, q);
864 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
865 		deallocate_sdma_queue(dqm, q);
866 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
867 		deallocate_sdma_queue(dqm, q);
868 	else {
869 		pr_debug("q->properties.type %d is invalid\n",
870 				q->properties.type);
871 		return -EINVAL;
872 	}
873 	dqm->total_queue_count--;
874 
875 	deallocate_doorbell(qpd, q);
876 
877 	if (!dqm->sched_running) {
878 		WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
879 		return 0;
880 	}
881 
882 	retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
883 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
884 				KFD_UNMAP_LATENCY_MS,
885 				q->pipe, q->queue);
886 	if (retval == -ETIME)
887 		qpd->reset_wavefronts = true;
888 
889 	list_del(&q->list);
890 	if (list_empty(&qpd->queues_list)) {
891 		if (qpd->reset_wavefronts) {
892 			pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
893 					dqm->dev);
894 			/* dbgdev_wave_reset_wavefronts has to be called before
895 			 * deallocate_vmid(), i.e. when vmid is still in use.
896 			 */
897 			dbgdev_wave_reset_wavefronts(dqm->dev,
898 					qpd->pqm->process);
899 			qpd->reset_wavefronts = false;
900 		}
901 
902 		deallocate_vmid(dqm, qpd, q);
903 	}
904 	qpd->queue_count--;
905 	if (q->properties.is_active)
906 		decrement_queue_count(dqm, qpd, q);
907 
908 	return retval;
909 }
910 
911 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
912 				struct qcm_process_device *qpd,
913 				struct queue *q)
914 {
915 	int retval;
916 	uint64_t sdma_val = 0;
917 	struct device *dev = dqm->dev->adev->dev;
918 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
919 	struct mqd_manager *mqd_mgr =
920 		dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
921 
922 	/* Get the SDMA queue stats */
923 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
924 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
925 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
926 							&sdma_val);
927 		if (retval)
928 			dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
929 				q->properties.queue_id);
930 	}
931 
932 	dqm_lock(dqm);
933 	retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
934 	if (!retval)
935 		pdd->sdma_past_activity_counter += sdma_val;
936 	dqm_unlock(dqm);
937 
938 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
939 
940 	return retval;
941 }
942 
943 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
944 			struct mqd_update_info *minfo)
945 {
946 	int retval = 0;
947 	struct device *dev = dqm->dev->adev->dev;
948 	struct mqd_manager *mqd_mgr;
949 	struct kfd_process_device *pdd;
950 	bool prev_active = false;
951 
952 	dqm_lock(dqm);
953 	pdd = kfd_get_process_device_data(q->device, q->process);
954 	if (!pdd) {
955 		retval = -ENODEV;
956 		goto out_unlock;
957 	}
958 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
959 			q->properties.type)];
960 
961 	/* Save previous activity state for counters */
962 	prev_active = q->properties.is_active;
963 
964 	/* Make sure the queue is unmapped before updating the MQD */
965 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
966 		if (!dqm->dev->kfd->shared_resources.enable_mes)
967 			retval = unmap_queues_cpsch(dqm,
968 						    KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
969 		else if (prev_active)
970 			retval = remove_queue_mes(dqm, q, &pdd->qpd);
971 
972 		/* queue is reset so inaccessable  */
973 		if (pdd->has_reset_queue) {
974 			retval = -EACCES;
975 			goto out_unlock;
976 		}
977 
978 		if (retval) {
979 			dev_err(dev, "unmap queue failed\n");
980 			goto out_unlock;
981 		}
982 	} else if (prev_active &&
983 		   (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
984 		    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
985 		    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
986 
987 		if (!dqm->sched_running) {
988 			WARN_ONCE(1, "Update non-HWS queue while stopped\n");
989 			goto out_unlock;
990 		}
991 
992 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
993 				(dqm->dev->kfd->cwsr_enabled ?
994 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
995 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
996 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
997 		if (retval) {
998 			dev_err(dev, "destroy mqd failed\n");
999 			goto out_unlock;
1000 		}
1001 	}
1002 
1003 	mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
1004 
1005 	/*
1006 	 * check active state vs. the previous state and modify
1007 	 * counter accordingly. map_queues_cpsch uses the
1008 	 * dqm->active_queue_count to determine whether a new runlist must be
1009 	 * uploaded.
1010 	 */
1011 	if (q->properties.is_active && !prev_active) {
1012 		increment_queue_count(dqm, &pdd->qpd, q);
1013 	} else if (!q->properties.is_active && prev_active) {
1014 		decrement_queue_count(dqm, &pdd->qpd, q);
1015 	} else if (q->gws && !q->properties.is_gws) {
1016 		if (q->properties.is_active) {
1017 			dqm->gws_queue_count++;
1018 			pdd->qpd.mapped_gws_queue = true;
1019 		}
1020 		q->properties.is_gws = true;
1021 	} else if (!q->gws && q->properties.is_gws) {
1022 		if (q->properties.is_active) {
1023 			dqm->gws_queue_count--;
1024 			pdd->qpd.mapped_gws_queue = false;
1025 		}
1026 		q->properties.is_gws = false;
1027 	}
1028 
1029 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
1030 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1031 			retval = map_queues_cpsch(dqm);
1032 		else if (q->properties.is_active)
1033 			retval = add_queue_mes(dqm, q, &pdd->qpd);
1034 	} else if (q->properties.is_active &&
1035 		 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
1036 		  q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1037 		  q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1038 		if (WARN(q->process->mm != current->mm,
1039 			 "should only run in user thread"))
1040 			retval = -EFAULT;
1041 		else
1042 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
1043 						   q->pipe, q->queue,
1044 						   &q->properties, current->mm);
1045 	}
1046 
1047 out_unlock:
1048 	dqm_unlock(dqm);
1049 	return retval;
1050 }
1051 
1052 /* suspend_single_queue does not lock the dqm like the
1053  * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should
1054  * lock the dqm before calling, and unlock after calling.
1055  *
1056  * The reason we don't lock the dqm is because this function may be
1057  * called on multiple queues in a loop, so rather than locking/unlocking
1058  * multiple times, we will just keep the dqm locked for all of the calls.
1059  */
1060 static int suspend_single_queue(struct device_queue_manager *dqm,
1061 				      struct kfd_process_device *pdd,
1062 				      struct queue *q)
1063 {
1064 	bool is_new;
1065 
1066 	if (q->properties.is_suspended)
1067 		return 0;
1068 
1069 	pr_debug("Suspending process pid %d queue [%i]\n",
1070 			pdd->process->lead_thread->pid,
1071 			q->properties.queue_id);
1072 
1073 	is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW);
1074 
1075 	if (is_new || q->properties.is_being_destroyed) {
1076 		pr_debug("Suspend: skip %s queue id %i\n",
1077 				is_new ? "new" : "destroyed",
1078 				q->properties.queue_id);
1079 		return -EBUSY;
1080 	}
1081 
1082 	q->properties.is_suspended = true;
1083 	if (q->properties.is_active) {
1084 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1085 			int r = remove_queue_mes(dqm, q, &pdd->qpd);
1086 
1087 			if (r)
1088 				return r;
1089 		}
1090 
1091 		decrement_queue_count(dqm, &pdd->qpd, q);
1092 		q->properties.is_active = false;
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 /* resume_single_queue does not lock the dqm like the functions
1099  * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should
1100  * lock the dqm before calling, and unlock after calling.
1101  *
1102  * The reason we don't lock the dqm is because this function may be
1103  * called on multiple queues in a loop, so rather than locking/unlocking
1104  * multiple times, we will just keep the dqm locked for all of the calls.
1105  */
1106 static int resume_single_queue(struct device_queue_manager *dqm,
1107 				      struct qcm_process_device *qpd,
1108 				      struct queue *q)
1109 {
1110 	struct kfd_process_device *pdd;
1111 
1112 	if (!q->properties.is_suspended)
1113 		return 0;
1114 
1115 	pdd = qpd_to_pdd(qpd);
1116 
1117 	pr_debug("Restoring from suspend process pid %d queue [%i]\n",
1118 			    pdd->process->lead_thread->pid,
1119 			    q->properties.queue_id);
1120 
1121 	q->properties.is_suspended = false;
1122 
1123 	if (QUEUE_IS_ACTIVE(q->properties)) {
1124 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1125 			int r = add_queue_mes(dqm, q, &pdd->qpd);
1126 
1127 			if (r)
1128 				return r;
1129 		}
1130 
1131 		q->properties.is_active = true;
1132 		increment_queue_count(dqm, qpd, q);
1133 	}
1134 
1135 	return 0;
1136 }
1137 
1138 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
1139 					struct qcm_process_device *qpd)
1140 {
1141 	struct queue *q;
1142 	struct mqd_manager *mqd_mgr;
1143 	struct kfd_process_device *pdd;
1144 	int retval, ret = 0;
1145 
1146 	dqm_lock(dqm);
1147 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1148 		goto out;
1149 
1150 	pdd = qpd_to_pdd(qpd);
1151 	pr_debug_ratelimited("Evicting process pid %d queues\n",
1152 			    pdd->process->lead_thread->pid);
1153 
1154 	pdd->last_evict_timestamp = get_jiffies_64();
1155 	/* Mark all queues as evicted. Deactivate all active queues on
1156 	 * the qpd.
1157 	 */
1158 	list_for_each_entry(q, &qpd->queues_list, list) {
1159 		q->properties.is_evicted = true;
1160 		if (!q->properties.is_active)
1161 			continue;
1162 
1163 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1164 				q->properties.type)];
1165 		q->properties.is_active = false;
1166 		decrement_queue_count(dqm, qpd, q);
1167 
1168 		if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
1169 			continue;
1170 
1171 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
1172 				(dqm->dev->kfd->cwsr_enabled ?
1173 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
1174 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
1175 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
1176 		if (retval && !ret)
1177 			/* Return the first error, but keep going to
1178 			 * maintain a consistent eviction state
1179 			 */
1180 			ret = retval;
1181 	}
1182 
1183 out:
1184 	dqm_unlock(dqm);
1185 	return ret;
1186 }
1187 
1188 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
1189 				      struct qcm_process_device *qpd)
1190 {
1191 	struct queue *q;
1192 	struct device *dev = dqm->dev->adev->dev;
1193 	struct kfd_process_device *pdd;
1194 	int retval = 0;
1195 
1196 	dqm_lock(dqm);
1197 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1198 		goto out;
1199 
1200 	pdd = qpd_to_pdd(qpd);
1201 
1202 	/* The debugger creates processes that temporarily have not acquired
1203 	 * all VMs for all devices and has no VMs itself.
1204 	 * Skip queue eviction on process eviction.
1205 	 */
1206 	if (!pdd->drm_priv)
1207 		goto out;
1208 
1209 	pr_debug_ratelimited("Evicting process pid %d queues\n",
1210 			    pdd->process->lead_thread->pid);
1211 
1212 	/* Mark all queues as evicted. Deactivate all active queues on
1213 	 * the qpd.
1214 	 */
1215 	list_for_each_entry(q, &qpd->queues_list, list) {
1216 		q->properties.is_evicted = true;
1217 		if (!q->properties.is_active)
1218 			continue;
1219 
1220 		q->properties.is_active = false;
1221 		decrement_queue_count(dqm, qpd, q);
1222 
1223 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1224 			int err;
1225 
1226 			err = remove_queue_mes(dqm, q, qpd);
1227 			if (err) {
1228 				dev_err(dev, "Failed to evict queue %d\n",
1229 					q->properties.queue_id);
1230 				retval = err;
1231 			}
1232 		}
1233 	}
1234 	pdd->last_evict_timestamp = get_jiffies_64();
1235 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1236 		retval = execute_queues_cpsch(dqm,
1237 					      qpd->is_debug ?
1238 					      KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
1239 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1240 					      USE_DEFAULT_GRACE_PERIOD);
1241 
1242 out:
1243 	dqm_unlock(dqm);
1244 	return retval;
1245 }
1246 
1247 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
1248 					  struct qcm_process_device *qpd)
1249 {
1250 	struct mm_struct *mm = NULL;
1251 	struct queue *q;
1252 	struct mqd_manager *mqd_mgr;
1253 	struct kfd_process_device *pdd;
1254 	uint64_t pd_base;
1255 	uint64_t eviction_duration;
1256 	int retval, ret = 0;
1257 
1258 	pdd = qpd_to_pdd(qpd);
1259 	/* Retrieve PD base */
1260 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1261 
1262 	dqm_lock(dqm);
1263 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1264 		goto out;
1265 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1266 		qpd->evicted--;
1267 		goto out;
1268 	}
1269 
1270 	pr_debug_ratelimited("Restoring process pid %d queues\n",
1271 			    pdd->process->lead_thread->pid);
1272 
1273 	/* Update PD Base in QPD */
1274 	qpd->page_table_base = pd_base;
1275 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1276 
1277 	if (!list_empty(&qpd->queues_list)) {
1278 		dqm->dev->kfd2kgd->set_vm_context_page_table_base(
1279 				dqm->dev->adev,
1280 				qpd->vmid,
1281 				qpd->page_table_base);
1282 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1283 	}
1284 
1285 	/* Take a safe reference to the mm_struct, which may otherwise
1286 	 * disappear even while the kfd_process is still referenced.
1287 	 */
1288 	mm = get_task_mm(pdd->process->lead_thread);
1289 	if (!mm) {
1290 		ret = -EFAULT;
1291 		goto out;
1292 	}
1293 
1294 	/* Remove the eviction flags. Activate queues that are not
1295 	 * inactive for other reasons.
1296 	 */
1297 	list_for_each_entry(q, &qpd->queues_list, list) {
1298 		q->properties.is_evicted = false;
1299 		if (!QUEUE_IS_ACTIVE(q->properties))
1300 			continue;
1301 
1302 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1303 				q->properties.type)];
1304 		q->properties.is_active = true;
1305 		increment_queue_count(dqm, qpd, q);
1306 
1307 		if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
1308 			continue;
1309 
1310 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
1311 				       q->queue, &q->properties, mm);
1312 		if (retval && !ret)
1313 			/* Return the first error, but keep going to
1314 			 * maintain a consistent eviction state
1315 			 */
1316 			ret = retval;
1317 	}
1318 	qpd->evicted = 0;
1319 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1320 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1321 out:
1322 	if (mm)
1323 		mmput(mm);
1324 	dqm_unlock(dqm);
1325 	return ret;
1326 }
1327 
1328 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
1329 					struct qcm_process_device *qpd)
1330 {
1331 	struct queue *q;
1332 	struct device *dev = dqm->dev->adev->dev;
1333 	struct kfd_process_device *pdd;
1334 	uint64_t eviction_duration;
1335 	int retval = 0;
1336 
1337 	pdd = qpd_to_pdd(qpd);
1338 
1339 	dqm_lock(dqm);
1340 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1341 		goto out;
1342 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1343 		qpd->evicted--;
1344 		goto out;
1345 	}
1346 
1347 	/* The debugger creates processes that temporarily have not acquired
1348 	 * all VMs for all devices and has no VMs itself.
1349 	 * Skip queue restore on process restore.
1350 	 */
1351 	if (!pdd->drm_priv)
1352 		goto vm_not_acquired;
1353 
1354 	pr_debug_ratelimited("Restoring process pid %d queues\n",
1355 			    pdd->process->lead_thread->pid);
1356 
1357 	/* Update PD Base in QPD */
1358 	qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1359 	pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base);
1360 
1361 	/* activate all active queues on the qpd */
1362 	list_for_each_entry(q, &qpd->queues_list, list) {
1363 		q->properties.is_evicted = false;
1364 		if (!QUEUE_IS_ACTIVE(q->properties))
1365 			continue;
1366 
1367 		q->properties.is_active = true;
1368 		increment_queue_count(dqm, &pdd->qpd, q);
1369 
1370 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1371 			retval = add_queue_mes(dqm, q, qpd);
1372 			if (retval) {
1373 				dev_err(dev, "Failed to restore queue %d\n",
1374 					q->properties.queue_id);
1375 				goto out;
1376 			}
1377 		}
1378 	}
1379 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1380 		retval = execute_queues_cpsch(dqm,
1381 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1382 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1383 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1384 vm_not_acquired:
1385 	qpd->evicted = 0;
1386 out:
1387 	dqm_unlock(dqm);
1388 	return retval;
1389 }
1390 
1391 static int register_process(struct device_queue_manager *dqm,
1392 					struct qcm_process_device *qpd)
1393 {
1394 	struct device_process_node *n;
1395 	struct kfd_process_device *pdd;
1396 	uint64_t pd_base;
1397 	int retval;
1398 
1399 	n = kzalloc(sizeof(*n), GFP_KERNEL);
1400 	if (!n)
1401 		return -ENOMEM;
1402 
1403 	n->qpd = qpd;
1404 
1405 	pdd = qpd_to_pdd(qpd);
1406 	/* Retrieve PD base */
1407 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1408 
1409 	dqm_lock(dqm);
1410 	list_add(&n->list, &dqm->queues);
1411 
1412 	/* Update PD Base in QPD */
1413 	qpd->page_table_base = pd_base;
1414 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1415 
1416 	retval = dqm->asic_ops.update_qpd(dqm, qpd);
1417 
1418 	dqm->processes_count++;
1419 
1420 	dqm_unlock(dqm);
1421 
1422 	/* Outside the DQM lock because under the DQM lock we can't do
1423 	 * reclaim or take other locks that others hold while reclaiming.
1424 	 */
1425 	kfd_inc_compute_active(dqm->dev);
1426 
1427 	return retval;
1428 }
1429 
1430 static int unregister_process(struct device_queue_manager *dqm,
1431 					struct qcm_process_device *qpd)
1432 {
1433 	int retval;
1434 	struct device_process_node *cur, *next;
1435 
1436 	pr_debug("qpd->queues_list is %s\n",
1437 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
1438 
1439 	retval = 0;
1440 	dqm_lock(dqm);
1441 
1442 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
1443 		if (qpd == cur->qpd) {
1444 			list_del(&cur->list);
1445 			kfree(cur);
1446 			dqm->processes_count--;
1447 			goto out;
1448 		}
1449 	}
1450 	/* qpd not found in dqm list */
1451 	retval = 1;
1452 out:
1453 	dqm_unlock(dqm);
1454 
1455 	/* Outside the DQM lock because under the DQM lock we can't do
1456 	 * reclaim or take other locks that others hold while reclaiming.
1457 	 */
1458 	if (!retval)
1459 		kfd_dec_compute_active(dqm->dev);
1460 
1461 	return retval;
1462 }
1463 
1464 static int
1465 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
1466 			unsigned int vmid)
1467 {
1468 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1469 	int xcc_id, ret;
1470 
1471 	for_each_inst(xcc_id, xcc_mask) {
1472 		ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
1473 			dqm->dev->adev, pasid, vmid, xcc_id);
1474 		if (ret)
1475 			break;
1476 	}
1477 
1478 	return ret;
1479 }
1480 
1481 static void init_interrupts(struct device_queue_manager *dqm)
1482 {
1483 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1484 	unsigned int i, xcc_id;
1485 
1486 	for_each_inst(xcc_id, xcc_mask) {
1487 		for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) {
1488 			if (is_pipe_enabled(dqm, 0, i)) {
1489 				dqm->dev->kfd2kgd->init_interrupts(
1490 					dqm->dev->adev, i, xcc_id);
1491 			}
1492 		}
1493 	}
1494 }
1495 
1496 static int initialize_nocpsch(struct device_queue_manager *dqm)
1497 {
1498 	int pipe, queue;
1499 
1500 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1501 
1502 	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
1503 					sizeof(unsigned int), GFP_KERNEL);
1504 	if (!dqm->allocated_queues)
1505 		return -ENOMEM;
1506 
1507 	mutex_init(&dqm->lock_hidden);
1508 	INIT_LIST_HEAD(&dqm->queues);
1509 	dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
1510 	dqm->active_cp_queue_count = 0;
1511 	dqm->gws_queue_count = 0;
1512 
1513 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1514 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
1515 
1516 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
1517 			if (test_bit(pipe_offset + queue,
1518 				     dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1519 				dqm->allocated_queues[pipe] |= 1 << queue;
1520 	}
1521 
1522 	memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
1523 
1524 	init_sdma_bitmaps(dqm);
1525 
1526 	return 0;
1527 }
1528 
1529 static void uninitialize(struct device_queue_manager *dqm)
1530 {
1531 	int i;
1532 
1533 	WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1534 
1535 	kfree(dqm->allocated_queues);
1536 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1537 		kfree(dqm->mqd_mgrs[i]);
1538 	mutex_destroy(&dqm->lock_hidden);
1539 }
1540 
1541 static int start_nocpsch(struct device_queue_manager *dqm)
1542 {
1543 	int r = 0;
1544 
1545 	pr_info("SW scheduler is used");
1546 	init_interrupts(dqm);
1547 
1548 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1549 		r = pm_init(&dqm->packet_mgr, dqm);
1550 	if (!r)
1551 		dqm->sched_running = true;
1552 
1553 	return r;
1554 }
1555 
1556 static int stop_nocpsch(struct device_queue_manager *dqm)
1557 {
1558 	dqm_lock(dqm);
1559 	if (!dqm->sched_running) {
1560 		dqm_unlock(dqm);
1561 		return 0;
1562 	}
1563 
1564 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1565 		pm_uninit(&dqm->packet_mgr);
1566 	dqm->sched_running = false;
1567 	dqm_unlock(dqm);
1568 
1569 	return 0;
1570 }
1571 
1572 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1573 				struct queue *q, const uint32_t *restore_sdma_id)
1574 {
1575 	struct device *dev = dqm->dev->adev->dev;
1576 	int bit;
1577 
1578 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1579 		if (bitmap_empty(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
1580 			dev_err(dev, "No more SDMA queue to allocate\n");
1581 			return -ENOMEM;
1582 		}
1583 
1584 		if (restore_sdma_id) {
1585 			/* Re-use existing sdma_id */
1586 			if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) {
1587 				dev_err(dev, "SDMA queue already in use\n");
1588 				return -EBUSY;
1589 			}
1590 			clear_bit(*restore_sdma_id, dqm->sdma_bitmap);
1591 			q->sdma_id = *restore_sdma_id;
1592 		} else {
1593 			/* Find first available sdma_id */
1594 			bit = find_first_bit(dqm->sdma_bitmap,
1595 					     get_num_sdma_queues(dqm));
1596 			clear_bit(bit, dqm->sdma_bitmap);
1597 			q->sdma_id = bit;
1598 		}
1599 
1600 		q->properties.sdma_engine_id =
1601 			q->sdma_id % kfd_get_num_sdma_engines(dqm->dev);
1602 		q->properties.sdma_queue_id = q->sdma_id /
1603 				kfd_get_num_sdma_engines(dqm->dev);
1604 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1605 		if (bitmap_empty(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
1606 			dev_err(dev, "No more XGMI SDMA queue to allocate\n");
1607 			return -ENOMEM;
1608 		}
1609 		if (restore_sdma_id) {
1610 			/* Re-use existing sdma_id */
1611 			if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) {
1612 				dev_err(dev, "SDMA queue already in use\n");
1613 				return -EBUSY;
1614 			}
1615 			clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap);
1616 			q->sdma_id = *restore_sdma_id;
1617 		} else {
1618 			bit = find_first_bit(dqm->xgmi_sdma_bitmap,
1619 					     get_num_xgmi_sdma_queues(dqm));
1620 			clear_bit(bit, dqm->xgmi_sdma_bitmap);
1621 			q->sdma_id = bit;
1622 		}
1623 		/* sdma_engine_id is sdma id including
1624 		 * both PCIe-optimized SDMAs and XGMI-
1625 		 * optimized SDMAs. The calculation below
1626 		 * assumes the first N engines are always
1627 		 * PCIe-optimized ones
1628 		 */
1629 		q->properties.sdma_engine_id =
1630 			kfd_get_num_sdma_engines(dqm->dev) +
1631 			q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
1632 		q->properties.sdma_queue_id = q->sdma_id /
1633 			kfd_get_num_xgmi_sdma_engines(dqm->dev);
1634 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1635 		int i, num_queues, num_engines, eng_offset = 0, start_engine;
1636 		bool free_bit_found = false, is_xgmi = false;
1637 
1638 		if (q->properties.sdma_engine_id < kfd_get_num_sdma_engines(dqm->dev)) {
1639 			num_queues = get_num_sdma_queues(dqm);
1640 			num_engines = kfd_get_num_sdma_engines(dqm->dev);
1641 			q->properties.type = KFD_QUEUE_TYPE_SDMA;
1642 		} else {
1643 			num_queues = get_num_xgmi_sdma_queues(dqm);
1644 			num_engines = kfd_get_num_xgmi_sdma_engines(dqm->dev);
1645 			eng_offset = kfd_get_num_sdma_engines(dqm->dev);
1646 			q->properties.type = KFD_QUEUE_TYPE_SDMA_XGMI;
1647 			is_xgmi = true;
1648 		}
1649 
1650 		/* Scan available bit based on target engine ID. */
1651 		start_engine = q->properties.sdma_engine_id - eng_offset;
1652 		for (i = start_engine; i < num_queues; i += num_engines) {
1653 
1654 			if (!test_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap))
1655 				continue;
1656 
1657 			clear_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap);
1658 			q->sdma_id = i;
1659 			q->properties.sdma_queue_id = q->sdma_id / num_engines;
1660 			free_bit_found = true;
1661 			break;
1662 		}
1663 
1664 		if (!free_bit_found) {
1665 			dev_err(dev, "No more SDMA queue to allocate for target ID %i\n",
1666 				q->properties.sdma_engine_id);
1667 			return -ENOMEM;
1668 		}
1669 	}
1670 
1671 	pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1672 	pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1673 
1674 	return 0;
1675 }
1676 
1677 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1678 				struct queue *q)
1679 {
1680 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1681 		if (q->sdma_id >= get_num_sdma_queues(dqm))
1682 			return;
1683 		set_bit(q->sdma_id, dqm->sdma_bitmap);
1684 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1685 		if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1686 			return;
1687 		set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap);
1688 	}
1689 }
1690 
1691 /*
1692  * Device Queue Manager implementation for cp scheduler
1693  */
1694 
1695 static int set_sched_resources(struct device_queue_manager *dqm)
1696 {
1697 	int i, mec;
1698 	struct scheduling_resources res;
1699 	struct device *dev = dqm->dev->adev->dev;
1700 
1701 	res.vmid_mask = dqm->dev->compute_vmid_bitmap;
1702 
1703 	res.queue_mask = 0;
1704 	for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
1705 		mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
1706 			/ dqm->dev->kfd->shared_resources.num_pipe_per_mec;
1707 
1708 		if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1709 			continue;
1710 
1711 		/* only acquire queues from the first MEC */
1712 		if (mec > 0)
1713 			continue;
1714 
1715 		/* This situation may be hit in the future if a new HW
1716 		 * generation exposes more than 64 queues. If so, the
1717 		 * definition of res.queue_mask needs updating
1718 		 */
1719 		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1720 			dev_err(dev, "Invalid queue enabled by amdgpu: %d\n", i);
1721 			break;
1722 		}
1723 
1724 		res.queue_mask |= 1ull
1725 			<< amdgpu_queue_mask_bit_to_set_resource_bit(
1726 				dqm->dev->adev, i);
1727 	}
1728 	res.gws_mask = ~0ull;
1729 	res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1730 
1731 	pr_debug("Scheduling resources:\n"
1732 			"vmid mask: 0x%8X\n"
1733 			"queue mask: 0x%8llX\n",
1734 			res.vmid_mask, res.queue_mask);
1735 
1736 	return pm_send_set_resources(&dqm->packet_mgr, &res);
1737 }
1738 
1739 static int initialize_cpsch(struct device_queue_manager *dqm)
1740 {
1741 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1742 
1743 	mutex_init(&dqm->lock_hidden);
1744 	INIT_LIST_HEAD(&dqm->queues);
1745 	dqm->active_queue_count = dqm->processes_count = 0;
1746 	dqm->active_cp_queue_count = 0;
1747 	dqm->gws_queue_count = 0;
1748 	dqm->active_runlist = false;
1749 	dqm->trap_debug_vmid = 0;
1750 
1751 	init_sdma_bitmaps(dqm);
1752 
1753 	update_dqm_wait_times(dqm);
1754 	return 0;
1755 }
1756 
1757 /* halt_cpsch:
1758  * Unmap queues so the schedule doesn't continue remaining jobs in the queue.
1759  * Then set dqm->sched_halt so queues don't map to runlist until unhalt_cpsch
1760  * is called.
1761  */
1762 static int halt_cpsch(struct device_queue_manager *dqm)
1763 {
1764 	int ret = 0;
1765 
1766 	dqm_lock(dqm);
1767 	if (!dqm->sched_running) {
1768 		dqm_unlock(dqm);
1769 		return 0;
1770 	}
1771 
1772 	WARN_ONCE(dqm->sched_halt, "Scheduling is already on halt\n");
1773 
1774 	if (!dqm->is_hws_hang) {
1775 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1776 			ret = unmap_queues_cpsch(dqm,
1777 						 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1778 				USE_DEFAULT_GRACE_PERIOD, false);
1779 		else
1780 			ret = remove_all_kfd_queues_mes(dqm);
1781 	}
1782 	dqm->sched_halt = true;
1783 	dqm_unlock(dqm);
1784 
1785 	return ret;
1786 }
1787 
1788 /* unhalt_cpsch
1789  * Unset dqm->sched_halt and map queues back to runlist
1790  */
1791 static int unhalt_cpsch(struct device_queue_manager *dqm)
1792 {
1793 	int ret = 0;
1794 
1795 	dqm_lock(dqm);
1796 	if (!dqm->sched_running || !dqm->sched_halt) {
1797 		WARN_ONCE(!dqm->sched_halt, "Scheduling is not on halt.\n");
1798 		dqm_unlock(dqm);
1799 		return 0;
1800 	}
1801 	dqm->sched_halt = false;
1802 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1803 		ret = execute_queues_cpsch(dqm,
1804 					   KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
1805 			0, USE_DEFAULT_GRACE_PERIOD);
1806 	else
1807 		ret = add_all_kfd_queues_mes(dqm);
1808 
1809 	dqm_unlock(dqm);
1810 
1811 	return ret;
1812 }
1813 
1814 static int start_cpsch(struct device_queue_manager *dqm)
1815 {
1816 	struct device *dev = dqm->dev->adev->dev;
1817 	int retval, num_hw_queue_slots;
1818 
1819 	retval = 0;
1820 
1821 	dqm_lock(dqm);
1822 
1823 	if (!dqm->dev->kfd->shared_resources.enable_mes) {
1824 		retval = pm_init(&dqm->packet_mgr, dqm);
1825 		if (retval)
1826 			goto fail_packet_manager_init;
1827 
1828 		retval = set_sched_resources(dqm);
1829 		if (retval)
1830 			goto fail_set_sched_resources;
1831 	}
1832 	pr_debug("Allocating fence memory\n");
1833 
1834 	/* allocate fence memory on the gart */
1835 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1836 					&dqm->fence_mem);
1837 
1838 	if (retval)
1839 		goto fail_allocate_vidmem;
1840 
1841 	dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1842 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1843 
1844 	init_interrupts(dqm);
1845 
1846 	/* clear hang status when driver try to start the hw scheduler */
1847 	dqm->sched_running = true;
1848 
1849 	if (!dqm->dev->kfd->shared_resources.enable_mes) {
1850 		if (pm_config_dequeue_wait_counts(&dqm->packet_mgr,
1851 				KFD_DEQUEUE_WAIT_INIT, 0 /* unused */))
1852 			dev_err(dev, "Setting optimized dequeue wait failed. Using default values\n");
1853 		execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1854 	}
1855 
1856 	/* setup per-queue reset detection buffer  */
1857 	num_hw_queue_slots =  dqm->dev->kfd->shared_resources.num_queue_per_pipe *
1858 			      dqm->dev->kfd->shared_resources.num_pipe_per_mec *
1859 			      NUM_XCC(dqm->dev->xcc_mask);
1860 
1861 	dqm->detect_hang_info_size = num_hw_queue_slots * sizeof(struct dqm_detect_hang_info);
1862 	dqm->detect_hang_info = kzalloc(dqm->detect_hang_info_size, GFP_KERNEL);
1863 
1864 	if (!dqm->detect_hang_info) {
1865 		retval = -ENOMEM;
1866 		goto fail_detect_hang_buffer;
1867 	}
1868 
1869 	dqm_unlock(dqm);
1870 
1871 	return 0;
1872 fail_detect_hang_buffer:
1873 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1874 fail_allocate_vidmem:
1875 fail_set_sched_resources:
1876 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1877 		pm_uninit(&dqm->packet_mgr);
1878 fail_packet_manager_init:
1879 	dqm_unlock(dqm);
1880 	return retval;
1881 }
1882 
1883 static int stop_cpsch(struct device_queue_manager *dqm)
1884 {
1885 	dqm_lock(dqm);
1886 	if (!dqm->sched_running) {
1887 		dqm_unlock(dqm);
1888 		return 0;
1889 	}
1890 
1891 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1892 		unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
1893 	else
1894 		remove_all_kfd_queues_mes(dqm);
1895 
1896 	dqm->sched_running = false;
1897 
1898 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1899 		pm_release_ib(&dqm->packet_mgr);
1900 
1901 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1902 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1903 		pm_uninit(&dqm->packet_mgr);
1904 	kfree(dqm->detect_hang_info);
1905 	dqm->detect_hang_info = NULL;
1906 	dqm_unlock(dqm);
1907 
1908 	return 0;
1909 }
1910 
1911 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1912 					struct kernel_queue *kq,
1913 					struct qcm_process_device *qpd)
1914 {
1915 	dqm_lock(dqm);
1916 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1917 		pr_warn("Can't create new kernel queue because %d queues were already created\n",
1918 				dqm->total_queue_count);
1919 		dqm_unlock(dqm);
1920 		return -EPERM;
1921 	}
1922 
1923 	/*
1924 	 * Unconditionally increment this counter, regardless of the queue's
1925 	 * type or whether the queue is active.
1926 	 */
1927 	dqm->total_queue_count++;
1928 	pr_debug("Total of %d queues are accountable so far\n",
1929 			dqm->total_queue_count);
1930 
1931 	list_add(&kq->list, &qpd->priv_queue_list);
1932 	increment_queue_count(dqm, qpd, kq->queue);
1933 	qpd->is_debug = true;
1934 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1935 			USE_DEFAULT_GRACE_PERIOD);
1936 	dqm_unlock(dqm);
1937 
1938 	return 0;
1939 }
1940 
1941 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1942 					struct kernel_queue *kq,
1943 					struct qcm_process_device *qpd)
1944 {
1945 	dqm_lock(dqm);
1946 	list_del(&kq->list);
1947 	decrement_queue_count(dqm, qpd, kq->queue);
1948 	qpd->is_debug = false;
1949 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1950 			USE_DEFAULT_GRACE_PERIOD);
1951 	/*
1952 	 * Unconditionally decrement this counter, regardless of the queue's
1953 	 * type.
1954 	 */
1955 	dqm->total_queue_count--;
1956 	pr_debug("Total of %d queues are accountable so far\n",
1957 			dqm->total_queue_count);
1958 	dqm_unlock(dqm);
1959 }
1960 
1961 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1962 			struct qcm_process_device *qpd,
1963 			const struct kfd_criu_queue_priv_data *qd,
1964 			const void *restore_mqd, const void *restore_ctl_stack)
1965 {
1966 	int retval;
1967 	struct mqd_manager *mqd_mgr;
1968 
1969 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1970 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
1971 				dqm->total_queue_count);
1972 		retval = -EPERM;
1973 		goto out;
1974 	}
1975 
1976 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1977 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI ||
1978 		q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1979 		dqm_lock(dqm);
1980 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
1981 		dqm_unlock(dqm);
1982 		if (retval)
1983 			goto out;
1984 	}
1985 
1986 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
1987 	if (retval)
1988 		goto out_deallocate_sdma_queue;
1989 
1990 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1991 			q->properties.type)];
1992 
1993 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1994 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1995 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1996 	q->properties.tba_addr = qpd->tba_addr;
1997 	q->properties.tma_addr = qpd->tma_addr;
1998 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
1999 	if (!q->mqd_mem_obj) {
2000 		retval = -ENOMEM;
2001 		goto out_deallocate_doorbell;
2002 	}
2003 
2004 	dqm_lock(dqm);
2005 	/*
2006 	 * Eviction state logic: mark all queues as evicted, even ones
2007 	 * not currently active. Restoring inactive queues later only
2008 	 * updates the is_evicted flag but is a no-op otherwise.
2009 	 */
2010 	q->properties.is_evicted = !!qpd->evicted;
2011 	q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled &&
2012 				  kfd_dbg_has_cwsr_workaround(q->device);
2013 
2014 	if (qd)
2015 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
2016 				     &q->properties, restore_mqd, restore_ctl_stack,
2017 				     qd->ctl_stack_size);
2018 	else
2019 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
2020 					&q->gart_mqd_addr, &q->properties);
2021 
2022 	list_add(&q->list, &qpd->queues_list);
2023 	qpd->queue_count++;
2024 
2025 	if (q->properties.is_active) {
2026 		increment_queue_count(dqm, qpd, q);
2027 
2028 		if (!dqm->dev->kfd->shared_resources.enable_mes)
2029 			retval = execute_queues_cpsch(dqm,
2030 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
2031 		else
2032 			retval = add_queue_mes(dqm, q, qpd);
2033 		if (retval)
2034 			goto cleanup_queue;
2035 	}
2036 
2037 	/*
2038 	 * Unconditionally increment this counter, regardless of the queue's
2039 	 * type or whether the queue is active.
2040 	 */
2041 	dqm->total_queue_count++;
2042 
2043 	pr_debug("Total of %d queues are accountable so far\n",
2044 			dqm->total_queue_count);
2045 
2046 	dqm_unlock(dqm);
2047 	return retval;
2048 
2049 cleanup_queue:
2050 	qpd->queue_count--;
2051 	list_del(&q->list);
2052 	if (q->properties.is_active)
2053 		decrement_queue_count(dqm, qpd, q);
2054 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2055 	dqm_unlock(dqm);
2056 out_deallocate_doorbell:
2057 	deallocate_doorbell(qpd, q);
2058 out_deallocate_sdma_queue:
2059 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2060 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
2061 		dqm_lock(dqm);
2062 		deallocate_sdma_queue(dqm, q);
2063 		dqm_unlock(dqm);
2064 	}
2065 out:
2066 	return retval;
2067 }
2068 
2069 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm,
2070 			      uint64_t fence_value,
2071 			      unsigned int timeout_ms)
2072 {
2073 	unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
2074 	struct device *dev = dqm->dev->adev->dev;
2075 	uint64_t *fence_addr = dqm->fence_addr;
2076 
2077 	while (*fence_addr != fence_value) {
2078 		/* Fatal err detected, this response won't come */
2079 		if (amdgpu_amdkfd_is_fed(dqm->dev->adev))
2080 			return -EIO;
2081 
2082 		if (time_after(jiffies, end_jiffies)) {
2083 			dev_err(dev, "qcm fence wait loop timeout expired\n");
2084 			/* In HWS case, this is used to halt the driver thread
2085 			 * in order not to mess up CP states before doing
2086 			 * scandumps for FW debugging.
2087 			 */
2088 			while (halt_if_hws_hang)
2089 				schedule();
2090 
2091 			return -ETIME;
2092 		}
2093 		schedule();
2094 	}
2095 
2096 	return 0;
2097 }
2098 
2099 /* dqm->lock mutex has to be locked before calling this function */
2100 static int map_queues_cpsch(struct device_queue_manager *dqm)
2101 {
2102 	struct device *dev = dqm->dev->adev->dev;
2103 	int retval;
2104 
2105 	if (!dqm->sched_running || dqm->sched_halt)
2106 		return 0;
2107 	if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
2108 		return 0;
2109 	if (dqm->active_runlist)
2110 		return 0;
2111 
2112 	retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
2113 	pr_debug("%s sent runlist\n", __func__);
2114 	if (retval) {
2115 		dev_err(dev, "failed to execute runlist\n");
2116 		return retval;
2117 	}
2118 	dqm->active_runlist = true;
2119 
2120 	return retval;
2121 }
2122 
2123 static void set_queue_as_reset(struct device_queue_manager *dqm, struct queue *q,
2124 			       struct qcm_process_device *qpd)
2125 {
2126 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2127 
2128 	dev_err(dqm->dev->adev->dev, "queue id 0x%0x at pasid %d is reset\n",
2129 		q->properties.queue_id, pdd->process->lead_thread->pid);
2130 
2131 	pdd->has_reset_queue = true;
2132 	if (q->properties.is_active) {
2133 		q->properties.is_active = false;
2134 		decrement_queue_count(dqm, qpd, q);
2135 	}
2136 }
2137 
2138 static int detect_queue_hang(struct device_queue_manager *dqm)
2139 {
2140 	int i;
2141 
2142 	/* detect should be used only in dqm locked queue reset */
2143 	if (WARN_ON(dqm->detect_hang_count > 0))
2144 		return 0;
2145 
2146 	memset(dqm->detect_hang_info, 0, dqm->detect_hang_info_size);
2147 
2148 	for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
2149 		uint32_t mec, pipe, queue;
2150 		int xcc_id;
2151 
2152 		mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
2153 			/ dqm->dev->kfd->shared_resources.num_pipe_per_mec;
2154 
2155 		if (mec || !test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
2156 			continue;
2157 
2158 		amdgpu_queue_mask_bit_to_mec_queue(dqm->dev->adev, i, &mec, &pipe, &queue);
2159 
2160 		for_each_inst(xcc_id, dqm->dev->xcc_mask) {
2161 			uint64_t queue_addr = dqm->dev->kfd2kgd->hqd_get_pq_addr(
2162 						dqm->dev->adev, pipe, queue, xcc_id);
2163 			struct dqm_detect_hang_info hang_info;
2164 
2165 			if (!queue_addr)
2166 				continue;
2167 
2168 			hang_info.pipe_id = pipe;
2169 			hang_info.queue_id = queue;
2170 			hang_info.xcc_id = xcc_id;
2171 			hang_info.queue_address = queue_addr;
2172 
2173 			dqm->detect_hang_info[dqm->detect_hang_count] = hang_info;
2174 			dqm->detect_hang_count++;
2175 		}
2176 	}
2177 
2178 	return dqm->detect_hang_count;
2179 }
2180 
2181 static struct queue *find_queue_by_address(struct device_queue_manager *dqm, uint64_t queue_address)
2182 {
2183 	struct device_process_node *cur;
2184 	struct qcm_process_device *qpd;
2185 	struct queue *q;
2186 
2187 	list_for_each_entry(cur, &dqm->queues, list) {
2188 		qpd = cur->qpd;
2189 		list_for_each_entry(q, &qpd->queues_list, list) {
2190 			if (queue_address == q->properties.queue_address)
2191 				return q;
2192 		}
2193 	}
2194 
2195 	return NULL;
2196 }
2197 
2198 static int reset_hung_queues(struct device_queue_manager *dqm)
2199 {
2200 	int r = 0, reset_count = 0, i;
2201 
2202 	if (!dqm->detect_hang_info || dqm->is_hws_hang)
2203 		return -EIO;
2204 
2205 	/* assume dqm locked. */
2206 	if (!detect_queue_hang(dqm))
2207 		return -ENOTRECOVERABLE;
2208 
2209 	for (i = 0; i < dqm->detect_hang_count; i++) {
2210 		struct dqm_detect_hang_info hang_info = dqm->detect_hang_info[i];
2211 		struct queue *q = find_queue_by_address(dqm, hang_info.queue_address);
2212 		struct kfd_process_device *pdd;
2213 		uint64_t queue_addr = 0;
2214 
2215 		if (!q) {
2216 			r = -ENOTRECOVERABLE;
2217 			goto reset_fail;
2218 		}
2219 
2220 		pdd = kfd_get_process_device_data(dqm->dev, q->process);
2221 		if (!pdd) {
2222 			r = -ENOTRECOVERABLE;
2223 			goto reset_fail;
2224 		}
2225 
2226 		queue_addr = dqm->dev->kfd2kgd->hqd_reset(dqm->dev->adev,
2227 				hang_info.pipe_id, hang_info.queue_id, hang_info.xcc_id,
2228 				KFD_UNMAP_LATENCY_MS);
2229 
2230 		/* either reset failed or we reset an unexpected queue. */
2231 		if (queue_addr != q->properties.queue_address) {
2232 			r = -ENOTRECOVERABLE;
2233 			goto reset_fail;
2234 		}
2235 
2236 		set_queue_as_reset(dqm, q, &pdd->qpd);
2237 		reset_count++;
2238 	}
2239 
2240 	if (reset_count == dqm->detect_hang_count)
2241 		kfd_signal_reset_event(dqm->dev);
2242 	else
2243 		r = -ENOTRECOVERABLE;
2244 
2245 reset_fail:
2246 	dqm->detect_hang_count = 0;
2247 
2248 	return r;
2249 }
2250 
2251 static bool sdma_has_hang(struct device_queue_manager *dqm)
2252 {
2253 	int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
2254 	int engine_end = engine_start + get_num_all_sdma_engines(dqm);
2255 	int num_queues_per_eng =  dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
2256 	int i, j;
2257 
2258 	for (i = engine_start; i < engine_end; i++) {
2259 		for (j = 0; j < num_queues_per_eng; j++) {
2260 			if (!dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j))
2261 				continue;
2262 
2263 			return true;
2264 		}
2265 	}
2266 
2267 	return false;
2268 }
2269 
2270 static bool set_sdma_queue_as_reset(struct device_queue_manager *dqm,
2271 				    uint32_t doorbell_off)
2272 {
2273 	struct device_process_node *cur;
2274 	struct qcm_process_device *qpd;
2275 	struct queue *q;
2276 
2277 	list_for_each_entry(cur, &dqm->queues, list) {
2278 		qpd = cur->qpd;
2279 		list_for_each_entry(q, &qpd->queues_list, list) {
2280 			if ((q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2281 			     q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) &&
2282 			     q->properties.doorbell_off == doorbell_off) {
2283 				set_queue_as_reset(dqm, q, qpd);
2284 				return true;
2285 			}
2286 		}
2287 	}
2288 
2289 	return false;
2290 }
2291 
2292 static int reset_hung_queues_sdma(struct device_queue_manager *dqm)
2293 {
2294 	int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
2295 	int engine_end = engine_start + get_num_all_sdma_engines(dqm);
2296 	int num_queues_per_eng =  dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
2297 	int r = 0, i, j;
2298 
2299 	if (dqm->is_hws_hang)
2300 		return -EIO;
2301 
2302 	/* Scan for hung HW queues and reset engine. */
2303 	dqm->detect_hang_count = 0;
2304 	for (i = engine_start; i < engine_end; i++) {
2305 		for (j = 0; j < num_queues_per_eng; j++) {
2306 			uint32_t doorbell_off =
2307 				dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j);
2308 
2309 			if (!doorbell_off)
2310 				continue;
2311 
2312 			/* Reset engine and check. */
2313 			if (amdgpu_sdma_reset_engine(dqm->dev->adev, i) ||
2314 			    dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j) ||
2315 			    !set_sdma_queue_as_reset(dqm, doorbell_off)) {
2316 				r = -ENOTRECOVERABLE;
2317 				goto reset_fail;
2318 			}
2319 
2320 			/* Should only expect one queue active per engine */
2321 			dqm->detect_hang_count++;
2322 			break;
2323 		}
2324 	}
2325 
2326 	/* Signal process reset */
2327 	if (dqm->detect_hang_count)
2328 		kfd_signal_reset_event(dqm->dev);
2329 	else
2330 		r = -ENOTRECOVERABLE;
2331 
2332 reset_fail:
2333 	dqm->detect_hang_count = 0;
2334 
2335 	return r;
2336 }
2337 
2338 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma)
2339 {
2340 	while (halt_if_hws_hang)
2341 		schedule();
2342 
2343 	if (!amdgpu_gpu_recovery)
2344 		return -ENOTRECOVERABLE;
2345 
2346 	return is_sdma ? reset_hung_queues_sdma(dqm) : reset_hung_queues(dqm);
2347 }
2348 
2349 /* dqm->lock mutex has to be locked before calling this function
2350  *
2351  * @grace_period: If USE_DEFAULT_GRACE_PERIOD then default wait time
2352  *   for context switch latency. Lower values are used by debugger
2353  *   since context switching are triggered at high frequency.
2354  *   This is configured by setting CP_IQ_WAIT_TIME2.SCH_WAVE
2355  *
2356  */
2357 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
2358 				enum kfd_unmap_queues_filter filter,
2359 				uint32_t filter_param,
2360 				uint32_t grace_period,
2361 				bool reset)
2362 {
2363 	struct device *dev = dqm->dev->adev->dev;
2364 	struct mqd_manager *mqd_mgr;
2365 	int retval;
2366 
2367 	if (!dqm->sched_running)
2368 		return 0;
2369 	if (!dqm->active_runlist)
2370 		return 0;
2371 	if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2372 		return -EIO;
2373 
2374 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2375 		retval = pm_config_dequeue_wait_counts(&dqm->packet_mgr,
2376 				KFD_DEQUEUE_WAIT_SET_SCH_WAVE, grace_period);
2377 		if (retval)
2378 			goto out;
2379 	}
2380 
2381 	retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
2382 	if (retval)
2383 		goto out;
2384 
2385 	*dqm->fence_addr = KFD_FENCE_INIT;
2386 	mb();
2387 	pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
2388 				KFD_FENCE_COMPLETED);
2389 	/* should be timed out */
2390 	retval = amdkfd_fence_wait_timeout(dqm, KFD_FENCE_COMPLETED,
2391 					   queue_preemption_timeout_ms);
2392 	if (retval) {
2393 		dev_err(dev, "The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
2394 		kfd_hws_hang(dqm);
2395 		goto out;
2396 	}
2397 
2398 	/* In the current MEC firmware implementation, if compute queue
2399 	 * doesn't response to the preemption request in time, HIQ will
2400 	 * abandon the unmap request without returning any timeout error
2401 	 * to driver. Instead, MEC firmware will log the doorbell of the
2402 	 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
2403 	 * To make sure the queue unmap was successful, driver need to
2404 	 * check those fields
2405 	 */
2406 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
2407 	if (mqd_mgr->check_preemption_failed(mqd_mgr, dqm->packet_mgr.priv_queue->queue->mqd) &&
2408 	    reset_queues_on_hws_hang(dqm, false))
2409 		goto reset_fail;
2410 
2411 	/* Check for SDMA hang and attempt SDMA reset */
2412 	if (sdma_has_hang(dqm) && reset_queues_on_hws_hang(dqm, true))
2413 		goto reset_fail;
2414 
2415 	/* We need to reset the grace period value for this device */
2416 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2417 		if (pm_config_dequeue_wait_counts(&dqm->packet_mgr,
2418 				KFD_DEQUEUE_WAIT_RESET, 0 /* unused */))
2419 			dev_err(dev, "Failed to reset grace period\n");
2420 	}
2421 
2422 	pm_release_ib(&dqm->packet_mgr);
2423 	dqm->active_runlist = false;
2424 out:
2425 	up_read(&dqm->dev->adev->reset_domain->sem);
2426 	return retval;
2427 
2428 reset_fail:
2429 	dqm->is_hws_hang = true;
2430 	kfd_hws_hang(dqm);
2431 	up_read(&dqm->dev->adev->reset_domain->sem);
2432 	return -ETIME;
2433 }
2434 
2435 /* only for compute queue */
2436 static int reset_queues_cpsch(struct device_queue_manager *dqm, uint16_t pasid)
2437 {
2438 	int retval;
2439 
2440 	dqm_lock(dqm);
2441 
2442 	retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
2443 			pasid, USE_DEFAULT_GRACE_PERIOD, true);
2444 
2445 	dqm_unlock(dqm);
2446 	return retval;
2447 }
2448 
2449 /* dqm->lock mutex has to be locked before calling this function */
2450 static int execute_queues_cpsch(struct device_queue_manager *dqm,
2451 				enum kfd_unmap_queues_filter filter,
2452 				uint32_t filter_param,
2453 				uint32_t grace_period)
2454 {
2455 	int retval;
2456 
2457 	if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2458 		return -EIO;
2459 	retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false);
2460 	if (!retval)
2461 		retval = map_queues_cpsch(dqm);
2462 	up_read(&dqm->dev->adev->reset_domain->sem);
2463 	return retval;
2464 }
2465 
2466 static int wait_on_destroy_queue(struct device_queue_manager *dqm,
2467 				 struct queue *q)
2468 {
2469 	struct kfd_process_device *pdd = kfd_get_process_device_data(q->device,
2470 								q->process);
2471 	int ret = 0;
2472 
2473 	if (WARN_ON(!pdd))
2474 		return ret;
2475 
2476 	if (pdd->qpd.is_debug)
2477 		return ret;
2478 
2479 	q->properties.is_being_destroyed = true;
2480 
2481 	if (pdd->process->debug_trap_enabled && q->properties.is_suspended) {
2482 		dqm_unlock(dqm);
2483 		mutex_unlock(&q->process->mutex);
2484 		ret = wait_event_interruptible(dqm->destroy_wait,
2485 						!q->properties.is_suspended);
2486 
2487 		mutex_lock(&q->process->mutex);
2488 		dqm_lock(dqm);
2489 	}
2490 
2491 	return ret;
2492 }
2493 
2494 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
2495 				struct qcm_process_device *qpd,
2496 				struct queue *q)
2497 {
2498 	int retval;
2499 	struct mqd_manager *mqd_mgr;
2500 	uint64_t sdma_val = 0;
2501 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2502 	struct device *dev = dqm->dev->adev->dev;
2503 
2504 	/* Get the SDMA queue stats */
2505 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2506 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2507 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
2508 							&sdma_val);
2509 		if (retval)
2510 			dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
2511 				q->properties.queue_id);
2512 	}
2513 
2514 	/* remove queue from list to prevent rescheduling after preemption */
2515 	dqm_lock(dqm);
2516 
2517 	retval = wait_on_destroy_queue(dqm, q);
2518 
2519 	if (retval) {
2520 		dqm_unlock(dqm);
2521 		return retval;
2522 	}
2523 
2524 	if (qpd->is_debug) {
2525 		/*
2526 		 * error, currently we do not allow to destroy a queue
2527 		 * of a currently debugged process
2528 		 */
2529 		retval = -EBUSY;
2530 		goto failed_try_destroy_debugged_queue;
2531 
2532 	}
2533 
2534 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2535 			q->properties.type)];
2536 
2537 	deallocate_doorbell(qpd, q);
2538 
2539 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2540 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2541 		deallocate_sdma_queue(dqm, q);
2542 		pdd->sdma_past_activity_counter += sdma_val;
2543 	}
2544 
2545 	if (q->properties.is_active) {
2546 		decrement_queue_count(dqm, qpd, q);
2547 		q->properties.is_active = false;
2548 		if (!dqm->dev->kfd->shared_resources.enable_mes) {
2549 			retval = execute_queues_cpsch(dqm,
2550 						      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
2551 						      USE_DEFAULT_GRACE_PERIOD);
2552 			if (retval == -ETIME)
2553 				qpd->reset_wavefronts = true;
2554 		} else {
2555 			retval = remove_queue_mes(dqm, q, qpd);
2556 		}
2557 	}
2558 	list_del(&q->list);
2559 	qpd->queue_count--;
2560 
2561 	/*
2562 	 * Unconditionally decrement this counter, regardless of the queue's
2563 	 * type
2564 	 */
2565 	dqm->total_queue_count--;
2566 	pr_debug("Total of %d queues are accountable so far\n",
2567 			dqm->total_queue_count);
2568 
2569 	dqm_unlock(dqm);
2570 
2571 	/*
2572 	 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid
2573 	 * circular locking
2574 	 */
2575 	kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE),
2576 				qpd->pqm->process, q->device,
2577 				-1, false, NULL, 0);
2578 
2579 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2580 
2581 	return retval;
2582 
2583 failed_try_destroy_debugged_queue:
2584 
2585 	dqm_unlock(dqm);
2586 	return retval;
2587 }
2588 
2589 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
2590 				   struct qcm_process_device *qpd,
2591 				   enum cache_policy default_policy,
2592 				   enum cache_policy alternate_policy,
2593 				   void __user *alternate_aperture_base,
2594 				   uint64_t alternate_aperture_size,
2595 				   u32 misc_process_properties)
2596 {
2597 	bool retval = true;
2598 
2599 	if (!dqm->asic_ops.set_cache_memory_policy)
2600 		return retval;
2601 
2602 	dqm_lock(dqm);
2603 
2604 	retval = dqm->asic_ops.set_cache_memory_policy(
2605 			dqm,
2606 			qpd,
2607 			default_policy,
2608 			alternate_policy,
2609 			alternate_aperture_base,
2610 			alternate_aperture_size,
2611 			misc_process_properties);
2612 
2613 	if (retval)
2614 		goto out;
2615 
2616 	if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
2617 		program_sh_mem_settings(dqm, qpd);
2618 
2619 	pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
2620 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
2621 		qpd->sh_mem_ape1_limit);
2622 
2623 out:
2624 	dqm_unlock(dqm);
2625 	return retval;
2626 }
2627 
2628 static int process_termination_nocpsch(struct device_queue_manager *dqm,
2629 		struct qcm_process_device *qpd)
2630 {
2631 	struct queue *q;
2632 	struct device_process_node *cur, *next_dpn;
2633 	int retval = 0;
2634 	bool found = false;
2635 
2636 	dqm_lock(dqm);
2637 
2638 	/* Clear all user mode queues */
2639 	while (!list_empty(&qpd->queues_list)) {
2640 		struct mqd_manager *mqd_mgr;
2641 		int ret;
2642 
2643 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2644 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2645 				q->properties.type)];
2646 		ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
2647 		if (ret)
2648 			retval = ret;
2649 		dqm_unlock(dqm);
2650 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2651 		dqm_lock(dqm);
2652 	}
2653 
2654 	/* Unregister process */
2655 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2656 		if (qpd == cur->qpd) {
2657 			list_del(&cur->list);
2658 			kfree(cur);
2659 			dqm->processes_count--;
2660 			found = true;
2661 			break;
2662 		}
2663 	}
2664 
2665 	dqm_unlock(dqm);
2666 
2667 	/* Outside the DQM lock because under the DQM lock we can't do
2668 	 * reclaim or take other locks that others hold while reclaiming.
2669 	 */
2670 	if (found)
2671 		kfd_dec_compute_active(dqm->dev);
2672 
2673 	return retval;
2674 }
2675 
2676 static int get_wave_state(struct device_queue_manager *dqm,
2677 			  struct queue *q,
2678 			  void __user *ctl_stack,
2679 			  u32 *ctl_stack_used_size,
2680 			  u32 *save_area_used_size)
2681 {
2682 	struct mqd_manager *mqd_mgr;
2683 
2684 	dqm_lock(dqm);
2685 
2686 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2687 
2688 	if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
2689 	    q->properties.is_active || !q->device->kfd->cwsr_enabled ||
2690 	    !mqd_mgr->get_wave_state) {
2691 		dqm_unlock(dqm);
2692 		return -EINVAL;
2693 	}
2694 
2695 	dqm_unlock(dqm);
2696 
2697 	/*
2698 	 * get_wave_state is outside the dqm lock to prevent circular locking
2699 	 * and the queue should be protected against destruction by the process
2700 	 * lock.
2701 	 */
2702 	return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties,
2703 			ctl_stack, ctl_stack_used_size, save_area_used_size);
2704 }
2705 
2706 static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
2707 			const struct queue *q,
2708 			u32 *mqd_size,
2709 			u32 *ctl_stack_size)
2710 {
2711 	struct mqd_manager *mqd_mgr;
2712 	enum KFD_MQD_TYPE mqd_type =
2713 			get_mqd_type_from_queue_type(q->properties.type);
2714 
2715 	dqm_lock(dqm);
2716 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2717 	*mqd_size = mqd_mgr->mqd_size;
2718 	*ctl_stack_size = 0;
2719 
2720 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
2721 		mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
2722 
2723 	dqm_unlock(dqm);
2724 }
2725 
2726 static int checkpoint_mqd(struct device_queue_manager *dqm,
2727 			  const struct queue *q,
2728 			  void *mqd,
2729 			  void *ctl_stack)
2730 {
2731 	struct mqd_manager *mqd_mgr;
2732 	int r = 0;
2733 	enum KFD_MQD_TYPE mqd_type =
2734 			get_mqd_type_from_queue_type(q->properties.type);
2735 
2736 	dqm_lock(dqm);
2737 
2738 	if (q->properties.is_active || !q->device->kfd->cwsr_enabled) {
2739 		r = -EINVAL;
2740 		goto dqm_unlock;
2741 	}
2742 
2743 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2744 	if (!mqd_mgr->checkpoint_mqd) {
2745 		r = -EOPNOTSUPP;
2746 		goto dqm_unlock;
2747 	}
2748 
2749 	mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
2750 
2751 dqm_unlock:
2752 	dqm_unlock(dqm);
2753 	return r;
2754 }
2755 
2756 static int process_termination_cpsch(struct device_queue_manager *dqm,
2757 		struct qcm_process_device *qpd)
2758 {
2759 	int retval;
2760 	struct queue *q;
2761 	struct device *dev = dqm->dev->adev->dev;
2762 	struct kernel_queue *kq, *kq_next;
2763 	struct mqd_manager *mqd_mgr;
2764 	struct device_process_node *cur, *next_dpn;
2765 	enum kfd_unmap_queues_filter filter =
2766 		KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
2767 	bool found = false;
2768 
2769 	retval = 0;
2770 
2771 	dqm_lock(dqm);
2772 
2773 	/* Clean all kernel queues */
2774 	list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
2775 		list_del(&kq->list);
2776 		decrement_queue_count(dqm, qpd, kq->queue);
2777 		qpd->is_debug = false;
2778 		dqm->total_queue_count--;
2779 		filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
2780 	}
2781 
2782 	/* Clear all user mode queues */
2783 	list_for_each_entry(q, &qpd->queues_list, list) {
2784 		if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
2785 			deallocate_sdma_queue(dqm, q);
2786 		else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2787 			deallocate_sdma_queue(dqm, q);
2788 
2789 		if (q->properties.is_active) {
2790 			decrement_queue_count(dqm, qpd, q);
2791 
2792 			if (dqm->dev->kfd->shared_resources.enable_mes) {
2793 				retval = remove_queue_mes(dqm, q, qpd);
2794 				if (retval)
2795 					dev_err(dev, "Failed to remove queue %d\n",
2796 						q->properties.queue_id);
2797 			}
2798 		}
2799 
2800 		dqm->total_queue_count--;
2801 	}
2802 
2803 	/* Unregister process */
2804 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2805 		if (qpd == cur->qpd) {
2806 			list_del(&cur->list);
2807 			kfree(cur);
2808 			dqm->processes_count--;
2809 			found = true;
2810 			break;
2811 		}
2812 	}
2813 
2814 	if (!dqm->dev->kfd->shared_resources.enable_mes)
2815 		retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD);
2816 
2817 	if ((retval || qpd->reset_wavefronts) &&
2818 	    down_read_trylock(&dqm->dev->adev->reset_domain->sem)) {
2819 		pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
2820 		dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
2821 		qpd->reset_wavefronts = false;
2822 		up_read(&dqm->dev->adev->reset_domain->sem);
2823 	}
2824 
2825 	/* Lastly, free mqd resources.
2826 	 * Do free_mqd() after dqm_unlock to avoid circular locking.
2827 	 */
2828 	while (!list_empty(&qpd->queues_list)) {
2829 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2830 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2831 				q->properties.type)];
2832 		list_del(&q->list);
2833 		qpd->queue_count--;
2834 		dqm_unlock(dqm);
2835 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2836 		dqm_lock(dqm);
2837 	}
2838 	dqm_unlock(dqm);
2839 
2840 	/* Outside the DQM lock because under the DQM lock we can't do
2841 	 * reclaim or take other locks that others hold while reclaiming.
2842 	 */
2843 	if (found)
2844 		kfd_dec_compute_active(dqm->dev);
2845 
2846 	return retval;
2847 }
2848 
2849 static int init_mqd_managers(struct device_queue_manager *dqm)
2850 {
2851 	int i, j;
2852 	struct device *dev = dqm->dev->adev->dev;
2853 	struct mqd_manager *mqd_mgr;
2854 
2855 	for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
2856 		mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
2857 		if (!mqd_mgr) {
2858 			dev_err(dev, "mqd manager [%d] initialization failed\n", i);
2859 			goto out_free;
2860 		}
2861 		dqm->mqd_mgrs[i] = mqd_mgr;
2862 	}
2863 
2864 	return 0;
2865 
2866 out_free:
2867 	for (j = 0; j < i; j++) {
2868 		kfree(dqm->mqd_mgrs[j]);
2869 		dqm->mqd_mgrs[j] = NULL;
2870 	}
2871 
2872 	return -ENOMEM;
2873 }
2874 
2875 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
2876 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
2877 {
2878 	int retval;
2879 	struct kfd_node *dev = dqm->dev;
2880 	struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
2881 	uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
2882 		get_num_all_sdma_engines(dqm) *
2883 		dev->kfd->device_info.num_sdma_queues_per_engine +
2884 		(dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size *
2885 		NUM_XCC(dqm->dev->xcc_mask));
2886 
2887 	retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size,
2888 		&(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
2889 		(void *)&(mem_obj->cpu_ptr), false);
2890 
2891 	return retval;
2892 }
2893 
2894 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev)
2895 {
2896 	struct device_queue_manager *dqm;
2897 
2898 	pr_debug("Loading device queue manager\n");
2899 
2900 	dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
2901 	if (!dqm)
2902 		return NULL;
2903 
2904 	switch (dev->adev->asic_type) {
2905 	/* HWS is not available on Hawaii. */
2906 	case CHIP_HAWAII:
2907 	/* HWS depends on CWSR for timely dequeue. CWSR is not
2908 	 * available on Tonga.
2909 	 *
2910 	 * FIXME: This argument also applies to Kaveri.
2911 	 */
2912 	case CHIP_TONGA:
2913 		dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
2914 		break;
2915 	default:
2916 		dqm->sched_policy = sched_policy;
2917 		break;
2918 	}
2919 
2920 	dqm->dev = dev;
2921 	switch (dqm->sched_policy) {
2922 	case KFD_SCHED_POLICY_HWS:
2923 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
2924 		/* initialize dqm for cp scheduling */
2925 		dqm->ops.create_queue = create_queue_cpsch;
2926 		dqm->ops.initialize = initialize_cpsch;
2927 		dqm->ops.start = start_cpsch;
2928 		dqm->ops.stop = stop_cpsch;
2929 		dqm->ops.halt = halt_cpsch;
2930 		dqm->ops.unhalt = unhalt_cpsch;
2931 		dqm->ops.destroy_queue = destroy_queue_cpsch;
2932 		dqm->ops.update_queue = update_queue;
2933 		dqm->ops.register_process = register_process;
2934 		dqm->ops.unregister_process = unregister_process;
2935 		dqm->ops.uninitialize = uninitialize;
2936 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
2937 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
2938 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2939 		dqm->ops.process_termination = process_termination_cpsch;
2940 		dqm->ops.evict_process_queues = evict_process_queues_cpsch;
2941 		dqm->ops.restore_process_queues = restore_process_queues_cpsch;
2942 		dqm->ops.get_wave_state = get_wave_state;
2943 		dqm->ops.reset_queues = reset_queues_cpsch;
2944 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2945 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2946 		break;
2947 	case KFD_SCHED_POLICY_NO_HWS:
2948 		/* initialize dqm for no cp scheduling */
2949 		dqm->ops.start = start_nocpsch;
2950 		dqm->ops.stop = stop_nocpsch;
2951 		dqm->ops.create_queue = create_queue_nocpsch;
2952 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
2953 		dqm->ops.update_queue = update_queue;
2954 		dqm->ops.register_process = register_process;
2955 		dqm->ops.unregister_process = unregister_process;
2956 		dqm->ops.initialize = initialize_nocpsch;
2957 		dqm->ops.uninitialize = uninitialize;
2958 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2959 		dqm->ops.process_termination = process_termination_nocpsch;
2960 		dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
2961 		dqm->ops.restore_process_queues =
2962 			restore_process_queues_nocpsch;
2963 		dqm->ops.get_wave_state = get_wave_state;
2964 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2965 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2966 		break;
2967 	default:
2968 		dev_err(dev->adev->dev, "Invalid scheduling policy %d\n", dqm->sched_policy);
2969 		goto out_free;
2970 	}
2971 
2972 	switch (dev->adev->asic_type) {
2973 	case CHIP_KAVERI:
2974 	case CHIP_HAWAII:
2975 		device_queue_manager_init_cik(&dqm->asic_ops);
2976 		break;
2977 
2978 	case CHIP_CARRIZO:
2979 	case CHIP_TONGA:
2980 	case CHIP_FIJI:
2981 	case CHIP_POLARIS10:
2982 	case CHIP_POLARIS11:
2983 	case CHIP_POLARIS12:
2984 	case CHIP_VEGAM:
2985 		device_queue_manager_init_vi(&dqm->asic_ops);
2986 		break;
2987 
2988 	default:
2989 		if (KFD_GC_VERSION(dev) >= IP_VERSION(12, 0, 0))
2990 			device_queue_manager_init_v12(&dqm->asic_ops);
2991 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0))
2992 			device_queue_manager_init_v11(&dqm->asic_ops);
2993 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
2994 			device_queue_manager_init_v10(&dqm->asic_ops);
2995 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
2996 			device_queue_manager_init_v9(&dqm->asic_ops);
2997 		else {
2998 			WARN(1, "Unexpected ASIC family %u",
2999 			     dev->adev->asic_type);
3000 			goto out_free;
3001 		}
3002 	}
3003 
3004 	if (init_mqd_managers(dqm))
3005 		goto out_free;
3006 
3007 	if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) {
3008 		dev_err(dev->adev->dev, "Failed to allocate hiq sdma mqd trunk buffer\n");
3009 		goto out_free;
3010 	}
3011 
3012 	if (!dqm->ops.initialize(dqm)) {
3013 		init_waitqueue_head(&dqm->destroy_wait);
3014 		return dqm;
3015 	}
3016 
3017 out_free:
3018 	kfree(dqm);
3019 	return NULL;
3020 }
3021 
3022 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev,
3023 				    struct kfd_mem_obj *mqd)
3024 {
3025 	WARN(!mqd, "No hiq sdma mqd trunk to free");
3026 
3027 	amdgpu_amdkfd_free_gtt_mem(dev->adev, &mqd->gtt_mem);
3028 }
3029 
3030 void device_queue_manager_uninit(struct device_queue_manager *dqm)
3031 {
3032 	dqm->ops.stop(dqm);
3033 	dqm->ops.uninitialize(dqm);
3034 	if (!dqm->dev->kfd->shared_resources.enable_mes)
3035 		deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
3036 	kfree(dqm);
3037 }
3038 
3039 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id)
3040 {
3041 	struct kfd_process_device *pdd = NULL;
3042 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid, &pdd);
3043 	struct device_queue_manager *dqm = knode->dqm;
3044 	struct device *dev = dqm->dev->adev->dev;
3045 	struct qcm_process_device *qpd;
3046 	struct queue *q = NULL;
3047 	int ret = 0;
3048 
3049 	if (!pdd)
3050 		return -EINVAL;
3051 
3052 	dqm_lock(dqm);
3053 
3054 	if (pdd) {
3055 		qpd = &pdd->qpd;
3056 
3057 		list_for_each_entry(q, &qpd->queues_list, list) {
3058 			if (q->doorbell_id == doorbell_id && q->properties.is_active) {
3059 				ret = suspend_all_queues_mes(dqm);
3060 				if (ret) {
3061 					dev_err(dev, "Suspending all queues failed");
3062 					goto out;
3063 				}
3064 
3065 				q->properties.is_evicted = true;
3066 				q->properties.is_active = false;
3067 				decrement_queue_count(dqm, qpd, q);
3068 
3069 				ret = remove_queue_mes(dqm, q, qpd);
3070 				if (ret) {
3071 					dev_err(dev, "Removing bad queue failed");
3072 					goto out;
3073 				}
3074 
3075 				ret = resume_all_queues_mes(dqm);
3076 				if (ret)
3077 					dev_err(dev, "Resuming all queues failed");
3078 
3079 				break;
3080 			}
3081 		}
3082 	}
3083 
3084 out:
3085 	dqm_unlock(dqm);
3086 	kfd_unref_process(p);
3087 	return ret;
3088 }
3089 
3090 static int kfd_dqm_evict_pasid_mes(struct device_queue_manager *dqm,
3091 				   struct qcm_process_device *qpd)
3092 {
3093 	struct device *dev = dqm->dev->adev->dev;
3094 	int ret = 0;
3095 
3096 	/* Check if process is already evicted */
3097 	dqm_lock(dqm);
3098 	if (qpd->evicted) {
3099 		/* Increment the evicted count to make sure the
3100 		 * process stays evicted before its terminated.
3101 		 */
3102 		qpd->evicted++;
3103 		dqm_unlock(dqm);
3104 		goto out;
3105 	}
3106 	dqm_unlock(dqm);
3107 
3108 	ret = suspend_all_queues_mes(dqm);
3109 	if (ret) {
3110 		dev_err(dev, "Suspending all queues failed");
3111 		goto out;
3112 	}
3113 
3114 	ret = dqm->ops.evict_process_queues(dqm, qpd);
3115 	if (ret) {
3116 		dev_err(dev, "Evicting process queues failed");
3117 		goto out;
3118 	}
3119 
3120 	ret = resume_all_queues_mes(dqm);
3121 	if (ret)
3122 		dev_err(dev, "Resuming all queues failed");
3123 
3124 out:
3125 	return ret;
3126 }
3127 
3128 int kfd_evict_process_device(struct kfd_process_device *pdd)
3129 {
3130 	struct device_queue_manager *dqm;
3131 	struct kfd_process *p;
3132 	int ret = 0;
3133 
3134 	p = pdd->process;
3135 	dqm = pdd->dev->dqm;
3136 
3137 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
3138 
3139 	if (dqm->dev->kfd->shared_resources.enable_mes)
3140 		ret = kfd_dqm_evict_pasid_mes(dqm, &pdd->qpd);
3141 	else
3142 		ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
3143 
3144 	return ret;
3145 }
3146 
3147 int reserve_debug_trap_vmid(struct device_queue_manager *dqm,
3148 				struct qcm_process_device *qpd)
3149 {
3150 	int r;
3151 	struct device *dev = dqm->dev->adev->dev;
3152 	int updated_vmid_mask;
3153 
3154 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3155 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3156 		return -EINVAL;
3157 	}
3158 
3159 	dqm_lock(dqm);
3160 
3161 	if (dqm->trap_debug_vmid != 0) {
3162 		dev_err(dev, "Trap debug id already reserved\n");
3163 		r = -EBUSY;
3164 		goto out_unlock;
3165 	}
3166 
3167 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3168 			USE_DEFAULT_GRACE_PERIOD, false);
3169 	if (r)
3170 		goto out_unlock;
3171 
3172 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3173 	updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd);
3174 
3175 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3176 	dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd;
3177 	r = set_sched_resources(dqm);
3178 	if (r)
3179 		goto out_unlock;
3180 
3181 	r = map_queues_cpsch(dqm);
3182 	if (r)
3183 		goto out_unlock;
3184 
3185 	pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid);
3186 
3187 out_unlock:
3188 	dqm_unlock(dqm);
3189 	return r;
3190 }
3191 
3192 /*
3193  * Releases vmid for the trap debugger
3194  */
3195 int release_debug_trap_vmid(struct device_queue_manager *dqm,
3196 			struct qcm_process_device *qpd)
3197 {
3198 	struct device *dev = dqm->dev->adev->dev;
3199 	int r;
3200 	int updated_vmid_mask;
3201 	uint32_t trap_debug_vmid;
3202 
3203 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3204 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3205 		return -EINVAL;
3206 	}
3207 
3208 	dqm_lock(dqm);
3209 	trap_debug_vmid = dqm->trap_debug_vmid;
3210 	if (dqm->trap_debug_vmid == 0) {
3211 		dev_err(dev, "Trap debug id is not reserved\n");
3212 		r = -EINVAL;
3213 		goto out_unlock;
3214 	}
3215 
3216 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3217 			USE_DEFAULT_GRACE_PERIOD, false);
3218 	if (r)
3219 		goto out_unlock;
3220 
3221 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3222 	updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd);
3223 
3224 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3225 	dqm->trap_debug_vmid = 0;
3226 	r = set_sched_resources(dqm);
3227 	if (r)
3228 		goto out_unlock;
3229 
3230 	r = map_queues_cpsch(dqm);
3231 	if (r)
3232 		goto out_unlock;
3233 
3234 	pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid);
3235 
3236 out_unlock:
3237 	dqm_unlock(dqm);
3238 	return r;
3239 }
3240 
3241 #define QUEUE_NOT_FOUND		-1
3242 /* invalidate queue operation in array */
3243 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids)
3244 {
3245 	int i;
3246 
3247 	for (i = 0; i < num_queues; i++)
3248 		queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK;
3249 }
3250 
3251 /* find queue index in array */
3252 static int q_array_get_index(unsigned int queue_id,
3253 		uint32_t num_queues,
3254 		uint32_t *queue_ids)
3255 {
3256 	int i;
3257 
3258 	for (i = 0; i < num_queues; i++)
3259 		if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK))
3260 			return i;
3261 
3262 	return QUEUE_NOT_FOUND;
3263 }
3264 
3265 struct copy_context_work_handler_workarea {
3266 	struct work_struct copy_context_work;
3267 	struct kfd_process *p;
3268 };
3269 
3270 static void copy_context_work_handler(struct work_struct *work)
3271 {
3272 	struct copy_context_work_handler_workarea *workarea;
3273 	struct mqd_manager *mqd_mgr;
3274 	struct queue *q;
3275 	struct mm_struct *mm;
3276 	struct kfd_process *p;
3277 	uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size;
3278 	int i;
3279 
3280 	workarea = container_of(work,
3281 			struct copy_context_work_handler_workarea,
3282 			copy_context_work);
3283 
3284 	p = workarea->p;
3285 	mm = get_task_mm(p->lead_thread);
3286 
3287 	if (!mm)
3288 		return;
3289 
3290 	kthread_use_mm(mm);
3291 	for (i = 0; i < p->n_pdds; i++) {
3292 		struct kfd_process_device *pdd = p->pdds[i];
3293 		struct device_queue_manager *dqm = pdd->dev->dqm;
3294 		struct qcm_process_device *qpd = &pdd->qpd;
3295 
3296 		list_for_each_entry(q, &qpd->queues_list, list) {
3297 			if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE)
3298 				continue;
3299 
3300 			mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
3301 
3302 			/* We ignore the return value from get_wave_state
3303 			 * because
3304 			 * i) right now, it always returns 0, and
3305 			 * ii) if we hit an error, we would continue to the
3306 			 *      next queue anyway.
3307 			 */
3308 			mqd_mgr->get_wave_state(mqd_mgr,
3309 					q->mqd,
3310 					&q->properties,
3311 					(void __user *)	q->properties.ctx_save_restore_area_address,
3312 					&tmp_ctl_stack_used_size,
3313 					&tmp_save_area_used_size);
3314 		}
3315 	}
3316 	kthread_unuse_mm(mm);
3317 	mmput(mm);
3318 }
3319 
3320 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array)
3321 {
3322 	size_t array_size = num_queues * sizeof(uint32_t);
3323 
3324 	if (!usr_queue_id_array)
3325 		return NULL;
3326 
3327 	return memdup_user(usr_queue_id_array, array_size);
3328 }
3329 
3330 int resume_queues(struct kfd_process *p,
3331 		uint32_t num_queues,
3332 		uint32_t *usr_queue_id_array)
3333 {
3334 	uint32_t *queue_ids = NULL;
3335 	int total_resumed = 0;
3336 	int i;
3337 
3338 	if (usr_queue_id_array) {
3339 		queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3340 
3341 		if (IS_ERR(queue_ids))
3342 			return PTR_ERR(queue_ids);
3343 
3344 		/* mask all queues as invalid.  unmask per successful request */
3345 		q_array_invalidate(num_queues, queue_ids);
3346 	}
3347 
3348 	for (i = 0; i < p->n_pdds; i++) {
3349 		struct kfd_process_device *pdd = p->pdds[i];
3350 		struct device_queue_manager *dqm = pdd->dev->dqm;
3351 		struct device *dev = dqm->dev->adev->dev;
3352 		struct qcm_process_device *qpd = &pdd->qpd;
3353 		struct queue *q;
3354 		int r, per_device_resumed = 0;
3355 
3356 		dqm_lock(dqm);
3357 
3358 		/* unmask queues that resume or already resumed as valid */
3359 		list_for_each_entry(q, &qpd->queues_list, list) {
3360 			int q_idx = QUEUE_NOT_FOUND;
3361 
3362 			if (queue_ids)
3363 				q_idx = q_array_get_index(
3364 						q->properties.queue_id,
3365 						num_queues,
3366 						queue_ids);
3367 
3368 			if (!queue_ids || q_idx != QUEUE_NOT_FOUND) {
3369 				int err = resume_single_queue(dqm, &pdd->qpd, q);
3370 
3371 				if (queue_ids) {
3372 					if (!err) {
3373 						queue_ids[q_idx] &=
3374 							~KFD_DBG_QUEUE_INVALID_MASK;
3375 					} else {
3376 						queue_ids[q_idx] |=
3377 							KFD_DBG_QUEUE_ERROR_MASK;
3378 						break;
3379 					}
3380 				}
3381 
3382 				if (dqm->dev->kfd->shared_resources.enable_mes) {
3383 					wake_up_all(&dqm->destroy_wait);
3384 					if (!err)
3385 						total_resumed++;
3386 				} else {
3387 					per_device_resumed++;
3388 				}
3389 			}
3390 		}
3391 
3392 		if (!per_device_resumed) {
3393 			dqm_unlock(dqm);
3394 			continue;
3395 		}
3396 
3397 		r = execute_queues_cpsch(dqm,
3398 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
3399 					0,
3400 					USE_DEFAULT_GRACE_PERIOD);
3401 		if (r) {
3402 			dev_err(dev, "Failed to resume process queues\n");
3403 			if (queue_ids) {
3404 				list_for_each_entry(q, &qpd->queues_list, list) {
3405 					int q_idx = q_array_get_index(
3406 							q->properties.queue_id,
3407 							num_queues,
3408 							queue_ids);
3409 
3410 					/* mask queue as error on resume fail */
3411 					if (q_idx != QUEUE_NOT_FOUND)
3412 						queue_ids[q_idx] |=
3413 							KFD_DBG_QUEUE_ERROR_MASK;
3414 				}
3415 			}
3416 		} else {
3417 			wake_up_all(&dqm->destroy_wait);
3418 			total_resumed += per_device_resumed;
3419 		}
3420 
3421 		dqm_unlock(dqm);
3422 	}
3423 
3424 	if (queue_ids) {
3425 		if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3426 				num_queues * sizeof(uint32_t)))
3427 			pr_err("copy_to_user failed on queue resume\n");
3428 
3429 		kfree(queue_ids);
3430 	}
3431 
3432 	return total_resumed;
3433 }
3434 
3435 int suspend_queues(struct kfd_process *p,
3436 			uint32_t num_queues,
3437 			uint32_t grace_period,
3438 			uint64_t exception_clear_mask,
3439 			uint32_t *usr_queue_id_array)
3440 {
3441 	uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3442 	int total_suspended = 0;
3443 	int i;
3444 
3445 	if (IS_ERR(queue_ids))
3446 		return PTR_ERR(queue_ids);
3447 
3448 	/* mask all queues as invalid.  umask on successful request */
3449 	q_array_invalidate(num_queues, queue_ids);
3450 
3451 	for (i = 0; i < p->n_pdds; i++) {
3452 		struct kfd_process_device *pdd = p->pdds[i];
3453 		struct device_queue_manager *dqm = pdd->dev->dqm;
3454 		struct device *dev = dqm->dev->adev->dev;
3455 		struct qcm_process_device *qpd = &pdd->qpd;
3456 		struct queue *q;
3457 		int r, per_device_suspended = 0;
3458 
3459 		mutex_lock(&p->event_mutex);
3460 		dqm_lock(dqm);
3461 
3462 		/* unmask queues that suspend or already suspended */
3463 		list_for_each_entry(q, &qpd->queues_list, list) {
3464 			int q_idx = q_array_get_index(q->properties.queue_id,
3465 							num_queues,
3466 							queue_ids);
3467 
3468 			if (q_idx != QUEUE_NOT_FOUND) {
3469 				int err = suspend_single_queue(dqm, pdd, q);
3470 				bool is_mes = dqm->dev->kfd->shared_resources.enable_mes;
3471 
3472 				if (!err) {
3473 					queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK;
3474 					if (exception_clear_mask && is_mes)
3475 						q->properties.exception_status &=
3476 							~exception_clear_mask;
3477 
3478 					if (is_mes)
3479 						total_suspended++;
3480 					else
3481 						per_device_suspended++;
3482 				} else if (err != -EBUSY) {
3483 					r = err;
3484 					queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3485 					break;
3486 				}
3487 			}
3488 		}
3489 
3490 		if (!per_device_suspended) {
3491 			dqm_unlock(dqm);
3492 			mutex_unlock(&p->event_mutex);
3493 			if (total_suspended)
3494 				amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev);
3495 			continue;
3496 		}
3497 
3498 		r = execute_queues_cpsch(dqm,
3499 			KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
3500 			grace_period);
3501 
3502 		if (r)
3503 			dev_err(dev, "Failed to suspend process queues.\n");
3504 		else
3505 			total_suspended += per_device_suspended;
3506 
3507 		list_for_each_entry(q, &qpd->queues_list, list) {
3508 			int q_idx = q_array_get_index(q->properties.queue_id,
3509 						num_queues, queue_ids);
3510 
3511 			if (q_idx == QUEUE_NOT_FOUND)
3512 				continue;
3513 
3514 			/* mask queue as error on suspend fail */
3515 			if (r)
3516 				queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3517 			else if (exception_clear_mask)
3518 				q->properties.exception_status &=
3519 							~exception_clear_mask;
3520 		}
3521 
3522 		dqm_unlock(dqm);
3523 		mutex_unlock(&p->event_mutex);
3524 		amdgpu_device_flush_hdp(dqm->dev->adev, NULL);
3525 	}
3526 
3527 	if (total_suspended) {
3528 		struct copy_context_work_handler_workarea copy_context_worker;
3529 
3530 		INIT_WORK_ONSTACK(
3531 				&copy_context_worker.copy_context_work,
3532 				copy_context_work_handler);
3533 
3534 		copy_context_worker.p = p;
3535 
3536 		schedule_work(&copy_context_worker.copy_context_work);
3537 
3538 
3539 		flush_work(&copy_context_worker.copy_context_work);
3540 		destroy_work_on_stack(&copy_context_worker.copy_context_work);
3541 	}
3542 
3543 	if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3544 			num_queues * sizeof(uint32_t)))
3545 		pr_err("copy_to_user failed on queue suspend\n");
3546 
3547 	kfree(queue_ids);
3548 
3549 	return total_suspended;
3550 }
3551 
3552 static uint32_t set_queue_type_for_user(struct queue_properties *q_props)
3553 {
3554 	switch (q_props->type) {
3555 	case KFD_QUEUE_TYPE_COMPUTE:
3556 		return q_props->format == KFD_QUEUE_FORMAT_PM4
3557 					? KFD_IOC_QUEUE_TYPE_COMPUTE
3558 					: KFD_IOC_QUEUE_TYPE_COMPUTE_AQL;
3559 	case KFD_QUEUE_TYPE_SDMA:
3560 		return KFD_IOC_QUEUE_TYPE_SDMA;
3561 	case KFD_QUEUE_TYPE_SDMA_XGMI:
3562 		return KFD_IOC_QUEUE_TYPE_SDMA_XGMI;
3563 	default:
3564 		WARN_ONCE(true, "queue type not recognized!");
3565 		return 0xffffffff;
3566 	};
3567 }
3568 
3569 void set_queue_snapshot_entry(struct queue *q,
3570 			      uint64_t exception_clear_mask,
3571 			      struct kfd_queue_snapshot_entry *qss_entry)
3572 {
3573 	qss_entry->ring_base_address = q->properties.queue_address;
3574 	qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr;
3575 	qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr;
3576 	qss_entry->ctx_save_restore_address =
3577 				q->properties.ctx_save_restore_area_address;
3578 	qss_entry->ctx_save_restore_area_size =
3579 				q->properties.ctx_save_restore_area_size;
3580 	qss_entry->exception_status = q->properties.exception_status;
3581 	qss_entry->queue_id = q->properties.queue_id;
3582 	qss_entry->gpu_id = q->device->id;
3583 	qss_entry->ring_size = (uint32_t)q->properties.queue_size;
3584 	qss_entry->queue_type = set_queue_type_for_user(&q->properties);
3585 	q->properties.exception_status &= ~exception_clear_mask;
3586 }
3587 
3588 int debug_lock_and_unmap(struct device_queue_manager *dqm)
3589 {
3590 	struct device *dev = dqm->dev->adev->dev;
3591 	int r;
3592 
3593 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3594 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3595 		return -EINVAL;
3596 	}
3597 
3598 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3599 		return 0;
3600 
3601 	dqm_lock(dqm);
3602 
3603 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false);
3604 	if (r)
3605 		dqm_unlock(dqm);
3606 
3607 	return r;
3608 }
3609 
3610 int debug_map_and_unlock(struct device_queue_manager *dqm)
3611 {
3612 	struct device *dev = dqm->dev->adev->dev;
3613 	int r;
3614 
3615 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3616 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3617 		return -EINVAL;
3618 	}
3619 
3620 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3621 		return 0;
3622 
3623 	r = map_queues_cpsch(dqm);
3624 
3625 	dqm_unlock(dqm);
3626 
3627 	return r;
3628 }
3629 
3630 int debug_refresh_runlist(struct device_queue_manager *dqm)
3631 {
3632 	int r = debug_lock_and_unmap(dqm);
3633 
3634 	if (r)
3635 		return r;
3636 
3637 	return debug_map_and_unlock(dqm);
3638 }
3639 
3640 bool kfd_dqm_is_queue_in_process(struct device_queue_manager *dqm,
3641 				 struct qcm_process_device *qpd,
3642 				 int doorbell_off, u32 *queue_format)
3643 {
3644 	struct queue *q;
3645 	bool r = false;
3646 
3647 	if (!queue_format)
3648 		return r;
3649 
3650 	dqm_lock(dqm);
3651 
3652 	list_for_each_entry(q, &qpd->queues_list, list) {
3653 		if (q->properties.doorbell_off == doorbell_off) {
3654 			*queue_format = q->properties.format;
3655 			r = true;
3656 			goto out;
3657 		}
3658 	}
3659 
3660 out:
3661 	dqm_unlock(dqm);
3662 	return r;
3663 }
3664 #if defined(CONFIG_DEBUG_FS)
3665 
3666 static void seq_reg_dump(struct seq_file *m,
3667 			 uint32_t (*dump)[2], uint32_t n_regs)
3668 {
3669 	uint32_t i, count;
3670 
3671 	for (i = 0, count = 0; i < n_regs; i++) {
3672 		if (count == 0 ||
3673 		    dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
3674 			seq_printf(m, "%s    %08x: %08x",
3675 				   i ? "\n" : "",
3676 				   dump[i][0], dump[i][1]);
3677 			count = 7;
3678 		} else {
3679 			seq_printf(m, " %08x", dump[i][1]);
3680 			count--;
3681 		}
3682 	}
3683 
3684 	seq_puts(m, "\n");
3685 }
3686 
3687 int dqm_debugfs_hqds(struct seq_file *m, void *data)
3688 {
3689 	struct device_queue_manager *dqm = data;
3690 	uint32_t xcc_mask = dqm->dev->xcc_mask;
3691 	uint32_t (*dump)[2], n_regs;
3692 	int pipe, queue;
3693 	int r = 0, xcc_id;
3694 	uint32_t sdma_engine_start;
3695 
3696 	if (!dqm->sched_running) {
3697 		seq_puts(m, " Device is stopped\n");
3698 		return 0;
3699 	}
3700 
3701 	for_each_inst(xcc_id, xcc_mask) {
3702 		r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3703 						KFD_CIK_HIQ_PIPE,
3704 						KFD_CIK_HIQ_QUEUE, &dump,
3705 						&n_regs, xcc_id);
3706 		if (!r) {
3707 			seq_printf(
3708 				m,
3709 				"   Inst %d, HIQ on MEC %d Pipe %d Queue %d\n",
3710 				xcc_id,
3711 				KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1,
3712 				KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm),
3713 				KFD_CIK_HIQ_QUEUE);
3714 			seq_reg_dump(m, dump, n_regs);
3715 
3716 			kfree(dump);
3717 		}
3718 
3719 		for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
3720 			int pipe_offset = pipe * get_queues_per_pipe(dqm);
3721 
3722 			for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
3723 				if (!test_bit(pipe_offset + queue,
3724 				      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
3725 					continue;
3726 
3727 				r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3728 								pipe, queue,
3729 								&dump, &n_regs,
3730 								xcc_id);
3731 				if (r)
3732 					break;
3733 
3734 				seq_printf(m,
3735 					   " Inst %d,  CP Pipe %d, Queue %d\n",
3736 					   xcc_id, pipe, queue);
3737 				seq_reg_dump(m, dump, n_regs);
3738 
3739 				kfree(dump);
3740 			}
3741 		}
3742 	}
3743 
3744 	sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
3745 	for (pipe = sdma_engine_start;
3746 	     pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm));
3747 	     pipe++) {
3748 		for (queue = 0;
3749 		     queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
3750 		     queue++) {
3751 			r = dqm->dev->kfd2kgd->hqd_sdma_dump(
3752 				dqm->dev->adev, pipe, queue, &dump, &n_regs);
3753 			if (r)
3754 				break;
3755 
3756 			seq_printf(m, "  SDMA Engine %d, RLC %d\n",
3757 				  pipe, queue);
3758 			seq_reg_dump(m, dump, n_regs);
3759 
3760 			kfree(dump);
3761 		}
3762 	}
3763 
3764 	return r;
3765 }
3766 
3767 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
3768 {
3769 	int r = 0;
3770 
3771 	dqm_lock(dqm);
3772 	r = pm_debugfs_hang_hws(&dqm->packet_mgr);
3773 	if (r) {
3774 		dqm_unlock(dqm);
3775 		return r;
3776 	}
3777 	dqm->active_runlist = true;
3778 	r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
3779 				0, USE_DEFAULT_GRACE_PERIOD);
3780 	dqm_unlock(dqm);
3781 
3782 	return r;
3783 }
3784 
3785 #endif
3786