1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/blkdev.h>
13 #include <linux/cleanup.h>
14 #include <linux/cpufreq.h>
15 #include <linux/device.h>
16 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
17 #include <linux/err.h>
18 #include <linux/fwnode.h>
19 #include <linux/init.h>
20 #include <linux/kdev_t.h>
21 #include <linux/kstrtox.h>
22 #include <linux/module.h>
23 #include <linux/mutex.h>
24 #include <linux/netdevice.h>
25 #include <linux/notifier.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sched/signal.h>
31 #include <linux/slab.h>
32 #include <linux/string_helpers.h>
33 #include <linux/swiotlb.h>
34 #include <linux/sysfs.h>
35
36 #include "base.h"
37 #include "physical_location.h"
38 #include "power/power.h"
39
40 /* Device links support. */
41 static LIST_HEAD(deferred_sync);
42 static unsigned int defer_sync_state_count = 1;
43 static DEFINE_MUTEX(fwnode_link_lock);
44 static bool fw_devlink_is_permissive(void);
45 static void __fw_devlink_link_to_consumers(struct device *dev);
46 static bool fw_devlink_drv_reg_done;
47 static bool fw_devlink_best_effort;
48 static struct workqueue_struct *device_link_wq;
49
50 /**
51 * __fwnode_link_add - Create a link between two fwnode_handles.
52 * @con: Consumer end of the link.
53 * @sup: Supplier end of the link.
54 * @flags: Link flags.
55 *
56 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
57 * represents the detail that the firmware lists @sup fwnode as supplying a
58 * resource to @con.
59 *
60 * The driver core will use the fwnode link to create a device link between the
61 * two device objects corresponding to @con and @sup when they are created. The
62 * driver core will automatically delete the fwnode link between @con and @sup
63 * after doing that.
64 *
65 * Attempts to create duplicate links between the same pair of fwnode handles
66 * are ignored and there is no reference counting.
67 */
__fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup,u8 flags)68 static int __fwnode_link_add(struct fwnode_handle *con,
69 struct fwnode_handle *sup, u8 flags)
70 {
71 struct fwnode_link *link;
72
73 list_for_each_entry(link, &sup->consumers, s_hook)
74 if (link->consumer == con) {
75 link->flags |= flags;
76 return 0;
77 }
78
79 link = kzalloc(sizeof(*link), GFP_KERNEL);
80 if (!link)
81 return -ENOMEM;
82
83 link->supplier = sup;
84 INIT_LIST_HEAD(&link->s_hook);
85 link->consumer = con;
86 INIT_LIST_HEAD(&link->c_hook);
87 link->flags = flags;
88
89 list_add(&link->s_hook, &sup->consumers);
90 list_add(&link->c_hook, &con->suppliers);
91 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
92 con, sup);
93
94 return 0;
95 }
96
fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup,u8 flags)97 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup,
98 u8 flags)
99 {
100 guard(mutex)(&fwnode_link_lock);
101
102 return __fwnode_link_add(con, sup, flags);
103 }
104
105 /**
106 * __fwnode_link_del - Delete a link between two fwnode_handles.
107 * @link: the fwnode_link to be deleted
108 *
109 * The fwnode_link_lock needs to be held when this function is called.
110 */
__fwnode_link_del(struct fwnode_link * link)111 static void __fwnode_link_del(struct fwnode_link *link)
112 {
113 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
114 link->consumer, link->supplier);
115 list_del(&link->s_hook);
116 list_del(&link->c_hook);
117 kfree(link);
118 }
119
120 /**
121 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
122 * @link: the fwnode_link to be marked
123 *
124 * The fwnode_link_lock needs to be held when this function is called.
125 */
__fwnode_link_cycle(struct fwnode_link * link)126 static void __fwnode_link_cycle(struct fwnode_link *link)
127 {
128 pr_debug("%pfwf: cycle: depends on %pfwf\n",
129 link->consumer, link->supplier);
130 link->flags |= FWLINK_FLAG_CYCLE;
131 }
132
133 /**
134 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
135 * @fwnode: fwnode whose supplier links need to be deleted
136 *
137 * Deletes all supplier links connecting directly to @fwnode.
138 */
fwnode_links_purge_suppliers(struct fwnode_handle * fwnode)139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
140 {
141 struct fwnode_link *link, *tmp;
142
143 guard(mutex)(&fwnode_link_lock);
144
145 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
146 __fwnode_link_del(link);
147 }
148
149 /**
150 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
151 * @fwnode: fwnode whose consumer links need to be deleted
152 *
153 * Deletes all consumer links connecting directly to @fwnode.
154 */
fwnode_links_purge_consumers(struct fwnode_handle * fwnode)155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
156 {
157 struct fwnode_link *link, *tmp;
158
159 guard(mutex)(&fwnode_link_lock);
160
161 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
162 __fwnode_link_del(link);
163 }
164
165 /**
166 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
167 * @fwnode: fwnode whose links needs to be deleted
168 *
169 * Deletes all links connecting directly to a fwnode.
170 */
fwnode_links_purge(struct fwnode_handle * fwnode)171 void fwnode_links_purge(struct fwnode_handle *fwnode)
172 {
173 fwnode_links_purge_suppliers(fwnode);
174 fwnode_links_purge_consumers(fwnode);
175 }
176
fw_devlink_purge_absent_suppliers(struct fwnode_handle * fwnode)177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
178 {
179 struct fwnode_handle *child;
180
181 /* Don't purge consumer links of an added child */
182 if (fwnode->dev)
183 return;
184
185 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
186 fwnode_links_purge_consumers(fwnode);
187
188 fwnode_for_each_available_child_node(fwnode, child)
189 fw_devlink_purge_absent_suppliers(child);
190 }
191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
192
193 /**
194 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
195 * @from: move consumers away from this fwnode
196 * @to: move consumers to this fwnode
197 *
198 * Move all consumer links from @from fwnode to @to fwnode.
199 */
__fwnode_links_move_consumers(struct fwnode_handle * from,struct fwnode_handle * to)200 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
201 struct fwnode_handle *to)
202 {
203 struct fwnode_link *link, *tmp;
204
205 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
206 __fwnode_link_add(link->consumer, to, link->flags);
207 __fwnode_link_del(link);
208 }
209 }
210
211 /**
212 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
213 * @fwnode: fwnode from which to pick up dangling consumers
214 * @new_sup: fwnode of new supplier
215 *
216 * If the @fwnode has a corresponding struct device and the device supports
217 * probing (that is, added to a bus), then we want to let fw_devlink create
218 * MANAGED device links to this device, so leave @fwnode and its descendant's
219 * fwnode links alone.
220 *
221 * Otherwise, move its consumers to the new supplier @new_sup.
222 */
__fw_devlink_pickup_dangling_consumers(struct fwnode_handle * fwnode,struct fwnode_handle * new_sup)223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
224 struct fwnode_handle *new_sup)
225 {
226 struct fwnode_handle *child;
227
228 if (fwnode->dev && fwnode->dev->bus)
229 return;
230
231 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
232 __fwnode_links_move_consumers(fwnode, new_sup);
233
234 fwnode_for_each_available_child_node(fwnode, child)
235 __fw_devlink_pickup_dangling_consumers(child, new_sup);
236 }
237
238 static DEFINE_MUTEX(device_links_lock);
239 DEFINE_STATIC_SRCU(device_links_srcu);
240
device_links_write_lock(void)241 static inline void device_links_write_lock(void)
242 {
243 mutex_lock(&device_links_lock);
244 }
245
device_links_write_unlock(void)246 static inline void device_links_write_unlock(void)
247 {
248 mutex_unlock(&device_links_lock);
249 }
250
device_links_read_lock(void)251 int device_links_read_lock(void) __acquires(&device_links_srcu)
252 {
253 return srcu_read_lock(&device_links_srcu);
254 }
255
device_links_read_unlock(int idx)256 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
257 {
258 srcu_read_unlock(&device_links_srcu, idx);
259 }
260
device_links_read_lock_held(void)261 int device_links_read_lock_held(void)
262 {
263 return srcu_read_lock_held(&device_links_srcu);
264 }
265
device_link_synchronize_removal(void)266 static void device_link_synchronize_removal(void)
267 {
268 synchronize_srcu(&device_links_srcu);
269 }
270
device_link_remove_from_lists(struct device_link * link)271 static void device_link_remove_from_lists(struct device_link *link)
272 {
273 list_del_rcu(&link->s_node);
274 list_del_rcu(&link->c_node);
275 }
276
device_is_ancestor(struct device * dev,struct device * target)277 static bool device_is_ancestor(struct device *dev, struct device *target)
278 {
279 while (target->parent) {
280 target = target->parent;
281 if (dev == target)
282 return true;
283 }
284 return false;
285 }
286
287 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \
288 DL_FLAG_CYCLE | \
289 DL_FLAG_MANAGED)
device_link_flag_is_sync_state_only(u32 flags)290 static inline bool device_link_flag_is_sync_state_only(u32 flags)
291 {
292 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
293 }
294
295 /**
296 * device_is_dependent - Check if one device depends on another one
297 * @dev: Device to check dependencies for.
298 * @target: Device to check against.
299 *
300 * Check if @target depends on @dev or any device dependent on it (its child or
301 * its consumer etc). Return 1 if that is the case or 0 otherwise.
302 */
device_is_dependent(struct device * dev,void * target)303 static int device_is_dependent(struct device *dev, void *target)
304 {
305 struct device_link *link;
306 int ret;
307
308 /*
309 * The "ancestors" check is needed to catch the case when the target
310 * device has not been completely initialized yet and it is still
311 * missing from the list of children of its parent device.
312 */
313 if (dev == target || device_is_ancestor(dev, target))
314 return 1;
315
316 ret = device_for_each_child(dev, target, device_is_dependent);
317 if (ret)
318 return ret;
319
320 list_for_each_entry(link, &dev->links.consumers, s_node) {
321 if (device_link_flag_is_sync_state_only(link->flags))
322 continue;
323
324 if (link->consumer == target)
325 return 1;
326
327 ret = device_is_dependent(link->consumer, target);
328 if (ret)
329 break;
330 }
331 return ret;
332 }
333
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)334 static void device_link_init_status(struct device_link *link,
335 struct device *consumer,
336 struct device *supplier)
337 {
338 switch (supplier->links.status) {
339 case DL_DEV_PROBING:
340 switch (consumer->links.status) {
341 case DL_DEV_PROBING:
342 /*
343 * A consumer driver can create a link to a supplier
344 * that has not completed its probing yet as long as it
345 * knows that the supplier is already functional (for
346 * example, it has just acquired some resources from the
347 * supplier).
348 */
349 link->status = DL_STATE_CONSUMER_PROBE;
350 break;
351 default:
352 link->status = DL_STATE_DORMANT;
353 break;
354 }
355 break;
356 case DL_DEV_DRIVER_BOUND:
357 switch (consumer->links.status) {
358 case DL_DEV_PROBING:
359 link->status = DL_STATE_CONSUMER_PROBE;
360 break;
361 case DL_DEV_DRIVER_BOUND:
362 link->status = DL_STATE_ACTIVE;
363 break;
364 default:
365 link->status = DL_STATE_AVAILABLE;
366 break;
367 }
368 break;
369 case DL_DEV_UNBINDING:
370 link->status = DL_STATE_SUPPLIER_UNBIND;
371 break;
372 default:
373 link->status = DL_STATE_DORMANT;
374 break;
375 }
376 }
377
device_reorder_to_tail(struct device * dev,void * not_used)378 static int device_reorder_to_tail(struct device *dev, void *not_used)
379 {
380 struct device_link *link;
381
382 /*
383 * Devices that have not been registered yet will be put to the ends
384 * of the lists during the registration, so skip them here.
385 */
386 if (device_is_registered(dev))
387 devices_kset_move_last(dev);
388
389 if (device_pm_initialized(dev))
390 device_pm_move_last(dev);
391
392 device_for_each_child(dev, NULL, device_reorder_to_tail);
393 list_for_each_entry(link, &dev->links.consumers, s_node) {
394 if (device_link_flag_is_sync_state_only(link->flags))
395 continue;
396 device_reorder_to_tail(link->consumer, NULL);
397 }
398
399 return 0;
400 }
401
402 /**
403 * device_pm_move_to_tail - Move set of devices to the end of device lists
404 * @dev: Device to move
405 *
406 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
407 *
408 * It moves the @dev along with all of its children and all of its consumers
409 * to the ends of the device_kset and dpm_list, recursively.
410 */
device_pm_move_to_tail(struct device * dev)411 void device_pm_move_to_tail(struct device *dev)
412 {
413 int idx;
414
415 idx = device_links_read_lock();
416 device_pm_lock();
417 device_reorder_to_tail(dev, NULL);
418 device_pm_unlock();
419 device_links_read_unlock(idx);
420 }
421
422 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
423
status_show(struct device * dev,struct device_attribute * attr,char * buf)424 static ssize_t status_show(struct device *dev,
425 struct device_attribute *attr, char *buf)
426 {
427 const char *output;
428
429 switch (to_devlink(dev)->status) {
430 case DL_STATE_NONE:
431 output = "not tracked";
432 break;
433 case DL_STATE_DORMANT:
434 output = "dormant";
435 break;
436 case DL_STATE_AVAILABLE:
437 output = "available";
438 break;
439 case DL_STATE_CONSUMER_PROBE:
440 output = "consumer probing";
441 break;
442 case DL_STATE_ACTIVE:
443 output = "active";
444 break;
445 case DL_STATE_SUPPLIER_UNBIND:
446 output = "supplier unbinding";
447 break;
448 default:
449 output = "unknown";
450 break;
451 }
452
453 return sysfs_emit(buf, "%s\n", output);
454 }
455 static DEVICE_ATTR_RO(status);
456
auto_remove_on_show(struct device * dev,struct device_attribute * attr,char * buf)457 static ssize_t auto_remove_on_show(struct device *dev,
458 struct device_attribute *attr, char *buf)
459 {
460 struct device_link *link = to_devlink(dev);
461 const char *output;
462
463 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
464 output = "supplier unbind";
465 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
466 output = "consumer unbind";
467 else
468 output = "never";
469
470 return sysfs_emit(buf, "%s\n", output);
471 }
472 static DEVICE_ATTR_RO(auto_remove_on);
473
runtime_pm_show(struct device * dev,struct device_attribute * attr,char * buf)474 static ssize_t runtime_pm_show(struct device *dev,
475 struct device_attribute *attr, char *buf)
476 {
477 struct device_link *link = to_devlink(dev);
478
479 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
480 }
481 static DEVICE_ATTR_RO(runtime_pm);
482
sync_state_only_show(struct device * dev,struct device_attribute * attr,char * buf)483 static ssize_t sync_state_only_show(struct device *dev,
484 struct device_attribute *attr, char *buf)
485 {
486 struct device_link *link = to_devlink(dev);
487
488 return sysfs_emit(buf, "%d\n",
489 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
490 }
491 static DEVICE_ATTR_RO(sync_state_only);
492
493 static struct attribute *devlink_attrs[] = {
494 &dev_attr_status.attr,
495 &dev_attr_auto_remove_on.attr,
496 &dev_attr_runtime_pm.attr,
497 &dev_attr_sync_state_only.attr,
498 NULL,
499 };
500 ATTRIBUTE_GROUPS(devlink);
501
device_link_release_fn(struct work_struct * work)502 static void device_link_release_fn(struct work_struct *work)
503 {
504 struct device_link *link = container_of(work, struct device_link, rm_work);
505
506 /* Ensure that all references to the link object have been dropped. */
507 device_link_synchronize_removal();
508
509 pm_runtime_release_supplier(link);
510 /*
511 * If supplier_preactivated is set, the link has been dropped between
512 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
513 * in __driver_probe_device(). In that case, drop the supplier's
514 * PM-runtime usage counter to remove the reference taken by
515 * pm_runtime_get_suppliers().
516 */
517 if (link->supplier_preactivated)
518 pm_runtime_put_noidle(link->supplier);
519
520 pm_request_idle(link->supplier);
521
522 put_device(link->consumer);
523 put_device(link->supplier);
524 kfree(link);
525 }
526
devlink_dev_release(struct device * dev)527 static void devlink_dev_release(struct device *dev)
528 {
529 struct device_link *link = to_devlink(dev);
530
531 INIT_WORK(&link->rm_work, device_link_release_fn);
532 /*
533 * It may take a while to complete this work because of the SRCU
534 * synchronization in device_link_release_fn() and if the consumer or
535 * supplier devices get deleted when it runs, so put it into the
536 * dedicated workqueue.
537 */
538 queue_work(device_link_wq, &link->rm_work);
539 }
540
541 /**
542 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
543 */
device_link_wait_removal(void)544 void device_link_wait_removal(void)
545 {
546 /*
547 * devlink removal jobs are queued in the dedicated work queue.
548 * To be sure that all removal jobs are terminated, ensure that any
549 * scheduled work has run to completion.
550 */
551 flush_workqueue(device_link_wq);
552 }
553 EXPORT_SYMBOL_GPL(device_link_wait_removal);
554
555 static const struct class devlink_class = {
556 .name = "devlink",
557 .dev_groups = devlink_groups,
558 .dev_release = devlink_dev_release,
559 };
560
devlink_add_symlinks(struct device * dev)561 static int devlink_add_symlinks(struct device *dev)
562 {
563 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
564 int ret;
565 struct device_link *link = to_devlink(dev);
566 struct device *sup = link->supplier;
567 struct device *con = link->consumer;
568
569 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
570 if (ret)
571 goto out;
572
573 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
574 if (ret)
575 goto err_con;
576
577 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
578 if (!buf_con) {
579 ret = -ENOMEM;
580 goto err_con_dev;
581 }
582
583 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf_con);
584 if (ret)
585 goto err_con_dev;
586
587 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
588 if (!buf_sup) {
589 ret = -ENOMEM;
590 goto err_sup_dev;
591 }
592
593 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf_sup);
594 if (ret)
595 goto err_sup_dev;
596
597 goto out;
598
599 err_sup_dev:
600 sysfs_remove_link(&sup->kobj, buf_con);
601 err_con_dev:
602 sysfs_remove_link(&link->link_dev.kobj, "consumer");
603 err_con:
604 sysfs_remove_link(&link->link_dev.kobj, "supplier");
605 out:
606 return ret;
607 }
608
devlink_remove_symlinks(struct device * dev)609 static void devlink_remove_symlinks(struct device *dev)
610 {
611 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
612 struct device_link *link = to_devlink(dev);
613 struct device *sup = link->supplier;
614 struct device *con = link->consumer;
615
616 sysfs_remove_link(&link->link_dev.kobj, "consumer");
617 sysfs_remove_link(&link->link_dev.kobj, "supplier");
618
619 if (device_is_registered(con)) {
620 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
621 if (!buf_sup)
622 goto out;
623 sysfs_remove_link(&con->kobj, buf_sup);
624 }
625
626 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
627 if (!buf_con)
628 goto out;
629 sysfs_remove_link(&sup->kobj, buf_con);
630
631 return;
632
633 out:
634 WARN(1, "Unable to properly free device link symlinks!\n");
635 }
636
637 static struct class_interface devlink_class_intf = {
638 .class = &devlink_class,
639 .add_dev = devlink_add_symlinks,
640 .remove_dev = devlink_remove_symlinks,
641 };
642
devlink_class_init(void)643 static int __init devlink_class_init(void)
644 {
645 int ret;
646
647 ret = class_register(&devlink_class);
648 if (ret)
649 return ret;
650
651 ret = class_interface_register(&devlink_class_intf);
652 if (ret)
653 class_unregister(&devlink_class);
654
655 return ret;
656 }
657 postcore_initcall(devlink_class_init);
658
659 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
660 DL_FLAG_AUTOREMOVE_SUPPLIER | \
661 DL_FLAG_AUTOPROBE_CONSUMER | \
662 DL_FLAG_SYNC_STATE_ONLY | \
663 DL_FLAG_INFERRED | \
664 DL_FLAG_CYCLE)
665
666 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
667 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
668
669 /**
670 * device_link_add - Create a link between two devices.
671 * @consumer: Consumer end of the link.
672 * @supplier: Supplier end of the link.
673 * @flags: Link flags.
674 *
675 * Return: On success, a device_link struct will be returned.
676 * On error or invalid flag settings, NULL will be returned.
677 *
678 * The caller is responsible for the proper synchronization of the link creation
679 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
680 * runtime PM framework to take the link into account. Second, if the
681 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
682 * be forced into the active meta state and reference-counted upon the creation
683 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
684 * ignored.
685 *
686 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
687 * expected to release the link returned by it directly with the help of either
688 * device_link_del() or device_link_remove().
689 *
690 * If that flag is not set, however, the caller of this function is handing the
691 * management of the link over to the driver core entirely and its return value
692 * can only be used to check whether or not the link is present. In that case,
693 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
694 * flags can be used to indicate to the driver core when the link can be safely
695 * deleted. Namely, setting one of them in @flags indicates to the driver core
696 * that the link is not going to be used (by the given caller of this function)
697 * after unbinding the consumer or supplier driver, respectively, from its
698 * device, so the link can be deleted at that point. If none of them is set,
699 * the link will be maintained until one of the devices pointed to by it (either
700 * the consumer or the supplier) is unregistered.
701 *
702 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
703 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
704 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
705 * be used to request the driver core to automatically probe for a consumer
706 * driver after successfully binding a driver to the supplier device.
707 *
708 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
709 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
710 * the same time is invalid and will cause NULL to be returned upfront.
711 * However, if a device link between the given @consumer and @supplier pair
712 * exists already when this function is called for them, the existing link will
713 * be returned regardless of its current type and status (the link's flags may
714 * be modified then). The caller of this function is then expected to treat
715 * the link as though it has just been created, so (in particular) if
716 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
717 * explicitly when not needed any more (as stated above).
718 *
719 * A side effect of the link creation is re-ordering of dpm_list and the
720 * devices_kset list by moving the consumer device and all devices depending
721 * on it to the ends of these lists (that does not happen to devices that have
722 * not been registered when this function is called).
723 *
724 * The supplier device is required to be registered when this function is called
725 * and NULL will be returned if that is not the case. The consumer device need
726 * not be registered, however.
727 */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)728 struct device_link *device_link_add(struct device *consumer,
729 struct device *supplier, u32 flags)
730 {
731 struct device_link *link;
732
733 if (!consumer || !supplier || consumer == supplier ||
734 flags & ~DL_ADD_VALID_FLAGS ||
735 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
736 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
737 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
738 DL_FLAG_AUTOREMOVE_SUPPLIER)))
739 return NULL;
740
741 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
742 if (pm_runtime_get_sync(supplier) < 0) {
743 pm_runtime_put_noidle(supplier);
744 return NULL;
745 }
746 }
747
748 if (!(flags & DL_FLAG_STATELESS))
749 flags |= DL_FLAG_MANAGED;
750
751 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
752 !device_link_flag_is_sync_state_only(flags))
753 return NULL;
754
755 device_links_write_lock();
756 device_pm_lock();
757
758 /*
759 * If the supplier has not been fully registered yet or there is a
760 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
761 * the supplier already in the graph, return NULL. If the link is a
762 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
763 * because it only affects sync_state() callbacks.
764 */
765 if (!device_pm_initialized(supplier)
766 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
767 device_is_dependent(consumer, supplier))) {
768 link = NULL;
769 goto out;
770 }
771
772 /*
773 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
774 * So, only create it if the consumer hasn't probed yet.
775 */
776 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
777 consumer->links.status != DL_DEV_NO_DRIVER &&
778 consumer->links.status != DL_DEV_PROBING) {
779 link = NULL;
780 goto out;
781 }
782
783 /*
784 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
785 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
786 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
787 */
788 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
789 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
790
791 list_for_each_entry(link, &supplier->links.consumers, s_node) {
792 if (link->consumer != consumer)
793 continue;
794
795 if (link->flags & DL_FLAG_INFERRED &&
796 !(flags & DL_FLAG_INFERRED))
797 link->flags &= ~DL_FLAG_INFERRED;
798
799 if (flags & DL_FLAG_PM_RUNTIME) {
800 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
801 pm_runtime_new_link(consumer);
802 link->flags |= DL_FLAG_PM_RUNTIME;
803 }
804 if (flags & DL_FLAG_RPM_ACTIVE)
805 refcount_inc(&link->rpm_active);
806 }
807
808 if (flags & DL_FLAG_STATELESS) {
809 kref_get(&link->kref);
810 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
811 !(link->flags & DL_FLAG_STATELESS)) {
812 link->flags |= DL_FLAG_STATELESS;
813 goto reorder;
814 } else {
815 link->flags |= DL_FLAG_STATELESS;
816 goto out;
817 }
818 }
819
820 /*
821 * If the life time of the link following from the new flags is
822 * longer than indicated by the flags of the existing link,
823 * update the existing link to stay around longer.
824 */
825 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
826 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
827 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
828 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
829 }
830 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
831 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
832 DL_FLAG_AUTOREMOVE_SUPPLIER);
833 }
834 if (!(link->flags & DL_FLAG_MANAGED)) {
835 kref_get(&link->kref);
836 link->flags |= DL_FLAG_MANAGED;
837 device_link_init_status(link, consumer, supplier);
838 }
839 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
840 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
841 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
842 goto reorder;
843 }
844
845 goto out;
846 }
847
848 link = kzalloc(sizeof(*link), GFP_KERNEL);
849 if (!link)
850 goto out;
851
852 refcount_set(&link->rpm_active, 1);
853
854 get_device(supplier);
855 link->supplier = supplier;
856 INIT_LIST_HEAD(&link->s_node);
857 get_device(consumer);
858 link->consumer = consumer;
859 INIT_LIST_HEAD(&link->c_node);
860 link->flags = flags;
861 kref_init(&link->kref);
862
863 link->link_dev.class = &devlink_class;
864 device_set_pm_not_required(&link->link_dev);
865 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
866 dev_bus_name(supplier), dev_name(supplier),
867 dev_bus_name(consumer), dev_name(consumer));
868 if (device_register(&link->link_dev)) {
869 put_device(&link->link_dev);
870 link = NULL;
871 goto out;
872 }
873
874 if (flags & DL_FLAG_PM_RUNTIME) {
875 if (flags & DL_FLAG_RPM_ACTIVE)
876 refcount_inc(&link->rpm_active);
877
878 pm_runtime_new_link(consumer);
879 }
880
881 /* Determine the initial link state. */
882 if (flags & DL_FLAG_STATELESS)
883 link->status = DL_STATE_NONE;
884 else
885 device_link_init_status(link, consumer, supplier);
886
887 /*
888 * Some callers expect the link creation during consumer driver probe to
889 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
890 */
891 if (link->status == DL_STATE_CONSUMER_PROBE &&
892 flags & DL_FLAG_PM_RUNTIME)
893 pm_runtime_resume(supplier);
894
895 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
896 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
897
898 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
899 dev_dbg(consumer,
900 "Linked as a sync state only consumer to %s\n",
901 dev_name(supplier));
902 goto out;
903 }
904
905 reorder:
906 /*
907 * Move the consumer and all of the devices depending on it to the end
908 * of dpm_list and the devices_kset list.
909 *
910 * It is necessary to hold dpm_list locked throughout all that or else
911 * we may end up suspending with a wrong ordering of it.
912 */
913 device_reorder_to_tail(consumer, NULL);
914
915 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
916
917 out:
918 device_pm_unlock();
919 device_links_write_unlock();
920
921 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
922 pm_runtime_put(supplier);
923
924 return link;
925 }
926 EXPORT_SYMBOL_GPL(device_link_add);
927
__device_link_del(struct kref * kref)928 static void __device_link_del(struct kref *kref)
929 {
930 struct device_link *link = container_of(kref, struct device_link, kref);
931
932 dev_dbg(link->consumer, "Dropping the link to %s\n",
933 dev_name(link->supplier));
934
935 pm_runtime_drop_link(link);
936
937 device_link_remove_from_lists(link);
938 device_unregister(&link->link_dev);
939 }
940
device_link_put_kref(struct device_link * link)941 static void device_link_put_kref(struct device_link *link)
942 {
943 if (link->flags & DL_FLAG_STATELESS)
944 kref_put(&link->kref, __device_link_del);
945 else if (!device_is_registered(link->consumer))
946 __device_link_del(&link->kref);
947 else
948 WARN(1, "Unable to drop a managed device link reference\n");
949 }
950
951 /**
952 * device_link_del - Delete a stateless link between two devices.
953 * @link: Device link to delete.
954 *
955 * The caller must ensure proper synchronization of this function with runtime
956 * PM. If the link was added multiple times, it needs to be deleted as often.
957 * Care is required for hotplugged devices: Their links are purged on removal
958 * and calling device_link_del() is then no longer allowed.
959 */
device_link_del(struct device_link * link)960 void device_link_del(struct device_link *link)
961 {
962 device_links_write_lock();
963 device_link_put_kref(link);
964 device_links_write_unlock();
965 }
966 EXPORT_SYMBOL_GPL(device_link_del);
967
968 /**
969 * device_link_remove - Delete a stateless link between two devices.
970 * @consumer: Consumer end of the link.
971 * @supplier: Supplier end of the link.
972 *
973 * The caller must ensure proper synchronization of this function with runtime
974 * PM.
975 */
device_link_remove(void * consumer,struct device * supplier)976 void device_link_remove(void *consumer, struct device *supplier)
977 {
978 struct device_link *link;
979
980 if (WARN_ON(consumer == supplier))
981 return;
982
983 device_links_write_lock();
984
985 list_for_each_entry(link, &supplier->links.consumers, s_node) {
986 if (link->consumer == consumer) {
987 device_link_put_kref(link);
988 break;
989 }
990 }
991
992 device_links_write_unlock();
993 }
994 EXPORT_SYMBOL_GPL(device_link_remove);
995
device_links_missing_supplier(struct device * dev)996 static void device_links_missing_supplier(struct device *dev)
997 {
998 struct device_link *link;
999
1000 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1001 if (link->status != DL_STATE_CONSUMER_PROBE)
1002 continue;
1003
1004 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1005 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1006 } else {
1007 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1008 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1009 }
1010 }
1011 }
1012
dev_is_best_effort(struct device * dev)1013 static bool dev_is_best_effort(struct device *dev)
1014 {
1015 return (fw_devlink_best_effort && dev->can_match) ||
1016 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1017 }
1018
fwnode_links_check_suppliers(struct fwnode_handle * fwnode)1019 static struct fwnode_handle *fwnode_links_check_suppliers(
1020 struct fwnode_handle *fwnode)
1021 {
1022 struct fwnode_link *link;
1023
1024 if (!fwnode || fw_devlink_is_permissive())
1025 return NULL;
1026
1027 list_for_each_entry(link, &fwnode->suppliers, c_hook)
1028 if (!(link->flags &
1029 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
1030 return link->supplier;
1031
1032 return NULL;
1033 }
1034
1035 /**
1036 * device_links_check_suppliers - Check presence of supplier drivers.
1037 * @dev: Consumer device.
1038 *
1039 * Check links from this device to any suppliers. Walk the list of the device's
1040 * links to suppliers and see if all of them are available. If not, simply
1041 * return -EPROBE_DEFER.
1042 *
1043 * We need to guarantee that the supplier will not go away after the check has
1044 * been positive here. It only can go away in __device_release_driver() and
1045 * that function checks the device's links to consumers. This means we need to
1046 * mark the link as "consumer probe in progress" to make the supplier removal
1047 * wait for us to complete (or bad things may happen).
1048 *
1049 * Links without the DL_FLAG_MANAGED flag set are ignored.
1050 */
device_links_check_suppliers(struct device * dev)1051 int device_links_check_suppliers(struct device *dev)
1052 {
1053 struct device_link *link;
1054 int ret = 0, fwnode_ret = 0;
1055 struct fwnode_handle *sup_fw;
1056
1057 /*
1058 * Device waiting for supplier to become available is not allowed to
1059 * probe.
1060 */
1061 scoped_guard(mutex, &fwnode_link_lock) {
1062 sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1063 if (sup_fw) {
1064 if (dev_is_best_effort(dev))
1065 fwnode_ret = -EAGAIN;
1066 else
1067 return dev_err_probe(dev, -EPROBE_DEFER,
1068 "wait for supplier %pfwf\n", sup_fw);
1069 }
1070 }
1071
1072 device_links_write_lock();
1073
1074 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1075 if (!(link->flags & DL_FLAG_MANAGED))
1076 continue;
1077
1078 if (link->status != DL_STATE_AVAILABLE &&
1079 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1080
1081 if (dev_is_best_effort(dev) &&
1082 link->flags & DL_FLAG_INFERRED &&
1083 !link->supplier->can_match) {
1084 ret = -EAGAIN;
1085 continue;
1086 }
1087
1088 device_links_missing_supplier(dev);
1089 ret = dev_err_probe(dev, -EPROBE_DEFER,
1090 "supplier %s not ready\n", dev_name(link->supplier));
1091 break;
1092 }
1093 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1094 }
1095 dev->links.status = DL_DEV_PROBING;
1096
1097 device_links_write_unlock();
1098
1099 return ret ? ret : fwnode_ret;
1100 }
1101
1102 /**
1103 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1104 * @dev: Device to call sync_state() on
1105 * @list: List head to queue the @dev on
1106 *
1107 * Queues a device for a sync_state() callback when the device links write lock
1108 * isn't held. This allows the sync_state() execution flow to use device links
1109 * APIs. The caller must ensure this function is called with
1110 * device_links_write_lock() held.
1111 *
1112 * This function does a get_device() to make sure the device is not freed while
1113 * on this list.
1114 *
1115 * So the caller must also ensure that device_links_flush_sync_list() is called
1116 * as soon as the caller releases device_links_write_lock(). This is necessary
1117 * to make sure the sync_state() is called in a timely fashion and the
1118 * put_device() is called on this device.
1119 */
__device_links_queue_sync_state(struct device * dev,struct list_head * list)1120 static void __device_links_queue_sync_state(struct device *dev,
1121 struct list_head *list)
1122 {
1123 struct device_link *link;
1124
1125 if (!dev_has_sync_state(dev))
1126 return;
1127 if (dev->state_synced)
1128 return;
1129
1130 list_for_each_entry(link, &dev->links.consumers, s_node) {
1131 if (!(link->flags & DL_FLAG_MANAGED))
1132 continue;
1133 if (link->status != DL_STATE_ACTIVE)
1134 return;
1135 }
1136
1137 /*
1138 * Set the flag here to avoid adding the same device to a list more
1139 * than once. This can happen if new consumers get added to the device
1140 * and probed before the list is flushed.
1141 */
1142 dev->state_synced = true;
1143
1144 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1145 return;
1146
1147 get_device(dev);
1148 list_add_tail(&dev->links.defer_sync, list);
1149 }
1150
1151 /**
1152 * device_links_flush_sync_list - Call sync_state() on a list of devices
1153 * @list: List of devices to call sync_state() on
1154 * @dont_lock_dev: Device for which lock is already held by the caller
1155 *
1156 * Calls sync_state() on all the devices that have been queued for it. This
1157 * function is used in conjunction with __device_links_queue_sync_state(). The
1158 * @dont_lock_dev parameter is useful when this function is called from a
1159 * context where a device lock is already held.
1160 */
device_links_flush_sync_list(struct list_head * list,struct device * dont_lock_dev)1161 static void device_links_flush_sync_list(struct list_head *list,
1162 struct device *dont_lock_dev)
1163 {
1164 struct device *dev, *tmp;
1165
1166 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1167 list_del_init(&dev->links.defer_sync);
1168
1169 if (dev != dont_lock_dev)
1170 device_lock(dev);
1171
1172 dev_sync_state(dev);
1173
1174 if (dev != dont_lock_dev)
1175 device_unlock(dev);
1176
1177 put_device(dev);
1178 }
1179 }
1180
device_links_supplier_sync_state_pause(void)1181 void device_links_supplier_sync_state_pause(void)
1182 {
1183 device_links_write_lock();
1184 defer_sync_state_count++;
1185 device_links_write_unlock();
1186 }
1187
device_links_supplier_sync_state_resume(void)1188 void device_links_supplier_sync_state_resume(void)
1189 {
1190 struct device *dev, *tmp;
1191 LIST_HEAD(sync_list);
1192
1193 device_links_write_lock();
1194 if (!defer_sync_state_count) {
1195 WARN(true, "Unmatched sync_state pause/resume!");
1196 goto out;
1197 }
1198 defer_sync_state_count--;
1199 if (defer_sync_state_count)
1200 goto out;
1201
1202 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1203 /*
1204 * Delete from deferred_sync list before queuing it to
1205 * sync_list because defer_sync is used for both lists.
1206 */
1207 list_del_init(&dev->links.defer_sync);
1208 __device_links_queue_sync_state(dev, &sync_list);
1209 }
1210 out:
1211 device_links_write_unlock();
1212
1213 device_links_flush_sync_list(&sync_list, NULL);
1214 }
1215
sync_state_resume_initcall(void)1216 static int sync_state_resume_initcall(void)
1217 {
1218 device_links_supplier_sync_state_resume();
1219 return 0;
1220 }
1221 late_initcall(sync_state_resume_initcall);
1222
__device_links_supplier_defer_sync(struct device * sup)1223 static void __device_links_supplier_defer_sync(struct device *sup)
1224 {
1225 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1226 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1227 }
1228
device_link_drop_managed(struct device_link * link)1229 static void device_link_drop_managed(struct device_link *link)
1230 {
1231 link->flags &= ~DL_FLAG_MANAGED;
1232 WRITE_ONCE(link->status, DL_STATE_NONE);
1233 kref_put(&link->kref, __device_link_del);
1234 }
1235
waiting_for_supplier_show(struct device * dev,struct device_attribute * attr,char * buf)1236 static ssize_t waiting_for_supplier_show(struct device *dev,
1237 struct device_attribute *attr,
1238 char *buf)
1239 {
1240 bool val;
1241
1242 device_lock(dev);
1243 scoped_guard(mutex, &fwnode_link_lock)
1244 val = !!fwnode_links_check_suppliers(dev->fwnode);
1245 device_unlock(dev);
1246 return sysfs_emit(buf, "%u\n", val);
1247 }
1248 static DEVICE_ATTR_RO(waiting_for_supplier);
1249
1250 /**
1251 * device_links_force_bind - Prepares device to be force bound
1252 * @dev: Consumer device.
1253 *
1254 * device_bind_driver() force binds a device to a driver without calling any
1255 * driver probe functions. So the consumer really isn't going to wait for any
1256 * supplier before it's bound to the driver. We still want the device link
1257 * states to be sensible when this happens.
1258 *
1259 * In preparation for device_bind_driver(), this function goes through each
1260 * supplier device links and checks if the supplier is bound. If it is, then
1261 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1262 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1263 */
device_links_force_bind(struct device * dev)1264 void device_links_force_bind(struct device *dev)
1265 {
1266 struct device_link *link, *ln;
1267
1268 device_links_write_lock();
1269
1270 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1271 if (!(link->flags & DL_FLAG_MANAGED))
1272 continue;
1273
1274 if (link->status != DL_STATE_AVAILABLE) {
1275 device_link_drop_managed(link);
1276 continue;
1277 }
1278 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1279 }
1280 dev->links.status = DL_DEV_PROBING;
1281
1282 device_links_write_unlock();
1283 }
1284
1285 /**
1286 * device_links_driver_bound - Update device links after probing its driver.
1287 * @dev: Device to update the links for.
1288 *
1289 * The probe has been successful, so update links from this device to any
1290 * consumers by changing their status to "available".
1291 *
1292 * Also change the status of @dev's links to suppliers to "active".
1293 *
1294 * Links without the DL_FLAG_MANAGED flag set are ignored.
1295 */
device_links_driver_bound(struct device * dev)1296 void device_links_driver_bound(struct device *dev)
1297 {
1298 struct device_link *link, *ln;
1299 LIST_HEAD(sync_list);
1300
1301 /*
1302 * If a device binds successfully, it's expected to have created all
1303 * the device links it needs to or make new device links as it needs
1304 * them. So, fw_devlink no longer needs to create device links to any
1305 * of the device's suppliers.
1306 *
1307 * Also, if a child firmware node of this bound device is not added as a
1308 * device by now, assume it is never going to be added. Make this bound
1309 * device the fallback supplier to the dangling consumers of the child
1310 * firmware node because this bound device is probably implementing the
1311 * child firmware node functionality and we don't want the dangling
1312 * consumers to defer probe indefinitely waiting for a device for the
1313 * child firmware node.
1314 */
1315 if (dev->fwnode && dev->fwnode->dev == dev) {
1316 struct fwnode_handle *child;
1317
1318 fwnode_links_purge_suppliers(dev->fwnode);
1319
1320 guard(mutex)(&fwnode_link_lock);
1321
1322 fwnode_for_each_available_child_node(dev->fwnode, child)
1323 __fw_devlink_pickup_dangling_consumers(child,
1324 dev->fwnode);
1325 __fw_devlink_link_to_consumers(dev);
1326 }
1327 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1328
1329 device_links_write_lock();
1330
1331 list_for_each_entry(link, &dev->links.consumers, s_node) {
1332 if (!(link->flags & DL_FLAG_MANAGED))
1333 continue;
1334
1335 /*
1336 * Links created during consumer probe may be in the "consumer
1337 * probe" state to start with if the supplier is still probing
1338 * when they are created and they may become "active" if the
1339 * consumer probe returns first. Skip them here.
1340 */
1341 if (link->status == DL_STATE_CONSUMER_PROBE ||
1342 link->status == DL_STATE_ACTIVE)
1343 continue;
1344
1345 WARN_ON(link->status != DL_STATE_DORMANT);
1346 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1347
1348 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1349 driver_deferred_probe_add(link->consumer);
1350 }
1351
1352 if (defer_sync_state_count)
1353 __device_links_supplier_defer_sync(dev);
1354 else
1355 __device_links_queue_sync_state(dev, &sync_list);
1356
1357 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1358 struct device *supplier;
1359
1360 if (!(link->flags & DL_FLAG_MANAGED))
1361 continue;
1362
1363 supplier = link->supplier;
1364 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1365 /*
1366 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1367 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1368 * save to drop the managed link completely.
1369 */
1370 device_link_drop_managed(link);
1371 } else if (dev_is_best_effort(dev) &&
1372 link->flags & DL_FLAG_INFERRED &&
1373 link->status != DL_STATE_CONSUMER_PROBE &&
1374 !link->supplier->can_match) {
1375 /*
1376 * When dev_is_best_effort() is true, we ignore device
1377 * links to suppliers that don't have a driver. If the
1378 * consumer device still managed to probe, there's no
1379 * point in maintaining a device link in a weird state
1380 * (consumer probed before supplier). So delete it.
1381 */
1382 device_link_drop_managed(link);
1383 } else {
1384 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1385 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1386 }
1387
1388 /*
1389 * This needs to be done even for the deleted
1390 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1391 * device link that was preventing the supplier from getting a
1392 * sync_state() call.
1393 */
1394 if (defer_sync_state_count)
1395 __device_links_supplier_defer_sync(supplier);
1396 else
1397 __device_links_queue_sync_state(supplier, &sync_list);
1398 }
1399
1400 dev->links.status = DL_DEV_DRIVER_BOUND;
1401
1402 device_links_write_unlock();
1403
1404 device_links_flush_sync_list(&sync_list, dev);
1405 }
1406
1407 /**
1408 * __device_links_no_driver - Update links of a device without a driver.
1409 * @dev: Device without a drvier.
1410 *
1411 * Delete all non-persistent links from this device to any suppliers.
1412 *
1413 * Persistent links stay around, but their status is changed to "available",
1414 * unless they already are in the "supplier unbind in progress" state in which
1415 * case they need not be updated.
1416 *
1417 * Links without the DL_FLAG_MANAGED flag set are ignored.
1418 */
__device_links_no_driver(struct device * dev)1419 static void __device_links_no_driver(struct device *dev)
1420 {
1421 struct device_link *link, *ln;
1422
1423 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1424 if (!(link->flags & DL_FLAG_MANAGED))
1425 continue;
1426
1427 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1428 device_link_drop_managed(link);
1429 continue;
1430 }
1431
1432 if (link->status != DL_STATE_CONSUMER_PROBE &&
1433 link->status != DL_STATE_ACTIVE)
1434 continue;
1435
1436 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1437 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1438 } else {
1439 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1440 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1441 }
1442 }
1443
1444 dev->links.status = DL_DEV_NO_DRIVER;
1445 }
1446
1447 /**
1448 * device_links_no_driver - Update links after failing driver probe.
1449 * @dev: Device whose driver has just failed to probe.
1450 *
1451 * Clean up leftover links to consumers for @dev and invoke
1452 * %__device_links_no_driver() to update links to suppliers for it as
1453 * appropriate.
1454 *
1455 * Links without the DL_FLAG_MANAGED flag set are ignored.
1456 */
device_links_no_driver(struct device * dev)1457 void device_links_no_driver(struct device *dev)
1458 {
1459 struct device_link *link;
1460
1461 device_links_write_lock();
1462
1463 list_for_each_entry(link, &dev->links.consumers, s_node) {
1464 if (!(link->flags & DL_FLAG_MANAGED))
1465 continue;
1466
1467 /*
1468 * The probe has failed, so if the status of the link is
1469 * "consumer probe" or "active", it must have been added by
1470 * a probing consumer while this device was still probing.
1471 * Change its state to "dormant", as it represents a valid
1472 * relationship, but it is not functionally meaningful.
1473 */
1474 if (link->status == DL_STATE_CONSUMER_PROBE ||
1475 link->status == DL_STATE_ACTIVE)
1476 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1477 }
1478
1479 __device_links_no_driver(dev);
1480
1481 device_links_write_unlock();
1482 }
1483
1484 /**
1485 * device_links_driver_cleanup - Update links after driver removal.
1486 * @dev: Device whose driver has just gone away.
1487 *
1488 * Update links to consumers for @dev by changing their status to "dormant" and
1489 * invoke %__device_links_no_driver() to update links to suppliers for it as
1490 * appropriate.
1491 *
1492 * Links without the DL_FLAG_MANAGED flag set are ignored.
1493 */
device_links_driver_cleanup(struct device * dev)1494 void device_links_driver_cleanup(struct device *dev)
1495 {
1496 struct device_link *link, *ln;
1497
1498 device_links_write_lock();
1499
1500 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1501 if (!(link->flags & DL_FLAG_MANAGED))
1502 continue;
1503
1504 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1505 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1506
1507 /*
1508 * autoremove the links between this @dev and its consumer
1509 * devices that are not active, i.e. where the link state
1510 * has moved to DL_STATE_SUPPLIER_UNBIND.
1511 */
1512 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1513 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1514 device_link_drop_managed(link);
1515
1516 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1517 }
1518
1519 list_del_init(&dev->links.defer_sync);
1520 __device_links_no_driver(dev);
1521
1522 device_links_write_unlock();
1523 }
1524
1525 /**
1526 * device_links_busy - Check if there are any busy links to consumers.
1527 * @dev: Device to check.
1528 *
1529 * Check each consumer of the device and return 'true' if its link's status
1530 * is one of "consumer probe" or "active" (meaning that the given consumer is
1531 * probing right now or its driver is present). Otherwise, change the link
1532 * state to "supplier unbind" to prevent the consumer from being probed
1533 * successfully going forward.
1534 *
1535 * Return 'false' if there are no probing or active consumers.
1536 *
1537 * Links without the DL_FLAG_MANAGED flag set are ignored.
1538 */
device_links_busy(struct device * dev)1539 bool device_links_busy(struct device *dev)
1540 {
1541 struct device_link *link;
1542 bool ret = false;
1543
1544 device_links_write_lock();
1545
1546 list_for_each_entry(link, &dev->links.consumers, s_node) {
1547 if (!(link->flags & DL_FLAG_MANAGED))
1548 continue;
1549
1550 if (link->status == DL_STATE_CONSUMER_PROBE
1551 || link->status == DL_STATE_ACTIVE) {
1552 ret = true;
1553 break;
1554 }
1555 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1556 }
1557
1558 dev->links.status = DL_DEV_UNBINDING;
1559
1560 device_links_write_unlock();
1561 return ret;
1562 }
1563
1564 /**
1565 * device_links_unbind_consumers - Force unbind consumers of the given device.
1566 * @dev: Device to unbind the consumers of.
1567 *
1568 * Walk the list of links to consumers for @dev and if any of them is in the
1569 * "consumer probe" state, wait for all device probes in progress to complete
1570 * and start over.
1571 *
1572 * If that's not the case, change the status of the link to "supplier unbind"
1573 * and check if the link was in the "active" state. If so, force the consumer
1574 * driver to unbind and start over (the consumer will not re-probe as we have
1575 * changed the state of the link already).
1576 *
1577 * Links without the DL_FLAG_MANAGED flag set are ignored.
1578 */
device_links_unbind_consumers(struct device * dev)1579 void device_links_unbind_consumers(struct device *dev)
1580 {
1581 struct device_link *link;
1582
1583 start:
1584 device_links_write_lock();
1585
1586 list_for_each_entry(link, &dev->links.consumers, s_node) {
1587 enum device_link_state status;
1588
1589 if (!(link->flags & DL_FLAG_MANAGED) ||
1590 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1591 continue;
1592
1593 status = link->status;
1594 if (status == DL_STATE_CONSUMER_PROBE) {
1595 device_links_write_unlock();
1596
1597 wait_for_device_probe();
1598 goto start;
1599 }
1600 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1601 if (status == DL_STATE_ACTIVE) {
1602 struct device *consumer = link->consumer;
1603
1604 get_device(consumer);
1605
1606 device_links_write_unlock();
1607
1608 device_release_driver_internal(consumer, NULL,
1609 consumer->parent);
1610 put_device(consumer);
1611 goto start;
1612 }
1613 }
1614
1615 device_links_write_unlock();
1616 }
1617
1618 /**
1619 * device_links_purge - Delete existing links to other devices.
1620 * @dev: Target device.
1621 */
device_links_purge(struct device * dev)1622 static void device_links_purge(struct device *dev)
1623 {
1624 struct device_link *link, *ln;
1625
1626 if (dev->class == &devlink_class)
1627 return;
1628
1629 /*
1630 * Delete all of the remaining links from this device to any other
1631 * devices (either consumers or suppliers).
1632 */
1633 device_links_write_lock();
1634
1635 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1636 WARN_ON(link->status == DL_STATE_ACTIVE);
1637 __device_link_del(&link->kref);
1638 }
1639
1640 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1641 WARN_ON(link->status != DL_STATE_DORMANT &&
1642 link->status != DL_STATE_NONE);
1643 __device_link_del(&link->kref);
1644 }
1645
1646 device_links_write_unlock();
1647 }
1648
1649 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1650 DL_FLAG_SYNC_STATE_ONLY)
1651 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1652 DL_FLAG_AUTOPROBE_CONSUMER)
1653 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1654 DL_FLAG_PM_RUNTIME)
1655
1656 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
fw_devlink_setup(char * arg)1657 static int __init fw_devlink_setup(char *arg)
1658 {
1659 if (!arg)
1660 return -EINVAL;
1661
1662 if (strcmp(arg, "off") == 0) {
1663 fw_devlink_flags = 0;
1664 } else if (strcmp(arg, "permissive") == 0) {
1665 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1666 } else if (strcmp(arg, "on") == 0) {
1667 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1668 } else if (strcmp(arg, "rpm") == 0) {
1669 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1670 }
1671 return 0;
1672 }
1673 early_param("fw_devlink", fw_devlink_setup);
1674
1675 static bool fw_devlink_strict;
fw_devlink_strict_setup(char * arg)1676 static int __init fw_devlink_strict_setup(char *arg)
1677 {
1678 return kstrtobool(arg, &fw_devlink_strict);
1679 }
1680 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1681
1682 #define FW_DEVLINK_SYNC_STATE_STRICT 0
1683 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1
1684
1685 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1686 static int fw_devlink_sync_state;
1687 #else
1688 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1689 #endif
1690
fw_devlink_sync_state_setup(char * arg)1691 static int __init fw_devlink_sync_state_setup(char *arg)
1692 {
1693 if (!arg)
1694 return -EINVAL;
1695
1696 if (strcmp(arg, "strict") == 0) {
1697 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1698 return 0;
1699 } else if (strcmp(arg, "timeout") == 0) {
1700 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1701 return 0;
1702 }
1703 return -EINVAL;
1704 }
1705 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1706
fw_devlink_get_flags(u8 fwlink_flags)1707 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1708 {
1709 if (fwlink_flags & FWLINK_FLAG_CYCLE)
1710 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1711
1712 return fw_devlink_flags;
1713 }
1714
fw_devlink_is_permissive(void)1715 static bool fw_devlink_is_permissive(void)
1716 {
1717 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1718 }
1719
fw_devlink_is_strict(void)1720 bool fw_devlink_is_strict(void)
1721 {
1722 return fw_devlink_strict && !fw_devlink_is_permissive();
1723 }
1724
fw_devlink_parse_fwnode(struct fwnode_handle * fwnode)1725 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1726 {
1727 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1728 return;
1729
1730 fwnode_call_int_op(fwnode, add_links);
1731 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1732 }
1733
fw_devlink_parse_fwtree(struct fwnode_handle * fwnode)1734 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1735 {
1736 struct fwnode_handle *child = NULL;
1737
1738 fw_devlink_parse_fwnode(fwnode);
1739
1740 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1741 fw_devlink_parse_fwtree(child);
1742 }
1743
fw_devlink_relax_link(struct device_link * link)1744 static void fw_devlink_relax_link(struct device_link *link)
1745 {
1746 if (!(link->flags & DL_FLAG_INFERRED))
1747 return;
1748
1749 if (device_link_flag_is_sync_state_only(link->flags))
1750 return;
1751
1752 pm_runtime_drop_link(link);
1753 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1754 dev_dbg(link->consumer, "Relaxing link with %s\n",
1755 dev_name(link->supplier));
1756 }
1757
fw_devlink_no_driver(struct device * dev,void * data)1758 static int fw_devlink_no_driver(struct device *dev, void *data)
1759 {
1760 struct device_link *link = to_devlink(dev);
1761
1762 if (!link->supplier->can_match)
1763 fw_devlink_relax_link(link);
1764
1765 return 0;
1766 }
1767
fw_devlink_drivers_done(void)1768 void fw_devlink_drivers_done(void)
1769 {
1770 fw_devlink_drv_reg_done = true;
1771 device_links_write_lock();
1772 class_for_each_device(&devlink_class, NULL, NULL,
1773 fw_devlink_no_driver);
1774 device_links_write_unlock();
1775 }
1776
fw_devlink_dev_sync_state(struct device * dev,void * data)1777 static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1778 {
1779 struct device_link *link = to_devlink(dev);
1780 struct device *sup = link->supplier;
1781
1782 if (!(link->flags & DL_FLAG_MANAGED) ||
1783 link->status == DL_STATE_ACTIVE || sup->state_synced ||
1784 !dev_has_sync_state(sup))
1785 return 0;
1786
1787 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1788 dev_warn(sup, "sync_state() pending due to %s\n",
1789 dev_name(link->consumer));
1790 return 0;
1791 }
1792
1793 if (!list_empty(&sup->links.defer_sync))
1794 return 0;
1795
1796 dev_warn(sup, "Timed out. Forcing sync_state()\n");
1797 sup->state_synced = true;
1798 get_device(sup);
1799 list_add_tail(&sup->links.defer_sync, data);
1800
1801 return 0;
1802 }
1803
fw_devlink_probing_done(void)1804 void fw_devlink_probing_done(void)
1805 {
1806 LIST_HEAD(sync_list);
1807
1808 device_links_write_lock();
1809 class_for_each_device(&devlink_class, NULL, &sync_list,
1810 fw_devlink_dev_sync_state);
1811 device_links_write_unlock();
1812 device_links_flush_sync_list(&sync_list, NULL);
1813 }
1814
1815 /**
1816 * wait_for_init_devices_probe - Try to probe any device needed for init
1817 *
1818 * Some devices might need to be probed and bound successfully before the kernel
1819 * boot sequence can finish and move on to init/userspace. For example, a
1820 * network interface might need to be bound to be able to mount a NFS rootfs.
1821 *
1822 * With fw_devlink=on by default, some of these devices might be blocked from
1823 * probing because they are waiting on a optional supplier that doesn't have a
1824 * driver. While fw_devlink will eventually identify such devices and unblock
1825 * the probing automatically, it might be too late by the time it unblocks the
1826 * probing of devices. For example, the IP4 autoconfig might timeout before
1827 * fw_devlink unblocks probing of the network interface.
1828 *
1829 * This function is available to temporarily try and probe all devices that have
1830 * a driver even if some of their suppliers haven't been added or don't have
1831 * drivers.
1832 *
1833 * The drivers can then decide which of the suppliers are optional vs mandatory
1834 * and probe the device if possible. By the time this function returns, all such
1835 * "best effort" probes are guaranteed to be completed. If a device successfully
1836 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1837 * device where the supplier hasn't yet probed successfully because they have to
1838 * be optional dependencies.
1839 *
1840 * Any devices that didn't successfully probe go back to being treated as if
1841 * this function was never called.
1842 *
1843 * This also means that some devices that aren't needed for init and could have
1844 * waited for their optional supplier to probe (when the supplier's module is
1845 * loaded later on) would end up probing prematurely with limited functionality.
1846 * So call this function only when boot would fail without it.
1847 */
wait_for_init_devices_probe(void)1848 void __init wait_for_init_devices_probe(void)
1849 {
1850 if (!fw_devlink_flags || fw_devlink_is_permissive())
1851 return;
1852
1853 /*
1854 * Wait for all ongoing probes to finish so that the "best effort" is
1855 * only applied to devices that can't probe otherwise.
1856 */
1857 wait_for_device_probe();
1858
1859 pr_info("Trying to probe devices needed for running init ...\n");
1860 fw_devlink_best_effort = true;
1861 driver_deferred_probe_trigger();
1862
1863 /*
1864 * Wait for all "best effort" probes to finish before going back to
1865 * normal enforcement.
1866 */
1867 wait_for_device_probe();
1868 fw_devlink_best_effort = false;
1869 }
1870
fw_devlink_unblock_consumers(struct device * dev)1871 static void fw_devlink_unblock_consumers(struct device *dev)
1872 {
1873 struct device_link *link;
1874
1875 if (!fw_devlink_flags || fw_devlink_is_permissive())
1876 return;
1877
1878 device_links_write_lock();
1879 list_for_each_entry(link, &dev->links.consumers, s_node)
1880 fw_devlink_relax_link(link);
1881 device_links_write_unlock();
1882 }
1883
1884 #define get_dev_from_fwnode(fwnode) get_device((fwnode)->dev)
1885
fwnode_init_without_drv(struct fwnode_handle * fwnode)1886 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1887 {
1888 struct device *dev;
1889 bool ret;
1890
1891 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1892 return false;
1893
1894 dev = get_dev_from_fwnode(fwnode);
1895 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1896 put_device(dev);
1897
1898 return ret;
1899 }
1900
fwnode_ancestor_init_without_drv(struct fwnode_handle * fwnode)1901 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1902 {
1903 struct fwnode_handle *parent;
1904
1905 fwnode_for_each_parent_node(fwnode, parent) {
1906 if (fwnode_init_without_drv(parent)) {
1907 fwnode_handle_put(parent);
1908 return true;
1909 }
1910 }
1911
1912 return false;
1913 }
1914
1915 /**
1916 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
1917 * @ancestor: Firmware which is tested for being an ancestor
1918 * @child: Firmware which is tested for being the child
1919 *
1920 * A node is considered an ancestor of itself too.
1921 *
1922 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
1923 */
fwnode_is_ancestor_of(const struct fwnode_handle * ancestor,const struct fwnode_handle * child)1924 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor,
1925 const struct fwnode_handle *child)
1926 {
1927 struct fwnode_handle *parent;
1928
1929 if (IS_ERR_OR_NULL(ancestor))
1930 return false;
1931
1932 if (child == ancestor)
1933 return true;
1934
1935 fwnode_for_each_parent_node(child, parent) {
1936 if (parent == ancestor) {
1937 fwnode_handle_put(parent);
1938 return true;
1939 }
1940 }
1941 return false;
1942 }
1943
1944 /**
1945 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
1946 * @fwnode: firmware node
1947 *
1948 * Given a firmware node (@fwnode), this function finds its closest ancestor
1949 * firmware node that has a corresponding struct device and returns that struct
1950 * device.
1951 *
1952 * The caller is responsible for calling put_device() on the returned device
1953 * pointer.
1954 *
1955 * Return: a pointer to the device of the @fwnode's closest ancestor.
1956 */
fwnode_get_next_parent_dev(const struct fwnode_handle * fwnode)1957 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
1958 {
1959 struct fwnode_handle *parent;
1960 struct device *dev;
1961
1962 fwnode_for_each_parent_node(fwnode, parent) {
1963 dev = get_dev_from_fwnode(parent);
1964 if (dev) {
1965 fwnode_handle_put(parent);
1966 return dev;
1967 }
1968 }
1969 return NULL;
1970 }
1971
1972 /**
1973 * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1974 * @con_handle: Potential consumer device fwnode.
1975 * @sup_handle: Potential supplier's fwnode.
1976 *
1977 * Needs to be called with fwnode_lock and device link lock held.
1978 *
1979 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1980 * depend on @con. This function can detect multiple cyles between @sup_handle
1981 * and @con. When such dependency cycles are found, convert all device links
1982 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1983 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1984 * converted into a device link in the future, they are created as
1985 * SYNC_STATE_ONLY device links. This is the equivalent of doing
1986 * fw_devlink=permissive just between the devices in the cycle. We need to do
1987 * this because, at this point, fw_devlink can't tell which of these
1988 * dependencies is not a real dependency.
1989 *
1990 * Return true if one or more cycles were found. Otherwise, return false.
1991 */
__fw_devlink_relax_cycles(struct fwnode_handle * con_handle,struct fwnode_handle * sup_handle)1992 static bool __fw_devlink_relax_cycles(struct fwnode_handle *con_handle,
1993 struct fwnode_handle *sup_handle)
1994 {
1995 struct device *sup_dev = NULL, *par_dev = NULL, *con_dev = NULL;
1996 struct fwnode_link *link;
1997 struct device_link *dev_link;
1998 bool ret = false;
1999
2000 if (!sup_handle)
2001 return false;
2002
2003 /*
2004 * We aren't trying to find all cycles. Just a cycle between con and
2005 * sup_handle.
2006 */
2007 if (sup_handle->flags & FWNODE_FLAG_VISITED)
2008 return false;
2009
2010 sup_handle->flags |= FWNODE_FLAG_VISITED;
2011
2012 /* Termination condition. */
2013 if (sup_handle == con_handle) {
2014 pr_debug("----- cycle: start -----\n");
2015 ret = true;
2016 goto out;
2017 }
2018
2019 sup_dev = get_dev_from_fwnode(sup_handle);
2020 con_dev = get_dev_from_fwnode(con_handle);
2021 /*
2022 * If sup_dev is bound to a driver and @con hasn't started binding to a
2023 * driver, sup_dev can't be a consumer of @con. So, no need to check
2024 * further.
2025 */
2026 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND &&
2027 con_dev && con_dev->links.status == DL_DEV_NO_DRIVER) {
2028 ret = false;
2029 goto out;
2030 }
2031
2032 list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
2033 if (link->flags & FWLINK_FLAG_IGNORE)
2034 continue;
2035
2036 if (__fw_devlink_relax_cycles(con_handle, link->supplier)) {
2037 __fwnode_link_cycle(link);
2038 ret = true;
2039 }
2040 }
2041
2042 /*
2043 * Give priority to device parent over fwnode parent to account for any
2044 * quirks in how fwnodes are converted to devices.
2045 */
2046 if (sup_dev)
2047 par_dev = get_device(sup_dev->parent);
2048 else
2049 par_dev = fwnode_get_next_parent_dev(sup_handle);
2050
2051 if (par_dev && __fw_devlink_relax_cycles(con_handle, par_dev->fwnode)) {
2052 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
2053 par_dev->fwnode);
2054 ret = true;
2055 }
2056
2057 if (!sup_dev)
2058 goto out;
2059
2060 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2061 /*
2062 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2063 * such due to a cycle.
2064 */
2065 if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2066 !(dev_link->flags & DL_FLAG_CYCLE))
2067 continue;
2068
2069 if (__fw_devlink_relax_cycles(con_handle,
2070 dev_link->supplier->fwnode)) {
2071 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2072 dev_link->supplier->fwnode);
2073 fw_devlink_relax_link(dev_link);
2074 dev_link->flags |= DL_FLAG_CYCLE;
2075 ret = true;
2076 }
2077 }
2078
2079 out:
2080 sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2081 put_device(sup_dev);
2082 put_device(con_dev);
2083 put_device(par_dev);
2084 return ret;
2085 }
2086
2087 /**
2088 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2089 * @con: consumer device for the device link
2090 * @sup_handle: fwnode handle of supplier
2091 * @link: fwnode link that's being converted to a device link
2092 *
2093 * This function will try to create a device link between the consumer device
2094 * @con and the supplier device represented by @sup_handle.
2095 *
2096 * The supplier has to be provided as a fwnode because incorrect cycles in
2097 * fwnode links can sometimes cause the supplier device to never be created.
2098 * This function detects such cases and returns an error if it cannot create a
2099 * device link from the consumer to a missing supplier.
2100 *
2101 * Returns,
2102 * 0 on successfully creating a device link
2103 * -EINVAL if the device link cannot be created as expected
2104 * -EAGAIN if the device link cannot be created right now, but it may be
2105 * possible to do that in the future
2106 */
fw_devlink_create_devlink(struct device * con,struct fwnode_handle * sup_handle,struct fwnode_link * link)2107 static int fw_devlink_create_devlink(struct device *con,
2108 struct fwnode_handle *sup_handle,
2109 struct fwnode_link *link)
2110 {
2111 struct device *sup_dev;
2112 int ret = 0;
2113 u32 flags;
2114
2115 if (link->flags & FWLINK_FLAG_IGNORE)
2116 return 0;
2117
2118 /*
2119 * In some cases, a device P might also be a supplier to its child node
2120 * C. However, this would defer the probe of C until the probe of P
2121 * completes successfully. This is perfectly fine in the device driver
2122 * model. device_add() doesn't guarantee probe completion of the device
2123 * by the time it returns.
2124 *
2125 * However, there are a few drivers that assume C will finish probing
2126 * as soon as it's added and before P finishes probing. So, we provide
2127 * a flag to let fw_devlink know not to delay the probe of C until the
2128 * probe of P completes successfully.
2129 *
2130 * When such a flag is set, we can't create device links where P is the
2131 * supplier of C as that would delay the probe of C.
2132 */
2133 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2134 fwnode_is_ancestor_of(sup_handle, con->fwnode))
2135 return -EINVAL;
2136
2137 /*
2138 * Don't try to optimize by not calling the cycle detection logic under
2139 * certain conditions. There's always some corner case that won't get
2140 * detected.
2141 */
2142 device_links_write_lock();
2143 if (__fw_devlink_relax_cycles(link->consumer, sup_handle)) {
2144 __fwnode_link_cycle(link);
2145 pr_debug("----- cycle: end -----\n");
2146 pr_info("%pfwf: Fixed dependency cycle(s) with %pfwf\n",
2147 link->consumer, sup_handle);
2148 }
2149 device_links_write_unlock();
2150
2151 if (con->fwnode == link->consumer)
2152 flags = fw_devlink_get_flags(link->flags);
2153 else
2154 flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2155
2156 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2157 sup_dev = fwnode_get_next_parent_dev(sup_handle);
2158 else
2159 sup_dev = get_dev_from_fwnode(sup_handle);
2160
2161 if (sup_dev) {
2162 /*
2163 * If it's one of those drivers that don't actually bind to
2164 * their device using driver core, then don't wait on this
2165 * supplier device indefinitely.
2166 */
2167 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2168 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2169 dev_dbg(con,
2170 "Not linking %pfwf - dev might never probe\n",
2171 sup_handle);
2172 ret = -EINVAL;
2173 goto out;
2174 }
2175
2176 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2177 dev_err(con, "Failed to create device link (0x%x) with supplier %s for %pfwf\n",
2178 flags, dev_name(sup_dev), link->consumer);
2179 ret = -EINVAL;
2180 }
2181
2182 goto out;
2183 }
2184
2185 /*
2186 * Supplier or supplier's ancestor already initialized without a struct
2187 * device or being probed by a driver.
2188 */
2189 if (fwnode_init_without_drv(sup_handle) ||
2190 fwnode_ancestor_init_without_drv(sup_handle)) {
2191 dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2192 sup_handle);
2193 return -EINVAL;
2194 }
2195
2196 ret = -EAGAIN;
2197 out:
2198 put_device(sup_dev);
2199 return ret;
2200 }
2201
2202 /**
2203 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2204 * @dev: Device that needs to be linked to its consumers
2205 *
2206 * This function looks at all the consumer fwnodes of @dev and creates device
2207 * links between the consumer device and @dev (supplier).
2208 *
2209 * If the consumer device has not been added yet, then this function creates a
2210 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2211 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2212 * sync_state() callback before the real consumer device gets to be added and
2213 * then probed.
2214 *
2215 * Once device links are created from the real consumer to @dev (supplier), the
2216 * fwnode links are deleted.
2217 */
__fw_devlink_link_to_consumers(struct device * dev)2218 static void __fw_devlink_link_to_consumers(struct device *dev)
2219 {
2220 struct fwnode_handle *fwnode = dev->fwnode;
2221 struct fwnode_link *link, *tmp;
2222
2223 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2224 struct device *con_dev;
2225 bool own_link = true;
2226 int ret;
2227
2228 con_dev = get_dev_from_fwnode(link->consumer);
2229 /*
2230 * If consumer device is not available yet, make a "proxy"
2231 * SYNC_STATE_ONLY link from the consumer's parent device to
2232 * the supplier device. This is necessary to make sure the
2233 * supplier doesn't get a sync_state() callback before the real
2234 * consumer can create a device link to the supplier.
2235 *
2236 * This proxy link step is needed to handle the case where the
2237 * consumer's parent device is added before the supplier.
2238 */
2239 if (!con_dev) {
2240 con_dev = fwnode_get_next_parent_dev(link->consumer);
2241 /*
2242 * However, if the consumer's parent device is also the
2243 * parent of the supplier, don't create a
2244 * consumer-supplier link from the parent to its child
2245 * device. Such a dependency is impossible.
2246 */
2247 if (con_dev &&
2248 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2249 put_device(con_dev);
2250 con_dev = NULL;
2251 } else {
2252 own_link = false;
2253 }
2254 }
2255
2256 if (!con_dev)
2257 continue;
2258
2259 ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2260 put_device(con_dev);
2261 if (!own_link || ret == -EAGAIN)
2262 continue;
2263
2264 __fwnode_link_del(link);
2265 }
2266 }
2267
2268 /**
2269 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2270 * @dev: The consumer device that needs to be linked to its suppliers
2271 * @fwnode: Root of the fwnode tree that is used to create device links
2272 *
2273 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2274 * @fwnode and creates device links between @dev (consumer) and all the
2275 * supplier devices of the entire fwnode tree at @fwnode.
2276 *
2277 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2278 * and the real suppliers of @dev. Once these device links are created, the
2279 * fwnode links are deleted.
2280 *
2281 * In addition, it also looks at all the suppliers of the entire fwnode tree
2282 * because some of the child devices of @dev that have not been added yet
2283 * (because @dev hasn't probed) might already have their suppliers added to
2284 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2285 * @dev (consumer) and these suppliers to make sure they don't execute their
2286 * sync_state() callbacks before these child devices have a chance to create
2287 * their device links. The fwnode links that correspond to the child devices
2288 * aren't delete because they are needed later to create the device links
2289 * between the real consumer and supplier devices.
2290 */
__fw_devlink_link_to_suppliers(struct device * dev,struct fwnode_handle * fwnode)2291 static void __fw_devlink_link_to_suppliers(struct device *dev,
2292 struct fwnode_handle *fwnode)
2293 {
2294 bool own_link = (dev->fwnode == fwnode);
2295 struct fwnode_link *link, *tmp;
2296 struct fwnode_handle *child = NULL;
2297
2298 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2299 int ret;
2300 struct fwnode_handle *sup = link->supplier;
2301
2302 ret = fw_devlink_create_devlink(dev, sup, link);
2303 if (!own_link || ret == -EAGAIN)
2304 continue;
2305
2306 __fwnode_link_del(link);
2307 }
2308
2309 /*
2310 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2311 * all the descendants. This proxy link step is needed to handle the
2312 * case where the supplier is added before the consumer's parent device
2313 * (@dev).
2314 */
2315 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2316 __fw_devlink_link_to_suppliers(dev, child);
2317 }
2318
fw_devlink_link_device(struct device * dev)2319 static void fw_devlink_link_device(struct device *dev)
2320 {
2321 struct fwnode_handle *fwnode = dev->fwnode;
2322
2323 if (!fw_devlink_flags)
2324 return;
2325
2326 fw_devlink_parse_fwtree(fwnode);
2327
2328 guard(mutex)(&fwnode_link_lock);
2329
2330 __fw_devlink_link_to_consumers(dev);
2331 __fw_devlink_link_to_suppliers(dev, fwnode);
2332 }
2333
2334 /* Device links support end. */
2335
2336 static struct kobject *dev_kobj;
2337
2338 /* /sys/dev/char */
2339 static struct kobject *sysfs_dev_char_kobj;
2340
2341 /* /sys/dev/block */
2342 static struct kobject *sysfs_dev_block_kobj;
2343
2344 static DEFINE_MUTEX(device_hotplug_lock);
2345
lock_device_hotplug(void)2346 void lock_device_hotplug(void)
2347 {
2348 mutex_lock(&device_hotplug_lock);
2349 }
2350
unlock_device_hotplug(void)2351 void unlock_device_hotplug(void)
2352 {
2353 mutex_unlock(&device_hotplug_lock);
2354 }
2355
lock_device_hotplug_sysfs(void)2356 int lock_device_hotplug_sysfs(void)
2357 {
2358 if (mutex_trylock(&device_hotplug_lock))
2359 return 0;
2360
2361 /* Avoid busy looping (5 ms of sleep should do). */
2362 msleep(5);
2363 return restart_syscall();
2364 }
2365
2366 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)2367 static inline int device_is_not_partition(struct device *dev)
2368 {
2369 return !(dev->type == &part_type);
2370 }
2371 #else
device_is_not_partition(struct device * dev)2372 static inline int device_is_not_partition(struct device *dev)
2373 {
2374 return 1;
2375 }
2376 #endif
2377
device_platform_notify(struct device * dev)2378 static void device_platform_notify(struct device *dev)
2379 {
2380 acpi_device_notify(dev);
2381
2382 software_node_notify(dev);
2383 }
2384
device_platform_notify_remove(struct device * dev)2385 static void device_platform_notify_remove(struct device *dev)
2386 {
2387 software_node_notify_remove(dev);
2388
2389 acpi_device_notify_remove(dev);
2390 }
2391
2392 /**
2393 * dev_driver_string - Return a device's driver name, if at all possible
2394 * @dev: struct device to get the name of
2395 *
2396 * Will return the device's driver's name if it is bound to a device. If
2397 * the device is not bound to a driver, it will return the name of the bus
2398 * it is attached to. If it is not attached to a bus either, an empty
2399 * string will be returned.
2400 */
dev_driver_string(const struct device * dev)2401 const char *dev_driver_string(const struct device *dev)
2402 {
2403 struct device_driver *drv;
2404
2405 /* dev->driver can change to NULL underneath us because of unbinding,
2406 * so be careful about accessing it. dev->bus and dev->class should
2407 * never change once they are set, so they don't need special care.
2408 */
2409 drv = READ_ONCE(dev->driver);
2410 return drv ? drv->name : dev_bus_name(dev);
2411 }
2412 EXPORT_SYMBOL(dev_driver_string);
2413
2414 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2415
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2416 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2417 char *buf)
2418 {
2419 struct device_attribute *dev_attr = to_dev_attr(attr);
2420 struct device *dev = kobj_to_dev(kobj);
2421 ssize_t ret = -EIO;
2422
2423 if (dev_attr->show)
2424 ret = dev_attr->show(dev, dev_attr, buf);
2425 if (ret >= (ssize_t)PAGE_SIZE) {
2426 printk("dev_attr_show: %pS returned bad count\n",
2427 dev_attr->show);
2428 }
2429 return ret;
2430 }
2431
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)2432 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2433 const char *buf, size_t count)
2434 {
2435 struct device_attribute *dev_attr = to_dev_attr(attr);
2436 struct device *dev = kobj_to_dev(kobj);
2437 ssize_t ret = -EIO;
2438
2439 if (dev_attr->store)
2440 ret = dev_attr->store(dev, dev_attr, buf, count);
2441 return ret;
2442 }
2443
2444 static const struct sysfs_ops dev_sysfs_ops = {
2445 .show = dev_attr_show,
2446 .store = dev_attr_store,
2447 };
2448
2449 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2450
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2451 ssize_t device_store_ulong(struct device *dev,
2452 struct device_attribute *attr,
2453 const char *buf, size_t size)
2454 {
2455 struct dev_ext_attribute *ea = to_ext_attr(attr);
2456 int ret;
2457 unsigned long new;
2458
2459 ret = kstrtoul(buf, 0, &new);
2460 if (ret)
2461 return ret;
2462 *(unsigned long *)(ea->var) = new;
2463 /* Always return full write size even if we didn't consume all */
2464 return size;
2465 }
2466 EXPORT_SYMBOL_GPL(device_store_ulong);
2467
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)2468 ssize_t device_show_ulong(struct device *dev,
2469 struct device_attribute *attr,
2470 char *buf)
2471 {
2472 struct dev_ext_attribute *ea = to_ext_attr(attr);
2473 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2474 }
2475 EXPORT_SYMBOL_GPL(device_show_ulong);
2476
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2477 ssize_t device_store_int(struct device *dev,
2478 struct device_attribute *attr,
2479 const char *buf, size_t size)
2480 {
2481 struct dev_ext_attribute *ea = to_ext_attr(attr);
2482 int ret;
2483 long new;
2484
2485 ret = kstrtol(buf, 0, &new);
2486 if (ret)
2487 return ret;
2488
2489 if (new > INT_MAX || new < INT_MIN)
2490 return -EINVAL;
2491 *(int *)(ea->var) = new;
2492 /* Always return full write size even if we didn't consume all */
2493 return size;
2494 }
2495 EXPORT_SYMBOL_GPL(device_store_int);
2496
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)2497 ssize_t device_show_int(struct device *dev,
2498 struct device_attribute *attr,
2499 char *buf)
2500 {
2501 struct dev_ext_attribute *ea = to_ext_attr(attr);
2502
2503 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2504 }
2505 EXPORT_SYMBOL_GPL(device_show_int);
2506
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2507 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2508 const char *buf, size_t size)
2509 {
2510 struct dev_ext_attribute *ea = to_ext_attr(attr);
2511
2512 if (kstrtobool(buf, ea->var) < 0)
2513 return -EINVAL;
2514
2515 return size;
2516 }
2517 EXPORT_SYMBOL_GPL(device_store_bool);
2518
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)2519 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2520 char *buf)
2521 {
2522 struct dev_ext_attribute *ea = to_ext_attr(attr);
2523
2524 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2525 }
2526 EXPORT_SYMBOL_GPL(device_show_bool);
2527
device_show_string(struct device * dev,struct device_attribute * attr,char * buf)2528 ssize_t device_show_string(struct device *dev,
2529 struct device_attribute *attr, char *buf)
2530 {
2531 struct dev_ext_attribute *ea = to_ext_attr(attr);
2532
2533 return sysfs_emit(buf, "%s\n", (char *)ea->var);
2534 }
2535 EXPORT_SYMBOL_GPL(device_show_string);
2536
2537 /**
2538 * device_release - free device structure.
2539 * @kobj: device's kobject.
2540 *
2541 * This is called once the reference count for the object
2542 * reaches 0. We forward the call to the device's release
2543 * method, which should handle actually freeing the structure.
2544 */
device_release(struct kobject * kobj)2545 static void device_release(struct kobject *kobj)
2546 {
2547 struct device *dev = kobj_to_dev(kobj);
2548 struct device_private *p = dev->p;
2549
2550 /*
2551 * Some platform devices are driven without driver attached
2552 * and managed resources may have been acquired. Make sure
2553 * all resources are released.
2554 *
2555 * Drivers still can add resources into device after device
2556 * is deleted but alive, so release devres here to avoid
2557 * possible memory leak.
2558 */
2559 devres_release_all(dev);
2560
2561 kfree(dev->dma_range_map);
2562
2563 if (dev->release)
2564 dev->release(dev);
2565 else if (dev->type && dev->type->release)
2566 dev->type->release(dev);
2567 else if (dev->class && dev->class->dev_release)
2568 dev->class->dev_release(dev);
2569 else
2570 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2571 dev_name(dev));
2572 kfree(p);
2573 }
2574
device_namespace(const struct kobject * kobj)2575 static const void *device_namespace(const struct kobject *kobj)
2576 {
2577 const struct device *dev = kobj_to_dev(kobj);
2578 const void *ns = NULL;
2579
2580 if (dev->class && dev->class->namespace)
2581 ns = dev->class->namespace(dev);
2582
2583 return ns;
2584 }
2585
device_get_ownership(const struct kobject * kobj,kuid_t * uid,kgid_t * gid)2586 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2587 {
2588 const struct device *dev = kobj_to_dev(kobj);
2589
2590 if (dev->class && dev->class->get_ownership)
2591 dev->class->get_ownership(dev, uid, gid);
2592 }
2593
2594 static const struct kobj_type device_ktype = {
2595 .release = device_release,
2596 .sysfs_ops = &dev_sysfs_ops,
2597 .namespace = device_namespace,
2598 .get_ownership = device_get_ownership,
2599 };
2600
2601
dev_uevent_filter(const struct kobject * kobj)2602 static int dev_uevent_filter(const struct kobject *kobj)
2603 {
2604 const struct kobj_type *ktype = get_ktype(kobj);
2605
2606 if (ktype == &device_ktype) {
2607 const struct device *dev = kobj_to_dev(kobj);
2608 if (dev->bus)
2609 return 1;
2610 if (dev->class)
2611 return 1;
2612 }
2613 return 0;
2614 }
2615
dev_uevent_name(const struct kobject * kobj)2616 static const char *dev_uevent_name(const struct kobject *kobj)
2617 {
2618 const struct device *dev = kobj_to_dev(kobj);
2619
2620 if (dev->bus)
2621 return dev->bus->name;
2622 if (dev->class)
2623 return dev->class->name;
2624 return NULL;
2625 }
2626
2627 /*
2628 * Try filling "DRIVER=<name>" uevent variable for a device. Because this
2629 * function may race with binding and unbinding the device from a driver,
2630 * we need to be careful. Binding is generally safe, at worst we miss the
2631 * fact that the device is already bound to a driver (but the driver
2632 * information that is delivered through uevents is best-effort, it may
2633 * become obsolete as soon as it is generated anyways). Unbinding is more
2634 * risky as driver pointer is transitioning to NULL, so READ_ONCE() should
2635 * be used to make sure we are dealing with the same pointer, and to
2636 * ensure that driver structure is not going to disappear from under us
2637 * we take bus' drivers klist lock. The assumption that only registered
2638 * driver can be bound to a device, and to unregister a driver bus code
2639 * will take the same lock.
2640 */
dev_driver_uevent(const struct device * dev,struct kobj_uevent_env * env)2641 static void dev_driver_uevent(const struct device *dev, struct kobj_uevent_env *env)
2642 {
2643 struct subsys_private *sp = bus_to_subsys(dev->bus);
2644
2645 if (sp) {
2646 scoped_guard(spinlock, &sp->klist_drivers.k_lock) {
2647 struct device_driver *drv = READ_ONCE(dev->driver);
2648 if (drv)
2649 add_uevent_var(env, "DRIVER=%s", drv->name);
2650 }
2651
2652 subsys_put(sp);
2653 }
2654 }
2655
dev_uevent(const struct kobject * kobj,struct kobj_uevent_env * env)2656 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2657 {
2658 const struct device *dev = kobj_to_dev(kobj);
2659 int retval = 0;
2660
2661 /* add device node properties if present */
2662 if (MAJOR(dev->devt)) {
2663 const char *tmp;
2664 const char *name;
2665 umode_t mode = 0;
2666 kuid_t uid = GLOBAL_ROOT_UID;
2667 kgid_t gid = GLOBAL_ROOT_GID;
2668
2669 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2670 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2671 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2672 if (name) {
2673 add_uevent_var(env, "DEVNAME=%s", name);
2674 if (mode)
2675 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2676 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2677 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2678 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2679 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2680 kfree(tmp);
2681 }
2682 }
2683
2684 if (dev->type && dev->type->name)
2685 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2686
2687 /* Add "DRIVER=%s" variable if the device is bound to a driver */
2688 dev_driver_uevent(dev, env);
2689
2690 /* Add common DT information about the device */
2691 of_device_uevent(dev, env);
2692
2693 /* have the bus specific function add its stuff */
2694 if (dev->bus && dev->bus->uevent) {
2695 retval = dev->bus->uevent(dev, env);
2696 if (retval)
2697 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2698 dev_name(dev), __func__, retval);
2699 }
2700
2701 /* have the class specific function add its stuff */
2702 if (dev->class && dev->class->dev_uevent) {
2703 retval = dev->class->dev_uevent(dev, env);
2704 if (retval)
2705 pr_debug("device: '%s': %s: class uevent() "
2706 "returned %d\n", dev_name(dev),
2707 __func__, retval);
2708 }
2709
2710 /* have the device type specific function add its stuff */
2711 if (dev->type && dev->type->uevent) {
2712 retval = dev->type->uevent(dev, env);
2713 if (retval)
2714 pr_debug("device: '%s': %s: dev_type uevent() "
2715 "returned %d\n", dev_name(dev),
2716 __func__, retval);
2717 }
2718
2719 return retval;
2720 }
2721
2722 static const struct kset_uevent_ops device_uevent_ops = {
2723 .filter = dev_uevent_filter,
2724 .name = dev_uevent_name,
2725 .uevent = dev_uevent,
2726 };
2727
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)2728 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2729 char *buf)
2730 {
2731 struct kobject *top_kobj;
2732 struct kset *kset;
2733 struct kobj_uevent_env *env = NULL;
2734 int i;
2735 int len = 0;
2736 int retval;
2737
2738 /* search the kset, the device belongs to */
2739 top_kobj = &dev->kobj;
2740 while (!top_kobj->kset && top_kobj->parent)
2741 top_kobj = top_kobj->parent;
2742 if (!top_kobj->kset)
2743 goto out;
2744
2745 kset = top_kobj->kset;
2746 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2747 goto out;
2748
2749 /* respect filter */
2750 if (kset->uevent_ops && kset->uevent_ops->filter)
2751 if (!kset->uevent_ops->filter(&dev->kobj))
2752 goto out;
2753
2754 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2755 if (!env)
2756 return -ENOMEM;
2757
2758 /* let the kset specific function add its keys */
2759 retval = kset->uevent_ops->uevent(&dev->kobj, env);
2760 if (retval)
2761 goto out;
2762
2763 /* copy keys to file */
2764 for (i = 0; i < env->envp_idx; i++)
2765 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2766 out:
2767 kfree(env);
2768 return len;
2769 }
2770
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2771 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2772 const char *buf, size_t count)
2773 {
2774 int rc;
2775
2776 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2777
2778 if (rc) {
2779 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2780 return rc;
2781 }
2782
2783 return count;
2784 }
2785 static DEVICE_ATTR_RW(uevent);
2786
online_show(struct device * dev,struct device_attribute * attr,char * buf)2787 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2788 char *buf)
2789 {
2790 bool val;
2791
2792 device_lock(dev);
2793 val = !dev->offline;
2794 device_unlock(dev);
2795 return sysfs_emit(buf, "%u\n", val);
2796 }
2797
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2798 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2799 const char *buf, size_t count)
2800 {
2801 bool val;
2802 int ret;
2803
2804 ret = kstrtobool(buf, &val);
2805 if (ret < 0)
2806 return ret;
2807
2808 ret = lock_device_hotplug_sysfs();
2809 if (ret)
2810 return ret;
2811
2812 ret = val ? device_online(dev) : device_offline(dev);
2813 unlock_device_hotplug();
2814 return ret < 0 ? ret : count;
2815 }
2816 static DEVICE_ATTR_RW(online);
2817
removable_show(struct device * dev,struct device_attribute * attr,char * buf)2818 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2819 char *buf)
2820 {
2821 const char *loc;
2822
2823 switch (dev->removable) {
2824 case DEVICE_REMOVABLE:
2825 loc = "removable";
2826 break;
2827 case DEVICE_FIXED:
2828 loc = "fixed";
2829 break;
2830 default:
2831 loc = "unknown";
2832 }
2833 return sysfs_emit(buf, "%s\n", loc);
2834 }
2835 static DEVICE_ATTR_RO(removable);
2836
device_add_groups(struct device * dev,const struct attribute_group ** groups)2837 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2838 {
2839 return sysfs_create_groups(&dev->kobj, groups);
2840 }
2841 EXPORT_SYMBOL_GPL(device_add_groups);
2842
device_remove_groups(struct device * dev,const struct attribute_group ** groups)2843 void device_remove_groups(struct device *dev,
2844 const struct attribute_group **groups)
2845 {
2846 sysfs_remove_groups(&dev->kobj, groups);
2847 }
2848 EXPORT_SYMBOL_GPL(device_remove_groups);
2849
2850 union device_attr_group_devres {
2851 const struct attribute_group *group;
2852 const struct attribute_group **groups;
2853 };
2854
devm_attr_group_remove(struct device * dev,void * res)2855 static void devm_attr_group_remove(struct device *dev, void *res)
2856 {
2857 union device_attr_group_devres *devres = res;
2858 const struct attribute_group *group = devres->group;
2859
2860 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2861 sysfs_remove_group(&dev->kobj, group);
2862 }
2863
2864 /**
2865 * devm_device_add_group - given a device, create a managed attribute group
2866 * @dev: The device to create the group for
2867 * @grp: The attribute group to create
2868 *
2869 * This function creates a group for the first time. It will explicitly
2870 * warn and error if any of the attribute files being created already exist.
2871 *
2872 * Returns 0 on success or error code on failure.
2873 */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)2874 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2875 {
2876 union device_attr_group_devres *devres;
2877 int error;
2878
2879 devres = devres_alloc(devm_attr_group_remove,
2880 sizeof(*devres), GFP_KERNEL);
2881 if (!devres)
2882 return -ENOMEM;
2883
2884 error = sysfs_create_group(&dev->kobj, grp);
2885 if (error) {
2886 devres_free(devres);
2887 return error;
2888 }
2889
2890 devres->group = grp;
2891 devres_add(dev, devres);
2892 return 0;
2893 }
2894 EXPORT_SYMBOL_GPL(devm_device_add_group);
2895
device_add_attrs(struct device * dev)2896 static int device_add_attrs(struct device *dev)
2897 {
2898 const struct class *class = dev->class;
2899 const struct device_type *type = dev->type;
2900 int error;
2901
2902 if (class) {
2903 error = device_add_groups(dev, class->dev_groups);
2904 if (error)
2905 return error;
2906 }
2907
2908 if (type) {
2909 error = device_add_groups(dev, type->groups);
2910 if (error)
2911 goto err_remove_class_groups;
2912 }
2913
2914 error = device_add_groups(dev, dev->groups);
2915 if (error)
2916 goto err_remove_type_groups;
2917
2918 if (device_supports_offline(dev) && !dev->offline_disabled) {
2919 error = device_create_file(dev, &dev_attr_online);
2920 if (error)
2921 goto err_remove_dev_groups;
2922 }
2923
2924 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2925 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2926 if (error)
2927 goto err_remove_dev_online;
2928 }
2929
2930 if (dev_removable_is_valid(dev)) {
2931 error = device_create_file(dev, &dev_attr_removable);
2932 if (error)
2933 goto err_remove_dev_waiting_for_supplier;
2934 }
2935
2936 if (dev_add_physical_location(dev)) {
2937 error = device_add_group(dev,
2938 &dev_attr_physical_location_group);
2939 if (error)
2940 goto err_remove_dev_removable;
2941 }
2942
2943 return 0;
2944
2945 err_remove_dev_removable:
2946 device_remove_file(dev, &dev_attr_removable);
2947 err_remove_dev_waiting_for_supplier:
2948 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2949 err_remove_dev_online:
2950 device_remove_file(dev, &dev_attr_online);
2951 err_remove_dev_groups:
2952 device_remove_groups(dev, dev->groups);
2953 err_remove_type_groups:
2954 if (type)
2955 device_remove_groups(dev, type->groups);
2956 err_remove_class_groups:
2957 if (class)
2958 device_remove_groups(dev, class->dev_groups);
2959
2960 return error;
2961 }
2962
device_remove_attrs(struct device * dev)2963 static void device_remove_attrs(struct device *dev)
2964 {
2965 const struct class *class = dev->class;
2966 const struct device_type *type = dev->type;
2967
2968 if (dev->physical_location) {
2969 device_remove_group(dev, &dev_attr_physical_location_group);
2970 kfree(dev->physical_location);
2971 }
2972
2973 device_remove_file(dev, &dev_attr_removable);
2974 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2975 device_remove_file(dev, &dev_attr_online);
2976 device_remove_groups(dev, dev->groups);
2977
2978 if (type)
2979 device_remove_groups(dev, type->groups);
2980
2981 if (class)
2982 device_remove_groups(dev, class->dev_groups);
2983 }
2984
dev_show(struct device * dev,struct device_attribute * attr,char * buf)2985 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2986 char *buf)
2987 {
2988 return print_dev_t(buf, dev->devt);
2989 }
2990 static DEVICE_ATTR_RO(dev);
2991
2992 /* /sys/devices/ */
2993 struct kset *devices_kset;
2994
2995 /**
2996 * devices_kset_move_before - Move device in the devices_kset's list.
2997 * @deva: Device to move.
2998 * @devb: Device @deva should come before.
2999 */
devices_kset_move_before(struct device * deva,struct device * devb)3000 static void devices_kset_move_before(struct device *deva, struct device *devb)
3001 {
3002 if (!devices_kset)
3003 return;
3004 pr_debug("devices_kset: Moving %s before %s\n",
3005 dev_name(deva), dev_name(devb));
3006 spin_lock(&devices_kset->list_lock);
3007 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
3008 spin_unlock(&devices_kset->list_lock);
3009 }
3010
3011 /**
3012 * devices_kset_move_after - Move device in the devices_kset's list.
3013 * @deva: Device to move
3014 * @devb: Device @deva should come after.
3015 */
devices_kset_move_after(struct device * deva,struct device * devb)3016 static void devices_kset_move_after(struct device *deva, struct device *devb)
3017 {
3018 if (!devices_kset)
3019 return;
3020 pr_debug("devices_kset: Moving %s after %s\n",
3021 dev_name(deva), dev_name(devb));
3022 spin_lock(&devices_kset->list_lock);
3023 list_move(&deva->kobj.entry, &devb->kobj.entry);
3024 spin_unlock(&devices_kset->list_lock);
3025 }
3026
3027 /**
3028 * devices_kset_move_last - move the device to the end of devices_kset's list.
3029 * @dev: device to move
3030 */
devices_kset_move_last(struct device * dev)3031 void devices_kset_move_last(struct device *dev)
3032 {
3033 if (!devices_kset)
3034 return;
3035 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3036 spin_lock(&devices_kset->list_lock);
3037 list_move_tail(&dev->kobj.entry, &devices_kset->list);
3038 spin_unlock(&devices_kset->list_lock);
3039 }
3040
3041 /**
3042 * device_create_file - create sysfs attribute file for device.
3043 * @dev: device.
3044 * @attr: device attribute descriptor.
3045 */
device_create_file(struct device * dev,const struct device_attribute * attr)3046 int device_create_file(struct device *dev,
3047 const struct device_attribute *attr)
3048 {
3049 int error = 0;
3050
3051 if (dev) {
3052 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3053 "Attribute %s: write permission without 'store'\n",
3054 attr->attr.name);
3055 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3056 "Attribute %s: read permission without 'show'\n",
3057 attr->attr.name);
3058 error = sysfs_create_file(&dev->kobj, &attr->attr);
3059 }
3060
3061 return error;
3062 }
3063 EXPORT_SYMBOL_GPL(device_create_file);
3064
3065 /**
3066 * device_remove_file - remove sysfs attribute file.
3067 * @dev: device.
3068 * @attr: device attribute descriptor.
3069 */
device_remove_file(struct device * dev,const struct device_attribute * attr)3070 void device_remove_file(struct device *dev,
3071 const struct device_attribute *attr)
3072 {
3073 if (dev)
3074 sysfs_remove_file(&dev->kobj, &attr->attr);
3075 }
3076 EXPORT_SYMBOL_GPL(device_remove_file);
3077
3078 /**
3079 * device_remove_file_self - remove sysfs attribute file from its own method.
3080 * @dev: device.
3081 * @attr: device attribute descriptor.
3082 *
3083 * See kernfs_remove_self() for details.
3084 */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)3085 bool device_remove_file_self(struct device *dev,
3086 const struct device_attribute *attr)
3087 {
3088 if (dev)
3089 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3090 else
3091 return false;
3092 }
3093 EXPORT_SYMBOL_GPL(device_remove_file_self);
3094
3095 /**
3096 * device_create_bin_file - create sysfs binary attribute file for device.
3097 * @dev: device.
3098 * @attr: device binary attribute descriptor.
3099 */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)3100 int device_create_bin_file(struct device *dev,
3101 const struct bin_attribute *attr)
3102 {
3103 int error = -EINVAL;
3104 if (dev)
3105 error = sysfs_create_bin_file(&dev->kobj, attr);
3106 return error;
3107 }
3108 EXPORT_SYMBOL_GPL(device_create_bin_file);
3109
3110 /**
3111 * device_remove_bin_file - remove sysfs binary attribute file
3112 * @dev: device.
3113 * @attr: device binary attribute descriptor.
3114 */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)3115 void device_remove_bin_file(struct device *dev,
3116 const struct bin_attribute *attr)
3117 {
3118 if (dev)
3119 sysfs_remove_bin_file(&dev->kobj, attr);
3120 }
3121 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3122
klist_children_get(struct klist_node * n)3123 static void klist_children_get(struct klist_node *n)
3124 {
3125 struct device_private *p = to_device_private_parent(n);
3126 struct device *dev = p->device;
3127
3128 get_device(dev);
3129 }
3130
klist_children_put(struct klist_node * n)3131 static void klist_children_put(struct klist_node *n)
3132 {
3133 struct device_private *p = to_device_private_parent(n);
3134 struct device *dev = p->device;
3135
3136 put_device(dev);
3137 }
3138
3139 /**
3140 * device_initialize - init device structure.
3141 * @dev: device.
3142 *
3143 * This prepares the device for use by other layers by initializing
3144 * its fields.
3145 * It is the first half of device_register(), if called by
3146 * that function, though it can also be called separately, so one
3147 * may use @dev's fields. In particular, get_device()/put_device()
3148 * may be used for reference counting of @dev after calling this
3149 * function.
3150 *
3151 * All fields in @dev must be initialized by the caller to 0, except
3152 * for those explicitly set to some other value. The simplest
3153 * approach is to use kzalloc() to allocate the structure containing
3154 * @dev.
3155 *
3156 * NOTE: Use put_device() to give up your reference instead of freeing
3157 * @dev directly once you have called this function.
3158 */
device_initialize(struct device * dev)3159 void device_initialize(struct device *dev)
3160 {
3161 dev->kobj.kset = devices_kset;
3162 kobject_init(&dev->kobj, &device_ktype);
3163 INIT_LIST_HEAD(&dev->dma_pools);
3164 mutex_init(&dev->mutex);
3165 lockdep_set_novalidate_class(&dev->mutex);
3166 spin_lock_init(&dev->devres_lock);
3167 INIT_LIST_HEAD(&dev->devres_head);
3168 device_pm_init(dev);
3169 set_dev_node(dev, NUMA_NO_NODE);
3170 INIT_LIST_HEAD(&dev->links.consumers);
3171 INIT_LIST_HEAD(&dev->links.suppliers);
3172 INIT_LIST_HEAD(&dev->links.defer_sync);
3173 dev->links.status = DL_DEV_NO_DRIVER;
3174 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3175 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3176 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3177 dev->dma_coherent = dma_default_coherent;
3178 #endif
3179 swiotlb_dev_init(dev);
3180 }
3181 EXPORT_SYMBOL_GPL(device_initialize);
3182
virtual_device_parent(void)3183 struct kobject *virtual_device_parent(void)
3184 {
3185 static struct kobject *virtual_dir = NULL;
3186
3187 if (!virtual_dir)
3188 virtual_dir = kobject_create_and_add("virtual",
3189 &devices_kset->kobj);
3190
3191 return virtual_dir;
3192 }
3193
3194 struct class_dir {
3195 struct kobject kobj;
3196 const struct class *class;
3197 };
3198
3199 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3200
class_dir_release(struct kobject * kobj)3201 static void class_dir_release(struct kobject *kobj)
3202 {
3203 struct class_dir *dir = to_class_dir(kobj);
3204 kfree(dir);
3205 }
3206
3207 static const
class_dir_child_ns_type(const struct kobject * kobj)3208 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3209 {
3210 const struct class_dir *dir = to_class_dir(kobj);
3211 return dir->class->ns_type;
3212 }
3213
3214 static const struct kobj_type class_dir_ktype = {
3215 .release = class_dir_release,
3216 .sysfs_ops = &kobj_sysfs_ops,
3217 .child_ns_type = class_dir_child_ns_type
3218 };
3219
class_dir_create_and_add(struct subsys_private * sp,struct kobject * parent_kobj)3220 static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3221 struct kobject *parent_kobj)
3222 {
3223 struct class_dir *dir;
3224 int retval;
3225
3226 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3227 if (!dir)
3228 return ERR_PTR(-ENOMEM);
3229
3230 dir->class = sp->class;
3231 kobject_init(&dir->kobj, &class_dir_ktype);
3232
3233 dir->kobj.kset = &sp->glue_dirs;
3234
3235 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3236 if (retval < 0) {
3237 kobject_put(&dir->kobj);
3238 return ERR_PTR(retval);
3239 }
3240 return &dir->kobj;
3241 }
3242
3243 static DEFINE_MUTEX(gdp_mutex);
3244
get_device_parent(struct device * dev,struct device * parent)3245 static struct kobject *get_device_parent(struct device *dev,
3246 struct device *parent)
3247 {
3248 struct subsys_private *sp = class_to_subsys(dev->class);
3249 struct kobject *kobj = NULL;
3250
3251 if (sp) {
3252 struct kobject *parent_kobj;
3253 struct kobject *k;
3254
3255 /*
3256 * If we have no parent, we live in "virtual".
3257 * Class-devices with a non class-device as parent, live
3258 * in a "glue" directory to prevent namespace collisions.
3259 */
3260 if (parent == NULL)
3261 parent_kobj = virtual_device_parent();
3262 else if (parent->class && !dev->class->ns_type) {
3263 subsys_put(sp);
3264 return &parent->kobj;
3265 } else {
3266 parent_kobj = &parent->kobj;
3267 }
3268
3269 mutex_lock(&gdp_mutex);
3270
3271 /* find our class-directory at the parent and reference it */
3272 spin_lock(&sp->glue_dirs.list_lock);
3273 list_for_each_entry(k, &sp->glue_dirs.list, entry)
3274 if (k->parent == parent_kobj) {
3275 kobj = kobject_get(k);
3276 break;
3277 }
3278 spin_unlock(&sp->glue_dirs.list_lock);
3279 if (kobj) {
3280 mutex_unlock(&gdp_mutex);
3281 subsys_put(sp);
3282 return kobj;
3283 }
3284
3285 /* or create a new class-directory at the parent device */
3286 k = class_dir_create_and_add(sp, parent_kobj);
3287 /* do not emit an uevent for this simple "glue" directory */
3288 mutex_unlock(&gdp_mutex);
3289 subsys_put(sp);
3290 return k;
3291 }
3292
3293 /* subsystems can specify a default root directory for their devices */
3294 if (!parent && dev->bus) {
3295 struct device *dev_root = bus_get_dev_root(dev->bus);
3296
3297 if (dev_root) {
3298 kobj = &dev_root->kobj;
3299 put_device(dev_root);
3300 return kobj;
3301 }
3302 }
3303
3304 if (parent)
3305 return &parent->kobj;
3306 return NULL;
3307 }
3308
live_in_glue_dir(struct kobject * kobj,struct device * dev)3309 static inline bool live_in_glue_dir(struct kobject *kobj,
3310 struct device *dev)
3311 {
3312 struct subsys_private *sp;
3313 bool retval;
3314
3315 if (!kobj || !dev->class)
3316 return false;
3317
3318 sp = class_to_subsys(dev->class);
3319 if (!sp)
3320 return false;
3321
3322 if (kobj->kset == &sp->glue_dirs)
3323 retval = true;
3324 else
3325 retval = false;
3326
3327 subsys_put(sp);
3328 return retval;
3329 }
3330
get_glue_dir(struct device * dev)3331 static inline struct kobject *get_glue_dir(struct device *dev)
3332 {
3333 return dev->kobj.parent;
3334 }
3335
3336 /**
3337 * kobject_has_children - Returns whether a kobject has children.
3338 * @kobj: the object to test
3339 *
3340 * This will return whether a kobject has other kobjects as children.
3341 *
3342 * It does NOT account for the presence of attribute files, only sub
3343 * directories. It also assumes there is no concurrent addition or
3344 * removal of such children, and thus relies on external locking.
3345 */
kobject_has_children(struct kobject * kobj)3346 static inline bool kobject_has_children(struct kobject *kobj)
3347 {
3348 WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3349
3350 return kobj->sd && kobj->sd->dir.subdirs;
3351 }
3352
3353 /*
3354 * make sure cleaning up dir as the last step, we need to make
3355 * sure .release handler of kobject is run with holding the
3356 * global lock
3357 */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)3358 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3359 {
3360 unsigned int ref;
3361
3362 /* see if we live in a "glue" directory */
3363 if (!live_in_glue_dir(glue_dir, dev))
3364 return;
3365
3366 mutex_lock(&gdp_mutex);
3367 /**
3368 * There is a race condition between removing glue directory
3369 * and adding a new device under the glue directory.
3370 *
3371 * CPU1: CPU2:
3372 *
3373 * device_add()
3374 * get_device_parent()
3375 * class_dir_create_and_add()
3376 * kobject_add_internal()
3377 * create_dir() // create glue_dir
3378 *
3379 * device_add()
3380 * get_device_parent()
3381 * kobject_get() // get glue_dir
3382 *
3383 * device_del()
3384 * cleanup_glue_dir()
3385 * kobject_del(glue_dir)
3386 *
3387 * kobject_add()
3388 * kobject_add_internal()
3389 * create_dir() // in glue_dir
3390 * sysfs_create_dir_ns()
3391 * kernfs_create_dir_ns(sd)
3392 *
3393 * sysfs_remove_dir() // glue_dir->sd=NULL
3394 * sysfs_put() // free glue_dir->sd
3395 *
3396 * // sd is freed
3397 * kernfs_new_node(sd)
3398 * kernfs_get(glue_dir)
3399 * kernfs_add_one()
3400 * kernfs_put()
3401 *
3402 * Before CPU1 remove last child device under glue dir, if CPU2 add
3403 * a new device under glue dir, the glue_dir kobject reference count
3404 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3405 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3406 * and sysfs_put(). This result in glue_dir->sd is freed.
3407 *
3408 * Then the CPU2 will see a stale "empty" but still potentially used
3409 * glue dir around in kernfs_new_node().
3410 *
3411 * In order to avoid this happening, we also should make sure that
3412 * kernfs_node for glue_dir is released in CPU1 only when refcount
3413 * for glue_dir kobj is 1.
3414 */
3415 ref = kref_read(&glue_dir->kref);
3416 if (!kobject_has_children(glue_dir) && !--ref)
3417 kobject_del(glue_dir);
3418 kobject_put(glue_dir);
3419 mutex_unlock(&gdp_mutex);
3420 }
3421
device_add_class_symlinks(struct device * dev)3422 static int device_add_class_symlinks(struct device *dev)
3423 {
3424 struct device_node *of_node = dev_of_node(dev);
3425 struct subsys_private *sp;
3426 int error;
3427
3428 if (of_node) {
3429 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3430 if (error)
3431 dev_warn(dev, "Error %d creating of_node link\n",error);
3432 /* An error here doesn't warrant bringing down the device */
3433 }
3434
3435 sp = class_to_subsys(dev->class);
3436 if (!sp)
3437 return 0;
3438
3439 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3440 if (error)
3441 goto out_devnode;
3442
3443 if (dev->parent && device_is_not_partition(dev)) {
3444 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3445 "device");
3446 if (error)
3447 goto out_subsys;
3448 }
3449
3450 /* link in the class directory pointing to the device */
3451 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3452 if (error)
3453 goto out_device;
3454 goto exit;
3455
3456 out_device:
3457 sysfs_remove_link(&dev->kobj, "device");
3458 out_subsys:
3459 sysfs_remove_link(&dev->kobj, "subsystem");
3460 out_devnode:
3461 sysfs_remove_link(&dev->kobj, "of_node");
3462 exit:
3463 subsys_put(sp);
3464 return error;
3465 }
3466
device_remove_class_symlinks(struct device * dev)3467 static void device_remove_class_symlinks(struct device *dev)
3468 {
3469 struct subsys_private *sp = class_to_subsys(dev->class);
3470
3471 if (dev_of_node(dev))
3472 sysfs_remove_link(&dev->kobj, "of_node");
3473
3474 if (!sp)
3475 return;
3476
3477 if (dev->parent && device_is_not_partition(dev))
3478 sysfs_remove_link(&dev->kobj, "device");
3479 sysfs_remove_link(&dev->kobj, "subsystem");
3480 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3481 subsys_put(sp);
3482 }
3483
3484 /**
3485 * dev_set_name - set a device name
3486 * @dev: device
3487 * @fmt: format string for the device's name
3488 */
dev_set_name(struct device * dev,const char * fmt,...)3489 int dev_set_name(struct device *dev, const char *fmt, ...)
3490 {
3491 va_list vargs;
3492 int err;
3493
3494 va_start(vargs, fmt);
3495 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3496 va_end(vargs);
3497 return err;
3498 }
3499 EXPORT_SYMBOL_GPL(dev_set_name);
3500
3501 /* select a /sys/dev/ directory for the device */
device_to_dev_kobj(struct device * dev)3502 static struct kobject *device_to_dev_kobj(struct device *dev)
3503 {
3504 if (is_blockdev(dev))
3505 return sysfs_dev_block_kobj;
3506 else
3507 return sysfs_dev_char_kobj;
3508 }
3509
device_create_sys_dev_entry(struct device * dev)3510 static int device_create_sys_dev_entry(struct device *dev)
3511 {
3512 struct kobject *kobj = device_to_dev_kobj(dev);
3513 int error = 0;
3514 char devt_str[15];
3515
3516 if (kobj) {
3517 format_dev_t(devt_str, dev->devt);
3518 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3519 }
3520
3521 return error;
3522 }
3523
device_remove_sys_dev_entry(struct device * dev)3524 static void device_remove_sys_dev_entry(struct device *dev)
3525 {
3526 struct kobject *kobj = device_to_dev_kobj(dev);
3527 char devt_str[15];
3528
3529 if (kobj) {
3530 format_dev_t(devt_str, dev->devt);
3531 sysfs_remove_link(kobj, devt_str);
3532 }
3533 }
3534
device_private_init(struct device * dev)3535 static int device_private_init(struct device *dev)
3536 {
3537 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3538 if (!dev->p)
3539 return -ENOMEM;
3540 dev->p->device = dev;
3541 klist_init(&dev->p->klist_children, klist_children_get,
3542 klist_children_put);
3543 INIT_LIST_HEAD(&dev->p->deferred_probe);
3544 return 0;
3545 }
3546
3547 /**
3548 * device_add - add device to device hierarchy.
3549 * @dev: device.
3550 *
3551 * This is part 2 of device_register(), though may be called
3552 * separately _iff_ device_initialize() has been called separately.
3553 *
3554 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3555 * to the global and sibling lists for the device, then
3556 * adds it to the other relevant subsystems of the driver model.
3557 *
3558 * Do not call this routine or device_register() more than once for
3559 * any device structure. The driver model core is not designed to work
3560 * with devices that get unregistered and then spring back to life.
3561 * (Among other things, it's very hard to guarantee that all references
3562 * to the previous incarnation of @dev have been dropped.) Allocate
3563 * and register a fresh new struct device instead.
3564 *
3565 * NOTE: _Never_ directly free @dev after calling this function, even
3566 * if it returned an error! Always use put_device() to give up your
3567 * reference instead.
3568 *
3569 * Rule of thumb is: if device_add() succeeds, you should call
3570 * device_del() when you want to get rid of it. If device_add() has
3571 * *not* succeeded, use *only* put_device() to drop the reference
3572 * count.
3573 */
device_add(struct device * dev)3574 int device_add(struct device *dev)
3575 {
3576 struct subsys_private *sp;
3577 struct device *parent;
3578 struct kobject *kobj;
3579 struct class_interface *class_intf;
3580 int error = -EINVAL;
3581 struct kobject *glue_dir = NULL;
3582
3583 dev = get_device(dev);
3584 if (!dev)
3585 goto done;
3586
3587 if (!dev->p) {
3588 error = device_private_init(dev);
3589 if (error)
3590 goto done;
3591 }
3592
3593 /*
3594 * for statically allocated devices, which should all be converted
3595 * some day, we need to initialize the name. We prevent reading back
3596 * the name, and force the use of dev_name()
3597 */
3598 if (dev->init_name) {
3599 error = dev_set_name(dev, "%s", dev->init_name);
3600 dev->init_name = NULL;
3601 }
3602
3603 if (dev_name(dev))
3604 error = 0;
3605 /* subsystems can specify simple device enumeration */
3606 else if (dev->bus && dev->bus->dev_name)
3607 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3608 else
3609 error = -EINVAL;
3610 if (error)
3611 goto name_error;
3612
3613 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3614
3615 parent = get_device(dev->parent);
3616 kobj = get_device_parent(dev, parent);
3617 if (IS_ERR(kobj)) {
3618 error = PTR_ERR(kobj);
3619 goto parent_error;
3620 }
3621 if (kobj)
3622 dev->kobj.parent = kobj;
3623
3624 /* use parent numa_node */
3625 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3626 set_dev_node(dev, dev_to_node(parent));
3627
3628 /* first, register with generic layer. */
3629 /* we require the name to be set before, and pass NULL */
3630 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3631 if (error) {
3632 glue_dir = kobj;
3633 goto Error;
3634 }
3635
3636 /* notify platform of device entry */
3637 device_platform_notify(dev);
3638
3639 error = device_create_file(dev, &dev_attr_uevent);
3640 if (error)
3641 goto attrError;
3642
3643 error = device_add_class_symlinks(dev);
3644 if (error)
3645 goto SymlinkError;
3646 error = device_add_attrs(dev);
3647 if (error)
3648 goto AttrsError;
3649 error = bus_add_device(dev);
3650 if (error)
3651 goto BusError;
3652 error = dpm_sysfs_add(dev);
3653 if (error)
3654 goto DPMError;
3655 device_pm_add(dev);
3656
3657 if (MAJOR(dev->devt)) {
3658 error = device_create_file(dev, &dev_attr_dev);
3659 if (error)
3660 goto DevAttrError;
3661
3662 error = device_create_sys_dev_entry(dev);
3663 if (error)
3664 goto SysEntryError;
3665
3666 devtmpfs_create_node(dev);
3667 }
3668
3669 /* Notify clients of device addition. This call must come
3670 * after dpm_sysfs_add() and before kobject_uevent().
3671 */
3672 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3673 kobject_uevent(&dev->kobj, KOBJ_ADD);
3674
3675 /*
3676 * Check if any of the other devices (consumers) have been waiting for
3677 * this device (supplier) to be added so that they can create a device
3678 * link to it.
3679 *
3680 * This needs to happen after device_pm_add() because device_link_add()
3681 * requires the supplier be registered before it's called.
3682 *
3683 * But this also needs to happen before bus_probe_device() to make sure
3684 * waiting consumers can link to it before the driver is bound to the
3685 * device and the driver sync_state callback is called for this device.
3686 */
3687 if (dev->fwnode && !dev->fwnode->dev) {
3688 dev->fwnode->dev = dev;
3689 fw_devlink_link_device(dev);
3690 }
3691
3692 bus_probe_device(dev);
3693
3694 /*
3695 * If all driver registration is done and a newly added device doesn't
3696 * match with any driver, don't block its consumers from probing in
3697 * case the consumer device is able to operate without this supplier.
3698 */
3699 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3700 fw_devlink_unblock_consumers(dev);
3701
3702 if (parent)
3703 klist_add_tail(&dev->p->knode_parent,
3704 &parent->p->klist_children);
3705
3706 sp = class_to_subsys(dev->class);
3707 if (sp) {
3708 mutex_lock(&sp->mutex);
3709 /* tie the class to the device */
3710 klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3711
3712 /* notify any interfaces that the device is here */
3713 list_for_each_entry(class_intf, &sp->interfaces, node)
3714 if (class_intf->add_dev)
3715 class_intf->add_dev(dev);
3716 mutex_unlock(&sp->mutex);
3717 subsys_put(sp);
3718 }
3719 done:
3720 put_device(dev);
3721 return error;
3722 SysEntryError:
3723 if (MAJOR(dev->devt))
3724 device_remove_file(dev, &dev_attr_dev);
3725 DevAttrError:
3726 device_pm_remove(dev);
3727 dpm_sysfs_remove(dev);
3728 DPMError:
3729 device_set_driver(dev, NULL);
3730 bus_remove_device(dev);
3731 BusError:
3732 device_remove_attrs(dev);
3733 AttrsError:
3734 device_remove_class_symlinks(dev);
3735 SymlinkError:
3736 device_remove_file(dev, &dev_attr_uevent);
3737 attrError:
3738 device_platform_notify_remove(dev);
3739 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3740 glue_dir = get_glue_dir(dev);
3741 kobject_del(&dev->kobj);
3742 Error:
3743 cleanup_glue_dir(dev, glue_dir);
3744 parent_error:
3745 put_device(parent);
3746 name_error:
3747 kfree(dev->p);
3748 dev->p = NULL;
3749 goto done;
3750 }
3751 EXPORT_SYMBOL_GPL(device_add);
3752
3753 /**
3754 * device_register - register a device with the system.
3755 * @dev: pointer to the device structure
3756 *
3757 * This happens in two clean steps - initialize the device
3758 * and add it to the system. The two steps can be called
3759 * separately, but this is the easiest and most common.
3760 * I.e. you should only call the two helpers separately if
3761 * have a clearly defined need to use and refcount the device
3762 * before it is added to the hierarchy.
3763 *
3764 * For more information, see the kerneldoc for device_initialize()
3765 * and device_add().
3766 *
3767 * NOTE: _Never_ directly free @dev after calling this function, even
3768 * if it returned an error! Always use put_device() to give up the
3769 * reference initialized in this function instead.
3770 */
device_register(struct device * dev)3771 int device_register(struct device *dev)
3772 {
3773 device_initialize(dev);
3774 return device_add(dev);
3775 }
3776 EXPORT_SYMBOL_GPL(device_register);
3777
3778 /**
3779 * get_device - increment reference count for device.
3780 * @dev: device.
3781 *
3782 * This simply forwards the call to kobject_get(), though
3783 * we do take care to provide for the case that we get a NULL
3784 * pointer passed in.
3785 */
get_device(struct device * dev)3786 struct device *get_device(struct device *dev)
3787 {
3788 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3789 }
3790 EXPORT_SYMBOL_GPL(get_device);
3791
3792 /**
3793 * put_device - decrement reference count.
3794 * @dev: device in question.
3795 */
put_device(struct device * dev)3796 void put_device(struct device *dev)
3797 {
3798 /* might_sleep(); */
3799 if (dev)
3800 kobject_put(&dev->kobj);
3801 }
3802 EXPORT_SYMBOL_GPL(put_device);
3803
kill_device(struct device * dev)3804 bool kill_device(struct device *dev)
3805 {
3806 /*
3807 * Require the device lock and set the "dead" flag to guarantee that
3808 * the update behavior is consistent with the other bitfields near
3809 * it and that we cannot have an asynchronous probe routine trying
3810 * to run while we are tearing out the bus/class/sysfs from
3811 * underneath the device.
3812 */
3813 device_lock_assert(dev);
3814
3815 if (dev->p->dead)
3816 return false;
3817 dev->p->dead = true;
3818 return true;
3819 }
3820 EXPORT_SYMBOL_GPL(kill_device);
3821
3822 /**
3823 * device_del - delete device from system.
3824 * @dev: device.
3825 *
3826 * This is the first part of the device unregistration
3827 * sequence. This removes the device from the lists we control
3828 * from here, has it removed from the other driver model
3829 * subsystems it was added to in device_add(), and removes it
3830 * from the kobject hierarchy.
3831 *
3832 * NOTE: this should be called manually _iff_ device_add() was
3833 * also called manually.
3834 */
device_del(struct device * dev)3835 void device_del(struct device *dev)
3836 {
3837 struct subsys_private *sp;
3838 struct device *parent = dev->parent;
3839 struct kobject *glue_dir = NULL;
3840 struct class_interface *class_intf;
3841 unsigned int noio_flag;
3842
3843 device_lock(dev);
3844 kill_device(dev);
3845 device_unlock(dev);
3846
3847 if (dev->fwnode && dev->fwnode->dev == dev)
3848 dev->fwnode->dev = NULL;
3849
3850 /* Notify clients of device removal. This call must come
3851 * before dpm_sysfs_remove().
3852 */
3853 noio_flag = memalloc_noio_save();
3854 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3855
3856 dpm_sysfs_remove(dev);
3857 if (parent)
3858 klist_del(&dev->p->knode_parent);
3859 if (MAJOR(dev->devt)) {
3860 devtmpfs_delete_node(dev);
3861 device_remove_sys_dev_entry(dev);
3862 device_remove_file(dev, &dev_attr_dev);
3863 }
3864
3865 sp = class_to_subsys(dev->class);
3866 if (sp) {
3867 device_remove_class_symlinks(dev);
3868
3869 mutex_lock(&sp->mutex);
3870 /* notify any interfaces that the device is now gone */
3871 list_for_each_entry(class_intf, &sp->interfaces, node)
3872 if (class_intf->remove_dev)
3873 class_intf->remove_dev(dev);
3874 /* remove the device from the class list */
3875 klist_del(&dev->p->knode_class);
3876 mutex_unlock(&sp->mutex);
3877 subsys_put(sp);
3878 }
3879 device_remove_file(dev, &dev_attr_uevent);
3880 device_remove_attrs(dev);
3881 bus_remove_device(dev);
3882 device_pm_remove(dev);
3883 driver_deferred_probe_del(dev);
3884 device_platform_notify_remove(dev);
3885 device_links_purge(dev);
3886
3887 /*
3888 * If a device does not have a driver attached, we need to clean
3889 * up any managed resources. We do this in device_release(), but
3890 * it's never called (and we leak the device) if a managed
3891 * resource holds a reference to the device. So release all
3892 * managed resources here, like we do in driver_detach(). We
3893 * still need to do so again in device_release() in case someone
3894 * adds a new resource after this point, though.
3895 */
3896 devres_release_all(dev);
3897
3898 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3899 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3900 glue_dir = get_glue_dir(dev);
3901 kobject_del(&dev->kobj);
3902 cleanup_glue_dir(dev, glue_dir);
3903 memalloc_noio_restore(noio_flag);
3904 put_device(parent);
3905 }
3906 EXPORT_SYMBOL_GPL(device_del);
3907
3908 /**
3909 * device_unregister - unregister device from system.
3910 * @dev: device going away.
3911 *
3912 * We do this in two parts, like we do device_register(). First,
3913 * we remove it from all the subsystems with device_del(), then
3914 * we decrement the reference count via put_device(). If that
3915 * is the final reference count, the device will be cleaned up
3916 * via device_release() above. Otherwise, the structure will
3917 * stick around until the final reference to the device is dropped.
3918 */
device_unregister(struct device * dev)3919 void device_unregister(struct device *dev)
3920 {
3921 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3922 device_del(dev);
3923 put_device(dev);
3924 }
3925 EXPORT_SYMBOL_GPL(device_unregister);
3926
prev_device(struct klist_iter * i)3927 static struct device *prev_device(struct klist_iter *i)
3928 {
3929 struct klist_node *n = klist_prev(i);
3930 struct device *dev = NULL;
3931 struct device_private *p;
3932
3933 if (n) {
3934 p = to_device_private_parent(n);
3935 dev = p->device;
3936 }
3937 return dev;
3938 }
3939
next_device(struct klist_iter * i)3940 static struct device *next_device(struct klist_iter *i)
3941 {
3942 struct klist_node *n = klist_next(i);
3943 struct device *dev = NULL;
3944 struct device_private *p;
3945
3946 if (n) {
3947 p = to_device_private_parent(n);
3948 dev = p->device;
3949 }
3950 return dev;
3951 }
3952
3953 /**
3954 * device_get_devnode - path of device node file
3955 * @dev: device
3956 * @mode: returned file access mode
3957 * @uid: returned file owner
3958 * @gid: returned file group
3959 * @tmp: possibly allocated string
3960 *
3961 * Return the relative path of a possible device node.
3962 * Non-default names may need to allocate a memory to compose
3963 * a name. This memory is returned in tmp and needs to be
3964 * freed by the caller.
3965 */
device_get_devnode(const struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)3966 const char *device_get_devnode(const struct device *dev,
3967 umode_t *mode, kuid_t *uid, kgid_t *gid,
3968 const char **tmp)
3969 {
3970 char *s;
3971
3972 *tmp = NULL;
3973
3974 /* the device type may provide a specific name */
3975 if (dev->type && dev->type->devnode)
3976 *tmp = dev->type->devnode(dev, mode, uid, gid);
3977 if (*tmp)
3978 return *tmp;
3979
3980 /* the class may provide a specific name */
3981 if (dev->class && dev->class->devnode)
3982 *tmp = dev->class->devnode(dev, mode);
3983 if (*tmp)
3984 return *tmp;
3985
3986 /* return name without allocation, tmp == NULL */
3987 if (strchr(dev_name(dev), '!') == NULL)
3988 return dev_name(dev);
3989
3990 /* replace '!' in the name with '/' */
3991 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3992 if (!s)
3993 return NULL;
3994 return *tmp = s;
3995 }
3996
3997 /**
3998 * device_for_each_child - device child iterator.
3999 * @parent: parent struct device.
4000 * @fn: function to be called for each device.
4001 * @data: data for the callback.
4002 *
4003 * Iterate over @parent's child devices, and call @fn for each,
4004 * passing it @data.
4005 *
4006 * We check the return of @fn each time. If it returns anything
4007 * other than 0, we break out and return that value.
4008 */
device_for_each_child(struct device * parent,void * data,device_iter_t fn)4009 int device_for_each_child(struct device *parent, void *data,
4010 device_iter_t fn)
4011 {
4012 struct klist_iter i;
4013 struct device *child;
4014 int error = 0;
4015
4016 if (!parent || !parent->p)
4017 return 0;
4018
4019 klist_iter_init(&parent->p->klist_children, &i);
4020 while (!error && (child = next_device(&i)))
4021 error = fn(child, data);
4022 klist_iter_exit(&i);
4023 return error;
4024 }
4025 EXPORT_SYMBOL_GPL(device_for_each_child);
4026
4027 /**
4028 * device_for_each_child_reverse - device child iterator in reversed order.
4029 * @parent: parent struct device.
4030 * @fn: function to be called for each device.
4031 * @data: data for the callback.
4032 *
4033 * Iterate over @parent's child devices, and call @fn for each,
4034 * passing it @data.
4035 *
4036 * We check the return of @fn each time. If it returns anything
4037 * other than 0, we break out and return that value.
4038 */
device_for_each_child_reverse(struct device * parent,void * data,device_iter_t fn)4039 int device_for_each_child_reverse(struct device *parent, void *data,
4040 device_iter_t fn)
4041 {
4042 struct klist_iter i;
4043 struct device *child;
4044 int error = 0;
4045
4046 if (!parent || !parent->p)
4047 return 0;
4048
4049 klist_iter_init(&parent->p->klist_children, &i);
4050 while ((child = prev_device(&i)) && !error)
4051 error = fn(child, data);
4052 klist_iter_exit(&i);
4053 return error;
4054 }
4055 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4056
4057 /**
4058 * device_for_each_child_reverse_from - device child iterator in reversed order.
4059 * @parent: parent struct device.
4060 * @from: optional starting point in child list
4061 * @fn: function to be called for each device.
4062 * @data: data for the callback.
4063 *
4064 * Iterate over @parent's child devices, starting at @from, and call @fn
4065 * for each, passing it @data. This helper is identical to
4066 * device_for_each_child_reverse() when @from is NULL.
4067 *
4068 * @fn is checked each iteration. If it returns anything other than 0,
4069 * iteration stop and that value is returned to the caller of
4070 * device_for_each_child_reverse_from();
4071 */
device_for_each_child_reverse_from(struct device * parent,struct device * from,void * data,device_iter_t fn)4072 int device_for_each_child_reverse_from(struct device *parent,
4073 struct device *from, void *data,
4074 device_iter_t fn)
4075 {
4076 struct klist_iter i;
4077 struct device *child;
4078 int error = 0;
4079
4080 if (!parent || !parent->p)
4081 return 0;
4082
4083 klist_iter_init_node(&parent->p->klist_children, &i,
4084 (from ? &from->p->knode_parent : NULL));
4085 while ((child = prev_device(&i)) && !error)
4086 error = fn(child, data);
4087 klist_iter_exit(&i);
4088 return error;
4089 }
4090 EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from);
4091
4092 /**
4093 * device_find_child - device iterator for locating a particular device.
4094 * @parent: parent struct device
4095 * @match: Callback function to check device
4096 * @data: Data to pass to match function
4097 *
4098 * This is similar to the device_for_each_child() function above, but it
4099 * returns a reference to a device that is 'found' for later use, as
4100 * determined by the @match callback.
4101 *
4102 * The callback should return 0 if the device doesn't match and non-zero
4103 * if it does. If the callback returns non-zero and a reference to the
4104 * current device can be obtained, this function will return to the caller
4105 * and not iterate over any more devices.
4106 *
4107 * NOTE: you will need to drop the reference with put_device() after use.
4108 */
device_find_child(struct device * parent,const void * data,device_match_t match)4109 struct device *device_find_child(struct device *parent, const void *data,
4110 device_match_t match)
4111 {
4112 struct klist_iter i;
4113 struct device *child;
4114
4115 if (!parent || !parent->p)
4116 return NULL;
4117
4118 klist_iter_init(&parent->p->klist_children, &i);
4119 while ((child = next_device(&i))) {
4120 if (match(child, data)) {
4121 get_device(child);
4122 break;
4123 }
4124 }
4125 klist_iter_exit(&i);
4126 return child;
4127 }
4128 EXPORT_SYMBOL_GPL(device_find_child);
4129
devices_init(void)4130 int __init devices_init(void)
4131 {
4132 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4133 if (!devices_kset)
4134 return -ENOMEM;
4135 dev_kobj = kobject_create_and_add("dev", NULL);
4136 if (!dev_kobj)
4137 goto dev_kobj_err;
4138 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4139 if (!sysfs_dev_block_kobj)
4140 goto block_kobj_err;
4141 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4142 if (!sysfs_dev_char_kobj)
4143 goto char_kobj_err;
4144 device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
4145 if (!device_link_wq)
4146 goto wq_err;
4147
4148 return 0;
4149
4150 wq_err:
4151 kobject_put(sysfs_dev_char_kobj);
4152 char_kobj_err:
4153 kobject_put(sysfs_dev_block_kobj);
4154 block_kobj_err:
4155 kobject_put(dev_kobj);
4156 dev_kobj_err:
4157 kset_unregister(devices_kset);
4158 return -ENOMEM;
4159 }
4160
device_check_offline(struct device * dev,void * not_used)4161 static int device_check_offline(struct device *dev, void *not_used)
4162 {
4163 int ret;
4164
4165 ret = device_for_each_child(dev, NULL, device_check_offline);
4166 if (ret)
4167 return ret;
4168
4169 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4170 }
4171
4172 /**
4173 * device_offline - Prepare the device for hot-removal.
4174 * @dev: Device to be put offline.
4175 *
4176 * Execute the device bus type's .offline() callback, if present, to prepare
4177 * the device for a subsequent hot-removal. If that succeeds, the device must
4178 * not be used until either it is removed or its bus type's .online() callback
4179 * is executed.
4180 *
4181 * Call under device_hotplug_lock.
4182 */
device_offline(struct device * dev)4183 int device_offline(struct device *dev)
4184 {
4185 int ret;
4186
4187 if (dev->offline_disabled)
4188 return -EPERM;
4189
4190 ret = device_for_each_child(dev, NULL, device_check_offline);
4191 if (ret)
4192 return ret;
4193
4194 device_lock(dev);
4195 if (device_supports_offline(dev)) {
4196 if (dev->offline) {
4197 ret = 1;
4198 } else {
4199 ret = dev->bus->offline(dev);
4200 if (!ret) {
4201 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4202 dev->offline = true;
4203 }
4204 }
4205 }
4206 device_unlock(dev);
4207
4208 return ret;
4209 }
4210
4211 /**
4212 * device_online - Put the device back online after successful device_offline().
4213 * @dev: Device to be put back online.
4214 *
4215 * If device_offline() has been successfully executed for @dev, but the device
4216 * has not been removed subsequently, execute its bus type's .online() callback
4217 * to indicate that the device can be used again.
4218 *
4219 * Call under device_hotplug_lock.
4220 */
device_online(struct device * dev)4221 int device_online(struct device *dev)
4222 {
4223 int ret = 0;
4224
4225 device_lock(dev);
4226 if (device_supports_offline(dev)) {
4227 if (dev->offline) {
4228 ret = dev->bus->online(dev);
4229 if (!ret) {
4230 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4231 dev->offline = false;
4232 }
4233 } else {
4234 ret = 1;
4235 }
4236 }
4237 device_unlock(dev);
4238
4239 return ret;
4240 }
4241
4242 struct root_device {
4243 struct device dev;
4244 struct module *owner;
4245 };
4246
to_root_device(struct device * d)4247 static inline struct root_device *to_root_device(struct device *d)
4248 {
4249 return container_of(d, struct root_device, dev);
4250 }
4251
root_device_release(struct device * dev)4252 static void root_device_release(struct device *dev)
4253 {
4254 kfree(to_root_device(dev));
4255 }
4256
4257 /**
4258 * __root_device_register - allocate and register a root device
4259 * @name: root device name
4260 * @owner: owner module of the root device, usually THIS_MODULE
4261 *
4262 * This function allocates a root device and registers it
4263 * using device_register(). In order to free the returned
4264 * device, use root_device_unregister().
4265 *
4266 * Root devices are dummy devices which allow other devices
4267 * to be grouped under /sys/devices. Use this function to
4268 * allocate a root device and then use it as the parent of
4269 * any device which should appear under /sys/devices/{name}
4270 *
4271 * The /sys/devices/{name} directory will also contain a
4272 * 'module' symlink which points to the @owner directory
4273 * in sysfs.
4274 *
4275 * Returns &struct device pointer on success, or ERR_PTR() on error.
4276 *
4277 * Note: You probably want to use root_device_register().
4278 */
__root_device_register(const char * name,struct module * owner)4279 struct device *__root_device_register(const char *name, struct module *owner)
4280 {
4281 struct root_device *root;
4282 int err = -ENOMEM;
4283
4284 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4285 if (!root)
4286 return ERR_PTR(err);
4287
4288 err = dev_set_name(&root->dev, "%s", name);
4289 if (err) {
4290 kfree(root);
4291 return ERR_PTR(err);
4292 }
4293
4294 root->dev.release = root_device_release;
4295
4296 err = device_register(&root->dev);
4297 if (err) {
4298 put_device(&root->dev);
4299 return ERR_PTR(err);
4300 }
4301
4302 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
4303 if (owner) {
4304 struct module_kobject *mk = &owner->mkobj;
4305
4306 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4307 if (err) {
4308 device_unregister(&root->dev);
4309 return ERR_PTR(err);
4310 }
4311 root->owner = owner;
4312 }
4313 #endif
4314
4315 return &root->dev;
4316 }
4317 EXPORT_SYMBOL_GPL(__root_device_register);
4318
4319 /**
4320 * root_device_unregister - unregister and free a root device
4321 * @dev: device going away
4322 *
4323 * This function unregisters and cleans up a device that was created by
4324 * root_device_register().
4325 */
root_device_unregister(struct device * dev)4326 void root_device_unregister(struct device *dev)
4327 {
4328 struct root_device *root = to_root_device(dev);
4329
4330 if (root->owner)
4331 sysfs_remove_link(&root->dev.kobj, "module");
4332
4333 device_unregister(dev);
4334 }
4335 EXPORT_SYMBOL_GPL(root_device_unregister);
4336
4337
device_create_release(struct device * dev)4338 static void device_create_release(struct device *dev)
4339 {
4340 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4341 kfree(dev);
4342 }
4343
4344 static __printf(6, 0) struct device *
device_create_groups_vargs(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)4345 device_create_groups_vargs(const struct class *class, struct device *parent,
4346 dev_t devt, void *drvdata,
4347 const struct attribute_group **groups,
4348 const char *fmt, va_list args)
4349 {
4350 struct device *dev = NULL;
4351 int retval = -ENODEV;
4352
4353 if (IS_ERR_OR_NULL(class))
4354 goto error;
4355
4356 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4357 if (!dev) {
4358 retval = -ENOMEM;
4359 goto error;
4360 }
4361
4362 device_initialize(dev);
4363 dev->devt = devt;
4364 dev->class = class;
4365 dev->parent = parent;
4366 dev->groups = groups;
4367 dev->release = device_create_release;
4368 dev_set_drvdata(dev, drvdata);
4369
4370 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4371 if (retval)
4372 goto error;
4373
4374 retval = device_add(dev);
4375 if (retval)
4376 goto error;
4377
4378 return dev;
4379
4380 error:
4381 put_device(dev);
4382 return ERR_PTR(retval);
4383 }
4384
4385 /**
4386 * device_create - creates a device and registers it with sysfs
4387 * @class: pointer to the struct class that this device should be registered to
4388 * @parent: pointer to the parent struct device of this new device, if any
4389 * @devt: the dev_t for the char device to be added
4390 * @drvdata: the data to be added to the device for callbacks
4391 * @fmt: string for the device's name
4392 *
4393 * This function can be used by char device classes. A struct device
4394 * will be created in sysfs, registered to the specified class.
4395 *
4396 * A "dev" file will be created, showing the dev_t for the device, if
4397 * the dev_t is not 0,0.
4398 * If a pointer to a parent struct device is passed in, the newly created
4399 * struct device will be a child of that device in sysfs.
4400 * The pointer to the struct device will be returned from the call.
4401 * Any further sysfs files that might be required can be created using this
4402 * pointer.
4403 *
4404 * Returns &struct device pointer on success, or ERR_PTR() on error.
4405 */
device_create(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)4406 struct device *device_create(const struct class *class, struct device *parent,
4407 dev_t devt, void *drvdata, const char *fmt, ...)
4408 {
4409 va_list vargs;
4410 struct device *dev;
4411
4412 va_start(vargs, fmt);
4413 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4414 fmt, vargs);
4415 va_end(vargs);
4416 return dev;
4417 }
4418 EXPORT_SYMBOL_GPL(device_create);
4419
4420 /**
4421 * device_create_with_groups - creates a device and registers it with sysfs
4422 * @class: pointer to the struct class that this device should be registered to
4423 * @parent: pointer to the parent struct device of this new device, if any
4424 * @devt: the dev_t for the char device to be added
4425 * @drvdata: the data to be added to the device for callbacks
4426 * @groups: NULL-terminated list of attribute groups to be created
4427 * @fmt: string for the device's name
4428 *
4429 * This function can be used by char device classes. A struct device
4430 * will be created in sysfs, registered to the specified class.
4431 * Additional attributes specified in the groups parameter will also
4432 * be created automatically.
4433 *
4434 * A "dev" file will be created, showing the dev_t for the device, if
4435 * the dev_t is not 0,0.
4436 * If a pointer to a parent struct device is passed in, the newly created
4437 * struct device will be a child of that device in sysfs.
4438 * The pointer to the struct device will be returned from the call.
4439 * Any further sysfs files that might be required can be created using this
4440 * pointer.
4441 *
4442 * Returns &struct device pointer on success, or ERR_PTR() on error.
4443 */
device_create_with_groups(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)4444 struct device *device_create_with_groups(const struct class *class,
4445 struct device *parent, dev_t devt,
4446 void *drvdata,
4447 const struct attribute_group **groups,
4448 const char *fmt, ...)
4449 {
4450 va_list vargs;
4451 struct device *dev;
4452
4453 va_start(vargs, fmt);
4454 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4455 fmt, vargs);
4456 va_end(vargs);
4457 return dev;
4458 }
4459 EXPORT_SYMBOL_GPL(device_create_with_groups);
4460
4461 /**
4462 * device_destroy - removes a device that was created with device_create()
4463 * @class: pointer to the struct class that this device was registered with
4464 * @devt: the dev_t of the device that was previously registered
4465 *
4466 * This call unregisters and cleans up a device that was created with a
4467 * call to device_create().
4468 */
device_destroy(const struct class * class,dev_t devt)4469 void device_destroy(const struct class *class, dev_t devt)
4470 {
4471 struct device *dev;
4472
4473 dev = class_find_device_by_devt(class, devt);
4474 if (dev) {
4475 put_device(dev);
4476 device_unregister(dev);
4477 }
4478 }
4479 EXPORT_SYMBOL_GPL(device_destroy);
4480
4481 /**
4482 * device_rename - renames a device
4483 * @dev: the pointer to the struct device to be renamed
4484 * @new_name: the new name of the device
4485 *
4486 * It is the responsibility of the caller to provide mutual
4487 * exclusion between two different calls of device_rename
4488 * on the same device to ensure that new_name is valid and
4489 * won't conflict with other devices.
4490 *
4491 * Note: given that some subsystems (networking and infiniband) use this
4492 * function, with no immediate plans for this to change, we cannot assume or
4493 * require that this function not be called at all.
4494 *
4495 * However, if you're writing new code, do not call this function. The following
4496 * text from Kay Sievers offers some insight:
4497 *
4498 * Renaming devices is racy at many levels, symlinks and other stuff are not
4499 * replaced atomically, and you get a "move" uevent, but it's not easy to
4500 * connect the event to the old and new device. Device nodes are not renamed at
4501 * all, there isn't even support for that in the kernel now.
4502 *
4503 * In the meantime, during renaming, your target name might be taken by another
4504 * driver, creating conflicts. Or the old name is taken directly after you
4505 * renamed it -- then you get events for the same DEVPATH, before you even see
4506 * the "move" event. It's just a mess, and nothing new should ever rely on
4507 * kernel device renaming. Besides that, it's not even implemented now for
4508 * other things than (driver-core wise very simple) network devices.
4509 *
4510 * Make up a "real" name in the driver before you register anything, or add
4511 * some other attributes for userspace to find the device, or use udev to add
4512 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4513 * don't even want to get into that and try to implement the missing pieces in
4514 * the core. We really have other pieces to fix in the driver core mess. :)
4515 */
device_rename(struct device * dev,const char * new_name)4516 int device_rename(struct device *dev, const char *new_name)
4517 {
4518 struct subsys_private *sp = NULL;
4519 struct kobject *kobj = &dev->kobj;
4520 char *old_device_name = NULL;
4521 int error;
4522 bool is_link_renamed = false;
4523
4524 dev = get_device(dev);
4525 if (!dev)
4526 return -EINVAL;
4527
4528 dev_dbg(dev, "renaming to %s\n", new_name);
4529
4530 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4531 if (!old_device_name) {
4532 error = -ENOMEM;
4533 goto out;
4534 }
4535
4536 if (dev->class) {
4537 sp = class_to_subsys(dev->class);
4538
4539 if (!sp) {
4540 error = -EINVAL;
4541 goto out;
4542 }
4543
4544 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4545 new_name, kobject_namespace(kobj));
4546 if (error)
4547 goto out;
4548
4549 is_link_renamed = true;
4550 }
4551
4552 error = kobject_rename(kobj, new_name);
4553 out:
4554 if (error && is_link_renamed)
4555 sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name,
4556 old_device_name, kobject_namespace(kobj));
4557 subsys_put(sp);
4558
4559 put_device(dev);
4560
4561 kfree(old_device_name);
4562
4563 return error;
4564 }
4565 EXPORT_SYMBOL_GPL(device_rename);
4566
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)4567 static int device_move_class_links(struct device *dev,
4568 struct device *old_parent,
4569 struct device *new_parent)
4570 {
4571 int error = 0;
4572
4573 if (old_parent)
4574 sysfs_remove_link(&dev->kobj, "device");
4575 if (new_parent)
4576 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4577 "device");
4578 return error;
4579 }
4580
4581 /**
4582 * device_move - moves a device to a new parent
4583 * @dev: the pointer to the struct device to be moved
4584 * @new_parent: the new parent of the device (can be NULL)
4585 * @dpm_order: how to reorder the dpm_list
4586 */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)4587 int device_move(struct device *dev, struct device *new_parent,
4588 enum dpm_order dpm_order)
4589 {
4590 int error;
4591 struct device *old_parent;
4592 struct kobject *new_parent_kobj;
4593
4594 dev = get_device(dev);
4595 if (!dev)
4596 return -EINVAL;
4597
4598 device_pm_lock();
4599 new_parent = get_device(new_parent);
4600 new_parent_kobj = get_device_parent(dev, new_parent);
4601 if (IS_ERR(new_parent_kobj)) {
4602 error = PTR_ERR(new_parent_kobj);
4603 put_device(new_parent);
4604 goto out;
4605 }
4606
4607 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4608 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4609 error = kobject_move(&dev->kobj, new_parent_kobj);
4610 if (error) {
4611 cleanup_glue_dir(dev, new_parent_kobj);
4612 put_device(new_parent);
4613 goto out;
4614 }
4615 old_parent = dev->parent;
4616 dev->parent = new_parent;
4617 if (old_parent)
4618 klist_remove(&dev->p->knode_parent);
4619 if (new_parent) {
4620 klist_add_tail(&dev->p->knode_parent,
4621 &new_parent->p->klist_children);
4622 set_dev_node(dev, dev_to_node(new_parent));
4623 }
4624
4625 if (dev->class) {
4626 error = device_move_class_links(dev, old_parent, new_parent);
4627 if (error) {
4628 /* We ignore errors on cleanup since we're hosed anyway... */
4629 device_move_class_links(dev, new_parent, old_parent);
4630 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4631 if (new_parent)
4632 klist_remove(&dev->p->knode_parent);
4633 dev->parent = old_parent;
4634 if (old_parent) {
4635 klist_add_tail(&dev->p->knode_parent,
4636 &old_parent->p->klist_children);
4637 set_dev_node(dev, dev_to_node(old_parent));
4638 }
4639 }
4640 cleanup_glue_dir(dev, new_parent_kobj);
4641 put_device(new_parent);
4642 goto out;
4643 }
4644 }
4645 switch (dpm_order) {
4646 case DPM_ORDER_NONE:
4647 break;
4648 case DPM_ORDER_DEV_AFTER_PARENT:
4649 device_pm_move_after(dev, new_parent);
4650 devices_kset_move_after(dev, new_parent);
4651 break;
4652 case DPM_ORDER_PARENT_BEFORE_DEV:
4653 device_pm_move_before(new_parent, dev);
4654 devices_kset_move_before(new_parent, dev);
4655 break;
4656 case DPM_ORDER_DEV_LAST:
4657 device_pm_move_last(dev);
4658 devices_kset_move_last(dev);
4659 break;
4660 }
4661
4662 put_device(old_parent);
4663 out:
4664 device_pm_unlock();
4665 put_device(dev);
4666 return error;
4667 }
4668 EXPORT_SYMBOL_GPL(device_move);
4669
device_attrs_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4670 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4671 kgid_t kgid)
4672 {
4673 struct kobject *kobj = &dev->kobj;
4674 const struct class *class = dev->class;
4675 const struct device_type *type = dev->type;
4676 int error;
4677
4678 if (class) {
4679 /*
4680 * Change the device groups of the device class for @dev to
4681 * @kuid/@kgid.
4682 */
4683 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4684 kgid);
4685 if (error)
4686 return error;
4687 }
4688
4689 if (type) {
4690 /*
4691 * Change the device groups of the device type for @dev to
4692 * @kuid/@kgid.
4693 */
4694 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4695 kgid);
4696 if (error)
4697 return error;
4698 }
4699
4700 /* Change the device groups of @dev to @kuid/@kgid. */
4701 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4702 if (error)
4703 return error;
4704
4705 if (device_supports_offline(dev) && !dev->offline_disabled) {
4706 /* Change online device attributes of @dev to @kuid/@kgid. */
4707 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4708 kuid, kgid);
4709 if (error)
4710 return error;
4711 }
4712
4713 return 0;
4714 }
4715
4716 /**
4717 * device_change_owner - change the owner of an existing device.
4718 * @dev: device.
4719 * @kuid: new owner's kuid
4720 * @kgid: new owner's kgid
4721 *
4722 * This changes the owner of @dev and its corresponding sysfs entries to
4723 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4724 * core.
4725 *
4726 * Returns 0 on success or error code on failure.
4727 */
device_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4728 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4729 {
4730 int error;
4731 struct kobject *kobj = &dev->kobj;
4732 struct subsys_private *sp;
4733
4734 dev = get_device(dev);
4735 if (!dev)
4736 return -EINVAL;
4737
4738 /*
4739 * Change the kobject and the default attributes and groups of the
4740 * ktype associated with it to @kuid/@kgid.
4741 */
4742 error = sysfs_change_owner(kobj, kuid, kgid);
4743 if (error)
4744 goto out;
4745
4746 /*
4747 * Change the uevent file for @dev to the new owner. The uevent file
4748 * was created in a separate step when @dev got added and we mirror
4749 * that step here.
4750 */
4751 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4752 kgid);
4753 if (error)
4754 goto out;
4755
4756 /*
4757 * Change the device groups, the device groups associated with the
4758 * device class, and the groups associated with the device type of @dev
4759 * to @kuid/@kgid.
4760 */
4761 error = device_attrs_change_owner(dev, kuid, kgid);
4762 if (error)
4763 goto out;
4764
4765 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4766 if (error)
4767 goto out;
4768
4769 /*
4770 * Change the owner of the symlink located in the class directory of
4771 * the device class associated with @dev which points to the actual
4772 * directory entry for @dev to @kuid/@kgid. This ensures that the
4773 * symlink shows the same permissions as its target.
4774 */
4775 sp = class_to_subsys(dev->class);
4776 if (!sp) {
4777 error = -EINVAL;
4778 goto out;
4779 }
4780 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4781 subsys_put(sp);
4782
4783 out:
4784 put_device(dev);
4785 return error;
4786 }
4787 EXPORT_SYMBOL_GPL(device_change_owner);
4788
4789 /**
4790 * device_shutdown - call ->shutdown() on each device to shutdown.
4791 */
device_shutdown(void)4792 void device_shutdown(void)
4793 {
4794 struct device *dev, *parent;
4795
4796 wait_for_device_probe();
4797 device_block_probing();
4798
4799 cpufreq_suspend();
4800
4801 spin_lock(&devices_kset->list_lock);
4802 /*
4803 * Walk the devices list backward, shutting down each in turn.
4804 * Beware that device unplug events may also start pulling
4805 * devices offline, even as the system is shutting down.
4806 */
4807 while (!list_empty(&devices_kset->list)) {
4808 dev = list_entry(devices_kset->list.prev, struct device,
4809 kobj.entry);
4810
4811 /*
4812 * hold reference count of device's parent to
4813 * prevent it from being freed because parent's
4814 * lock is to be held
4815 */
4816 parent = get_device(dev->parent);
4817 get_device(dev);
4818 /*
4819 * Make sure the device is off the kset list, in the
4820 * event that dev->*->shutdown() doesn't remove it.
4821 */
4822 list_del_init(&dev->kobj.entry);
4823 spin_unlock(&devices_kset->list_lock);
4824
4825 /* hold lock to avoid race with probe/release */
4826 if (parent)
4827 device_lock(parent);
4828 device_lock(dev);
4829
4830 /* Don't allow any more runtime suspends */
4831 pm_runtime_get_noresume(dev);
4832 pm_runtime_barrier(dev);
4833
4834 if (dev->class && dev->class->shutdown_pre) {
4835 if (initcall_debug)
4836 dev_info(dev, "shutdown_pre\n");
4837 dev->class->shutdown_pre(dev);
4838 }
4839 if (dev->bus && dev->bus->shutdown) {
4840 if (initcall_debug)
4841 dev_info(dev, "shutdown\n");
4842 dev->bus->shutdown(dev);
4843 } else if (dev->driver && dev->driver->shutdown) {
4844 if (initcall_debug)
4845 dev_info(dev, "shutdown\n");
4846 dev->driver->shutdown(dev);
4847 }
4848
4849 device_unlock(dev);
4850 if (parent)
4851 device_unlock(parent);
4852
4853 put_device(dev);
4854 put_device(parent);
4855
4856 spin_lock(&devices_kset->list_lock);
4857 }
4858 spin_unlock(&devices_kset->list_lock);
4859 }
4860
4861 /*
4862 * Device logging functions
4863 */
4864
4865 #ifdef CONFIG_PRINTK
4866 static void
set_dev_info(const struct device * dev,struct dev_printk_info * dev_info)4867 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4868 {
4869 const char *subsys;
4870
4871 memset(dev_info, 0, sizeof(*dev_info));
4872
4873 if (dev->class)
4874 subsys = dev->class->name;
4875 else if (dev->bus)
4876 subsys = dev->bus->name;
4877 else
4878 return;
4879
4880 strscpy(dev_info->subsystem, subsys);
4881
4882 /*
4883 * Add device identifier DEVICE=:
4884 * b12:8 block dev_t
4885 * c127:3 char dev_t
4886 * n8 netdev ifindex
4887 * +sound:card0 subsystem:devname
4888 */
4889 if (MAJOR(dev->devt)) {
4890 char c;
4891
4892 if (strcmp(subsys, "block") == 0)
4893 c = 'b';
4894 else
4895 c = 'c';
4896
4897 snprintf(dev_info->device, sizeof(dev_info->device),
4898 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4899 } else if (strcmp(subsys, "net") == 0) {
4900 struct net_device *net = to_net_dev(dev);
4901
4902 snprintf(dev_info->device, sizeof(dev_info->device),
4903 "n%u", net->ifindex);
4904 } else {
4905 snprintf(dev_info->device, sizeof(dev_info->device),
4906 "+%s:%s", subsys, dev_name(dev));
4907 }
4908 }
4909
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)4910 int dev_vprintk_emit(int level, const struct device *dev,
4911 const char *fmt, va_list args)
4912 {
4913 struct dev_printk_info dev_info;
4914
4915 set_dev_info(dev, &dev_info);
4916
4917 return vprintk_emit(0, level, &dev_info, fmt, args);
4918 }
4919 EXPORT_SYMBOL(dev_vprintk_emit);
4920
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)4921 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4922 {
4923 va_list args;
4924 int r;
4925
4926 va_start(args, fmt);
4927
4928 r = dev_vprintk_emit(level, dev, fmt, args);
4929
4930 va_end(args);
4931
4932 return r;
4933 }
4934 EXPORT_SYMBOL(dev_printk_emit);
4935
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)4936 static void __dev_printk(const char *level, const struct device *dev,
4937 struct va_format *vaf)
4938 {
4939 if (dev)
4940 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4941 dev_driver_string(dev), dev_name(dev), vaf);
4942 else
4943 printk("%s(NULL device *): %pV", level, vaf);
4944 }
4945
_dev_printk(const char * level,const struct device * dev,const char * fmt,...)4946 void _dev_printk(const char *level, const struct device *dev,
4947 const char *fmt, ...)
4948 {
4949 struct va_format vaf;
4950 va_list args;
4951
4952 va_start(args, fmt);
4953
4954 vaf.fmt = fmt;
4955 vaf.va = &args;
4956
4957 __dev_printk(level, dev, &vaf);
4958
4959 va_end(args);
4960 }
4961 EXPORT_SYMBOL(_dev_printk);
4962
4963 #define define_dev_printk_level(func, kern_level) \
4964 void func(const struct device *dev, const char *fmt, ...) \
4965 { \
4966 struct va_format vaf; \
4967 va_list args; \
4968 \
4969 va_start(args, fmt); \
4970 \
4971 vaf.fmt = fmt; \
4972 vaf.va = &args; \
4973 \
4974 __dev_printk(kern_level, dev, &vaf); \
4975 \
4976 va_end(args); \
4977 } \
4978 EXPORT_SYMBOL(func);
4979
4980 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4981 define_dev_printk_level(_dev_alert, KERN_ALERT);
4982 define_dev_printk_level(_dev_crit, KERN_CRIT);
4983 define_dev_printk_level(_dev_err, KERN_ERR);
4984 define_dev_printk_level(_dev_warn, KERN_WARNING);
4985 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4986 define_dev_printk_level(_dev_info, KERN_INFO);
4987
4988 #endif
4989
__dev_probe_failed(const struct device * dev,int err,bool fatal,const char * fmt,va_list vargsp)4990 static void __dev_probe_failed(const struct device *dev, int err, bool fatal,
4991 const char *fmt, va_list vargsp)
4992 {
4993 struct va_format vaf;
4994 va_list vargs;
4995
4996 /*
4997 * On x86_64 and possibly on other architectures, va_list is actually a
4998 * size-1 array containing a structure. As a result, function parameter
4999 * vargsp decays from T[1] to T*, and &vargsp has type T** rather than
5000 * T(*)[1], which is expected by its assignment to vaf.va below.
5001 *
5002 * One standard way to solve this mess is by creating a copy in a local
5003 * variable of type va_list and then using a pointer to that local copy
5004 * instead, which is the approach employed here.
5005 */
5006 va_copy(vargs, vargsp);
5007
5008 vaf.fmt = fmt;
5009 vaf.va = &vargs;
5010
5011 switch (err) {
5012 case -EPROBE_DEFER:
5013 device_set_deferred_probe_reason(dev, &vaf);
5014 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5015 break;
5016
5017 case -ENOMEM:
5018 /* Don't print anything on -ENOMEM, there's already enough output */
5019 break;
5020
5021 default:
5022 /* Log fatal final failures as errors, otherwise produce warnings */
5023 if (fatal)
5024 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5025 else
5026 dev_warn(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5027 break;
5028 }
5029
5030 va_end(vargs);
5031 }
5032
5033 /**
5034 * dev_err_probe - probe error check and log helper
5035 * @dev: the pointer to the struct device
5036 * @err: error value to test
5037 * @fmt: printf-style format string
5038 * @...: arguments as specified in the format string
5039 *
5040 * This helper implements common pattern present in probe functions for error
5041 * checking: print debug or error message depending if the error value is
5042 * -EPROBE_DEFER and propagate error upwards.
5043 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5044 * checked later by reading devices_deferred debugfs attribute.
5045 * It replaces the following code sequence::
5046 *
5047 * if (err != -EPROBE_DEFER)
5048 * dev_err(dev, ...);
5049 * else
5050 * dev_dbg(dev, ...);
5051 * return err;
5052 *
5053 * with::
5054 *
5055 * return dev_err_probe(dev, err, ...);
5056 *
5057 * Using this helper in your probe function is totally fine even if @err
5058 * is known to never be -EPROBE_DEFER.
5059 * The benefit compared to a normal dev_err() is the standardized format
5060 * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5061 * instead of "-35"), and having the error code returned allows more
5062 * compact error paths.
5063 *
5064 * Returns @err.
5065 */
dev_err_probe(const struct device * dev,int err,const char * fmt,...)5066 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5067 {
5068 va_list vargs;
5069
5070 va_start(vargs, fmt);
5071
5072 /* Use dev_err() for logging when err doesn't equal -EPROBE_DEFER */
5073 __dev_probe_failed(dev, err, true, fmt, vargs);
5074
5075 va_end(vargs);
5076
5077 return err;
5078 }
5079 EXPORT_SYMBOL_GPL(dev_err_probe);
5080
5081 /**
5082 * dev_warn_probe - probe error check and log helper
5083 * @dev: the pointer to the struct device
5084 * @err: error value to test
5085 * @fmt: printf-style format string
5086 * @...: arguments as specified in the format string
5087 *
5088 * This helper implements common pattern present in probe functions for error
5089 * checking: print debug or warning message depending if the error value is
5090 * -EPROBE_DEFER and propagate error upwards.
5091 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5092 * checked later by reading devices_deferred debugfs attribute.
5093 * It replaces the following code sequence::
5094 *
5095 * if (err != -EPROBE_DEFER)
5096 * dev_warn(dev, ...);
5097 * else
5098 * dev_dbg(dev, ...);
5099 * return err;
5100 *
5101 * with::
5102 *
5103 * return dev_warn_probe(dev, err, ...);
5104 *
5105 * Using this helper in your probe function is totally fine even if @err
5106 * is known to never be -EPROBE_DEFER.
5107 * The benefit compared to a normal dev_warn() is the standardized format
5108 * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5109 * instead of "-35"), and having the error code returned allows more
5110 * compact error paths.
5111 *
5112 * Returns @err.
5113 */
dev_warn_probe(const struct device * dev,int err,const char * fmt,...)5114 int dev_warn_probe(const struct device *dev, int err, const char *fmt, ...)
5115 {
5116 va_list vargs;
5117
5118 va_start(vargs, fmt);
5119
5120 /* Use dev_warn() for logging when err doesn't equal -EPROBE_DEFER */
5121 __dev_probe_failed(dev, err, false, fmt, vargs);
5122
5123 va_end(vargs);
5124
5125 return err;
5126 }
5127 EXPORT_SYMBOL_GPL(dev_warn_probe);
5128
fwnode_is_primary(struct fwnode_handle * fwnode)5129 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5130 {
5131 return fwnode && !IS_ERR(fwnode->secondary);
5132 }
5133
5134 /**
5135 * set_primary_fwnode - Change the primary firmware node of a given device.
5136 * @dev: Device to handle.
5137 * @fwnode: New primary firmware node of the device.
5138 *
5139 * Set the device's firmware node pointer to @fwnode, but if a secondary
5140 * firmware node of the device is present, preserve it.
5141 *
5142 * Valid fwnode cases are:
5143 * - primary --> secondary --> -ENODEV
5144 * - primary --> NULL
5145 * - secondary --> -ENODEV
5146 * - NULL
5147 */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5148 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5149 {
5150 struct device *parent = dev->parent;
5151 struct fwnode_handle *fn = dev->fwnode;
5152
5153 if (fwnode) {
5154 if (fwnode_is_primary(fn))
5155 fn = fn->secondary;
5156
5157 if (fn) {
5158 WARN_ON(fwnode->secondary);
5159 fwnode->secondary = fn;
5160 }
5161 dev->fwnode = fwnode;
5162 } else {
5163 if (fwnode_is_primary(fn)) {
5164 dev->fwnode = fn->secondary;
5165
5166 /* Skip nullifying fn->secondary if the primary is shared */
5167 if (parent && fn == parent->fwnode)
5168 return;
5169
5170 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
5171 fn->secondary = NULL;
5172 } else {
5173 dev->fwnode = NULL;
5174 }
5175 }
5176 }
5177 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5178
5179 /**
5180 * set_secondary_fwnode - Change the secondary firmware node of a given device.
5181 * @dev: Device to handle.
5182 * @fwnode: New secondary firmware node of the device.
5183 *
5184 * If a primary firmware node of the device is present, set its secondary
5185 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
5186 * @fwnode.
5187 */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5188 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5189 {
5190 if (fwnode)
5191 fwnode->secondary = ERR_PTR(-ENODEV);
5192
5193 if (fwnode_is_primary(dev->fwnode))
5194 dev->fwnode->secondary = fwnode;
5195 else
5196 dev->fwnode = fwnode;
5197 }
5198 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5199
5200 /**
5201 * device_remove_of_node - Remove an of_node from a device
5202 * @dev: device whose device tree node is being removed
5203 */
device_remove_of_node(struct device * dev)5204 void device_remove_of_node(struct device *dev)
5205 {
5206 dev = get_device(dev);
5207 if (!dev)
5208 return;
5209
5210 if (!dev->of_node)
5211 goto end;
5212
5213 if (dev->fwnode == of_fwnode_handle(dev->of_node))
5214 dev->fwnode = NULL;
5215
5216 of_node_put(dev->of_node);
5217 dev->of_node = NULL;
5218
5219 end:
5220 put_device(dev);
5221 }
5222 EXPORT_SYMBOL_GPL(device_remove_of_node);
5223
5224 /**
5225 * device_add_of_node - Add an of_node to an existing device
5226 * @dev: device whose device tree node is being added
5227 * @of_node: of_node to add
5228 *
5229 * Return: 0 on success or error code on failure.
5230 */
device_add_of_node(struct device * dev,struct device_node * of_node)5231 int device_add_of_node(struct device *dev, struct device_node *of_node)
5232 {
5233 int ret;
5234
5235 if (!of_node)
5236 return -EINVAL;
5237
5238 dev = get_device(dev);
5239 if (!dev)
5240 return -EINVAL;
5241
5242 if (dev->of_node) {
5243 dev_err(dev, "Cannot replace node %pOF with %pOF\n",
5244 dev->of_node, of_node);
5245 ret = -EBUSY;
5246 goto end;
5247 }
5248
5249 dev->of_node = of_node_get(of_node);
5250
5251 if (!dev->fwnode)
5252 dev->fwnode = of_fwnode_handle(of_node);
5253
5254 ret = 0;
5255 end:
5256 put_device(dev);
5257 return ret;
5258 }
5259 EXPORT_SYMBOL_GPL(device_add_of_node);
5260
5261 /**
5262 * device_set_of_node_from_dev - reuse device-tree node of another device
5263 * @dev: device whose device-tree node is being set
5264 * @dev2: device whose device-tree node is being reused
5265 *
5266 * Takes another reference to the new device-tree node after first dropping
5267 * any reference held to the old node.
5268 */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)5269 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5270 {
5271 of_node_put(dev->of_node);
5272 dev->of_node = of_node_get(dev2->of_node);
5273 dev->of_node_reused = true;
5274 }
5275 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5276
device_set_node(struct device * dev,struct fwnode_handle * fwnode)5277 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5278 {
5279 dev->fwnode = fwnode;
5280 dev->of_node = to_of_node(fwnode);
5281 }
5282 EXPORT_SYMBOL_GPL(device_set_node);
5283
device_match_name(struct device * dev,const void * name)5284 int device_match_name(struct device *dev, const void *name)
5285 {
5286 return sysfs_streq(dev_name(dev), name);
5287 }
5288 EXPORT_SYMBOL_GPL(device_match_name);
5289
device_match_type(struct device * dev,const void * type)5290 int device_match_type(struct device *dev, const void *type)
5291 {
5292 return dev->type == type;
5293 }
5294 EXPORT_SYMBOL_GPL(device_match_type);
5295
device_match_of_node(struct device * dev,const void * np)5296 int device_match_of_node(struct device *dev, const void *np)
5297 {
5298 return np && dev->of_node == np;
5299 }
5300 EXPORT_SYMBOL_GPL(device_match_of_node);
5301
device_match_fwnode(struct device * dev,const void * fwnode)5302 int device_match_fwnode(struct device *dev, const void *fwnode)
5303 {
5304 return fwnode && dev_fwnode(dev) == fwnode;
5305 }
5306 EXPORT_SYMBOL_GPL(device_match_fwnode);
5307
device_match_devt(struct device * dev,const void * pdevt)5308 int device_match_devt(struct device *dev, const void *pdevt)
5309 {
5310 return dev->devt == *(dev_t *)pdevt;
5311 }
5312 EXPORT_SYMBOL_GPL(device_match_devt);
5313
device_match_acpi_dev(struct device * dev,const void * adev)5314 int device_match_acpi_dev(struct device *dev, const void *adev)
5315 {
5316 return adev && ACPI_COMPANION(dev) == adev;
5317 }
5318 EXPORT_SYMBOL(device_match_acpi_dev);
5319
device_match_acpi_handle(struct device * dev,const void * handle)5320 int device_match_acpi_handle(struct device *dev, const void *handle)
5321 {
5322 return handle && ACPI_HANDLE(dev) == handle;
5323 }
5324 EXPORT_SYMBOL(device_match_acpi_handle);
5325
device_match_any(struct device * dev,const void * unused)5326 int device_match_any(struct device *dev, const void *unused)
5327 {
5328 return 1;
5329 }
5330 EXPORT_SYMBOL_GPL(device_match_any);
5331