1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * net/sched/sch_generic.c Generic packet scheduler routines.
4 *
5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
6 * Jamal Hadi Salim, <hadi@cyberus.ca> 990601
7 * - Ingress support
8 */
9
10 #include <linux/bitops.h>
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/string.h>
16 #include <linux/errno.h>
17 #include <linux/netdevice.h>
18 #include <linux/skbuff.h>
19 #include <linux/rtnetlink.h>
20 #include <linux/init.h>
21 #include <linux/rcupdate.h>
22 #include <linux/list.h>
23 #include <linux/slab.h>
24 #include <linux/if_vlan.h>
25 #include <linux/skb_array.h>
26 #include <linux/if_macvlan.h>
27 #include <net/sch_generic.h>
28 #include <net/pkt_sched.h>
29 #include <net/dst.h>
30 #include <net/hotdata.h>
31 #include <trace/events/qdisc.h>
32 #include <trace/events/net.h>
33 #include <net/xfrm.h>
34
35 /* Qdisc to use by default */
36 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops;
37 EXPORT_SYMBOL(default_qdisc_ops);
38
qdisc_maybe_clear_missed(struct Qdisc * q,const struct netdev_queue * txq)39 static void qdisc_maybe_clear_missed(struct Qdisc *q,
40 const struct netdev_queue *txq)
41 {
42 clear_bit(__QDISC_STATE_MISSED, &q->state);
43
44 /* Make sure the below netif_xmit_frozen_or_stopped()
45 * checking happens after clearing STATE_MISSED.
46 */
47 smp_mb__after_atomic();
48
49 /* Checking netif_xmit_frozen_or_stopped() again to
50 * make sure STATE_MISSED is set if the STATE_MISSED
51 * set by netif_tx_wake_queue()'s rescheduling of
52 * net_tx_action() is cleared by the above clear_bit().
53 */
54 if (!netif_xmit_frozen_or_stopped(txq))
55 set_bit(__QDISC_STATE_MISSED, &q->state);
56 else
57 set_bit(__QDISC_STATE_DRAINING, &q->state);
58 }
59
60 /* Main transmission queue. */
61
62 /* Modifications to data participating in scheduling must be protected with
63 * qdisc_lock(qdisc) spinlock.
64 *
65 * The idea is the following:
66 * - enqueue, dequeue are serialized via qdisc root lock
67 * - ingress filtering is also serialized via qdisc root lock
68 * - updates to tree and tree walking are only done under the rtnl mutex.
69 */
70
71 #define SKB_XOFF_MAGIC ((struct sk_buff *)1UL)
72
__skb_dequeue_bad_txq(struct Qdisc * q)73 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q)
74 {
75 const struct netdev_queue *txq = q->dev_queue;
76 spinlock_t *lock = NULL;
77 struct sk_buff *skb;
78
79 if (q->flags & TCQ_F_NOLOCK) {
80 lock = qdisc_lock(q);
81 spin_lock(lock);
82 }
83
84 skb = skb_peek(&q->skb_bad_txq);
85 if (skb) {
86 /* check the reason of requeuing without tx lock first */
87 txq = skb_get_tx_queue(txq->dev, skb);
88 if (!netif_xmit_frozen_or_stopped(txq)) {
89 skb = __skb_dequeue(&q->skb_bad_txq);
90 if (qdisc_is_percpu_stats(q)) {
91 qdisc_qstats_cpu_backlog_dec(q, skb);
92 qdisc_qstats_cpu_qlen_dec(q);
93 } else {
94 qdisc_qstats_backlog_dec(q, skb);
95 q->q.qlen--;
96 }
97 } else {
98 skb = SKB_XOFF_MAGIC;
99 qdisc_maybe_clear_missed(q, txq);
100 }
101 }
102
103 if (lock)
104 spin_unlock(lock);
105
106 return skb;
107 }
108
qdisc_dequeue_skb_bad_txq(struct Qdisc * q)109 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q)
110 {
111 struct sk_buff *skb = skb_peek(&q->skb_bad_txq);
112
113 if (unlikely(skb))
114 skb = __skb_dequeue_bad_txq(q);
115
116 return skb;
117 }
118
qdisc_enqueue_skb_bad_txq(struct Qdisc * q,struct sk_buff * skb)119 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q,
120 struct sk_buff *skb)
121 {
122 spinlock_t *lock = NULL;
123
124 if (q->flags & TCQ_F_NOLOCK) {
125 lock = qdisc_lock(q);
126 spin_lock(lock);
127 }
128
129 __skb_queue_tail(&q->skb_bad_txq, skb);
130
131 if (qdisc_is_percpu_stats(q)) {
132 qdisc_qstats_cpu_backlog_inc(q, skb);
133 qdisc_qstats_cpu_qlen_inc(q);
134 } else {
135 qdisc_qstats_backlog_inc(q, skb);
136 q->q.qlen++;
137 }
138
139 if (lock)
140 spin_unlock(lock);
141 }
142
dev_requeue_skb(struct sk_buff * skb,struct Qdisc * q)143 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q)
144 {
145 spinlock_t *lock = NULL;
146
147 if (q->flags & TCQ_F_NOLOCK) {
148 lock = qdisc_lock(q);
149 spin_lock(lock);
150 }
151
152 while (skb) {
153 struct sk_buff *next = skb->next;
154
155 __skb_queue_tail(&q->gso_skb, skb);
156
157 /* it's still part of the queue */
158 if (qdisc_is_percpu_stats(q)) {
159 qdisc_qstats_cpu_requeues_inc(q);
160 qdisc_qstats_cpu_backlog_inc(q, skb);
161 qdisc_qstats_cpu_qlen_inc(q);
162 } else {
163 q->qstats.requeues++;
164 qdisc_qstats_backlog_inc(q, skb);
165 q->q.qlen++;
166 }
167
168 skb = next;
169 }
170
171 if (lock) {
172 spin_unlock(lock);
173 set_bit(__QDISC_STATE_MISSED, &q->state);
174 } else {
175 __netif_schedule(q);
176 }
177 }
178
try_bulk_dequeue_skb(struct Qdisc * q,struct sk_buff * skb,const struct netdev_queue * txq,int * packets)179 static void try_bulk_dequeue_skb(struct Qdisc *q,
180 struct sk_buff *skb,
181 const struct netdev_queue *txq,
182 int *packets)
183 {
184 int bytelimit = qdisc_avail_bulklimit(txq) - skb->len;
185
186 while (bytelimit > 0) {
187 struct sk_buff *nskb = q->dequeue(q);
188
189 if (!nskb)
190 break;
191
192 bytelimit -= nskb->len; /* covers GSO len */
193 skb->next = nskb;
194 skb = nskb;
195 (*packets)++; /* GSO counts as one pkt */
196 }
197 skb_mark_not_on_list(skb);
198 }
199
200 /* This variant of try_bulk_dequeue_skb() makes sure
201 * all skbs in the chain are for the same txq
202 */
try_bulk_dequeue_skb_slow(struct Qdisc * q,struct sk_buff * skb,int * packets)203 static void try_bulk_dequeue_skb_slow(struct Qdisc *q,
204 struct sk_buff *skb,
205 int *packets)
206 {
207 int mapping = skb_get_queue_mapping(skb);
208 struct sk_buff *nskb;
209 int cnt = 0;
210
211 do {
212 nskb = q->dequeue(q);
213 if (!nskb)
214 break;
215 if (unlikely(skb_get_queue_mapping(nskb) != mapping)) {
216 qdisc_enqueue_skb_bad_txq(q, nskb);
217 break;
218 }
219 skb->next = nskb;
220 skb = nskb;
221 } while (++cnt < 8);
222 (*packets) += cnt;
223 skb_mark_not_on_list(skb);
224 }
225
226 /* Note that dequeue_skb can possibly return a SKB list (via skb->next).
227 * A requeued skb (via q->gso_skb) can also be a SKB list.
228 */
dequeue_skb(struct Qdisc * q,bool * validate,int * packets)229 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate,
230 int *packets)
231 {
232 const struct netdev_queue *txq = q->dev_queue;
233 struct sk_buff *skb = NULL;
234
235 *packets = 1;
236 if (unlikely(!skb_queue_empty(&q->gso_skb))) {
237 spinlock_t *lock = NULL;
238
239 if (q->flags & TCQ_F_NOLOCK) {
240 lock = qdisc_lock(q);
241 spin_lock(lock);
242 }
243
244 skb = skb_peek(&q->gso_skb);
245
246 /* skb may be null if another cpu pulls gso_skb off in between
247 * empty check and lock.
248 */
249 if (!skb) {
250 if (lock)
251 spin_unlock(lock);
252 goto validate;
253 }
254
255 /* skb in gso_skb were already validated */
256 *validate = false;
257 if (xfrm_offload(skb))
258 *validate = true;
259 /* check the reason of requeuing without tx lock first */
260 txq = skb_get_tx_queue(txq->dev, skb);
261 if (!netif_xmit_frozen_or_stopped(txq)) {
262 skb = __skb_dequeue(&q->gso_skb);
263 if (qdisc_is_percpu_stats(q)) {
264 qdisc_qstats_cpu_backlog_dec(q, skb);
265 qdisc_qstats_cpu_qlen_dec(q);
266 } else {
267 qdisc_qstats_backlog_dec(q, skb);
268 q->q.qlen--;
269 }
270 } else {
271 skb = NULL;
272 qdisc_maybe_clear_missed(q, txq);
273 }
274 if (lock)
275 spin_unlock(lock);
276 goto trace;
277 }
278 validate:
279 *validate = true;
280
281 if ((q->flags & TCQ_F_ONETXQUEUE) &&
282 netif_xmit_frozen_or_stopped(txq)) {
283 qdisc_maybe_clear_missed(q, txq);
284 return skb;
285 }
286
287 skb = qdisc_dequeue_skb_bad_txq(q);
288 if (unlikely(skb)) {
289 if (skb == SKB_XOFF_MAGIC)
290 return NULL;
291 goto bulk;
292 }
293 skb = q->dequeue(q);
294 if (skb) {
295 bulk:
296 if (qdisc_may_bulk(q))
297 try_bulk_dequeue_skb(q, skb, txq, packets);
298 else
299 try_bulk_dequeue_skb_slow(q, skb, packets);
300 }
301 trace:
302 trace_qdisc_dequeue(q, txq, *packets, skb);
303 return skb;
304 }
305
306 /*
307 * Transmit possibly several skbs, and handle the return status as
308 * required. Owning qdisc running bit guarantees that only one CPU
309 * can execute this function.
310 *
311 * Returns to the caller:
312 * false - hardware queue frozen backoff
313 * true - feel free to send more pkts
314 */
sch_direct_xmit(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq,spinlock_t * root_lock,bool validate)315 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q,
316 struct net_device *dev, struct netdev_queue *txq,
317 spinlock_t *root_lock, bool validate)
318 {
319 int ret = NETDEV_TX_BUSY;
320 bool again = false;
321
322 /* And release qdisc */
323 if (root_lock)
324 spin_unlock(root_lock);
325
326 /* Note that we validate skb (GSO, checksum, ...) outside of locks */
327 if (validate)
328 skb = validate_xmit_skb_list(skb, dev, &again);
329
330 #ifdef CONFIG_XFRM_OFFLOAD
331 if (unlikely(again)) {
332 if (root_lock)
333 spin_lock(root_lock);
334
335 dev_requeue_skb(skb, q);
336 return false;
337 }
338 #endif
339
340 if (likely(skb)) {
341 HARD_TX_LOCK(dev, txq, smp_processor_id());
342 if (!netif_xmit_frozen_or_stopped(txq))
343 skb = dev_hard_start_xmit(skb, dev, txq, &ret);
344 else
345 qdisc_maybe_clear_missed(q, txq);
346
347 HARD_TX_UNLOCK(dev, txq);
348 } else {
349 if (root_lock)
350 spin_lock(root_lock);
351 return true;
352 }
353
354 if (root_lock)
355 spin_lock(root_lock);
356
357 if (!dev_xmit_complete(ret)) {
358 /* Driver returned NETDEV_TX_BUSY - requeue skb */
359 if (unlikely(ret != NETDEV_TX_BUSY))
360 net_warn_ratelimited("BUG %s code %d qlen %d\n",
361 dev->name, ret, q->q.qlen);
362
363 dev_requeue_skb(skb, q);
364 return false;
365 }
366
367 return true;
368 }
369
370 /*
371 * NOTE: Called under qdisc_lock(q) with locally disabled BH.
372 *
373 * running seqcount guarantees only one CPU can process
374 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for
375 * this queue.
376 *
377 * netif_tx_lock serializes accesses to device driver.
378 *
379 * qdisc_lock(q) and netif_tx_lock are mutually exclusive,
380 * if one is grabbed, another must be free.
381 *
382 * Note, that this procedure can be called by a watchdog timer
383 *
384 * Returns to the caller:
385 * 0 - queue is empty or throttled.
386 * >0 - queue is not empty.
387 *
388 */
qdisc_restart(struct Qdisc * q,int * packets)389 static inline bool qdisc_restart(struct Qdisc *q, int *packets)
390 {
391 spinlock_t *root_lock = NULL;
392 struct netdev_queue *txq;
393 struct net_device *dev;
394 struct sk_buff *skb;
395 bool validate;
396
397 /* Dequeue packet */
398 skb = dequeue_skb(q, &validate, packets);
399 if (unlikely(!skb))
400 return false;
401
402 if (!(q->flags & TCQ_F_NOLOCK))
403 root_lock = qdisc_lock(q);
404
405 dev = qdisc_dev(q);
406 txq = skb_get_tx_queue(dev, skb);
407
408 return sch_direct_xmit(skb, q, dev, txq, root_lock, validate);
409 }
410
__qdisc_run(struct Qdisc * q)411 void __qdisc_run(struct Qdisc *q)
412 {
413 int quota = READ_ONCE(net_hotdata.dev_tx_weight);
414 int packets;
415
416 while (qdisc_restart(q, &packets)) {
417 quota -= packets;
418 if (quota <= 0) {
419 if (q->flags & TCQ_F_NOLOCK)
420 set_bit(__QDISC_STATE_MISSED, &q->state);
421 else
422 __netif_schedule(q);
423
424 break;
425 }
426 }
427 }
428
dev_trans_start(struct net_device * dev)429 unsigned long dev_trans_start(struct net_device *dev)
430 {
431 unsigned long res = READ_ONCE(netdev_get_tx_queue(dev, 0)->trans_start);
432 unsigned long val;
433 unsigned int i;
434
435 for (i = 1; i < dev->num_tx_queues; i++) {
436 val = READ_ONCE(netdev_get_tx_queue(dev, i)->trans_start);
437 if (val && time_after(val, res))
438 res = val;
439 }
440
441 return res;
442 }
443 EXPORT_SYMBOL(dev_trans_start);
444
netif_freeze_queues(struct net_device * dev)445 static void netif_freeze_queues(struct net_device *dev)
446 {
447 unsigned int i;
448 int cpu;
449
450 cpu = smp_processor_id();
451 for (i = 0; i < dev->num_tx_queues; i++) {
452 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
453
454 /* We are the only thread of execution doing a
455 * freeze, but we have to grab the _xmit_lock in
456 * order to synchronize with threads which are in
457 * the ->hard_start_xmit() handler and already
458 * checked the frozen bit.
459 */
460 __netif_tx_lock(txq, cpu);
461 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
462 __netif_tx_unlock(txq);
463 }
464 }
465
netif_tx_lock(struct net_device * dev)466 void netif_tx_lock(struct net_device *dev)
467 {
468 spin_lock(&dev->tx_global_lock);
469 netif_freeze_queues(dev);
470 }
471 EXPORT_SYMBOL(netif_tx_lock);
472
netif_unfreeze_queues(struct net_device * dev)473 static void netif_unfreeze_queues(struct net_device *dev)
474 {
475 unsigned int i;
476
477 for (i = 0; i < dev->num_tx_queues; i++) {
478 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
479
480 /* No need to grab the _xmit_lock here. If the
481 * queue is not stopped for another reason, we
482 * force a schedule.
483 */
484 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
485 netif_schedule_queue(txq);
486 }
487 }
488
netif_tx_unlock(struct net_device * dev)489 void netif_tx_unlock(struct net_device *dev)
490 {
491 netif_unfreeze_queues(dev);
492 spin_unlock(&dev->tx_global_lock);
493 }
494 EXPORT_SYMBOL(netif_tx_unlock);
495
dev_watchdog(struct timer_list * t)496 static void dev_watchdog(struct timer_list *t)
497 {
498 struct net_device *dev = from_timer(dev, t, watchdog_timer);
499 bool release = true;
500
501 spin_lock(&dev->tx_global_lock);
502 if (!qdisc_tx_is_noop(dev)) {
503 if (netif_device_present(dev) &&
504 netif_running(dev) &&
505 netif_carrier_ok(dev)) {
506 unsigned int timedout_ms = 0;
507 unsigned int i;
508 unsigned long trans_start;
509 unsigned long oldest_start = jiffies;
510
511 for (i = 0; i < dev->num_tx_queues; i++) {
512 struct netdev_queue *txq;
513
514 txq = netdev_get_tx_queue(dev, i);
515 if (!netif_xmit_stopped(txq))
516 continue;
517
518 /* Paired with WRITE_ONCE() + smp_mb...() in
519 * netdev_tx_sent_queue() and netif_tx_stop_queue().
520 */
521 smp_mb();
522 trans_start = READ_ONCE(txq->trans_start);
523
524 if (time_after(jiffies, trans_start + dev->watchdog_timeo)) {
525 timedout_ms = jiffies_to_msecs(jiffies - trans_start);
526 atomic_long_inc(&txq->trans_timeout);
527 break;
528 }
529 if (time_after(oldest_start, trans_start))
530 oldest_start = trans_start;
531 }
532
533 if (unlikely(timedout_ms)) {
534 trace_net_dev_xmit_timeout(dev, i);
535 netdev_crit(dev, "NETDEV WATCHDOG: CPU: %d: transmit queue %u timed out %u ms\n",
536 raw_smp_processor_id(),
537 i, timedout_ms);
538 netif_freeze_queues(dev);
539 dev->netdev_ops->ndo_tx_timeout(dev, i);
540 netif_unfreeze_queues(dev);
541 }
542 if (!mod_timer(&dev->watchdog_timer,
543 round_jiffies(oldest_start +
544 dev->watchdog_timeo)))
545 release = false;
546 }
547 }
548 spin_unlock(&dev->tx_global_lock);
549
550 if (release)
551 netdev_put(dev, &dev->watchdog_dev_tracker);
552 }
553
netdev_watchdog_up(struct net_device * dev)554 void netdev_watchdog_up(struct net_device *dev)
555 {
556 if (!dev->netdev_ops->ndo_tx_timeout)
557 return;
558 if (dev->watchdog_timeo <= 0)
559 dev->watchdog_timeo = 5*HZ;
560 if (!mod_timer(&dev->watchdog_timer,
561 round_jiffies(jiffies + dev->watchdog_timeo)))
562 netdev_hold(dev, &dev->watchdog_dev_tracker,
563 GFP_ATOMIC);
564 }
565 EXPORT_SYMBOL_GPL(netdev_watchdog_up);
566
netdev_watchdog_down(struct net_device * dev)567 static void netdev_watchdog_down(struct net_device *dev)
568 {
569 netif_tx_lock_bh(dev);
570 if (timer_delete(&dev->watchdog_timer))
571 netdev_put(dev, &dev->watchdog_dev_tracker);
572 netif_tx_unlock_bh(dev);
573 }
574
575 /**
576 * netif_carrier_on - set carrier
577 * @dev: network device
578 *
579 * Device has detected acquisition of carrier.
580 */
netif_carrier_on(struct net_device * dev)581 void netif_carrier_on(struct net_device *dev)
582 {
583 if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
584 if (dev->reg_state == NETREG_UNINITIALIZED)
585 return;
586 atomic_inc(&dev->carrier_up_count);
587 linkwatch_fire_event(dev);
588 if (netif_running(dev))
589 netdev_watchdog_up(dev);
590 }
591 }
592 EXPORT_SYMBOL(netif_carrier_on);
593
594 /**
595 * netif_carrier_off - clear carrier
596 * @dev: network device
597 *
598 * Device has detected loss of carrier.
599 */
netif_carrier_off(struct net_device * dev)600 void netif_carrier_off(struct net_device *dev)
601 {
602 if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
603 if (dev->reg_state == NETREG_UNINITIALIZED)
604 return;
605 atomic_inc(&dev->carrier_down_count);
606 linkwatch_fire_event(dev);
607 }
608 }
609 EXPORT_SYMBOL(netif_carrier_off);
610
611 /**
612 * netif_carrier_event - report carrier state event
613 * @dev: network device
614 *
615 * Device has detected a carrier event but the carrier state wasn't changed.
616 * Use in drivers when querying carrier state asynchronously, to avoid missing
617 * events (link flaps) if link recovers before it's queried.
618 */
netif_carrier_event(struct net_device * dev)619 void netif_carrier_event(struct net_device *dev)
620 {
621 if (dev->reg_state == NETREG_UNINITIALIZED)
622 return;
623 atomic_inc(&dev->carrier_up_count);
624 atomic_inc(&dev->carrier_down_count);
625 linkwatch_fire_event(dev);
626 }
627 EXPORT_SYMBOL_GPL(netif_carrier_event);
628
629 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces
630 under all circumstances. It is difficult to invent anything faster or
631 cheaper.
632 */
633
noop_enqueue(struct sk_buff * skb,struct Qdisc * qdisc,struct sk_buff ** to_free)634 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
635 struct sk_buff **to_free)
636 {
637 dev_core_stats_tx_dropped_inc(skb->dev);
638 __qdisc_drop(skb, to_free);
639 return NET_XMIT_CN;
640 }
641
noop_dequeue(struct Qdisc * qdisc)642 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc)
643 {
644 return NULL;
645 }
646
647 struct Qdisc_ops noop_qdisc_ops __read_mostly = {
648 .id = "noop",
649 .priv_size = 0,
650 .enqueue = noop_enqueue,
651 .dequeue = noop_dequeue,
652 .peek = noop_dequeue,
653 .owner = THIS_MODULE,
654 };
655
656 static struct netdev_queue noop_netdev_queue = {
657 RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc),
658 RCU_POINTER_INITIALIZER(qdisc_sleeping, &noop_qdisc),
659 };
660
661 struct Qdisc noop_qdisc = {
662 .enqueue = noop_enqueue,
663 .dequeue = noop_dequeue,
664 .flags = TCQ_F_BUILTIN,
665 .ops = &noop_qdisc_ops,
666 .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock),
667 .dev_queue = &noop_netdev_queue,
668 .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock),
669 .gso_skb = {
670 .next = (struct sk_buff *)&noop_qdisc.gso_skb,
671 .prev = (struct sk_buff *)&noop_qdisc.gso_skb,
672 .qlen = 0,
673 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock),
674 },
675 .skb_bad_txq = {
676 .next = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
677 .prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
678 .qlen = 0,
679 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock),
680 },
681 .owner = -1,
682 };
683 EXPORT_SYMBOL(noop_qdisc);
684
noqueue_init(struct Qdisc * qdisc,struct nlattr * opt,struct netlink_ext_ack * extack)685 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt,
686 struct netlink_ext_ack *extack)
687 {
688 /* register_qdisc() assigns a default of noop_enqueue if unset,
689 * but __dev_queue_xmit() treats noqueue only as such
690 * if this is NULL - so clear it here. */
691 qdisc->enqueue = NULL;
692 return 0;
693 }
694
695 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = {
696 .id = "noqueue",
697 .priv_size = 0,
698 .init = noqueue_init,
699 .enqueue = noop_enqueue,
700 .dequeue = noop_dequeue,
701 .peek = noop_dequeue,
702 .owner = THIS_MODULE,
703 };
704
705 const u8 sch_default_prio2band[TC_PRIO_MAX + 1] = {
706 1, 2, 2, 2, 1, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
707 };
708 EXPORT_SYMBOL(sch_default_prio2band);
709
710 /* 3-band FIFO queue: old style, but should be a bit faster than
711 generic prio+fifo combination.
712 */
713
714 #define PFIFO_FAST_BANDS 3
715
716 /*
717 * Private data for a pfifo_fast scheduler containing:
718 * - rings for priority bands
719 */
720 struct pfifo_fast_priv {
721 struct skb_array q[PFIFO_FAST_BANDS];
722 };
723
band2list(struct pfifo_fast_priv * priv,int band)724 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv,
725 int band)
726 {
727 return &priv->q[band];
728 }
729
pfifo_fast_enqueue(struct sk_buff * skb,struct Qdisc * qdisc,struct sk_buff ** to_free)730 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
731 struct sk_buff **to_free)
732 {
733 int band = sch_default_prio2band[skb->priority & TC_PRIO_MAX];
734 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
735 struct skb_array *q = band2list(priv, band);
736 unsigned int pkt_len = qdisc_pkt_len(skb);
737 int err;
738
739 err = skb_array_produce(q, skb);
740
741 if (unlikely(err)) {
742 if (qdisc_is_percpu_stats(qdisc))
743 return qdisc_drop_cpu(skb, qdisc, to_free);
744 else
745 return qdisc_drop(skb, qdisc, to_free);
746 }
747
748 qdisc_update_stats_at_enqueue(qdisc, pkt_len);
749 return NET_XMIT_SUCCESS;
750 }
751
pfifo_fast_dequeue(struct Qdisc * qdisc)752 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc)
753 {
754 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
755 struct sk_buff *skb = NULL;
756 bool need_retry = true;
757 int band;
758
759 retry:
760 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
761 struct skb_array *q = band2list(priv, band);
762
763 if (__skb_array_empty(q))
764 continue;
765
766 skb = __skb_array_consume(q);
767 }
768 if (likely(skb)) {
769 qdisc_update_stats_at_dequeue(qdisc, skb);
770 } else if (need_retry &&
771 READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) {
772 /* Delay clearing the STATE_MISSED here to reduce
773 * the overhead of the second spin_trylock() in
774 * qdisc_run_begin() and __netif_schedule() calling
775 * in qdisc_run_end().
776 */
777 clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
778 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
779
780 /* Make sure dequeuing happens after clearing
781 * STATE_MISSED.
782 */
783 smp_mb__after_atomic();
784
785 need_retry = false;
786
787 goto retry;
788 }
789
790 return skb;
791 }
792
pfifo_fast_peek(struct Qdisc * qdisc)793 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc)
794 {
795 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
796 struct sk_buff *skb = NULL;
797 int band;
798
799 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
800 struct skb_array *q = band2list(priv, band);
801
802 skb = __skb_array_peek(q);
803 }
804
805 return skb;
806 }
807
pfifo_fast_reset(struct Qdisc * qdisc)808 static void pfifo_fast_reset(struct Qdisc *qdisc)
809 {
810 int i, band;
811 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
812
813 for (band = 0; band < PFIFO_FAST_BANDS; band++) {
814 struct skb_array *q = band2list(priv, band);
815 struct sk_buff *skb;
816
817 /* NULL ring is possible if destroy path is due to a failed
818 * skb_array_init() in pfifo_fast_init() case.
819 */
820 if (!q->ring.queue)
821 continue;
822
823 while ((skb = __skb_array_consume(q)) != NULL)
824 kfree_skb(skb);
825 }
826
827 if (qdisc_is_percpu_stats(qdisc)) {
828 for_each_possible_cpu(i) {
829 struct gnet_stats_queue *q;
830
831 q = per_cpu_ptr(qdisc->cpu_qstats, i);
832 q->backlog = 0;
833 q->qlen = 0;
834 }
835 }
836 }
837
pfifo_fast_dump(struct Qdisc * qdisc,struct sk_buff * skb)838 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb)
839 {
840 struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS };
841
842 memcpy(&opt.priomap, sch_default_prio2band, TC_PRIO_MAX + 1);
843 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
844 goto nla_put_failure;
845 return skb->len;
846
847 nla_put_failure:
848 return -1;
849 }
850
pfifo_fast_init(struct Qdisc * qdisc,struct nlattr * opt,struct netlink_ext_ack * extack)851 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt,
852 struct netlink_ext_ack *extack)
853 {
854 unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len;
855 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
856 int prio;
857
858 /* guard against zero length rings */
859 if (!qlen)
860 return -EINVAL;
861
862 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
863 struct skb_array *q = band2list(priv, prio);
864 int err;
865
866 err = skb_array_init(q, qlen, GFP_KERNEL);
867 if (err)
868 return -ENOMEM;
869 }
870
871 /* Can by-pass the queue discipline */
872 qdisc->flags |= TCQ_F_CAN_BYPASS;
873 return 0;
874 }
875
pfifo_fast_destroy(struct Qdisc * sch)876 static void pfifo_fast_destroy(struct Qdisc *sch)
877 {
878 struct pfifo_fast_priv *priv = qdisc_priv(sch);
879 int prio;
880
881 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
882 struct skb_array *q = band2list(priv, prio);
883
884 /* NULL ring is possible if destroy path is due to a failed
885 * skb_array_init() in pfifo_fast_init() case.
886 */
887 if (!q->ring.queue)
888 continue;
889 /* Destroy ring but no need to kfree_skb because a call to
890 * pfifo_fast_reset() has already done that work.
891 */
892 ptr_ring_cleanup(&q->ring, NULL);
893 }
894 }
895
pfifo_fast_change_tx_queue_len(struct Qdisc * sch,unsigned int new_len)896 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch,
897 unsigned int new_len)
898 {
899 struct pfifo_fast_priv *priv = qdisc_priv(sch);
900 struct skb_array *bands[PFIFO_FAST_BANDS];
901 int prio;
902
903 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
904 struct skb_array *q = band2list(priv, prio);
905
906 bands[prio] = q;
907 }
908
909 return skb_array_resize_multiple_bh(bands, PFIFO_FAST_BANDS, new_len,
910 GFP_KERNEL);
911 }
912
913 struct Qdisc_ops pfifo_fast_ops __read_mostly = {
914 .id = "pfifo_fast",
915 .priv_size = sizeof(struct pfifo_fast_priv),
916 .enqueue = pfifo_fast_enqueue,
917 .dequeue = pfifo_fast_dequeue,
918 .peek = pfifo_fast_peek,
919 .init = pfifo_fast_init,
920 .destroy = pfifo_fast_destroy,
921 .reset = pfifo_fast_reset,
922 .dump = pfifo_fast_dump,
923 .change_tx_queue_len = pfifo_fast_change_tx_queue_len,
924 .owner = THIS_MODULE,
925 .static_flags = TCQ_F_NOLOCK | TCQ_F_CPUSTATS,
926 };
927 EXPORT_SYMBOL(pfifo_fast_ops);
928
929 static struct lock_class_key qdisc_tx_busylock;
930
qdisc_alloc(struct netdev_queue * dev_queue,const struct Qdisc_ops * ops,struct netlink_ext_ack * extack)931 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue,
932 const struct Qdisc_ops *ops,
933 struct netlink_ext_ack *extack)
934 {
935 struct Qdisc *sch;
936 unsigned int size = sizeof(*sch) + ops->priv_size;
937 int err = -ENOBUFS;
938 struct net_device *dev;
939
940 if (!dev_queue) {
941 NL_SET_ERR_MSG(extack, "No device queue given");
942 err = -EINVAL;
943 goto errout;
944 }
945
946 dev = dev_queue->dev;
947 sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue));
948
949 if (!sch)
950 goto errout;
951 __skb_queue_head_init(&sch->gso_skb);
952 __skb_queue_head_init(&sch->skb_bad_txq);
953 gnet_stats_basic_sync_init(&sch->bstats);
954 lockdep_register_key(&sch->root_lock_key);
955 spin_lock_init(&sch->q.lock);
956 lockdep_set_class(&sch->q.lock, &sch->root_lock_key);
957
958 if (ops->static_flags & TCQ_F_CPUSTATS) {
959 sch->cpu_bstats =
960 netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync);
961 if (!sch->cpu_bstats)
962 goto errout1;
963
964 sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue);
965 if (!sch->cpu_qstats) {
966 free_percpu(sch->cpu_bstats);
967 goto errout1;
968 }
969 }
970
971 spin_lock_init(&sch->busylock);
972 lockdep_set_class(&sch->busylock,
973 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
974
975 /* seqlock has the same scope of busylock, for NOLOCK qdisc */
976 spin_lock_init(&sch->seqlock);
977 lockdep_set_class(&sch->seqlock,
978 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
979
980 sch->ops = ops;
981 sch->flags = ops->static_flags;
982 sch->enqueue = ops->enqueue;
983 sch->dequeue = ops->dequeue;
984 sch->dev_queue = dev_queue;
985 sch->owner = -1;
986 netdev_hold(dev, &sch->dev_tracker, GFP_KERNEL);
987 refcount_set(&sch->refcnt, 1);
988
989 return sch;
990 errout1:
991 lockdep_unregister_key(&sch->root_lock_key);
992 kfree(sch);
993 errout:
994 return ERR_PTR(err);
995 }
996
qdisc_create_dflt(struct netdev_queue * dev_queue,const struct Qdisc_ops * ops,unsigned int parentid,struct netlink_ext_ack * extack)997 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue,
998 const struct Qdisc_ops *ops,
999 unsigned int parentid,
1000 struct netlink_ext_ack *extack)
1001 {
1002 struct Qdisc *sch;
1003
1004 if (!try_module_get(ops->owner)) {
1005 NL_SET_ERR_MSG(extack, "Failed to increase module reference counter");
1006 return NULL;
1007 }
1008
1009 sch = qdisc_alloc(dev_queue, ops, extack);
1010 if (IS_ERR(sch)) {
1011 module_put(ops->owner);
1012 return NULL;
1013 }
1014 sch->parent = parentid;
1015
1016 if (!ops->init || ops->init(sch, NULL, extack) == 0) {
1017 trace_qdisc_create(ops, dev_queue->dev, parentid);
1018 return sch;
1019 }
1020
1021 qdisc_put(sch);
1022 return NULL;
1023 }
1024 EXPORT_SYMBOL(qdisc_create_dflt);
1025
1026 /* Under qdisc_lock(qdisc) and BH! */
1027
qdisc_reset(struct Qdisc * qdisc)1028 void qdisc_reset(struct Qdisc *qdisc)
1029 {
1030 const struct Qdisc_ops *ops = qdisc->ops;
1031
1032 trace_qdisc_reset(qdisc);
1033
1034 if (ops->reset)
1035 ops->reset(qdisc);
1036
1037 __skb_queue_purge(&qdisc->gso_skb);
1038 __skb_queue_purge(&qdisc->skb_bad_txq);
1039
1040 qdisc->q.qlen = 0;
1041 qdisc->qstats.backlog = 0;
1042 }
1043 EXPORT_SYMBOL(qdisc_reset);
1044
qdisc_free(struct Qdisc * qdisc)1045 void qdisc_free(struct Qdisc *qdisc)
1046 {
1047 if (qdisc_is_percpu_stats(qdisc)) {
1048 free_percpu(qdisc->cpu_bstats);
1049 free_percpu(qdisc->cpu_qstats);
1050 }
1051
1052 kfree(qdisc);
1053 }
1054
qdisc_free_cb(struct rcu_head * head)1055 static void qdisc_free_cb(struct rcu_head *head)
1056 {
1057 struct Qdisc *q = container_of(head, struct Qdisc, rcu);
1058
1059 qdisc_free(q);
1060 }
1061
__qdisc_destroy(struct Qdisc * qdisc)1062 static void __qdisc_destroy(struct Qdisc *qdisc)
1063 {
1064 const struct Qdisc_ops *ops = qdisc->ops;
1065 struct net_device *dev = qdisc_dev(qdisc);
1066
1067 #ifdef CONFIG_NET_SCHED
1068 qdisc_hash_del(qdisc);
1069
1070 qdisc_put_stab(rtnl_dereference(qdisc->stab));
1071 #endif
1072 gen_kill_estimator(&qdisc->rate_est);
1073
1074 qdisc_reset(qdisc);
1075
1076
1077 if (ops->destroy)
1078 ops->destroy(qdisc);
1079
1080 lockdep_unregister_key(&qdisc->root_lock_key);
1081 module_put(ops->owner);
1082 netdev_put(dev, &qdisc->dev_tracker);
1083
1084 trace_qdisc_destroy(qdisc);
1085
1086 call_rcu(&qdisc->rcu, qdisc_free_cb);
1087 }
1088
qdisc_destroy(struct Qdisc * qdisc)1089 void qdisc_destroy(struct Qdisc *qdisc)
1090 {
1091 if (qdisc->flags & TCQ_F_BUILTIN)
1092 return;
1093
1094 __qdisc_destroy(qdisc);
1095 }
1096
qdisc_put(struct Qdisc * qdisc)1097 void qdisc_put(struct Qdisc *qdisc)
1098 {
1099 if (!qdisc)
1100 return;
1101
1102 if (qdisc->flags & TCQ_F_BUILTIN ||
1103 !refcount_dec_and_test(&qdisc->refcnt))
1104 return;
1105
1106 __qdisc_destroy(qdisc);
1107 }
1108 EXPORT_SYMBOL(qdisc_put);
1109
1110 /* Version of qdisc_put() that is called with rtnl mutex unlocked.
1111 * Intended to be used as optimization, this function only takes rtnl lock if
1112 * qdisc reference counter reached zero.
1113 */
1114
qdisc_put_unlocked(struct Qdisc * qdisc)1115 void qdisc_put_unlocked(struct Qdisc *qdisc)
1116 {
1117 if (qdisc->flags & TCQ_F_BUILTIN ||
1118 !refcount_dec_and_rtnl_lock(&qdisc->refcnt))
1119 return;
1120
1121 __qdisc_destroy(qdisc);
1122 rtnl_unlock();
1123 }
1124 EXPORT_SYMBOL(qdisc_put_unlocked);
1125
1126 /* Attach toplevel qdisc to device queue. */
dev_graft_qdisc(struct netdev_queue * dev_queue,struct Qdisc * qdisc)1127 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue,
1128 struct Qdisc *qdisc)
1129 {
1130 struct Qdisc *oqdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1131 spinlock_t *root_lock;
1132
1133 root_lock = qdisc_lock(oqdisc);
1134 spin_lock_bh(root_lock);
1135
1136 /* ... and graft new one */
1137 if (qdisc == NULL)
1138 qdisc = &noop_qdisc;
1139 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1140 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc);
1141
1142 spin_unlock_bh(root_lock);
1143
1144 return oqdisc;
1145 }
1146 EXPORT_SYMBOL(dev_graft_qdisc);
1147
shutdown_scheduler_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _qdisc_default)1148 static void shutdown_scheduler_queue(struct net_device *dev,
1149 struct netdev_queue *dev_queue,
1150 void *_qdisc_default)
1151 {
1152 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1153 struct Qdisc *qdisc_default = _qdisc_default;
1154
1155 if (qdisc) {
1156 rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1157 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc_default);
1158
1159 qdisc_put(qdisc);
1160 }
1161 }
1162
attach_one_default_qdisc(struct net_device * dev,struct netdev_queue * dev_queue,void * _unused)1163 static void attach_one_default_qdisc(struct net_device *dev,
1164 struct netdev_queue *dev_queue,
1165 void *_unused)
1166 {
1167 struct Qdisc *qdisc;
1168 const struct Qdisc_ops *ops = default_qdisc_ops;
1169
1170 if (dev->priv_flags & IFF_NO_QUEUE)
1171 ops = &noqueue_qdisc_ops;
1172 else if(dev->type == ARPHRD_CAN)
1173 ops = &pfifo_fast_ops;
1174
1175 qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL);
1176 if (!qdisc)
1177 return;
1178
1179 if (!netif_is_multiqueue(dev))
1180 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1181 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1182 }
1183
attach_default_qdiscs(struct net_device * dev)1184 static void attach_default_qdiscs(struct net_device *dev)
1185 {
1186 struct netdev_queue *txq;
1187 struct Qdisc *qdisc;
1188
1189 txq = netdev_get_tx_queue(dev, 0);
1190
1191 if (!netif_is_multiqueue(dev) ||
1192 dev->priv_flags & IFF_NO_QUEUE) {
1193 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1194 qdisc = rtnl_dereference(txq->qdisc_sleeping);
1195 rcu_assign_pointer(dev->qdisc, qdisc);
1196 qdisc_refcount_inc(qdisc);
1197 } else {
1198 qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL);
1199 if (qdisc) {
1200 rcu_assign_pointer(dev->qdisc, qdisc);
1201 qdisc->ops->attach(qdisc);
1202 }
1203 }
1204 qdisc = rtnl_dereference(dev->qdisc);
1205
1206 /* Detect default qdisc setup/init failed and fallback to "noqueue" */
1207 if (qdisc == &noop_qdisc) {
1208 netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n",
1209 default_qdisc_ops->id, noqueue_qdisc_ops.id);
1210 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1211 dev->priv_flags |= IFF_NO_QUEUE;
1212 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1213 qdisc = rtnl_dereference(txq->qdisc_sleeping);
1214 rcu_assign_pointer(dev->qdisc, qdisc);
1215 qdisc_refcount_inc(qdisc);
1216 dev->priv_flags ^= IFF_NO_QUEUE;
1217 }
1218
1219 #ifdef CONFIG_NET_SCHED
1220 if (qdisc != &noop_qdisc)
1221 qdisc_hash_add(qdisc, false);
1222 #endif
1223 }
1224
transition_one_qdisc(struct net_device * dev,struct netdev_queue * dev_queue,void * _need_watchdog)1225 static void transition_one_qdisc(struct net_device *dev,
1226 struct netdev_queue *dev_queue,
1227 void *_need_watchdog)
1228 {
1229 struct Qdisc *new_qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1230 int *need_watchdog_p = _need_watchdog;
1231
1232 if (!(new_qdisc->flags & TCQ_F_BUILTIN))
1233 clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state);
1234
1235 rcu_assign_pointer(dev_queue->qdisc, new_qdisc);
1236 if (need_watchdog_p) {
1237 WRITE_ONCE(dev_queue->trans_start, 0);
1238 *need_watchdog_p = 1;
1239 }
1240 }
1241
dev_activate(struct net_device * dev)1242 void dev_activate(struct net_device *dev)
1243 {
1244 int need_watchdog;
1245
1246 /* No queueing discipline is attached to device;
1247 * create default one for devices, which need queueing
1248 * and noqueue_qdisc for virtual interfaces
1249 */
1250
1251 if (rtnl_dereference(dev->qdisc) == &noop_qdisc)
1252 attach_default_qdiscs(dev);
1253
1254 if (!netif_carrier_ok(dev))
1255 /* Delay activation until next carrier-on event */
1256 return;
1257
1258 need_watchdog = 0;
1259 netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog);
1260 if (dev_ingress_queue(dev))
1261 transition_one_qdisc(dev, dev_ingress_queue(dev), NULL);
1262
1263 if (need_watchdog) {
1264 netif_trans_update(dev);
1265 netdev_watchdog_up(dev);
1266 }
1267 }
1268 EXPORT_SYMBOL(dev_activate);
1269
qdisc_deactivate(struct Qdisc * qdisc)1270 static void qdisc_deactivate(struct Qdisc *qdisc)
1271 {
1272 if (qdisc->flags & TCQ_F_BUILTIN)
1273 return;
1274
1275 set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state);
1276 }
1277
dev_deactivate_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _sync_needed)1278 static void dev_deactivate_queue(struct net_device *dev,
1279 struct netdev_queue *dev_queue,
1280 void *_sync_needed)
1281 {
1282 bool *sync_needed = _sync_needed;
1283 struct Qdisc *qdisc;
1284
1285 qdisc = rtnl_dereference(dev_queue->qdisc);
1286 if (qdisc) {
1287 if (qdisc->enqueue)
1288 *sync_needed = true;
1289 qdisc_deactivate(qdisc);
1290 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc);
1291 }
1292 }
1293
dev_reset_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _unused)1294 static void dev_reset_queue(struct net_device *dev,
1295 struct netdev_queue *dev_queue,
1296 void *_unused)
1297 {
1298 struct Qdisc *qdisc;
1299 bool nolock;
1300
1301 qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1302 if (!qdisc)
1303 return;
1304
1305 nolock = qdisc->flags & TCQ_F_NOLOCK;
1306
1307 if (nolock)
1308 spin_lock_bh(&qdisc->seqlock);
1309 spin_lock_bh(qdisc_lock(qdisc));
1310
1311 qdisc_reset(qdisc);
1312
1313 spin_unlock_bh(qdisc_lock(qdisc));
1314 if (nolock) {
1315 clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
1316 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
1317 spin_unlock_bh(&qdisc->seqlock);
1318 }
1319 }
1320
some_qdisc_is_busy(struct net_device * dev)1321 static bool some_qdisc_is_busy(struct net_device *dev)
1322 {
1323 unsigned int i;
1324
1325 for (i = 0; i < dev->num_tx_queues; i++) {
1326 struct netdev_queue *dev_queue;
1327 spinlock_t *root_lock;
1328 struct Qdisc *q;
1329 int val;
1330
1331 dev_queue = netdev_get_tx_queue(dev, i);
1332 q = rtnl_dereference(dev_queue->qdisc_sleeping);
1333
1334 root_lock = qdisc_lock(q);
1335 spin_lock_bh(root_lock);
1336
1337 val = (qdisc_is_running(q) ||
1338 test_bit(__QDISC_STATE_SCHED, &q->state));
1339
1340 spin_unlock_bh(root_lock);
1341
1342 if (val)
1343 return true;
1344 }
1345 return false;
1346 }
1347
1348 /**
1349 * dev_deactivate_many - deactivate transmissions on several devices
1350 * @head: list of devices to deactivate
1351 *
1352 * This function returns only when all outstanding transmissions
1353 * have completed, unless all devices are in dismantle phase.
1354 */
dev_deactivate_many(struct list_head * head)1355 void dev_deactivate_many(struct list_head *head)
1356 {
1357 bool sync_needed = false;
1358 struct net_device *dev;
1359
1360 list_for_each_entry(dev, head, close_list) {
1361 netdev_for_each_tx_queue(dev, dev_deactivate_queue,
1362 &sync_needed);
1363 if (dev_ingress_queue(dev))
1364 dev_deactivate_queue(dev, dev_ingress_queue(dev),
1365 &sync_needed);
1366
1367 netdev_watchdog_down(dev);
1368 }
1369
1370 /* Wait for outstanding qdisc enqueuing calls. */
1371 if (sync_needed)
1372 synchronize_net();
1373
1374 list_for_each_entry(dev, head, close_list) {
1375 netdev_for_each_tx_queue(dev, dev_reset_queue, NULL);
1376
1377 if (dev_ingress_queue(dev))
1378 dev_reset_queue(dev, dev_ingress_queue(dev), NULL);
1379 }
1380
1381 /* Wait for outstanding qdisc_run calls. */
1382 list_for_each_entry(dev, head, close_list) {
1383 while (some_qdisc_is_busy(dev)) {
1384 /* wait_event() would avoid this sleep-loop but would
1385 * require expensive checks in the fast paths of packet
1386 * processing which isn't worth it.
1387 */
1388 schedule_timeout_uninterruptible(1);
1389 }
1390 }
1391 }
1392
dev_deactivate(struct net_device * dev)1393 void dev_deactivate(struct net_device *dev)
1394 {
1395 LIST_HEAD(single);
1396
1397 list_add(&dev->close_list, &single);
1398 dev_deactivate_many(&single);
1399 list_del(&single);
1400 }
1401 EXPORT_SYMBOL(dev_deactivate);
1402
qdisc_change_tx_queue_len(struct net_device * dev,struct netdev_queue * dev_queue)1403 static int qdisc_change_tx_queue_len(struct net_device *dev,
1404 struct netdev_queue *dev_queue)
1405 {
1406 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1407 const struct Qdisc_ops *ops = qdisc->ops;
1408
1409 if (ops->change_tx_queue_len)
1410 return ops->change_tx_queue_len(qdisc, dev->tx_queue_len);
1411 return 0;
1412 }
1413
dev_qdisc_change_real_num_tx(struct net_device * dev,unsigned int new_real_tx)1414 void dev_qdisc_change_real_num_tx(struct net_device *dev,
1415 unsigned int new_real_tx)
1416 {
1417 struct Qdisc *qdisc = rtnl_dereference(dev->qdisc);
1418
1419 if (qdisc->ops->change_real_num_tx)
1420 qdisc->ops->change_real_num_tx(qdisc, new_real_tx);
1421 }
1422
mq_change_real_num_tx(struct Qdisc * sch,unsigned int new_real_tx)1423 void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx)
1424 {
1425 #ifdef CONFIG_NET_SCHED
1426 struct net_device *dev = qdisc_dev(sch);
1427 struct Qdisc *qdisc;
1428 unsigned int i;
1429
1430 for (i = new_real_tx; i < dev->real_num_tx_queues; i++) {
1431 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1432 /* Only update the default qdiscs we created,
1433 * qdiscs with handles are always hashed.
1434 */
1435 if (qdisc != &noop_qdisc && !qdisc->handle)
1436 qdisc_hash_del(qdisc);
1437 }
1438 for (i = dev->real_num_tx_queues; i < new_real_tx; i++) {
1439 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1440 if (qdisc != &noop_qdisc && !qdisc->handle)
1441 qdisc_hash_add(qdisc, false);
1442 }
1443 #endif
1444 }
1445 EXPORT_SYMBOL(mq_change_real_num_tx);
1446
dev_qdisc_change_tx_queue_len(struct net_device * dev)1447 int dev_qdisc_change_tx_queue_len(struct net_device *dev)
1448 {
1449 bool up = dev->flags & IFF_UP;
1450 unsigned int i;
1451 int ret = 0;
1452
1453 if (up)
1454 dev_deactivate(dev);
1455
1456 for (i = 0; i < dev->num_tx_queues; i++) {
1457 ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]);
1458
1459 /* TODO: revert changes on a partial failure */
1460 if (ret)
1461 break;
1462 }
1463
1464 if (up)
1465 dev_activate(dev);
1466 return ret;
1467 }
1468
dev_init_scheduler_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _qdisc)1469 static void dev_init_scheduler_queue(struct net_device *dev,
1470 struct netdev_queue *dev_queue,
1471 void *_qdisc)
1472 {
1473 struct Qdisc *qdisc = _qdisc;
1474
1475 rcu_assign_pointer(dev_queue->qdisc, qdisc);
1476 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1477 }
1478
dev_init_scheduler(struct net_device * dev)1479 void dev_init_scheduler(struct net_device *dev)
1480 {
1481 rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1482 netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc);
1483 if (dev_ingress_queue(dev))
1484 dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1485
1486 timer_setup(&dev->watchdog_timer, dev_watchdog, 0);
1487 }
1488
dev_shutdown(struct net_device * dev)1489 void dev_shutdown(struct net_device *dev)
1490 {
1491 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1492 if (dev_ingress_queue(dev))
1493 shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1494 qdisc_put(rtnl_dereference(dev->qdisc));
1495 rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1496
1497 WARN_ON(timer_pending(&dev->watchdog_timer));
1498 }
1499
1500 /**
1501 * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division
1502 * @rate: Rate to compute reciprocal division values of
1503 * @mult: Multiplier for reciprocal division
1504 * @shift: Shift for reciprocal division
1505 *
1506 * The multiplier and shift for reciprocal division by rate are stored
1507 * in mult and shift.
1508 *
1509 * The deal here is to replace a divide by a reciprocal one
1510 * in fast path (a reciprocal divide is a multiply and a shift)
1511 *
1512 * Normal formula would be :
1513 * time_in_ns = (NSEC_PER_SEC * len) / rate_bps
1514 *
1515 * We compute mult/shift to use instead :
1516 * time_in_ns = (len * mult) >> shift;
1517 *
1518 * We try to get the highest possible mult value for accuracy,
1519 * but have to make sure no overflows will ever happen.
1520 *
1521 * reciprocal_value() is not used here it doesn't handle 64-bit values.
1522 */
psched_ratecfg_precompute__(u64 rate,u32 * mult,u8 * shift)1523 static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift)
1524 {
1525 u64 factor = NSEC_PER_SEC;
1526
1527 *mult = 1;
1528 *shift = 0;
1529
1530 if (rate <= 0)
1531 return;
1532
1533 for (;;) {
1534 *mult = div64_u64(factor, rate);
1535 if (*mult & (1U << 31) || factor & (1ULL << 63))
1536 break;
1537 factor <<= 1;
1538 (*shift)++;
1539 }
1540 }
1541
psched_ratecfg_precompute(struct psched_ratecfg * r,const struct tc_ratespec * conf,u64 rate64)1542 void psched_ratecfg_precompute(struct psched_ratecfg *r,
1543 const struct tc_ratespec *conf,
1544 u64 rate64)
1545 {
1546 memset(r, 0, sizeof(*r));
1547 r->overhead = conf->overhead;
1548 r->mpu = conf->mpu;
1549 r->rate_bytes_ps = max_t(u64, conf->rate, rate64);
1550 r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK);
1551 psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift);
1552 }
1553 EXPORT_SYMBOL(psched_ratecfg_precompute);
1554
psched_ppscfg_precompute(struct psched_pktrate * r,u64 pktrate64)1555 void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64)
1556 {
1557 r->rate_pkts_ps = pktrate64;
1558 psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift);
1559 }
1560 EXPORT_SYMBOL(psched_ppscfg_precompute);
1561
mini_qdisc_pair_swap(struct mini_Qdisc_pair * miniqp,struct tcf_proto * tp_head)1562 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp,
1563 struct tcf_proto *tp_head)
1564 {
1565 /* Protected with chain0->filter_chain_lock.
1566 * Can't access chain directly because tp_head can be NULL.
1567 */
1568 struct mini_Qdisc *miniq_old =
1569 rcu_dereference_protected(*miniqp->p_miniq, 1);
1570 struct mini_Qdisc *miniq;
1571
1572 if (!tp_head) {
1573 RCU_INIT_POINTER(*miniqp->p_miniq, NULL);
1574 } else {
1575 miniq = miniq_old != &miniqp->miniq1 ?
1576 &miniqp->miniq1 : &miniqp->miniq2;
1577
1578 /* We need to make sure that readers won't see the miniq
1579 * we are about to modify. So ensure that at least one RCU
1580 * grace period has elapsed since the miniq was made
1581 * inactive.
1582 */
1583 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1584 cond_synchronize_rcu(miniq->rcu_state);
1585 else if (!poll_state_synchronize_rcu(miniq->rcu_state))
1586 synchronize_rcu_expedited();
1587
1588 miniq->filter_list = tp_head;
1589 rcu_assign_pointer(*miniqp->p_miniq, miniq);
1590 }
1591
1592 if (miniq_old)
1593 /* This is counterpart of the rcu sync above. We need to
1594 * block potential new user of miniq_old until all readers
1595 * are not seeing it.
1596 */
1597 miniq_old->rcu_state = start_poll_synchronize_rcu();
1598 }
1599 EXPORT_SYMBOL(mini_qdisc_pair_swap);
1600
mini_qdisc_pair_block_init(struct mini_Qdisc_pair * miniqp,struct tcf_block * block)1601 void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp,
1602 struct tcf_block *block)
1603 {
1604 miniqp->miniq1.block = block;
1605 miniqp->miniq2.block = block;
1606 }
1607 EXPORT_SYMBOL(mini_qdisc_pair_block_init);
1608
mini_qdisc_pair_init(struct mini_Qdisc_pair * miniqp,struct Qdisc * qdisc,struct mini_Qdisc __rcu ** p_miniq)1609 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc,
1610 struct mini_Qdisc __rcu **p_miniq)
1611 {
1612 miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats;
1613 miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats;
1614 miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats;
1615 miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats;
1616 miniqp->miniq1.rcu_state = get_state_synchronize_rcu();
1617 miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state;
1618 miniqp->p_miniq = p_miniq;
1619 }
1620 EXPORT_SYMBOL(mini_qdisc_pair_init);
1621