1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/blkdev.h> 13 #include <linux/cleanup.h> 14 #include <linux/cpufreq.h> 15 #include <linux/device.h> 16 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 17 #include <linux/err.h> 18 #include <linux/fwnode.h> 19 #include <linux/init.h> 20 #include <linux/kdev_t.h> 21 #include <linux/kstrtox.h> 22 #include <linux/module.h> 23 #include <linux/mutex.h> 24 #include <linux/netdevice.h> 25 #include <linux/notifier.h> 26 #include <linux/of.h> 27 #include <linux/of_device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/sched/mm.h> 30 #include <linux/sched/signal.h> 31 #include <linux/slab.h> 32 #include <linux/string_helpers.h> 33 #include <linux/swiotlb.h> 34 #include <linux/sysfs.h> 35 36 #include "base.h" 37 #include "physical_location.h" 38 #include "power/power.h" 39 40 /* Device links support. */ 41 static LIST_HEAD(deferred_sync); 42 static unsigned int defer_sync_state_count = 1; 43 static DEFINE_MUTEX(fwnode_link_lock); 44 static bool fw_devlink_is_permissive(void); 45 static void __fw_devlink_link_to_consumers(struct device *dev); 46 static bool fw_devlink_drv_reg_done; 47 static bool fw_devlink_best_effort; 48 static struct workqueue_struct *device_link_wq; 49 50 /** 51 * __fwnode_link_add - Create a link between two fwnode_handles. 52 * @con: Consumer end of the link. 53 * @sup: Supplier end of the link. 54 * @flags: Link flags. 55 * 56 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 57 * represents the detail that the firmware lists @sup fwnode as supplying a 58 * resource to @con. 59 * 60 * The driver core will use the fwnode link to create a device link between the 61 * two device objects corresponding to @con and @sup when they are created. The 62 * driver core will automatically delete the fwnode link between @con and @sup 63 * after doing that. 64 * 65 * Attempts to create duplicate links between the same pair of fwnode handles 66 * are ignored and there is no reference counting. 67 */ 68 static int __fwnode_link_add(struct fwnode_handle *con, 69 struct fwnode_handle *sup, u8 flags) 70 { 71 struct fwnode_link *link; 72 73 list_for_each_entry(link, &sup->consumers, s_hook) 74 if (link->consumer == con) { 75 link->flags |= flags; 76 return 0; 77 } 78 79 link = kzalloc(sizeof(*link), GFP_KERNEL); 80 if (!link) 81 return -ENOMEM; 82 83 link->supplier = sup; 84 INIT_LIST_HEAD(&link->s_hook); 85 link->consumer = con; 86 INIT_LIST_HEAD(&link->c_hook); 87 link->flags = flags; 88 89 list_add(&link->s_hook, &sup->consumers); 90 list_add(&link->c_hook, &con->suppliers); 91 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n", 92 con, sup); 93 94 return 0; 95 } 96 97 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup, 98 u8 flags) 99 { 100 guard(mutex)(&fwnode_link_lock); 101 102 return __fwnode_link_add(con, sup, flags); 103 } 104 105 /** 106 * __fwnode_link_del - Delete a link between two fwnode_handles. 107 * @link: the fwnode_link to be deleted 108 * 109 * The fwnode_link_lock needs to be held when this function is called. 110 */ 111 static void __fwnode_link_del(struct fwnode_link *link) 112 { 113 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n", 114 link->consumer, link->supplier); 115 list_del(&link->s_hook); 116 list_del(&link->c_hook); 117 kfree(link); 118 } 119 120 /** 121 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle. 122 * @link: the fwnode_link to be marked 123 * 124 * The fwnode_link_lock needs to be held when this function is called. 125 */ 126 static void __fwnode_link_cycle(struct fwnode_link *link) 127 { 128 pr_debug("%pfwf: cycle: depends on %pfwf\n", 129 link->consumer, link->supplier); 130 link->flags |= FWLINK_FLAG_CYCLE; 131 } 132 133 /** 134 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 135 * @fwnode: fwnode whose supplier links need to be deleted 136 * 137 * Deletes all supplier links connecting directly to @fwnode. 138 */ 139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 140 { 141 struct fwnode_link *link, *tmp; 142 143 guard(mutex)(&fwnode_link_lock); 144 145 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 146 __fwnode_link_del(link); 147 } 148 149 /** 150 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 151 * @fwnode: fwnode whose consumer links need to be deleted 152 * 153 * Deletes all consumer links connecting directly to @fwnode. 154 */ 155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 156 { 157 struct fwnode_link *link, *tmp; 158 159 guard(mutex)(&fwnode_link_lock); 160 161 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 162 __fwnode_link_del(link); 163 } 164 165 /** 166 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 167 * @fwnode: fwnode whose links needs to be deleted 168 * 169 * Deletes all links connecting directly to a fwnode. 170 */ 171 void fwnode_links_purge(struct fwnode_handle *fwnode) 172 { 173 fwnode_links_purge_suppliers(fwnode); 174 fwnode_links_purge_consumers(fwnode); 175 } 176 177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 178 { 179 struct fwnode_handle *child; 180 181 /* Don't purge consumer links of an added child */ 182 if (fwnode->dev) 183 return; 184 185 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 186 fwnode_links_purge_consumers(fwnode); 187 188 fwnode_for_each_available_child_node(fwnode, child) 189 fw_devlink_purge_absent_suppliers(child); 190 } 191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 192 193 /** 194 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle 195 * @from: move consumers away from this fwnode 196 * @to: move consumers to this fwnode 197 * 198 * Move all consumer links from @from fwnode to @to fwnode. 199 */ 200 static void __fwnode_links_move_consumers(struct fwnode_handle *from, 201 struct fwnode_handle *to) 202 { 203 struct fwnode_link *link, *tmp; 204 205 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) { 206 __fwnode_link_add(link->consumer, to, link->flags); 207 __fwnode_link_del(link); 208 } 209 } 210 211 /** 212 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers 213 * @fwnode: fwnode from which to pick up dangling consumers 214 * @new_sup: fwnode of new supplier 215 * 216 * If the @fwnode has a corresponding struct device and the device supports 217 * probing (that is, added to a bus), then we want to let fw_devlink create 218 * MANAGED device links to this device, so leave @fwnode and its descendant's 219 * fwnode links alone. 220 * 221 * Otherwise, move its consumers to the new supplier @new_sup. 222 */ 223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode, 224 struct fwnode_handle *new_sup) 225 { 226 struct fwnode_handle *child; 227 228 if (fwnode->dev && fwnode->dev->bus) 229 return; 230 231 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 232 __fwnode_links_move_consumers(fwnode, new_sup); 233 234 fwnode_for_each_available_child_node(fwnode, child) 235 __fw_devlink_pickup_dangling_consumers(child, new_sup); 236 } 237 238 static DEFINE_MUTEX(device_links_lock); 239 DEFINE_STATIC_SRCU(device_links_srcu); 240 241 static inline void device_links_write_lock(void) 242 { 243 mutex_lock(&device_links_lock); 244 } 245 246 static inline void device_links_write_unlock(void) 247 { 248 mutex_unlock(&device_links_lock); 249 } 250 251 int device_links_read_lock(void) __acquires(&device_links_srcu) 252 { 253 return srcu_read_lock(&device_links_srcu); 254 } 255 256 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 257 { 258 srcu_read_unlock(&device_links_srcu, idx); 259 } 260 261 int device_links_read_lock_held(void) 262 { 263 return srcu_read_lock_held(&device_links_srcu); 264 } 265 266 static void device_link_synchronize_removal(void) 267 { 268 synchronize_srcu(&device_links_srcu); 269 } 270 271 static void device_link_remove_from_lists(struct device_link *link) 272 { 273 list_del_rcu(&link->s_node); 274 list_del_rcu(&link->c_node); 275 } 276 277 static bool device_is_ancestor(struct device *dev, struct device *target) 278 { 279 while (target->parent) { 280 target = target->parent; 281 if (dev == target) 282 return true; 283 } 284 return false; 285 } 286 287 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \ 288 DL_FLAG_CYCLE | \ 289 DL_FLAG_MANAGED) 290 static inline bool device_link_flag_is_sync_state_only(u32 flags) 291 { 292 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY; 293 } 294 295 /** 296 * device_is_dependent - Check if one device depends on another one 297 * @dev: Device to check dependencies for. 298 * @target: Device to check against. 299 * 300 * Check if @target depends on @dev or any device dependent on it (its child or 301 * its consumer etc). Return 1 if that is the case or 0 otherwise. 302 */ 303 static int device_is_dependent(struct device *dev, void *target) 304 { 305 struct device_link *link; 306 int ret; 307 308 /* 309 * The "ancestors" check is needed to catch the case when the target 310 * device has not been completely initialized yet and it is still 311 * missing from the list of children of its parent device. 312 */ 313 if (dev == target || device_is_ancestor(dev, target)) 314 return 1; 315 316 ret = device_for_each_child(dev, target, device_is_dependent); 317 if (ret) 318 return ret; 319 320 list_for_each_entry(link, &dev->links.consumers, s_node) { 321 if (device_link_flag_is_sync_state_only(link->flags)) 322 continue; 323 324 if (link->consumer == target) 325 return 1; 326 327 ret = device_is_dependent(link->consumer, target); 328 if (ret) 329 break; 330 } 331 return ret; 332 } 333 334 static void device_link_init_status(struct device_link *link, 335 struct device *consumer, 336 struct device *supplier) 337 { 338 switch (supplier->links.status) { 339 case DL_DEV_PROBING: 340 switch (consumer->links.status) { 341 case DL_DEV_PROBING: 342 /* 343 * A consumer driver can create a link to a supplier 344 * that has not completed its probing yet as long as it 345 * knows that the supplier is already functional (for 346 * example, it has just acquired some resources from the 347 * supplier). 348 */ 349 link->status = DL_STATE_CONSUMER_PROBE; 350 break; 351 default: 352 link->status = DL_STATE_DORMANT; 353 break; 354 } 355 break; 356 case DL_DEV_DRIVER_BOUND: 357 switch (consumer->links.status) { 358 case DL_DEV_PROBING: 359 link->status = DL_STATE_CONSUMER_PROBE; 360 break; 361 case DL_DEV_DRIVER_BOUND: 362 link->status = DL_STATE_ACTIVE; 363 break; 364 default: 365 link->status = DL_STATE_AVAILABLE; 366 break; 367 } 368 break; 369 case DL_DEV_UNBINDING: 370 link->status = DL_STATE_SUPPLIER_UNBIND; 371 break; 372 default: 373 link->status = DL_STATE_DORMANT; 374 break; 375 } 376 } 377 378 static int device_reorder_to_tail(struct device *dev, void *not_used) 379 { 380 struct device_link *link; 381 382 /* 383 * Devices that have not been registered yet will be put to the ends 384 * of the lists during the registration, so skip them here. 385 */ 386 if (device_is_registered(dev)) 387 devices_kset_move_last(dev); 388 389 if (device_pm_initialized(dev)) 390 device_pm_move_last(dev); 391 392 device_for_each_child(dev, NULL, device_reorder_to_tail); 393 list_for_each_entry(link, &dev->links.consumers, s_node) { 394 if (device_link_flag_is_sync_state_only(link->flags)) 395 continue; 396 device_reorder_to_tail(link->consumer, NULL); 397 } 398 399 return 0; 400 } 401 402 /** 403 * device_pm_move_to_tail - Move set of devices to the end of device lists 404 * @dev: Device to move 405 * 406 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 407 * 408 * It moves the @dev along with all of its children and all of its consumers 409 * to the ends of the device_kset and dpm_list, recursively. 410 */ 411 void device_pm_move_to_tail(struct device *dev) 412 { 413 int idx; 414 415 idx = device_links_read_lock(); 416 device_pm_lock(); 417 device_reorder_to_tail(dev, NULL); 418 device_pm_unlock(); 419 device_links_read_unlock(idx); 420 } 421 422 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 423 424 static ssize_t status_show(struct device *dev, 425 struct device_attribute *attr, char *buf) 426 { 427 const char *output; 428 429 switch (to_devlink(dev)->status) { 430 case DL_STATE_NONE: 431 output = "not tracked"; 432 break; 433 case DL_STATE_DORMANT: 434 output = "dormant"; 435 break; 436 case DL_STATE_AVAILABLE: 437 output = "available"; 438 break; 439 case DL_STATE_CONSUMER_PROBE: 440 output = "consumer probing"; 441 break; 442 case DL_STATE_ACTIVE: 443 output = "active"; 444 break; 445 case DL_STATE_SUPPLIER_UNBIND: 446 output = "supplier unbinding"; 447 break; 448 default: 449 output = "unknown"; 450 break; 451 } 452 453 return sysfs_emit(buf, "%s\n", output); 454 } 455 static DEVICE_ATTR_RO(status); 456 457 static ssize_t auto_remove_on_show(struct device *dev, 458 struct device_attribute *attr, char *buf) 459 { 460 struct device_link *link = to_devlink(dev); 461 const char *output; 462 463 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 464 output = "supplier unbind"; 465 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 466 output = "consumer unbind"; 467 else 468 output = "never"; 469 470 return sysfs_emit(buf, "%s\n", output); 471 } 472 static DEVICE_ATTR_RO(auto_remove_on); 473 474 static ssize_t runtime_pm_show(struct device *dev, 475 struct device_attribute *attr, char *buf) 476 { 477 struct device_link *link = to_devlink(dev); 478 479 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 480 } 481 static DEVICE_ATTR_RO(runtime_pm); 482 483 static ssize_t sync_state_only_show(struct device *dev, 484 struct device_attribute *attr, char *buf) 485 { 486 struct device_link *link = to_devlink(dev); 487 488 return sysfs_emit(buf, "%d\n", 489 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 490 } 491 static DEVICE_ATTR_RO(sync_state_only); 492 493 static struct attribute *devlink_attrs[] = { 494 &dev_attr_status.attr, 495 &dev_attr_auto_remove_on.attr, 496 &dev_attr_runtime_pm.attr, 497 &dev_attr_sync_state_only.attr, 498 NULL, 499 }; 500 ATTRIBUTE_GROUPS(devlink); 501 502 static void device_link_release_fn(struct work_struct *work) 503 { 504 struct device_link *link = container_of(work, struct device_link, rm_work); 505 506 /* Ensure that all references to the link object have been dropped. */ 507 device_link_synchronize_removal(); 508 509 pm_runtime_release_supplier(link); 510 /* 511 * If supplier_preactivated is set, the link has been dropped between 512 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 513 * in __driver_probe_device(). In that case, drop the supplier's 514 * PM-runtime usage counter to remove the reference taken by 515 * pm_runtime_get_suppliers(). 516 */ 517 if (link->supplier_preactivated) 518 pm_runtime_put_noidle(link->supplier); 519 520 pm_request_idle(link->supplier); 521 522 put_device(link->consumer); 523 put_device(link->supplier); 524 kfree(link); 525 } 526 527 static void devlink_dev_release(struct device *dev) 528 { 529 struct device_link *link = to_devlink(dev); 530 531 INIT_WORK(&link->rm_work, device_link_release_fn); 532 /* 533 * It may take a while to complete this work because of the SRCU 534 * synchronization in device_link_release_fn() and if the consumer or 535 * supplier devices get deleted when it runs, so put it into the 536 * dedicated workqueue. 537 */ 538 queue_work(device_link_wq, &link->rm_work); 539 } 540 541 /** 542 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate 543 */ 544 void device_link_wait_removal(void) 545 { 546 /* 547 * devlink removal jobs are queued in the dedicated work queue. 548 * To be sure that all removal jobs are terminated, ensure that any 549 * scheduled work has run to completion. 550 */ 551 flush_workqueue(device_link_wq); 552 } 553 EXPORT_SYMBOL_GPL(device_link_wait_removal); 554 555 static const struct class devlink_class = { 556 .name = "devlink", 557 .dev_groups = devlink_groups, 558 .dev_release = devlink_dev_release, 559 }; 560 561 static int devlink_add_symlinks(struct device *dev) 562 { 563 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL; 564 int ret; 565 struct device_link *link = to_devlink(dev); 566 struct device *sup = link->supplier; 567 struct device *con = link->consumer; 568 569 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 570 if (ret) 571 goto out; 572 573 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 574 if (ret) 575 goto err_con; 576 577 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 578 if (!buf_con) { 579 ret = -ENOMEM; 580 goto err_con_dev; 581 } 582 583 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf_con); 584 if (ret) 585 goto err_con_dev; 586 587 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 588 if (!buf_sup) { 589 ret = -ENOMEM; 590 goto err_sup_dev; 591 } 592 593 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf_sup); 594 if (ret) 595 goto err_sup_dev; 596 597 goto out; 598 599 err_sup_dev: 600 sysfs_remove_link(&sup->kobj, buf_con); 601 err_con_dev: 602 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 603 err_con: 604 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 605 out: 606 return ret; 607 } 608 609 static void devlink_remove_symlinks(struct device *dev) 610 { 611 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL; 612 struct device_link *link = to_devlink(dev); 613 struct device *sup = link->supplier; 614 struct device *con = link->consumer; 615 616 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 617 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 618 619 if (device_is_registered(con)) { 620 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 621 if (!buf_sup) 622 goto out; 623 sysfs_remove_link(&con->kobj, buf_sup); 624 } 625 626 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 627 if (!buf_con) 628 goto out; 629 sysfs_remove_link(&sup->kobj, buf_con); 630 631 return; 632 633 out: 634 WARN(1, "Unable to properly free device link symlinks!\n"); 635 } 636 637 static struct class_interface devlink_class_intf = { 638 .class = &devlink_class, 639 .add_dev = devlink_add_symlinks, 640 .remove_dev = devlink_remove_symlinks, 641 }; 642 643 static int __init devlink_class_init(void) 644 { 645 int ret; 646 647 ret = class_register(&devlink_class); 648 if (ret) 649 return ret; 650 651 ret = class_interface_register(&devlink_class_intf); 652 if (ret) 653 class_unregister(&devlink_class); 654 655 return ret; 656 } 657 postcore_initcall(devlink_class_init); 658 659 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 660 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 661 DL_FLAG_AUTOPROBE_CONSUMER | \ 662 DL_FLAG_SYNC_STATE_ONLY | \ 663 DL_FLAG_INFERRED | \ 664 DL_FLAG_CYCLE) 665 666 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 667 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 668 669 /** 670 * device_link_add - Create a link between two devices. 671 * @consumer: Consumer end of the link. 672 * @supplier: Supplier end of the link. 673 * @flags: Link flags. 674 * 675 * Return: On success, a device_link struct will be returned. 676 * On error or invalid flag settings, NULL will be returned. 677 * 678 * The caller is responsible for the proper synchronization of the link creation 679 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 680 * runtime PM framework to take the link into account. Second, if the 681 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 682 * be forced into the active meta state and reference-counted upon the creation 683 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 684 * ignored. 685 * 686 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 687 * expected to release the link returned by it directly with the help of either 688 * device_link_del() or device_link_remove(). 689 * 690 * If that flag is not set, however, the caller of this function is handing the 691 * management of the link over to the driver core entirely and its return value 692 * can only be used to check whether or not the link is present. In that case, 693 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 694 * flags can be used to indicate to the driver core when the link can be safely 695 * deleted. Namely, setting one of them in @flags indicates to the driver core 696 * that the link is not going to be used (by the given caller of this function) 697 * after unbinding the consumer or supplier driver, respectively, from its 698 * device, so the link can be deleted at that point. If none of them is set, 699 * the link will be maintained until one of the devices pointed to by it (either 700 * the consumer or the supplier) is unregistered. 701 * 702 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 703 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 704 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 705 * be used to request the driver core to automatically probe for a consumer 706 * driver after successfully binding a driver to the supplier device. 707 * 708 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 709 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 710 * the same time is invalid and will cause NULL to be returned upfront. 711 * However, if a device link between the given @consumer and @supplier pair 712 * exists already when this function is called for them, the existing link will 713 * be returned regardless of its current type and status (the link's flags may 714 * be modified then). The caller of this function is then expected to treat 715 * the link as though it has just been created, so (in particular) if 716 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 717 * explicitly when not needed any more (as stated above). 718 * 719 * A side effect of the link creation is re-ordering of dpm_list and the 720 * devices_kset list by moving the consumer device and all devices depending 721 * on it to the ends of these lists (that does not happen to devices that have 722 * not been registered when this function is called). 723 * 724 * The supplier device is required to be registered when this function is called 725 * and NULL will be returned if that is not the case. The consumer device need 726 * not be registered, however. 727 */ 728 struct device_link *device_link_add(struct device *consumer, 729 struct device *supplier, u32 flags) 730 { 731 struct device_link *link; 732 733 if (!consumer || !supplier || consumer == supplier || 734 flags & ~DL_ADD_VALID_FLAGS || 735 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 736 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 737 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 738 DL_FLAG_AUTOREMOVE_SUPPLIER))) 739 return NULL; 740 741 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 742 if (pm_runtime_get_sync(supplier) < 0) { 743 pm_runtime_put_noidle(supplier); 744 return NULL; 745 } 746 } 747 748 if (!(flags & DL_FLAG_STATELESS)) 749 flags |= DL_FLAG_MANAGED; 750 751 if (flags & DL_FLAG_SYNC_STATE_ONLY && 752 !device_link_flag_is_sync_state_only(flags)) 753 return NULL; 754 755 device_links_write_lock(); 756 device_pm_lock(); 757 758 /* 759 * If the supplier has not been fully registered yet or there is a 760 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 761 * the supplier already in the graph, return NULL. If the link is a 762 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 763 * because it only affects sync_state() callbacks. 764 */ 765 if (!device_pm_initialized(supplier) 766 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 767 device_is_dependent(consumer, supplier))) { 768 link = NULL; 769 goto out; 770 } 771 772 /* 773 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 774 * So, only create it if the consumer hasn't probed yet. 775 */ 776 if (flags & DL_FLAG_SYNC_STATE_ONLY && 777 consumer->links.status != DL_DEV_NO_DRIVER && 778 consumer->links.status != DL_DEV_PROBING) { 779 link = NULL; 780 goto out; 781 } 782 783 /* 784 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 785 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 786 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 787 */ 788 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 789 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 790 791 list_for_each_entry(link, &supplier->links.consumers, s_node) { 792 if (link->consumer != consumer) 793 continue; 794 795 if (link->flags & DL_FLAG_INFERRED && 796 !(flags & DL_FLAG_INFERRED)) 797 link->flags &= ~DL_FLAG_INFERRED; 798 799 if (flags & DL_FLAG_PM_RUNTIME) { 800 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 801 pm_runtime_new_link(consumer); 802 link->flags |= DL_FLAG_PM_RUNTIME; 803 } 804 if (flags & DL_FLAG_RPM_ACTIVE) 805 refcount_inc(&link->rpm_active); 806 } 807 808 if (flags & DL_FLAG_STATELESS) { 809 kref_get(&link->kref); 810 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 811 !(link->flags & DL_FLAG_STATELESS)) { 812 link->flags |= DL_FLAG_STATELESS; 813 goto reorder; 814 } else { 815 link->flags |= DL_FLAG_STATELESS; 816 goto out; 817 } 818 } 819 820 /* 821 * If the life time of the link following from the new flags is 822 * longer than indicated by the flags of the existing link, 823 * update the existing link to stay around longer. 824 */ 825 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 826 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 827 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 828 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 829 } 830 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 831 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 832 DL_FLAG_AUTOREMOVE_SUPPLIER); 833 } 834 if (!(link->flags & DL_FLAG_MANAGED)) { 835 kref_get(&link->kref); 836 link->flags |= DL_FLAG_MANAGED; 837 device_link_init_status(link, consumer, supplier); 838 } 839 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 840 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 841 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 842 goto reorder; 843 } 844 845 goto out; 846 } 847 848 link = kzalloc(sizeof(*link), GFP_KERNEL); 849 if (!link) 850 goto out; 851 852 refcount_set(&link->rpm_active, 1); 853 854 get_device(supplier); 855 link->supplier = supplier; 856 INIT_LIST_HEAD(&link->s_node); 857 get_device(consumer); 858 link->consumer = consumer; 859 INIT_LIST_HEAD(&link->c_node); 860 link->flags = flags; 861 kref_init(&link->kref); 862 863 link->link_dev.class = &devlink_class; 864 device_set_pm_not_required(&link->link_dev); 865 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 866 dev_bus_name(supplier), dev_name(supplier), 867 dev_bus_name(consumer), dev_name(consumer)); 868 if (device_register(&link->link_dev)) { 869 put_device(&link->link_dev); 870 link = NULL; 871 goto out; 872 } 873 874 if (flags & DL_FLAG_PM_RUNTIME) { 875 if (flags & DL_FLAG_RPM_ACTIVE) 876 refcount_inc(&link->rpm_active); 877 878 pm_runtime_new_link(consumer); 879 } 880 881 /* Determine the initial link state. */ 882 if (flags & DL_FLAG_STATELESS) 883 link->status = DL_STATE_NONE; 884 else 885 device_link_init_status(link, consumer, supplier); 886 887 /* 888 * Some callers expect the link creation during consumer driver probe to 889 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 890 */ 891 if (link->status == DL_STATE_CONSUMER_PROBE && 892 flags & DL_FLAG_PM_RUNTIME) 893 pm_runtime_resume(supplier); 894 895 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 896 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 897 898 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 899 dev_dbg(consumer, 900 "Linked as a sync state only consumer to %s\n", 901 dev_name(supplier)); 902 goto out; 903 } 904 905 reorder: 906 /* 907 * Move the consumer and all of the devices depending on it to the end 908 * of dpm_list and the devices_kset list. 909 * 910 * It is necessary to hold dpm_list locked throughout all that or else 911 * we may end up suspending with a wrong ordering of it. 912 */ 913 device_reorder_to_tail(consumer, NULL); 914 915 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 916 917 out: 918 device_pm_unlock(); 919 device_links_write_unlock(); 920 921 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 922 pm_runtime_put(supplier); 923 924 return link; 925 } 926 EXPORT_SYMBOL_GPL(device_link_add); 927 928 static void __device_link_del(struct kref *kref) 929 { 930 struct device_link *link = container_of(kref, struct device_link, kref); 931 932 dev_dbg(link->consumer, "Dropping the link to %s\n", 933 dev_name(link->supplier)); 934 935 pm_runtime_drop_link(link); 936 937 device_link_remove_from_lists(link); 938 device_unregister(&link->link_dev); 939 } 940 941 static void device_link_put_kref(struct device_link *link) 942 { 943 if (link->flags & DL_FLAG_STATELESS) 944 kref_put(&link->kref, __device_link_del); 945 else if (!device_is_registered(link->consumer)) 946 __device_link_del(&link->kref); 947 else 948 WARN(1, "Unable to drop a managed device link reference\n"); 949 } 950 951 /** 952 * device_link_del - Delete a stateless link between two devices. 953 * @link: Device link to delete. 954 * 955 * The caller must ensure proper synchronization of this function with runtime 956 * PM. If the link was added multiple times, it needs to be deleted as often. 957 * Care is required for hotplugged devices: Their links are purged on removal 958 * and calling device_link_del() is then no longer allowed. 959 */ 960 void device_link_del(struct device_link *link) 961 { 962 device_links_write_lock(); 963 device_link_put_kref(link); 964 device_links_write_unlock(); 965 } 966 EXPORT_SYMBOL_GPL(device_link_del); 967 968 /** 969 * device_link_remove - Delete a stateless link between two devices. 970 * @consumer: Consumer end of the link. 971 * @supplier: Supplier end of the link. 972 * 973 * The caller must ensure proper synchronization of this function with runtime 974 * PM. 975 */ 976 void device_link_remove(void *consumer, struct device *supplier) 977 { 978 struct device_link *link; 979 980 if (WARN_ON(consumer == supplier)) 981 return; 982 983 device_links_write_lock(); 984 985 list_for_each_entry(link, &supplier->links.consumers, s_node) { 986 if (link->consumer == consumer) { 987 device_link_put_kref(link); 988 break; 989 } 990 } 991 992 device_links_write_unlock(); 993 } 994 EXPORT_SYMBOL_GPL(device_link_remove); 995 996 static void device_links_missing_supplier(struct device *dev) 997 { 998 struct device_link *link; 999 1000 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1001 if (link->status != DL_STATE_CONSUMER_PROBE) 1002 continue; 1003 1004 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1005 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1006 } else { 1007 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1008 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1009 } 1010 } 1011 } 1012 1013 static bool dev_is_best_effort(struct device *dev) 1014 { 1015 return (fw_devlink_best_effort && dev->can_match) || 1016 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 1017 } 1018 1019 static struct fwnode_handle *fwnode_links_check_suppliers( 1020 struct fwnode_handle *fwnode) 1021 { 1022 struct fwnode_link *link; 1023 1024 if (!fwnode || fw_devlink_is_permissive()) 1025 return NULL; 1026 1027 list_for_each_entry(link, &fwnode->suppliers, c_hook) 1028 if (!(link->flags & 1029 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE))) 1030 return link->supplier; 1031 1032 return NULL; 1033 } 1034 1035 /** 1036 * device_links_check_suppliers - Check presence of supplier drivers. 1037 * @dev: Consumer device. 1038 * 1039 * Check links from this device to any suppliers. Walk the list of the device's 1040 * links to suppliers and see if all of them are available. If not, simply 1041 * return -EPROBE_DEFER. 1042 * 1043 * We need to guarantee that the supplier will not go away after the check has 1044 * been positive here. It only can go away in __device_release_driver() and 1045 * that function checks the device's links to consumers. This means we need to 1046 * mark the link as "consumer probe in progress" to make the supplier removal 1047 * wait for us to complete (or bad things may happen). 1048 * 1049 * Links without the DL_FLAG_MANAGED flag set are ignored. 1050 */ 1051 int device_links_check_suppliers(struct device *dev) 1052 { 1053 struct device_link *link; 1054 int ret = 0, fwnode_ret = 0; 1055 struct fwnode_handle *sup_fw; 1056 1057 /* 1058 * Device waiting for supplier to become available is not allowed to 1059 * probe. 1060 */ 1061 scoped_guard(mutex, &fwnode_link_lock) { 1062 sup_fw = fwnode_links_check_suppliers(dev->fwnode); 1063 if (sup_fw) { 1064 if (dev_is_best_effort(dev)) 1065 fwnode_ret = -EAGAIN; 1066 else 1067 return dev_err_probe(dev, -EPROBE_DEFER, 1068 "wait for supplier %pfwf\n", sup_fw); 1069 } 1070 } 1071 1072 device_links_write_lock(); 1073 1074 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1075 if (!(link->flags & DL_FLAG_MANAGED)) 1076 continue; 1077 1078 if (link->status != DL_STATE_AVAILABLE && 1079 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1080 1081 if (dev_is_best_effort(dev) && 1082 link->flags & DL_FLAG_INFERRED && 1083 !link->supplier->can_match) { 1084 ret = -EAGAIN; 1085 continue; 1086 } 1087 1088 device_links_missing_supplier(dev); 1089 ret = dev_err_probe(dev, -EPROBE_DEFER, 1090 "supplier %s not ready\n", dev_name(link->supplier)); 1091 break; 1092 } 1093 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1094 } 1095 dev->links.status = DL_DEV_PROBING; 1096 1097 device_links_write_unlock(); 1098 1099 return ret ? ret : fwnode_ret; 1100 } 1101 1102 /** 1103 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1104 * @dev: Device to call sync_state() on 1105 * @list: List head to queue the @dev on 1106 * 1107 * Queues a device for a sync_state() callback when the device links write lock 1108 * isn't held. This allows the sync_state() execution flow to use device links 1109 * APIs. The caller must ensure this function is called with 1110 * device_links_write_lock() held. 1111 * 1112 * This function does a get_device() to make sure the device is not freed while 1113 * on this list. 1114 * 1115 * So the caller must also ensure that device_links_flush_sync_list() is called 1116 * as soon as the caller releases device_links_write_lock(). This is necessary 1117 * to make sure the sync_state() is called in a timely fashion and the 1118 * put_device() is called on this device. 1119 */ 1120 static void __device_links_queue_sync_state(struct device *dev, 1121 struct list_head *list) 1122 { 1123 struct device_link *link; 1124 1125 if (!dev_has_sync_state(dev)) 1126 return; 1127 if (dev->state_synced) 1128 return; 1129 1130 list_for_each_entry(link, &dev->links.consumers, s_node) { 1131 if (!(link->flags & DL_FLAG_MANAGED)) 1132 continue; 1133 if (link->status != DL_STATE_ACTIVE) 1134 return; 1135 } 1136 1137 /* 1138 * Set the flag here to avoid adding the same device to a list more 1139 * than once. This can happen if new consumers get added to the device 1140 * and probed before the list is flushed. 1141 */ 1142 dev->state_synced = true; 1143 1144 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1145 return; 1146 1147 get_device(dev); 1148 list_add_tail(&dev->links.defer_sync, list); 1149 } 1150 1151 /** 1152 * device_links_flush_sync_list - Call sync_state() on a list of devices 1153 * @list: List of devices to call sync_state() on 1154 * @dont_lock_dev: Device for which lock is already held by the caller 1155 * 1156 * Calls sync_state() on all the devices that have been queued for it. This 1157 * function is used in conjunction with __device_links_queue_sync_state(). The 1158 * @dont_lock_dev parameter is useful when this function is called from a 1159 * context where a device lock is already held. 1160 */ 1161 static void device_links_flush_sync_list(struct list_head *list, 1162 struct device *dont_lock_dev) 1163 { 1164 struct device *dev, *tmp; 1165 1166 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1167 list_del_init(&dev->links.defer_sync); 1168 1169 if (dev != dont_lock_dev) 1170 device_lock(dev); 1171 1172 dev_sync_state(dev); 1173 1174 if (dev != dont_lock_dev) 1175 device_unlock(dev); 1176 1177 put_device(dev); 1178 } 1179 } 1180 1181 void device_links_supplier_sync_state_pause(void) 1182 { 1183 device_links_write_lock(); 1184 defer_sync_state_count++; 1185 device_links_write_unlock(); 1186 } 1187 1188 void device_links_supplier_sync_state_resume(void) 1189 { 1190 struct device *dev, *tmp; 1191 LIST_HEAD(sync_list); 1192 1193 device_links_write_lock(); 1194 if (!defer_sync_state_count) { 1195 WARN(true, "Unmatched sync_state pause/resume!"); 1196 goto out; 1197 } 1198 defer_sync_state_count--; 1199 if (defer_sync_state_count) 1200 goto out; 1201 1202 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1203 /* 1204 * Delete from deferred_sync list before queuing it to 1205 * sync_list because defer_sync is used for both lists. 1206 */ 1207 list_del_init(&dev->links.defer_sync); 1208 __device_links_queue_sync_state(dev, &sync_list); 1209 } 1210 out: 1211 device_links_write_unlock(); 1212 1213 device_links_flush_sync_list(&sync_list, NULL); 1214 } 1215 1216 static int sync_state_resume_initcall(void) 1217 { 1218 device_links_supplier_sync_state_resume(); 1219 return 0; 1220 } 1221 late_initcall(sync_state_resume_initcall); 1222 1223 static void __device_links_supplier_defer_sync(struct device *sup) 1224 { 1225 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1226 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1227 } 1228 1229 static void device_link_drop_managed(struct device_link *link) 1230 { 1231 link->flags &= ~DL_FLAG_MANAGED; 1232 WRITE_ONCE(link->status, DL_STATE_NONE); 1233 kref_put(&link->kref, __device_link_del); 1234 } 1235 1236 static ssize_t waiting_for_supplier_show(struct device *dev, 1237 struct device_attribute *attr, 1238 char *buf) 1239 { 1240 bool val; 1241 1242 device_lock(dev); 1243 scoped_guard(mutex, &fwnode_link_lock) 1244 val = !!fwnode_links_check_suppliers(dev->fwnode); 1245 device_unlock(dev); 1246 return sysfs_emit(buf, "%u\n", val); 1247 } 1248 static DEVICE_ATTR_RO(waiting_for_supplier); 1249 1250 /** 1251 * device_links_force_bind - Prepares device to be force bound 1252 * @dev: Consumer device. 1253 * 1254 * device_bind_driver() force binds a device to a driver without calling any 1255 * driver probe functions. So the consumer really isn't going to wait for any 1256 * supplier before it's bound to the driver. We still want the device link 1257 * states to be sensible when this happens. 1258 * 1259 * In preparation for device_bind_driver(), this function goes through each 1260 * supplier device links and checks if the supplier is bound. If it is, then 1261 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1262 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1263 */ 1264 void device_links_force_bind(struct device *dev) 1265 { 1266 struct device_link *link, *ln; 1267 1268 device_links_write_lock(); 1269 1270 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1271 if (!(link->flags & DL_FLAG_MANAGED)) 1272 continue; 1273 1274 if (link->status != DL_STATE_AVAILABLE) { 1275 device_link_drop_managed(link); 1276 continue; 1277 } 1278 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1279 } 1280 dev->links.status = DL_DEV_PROBING; 1281 1282 device_links_write_unlock(); 1283 } 1284 1285 /** 1286 * device_links_driver_bound - Update device links after probing its driver. 1287 * @dev: Device to update the links for. 1288 * 1289 * The probe has been successful, so update links from this device to any 1290 * consumers by changing their status to "available". 1291 * 1292 * Also change the status of @dev's links to suppliers to "active". 1293 * 1294 * Links without the DL_FLAG_MANAGED flag set are ignored. 1295 */ 1296 void device_links_driver_bound(struct device *dev) 1297 { 1298 struct device_link *link, *ln; 1299 LIST_HEAD(sync_list); 1300 1301 /* 1302 * If a device binds successfully, it's expected to have created all 1303 * the device links it needs to or make new device links as it needs 1304 * them. So, fw_devlink no longer needs to create device links to any 1305 * of the device's suppliers. 1306 * 1307 * Also, if a child firmware node of this bound device is not added as a 1308 * device by now, assume it is never going to be added. Make this bound 1309 * device the fallback supplier to the dangling consumers of the child 1310 * firmware node because this bound device is probably implementing the 1311 * child firmware node functionality and we don't want the dangling 1312 * consumers to defer probe indefinitely waiting for a device for the 1313 * child firmware node. 1314 */ 1315 if (dev->fwnode && dev->fwnode->dev == dev) { 1316 struct fwnode_handle *child; 1317 1318 fwnode_links_purge_suppliers(dev->fwnode); 1319 1320 guard(mutex)(&fwnode_link_lock); 1321 1322 fwnode_for_each_available_child_node(dev->fwnode, child) 1323 __fw_devlink_pickup_dangling_consumers(child, 1324 dev->fwnode); 1325 __fw_devlink_link_to_consumers(dev); 1326 } 1327 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1328 1329 device_links_write_lock(); 1330 1331 list_for_each_entry(link, &dev->links.consumers, s_node) { 1332 if (!(link->flags & DL_FLAG_MANAGED)) 1333 continue; 1334 1335 /* 1336 * Links created during consumer probe may be in the "consumer 1337 * probe" state to start with if the supplier is still probing 1338 * when they are created and they may become "active" if the 1339 * consumer probe returns first. Skip them here. 1340 */ 1341 if (link->status == DL_STATE_CONSUMER_PROBE || 1342 link->status == DL_STATE_ACTIVE) 1343 continue; 1344 1345 WARN_ON(link->status != DL_STATE_DORMANT); 1346 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1347 1348 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1349 driver_deferred_probe_add(link->consumer); 1350 } 1351 1352 if (defer_sync_state_count) 1353 __device_links_supplier_defer_sync(dev); 1354 else 1355 __device_links_queue_sync_state(dev, &sync_list); 1356 1357 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1358 struct device *supplier; 1359 1360 if (!(link->flags & DL_FLAG_MANAGED)) 1361 continue; 1362 1363 supplier = link->supplier; 1364 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1365 /* 1366 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1367 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1368 * save to drop the managed link completely. 1369 */ 1370 device_link_drop_managed(link); 1371 } else if (dev_is_best_effort(dev) && 1372 link->flags & DL_FLAG_INFERRED && 1373 link->status != DL_STATE_CONSUMER_PROBE && 1374 !link->supplier->can_match) { 1375 /* 1376 * When dev_is_best_effort() is true, we ignore device 1377 * links to suppliers that don't have a driver. If the 1378 * consumer device still managed to probe, there's no 1379 * point in maintaining a device link in a weird state 1380 * (consumer probed before supplier). So delete it. 1381 */ 1382 device_link_drop_managed(link); 1383 } else { 1384 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1385 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1386 } 1387 1388 /* 1389 * This needs to be done even for the deleted 1390 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1391 * device link that was preventing the supplier from getting a 1392 * sync_state() call. 1393 */ 1394 if (defer_sync_state_count) 1395 __device_links_supplier_defer_sync(supplier); 1396 else 1397 __device_links_queue_sync_state(supplier, &sync_list); 1398 } 1399 1400 dev->links.status = DL_DEV_DRIVER_BOUND; 1401 1402 device_links_write_unlock(); 1403 1404 device_links_flush_sync_list(&sync_list, dev); 1405 } 1406 1407 /** 1408 * __device_links_no_driver - Update links of a device without a driver. 1409 * @dev: Device without a drvier. 1410 * 1411 * Delete all non-persistent links from this device to any suppliers. 1412 * 1413 * Persistent links stay around, but their status is changed to "available", 1414 * unless they already are in the "supplier unbind in progress" state in which 1415 * case they need not be updated. 1416 * 1417 * Links without the DL_FLAG_MANAGED flag set are ignored. 1418 */ 1419 static void __device_links_no_driver(struct device *dev) 1420 { 1421 struct device_link *link, *ln; 1422 1423 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1424 if (!(link->flags & DL_FLAG_MANAGED)) 1425 continue; 1426 1427 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1428 device_link_drop_managed(link); 1429 continue; 1430 } 1431 1432 if (link->status != DL_STATE_CONSUMER_PROBE && 1433 link->status != DL_STATE_ACTIVE) 1434 continue; 1435 1436 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1437 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1438 } else { 1439 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1440 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1441 } 1442 } 1443 1444 dev->links.status = DL_DEV_NO_DRIVER; 1445 } 1446 1447 /** 1448 * device_links_no_driver - Update links after failing driver probe. 1449 * @dev: Device whose driver has just failed to probe. 1450 * 1451 * Clean up leftover links to consumers for @dev and invoke 1452 * %__device_links_no_driver() to update links to suppliers for it as 1453 * appropriate. 1454 * 1455 * Links without the DL_FLAG_MANAGED flag set are ignored. 1456 */ 1457 void device_links_no_driver(struct device *dev) 1458 { 1459 struct device_link *link; 1460 1461 device_links_write_lock(); 1462 1463 list_for_each_entry(link, &dev->links.consumers, s_node) { 1464 if (!(link->flags & DL_FLAG_MANAGED)) 1465 continue; 1466 1467 /* 1468 * The probe has failed, so if the status of the link is 1469 * "consumer probe" or "active", it must have been added by 1470 * a probing consumer while this device was still probing. 1471 * Change its state to "dormant", as it represents a valid 1472 * relationship, but it is not functionally meaningful. 1473 */ 1474 if (link->status == DL_STATE_CONSUMER_PROBE || 1475 link->status == DL_STATE_ACTIVE) 1476 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1477 } 1478 1479 __device_links_no_driver(dev); 1480 1481 device_links_write_unlock(); 1482 } 1483 1484 /** 1485 * device_links_driver_cleanup - Update links after driver removal. 1486 * @dev: Device whose driver has just gone away. 1487 * 1488 * Update links to consumers for @dev by changing their status to "dormant" and 1489 * invoke %__device_links_no_driver() to update links to suppliers for it as 1490 * appropriate. 1491 * 1492 * Links without the DL_FLAG_MANAGED flag set are ignored. 1493 */ 1494 void device_links_driver_cleanup(struct device *dev) 1495 { 1496 struct device_link *link, *ln; 1497 1498 device_links_write_lock(); 1499 1500 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1501 if (!(link->flags & DL_FLAG_MANAGED)) 1502 continue; 1503 1504 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1505 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1506 1507 /* 1508 * autoremove the links between this @dev and its consumer 1509 * devices that are not active, i.e. where the link state 1510 * has moved to DL_STATE_SUPPLIER_UNBIND. 1511 */ 1512 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1513 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1514 device_link_drop_managed(link); 1515 1516 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1517 } 1518 1519 list_del_init(&dev->links.defer_sync); 1520 __device_links_no_driver(dev); 1521 1522 device_links_write_unlock(); 1523 } 1524 1525 /** 1526 * device_links_busy - Check if there are any busy links to consumers. 1527 * @dev: Device to check. 1528 * 1529 * Check each consumer of the device and return 'true' if its link's status 1530 * is one of "consumer probe" or "active" (meaning that the given consumer is 1531 * probing right now or its driver is present). Otherwise, change the link 1532 * state to "supplier unbind" to prevent the consumer from being probed 1533 * successfully going forward. 1534 * 1535 * Return 'false' if there are no probing or active consumers. 1536 * 1537 * Links without the DL_FLAG_MANAGED flag set are ignored. 1538 */ 1539 bool device_links_busy(struct device *dev) 1540 { 1541 struct device_link *link; 1542 bool ret = false; 1543 1544 device_links_write_lock(); 1545 1546 list_for_each_entry(link, &dev->links.consumers, s_node) { 1547 if (!(link->flags & DL_FLAG_MANAGED)) 1548 continue; 1549 1550 if (link->status == DL_STATE_CONSUMER_PROBE 1551 || link->status == DL_STATE_ACTIVE) { 1552 ret = true; 1553 break; 1554 } 1555 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1556 } 1557 1558 dev->links.status = DL_DEV_UNBINDING; 1559 1560 device_links_write_unlock(); 1561 return ret; 1562 } 1563 1564 /** 1565 * device_links_unbind_consumers - Force unbind consumers of the given device. 1566 * @dev: Device to unbind the consumers of. 1567 * 1568 * Walk the list of links to consumers for @dev and if any of them is in the 1569 * "consumer probe" state, wait for all device probes in progress to complete 1570 * and start over. 1571 * 1572 * If that's not the case, change the status of the link to "supplier unbind" 1573 * and check if the link was in the "active" state. If so, force the consumer 1574 * driver to unbind and start over (the consumer will not re-probe as we have 1575 * changed the state of the link already). 1576 * 1577 * Links without the DL_FLAG_MANAGED flag set are ignored. 1578 */ 1579 void device_links_unbind_consumers(struct device *dev) 1580 { 1581 struct device_link *link; 1582 1583 start: 1584 device_links_write_lock(); 1585 1586 list_for_each_entry(link, &dev->links.consumers, s_node) { 1587 enum device_link_state status; 1588 1589 if (!(link->flags & DL_FLAG_MANAGED) || 1590 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1591 continue; 1592 1593 status = link->status; 1594 if (status == DL_STATE_CONSUMER_PROBE) { 1595 device_links_write_unlock(); 1596 1597 wait_for_device_probe(); 1598 goto start; 1599 } 1600 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1601 if (status == DL_STATE_ACTIVE) { 1602 struct device *consumer = link->consumer; 1603 1604 get_device(consumer); 1605 1606 device_links_write_unlock(); 1607 1608 device_release_driver_internal(consumer, NULL, 1609 consumer->parent); 1610 put_device(consumer); 1611 goto start; 1612 } 1613 } 1614 1615 device_links_write_unlock(); 1616 } 1617 1618 /** 1619 * device_links_purge - Delete existing links to other devices. 1620 * @dev: Target device. 1621 */ 1622 static void device_links_purge(struct device *dev) 1623 { 1624 struct device_link *link, *ln; 1625 1626 if (dev->class == &devlink_class) 1627 return; 1628 1629 /* 1630 * Delete all of the remaining links from this device to any other 1631 * devices (either consumers or suppliers). 1632 */ 1633 device_links_write_lock(); 1634 1635 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1636 WARN_ON(link->status == DL_STATE_ACTIVE); 1637 __device_link_del(&link->kref); 1638 } 1639 1640 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1641 WARN_ON(link->status != DL_STATE_DORMANT && 1642 link->status != DL_STATE_NONE); 1643 __device_link_del(&link->kref); 1644 } 1645 1646 device_links_write_unlock(); 1647 } 1648 1649 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1650 DL_FLAG_SYNC_STATE_ONLY) 1651 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1652 DL_FLAG_AUTOPROBE_CONSUMER) 1653 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1654 DL_FLAG_PM_RUNTIME) 1655 1656 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1657 static int __init fw_devlink_setup(char *arg) 1658 { 1659 if (!arg) 1660 return -EINVAL; 1661 1662 if (strcmp(arg, "off") == 0) { 1663 fw_devlink_flags = 0; 1664 } else if (strcmp(arg, "permissive") == 0) { 1665 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1666 } else if (strcmp(arg, "on") == 0) { 1667 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1668 } else if (strcmp(arg, "rpm") == 0) { 1669 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1670 } 1671 return 0; 1672 } 1673 early_param("fw_devlink", fw_devlink_setup); 1674 1675 static bool fw_devlink_strict; 1676 static int __init fw_devlink_strict_setup(char *arg) 1677 { 1678 return kstrtobool(arg, &fw_devlink_strict); 1679 } 1680 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1681 1682 #define FW_DEVLINK_SYNC_STATE_STRICT 0 1683 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1 1684 1685 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT 1686 static int fw_devlink_sync_state; 1687 #else 1688 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1689 #endif 1690 1691 static int __init fw_devlink_sync_state_setup(char *arg) 1692 { 1693 if (!arg) 1694 return -EINVAL; 1695 1696 if (strcmp(arg, "strict") == 0) { 1697 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT; 1698 return 0; 1699 } else if (strcmp(arg, "timeout") == 0) { 1700 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1701 return 0; 1702 } 1703 return -EINVAL; 1704 } 1705 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup); 1706 1707 static inline u32 fw_devlink_get_flags(u8 fwlink_flags) 1708 { 1709 if (fwlink_flags & FWLINK_FLAG_CYCLE) 1710 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE; 1711 1712 return fw_devlink_flags; 1713 } 1714 1715 static bool fw_devlink_is_permissive(void) 1716 { 1717 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1718 } 1719 1720 bool fw_devlink_is_strict(void) 1721 { 1722 return fw_devlink_strict && !fw_devlink_is_permissive(); 1723 } 1724 1725 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1726 { 1727 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1728 return; 1729 1730 fwnode_call_int_op(fwnode, add_links); 1731 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1732 } 1733 1734 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1735 { 1736 struct fwnode_handle *child = NULL; 1737 1738 fw_devlink_parse_fwnode(fwnode); 1739 1740 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1741 fw_devlink_parse_fwtree(child); 1742 } 1743 1744 static void fw_devlink_relax_link(struct device_link *link) 1745 { 1746 if (!(link->flags & DL_FLAG_INFERRED)) 1747 return; 1748 1749 if (device_link_flag_is_sync_state_only(link->flags)) 1750 return; 1751 1752 pm_runtime_drop_link(link); 1753 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1754 dev_dbg(link->consumer, "Relaxing link with %s\n", 1755 dev_name(link->supplier)); 1756 } 1757 1758 static int fw_devlink_no_driver(struct device *dev, void *data) 1759 { 1760 struct device_link *link = to_devlink(dev); 1761 1762 if (!link->supplier->can_match) 1763 fw_devlink_relax_link(link); 1764 1765 return 0; 1766 } 1767 1768 void fw_devlink_drivers_done(void) 1769 { 1770 fw_devlink_drv_reg_done = true; 1771 device_links_write_lock(); 1772 class_for_each_device(&devlink_class, NULL, NULL, 1773 fw_devlink_no_driver); 1774 device_links_write_unlock(); 1775 } 1776 1777 static int fw_devlink_dev_sync_state(struct device *dev, void *data) 1778 { 1779 struct device_link *link = to_devlink(dev); 1780 struct device *sup = link->supplier; 1781 1782 if (!(link->flags & DL_FLAG_MANAGED) || 1783 link->status == DL_STATE_ACTIVE || sup->state_synced || 1784 !dev_has_sync_state(sup)) 1785 return 0; 1786 1787 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) { 1788 dev_warn(sup, "sync_state() pending due to %s\n", 1789 dev_name(link->consumer)); 1790 return 0; 1791 } 1792 1793 if (!list_empty(&sup->links.defer_sync)) 1794 return 0; 1795 1796 dev_warn(sup, "Timed out. Forcing sync_state()\n"); 1797 sup->state_synced = true; 1798 get_device(sup); 1799 list_add_tail(&sup->links.defer_sync, data); 1800 1801 return 0; 1802 } 1803 1804 void fw_devlink_probing_done(void) 1805 { 1806 LIST_HEAD(sync_list); 1807 1808 device_links_write_lock(); 1809 class_for_each_device(&devlink_class, NULL, &sync_list, 1810 fw_devlink_dev_sync_state); 1811 device_links_write_unlock(); 1812 device_links_flush_sync_list(&sync_list, NULL); 1813 } 1814 1815 /** 1816 * wait_for_init_devices_probe - Try to probe any device needed for init 1817 * 1818 * Some devices might need to be probed and bound successfully before the kernel 1819 * boot sequence can finish and move on to init/userspace. For example, a 1820 * network interface might need to be bound to be able to mount a NFS rootfs. 1821 * 1822 * With fw_devlink=on by default, some of these devices might be blocked from 1823 * probing because they are waiting on a optional supplier that doesn't have a 1824 * driver. While fw_devlink will eventually identify such devices and unblock 1825 * the probing automatically, it might be too late by the time it unblocks the 1826 * probing of devices. For example, the IP4 autoconfig might timeout before 1827 * fw_devlink unblocks probing of the network interface. 1828 * 1829 * This function is available to temporarily try and probe all devices that have 1830 * a driver even if some of their suppliers haven't been added or don't have 1831 * drivers. 1832 * 1833 * The drivers can then decide which of the suppliers are optional vs mandatory 1834 * and probe the device if possible. By the time this function returns, all such 1835 * "best effort" probes are guaranteed to be completed. If a device successfully 1836 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1837 * device where the supplier hasn't yet probed successfully because they have to 1838 * be optional dependencies. 1839 * 1840 * Any devices that didn't successfully probe go back to being treated as if 1841 * this function was never called. 1842 * 1843 * This also means that some devices that aren't needed for init and could have 1844 * waited for their optional supplier to probe (when the supplier's module is 1845 * loaded later on) would end up probing prematurely with limited functionality. 1846 * So call this function only when boot would fail without it. 1847 */ 1848 void __init wait_for_init_devices_probe(void) 1849 { 1850 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1851 return; 1852 1853 /* 1854 * Wait for all ongoing probes to finish so that the "best effort" is 1855 * only applied to devices that can't probe otherwise. 1856 */ 1857 wait_for_device_probe(); 1858 1859 pr_info("Trying to probe devices needed for running init ...\n"); 1860 fw_devlink_best_effort = true; 1861 driver_deferred_probe_trigger(); 1862 1863 /* 1864 * Wait for all "best effort" probes to finish before going back to 1865 * normal enforcement. 1866 */ 1867 wait_for_device_probe(); 1868 fw_devlink_best_effort = false; 1869 } 1870 1871 static void fw_devlink_unblock_consumers(struct device *dev) 1872 { 1873 struct device_link *link; 1874 1875 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1876 return; 1877 1878 device_links_write_lock(); 1879 list_for_each_entry(link, &dev->links.consumers, s_node) 1880 fw_devlink_relax_link(link); 1881 device_links_write_unlock(); 1882 } 1883 1884 #define get_dev_from_fwnode(fwnode) get_device((fwnode)->dev) 1885 1886 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode) 1887 { 1888 struct device *dev; 1889 bool ret; 1890 1891 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED)) 1892 return false; 1893 1894 dev = get_dev_from_fwnode(fwnode); 1895 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER; 1896 put_device(dev); 1897 1898 return ret; 1899 } 1900 1901 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode) 1902 { 1903 struct fwnode_handle *parent; 1904 1905 fwnode_for_each_parent_node(fwnode, parent) { 1906 if (fwnode_init_without_drv(parent)) { 1907 fwnode_handle_put(parent); 1908 return true; 1909 } 1910 } 1911 1912 return false; 1913 } 1914 1915 /** 1916 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child 1917 * @ancestor: Firmware which is tested for being an ancestor 1918 * @child: Firmware which is tested for being the child 1919 * 1920 * A node is considered an ancestor of itself too. 1921 * 1922 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false. 1923 */ 1924 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor, 1925 const struct fwnode_handle *child) 1926 { 1927 struct fwnode_handle *parent; 1928 1929 if (IS_ERR_OR_NULL(ancestor)) 1930 return false; 1931 1932 if (child == ancestor) 1933 return true; 1934 1935 fwnode_for_each_parent_node(child, parent) { 1936 if (parent == ancestor) { 1937 fwnode_handle_put(parent); 1938 return true; 1939 } 1940 } 1941 return false; 1942 } 1943 1944 /** 1945 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode 1946 * @fwnode: firmware node 1947 * 1948 * Given a firmware node (@fwnode), this function finds its closest ancestor 1949 * firmware node that has a corresponding struct device and returns that struct 1950 * device. 1951 * 1952 * The caller is responsible for calling put_device() on the returned device 1953 * pointer. 1954 * 1955 * Return: a pointer to the device of the @fwnode's closest ancestor. 1956 */ 1957 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode) 1958 { 1959 struct fwnode_handle *parent; 1960 struct device *dev; 1961 1962 fwnode_for_each_parent_node(fwnode, parent) { 1963 dev = get_dev_from_fwnode(parent); 1964 if (dev) { 1965 fwnode_handle_put(parent); 1966 return dev; 1967 } 1968 } 1969 return NULL; 1970 } 1971 1972 /** 1973 * __fw_devlink_relax_cycles - Relax and mark dependency cycles. 1974 * @con_handle: Potential consumer device fwnode. 1975 * @sup_handle: Potential supplier's fwnode. 1976 * 1977 * Needs to be called with fwnode_lock and device link lock held. 1978 * 1979 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly 1980 * depend on @con. This function can detect multiple cyles between @sup_handle 1981 * and @con. When such dependency cycles are found, convert all device links 1982 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark 1983 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are 1984 * converted into a device link in the future, they are created as 1985 * SYNC_STATE_ONLY device links. This is the equivalent of doing 1986 * fw_devlink=permissive just between the devices in the cycle. We need to do 1987 * this because, at this point, fw_devlink can't tell which of these 1988 * dependencies is not a real dependency. 1989 * 1990 * Return true if one or more cycles were found. Otherwise, return false. 1991 */ 1992 static bool __fw_devlink_relax_cycles(struct fwnode_handle *con_handle, 1993 struct fwnode_handle *sup_handle) 1994 { 1995 struct device *sup_dev = NULL, *par_dev = NULL, *con_dev = NULL; 1996 struct fwnode_link *link; 1997 struct device_link *dev_link; 1998 bool ret = false; 1999 2000 if (!sup_handle) 2001 return false; 2002 2003 /* 2004 * We aren't trying to find all cycles. Just a cycle between con and 2005 * sup_handle. 2006 */ 2007 if (sup_handle->flags & FWNODE_FLAG_VISITED) 2008 return false; 2009 2010 sup_handle->flags |= FWNODE_FLAG_VISITED; 2011 2012 /* Termination condition. */ 2013 if (sup_handle == con_handle) { 2014 pr_debug("----- cycle: start -----\n"); 2015 ret = true; 2016 goto out; 2017 } 2018 2019 sup_dev = get_dev_from_fwnode(sup_handle); 2020 con_dev = get_dev_from_fwnode(con_handle); 2021 /* 2022 * If sup_dev is bound to a driver and @con hasn't started binding to a 2023 * driver, sup_dev can't be a consumer of @con. So, no need to check 2024 * further. 2025 */ 2026 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND && 2027 con_dev && con_dev->links.status == DL_DEV_NO_DRIVER) { 2028 ret = false; 2029 goto out; 2030 } 2031 2032 list_for_each_entry(link, &sup_handle->suppliers, c_hook) { 2033 if (link->flags & FWLINK_FLAG_IGNORE) 2034 continue; 2035 2036 if (__fw_devlink_relax_cycles(con_handle, link->supplier)) { 2037 __fwnode_link_cycle(link); 2038 ret = true; 2039 } 2040 } 2041 2042 /* 2043 * Give priority to device parent over fwnode parent to account for any 2044 * quirks in how fwnodes are converted to devices. 2045 */ 2046 if (sup_dev) 2047 par_dev = get_device(sup_dev->parent); 2048 else 2049 par_dev = fwnode_get_next_parent_dev(sup_handle); 2050 2051 if (par_dev && __fw_devlink_relax_cycles(con_handle, par_dev->fwnode)) { 2052 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle, 2053 par_dev->fwnode); 2054 ret = true; 2055 } 2056 2057 if (!sup_dev) 2058 goto out; 2059 2060 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) { 2061 /* 2062 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as 2063 * such due to a cycle. 2064 */ 2065 if (device_link_flag_is_sync_state_only(dev_link->flags) && 2066 !(dev_link->flags & DL_FLAG_CYCLE)) 2067 continue; 2068 2069 if (__fw_devlink_relax_cycles(con_handle, 2070 dev_link->supplier->fwnode)) { 2071 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle, 2072 dev_link->supplier->fwnode); 2073 fw_devlink_relax_link(dev_link); 2074 dev_link->flags |= DL_FLAG_CYCLE; 2075 ret = true; 2076 } 2077 } 2078 2079 out: 2080 sup_handle->flags &= ~FWNODE_FLAG_VISITED; 2081 put_device(sup_dev); 2082 put_device(con_dev); 2083 put_device(par_dev); 2084 return ret; 2085 } 2086 2087 /** 2088 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 2089 * @con: consumer device for the device link 2090 * @sup_handle: fwnode handle of supplier 2091 * @link: fwnode link that's being converted to a device link 2092 * 2093 * This function will try to create a device link between the consumer device 2094 * @con and the supplier device represented by @sup_handle. 2095 * 2096 * The supplier has to be provided as a fwnode because incorrect cycles in 2097 * fwnode links can sometimes cause the supplier device to never be created. 2098 * This function detects such cases and returns an error if it cannot create a 2099 * device link from the consumer to a missing supplier. 2100 * 2101 * Returns, 2102 * 0 on successfully creating a device link 2103 * -EINVAL if the device link cannot be created as expected 2104 * -EAGAIN if the device link cannot be created right now, but it may be 2105 * possible to do that in the future 2106 */ 2107 static int fw_devlink_create_devlink(struct device *con, 2108 struct fwnode_handle *sup_handle, 2109 struct fwnode_link *link) 2110 { 2111 struct device *sup_dev; 2112 int ret = 0; 2113 u32 flags; 2114 2115 if (link->flags & FWLINK_FLAG_IGNORE) 2116 return 0; 2117 2118 /* 2119 * In some cases, a device P might also be a supplier to its child node 2120 * C. However, this would defer the probe of C until the probe of P 2121 * completes successfully. This is perfectly fine in the device driver 2122 * model. device_add() doesn't guarantee probe completion of the device 2123 * by the time it returns. 2124 * 2125 * However, there are a few drivers that assume C will finish probing 2126 * as soon as it's added and before P finishes probing. So, we provide 2127 * a flag to let fw_devlink know not to delay the probe of C until the 2128 * probe of P completes successfully. 2129 * 2130 * When such a flag is set, we can't create device links where P is the 2131 * supplier of C as that would delay the probe of C. 2132 */ 2133 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 2134 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 2135 return -EINVAL; 2136 2137 /* 2138 * Don't try to optimize by not calling the cycle detection logic under 2139 * certain conditions. There's always some corner case that won't get 2140 * detected. 2141 */ 2142 device_links_write_lock(); 2143 if (__fw_devlink_relax_cycles(link->consumer, sup_handle)) { 2144 __fwnode_link_cycle(link); 2145 pr_debug("----- cycle: end -----\n"); 2146 pr_info("%pfwf: Fixed dependency cycle(s) with %pfwf\n", 2147 link->consumer, sup_handle); 2148 } 2149 device_links_write_unlock(); 2150 2151 if (con->fwnode == link->consumer) 2152 flags = fw_devlink_get_flags(link->flags); 2153 else 2154 flags = FW_DEVLINK_FLAGS_PERMISSIVE; 2155 2156 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE) 2157 sup_dev = fwnode_get_next_parent_dev(sup_handle); 2158 else 2159 sup_dev = get_dev_from_fwnode(sup_handle); 2160 2161 if (sup_dev) { 2162 /* 2163 * If it's one of those drivers that don't actually bind to 2164 * their device using driver core, then don't wait on this 2165 * supplier device indefinitely. 2166 */ 2167 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 2168 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 2169 dev_dbg(con, 2170 "Not linking %pfwf - dev might never probe\n", 2171 sup_handle); 2172 ret = -EINVAL; 2173 goto out; 2174 } 2175 2176 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) { 2177 dev_err(con, "Failed to create device link (0x%x) with supplier %s for %pfwf\n", 2178 flags, dev_name(sup_dev), link->consumer); 2179 ret = -EINVAL; 2180 } 2181 2182 goto out; 2183 } 2184 2185 /* 2186 * Supplier or supplier's ancestor already initialized without a struct 2187 * device or being probed by a driver. 2188 */ 2189 if (fwnode_init_without_drv(sup_handle) || 2190 fwnode_ancestor_init_without_drv(sup_handle)) { 2191 dev_dbg(con, "Not linking %pfwf - might never become dev\n", 2192 sup_handle); 2193 return -EINVAL; 2194 } 2195 2196 ret = -EAGAIN; 2197 out: 2198 put_device(sup_dev); 2199 return ret; 2200 } 2201 2202 /** 2203 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 2204 * @dev: Device that needs to be linked to its consumers 2205 * 2206 * This function looks at all the consumer fwnodes of @dev and creates device 2207 * links between the consumer device and @dev (supplier). 2208 * 2209 * If the consumer device has not been added yet, then this function creates a 2210 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 2211 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 2212 * sync_state() callback before the real consumer device gets to be added and 2213 * then probed. 2214 * 2215 * Once device links are created from the real consumer to @dev (supplier), the 2216 * fwnode links are deleted. 2217 */ 2218 static void __fw_devlink_link_to_consumers(struct device *dev) 2219 { 2220 struct fwnode_handle *fwnode = dev->fwnode; 2221 struct fwnode_link *link, *tmp; 2222 2223 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 2224 struct device *con_dev; 2225 bool own_link = true; 2226 int ret; 2227 2228 con_dev = get_dev_from_fwnode(link->consumer); 2229 /* 2230 * If consumer device is not available yet, make a "proxy" 2231 * SYNC_STATE_ONLY link from the consumer's parent device to 2232 * the supplier device. This is necessary to make sure the 2233 * supplier doesn't get a sync_state() callback before the real 2234 * consumer can create a device link to the supplier. 2235 * 2236 * This proxy link step is needed to handle the case where the 2237 * consumer's parent device is added before the supplier. 2238 */ 2239 if (!con_dev) { 2240 con_dev = fwnode_get_next_parent_dev(link->consumer); 2241 /* 2242 * However, if the consumer's parent device is also the 2243 * parent of the supplier, don't create a 2244 * consumer-supplier link from the parent to its child 2245 * device. Such a dependency is impossible. 2246 */ 2247 if (con_dev && 2248 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 2249 put_device(con_dev); 2250 con_dev = NULL; 2251 } else { 2252 own_link = false; 2253 } 2254 } 2255 2256 if (!con_dev) 2257 continue; 2258 2259 ret = fw_devlink_create_devlink(con_dev, fwnode, link); 2260 put_device(con_dev); 2261 if (!own_link || ret == -EAGAIN) 2262 continue; 2263 2264 __fwnode_link_del(link); 2265 } 2266 } 2267 2268 /** 2269 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2270 * @dev: The consumer device that needs to be linked to its suppliers 2271 * @fwnode: Root of the fwnode tree that is used to create device links 2272 * 2273 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2274 * @fwnode and creates device links between @dev (consumer) and all the 2275 * supplier devices of the entire fwnode tree at @fwnode. 2276 * 2277 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2278 * and the real suppliers of @dev. Once these device links are created, the 2279 * fwnode links are deleted. 2280 * 2281 * In addition, it also looks at all the suppliers of the entire fwnode tree 2282 * because some of the child devices of @dev that have not been added yet 2283 * (because @dev hasn't probed) might already have their suppliers added to 2284 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2285 * @dev (consumer) and these suppliers to make sure they don't execute their 2286 * sync_state() callbacks before these child devices have a chance to create 2287 * their device links. The fwnode links that correspond to the child devices 2288 * aren't delete because they are needed later to create the device links 2289 * between the real consumer and supplier devices. 2290 */ 2291 static void __fw_devlink_link_to_suppliers(struct device *dev, 2292 struct fwnode_handle *fwnode) 2293 { 2294 bool own_link = (dev->fwnode == fwnode); 2295 struct fwnode_link *link, *tmp; 2296 struct fwnode_handle *child = NULL; 2297 2298 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2299 int ret; 2300 struct fwnode_handle *sup = link->supplier; 2301 2302 ret = fw_devlink_create_devlink(dev, sup, link); 2303 if (!own_link || ret == -EAGAIN) 2304 continue; 2305 2306 __fwnode_link_del(link); 2307 } 2308 2309 /* 2310 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2311 * all the descendants. This proxy link step is needed to handle the 2312 * case where the supplier is added before the consumer's parent device 2313 * (@dev). 2314 */ 2315 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2316 __fw_devlink_link_to_suppliers(dev, child); 2317 } 2318 2319 static void fw_devlink_link_device(struct device *dev) 2320 { 2321 struct fwnode_handle *fwnode = dev->fwnode; 2322 2323 if (!fw_devlink_flags) 2324 return; 2325 2326 fw_devlink_parse_fwtree(fwnode); 2327 2328 guard(mutex)(&fwnode_link_lock); 2329 2330 __fw_devlink_link_to_consumers(dev); 2331 __fw_devlink_link_to_suppliers(dev, fwnode); 2332 } 2333 2334 /* Device links support end. */ 2335 2336 static struct kobject *dev_kobj; 2337 2338 /* /sys/dev/char */ 2339 static struct kobject *sysfs_dev_char_kobj; 2340 2341 /* /sys/dev/block */ 2342 static struct kobject *sysfs_dev_block_kobj; 2343 2344 static DEFINE_MUTEX(device_hotplug_lock); 2345 2346 void lock_device_hotplug(void) 2347 { 2348 mutex_lock(&device_hotplug_lock); 2349 } 2350 2351 void unlock_device_hotplug(void) 2352 { 2353 mutex_unlock(&device_hotplug_lock); 2354 } 2355 2356 int lock_device_hotplug_sysfs(void) 2357 { 2358 if (mutex_trylock(&device_hotplug_lock)) 2359 return 0; 2360 2361 /* Avoid busy looping (5 ms of sleep should do). */ 2362 msleep(5); 2363 return restart_syscall(); 2364 } 2365 2366 #ifdef CONFIG_BLOCK 2367 static inline int device_is_not_partition(struct device *dev) 2368 { 2369 return !(dev->type == &part_type); 2370 } 2371 #else 2372 static inline int device_is_not_partition(struct device *dev) 2373 { 2374 return 1; 2375 } 2376 #endif 2377 2378 static void device_platform_notify(struct device *dev) 2379 { 2380 acpi_device_notify(dev); 2381 2382 software_node_notify(dev); 2383 } 2384 2385 static void device_platform_notify_remove(struct device *dev) 2386 { 2387 software_node_notify_remove(dev); 2388 2389 acpi_device_notify_remove(dev); 2390 } 2391 2392 /** 2393 * dev_driver_string - Return a device's driver name, if at all possible 2394 * @dev: struct device to get the name of 2395 * 2396 * Will return the device's driver's name if it is bound to a device. If 2397 * the device is not bound to a driver, it will return the name of the bus 2398 * it is attached to. If it is not attached to a bus either, an empty 2399 * string will be returned. 2400 */ 2401 const char *dev_driver_string(const struct device *dev) 2402 { 2403 struct device_driver *drv; 2404 2405 /* dev->driver can change to NULL underneath us because of unbinding, 2406 * so be careful about accessing it. dev->bus and dev->class should 2407 * never change once they are set, so they don't need special care. 2408 */ 2409 drv = READ_ONCE(dev->driver); 2410 return drv ? drv->name : dev_bus_name(dev); 2411 } 2412 EXPORT_SYMBOL(dev_driver_string); 2413 2414 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2415 2416 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2417 char *buf) 2418 { 2419 struct device_attribute *dev_attr = to_dev_attr(attr); 2420 struct device *dev = kobj_to_dev(kobj); 2421 ssize_t ret = -EIO; 2422 2423 if (dev_attr->show) 2424 ret = dev_attr->show(dev, dev_attr, buf); 2425 if (ret >= (ssize_t)PAGE_SIZE) { 2426 printk("dev_attr_show: %pS returned bad count\n", 2427 dev_attr->show); 2428 } 2429 return ret; 2430 } 2431 2432 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2433 const char *buf, size_t count) 2434 { 2435 struct device_attribute *dev_attr = to_dev_attr(attr); 2436 struct device *dev = kobj_to_dev(kobj); 2437 ssize_t ret = -EIO; 2438 2439 if (dev_attr->store) 2440 ret = dev_attr->store(dev, dev_attr, buf, count); 2441 return ret; 2442 } 2443 2444 static const struct sysfs_ops dev_sysfs_ops = { 2445 .show = dev_attr_show, 2446 .store = dev_attr_store, 2447 }; 2448 2449 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2450 2451 ssize_t device_store_ulong(struct device *dev, 2452 struct device_attribute *attr, 2453 const char *buf, size_t size) 2454 { 2455 struct dev_ext_attribute *ea = to_ext_attr(attr); 2456 int ret; 2457 unsigned long new; 2458 2459 ret = kstrtoul(buf, 0, &new); 2460 if (ret) 2461 return ret; 2462 *(unsigned long *)(ea->var) = new; 2463 /* Always return full write size even if we didn't consume all */ 2464 return size; 2465 } 2466 EXPORT_SYMBOL_GPL(device_store_ulong); 2467 2468 ssize_t device_show_ulong(struct device *dev, 2469 struct device_attribute *attr, 2470 char *buf) 2471 { 2472 struct dev_ext_attribute *ea = to_ext_attr(attr); 2473 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2474 } 2475 EXPORT_SYMBOL_GPL(device_show_ulong); 2476 2477 ssize_t device_store_int(struct device *dev, 2478 struct device_attribute *attr, 2479 const char *buf, size_t size) 2480 { 2481 struct dev_ext_attribute *ea = to_ext_attr(attr); 2482 int ret; 2483 long new; 2484 2485 ret = kstrtol(buf, 0, &new); 2486 if (ret) 2487 return ret; 2488 2489 if (new > INT_MAX || new < INT_MIN) 2490 return -EINVAL; 2491 *(int *)(ea->var) = new; 2492 /* Always return full write size even if we didn't consume all */ 2493 return size; 2494 } 2495 EXPORT_SYMBOL_GPL(device_store_int); 2496 2497 ssize_t device_show_int(struct device *dev, 2498 struct device_attribute *attr, 2499 char *buf) 2500 { 2501 struct dev_ext_attribute *ea = to_ext_attr(attr); 2502 2503 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2504 } 2505 EXPORT_SYMBOL_GPL(device_show_int); 2506 2507 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2508 const char *buf, size_t size) 2509 { 2510 struct dev_ext_attribute *ea = to_ext_attr(attr); 2511 2512 if (kstrtobool(buf, ea->var) < 0) 2513 return -EINVAL; 2514 2515 return size; 2516 } 2517 EXPORT_SYMBOL_GPL(device_store_bool); 2518 2519 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2520 char *buf) 2521 { 2522 struct dev_ext_attribute *ea = to_ext_attr(attr); 2523 2524 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2525 } 2526 EXPORT_SYMBOL_GPL(device_show_bool); 2527 2528 ssize_t device_show_string(struct device *dev, 2529 struct device_attribute *attr, char *buf) 2530 { 2531 struct dev_ext_attribute *ea = to_ext_attr(attr); 2532 2533 return sysfs_emit(buf, "%s\n", (char *)ea->var); 2534 } 2535 EXPORT_SYMBOL_GPL(device_show_string); 2536 2537 /** 2538 * device_release - free device structure. 2539 * @kobj: device's kobject. 2540 * 2541 * This is called once the reference count for the object 2542 * reaches 0. We forward the call to the device's release 2543 * method, which should handle actually freeing the structure. 2544 */ 2545 static void device_release(struct kobject *kobj) 2546 { 2547 struct device *dev = kobj_to_dev(kobj); 2548 struct device_private *p = dev->p; 2549 2550 /* 2551 * Some platform devices are driven without driver attached 2552 * and managed resources may have been acquired. Make sure 2553 * all resources are released. 2554 * 2555 * Drivers still can add resources into device after device 2556 * is deleted but alive, so release devres here to avoid 2557 * possible memory leak. 2558 */ 2559 devres_release_all(dev); 2560 2561 kfree(dev->dma_range_map); 2562 2563 if (dev->release) 2564 dev->release(dev); 2565 else if (dev->type && dev->type->release) 2566 dev->type->release(dev); 2567 else if (dev->class && dev->class->dev_release) 2568 dev->class->dev_release(dev); 2569 else 2570 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2571 dev_name(dev)); 2572 kfree(p); 2573 } 2574 2575 static const void *device_namespace(const struct kobject *kobj) 2576 { 2577 const struct device *dev = kobj_to_dev(kobj); 2578 const void *ns = NULL; 2579 2580 if (dev->class && dev->class->namespace) 2581 ns = dev->class->namespace(dev); 2582 2583 return ns; 2584 } 2585 2586 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2587 { 2588 const struct device *dev = kobj_to_dev(kobj); 2589 2590 if (dev->class && dev->class->get_ownership) 2591 dev->class->get_ownership(dev, uid, gid); 2592 } 2593 2594 static const struct kobj_type device_ktype = { 2595 .release = device_release, 2596 .sysfs_ops = &dev_sysfs_ops, 2597 .namespace = device_namespace, 2598 .get_ownership = device_get_ownership, 2599 }; 2600 2601 2602 static int dev_uevent_filter(const struct kobject *kobj) 2603 { 2604 const struct kobj_type *ktype = get_ktype(kobj); 2605 2606 if (ktype == &device_ktype) { 2607 const struct device *dev = kobj_to_dev(kobj); 2608 if (dev->bus) 2609 return 1; 2610 if (dev->class) 2611 return 1; 2612 } 2613 return 0; 2614 } 2615 2616 static const char *dev_uevent_name(const struct kobject *kobj) 2617 { 2618 const struct device *dev = kobj_to_dev(kobj); 2619 2620 if (dev->bus) 2621 return dev->bus->name; 2622 if (dev->class) 2623 return dev->class->name; 2624 return NULL; 2625 } 2626 2627 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 2628 { 2629 const struct device *dev = kobj_to_dev(kobj); 2630 int retval = 0; 2631 2632 /* add device node properties if present */ 2633 if (MAJOR(dev->devt)) { 2634 const char *tmp; 2635 const char *name; 2636 umode_t mode = 0; 2637 kuid_t uid = GLOBAL_ROOT_UID; 2638 kgid_t gid = GLOBAL_ROOT_GID; 2639 2640 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2641 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2642 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2643 if (name) { 2644 add_uevent_var(env, "DEVNAME=%s", name); 2645 if (mode) 2646 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2647 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2648 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2649 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2650 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2651 kfree(tmp); 2652 } 2653 } 2654 2655 if (dev->type && dev->type->name) 2656 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2657 2658 if (dev->driver) 2659 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2660 2661 /* Add common DT information about the device */ 2662 of_device_uevent(dev, env); 2663 2664 /* have the bus specific function add its stuff */ 2665 if (dev->bus && dev->bus->uevent) { 2666 retval = dev->bus->uevent(dev, env); 2667 if (retval) 2668 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2669 dev_name(dev), __func__, retval); 2670 } 2671 2672 /* have the class specific function add its stuff */ 2673 if (dev->class && dev->class->dev_uevent) { 2674 retval = dev->class->dev_uevent(dev, env); 2675 if (retval) 2676 pr_debug("device: '%s': %s: class uevent() " 2677 "returned %d\n", dev_name(dev), 2678 __func__, retval); 2679 } 2680 2681 /* have the device type specific function add its stuff */ 2682 if (dev->type && dev->type->uevent) { 2683 retval = dev->type->uevent(dev, env); 2684 if (retval) 2685 pr_debug("device: '%s': %s: dev_type uevent() " 2686 "returned %d\n", dev_name(dev), 2687 __func__, retval); 2688 } 2689 2690 return retval; 2691 } 2692 2693 static const struct kset_uevent_ops device_uevent_ops = { 2694 .filter = dev_uevent_filter, 2695 .name = dev_uevent_name, 2696 .uevent = dev_uevent, 2697 }; 2698 2699 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2700 char *buf) 2701 { 2702 struct kobject *top_kobj; 2703 struct kset *kset; 2704 struct kobj_uevent_env *env = NULL; 2705 int i; 2706 int len = 0; 2707 int retval; 2708 2709 /* search the kset, the device belongs to */ 2710 top_kobj = &dev->kobj; 2711 while (!top_kobj->kset && top_kobj->parent) 2712 top_kobj = top_kobj->parent; 2713 if (!top_kobj->kset) 2714 goto out; 2715 2716 kset = top_kobj->kset; 2717 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2718 goto out; 2719 2720 /* respect filter */ 2721 if (kset->uevent_ops && kset->uevent_ops->filter) 2722 if (!kset->uevent_ops->filter(&dev->kobj)) 2723 goto out; 2724 2725 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2726 if (!env) 2727 return -ENOMEM; 2728 2729 /* Synchronize with really_probe() */ 2730 device_lock(dev); 2731 /* let the kset specific function add its keys */ 2732 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2733 device_unlock(dev); 2734 if (retval) 2735 goto out; 2736 2737 /* copy keys to file */ 2738 for (i = 0; i < env->envp_idx; i++) 2739 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2740 out: 2741 kfree(env); 2742 return len; 2743 } 2744 2745 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2746 const char *buf, size_t count) 2747 { 2748 int rc; 2749 2750 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2751 2752 if (rc) { 2753 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc); 2754 return rc; 2755 } 2756 2757 return count; 2758 } 2759 static DEVICE_ATTR_RW(uevent); 2760 2761 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2762 char *buf) 2763 { 2764 bool val; 2765 2766 device_lock(dev); 2767 val = !dev->offline; 2768 device_unlock(dev); 2769 return sysfs_emit(buf, "%u\n", val); 2770 } 2771 2772 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2773 const char *buf, size_t count) 2774 { 2775 bool val; 2776 int ret; 2777 2778 ret = kstrtobool(buf, &val); 2779 if (ret < 0) 2780 return ret; 2781 2782 ret = lock_device_hotplug_sysfs(); 2783 if (ret) 2784 return ret; 2785 2786 ret = val ? device_online(dev) : device_offline(dev); 2787 unlock_device_hotplug(); 2788 return ret < 0 ? ret : count; 2789 } 2790 static DEVICE_ATTR_RW(online); 2791 2792 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2793 char *buf) 2794 { 2795 const char *loc; 2796 2797 switch (dev->removable) { 2798 case DEVICE_REMOVABLE: 2799 loc = "removable"; 2800 break; 2801 case DEVICE_FIXED: 2802 loc = "fixed"; 2803 break; 2804 default: 2805 loc = "unknown"; 2806 } 2807 return sysfs_emit(buf, "%s\n", loc); 2808 } 2809 static DEVICE_ATTR_RO(removable); 2810 2811 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2812 { 2813 return sysfs_create_groups(&dev->kobj, groups); 2814 } 2815 EXPORT_SYMBOL_GPL(device_add_groups); 2816 2817 void device_remove_groups(struct device *dev, 2818 const struct attribute_group **groups) 2819 { 2820 sysfs_remove_groups(&dev->kobj, groups); 2821 } 2822 EXPORT_SYMBOL_GPL(device_remove_groups); 2823 2824 union device_attr_group_devres { 2825 const struct attribute_group *group; 2826 const struct attribute_group **groups; 2827 }; 2828 2829 static void devm_attr_group_remove(struct device *dev, void *res) 2830 { 2831 union device_attr_group_devres *devres = res; 2832 const struct attribute_group *group = devres->group; 2833 2834 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2835 sysfs_remove_group(&dev->kobj, group); 2836 } 2837 2838 /** 2839 * devm_device_add_group - given a device, create a managed attribute group 2840 * @dev: The device to create the group for 2841 * @grp: The attribute group to create 2842 * 2843 * This function creates a group for the first time. It will explicitly 2844 * warn and error if any of the attribute files being created already exist. 2845 * 2846 * Returns 0 on success or error code on failure. 2847 */ 2848 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2849 { 2850 union device_attr_group_devres *devres; 2851 int error; 2852 2853 devres = devres_alloc(devm_attr_group_remove, 2854 sizeof(*devres), GFP_KERNEL); 2855 if (!devres) 2856 return -ENOMEM; 2857 2858 error = sysfs_create_group(&dev->kobj, grp); 2859 if (error) { 2860 devres_free(devres); 2861 return error; 2862 } 2863 2864 devres->group = grp; 2865 devres_add(dev, devres); 2866 return 0; 2867 } 2868 EXPORT_SYMBOL_GPL(devm_device_add_group); 2869 2870 static int device_add_attrs(struct device *dev) 2871 { 2872 const struct class *class = dev->class; 2873 const struct device_type *type = dev->type; 2874 int error; 2875 2876 if (class) { 2877 error = device_add_groups(dev, class->dev_groups); 2878 if (error) 2879 return error; 2880 } 2881 2882 if (type) { 2883 error = device_add_groups(dev, type->groups); 2884 if (error) 2885 goto err_remove_class_groups; 2886 } 2887 2888 error = device_add_groups(dev, dev->groups); 2889 if (error) 2890 goto err_remove_type_groups; 2891 2892 if (device_supports_offline(dev) && !dev->offline_disabled) { 2893 error = device_create_file(dev, &dev_attr_online); 2894 if (error) 2895 goto err_remove_dev_groups; 2896 } 2897 2898 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2899 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2900 if (error) 2901 goto err_remove_dev_online; 2902 } 2903 2904 if (dev_removable_is_valid(dev)) { 2905 error = device_create_file(dev, &dev_attr_removable); 2906 if (error) 2907 goto err_remove_dev_waiting_for_supplier; 2908 } 2909 2910 if (dev_add_physical_location(dev)) { 2911 error = device_add_group(dev, 2912 &dev_attr_physical_location_group); 2913 if (error) 2914 goto err_remove_dev_removable; 2915 } 2916 2917 return 0; 2918 2919 err_remove_dev_removable: 2920 device_remove_file(dev, &dev_attr_removable); 2921 err_remove_dev_waiting_for_supplier: 2922 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2923 err_remove_dev_online: 2924 device_remove_file(dev, &dev_attr_online); 2925 err_remove_dev_groups: 2926 device_remove_groups(dev, dev->groups); 2927 err_remove_type_groups: 2928 if (type) 2929 device_remove_groups(dev, type->groups); 2930 err_remove_class_groups: 2931 if (class) 2932 device_remove_groups(dev, class->dev_groups); 2933 2934 return error; 2935 } 2936 2937 static void device_remove_attrs(struct device *dev) 2938 { 2939 const struct class *class = dev->class; 2940 const struct device_type *type = dev->type; 2941 2942 if (dev->physical_location) { 2943 device_remove_group(dev, &dev_attr_physical_location_group); 2944 kfree(dev->physical_location); 2945 } 2946 2947 device_remove_file(dev, &dev_attr_removable); 2948 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2949 device_remove_file(dev, &dev_attr_online); 2950 device_remove_groups(dev, dev->groups); 2951 2952 if (type) 2953 device_remove_groups(dev, type->groups); 2954 2955 if (class) 2956 device_remove_groups(dev, class->dev_groups); 2957 } 2958 2959 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2960 char *buf) 2961 { 2962 return print_dev_t(buf, dev->devt); 2963 } 2964 static DEVICE_ATTR_RO(dev); 2965 2966 /* /sys/devices/ */ 2967 struct kset *devices_kset; 2968 2969 /** 2970 * devices_kset_move_before - Move device in the devices_kset's list. 2971 * @deva: Device to move. 2972 * @devb: Device @deva should come before. 2973 */ 2974 static void devices_kset_move_before(struct device *deva, struct device *devb) 2975 { 2976 if (!devices_kset) 2977 return; 2978 pr_debug("devices_kset: Moving %s before %s\n", 2979 dev_name(deva), dev_name(devb)); 2980 spin_lock(&devices_kset->list_lock); 2981 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2982 spin_unlock(&devices_kset->list_lock); 2983 } 2984 2985 /** 2986 * devices_kset_move_after - Move device in the devices_kset's list. 2987 * @deva: Device to move 2988 * @devb: Device @deva should come after. 2989 */ 2990 static void devices_kset_move_after(struct device *deva, struct device *devb) 2991 { 2992 if (!devices_kset) 2993 return; 2994 pr_debug("devices_kset: Moving %s after %s\n", 2995 dev_name(deva), dev_name(devb)); 2996 spin_lock(&devices_kset->list_lock); 2997 list_move(&deva->kobj.entry, &devb->kobj.entry); 2998 spin_unlock(&devices_kset->list_lock); 2999 } 3000 3001 /** 3002 * devices_kset_move_last - move the device to the end of devices_kset's list. 3003 * @dev: device to move 3004 */ 3005 void devices_kset_move_last(struct device *dev) 3006 { 3007 if (!devices_kset) 3008 return; 3009 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 3010 spin_lock(&devices_kset->list_lock); 3011 list_move_tail(&dev->kobj.entry, &devices_kset->list); 3012 spin_unlock(&devices_kset->list_lock); 3013 } 3014 3015 /** 3016 * device_create_file - create sysfs attribute file for device. 3017 * @dev: device. 3018 * @attr: device attribute descriptor. 3019 */ 3020 int device_create_file(struct device *dev, 3021 const struct device_attribute *attr) 3022 { 3023 int error = 0; 3024 3025 if (dev) { 3026 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 3027 "Attribute %s: write permission without 'store'\n", 3028 attr->attr.name); 3029 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 3030 "Attribute %s: read permission without 'show'\n", 3031 attr->attr.name); 3032 error = sysfs_create_file(&dev->kobj, &attr->attr); 3033 } 3034 3035 return error; 3036 } 3037 EXPORT_SYMBOL_GPL(device_create_file); 3038 3039 /** 3040 * device_remove_file - remove sysfs attribute file. 3041 * @dev: device. 3042 * @attr: device attribute descriptor. 3043 */ 3044 void device_remove_file(struct device *dev, 3045 const struct device_attribute *attr) 3046 { 3047 if (dev) 3048 sysfs_remove_file(&dev->kobj, &attr->attr); 3049 } 3050 EXPORT_SYMBOL_GPL(device_remove_file); 3051 3052 /** 3053 * device_remove_file_self - remove sysfs attribute file from its own method. 3054 * @dev: device. 3055 * @attr: device attribute descriptor. 3056 * 3057 * See kernfs_remove_self() for details. 3058 */ 3059 bool device_remove_file_self(struct device *dev, 3060 const struct device_attribute *attr) 3061 { 3062 if (dev) 3063 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 3064 else 3065 return false; 3066 } 3067 EXPORT_SYMBOL_GPL(device_remove_file_self); 3068 3069 /** 3070 * device_create_bin_file - create sysfs binary attribute file for device. 3071 * @dev: device. 3072 * @attr: device binary attribute descriptor. 3073 */ 3074 int device_create_bin_file(struct device *dev, 3075 const struct bin_attribute *attr) 3076 { 3077 int error = -EINVAL; 3078 if (dev) 3079 error = sysfs_create_bin_file(&dev->kobj, attr); 3080 return error; 3081 } 3082 EXPORT_SYMBOL_GPL(device_create_bin_file); 3083 3084 /** 3085 * device_remove_bin_file - remove sysfs binary attribute file 3086 * @dev: device. 3087 * @attr: device binary attribute descriptor. 3088 */ 3089 void device_remove_bin_file(struct device *dev, 3090 const struct bin_attribute *attr) 3091 { 3092 if (dev) 3093 sysfs_remove_bin_file(&dev->kobj, attr); 3094 } 3095 EXPORT_SYMBOL_GPL(device_remove_bin_file); 3096 3097 static void klist_children_get(struct klist_node *n) 3098 { 3099 struct device_private *p = to_device_private_parent(n); 3100 struct device *dev = p->device; 3101 3102 get_device(dev); 3103 } 3104 3105 static void klist_children_put(struct klist_node *n) 3106 { 3107 struct device_private *p = to_device_private_parent(n); 3108 struct device *dev = p->device; 3109 3110 put_device(dev); 3111 } 3112 3113 /** 3114 * device_initialize - init device structure. 3115 * @dev: device. 3116 * 3117 * This prepares the device for use by other layers by initializing 3118 * its fields. 3119 * It is the first half of device_register(), if called by 3120 * that function, though it can also be called separately, so one 3121 * may use @dev's fields. In particular, get_device()/put_device() 3122 * may be used for reference counting of @dev after calling this 3123 * function. 3124 * 3125 * All fields in @dev must be initialized by the caller to 0, except 3126 * for those explicitly set to some other value. The simplest 3127 * approach is to use kzalloc() to allocate the structure containing 3128 * @dev. 3129 * 3130 * NOTE: Use put_device() to give up your reference instead of freeing 3131 * @dev directly once you have called this function. 3132 */ 3133 void device_initialize(struct device *dev) 3134 { 3135 dev->kobj.kset = devices_kset; 3136 kobject_init(&dev->kobj, &device_ktype); 3137 INIT_LIST_HEAD(&dev->dma_pools); 3138 mutex_init(&dev->mutex); 3139 lockdep_set_novalidate_class(&dev->mutex); 3140 spin_lock_init(&dev->devres_lock); 3141 INIT_LIST_HEAD(&dev->devres_head); 3142 device_pm_init(dev); 3143 set_dev_node(dev, NUMA_NO_NODE); 3144 INIT_LIST_HEAD(&dev->links.consumers); 3145 INIT_LIST_HEAD(&dev->links.suppliers); 3146 INIT_LIST_HEAD(&dev->links.defer_sync); 3147 dev->links.status = DL_DEV_NO_DRIVER; 3148 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 3149 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 3150 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 3151 dev->dma_coherent = dma_default_coherent; 3152 #endif 3153 swiotlb_dev_init(dev); 3154 } 3155 EXPORT_SYMBOL_GPL(device_initialize); 3156 3157 struct kobject *virtual_device_parent(void) 3158 { 3159 static struct kobject *virtual_dir = NULL; 3160 3161 if (!virtual_dir) 3162 virtual_dir = kobject_create_and_add("virtual", 3163 &devices_kset->kobj); 3164 3165 return virtual_dir; 3166 } 3167 3168 struct class_dir { 3169 struct kobject kobj; 3170 const struct class *class; 3171 }; 3172 3173 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 3174 3175 static void class_dir_release(struct kobject *kobj) 3176 { 3177 struct class_dir *dir = to_class_dir(kobj); 3178 kfree(dir); 3179 } 3180 3181 static const 3182 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj) 3183 { 3184 const struct class_dir *dir = to_class_dir(kobj); 3185 return dir->class->ns_type; 3186 } 3187 3188 static const struct kobj_type class_dir_ktype = { 3189 .release = class_dir_release, 3190 .sysfs_ops = &kobj_sysfs_ops, 3191 .child_ns_type = class_dir_child_ns_type 3192 }; 3193 3194 static struct kobject *class_dir_create_and_add(struct subsys_private *sp, 3195 struct kobject *parent_kobj) 3196 { 3197 struct class_dir *dir; 3198 int retval; 3199 3200 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3201 if (!dir) 3202 return ERR_PTR(-ENOMEM); 3203 3204 dir->class = sp->class; 3205 kobject_init(&dir->kobj, &class_dir_ktype); 3206 3207 dir->kobj.kset = &sp->glue_dirs; 3208 3209 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name); 3210 if (retval < 0) { 3211 kobject_put(&dir->kobj); 3212 return ERR_PTR(retval); 3213 } 3214 return &dir->kobj; 3215 } 3216 3217 static DEFINE_MUTEX(gdp_mutex); 3218 3219 static struct kobject *get_device_parent(struct device *dev, 3220 struct device *parent) 3221 { 3222 struct subsys_private *sp = class_to_subsys(dev->class); 3223 struct kobject *kobj = NULL; 3224 3225 if (sp) { 3226 struct kobject *parent_kobj; 3227 struct kobject *k; 3228 3229 /* 3230 * If we have no parent, we live in "virtual". 3231 * Class-devices with a non class-device as parent, live 3232 * in a "glue" directory to prevent namespace collisions. 3233 */ 3234 if (parent == NULL) 3235 parent_kobj = virtual_device_parent(); 3236 else if (parent->class && !dev->class->ns_type) { 3237 subsys_put(sp); 3238 return &parent->kobj; 3239 } else { 3240 parent_kobj = &parent->kobj; 3241 } 3242 3243 mutex_lock(&gdp_mutex); 3244 3245 /* find our class-directory at the parent and reference it */ 3246 spin_lock(&sp->glue_dirs.list_lock); 3247 list_for_each_entry(k, &sp->glue_dirs.list, entry) 3248 if (k->parent == parent_kobj) { 3249 kobj = kobject_get(k); 3250 break; 3251 } 3252 spin_unlock(&sp->glue_dirs.list_lock); 3253 if (kobj) { 3254 mutex_unlock(&gdp_mutex); 3255 subsys_put(sp); 3256 return kobj; 3257 } 3258 3259 /* or create a new class-directory at the parent device */ 3260 k = class_dir_create_and_add(sp, parent_kobj); 3261 /* do not emit an uevent for this simple "glue" directory */ 3262 mutex_unlock(&gdp_mutex); 3263 subsys_put(sp); 3264 return k; 3265 } 3266 3267 /* subsystems can specify a default root directory for their devices */ 3268 if (!parent && dev->bus) { 3269 struct device *dev_root = bus_get_dev_root(dev->bus); 3270 3271 if (dev_root) { 3272 kobj = &dev_root->kobj; 3273 put_device(dev_root); 3274 return kobj; 3275 } 3276 } 3277 3278 if (parent) 3279 return &parent->kobj; 3280 return NULL; 3281 } 3282 3283 static inline bool live_in_glue_dir(struct kobject *kobj, 3284 struct device *dev) 3285 { 3286 struct subsys_private *sp; 3287 bool retval; 3288 3289 if (!kobj || !dev->class) 3290 return false; 3291 3292 sp = class_to_subsys(dev->class); 3293 if (!sp) 3294 return false; 3295 3296 if (kobj->kset == &sp->glue_dirs) 3297 retval = true; 3298 else 3299 retval = false; 3300 3301 subsys_put(sp); 3302 return retval; 3303 } 3304 3305 static inline struct kobject *get_glue_dir(struct device *dev) 3306 { 3307 return dev->kobj.parent; 3308 } 3309 3310 /** 3311 * kobject_has_children - Returns whether a kobject has children. 3312 * @kobj: the object to test 3313 * 3314 * This will return whether a kobject has other kobjects as children. 3315 * 3316 * It does NOT account for the presence of attribute files, only sub 3317 * directories. It also assumes there is no concurrent addition or 3318 * removal of such children, and thus relies on external locking. 3319 */ 3320 static inline bool kobject_has_children(struct kobject *kobj) 3321 { 3322 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3323 3324 return kobj->sd && kobj->sd->dir.subdirs; 3325 } 3326 3327 /* 3328 * make sure cleaning up dir as the last step, we need to make 3329 * sure .release handler of kobject is run with holding the 3330 * global lock 3331 */ 3332 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3333 { 3334 unsigned int ref; 3335 3336 /* see if we live in a "glue" directory */ 3337 if (!live_in_glue_dir(glue_dir, dev)) 3338 return; 3339 3340 mutex_lock(&gdp_mutex); 3341 /** 3342 * There is a race condition between removing glue directory 3343 * and adding a new device under the glue directory. 3344 * 3345 * CPU1: CPU2: 3346 * 3347 * device_add() 3348 * get_device_parent() 3349 * class_dir_create_and_add() 3350 * kobject_add_internal() 3351 * create_dir() // create glue_dir 3352 * 3353 * device_add() 3354 * get_device_parent() 3355 * kobject_get() // get glue_dir 3356 * 3357 * device_del() 3358 * cleanup_glue_dir() 3359 * kobject_del(glue_dir) 3360 * 3361 * kobject_add() 3362 * kobject_add_internal() 3363 * create_dir() // in glue_dir 3364 * sysfs_create_dir_ns() 3365 * kernfs_create_dir_ns(sd) 3366 * 3367 * sysfs_remove_dir() // glue_dir->sd=NULL 3368 * sysfs_put() // free glue_dir->sd 3369 * 3370 * // sd is freed 3371 * kernfs_new_node(sd) 3372 * kernfs_get(glue_dir) 3373 * kernfs_add_one() 3374 * kernfs_put() 3375 * 3376 * Before CPU1 remove last child device under glue dir, if CPU2 add 3377 * a new device under glue dir, the glue_dir kobject reference count 3378 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3379 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3380 * and sysfs_put(). This result in glue_dir->sd is freed. 3381 * 3382 * Then the CPU2 will see a stale "empty" but still potentially used 3383 * glue dir around in kernfs_new_node(). 3384 * 3385 * In order to avoid this happening, we also should make sure that 3386 * kernfs_node for glue_dir is released in CPU1 only when refcount 3387 * for glue_dir kobj is 1. 3388 */ 3389 ref = kref_read(&glue_dir->kref); 3390 if (!kobject_has_children(glue_dir) && !--ref) 3391 kobject_del(glue_dir); 3392 kobject_put(glue_dir); 3393 mutex_unlock(&gdp_mutex); 3394 } 3395 3396 static int device_add_class_symlinks(struct device *dev) 3397 { 3398 struct device_node *of_node = dev_of_node(dev); 3399 struct subsys_private *sp; 3400 int error; 3401 3402 if (of_node) { 3403 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3404 if (error) 3405 dev_warn(dev, "Error %d creating of_node link\n",error); 3406 /* An error here doesn't warrant bringing down the device */ 3407 } 3408 3409 sp = class_to_subsys(dev->class); 3410 if (!sp) 3411 return 0; 3412 3413 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem"); 3414 if (error) 3415 goto out_devnode; 3416 3417 if (dev->parent && device_is_not_partition(dev)) { 3418 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3419 "device"); 3420 if (error) 3421 goto out_subsys; 3422 } 3423 3424 /* link in the class directory pointing to the device */ 3425 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3426 if (error) 3427 goto out_device; 3428 goto exit; 3429 3430 out_device: 3431 sysfs_remove_link(&dev->kobj, "device"); 3432 out_subsys: 3433 sysfs_remove_link(&dev->kobj, "subsystem"); 3434 out_devnode: 3435 sysfs_remove_link(&dev->kobj, "of_node"); 3436 exit: 3437 subsys_put(sp); 3438 return error; 3439 } 3440 3441 static void device_remove_class_symlinks(struct device *dev) 3442 { 3443 struct subsys_private *sp = class_to_subsys(dev->class); 3444 3445 if (dev_of_node(dev)) 3446 sysfs_remove_link(&dev->kobj, "of_node"); 3447 3448 if (!sp) 3449 return; 3450 3451 if (dev->parent && device_is_not_partition(dev)) 3452 sysfs_remove_link(&dev->kobj, "device"); 3453 sysfs_remove_link(&dev->kobj, "subsystem"); 3454 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3455 subsys_put(sp); 3456 } 3457 3458 /** 3459 * dev_set_name - set a device name 3460 * @dev: device 3461 * @fmt: format string for the device's name 3462 */ 3463 int dev_set_name(struct device *dev, const char *fmt, ...) 3464 { 3465 va_list vargs; 3466 int err; 3467 3468 va_start(vargs, fmt); 3469 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3470 va_end(vargs); 3471 return err; 3472 } 3473 EXPORT_SYMBOL_GPL(dev_set_name); 3474 3475 /* select a /sys/dev/ directory for the device */ 3476 static struct kobject *device_to_dev_kobj(struct device *dev) 3477 { 3478 if (is_blockdev(dev)) 3479 return sysfs_dev_block_kobj; 3480 else 3481 return sysfs_dev_char_kobj; 3482 } 3483 3484 static int device_create_sys_dev_entry(struct device *dev) 3485 { 3486 struct kobject *kobj = device_to_dev_kobj(dev); 3487 int error = 0; 3488 char devt_str[15]; 3489 3490 if (kobj) { 3491 format_dev_t(devt_str, dev->devt); 3492 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3493 } 3494 3495 return error; 3496 } 3497 3498 static void device_remove_sys_dev_entry(struct device *dev) 3499 { 3500 struct kobject *kobj = device_to_dev_kobj(dev); 3501 char devt_str[15]; 3502 3503 if (kobj) { 3504 format_dev_t(devt_str, dev->devt); 3505 sysfs_remove_link(kobj, devt_str); 3506 } 3507 } 3508 3509 static int device_private_init(struct device *dev) 3510 { 3511 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3512 if (!dev->p) 3513 return -ENOMEM; 3514 dev->p->device = dev; 3515 klist_init(&dev->p->klist_children, klist_children_get, 3516 klist_children_put); 3517 INIT_LIST_HEAD(&dev->p->deferred_probe); 3518 return 0; 3519 } 3520 3521 /** 3522 * device_add - add device to device hierarchy. 3523 * @dev: device. 3524 * 3525 * This is part 2 of device_register(), though may be called 3526 * separately _iff_ device_initialize() has been called separately. 3527 * 3528 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3529 * to the global and sibling lists for the device, then 3530 * adds it to the other relevant subsystems of the driver model. 3531 * 3532 * Do not call this routine or device_register() more than once for 3533 * any device structure. The driver model core is not designed to work 3534 * with devices that get unregistered and then spring back to life. 3535 * (Among other things, it's very hard to guarantee that all references 3536 * to the previous incarnation of @dev have been dropped.) Allocate 3537 * and register a fresh new struct device instead. 3538 * 3539 * NOTE: _Never_ directly free @dev after calling this function, even 3540 * if it returned an error! Always use put_device() to give up your 3541 * reference instead. 3542 * 3543 * Rule of thumb is: if device_add() succeeds, you should call 3544 * device_del() when you want to get rid of it. If device_add() has 3545 * *not* succeeded, use *only* put_device() to drop the reference 3546 * count. 3547 */ 3548 int device_add(struct device *dev) 3549 { 3550 struct subsys_private *sp; 3551 struct device *parent; 3552 struct kobject *kobj; 3553 struct class_interface *class_intf; 3554 int error = -EINVAL; 3555 struct kobject *glue_dir = NULL; 3556 3557 dev = get_device(dev); 3558 if (!dev) 3559 goto done; 3560 3561 if (!dev->p) { 3562 error = device_private_init(dev); 3563 if (error) 3564 goto done; 3565 } 3566 3567 /* 3568 * for statically allocated devices, which should all be converted 3569 * some day, we need to initialize the name. We prevent reading back 3570 * the name, and force the use of dev_name() 3571 */ 3572 if (dev->init_name) { 3573 error = dev_set_name(dev, "%s", dev->init_name); 3574 dev->init_name = NULL; 3575 } 3576 3577 if (dev_name(dev)) 3578 error = 0; 3579 /* subsystems can specify simple device enumeration */ 3580 else if (dev->bus && dev->bus->dev_name) 3581 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3582 else 3583 error = -EINVAL; 3584 if (error) 3585 goto name_error; 3586 3587 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3588 3589 parent = get_device(dev->parent); 3590 kobj = get_device_parent(dev, parent); 3591 if (IS_ERR(kobj)) { 3592 error = PTR_ERR(kobj); 3593 goto parent_error; 3594 } 3595 if (kobj) 3596 dev->kobj.parent = kobj; 3597 3598 /* use parent numa_node */ 3599 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3600 set_dev_node(dev, dev_to_node(parent)); 3601 3602 /* first, register with generic layer. */ 3603 /* we require the name to be set before, and pass NULL */ 3604 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3605 if (error) { 3606 glue_dir = kobj; 3607 goto Error; 3608 } 3609 3610 /* notify platform of device entry */ 3611 device_platform_notify(dev); 3612 3613 error = device_create_file(dev, &dev_attr_uevent); 3614 if (error) 3615 goto attrError; 3616 3617 error = device_add_class_symlinks(dev); 3618 if (error) 3619 goto SymlinkError; 3620 error = device_add_attrs(dev); 3621 if (error) 3622 goto AttrsError; 3623 error = bus_add_device(dev); 3624 if (error) 3625 goto BusError; 3626 error = dpm_sysfs_add(dev); 3627 if (error) 3628 goto DPMError; 3629 device_pm_add(dev); 3630 3631 if (MAJOR(dev->devt)) { 3632 error = device_create_file(dev, &dev_attr_dev); 3633 if (error) 3634 goto DevAttrError; 3635 3636 error = device_create_sys_dev_entry(dev); 3637 if (error) 3638 goto SysEntryError; 3639 3640 devtmpfs_create_node(dev); 3641 } 3642 3643 /* Notify clients of device addition. This call must come 3644 * after dpm_sysfs_add() and before kobject_uevent(). 3645 */ 3646 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE); 3647 kobject_uevent(&dev->kobj, KOBJ_ADD); 3648 3649 /* 3650 * Check if any of the other devices (consumers) have been waiting for 3651 * this device (supplier) to be added so that they can create a device 3652 * link to it. 3653 * 3654 * This needs to happen after device_pm_add() because device_link_add() 3655 * requires the supplier be registered before it's called. 3656 * 3657 * But this also needs to happen before bus_probe_device() to make sure 3658 * waiting consumers can link to it before the driver is bound to the 3659 * device and the driver sync_state callback is called for this device. 3660 */ 3661 if (dev->fwnode && !dev->fwnode->dev) { 3662 dev->fwnode->dev = dev; 3663 fw_devlink_link_device(dev); 3664 } 3665 3666 bus_probe_device(dev); 3667 3668 /* 3669 * If all driver registration is done and a newly added device doesn't 3670 * match with any driver, don't block its consumers from probing in 3671 * case the consumer device is able to operate without this supplier. 3672 */ 3673 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3674 fw_devlink_unblock_consumers(dev); 3675 3676 if (parent) 3677 klist_add_tail(&dev->p->knode_parent, 3678 &parent->p->klist_children); 3679 3680 sp = class_to_subsys(dev->class); 3681 if (sp) { 3682 mutex_lock(&sp->mutex); 3683 /* tie the class to the device */ 3684 klist_add_tail(&dev->p->knode_class, &sp->klist_devices); 3685 3686 /* notify any interfaces that the device is here */ 3687 list_for_each_entry(class_intf, &sp->interfaces, node) 3688 if (class_intf->add_dev) 3689 class_intf->add_dev(dev); 3690 mutex_unlock(&sp->mutex); 3691 subsys_put(sp); 3692 } 3693 done: 3694 put_device(dev); 3695 return error; 3696 SysEntryError: 3697 if (MAJOR(dev->devt)) 3698 device_remove_file(dev, &dev_attr_dev); 3699 DevAttrError: 3700 device_pm_remove(dev); 3701 dpm_sysfs_remove(dev); 3702 DPMError: 3703 dev->driver = NULL; 3704 bus_remove_device(dev); 3705 BusError: 3706 device_remove_attrs(dev); 3707 AttrsError: 3708 device_remove_class_symlinks(dev); 3709 SymlinkError: 3710 device_remove_file(dev, &dev_attr_uevent); 3711 attrError: 3712 device_platform_notify_remove(dev); 3713 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3714 glue_dir = get_glue_dir(dev); 3715 kobject_del(&dev->kobj); 3716 Error: 3717 cleanup_glue_dir(dev, glue_dir); 3718 parent_error: 3719 put_device(parent); 3720 name_error: 3721 kfree(dev->p); 3722 dev->p = NULL; 3723 goto done; 3724 } 3725 EXPORT_SYMBOL_GPL(device_add); 3726 3727 /** 3728 * device_register - register a device with the system. 3729 * @dev: pointer to the device structure 3730 * 3731 * This happens in two clean steps - initialize the device 3732 * and add it to the system. The two steps can be called 3733 * separately, but this is the easiest and most common. 3734 * I.e. you should only call the two helpers separately if 3735 * have a clearly defined need to use and refcount the device 3736 * before it is added to the hierarchy. 3737 * 3738 * For more information, see the kerneldoc for device_initialize() 3739 * and device_add(). 3740 * 3741 * NOTE: _Never_ directly free @dev after calling this function, even 3742 * if it returned an error! Always use put_device() to give up the 3743 * reference initialized in this function instead. 3744 */ 3745 int device_register(struct device *dev) 3746 { 3747 device_initialize(dev); 3748 return device_add(dev); 3749 } 3750 EXPORT_SYMBOL_GPL(device_register); 3751 3752 /** 3753 * get_device - increment reference count for device. 3754 * @dev: device. 3755 * 3756 * This simply forwards the call to kobject_get(), though 3757 * we do take care to provide for the case that we get a NULL 3758 * pointer passed in. 3759 */ 3760 struct device *get_device(struct device *dev) 3761 { 3762 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3763 } 3764 EXPORT_SYMBOL_GPL(get_device); 3765 3766 /** 3767 * put_device - decrement reference count. 3768 * @dev: device in question. 3769 */ 3770 void put_device(struct device *dev) 3771 { 3772 /* might_sleep(); */ 3773 if (dev) 3774 kobject_put(&dev->kobj); 3775 } 3776 EXPORT_SYMBOL_GPL(put_device); 3777 3778 bool kill_device(struct device *dev) 3779 { 3780 /* 3781 * Require the device lock and set the "dead" flag to guarantee that 3782 * the update behavior is consistent with the other bitfields near 3783 * it and that we cannot have an asynchronous probe routine trying 3784 * to run while we are tearing out the bus/class/sysfs from 3785 * underneath the device. 3786 */ 3787 device_lock_assert(dev); 3788 3789 if (dev->p->dead) 3790 return false; 3791 dev->p->dead = true; 3792 return true; 3793 } 3794 EXPORT_SYMBOL_GPL(kill_device); 3795 3796 /** 3797 * device_del - delete device from system. 3798 * @dev: device. 3799 * 3800 * This is the first part of the device unregistration 3801 * sequence. This removes the device from the lists we control 3802 * from here, has it removed from the other driver model 3803 * subsystems it was added to in device_add(), and removes it 3804 * from the kobject hierarchy. 3805 * 3806 * NOTE: this should be called manually _iff_ device_add() was 3807 * also called manually. 3808 */ 3809 void device_del(struct device *dev) 3810 { 3811 struct subsys_private *sp; 3812 struct device *parent = dev->parent; 3813 struct kobject *glue_dir = NULL; 3814 struct class_interface *class_intf; 3815 unsigned int noio_flag; 3816 3817 device_lock(dev); 3818 kill_device(dev); 3819 device_unlock(dev); 3820 3821 if (dev->fwnode && dev->fwnode->dev == dev) 3822 dev->fwnode->dev = NULL; 3823 3824 /* Notify clients of device removal. This call must come 3825 * before dpm_sysfs_remove(). 3826 */ 3827 noio_flag = memalloc_noio_save(); 3828 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE); 3829 3830 dpm_sysfs_remove(dev); 3831 if (parent) 3832 klist_del(&dev->p->knode_parent); 3833 if (MAJOR(dev->devt)) { 3834 devtmpfs_delete_node(dev); 3835 device_remove_sys_dev_entry(dev); 3836 device_remove_file(dev, &dev_attr_dev); 3837 } 3838 3839 sp = class_to_subsys(dev->class); 3840 if (sp) { 3841 device_remove_class_symlinks(dev); 3842 3843 mutex_lock(&sp->mutex); 3844 /* notify any interfaces that the device is now gone */ 3845 list_for_each_entry(class_intf, &sp->interfaces, node) 3846 if (class_intf->remove_dev) 3847 class_intf->remove_dev(dev); 3848 /* remove the device from the class list */ 3849 klist_del(&dev->p->knode_class); 3850 mutex_unlock(&sp->mutex); 3851 subsys_put(sp); 3852 } 3853 device_remove_file(dev, &dev_attr_uevent); 3854 device_remove_attrs(dev); 3855 bus_remove_device(dev); 3856 device_pm_remove(dev); 3857 driver_deferred_probe_del(dev); 3858 device_platform_notify_remove(dev); 3859 device_links_purge(dev); 3860 3861 /* 3862 * If a device does not have a driver attached, we need to clean 3863 * up any managed resources. We do this in device_release(), but 3864 * it's never called (and we leak the device) if a managed 3865 * resource holds a reference to the device. So release all 3866 * managed resources here, like we do in driver_detach(). We 3867 * still need to do so again in device_release() in case someone 3868 * adds a new resource after this point, though. 3869 */ 3870 devres_release_all(dev); 3871 3872 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE); 3873 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3874 glue_dir = get_glue_dir(dev); 3875 kobject_del(&dev->kobj); 3876 cleanup_glue_dir(dev, glue_dir); 3877 memalloc_noio_restore(noio_flag); 3878 put_device(parent); 3879 } 3880 EXPORT_SYMBOL_GPL(device_del); 3881 3882 /** 3883 * device_unregister - unregister device from system. 3884 * @dev: device going away. 3885 * 3886 * We do this in two parts, like we do device_register(). First, 3887 * we remove it from all the subsystems with device_del(), then 3888 * we decrement the reference count via put_device(). If that 3889 * is the final reference count, the device will be cleaned up 3890 * via device_release() above. Otherwise, the structure will 3891 * stick around until the final reference to the device is dropped. 3892 */ 3893 void device_unregister(struct device *dev) 3894 { 3895 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3896 device_del(dev); 3897 put_device(dev); 3898 } 3899 EXPORT_SYMBOL_GPL(device_unregister); 3900 3901 static struct device *prev_device(struct klist_iter *i) 3902 { 3903 struct klist_node *n = klist_prev(i); 3904 struct device *dev = NULL; 3905 struct device_private *p; 3906 3907 if (n) { 3908 p = to_device_private_parent(n); 3909 dev = p->device; 3910 } 3911 return dev; 3912 } 3913 3914 static struct device *next_device(struct klist_iter *i) 3915 { 3916 struct klist_node *n = klist_next(i); 3917 struct device *dev = NULL; 3918 struct device_private *p; 3919 3920 if (n) { 3921 p = to_device_private_parent(n); 3922 dev = p->device; 3923 } 3924 return dev; 3925 } 3926 3927 /** 3928 * device_get_devnode - path of device node file 3929 * @dev: device 3930 * @mode: returned file access mode 3931 * @uid: returned file owner 3932 * @gid: returned file group 3933 * @tmp: possibly allocated string 3934 * 3935 * Return the relative path of a possible device node. 3936 * Non-default names may need to allocate a memory to compose 3937 * a name. This memory is returned in tmp and needs to be 3938 * freed by the caller. 3939 */ 3940 const char *device_get_devnode(const struct device *dev, 3941 umode_t *mode, kuid_t *uid, kgid_t *gid, 3942 const char **tmp) 3943 { 3944 char *s; 3945 3946 *tmp = NULL; 3947 3948 /* the device type may provide a specific name */ 3949 if (dev->type && dev->type->devnode) 3950 *tmp = dev->type->devnode(dev, mode, uid, gid); 3951 if (*tmp) 3952 return *tmp; 3953 3954 /* the class may provide a specific name */ 3955 if (dev->class && dev->class->devnode) 3956 *tmp = dev->class->devnode(dev, mode); 3957 if (*tmp) 3958 return *tmp; 3959 3960 /* return name without allocation, tmp == NULL */ 3961 if (strchr(dev_name(dev), '!') == NULL) 3962 return dev_name(dev); 3963 3964 /* replace '!' in the name with '/' */ 3965 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL); 3966 if (!s) 3967 return NULL; 3968 return *tmp = s; 3969 } 3970 3971 /** 3972 * device_for_each_child - device child iterator. 3973 * @parent: parent struct device. 3974 * @fn: function to be called for each device. 3975 * @data: data for the callback. 3976 * 3977 * Iterate over @parent's child devices, and call @fn for each, 3978 * passing it @data. 3979 * 3980 * We check the return of @fn each time. If it returns anything 3981 * other than 0, we break out and return that value. 3982 */ 3983 int device_for_each_child(struct device *parent, void *data, 3984 device_iter_t fn) 3985 { 3986 struct klist_iter i; 3987 struct device *child; 3988 int error = 0; 3989 3990 if (!parent || !parent->p) 3991 return 0; 3992 3993 klist_iter_init(&parent->p->klist_children, &i); 3994 while (!error && (child = next_device(&i))) 3995 error = fn(child, data); 3996 klist_iter_exit(&i); 3997 return error; 3998 } 3999 EXPORT_SYMBOL_GPL(device_for_each_child); 4000 4001 /** 4002 * device_for_each_child_reverse - device child iterator in reversed order. 4003 * @parent: parent struct device. 4004 * @fn: function to be called for each device. 4005 * @data: data for the callback. 4006 * 4007 * Iterate over @parent's child devices, and call @fn for each, 4008 * passing it @data. 4009 * 4010 * We check the return of @fn each time. If it returns anything 4011 * other than 0, we break out and return that value. 4012 */ 4013 int device_for_each_child_reverse(struct device *parent, void *data, 4014 device_iter_t fn) 4015 { 4016 struct klist_iter i; 4017 struct device *child; 4018 int error = 0; 4019 4020 if (!parent || !parent->p) 4021 return 0; 4022 4023 klist_iter_init(&parent->p->klist_children, &i); 4024 while ((child = prev_device(&i)) && !error) 4025 error = fn(child, data); 4026 klist_iter_exit(&i); 4027 return error; 4028 } 4029 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 4030 4031 /** 4032 * device_for_each_child_reverse_from - device child iterator in reversed order. 4033 * @parent: parent struct device. 4034 * @from: optional starting point in child list 4035 * @fn: function to be called for each device. 4036 * @data: data for the callback. 4037 * 4038 * Iterate over @parent's child devices, starting at @from, and call @fn 4039 * for each, passing it @data. This helper is identical to 4040 * device_for_each_child_reverse() when @from is NULL. 4041 * 4042 * @fn is checked each iteration. If it returns anything other than 0, 4043 * iteration stop and that value is returned to the caller of 4044 * device_for_each_child_reverse_from(); 4045 */ 4046 int device_for_each_child_reverse_from(struct device *parent, 4047 struct device *from, void *data, 4048 device_iter_t fn) 4049 { 4050 struct klist_iter i; 4051 struct device *child; 4052 int error = 0; 4053 4054 if (!parent || !parent->p) 4055 return 0; 4056 4057 klist_iter_init_node(&parent->p->klist_children, &i, 4058 (from ? &from->p->knode_parent : NULL)); 4059 while ((child = prev_device(&i)) && !error) 4060 error = fn(child, data); 4061 klist_iter_exit(&i); 4062 return error; 4063 } 4064 EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from); 4065 4066 /** 4067 * device_find_child - device iterator for locating a particular device. 4068 * @parent: parent struct device 4069 * @match: Callback function to check device 4070 * @data: Data to pass to match function 4071 * 4072 * This is similar to the device_for_each_child() function above, but it 4073 * returns a reference to a device that is 'found' for later use, as 4074 * determined by the @match callback. 4075 * 4076 * The callback should return 0 if the device doesn't match and non-zero 4077 * if it does. If the callback returns non-zero and a reference to the 4078 * current device can be obtained, this function will return to the caller 4079 * and not iterate over any more devices. 4080 * 4081 * NOTE: you will need to drop the reference with put_device() after use. 4082 */ 4083 struct device *device_find_child(struct device *parent, const void *data, 4084 device_match_t match) 4085 { 4086 struct klist_iter i; 4087 struct device *child; 4088 4089 if (!parent || !parent->p) 4090 return NULL; 4091 4092 klist_iter_init(&parent->p->klist_children, &i); 4093 while ((child = next_device(&i))) { 4094 if (match(child, data)) { 4095 get_device(child); 4096 break; 4097 } 4098 } 4099 klist_iter_exit(&i); 4100 return child; 4101 } 4102 EXPORT_SYMBOL_GPL(device_find_child); 4103 4104 int __init devices_init(void) 4105 { 4106 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 4107 if (!devices_kset) 4108 return -ENOMEM; 4109 dev_kobj = kobject_create_and_add("dev", NULL); 4110 if (!dev_kobj) 4111 goto dev_kobj_err; 4112 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 4113 if (!sysfs_dev_block_kobj) 4114 goto block_kobj_err; 4115 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 4116 if (!sysfs_dev_char_kobj) 4117 goto char_kobj_err; 4118 device_link_wq = alloc_workqueue("device_link_wq", 0, 0); 4119 if (!device_link_wq) 4120 goto wq_err; 4121 4122 return 0; 4123 4124 wq_err: 4125 kobject_put(sysfs_dev_char_kobj); 4126 char_kobj_err: 4127 kobject_put(sysfs_dev_block_kobj); 4128 block_kobj_err: 4129 kobject_put(dev_kobj); 4130 dev_kobj_err: 4131 kset_unregister(devices_kset); 4132 return -ENOMEM; 4133 } 4134 4135 static int device_check_offline(struct device *dev, void *not_used) 4136 { 4137 int ret; 4138 4139 ret = device_for_each_child(dev, NULL, device_check_offline); 4140 if (ret) 4141 return ret; 4142 4143 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 4144 } 4145 4146 /** 4147 * device_offline - Prepare the device for hot-removal. 4148 * @dev: Device to be put offline. 4149 * 4150 * Execute the device bus type's .offline() callback, if present, to prepare 4151 * the device for a subsequent hot-removal. If that succeeds, the device must 4152 * not be used until either it is removed or its bus type's .online() callback 4153 * is executed. 4154 * 4155 * Call under device_hotplug_lock. 4156 */ 4157 int device_offline(struct device *dev) 4158 { 4159 int ret; 4160 4161 if (dev->offline_disabled) 4162 return -EPERM; 4163 4164 ret = device_for_each_child(dev, NULL, device_check_offline); 4165 if (ret) 4166 return ret; 4167 4168 device_lock(dev); 4169 if (device_supports_offline(dev)) { 4170 if (dev->offline) { 4171 ret = 1; 4172 } else { 4173 ret = dev->bus->offline(dev); 4174 if (!ret) { 4175 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 4176 dev->offline = true; 4177 } 4178 } 4179 } 4180 device_unlock(dev); 4181 4182 return ret; 4183 } 4184 4185 /** 4186 * device_online - Put the device back online after successful device_offline(). 4187 * @dev: Device to be put back online. 4188 * 4189 * If device_offline() has been successfully executed for @dev, but the device 4190 * has not been removed subsequently, execute its bus type's .online() callback 4191 * to indicate that the device can be used again. 4192 * 4193 * Call under device_hotplug_lock. 4194 */ 4195 int device_online(struct device *dev) 4196 { 4197 int ret = 0; 4198 4199 device_lock(dev); 4200 if (device_supports_offline(dev)) { 4201 if (dev->offline) { 4202 ret = dev->bus->online(dev); 4203 if (!ret) { 4204 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4205 dev->offline = false; 4206 } 4207 } else { 4208 ret = 1; 4209 } 4210 } 4211 device_unlock(dev); 4212 4213 return ret; 4214 } 4215 4216 struct root_device { 4217 struct device dev; 4218 struct module *owner; 4219 }; 4220 4221 static inline struct root_device *to_root_device(struct device *d) 4222 { 4223 return container_of(d, struct root_device, dev); 4224 } 4225 4226 static void root_device_release(struct device *dev) 4227 { 4228 kfree(to_root_device(dev)); 4229 } 4230 4231 /** 4232 * __root_device_register - allocate and register a root device 4233 * @name: root device name 4234 * @owner: owner module of the root device, usually THIS_MODULE 4235 * 4236 * This function allocates a root device and registers it 4237 * using device_register(). In order to free the returned 4238 * device, use root_device_unregister(). 4239 * 4240 * Root devices are dummy devices which allow other devices 4241 * to be grouped under /sys/devices. Use this function to 4242 * allocate a root device and then use it as the parent of 4243 * any device which should appear under /sys/devices/{name} 4244 * 4245 * The /sys/devices/{name} directory will also contain a 4246 * 'module' symlink which points to the @owner directory 4247 * in sysfs. 4248 * 4249 * Returns &struct device pointer on success, or ERR_PTR() on error. 4250 * 4251 * Note: You probably want to use root_device_register(). 4252 */ 4253 struct device *__root_device_register(const char *name, struct module *owner) 4254 { 4255 struct root_device *root; 4256 int err = -ENOMEM; 4257 4258 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4259 if (!root) 4260 return ERR_PTR(err); 4261 4262 err = dev_set_name(&root->dev, "%s", name); 4263 if (err) { 4264 kfree(root); 4265 return ERR_PTR(err); 4266 } 4267 4268 root->dev.release = root_device_release; 4269 4270 err = device_register(&root->dev); 4271 if (err) { 4272 put_device(&root->dev); 4273 return ERR_PTR(err); 4274 } 4275 4276 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4277 if (owner) { 4278 struct module_kobject *mk = &owner->mkobj; 4279 4280 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4281 if (err) { 4282 device_unregister(&root->dev); 4283 return ERR_PTR(err); 4284 } 4285 root->owner = owner; 4286 } 4287 #endif 4288 4289 return &root->dev; 4290 } 4291 EXPORT_SYMBOL_GPL(__root_device_register); 4292 4293 /** 4294 * root_device_unregister - unregister and free a root device 4295 * @dev: device going away 4296 * 4297 * This function unregisters and cleans up a device that was created by 4298 * root_device_register(). 4299 */ 4300 void root_device_unregister(struct device *dev) 4301 { 4302 struct root_device *root = to_root_device(dev); 4303 4304 if (root->owner) 4305 sysfs_remove_link(&root->dev.kobj, "module"); 4306 4307 device_unregister(dev); 4308 } 4309 EXPORT_SYMBOL_GPL(root_device_unregister); 4310 4311 4312 static void device_create_release(struct device *dev) 4313 { 4314 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4315 kfree(dev); 4316 } 4317 4318 static __printf(6, 0) struct device * 4319 device_create_groups_vargs(const struct class *class, struct device *parent, 4320 dev_t devt, void *drvdata, 4321 const struct attribute_group **groups, 4322 const char *fmt, va_list args) 4323 { 4324 struct device *dev = NULL; 4325 int retval = -ENODEV; 4326 4327 if (IS_ERR_OR_NULL(class)) 4328 goto error; 4329 4330 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4331 if (!dev) { 4332 retval = -ENOMEM; 4333 goto error; 4334 } 4335 4336 device_initialize(dev); 4337 dev->devt = devt; 4338 dev->class = class; 4339 dev->parent = parent; 4340 dev->groups = groups; 4341 dev->release = device_create_release; 4342 dev_set_drvdata(dev, drvdata); 4343 4344 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4345 if (retval) 4346 goto error; 4347 4348 retval = device_add(dev); 4349 if (retval) 4350 goto error; 4351 4352 return dev; 4353 4354 error: 4355 put_device(dev); 4356 return ERR_PTR(retval); 4357 } 4358 4359 /** 4360 * device_create - creates a device and registers it with sysfs 4361 * @class: pointer to the struct class that this device should be registered to 4362 * @parent: pointer to the parent struct device of this new device, if any 4363 * @devt: the dev_t for the char device to be added 4364 * @drvdata: the data to be added to the device for callbacks 4365 * @fmt: string for the device's name 4366 * 4367 * This function can be used by char device classes. A struct device 4368 * will be created in sysfs, registered to the specified class. 4369 * 4370 * A "dev" file will be created, showing the dev_t for the device, if 4371 * the dev_t is not 0,0. 4372 * If a pointer to a parent struct device is passed in, the newly created 4373 * struct device will be a child of that device in sysfs. 4374 * The pointer to the struct device will be returned from the call. 4375 * Any further sysfs files that might be required can be created using this 4376 * pointer. 4377 * 4378 * Returns &struct device pointer on success, or ERR_PTR() on error. 4379 */ 4380 struct device *device_create(const struct class *class, struct device *parent, 4381 dev_t devt, void *drvdata, const char *fmt, ...) 4382 { 4383 va_list vargs; 4384 struct device *dev; 4385 4386 va_start(vargs, fmt); 4387 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4388 fmt, vargs); 4389 va_end(vargs); 4390 return dev; 4391 } 4392 EXPORT_SYMBOL_GPL(device_create); 4393 4394 /** 4395 * device_create_with_groups - creates a device and registers it with sysfs 4396 * @class: pointer to the struct class that this device should be registered to 4397 * @parent: pointer to the parent struct device of this new device, if any 4398 * @devt: the dev_t for the char device to be added 4399 * @drvdata: the data to be added to the device for callbacks 4400 * @groups: NULL-terminated list of attribute groups to be created 4401 * @fmt: string for the device's name 4402 * 4403 * This function can be used by char device classes. A struct device 4404 * will be created in sysfs, registered to the specified class. 4405 * Additional attributes specified in the groups parameter will also 4406 * be created automatically. 4407 * 4408 * A "dev" file will be created, showing the dev_t for the device, if 4409 * the dev_t is not 0,0. 4410 * If a pointer to a parent struct device is passed in, the newly created 4411 * struct device will be a child of that device in sysfs. 4412 * The pointer to the struct device will be returned from the call. 4413 * Any further sysfs files that might be required can be created using this 4414 * pointer. 4415 * 4416 * Returns &struct device pointer on success, or ERR_PTR() on error. 4417 */ 4418 struct device *device_create_with_groups(const struct class *class, 4419 struct device *parent, dev_t devt, 4420 void *drvdata, 4421 const struct attribute_group **groups, 4422 const char *fmt, ...) 4423 { 4424 va_list vargs; 4425 struct device *dev; 4426 4427 va_start(vargs, fmt); 4428 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4429 fmt, vargs); 4430 va_end(vargs); 4431 return dev; 4432 } 4433 EXPORT_SYMBOL_GPL(device_create_with_groups); 4434 4435 /** 4436 * device_destroy - removes a device that was created with device_create() 4437 * @class: pointer to the struct class that this device was registered with 4438 * @devt: the dev_t of the device that was previously registered 4439 * 4440 * This call unregisters and cleans up a device that was created with a 4441 * call to device_create(). 4442 */ 4443 void device_destroy(const struct class *class, dev_t devt) 4444 { 4445 struct device *dev; 4446 4447 dev = class_find_device_by_devt(class, devt); 4448 if (dev) { 4449 put_device(dev); 4450 device_unregister(dev); 4451 } 4452 } 4453 EXPORT_SYMBOL_GPL(device_destroy); 4454 4455 /** 4456 * device_rename - renames a device 4457 * @dev: the pointer to the struct device to be renamed 4458 * @new_name: the new name of the device 4459 * 4460 * It is the responsibility of the caller to provide mutual 4461 * exclusion between two different calls of device_rename 4462 * on the same device to ensure that new_name is valid and 4463 * won't conflict with other devices. 4464 * 4465 * Note: given that some subsystems (networking and infiniband) use this 4466 * function, with no immediate plans for this to change, we cannot assume or 4467 * require that this function not be called at all. 4468 * 4469 * However, if you're writing new code, do not call this function. The following 4470 * text from Kay Sievers offers some insight: 4471 * 4472 * Renaming devices is racy at many levels, symlinks and other stuff are not 4473 * replaced atomically, and you get a "move" uevent, but it's not easy to 4474 * connect the event to the old and new device. Device nodes are not renamed at 4475 * all, there isn't even support for that in the kernel now. 4476 * 4477 * In the meantime, during renaming, your target name might be taken by another 4478 * driver, creating conflicts. Or the old name is taken directly after you 4479 * renamed it -- then you get events for the same DEVPATH, before you even see 4480 * the "move" event. It's just a mess, and nothing new should ever rely on 4481 * kernel device renaming. Besides that, it's not even implemented now for 4482 * other things than (driver-core wise very simple) network devices. 4483 * 4484 * Make up a "real" name in the driver before you register anything, or add 4485 * some other attributes for userspace to find the device, or use udev to add 4486 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4487 * don't even want to get into that and try to implement the missing pieces in 4488 * the core. We really have other pieces to fix in the driver core mess. :) 4489 */ 4490 int device_rename(struct device *dev, const char *new_name) 4491 { 4492 struct subsys_private *sp = NULL; 4493 struct kobject *kobj = &dev->kobj; 4494 char *old_device_name = NULL; 4495 int error; 4496 bool is_link_renamed = false; 4497 4498 dev = get_device(dev); 4499 if (!dev) 4500 return -EINVAL; 4501 4502 dev_dbg(dev, "renaming to %s\n", new_name); 4503 4504 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4505 if (!old_device_name) { 4506 error = -ENOMEM; 4507 goto out; 4508 } 4509 4510 if (dev->class) { 4511 sp = class_to_subsys(dev->class); 4512 4513 if (!sp) { 4514 error = -EINVAL; 4515 goto out; 4516 } 4517 4518 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name, 4519 new_name, kobject_namespace(kobj)); 4520 if (error) 4521 goto out; 4522 4523 is_link_renamed = true; 4524 } 4525 4526 error = kobject_rename(kobj, new_name); 4527 out: 4528 if (error && is_link_renamed) 4529 sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name, 4530 old_device_name, kobject_namespace(kobj)); 4531 subsys_put(sp); 4532 4533 put_device(dev); 4534 4535 kfree(old_device_name); 4536 4537 return error; 4538 } 4539 EXPORT_SYMBOL_GPL(device_rename); 4540 4541 static int device_move_class_links(struct device *dev, 4542 struct device *old_parent, 4543 struct device *new_parent) 4544 { 4545 int error = 0; 4546 4547 if (old_parent) 4548 sysfs_remove_link(&dev->kobj, "device"); 4549 if (new_parent) 4550 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4551 "device"); 4552 return error; 4553 } 4554 4555 /** 4556 * device_move - moves a device to a new parent 4557 * @dev: the pointer to the struct device to be moved 4558 * @new_parent: the new parent of the device (can be NULL) 4559 * @dpm_order: how to reorder the dpm_list 4560 */ 4561 int device_move(struct device *dev, struct device *new_parent, 4562 enum dpm_order dpm_order) 4563 { 4564 int error; 4565 struct device *old_parent; 4566 struct kobject *new_parent_kobj; 4567 4568 dev = get_device(dev); 4569 if (!dev) 4570 return -EINVAL; 4571 4572 device_pm_lock(); 4573 new_parent = get_device(new_parent); 4574 new_parent_kobj = get_device_parent(dev, new_parent); 4575 if (IS_ERR(new_parent_kobj)) { 4576 error = PTR_ERR(new_parent_kobj); 4577 put_device(new_parent); 4578 goto out; 4579 } 4580 4581 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4582 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4583 error = kobject_move(&dev->kobj, new_parent_kobj); 4584 if (error) { 4585 cleanup_glue_dir(dev, new_parent_kobj); 4586 put_device(new_parent); 4587 goto out; 4588 } 4589 old_parent = dev->parent; 4590 dev->parent = new_parent; 4591 if (old_parent) 4592 klist_remove(&dev->p->knode_parent); 4593 if (new_parent) { 4594 klist_add_tail(&dev->p->knode_parent, 4595 &new_parent->p->klist_children); 4596 set_dev_node(dev, dev_to_node(new_parent)); 4597 } 4598 4599 if (dev->class) { 4600 error = device_move_class_links(dev, old_parent, new_parent); 4601 if (error) { 4602 /* We ignore errors on cleanup since we're hosed anyway... */ 4603 device_move_class_links(dev, new_parent, old_parent); 4604 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4605 if (new_parent) 4606 klist_remove(&dev->p->knode_parent); 4607 dev->parent = old_parent; 4608 if (old_parent) { 4609 klist_add_tail(&dev->p->knode_parent, 4610 &old_parent->p->klist_children); 4611 set_dev_node(dev, dev_to_node(old_parent)); 4612 } 4613 } 4614 cleanup_glue_dir(dev, new_parent_kobj); 4615 put_device(new_parent); 4616 goto out; 4617 } 4618 } 4619 switch (dpm_order) { 4620 case DPM_ORDER_NONE: 4621 break; 4622 case DPM_ORDER_DEV_AFTER_PARENT: 4623 device_pm_move_after(dev, new_parent); 4624 devices_kset_move_after(dev, new_parent); 4625 break; 4626 case DPM_ORDER_PARENT_BEFORE_DEV: 4627 device_pm_move_before(new_parent, dev); 4628 devices_kset_move_before(new_parent, dev); 4629 break; 4630 case DPM_ORDER_DEV_LAST: 4631 device_pm_move_last(dev); 4632 devices_kset_move_last(dev); 4633 break; 4634 } 4635 4636 put_device(old_parent); 4637 out: 4638 device_pm_unlock(); 4639 put_device(dev); 4640 return error; 4641 } 4642 EXPORT_SYMBOL_GPL(device_move); 4643 4644 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4645 kgid_t kgid) 4646 { 4647 struct kobject *kobj = &dev->kobj; 4648 const struct class *class = dev->class; 4649 const struct device_type *type = dev->type; 4650 int error; 4651 4652 if (class) { 4653 /* 4654 * Change the device groups of the device class for @dev to 4655 * @kuid/@kgid. 4656 */ 4657 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4658 kgid); 4659 if (error) 4660 return error; 4661 } 4662 4663 if (type) { 4664 /* 4665 * Change the device groups of the device type for @dev to 4666 * @kuid/@kgid. 4667 */ 4668 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4669 kgid); 4670 if (error) 4671 return error; 4672 } 4673 4674 /* Change the device groups of @dev to @kuid/@kgid. */ 4675 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4676 if (error) 4677 return error; 4678 4679 if (device_supports_offline(dev) && !dev->offline_disabled) { 4680 /* Change online device attributes of @dev to @kuid/@kgid. */ 4681 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4682 kuid, kgid); 4683 if (error) 4684 return error; 4685 } 4686 4687 return 0; 4688 } 4689 4690 /** 4691 * device_change_owner - change the owner of an existing device. 4692 * @dev: device. 4693 * @kuid: new owner's kuid 4694 * @kgid: new owner's kgid 4695 * 4696 * This changes the owner of @dev and its corresponding sysfs entries to 4697 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4698 * core. 4699 * 4700 * Returns 0 on success or error code on failure. 4701 */ 4702 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4703 { 4704 int error; 4705 struct kobject *kobj = &dev->kobj; 4706 struct subsys_private *sp; 4707 4708 dev = get_device(dev); 4709 if (!dev) 4710 return -EINVAL; 4711 4712 /* 4713 * Change the kobject and the default attributes and groups of the 4714 * ktype associated with it to @kuid/@kgid. 4715 */ 4716 error = sysfs_change_owner(kobj, kuid, kgid); 4717 if (error) 4718 goto out; 4719 4720 /* 4721 * Change the uevent file for @dev to the new owner. The uevent file 4722 * was created in a separate step when @dev got added and we mirror 4723 * that step here. 4724 */ 4725 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4726 kgid); 4727 if (error) 4728 goto out; 4729 4730 /* 4731 * Change the device groups, the device groups associated with the 4732 * device class, and the groups associated with the device type of @dev 4733 * to @kuid/@kgid. 4734 */ 4735 error = device_attrs_change_owner(dev, kuid, kgid); 4736 if (error) 4737 goto out; 4738 4739 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4740 if (error) 4741 goto out; 4742 4743 /* 4744 * Change the owner of the symlink located in the class directory of 4745 * the device class associated with @dev which points to the actual 4746 * directory entry for @dev to @kuid/@kgid. This ensures that the 4747 * symlink shows the same permissions as its target. 4748 */ 4749 sp = class_to_subsys(dev->class); 4750 if (!sp) { 4751 error = -EINVAL; 4752 goto out; 4753 } 4754 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid); 4755 subsys_put(sp); 4756 4757 out: 4758 put_device(dev); 4759 return error; 4760 } 4761 EXPORT_SYMBOL_GPL(device_change_owner); 4762 4763 /** 4764 * device_shutdown - call ->shutdown() on each device to shutdown. 4765 */ 4766 void device_shutdown(void) 4767 { 4768 struct device *dev, *parent; 4769 4770 wait_for_device_probe(); 4771 device_block_probing(); 4772 4773 cpufreq_suspend(); 4774 4775 spin_lock(&devices_kset->list_lock); 4776 /* 4777 * Walk the devices list backward, shutting down each in turn. 4778 * Beware that device unplug events may also start pulling 4779 * devices offline, even as the system is shutting down. 4780 */ 4781 while (!list_empty(&devices_kset->list)) { 4782 dev = list_entry(devices_kset->list.prev, struct device, 4783 kobj.entry); 4784 4785 /* 4786 * hold reference count of device's parent to 4787 * prevent it from being freed because parent's 4788 * lock is to be held 4789 */ 4790 parent = get_device(dev->parent); 4791 get_device(dev); 4792 /* 4793 * Make sure the device is off the kset list, in the 4794 * event that dev->*->shutdown() doesn't remove it. 4795 */ 4796 list_del_init(&dev->kobj.entry); 4797 spin_unlock(&devices_kset->list_lock); 4798 4799 /* hold lock to avoid race with probe/release */ 4800 if (parent) 4801 device_lock(parent); 4802 device_lock(dev); 4803 4804 /* Don't allow any more runtime suspends */ 4805 pm_runtime_get_noresume(dev); 4806 pm_runtime_barrier(dev); 4807 4808 if (dev->class && dev->class->shutdown_pre) { 4809 if (initcall_debug) 4810 dev_info(dev, "shutdown_pre\n"); 4811 dev->class->shutdown_pre(dev); 4812 } 4813 if (dev->bus && dev->bus->shutdown) { 4814 if (initcall_debug) 4815 dev_info(dev, "shutdown\n"); 4816 dev->bus->shutdown(dev); 4817 } else if (dev->driver && dev->driver->shutdown) { 4818 if (initcall_debug) 4819 dev_info(dev, "shutdown\n"); 4820 dev->driver->shutdown(dev); 4821 } 4822 4823 device_unlock(dev); 4824 if (parent) 4825 device_unlock(parent); 4826 4827 put_device(dev); 4828 put_device(parent); 4829 4830 spin_lock(&devices_kset->list_lock); 4831 } 4832 spin_unlock(&devices_kset->list_lock); 4833 } 4834 4835 /* 4836 * Device logging functions 4837 */ 4838 4839 #ifdef CONFIG_PRINTK 4840 static void 4841 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4842 { 4843 const char *subsys; 4844 4845 memset(dev_info, 0, sizeof(*dev_info)); 4846 4847 if (dev->class) 4848 subsys = dev->class->name; 4849 else if (dev->bus) 4850 subsys = dev->bus->name; 4851 else 4852 return; 4853 4854 strscpy(dev_info->subsystem, subsys); 4855 4856 /* 4857 * Add device identifier DEVICE=: 4858 * b12:8 block dev_t 4859 * c127:3 char dev_t 4860 * n8 netdev ifindex 4861 * +sound:card0 subsystem:devname 4862 */ 4863 if (MAJOR(dev->devt)) { 4864 char c; 4865 4866 if (strcmp(subsys, "block") == 0) 4867 c = 'b'; 4868 else 4869 c = 'c'; 4870 4871 snprintf(dev_info->device, sizeof(dev_info->device), 4872 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4873 } else if (strcmp(subsys, "net") == 0) { 4874 struct net_device *net = to_net_dev(dev); 4875 4876 snprintf(dev_info->device, sizeof(dev_info->device), 4877 "n%u", net->ifindex); 4878 } else { 4879 snprintf(dev_info->device, sizeof(dev_info->device), 4880 "+%s:%s", subsys, dev_name(dev)); 4881 } 4882 } 4883 4884 int dev_vprintk_emit(int level, const struct device *dev, 4885 const char *fmt, va_list args) 4886 { 4887 struct dev_printk_info dev_info; 4888 4889 set_dev_info(dev, &dev_info); 4890 4891 return vprintk_emit(0, level, &dev_info, fmt, args); 4892 } 4893 EXPORT_SYMBOL(dev_vprintk_emit); 4894 4895 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4896 { 4897 va_list args; 4898 int r; 4899 4900 va_start(args, fmt); 4901 4902 r = dev_vprintk_emit(level, dev, fmt, args); 4903 4904 va_end(args); 4905 4906 return r; 4907 } 4908 EXPORT_SYMBOL(dev_printk_emit); 4909 4910 static void __dev_printk(const char *level, const struct device *dev, 4911 struct va_format *vaf) 4912 { 4913 if (dev) 4914 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4915 dev_driver_string(dev), dev_name(dev), vaf); 4916 else 4917 printk("%s(NULL device *): %pV", level, vaf); 4918 } 4919 4920 void _dev_printk(const char *level, const struct device *dev, 4921 const char *fmt, ...) 4922 { 4923 struct va_format vaf; 4924 va_list args; 4925 4926 va_start(args, fmt); 4927 4928 vaf.fmt = fmt; 4929 vaf.va = &args; 4930 4931 __dev_printk(level, dev, &vaf); 4932 4933 va_end(args); 4934 } 4935 EXPORT_SYMBOL(_dev_printk); 4936 4937 #define define_dev_printk_level(func, kern_level) \ 4938 void func(const struct device *dev, const char *fmt, ...) \ 4939 { \ 4940 struct va_format vaf; \ 4941 va_list args; \ 4942 \ 4943 va_start(args, fmt); \ 4944 \ 4945 vaf.fmt = fmt; \ 4946 vaf.va = &args; \ 4947 \ 4948 __dev_printk(kern_level, dev, &vaf); \ 4949 \ 4950 va_end(args); \ 4951 } \ 4952 EXPORT_SYMBOL(func); 4953 4954 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4955 define_dev_printk_level(_dev_alert, KERN_ALERT); 4956 define_dev_printk_level(_dev_crit, KERN_CRIT); 4957 define_dev_printk_level(_dev_err, KERN_ERR); 4958 define_dev_printk_level(_dev_warn, KERN_WARNING); 4959 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4960 define_dev_printk_level(_dev_info, KERN_INFO); 4961 4962 #endif 4963 4964 static void __dev_probe_failed(const struct device *dev, int err, bool fatal, 4965 const char *fmt, va_list vargsp) 4966 { 4967 struct va_format vaf; 4968 va_list vargs; 4969 4970 /* 4971 * On x86_64 and possibly on other architectures, va_list is actually a 4972 * size-1 array containing a structure. As a result, function parameter 4973 * vargsp decays from T[1] to T*, and &vargsp has type T** rather than 4974 * T(*)[1], which is expected by its assignment to vaf.va below. 4975 * 4976 * One standard way to solve this mess is by creating a copy in a local 4977 * variable of type va_list and then using a pointer to that local copy 4978 * instead, which is the approach employed here. 4979 */ 4980 va_copy(vargs, vargsp); 4981 4982 vaf.fmt = fmt; 4983 vaf.va = &vargs; 4984 4985 switch (err) { 4986 case -EPROBE_DEFER: 4987 device_set_deferred_probe_reason(dev, &vaf); 4988 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4989 break; 4990 4991 case -ENOMEM: 4992 /* Don't print anything on -ENOMEM, there's already enough output */ 4993 break; 4994 4995 default: 4996 /* Log fatal final failures as errors, otherwise produce warnings */ 4997 if (fatal) 4998 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4999 else 5000 dev_warn(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5001 break; 5002 } 5003 5004 va_end(vargs); 5005 } 5006 5007 /** 5008 * dev_err_probe - probe error check and log helper 5009 * @dev: the pointer to the struct device 5010 * @err: error value to test 5011 * @fmt: printf-style format string 5012 * @...: arguments as specified in the format string 5013 * 5014 * This helper implements common pattern present in probe functions for error 5015 * checking: print debug or error message depending if the error value is 5016 * -EPROBE_DEFER and propagate error upwards. 5017 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 5018 * checked later by reading devices_deferred debugfs attribute. 5019 * It replaces the following code sequence:: 5020 * 5021 * if (err != -EPROBE_DEFER) 5022 * dev_err(dev, ...); 5023 * else 5024 * dev_dbg(dev, ...); 5025 * return err; 5026 * 5027 * with:: 5028 * 5029 * return dev_err_probe(dev, err, ...); 5030 * 5031 * Using this helper in your probe function is totally fine even if @err 5032 * is known to never be -EPROBE_DEFER. 5033 * The benefit compared to a normal dev_err() is the standardized format 5034 * of the error code, which is emitted symbolically (i.e. you get "EAGAIN" 5035 * instead of "-35"), and having the error code returned allows more 5036 * compact error paths. 5037 * 5038 * Returns @err. 5039 */ 5040 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 5041 { 5042 va_list vargs; 5043 5044 va_start(vargs, fmt); 5045 5046 /* Use dev_err() for logging when err doesn't equal -EPROBE_DEFER */ 5047 __dev_probe_failed(dev, err, true, fmt, vargs); 5048 5049 va_end(vargs); 5050 5051 return err; 5052 } 5053 EXPORT_SYMBOL_GPL(dev_err_probe); 5054 5055 /** 5056 * dev_warn_probe - probe error check and log helper 5057 * @dev: the pointer to the struct device 5058 * @err: error value to test 5059 * @fmt: printf-style format string 5060 * @...: arguments as specified in the format string 5061 * 5062 * This helper implements common pattern present in probe functions for error 5063 * checking: print debug or warning message depending if the error value is 5064 * -EPROBE_DEFER and propagate error upwards. 5065 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 5066 * checked later by reading devices_deferred debugfs attribute. 5067 * It replaces the following code sequence:: 5068 * 5069 * if (err != -EPROBE_DEFER) 5070 * dev_warn(dev, ...); 5071 * else 5072 * dev_dbg(dev, ...); 5073 * return err; 5074 * 5075 * with:: 5076 * 5077 * return dev_warn_probe(dev, err, ...); 5078 * 5079 * Using this helper in your probe function is totally fine even if @err 5080 * is known to never be -EPROBE_DEFER. 5081 * The benefit compared to a normal dev_warn() is the standardized format 5082 * of the error code, which is emitted symbolically (i.e. you get "EAGAIN" 5083 * instead of "-35"), and having the error code returned allows more 5084 * compact error paths. 5085 * 5086 * Returns @err. 5087 */ 5088 int dev_warn_probe(const struct device *dev, int err, const char *fmt, ...) 5089 { 5090 va_list vargs; 5091 5092 va_start(vargs, fmt); 5093 5094 /* Use dev_warn() for logging when err doesn't equal -EPROBE_DEFER */ 5095 __dev_probe_failed(dev, err, false, fmt, vargs); 5096 5097 va_end(vargs); 5098 5099 return err; 5100 } 5101 EXPORT_SYMBOL_GPL(dev_warn_probe); 5102 5103 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 5104 { 5105 return fwnode && !IS_ERR(fwnode->secondary); 5106 } 5107 5108 /** 5109 * set_primary_fwnode - Change the primary firmware node of a given device. 5110 * @dev: Device to handle. 5111 * @fwnode: New primary firmware node of the device. 5112 * 5113 * Set the device's firmware node pointer to @fwnode, but if a secondary 5114 * firmware node of the device is present, preserve it. 5115 * 5116 * Valid fwnode cases are: 5117 * - primary --> secondary --> -ENODEV 5118 * - primary --> NULL 5119 * - secondary --> -ENODEV 5120 * - NULL 5121 */ 5122 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5123 { 5124 struct device *parent = dev->parent; 5125 struct fwnode_handle *fn = dev->fwnode; 5126 5127 if (fwnode) { 5128 if (fwnode_is_primary(fn)) 5129 fn = fn->secondary; 5130 5131 if (fn) { 5132 WARN_ON(fwnode->secondary); 5133 fwnode->secondary = fn; 5134 } 5135 dev->fwnode = fwnode; 5136 } else { 5137 if (fwnode_is_primary(fn)) { 5138 dev->fwnode = fn->secondary; 5139 5140 /* Skip nullifying fn->secondary if the primary is shared */ 5141 if (parent && fn == parent->fwnode) 5142 return; 5143 5144 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 5145 fn->secondary = NULL; 5146 } else { 5147 dev->fwnode = NULL; 5148 } 5149 } 5150 } 5151 EXPORT_SYMBOL_GPL(set_primary_fwnode); 5152 5153 /** 5154 * set_secondary_fwnode - Change the secondary firmware node of a given device. 5155 * @dev: Device to handle. 5156 * @fwnode: New secondary firmware node of the device. 5157 * 5158 * If a primary firmware node of the device is present, set its secondary 5159 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 5160 * @fwnode. 5161 */ 5162 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5163 { 5164 if (fwnode) 5165 fwnode->secondary = ERR_PTR(-ENODEV); 5166 5167 if (fwnode_is_primary(dev->fwnode)) 5168 dev->fwnode->secondary = fwnode; 5169 else 5170 dev->fwnode = fwnode; 5171 } 5172 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 5173 5174 /** 5175 * device_remove_of_node - Remove an of_node from a device 5176 * @dev: device whose device tree node is being removed 5177 */ 5178 void device_remove_of_node(struct device *dev) 5179 { 5180 dev = get_device(dev); 5181 if (!dev) 5182 return; 5183 5184 if (!dev->of_node) 5185 goto end; 5186 5187 if (dev->fwnode == of_fwnode_handle(dev->of_node)) 5188 dev->fwnode = NULL; 5189 5190 of_node_put(dev->of_node); 5191 dev->of_node = NULL; 5192 5193 end: 5194 put_device(dev); 5195 } 5196 EXPORT_SYMBOL_GPL(device_remove_of_node); 5197 5198 /** 5199 * device_add_of_node - Add an of_node to an existing device 5200 * @dev: device whose device tree node is being added 5201 * @of_node: of_node to add 5202 * 5203 * Return: 0 on success or error code on failure. 5204 */ 5205 int device_add_of_node(struct device *dev, struct device_node *of_node) 5206 { 5207 int ret; 5208 5209 if (!of_node) 5210 return -EINVAL; 5211 5212 dev = get_device(dev); 5213 if (!dev) 5214 return -EINVAL; 5215 5216 if (dev->of_node) { 5217 dev_err(dev, "Cannot replace node %pOF with %pOF\n", 5218 dev->of_node, of_node); 5219 ret = -EBUSY; 5220 goto end; 5221 } 5222 5223 dev->of_node = of_node_get(of_node); 5224 5225 if (!dev->fwnode) 5226 dev->fwnode = of_fwnode_handle(of_node); 5227 5228 ret = 0; 5229 end: 5230 put_device(dev); 5231 return ret; 5232 } 5233 EXPORT_SYMBOL_GPL(device_add_of_node); 5234 5235 /** 5236 * device_set_of_node_from_dev - reuse device-tree node of another device 5237 * @dev: device whose device-tree node is being set 5238 * @dev2: device whose device-tree node is being reused 5239 * 5240 * Takes another reference to the new device-tree node after first dropping 5241 * any reference held to the old node. 5242 */ 5243 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 5244 { 5245 of_node_put(dev->of_node); 5246 dev->of_node = of_node_get(dev2->of_node); 5247 dev->of_node_reused = true; 5248 } 5249 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 5250 5251 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 5252 { 5253 dev->fwnode = fwnode; 5254 dev->of_node = to_of_node(fwnode); 5255 } 5256 EXPORT_SYMBOL_GPL(device_set_node); 5257 5258 int device_match_name(struct device *dev, const void *name) 5259 { 5260 return sysfs_streq(dev_name(dev), name); 5261 } 5262 EXPORT_SYMBOL_GPL(device_match_name); 5263 5264 int device_match_type(struct device *dev, const void *type) 5265 { 5266 return dev->type == type; 5267 } 5268 EXPORT_SYMBOL_GPL(device_match_type); 5269 5270 int device_match_of_node(struct device *dev, const void *np) 5271 { 5272 return np && dev->of_node == np; 5273 } 5274 EXPORT_SYMBOL_GPL(device_match_of_node); 5275 5276 int device_match_fwnode(struct device *dev, const void *fwnode) 5277 { 5278 return fwnode && dev_fwnode(dev) == fwnode; 5279 } 5280 EXPORT_SYMBOL_GPL(device_match_fwnode); 5281 5282 int device_match_devt(struct device *dev, const void *pdevt) 5283 { 5284 return dev->devt == *(dev_t *)pdevt; 5285 } 5286 EXPORT_SYMBOL_GPL(device_match_devt); 5287 5288 int device_match_acpi_dev(struct device *dev, const void *adev) 5289 { 5290 return adev && ACPI_COMPANION(dev) == adev; 5291 } 5292 EXPORT_SYMBOL(device_match_acpi_dev); 5293 5294 int device_match_acpi_handle(struct device *dev, const void *handle) 5295 { 5296 return handle && ACPI_HANDLE(dev) == handle; 5297 } 5298 EXPORT_SYMBOL(device_match_acpi_handle); 5299 5300 int device_match_any(struct device *dev, const void *unused) 5301 { 5302 return 1; 5303 } 5304 EXPORT_SYMBOL_GPL(device_match_any); 5305