1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Generic devices that are part of the kernel's driver model. 4 //! 5 //! C header: [`include/linux/device.h`](srctree/include/linux/device.h) 6 7 use crate::{ 8 bindings, 9 types::{ARef, ForeignOwnable, Opaque}, 10 }; 11 use core::{fmt, marker::PhantomData, ptr}; 12 13 #[cfg(CONFIG_PRINTK)] 14 use crate::c_str; 15 16 pub mod property; 17 18 /// The core representation of a device in the kernel's driver model. 19 /// 20 /// This structure represents the Rust abstraction for a C `struct device`. A [`Device`] can either 21 /// exist as temporary reference (see also [`Device::from_raw`]), which is only valid within a 22 /// certain scope or as [`ARef<Device>`], owning a dedicated reference count. 23 /// 24 /// # Device Types 25 /// 26 /// A [`Device`] can represent either a bus device or a class device. 27 /// 28 /// ## Bus Devices 29 /// 30 /// A bus device is a [`Device`] that is associated with a physical or virtual bus. Examples of 31 /// buses include PCI, USB, I2C, and SPI. Devices attached to a bus are registered with a specific 32 /// bus type, which facilitates matching devices with appropriate drivers based on IDs or other 33 /// identifying information. Bus devices are visible in sysfs under `/sys/bus/<bus-name>/devices/`. 34 /// 35 /// ## Class Devices 36 /// 37 /// A class device is a [`Device`] that is associated with a logical category of functionality 38 /// rather than a physical bus. Examples of classes include block devices, network interfaces, sound 39 /// cards, and input devices. Class devices are grouped under a common class and exposed to 40 /// userspace via entries in `/sys/class/<class-name>/`. 41 /// 42 /// # Device Context 43 /// 44 /// [`Device`] references are generic over a [`DeviceContext`], which represents the type state of 45 /// a [`Device`]. 46 /// 47 /// As the name indicates, this type state represents the context of the scope the [`Device`] 48 /// reference is valid in. For instance, the [`Bound`] context guarantees that the [`Device`] is 49 /// bound to a driver for the entire duration of the existence of a [`Device<Bound>`] reference. 50 /// 51 /// Other [`DeviceContext`] types besides [`Bound`] are [`Normal`], [`Core`] and [`CoreInternal`]. 52 /// 53 /// Unless selected otherwise [`Device`] defaults to the [`Normal`] [`DeviceContext`], which by 54 /// itself has no additional requirements. 55 /// 56 /// It is always up to the caller of [`Device::from_raw`] to select the correct [`DeviceContext`] 57 /// type for the corresponding scope the [`Device`] reference is created in. 58 /// 59 /// All [`DeviceContext`] types other than [`Normal`] are intended to be used with 60 /// [bus devices](#bus-devices) only. 61 /// 62 /// # Implementing Bus Devices 63 /// 64 /// This section provides a guideline to implement bus specific devices, such as [`pci::Device`] or 65 /// [`platform::Device`]. 66 /// 67 /// A bus specific device should be defined as follows. 68 /// 69 /// ```ignore 70 /// #[repr(transparent)] 71 /// pub struct Device<Ctx: device::DeviceContext = device::Normal>( 72 /// Opaque<bindings::bus_device_type>, 73 /// PhantomData<Ctx>, 74 /// ); 75 /// ``` 76 /// 77 /// Since devices are reference counted, [`AlwaysRefCounted`] should be implemented for `Device` 78 /// (i.e. `Device<Normal>`). Note that [`AlwaysRefCounted`] must not be implemented for any other 79 /// [`DeviceContext`], since all other device context types are only valid within a certain scope. 80 /// 81 /// In order to be able to implement the [`DeviceContext`] dereference hierarchy, bus device 82 /// implementations should call the [`impl_device_context_deref`] macro as shown below. 83 /// 84 /// ```ignore 85 /// // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s 86 /// // generic argument. 87 /// kernel::impl_device_context_deref!(unsafe { Device }); 88 /// ``` 89 /// 90 /// In order to convert from a any [`Device<Ctx>`] to [`ARef<Device>`], bus devices can implement 91 /// the following macro call. 92 /// 93 /// ```ignore 94 /// kernel::impl_device_context_into_aref!(Device); 95 /// ``` 96 /// 97 /// Bus devices should also implement the following [`AsRef`] implementation, such that users can 98 /// easily derive a generic [`Device`] reference. 99 /// 100 /// ```ignore 101 /// impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> { 102 /// fn as_ref(&self) -> &device::Device<Ctx> { 103 /// ... 104 /// } 105 /// } 106 /// ``` 107 /// 108 /// # Implementing Class Devices 109 /// 110 /// Class device implementations require less infrastructure and depend slightly more on the 111 /// specific subsystem. 112 /// 113 /// An example implementation for a class device could look like this. 114 /// 115 /// ```ignore 116 /// #[repr(C)] 117 /// pub struct Device<T: class::Driver> { 118 /// dev: Opaque<bindings::class_device_type>, 119 /// data: T::Data, 120 /// } 121 /// ``` 122 /// 123 /// This class device uses the sub-classing pattern to embed the driver's private data within the 124 /// allocation of the class device. For this to be possible the class device is generic over the 125 /// class specific `Driver` trait implementation. 126 /// 127 /// Just like any device, class devices are reference counted and should hence implement 128 /// [`AlwaysRefCounted`] for `Device`. 129 /// 130 /// Class devices should also implement the following [`AsRef`] implementation, such that users can 131 /// easily derive a generic [`Device`] reference. 132 /// 133 /// ```ignore 134 /// impl<T: class::Driver> AsRef<device::Device> for Device<T> { 135 /// fn as_ref(&self) -> &device::Device { 136 /// ... 137 /// } 138 /// } 139 /// ``` 140 /// 141 /// An example for a class device implementation is [`drm::Device`]. 142 /// 143 /// # Invariants 144 /// 145 /// A `Device` instance represents a valid `struct device` created by the C portion of the kernel. 146 /// 147 /// Instances of this type are always reference-counted, that is, a call to `get_device` ensures 148 /// that the allocation remains valid at least until the matching call to `put_device`. 149 /// 150 /// `bindings::device::release` is valid to be called from any thread, hence `ARef<Device>` can be 151 /// dropped from any thread. 152 /// 153 /// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted 154 /// [`drm::Device`]: kernel::drm::Device 155 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref 156 /// [`pci::Device`]: kernel::pci::Device 157 /// [`platform::Device`]: kernel::platform::Device 158 #[repr(transparent)] 159 pub struct Device<Ctx: DeviceContext = Normal>(Opaque<bindings::device>, PhantomData<Ctx>); 160 161 impl Device { 162 /// Creates a new reference-counted abstraction instance of an existing `struct device` pointer. 163 /// 164 /// # Safety 165 /// 166 /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count, 167 /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to 168 /// can't drop to zero, for the duration of this function call. 169 /// 170 /// It must also be ensured that `bindings::device::release` can be called from any thread. 171 /// While not officially documented, this should be the case for any `struct device`. get_device(ptr: *mut bindings::device) -> ARef<Self>172 pub unsafe fn get_device(ptr: *mut bindings::device) -> ARef<Self> { 173 // SAFETY: By the safety requirements ptr is valid 174 unsafe { Self::from_raw(ptr) }.into() 175 } 176 177 /// Convert a [`&Device`](Device) into a [`&Device<Bound>`](Device<Bound>). 178 /// 179 /// # Safety 180 /// 181 /// The caller is responsible to ensure that the returned [`&Device<Bound>`](Device<Bound>) 182 /// only lives as long as it can be guaranteed that the [`Device`] is actually bound. as_bound(&self) -> &Device<Bound>183 pub unsafe fn as_bound(&self) -> &Device<Bound> { 184 let ptr = core::ptr::from_ref(self); 185 186 // CAST: By the safety requirements the caller is responsible to guarantee that the 187 // returned reference only lives as long as the device is actually bound. 188 let ptr = ptr.cast(); 189 190 // SAFETY: 191 // - `ptr` comes from `from_ref(self)` above, hence it's guaranteed to be valid. 192 // - Any valid `Device` pointer is also a valid pointer for `Device<Bound>`. 193 unsafe { &*ptr } 194 } 195 } 196 197 impl Device<CoreInternal> { 198 /// Store a pointer to the bound driver's private data. set_drvdata(&self, data: impl ForeignOwnable)199 pub fn set_drvdata(&self, data: impl ForeignOwnable) { 200 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 201 unsafe { bindings::dev_set_drvdata(self.as_raw(), data.into_foreign().cast()) } 202 } 203 204 /// Take ownership of the private data stored in this [`Device`]. 205 /// 206 /// # Safety 207 /// 208 /// - Must only be called once after a preceding call to [`Device::set_drvdata`]. 209 /// - The type `T` must match the type of the `ForeignOwnable` previously stored by 210 /// [`Device::set_drvdata`]. drvdata_obtain<T: ForeignOwnable>(&self) -> T211 pub unsafe fn drvdata_obtain<T: ForeignOwnable>(&self) -> T { 212 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 213 let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) }; 214 215 // SAFETY: 216 // - By the safety requirements of this function, `ptr` comes from a previous call to 217 // `into_foreign()`. 218 // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()` 219 // in `into_foreign()`. 220 unsafe { T::from_foreign(ptr.cast()) } 221 } 222 223 /// Borrow the driver's private data bound to this [`Device`]. 224 /// 225 /// # Safety 226 /// 227 /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before 228 /// [`Device::drvdata_obtain`]. 229 /// - The type `T` must match the type of the `ForeignOwnable` previously stored by 230 /// [`Device::set_drvdata`]. drvdata_borrow<T: ForeignOwnable>(&self) -> T::Borrowed<'_>231 pub unsafe fn drvdata_borrow<T: ForeignOwnable>(&self) -> T::Borrowed<'_> { 232 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 233 let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) }; 234 235 // SAFETY: 236 // - By the safety requirements of this function, `ptr` comes from a previous call to 237 // `into_foreign()`. 238 // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()` 239 // in `into_foreign()`. 240 unsafe { T::borrow(ptr.cast()) } 241 } 242 } 243 244 impl<Ctx: DeviceContext> Device<Ctx> { 245 /// Obtain the raw `struct device *`. as_raw(&self) -> *mut bindings::device246 pub(crate) fn as_raw(&self) -> *mut bindings::device { 247 self.0.get() 248 } 249 250 /// Returns a reference to the parent device, if any. 251 #[cfg_attr(not(CONFIG_AUXILIARY_BUS), expect(dead_code))] parent(&self) -> Option<&Self>252 pub(crate) fn parent(&self) -> Option<&Self> { 253 // SAFETY: 254 // - By the type invariant `self.as_raw()` is always valid. 255 // - The parent device is only ever set at device creation. 256 let parent = unsafe { (*self.as_raw()).parent }; 257 258 if parent.is_null() { 259 None 260 } else { 261 // SAFETY: 262 // - Since `parent` is not NULL, it must be a valid pointer to a `struct device`. 263 // - `parent` is valid for the lifetime of `self`, since a `struct device` holds a 264 // reference count of its parent. 265 Some(unsafe { Self::from_raw(parent) }) 266 } 267 } 268 269 /// Convert a raw C `struct device` pointer to a `&'a Device`. 270 /// 271 /// # Safety 272 /// 273 /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count, 274 /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to 275 /// can't drop to zero, for the duration of this function call and the entire duration when the 276 /// returned reference exists. from_raw<'a>(ptr: *mut bindings::device) -> &'a Self277 pub unsafe fn from_raw<'a>(ptr: *mut bindings::device) -> &'a Self { 278 // SAFETY: Guaranteed by the safety requirements of the function. 279 unsafe { &*ptr.cast() } 280 } 281 282 /// Prints an emergency-level message (level 0) prefixed with device information. 283 /// 284 /// More details are available from [`dev_emerg`]. 285 /// 286 /// [`dev_emerg`]: crate::dev_emerg pr_emerg(&self, args: fmt::Arguments<'_>)287 pub fn pr_emerg(&self, args: fmt::Arguments<'_>) { 288 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 289 unsafe { self.printk(bindings::KERN_EMERG, args) }; 290 } 291 292 /// Prints an alert-level message (level 1) prefixed with device information. 293 /// 294 /// More details are available from [`dev_alert`]. 295 /// 296 /// [`dev_alert`]: crate::dev_alert pr_alert(&self, args: fmt::Arguments<'_>)297 pub fn pr_alert(&self, args: fmt::Arguments<'_>) { 298 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 299 unsafe { self.printk(bindings::KERN_ALERT, args) }; 300 } 301 302 /// Prints a critical-level message (level 2) prefixed with device information. 303 /// 304 /// More details are available from [`dev_crit`]. 305 /// 306 /// [`dev_crit`]: crate::dev_crit pr_crit(&self, args: fmt::Arguments<'_>)307 pub fn pr_crit(&self, args: fmt::Arguments<'_>) { 308 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 309 unsafe { self.printk(bindings::KERN_CRIT, args) }; 310 } 311 312 /// Prints an error-level message (level 3) prefixed with device information. 313 /// 314 /// More details are available from [`dev_err`]. 315 /// 316 /// [`dev_err`]: crate::dev_err pr_err(&self, args: fmt::Arguments<'_>)317 pub fn pr_err(&self, args: fmt::Arguments<'_>) { 318 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 319 unsafe { self.printk(bindings::KERN_ERR, args) }; 320 } 321 322 /// Prints a warning-level message (level 4) prefixed with device information. 323 /// 324 /// More details are available from [`dev_warn`]. 325 /// 326 /// [`dev_warn`]: crate::dev_warn pr_warn(&self, args: fmt::Arguments<'_>)327 pub fn pr_warn(&self, args: fmt::Arguments<'_>) { 328 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 329 unsafe { self.printk(bindings::KERN_WARNING, args) }; 330 } 331 332 /// Prints a notice-level message (level 5) prefixed with device information. 333 /// 334 /// More details are available from [`dev_notice`]. 335 /// 336 /// [`dev_notice`]: crate::dev_notice pr_notice(&self, args: fmt::Arguments<'_>)337 pub fn pr_notice(&self, args: fmt::Arguments<'_>) { 338 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 339 unsafe { self.printk(bindings::KERN_NOTICE, args) }; 340 } 341 342 /// Prints an info-level message (level 6) prefixed with device information. 343 /// 344 /// More details are available from [`dev_info`]. 345 /// 346 /// [`dev_info`]: crate::dev_info pr_info(&self, args: fmt::Arguments<'_>)347 pub fn pr_info(&self, args: fmt::Arguments<'_>) { 348 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 349 unsafe { self.printk(bindings::KERN_INFO, args) }; 350 } 351 352 /// Prints a debug-level message (level 7) prefixed with device information. 353 /// 354 /// More details are available from [`dev_dbg`]. 355 /// 356 /// [`dev_dbg`]: crate::dev_dbg pr_dbg(&self, args: fmt::Arguments<'_>)357 pub fn pr_dbg(&self, args: fmt::Arguments<'_>) { 358 if cfg!(debug_assertions) { 359 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 360 unsafe { self.printk(bindings::KERN_DEBUG, args) }; 361 } 362 } 363 364 /// Prints the provided message to the console. 365 /// 366 /// # Safety 367 /// 368 /// Callers must ensure that `klevel` is null-terminated; in particular, one of the 369 /// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc. 370 #[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))] printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>)371 unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) { 372 // SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.as_raw` 373 // is valid because `self` is valid. The "%pA" format string expects a pointer to 374 // `fmt::Arguments`, which is what we're passing as the last argument. 375 #[cfg(CONFIG_PRINTK)] 376 unsafe { 377 bindings::_dev_printk( 378 klevel.as_ptr().cast::<crate::ffi::c_char>(), 379 self.as_raw(), 380 c_str!("%pA").as_char_ptr(), 381 core::ptr::from_ref(&msg).cast::<crate::ffi::c_void>(), 382 ) 383 }; 384 } 385 386 /// Obtain the [`FwNode`](property::FwNode) corresponding to this [`Device`]. fwnode(&self) -> Option<&property::FwNode>387 pub fn fwnode(&self) -> Option<&property::FwNode> { 388 // SAFETY: `self` is valid. 389 let fwnode_handle = unsafe { bindings::__dev_fwnode(self.as_raw()) }; 390 if fwnode_handle.is_null() { 391 return None; 392 } 393 // SAFETY: `fwnode_handle` is valid. Its lifetime is tied to `&self`. We 394 // return a reference instead of an `ARef<FwNode>` because `dev_fwnode()` 395 // doesn't increment the refcount. It is safe to cast from a 396 // `struct fwnode_handle*` to a `*const FwNode` because `FwNode` is 397 // defined as a `#[repr(transparent)]` wrapper around `fwnode_handle`. 398 Some(unsafe { &*fwnode_handle.cast() }) 399 } 400 } 401 402 // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic 403 // argument. 404 kernel::impl_device_context_deref!(unsafe { Device }); 405 kernel::impl_device_context_into_aref!(Device); 406 407 // SAFETY: Instances of `Device` are always reference-counted. 408 unsafe impl crate::types::AlwaysRefCounted for Device { inc_ref(&self)409 fn inc_ref(&self) { 410 // SAFETY: The existence of a shared reference guarantees that the refcount is non-zero. 411 unsafe { bindings::get_device(self.as_raw()) }; 412 } 413 dec_ref(obj: ptr::NonNull<Self>)414 unsafe fn dec_ref(obj: ptr::NonNull<Self>) { 415 // SAFETY: The safety requirements guarantee that the refcount is non-zero. 416 unsafe { bindings::put_device(obj.cast().as_ptr()) } 417 } 418 } 419 420 // SAFETY: As by the type invariant `Device` can be sent to any thread. 421 unsafe impl Send for Device {} 422 423 // SAFETY: `Device` can be shared among threads because all immutable methods are protected by the 424 // synchronization in `struct device`. 425 unsafe impl Sync for Device {} 426 427 /// Marker trait for the context or scope of a bus specific device. 428 /// 429 /// [`DeviceContext`] is a marker trait for types representing the context of a bus specific 430 /// [`Device`]. 431 /// 432 /// The specific device context types are: [`CoreInternal`], [`Core`], [`Bound`] and [`Normal`]. 433 /// 434 /// [`DeviceContext`] types are hierarchical, which means that there is a strict hierarchy that 435 /// defines which [`DeviceContext`] type can be derived from another. For instance, any 436 /// [`Device<Core>`] can dereference to a [`Device<Bound>`]. 437 /// 438 /// The following enumeration illustrates the dereference hierarchy of [`DeviceContext`] types. 439 /// 440 /// - [`CoreInternal`] => [`Core`] => [`Bound`] => [`Normal`] 441 /// 442 /// Bus devices can automatically implement the dereference hierarchy by using 443 /// [`impl_device_context_deref`]. 444 /// 445 /// Note that the guarantee for a [`Device`] reference to have a certain [`DeviceContext`] comes 446 /// from the specific scope the [`Device`] reference is valid in. 447 /// 448 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref 449 pub trait DeviceContext: private::Sealed {} 450 451 /// The [`Normal`] context is the default [`DeviceContext`] of any [`Device`]. 452 /// 453 /// The normal context does not indicate any specific context. Any `Device<Ctx>` is also a valid 454 /// [`Device<Normal>`]. It is the only [`DeviceContext`] for which it is valid to implement 455 /// [`AlwaysRefCounted`] for. 456 /// 457 /// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted 458 pub struct Normal; 459 460 /// The [`Core`] context is the context of a bus specific device when it appears as argument of 461 /// any bus specific callback, such as `probe()`. 462 /// 463 /// The core context indicates that the [`Device<Core>`] reference's scope is limited to the bus 464 /// callback it appears in. It is intended to be used for synchronization purposes. Bus device 465 /// implementations can implement methods for [`Device<Core>`], such that they can only be called 466 /// from bus callbacks. 467 pub struct Core; 468 469 /// Semantically the same as [`Core`], but reserved for internal usage of the corresponding bus 470 /// abstraction. 471 /// 472 /// The internal core context is intended to be used in exactly the same way as the [`Core`] 473 /// context, with the difference that this [`DeviceContext`] is internal to the corresponding bus 474 /// abstraction. 475 /// 476 /// This context mainly exists to share generic [`Device`] infrastructure that should only be called 477 /// from bus callbacks with bus abstractions, but without making them accessible for drivers. 478 pub struct CoreInternal; 479 480 /// The [`Bound`] context is the [`DeviceContext`] of a bus specific device when it is guaranteed to 481 /// be bound to a driver. 482 /// 483 /// The bound context indicates that for the entire duration of the lifetime of a [`Device<Bound>`] 484 /// reference, the [`Device`] is guaranteed to be bound to a driver. 485 /// 486 /// Some APIs, such as [`dma::CoherentAllocation`] or [`Devres`] rely on the [`Device`] to be bound, 487 /// which can be proven with the [`Bound`] device context. 488 /// 489 /// Any abstraction that can guarantee a scope where the corresponding bus device is bound, should 490 /// provide a [`Device<Bound>`] reference to its users for this scope. This allows users to benefit 491 /// from optimizations for accessing device resources, see also [`Devres::access`]. 492 /// 493 /// [`Devres`]: kernel::devres::Devres 494 /// [`Devres::access`]: kernel::devres::Devres::access 495 /// [`dma::CoherentAllocation`]: kernel::dma::CoherentAllocation 496 pub struct Bound; 497 498 mod private { 499 pub trait Sealed {} 500 501 impl Sealed for super::Bound {} 502 impl Sealed for super::Core {} 503 impl Sealed for super::CoreInternal {} 504 impl Sealed for super::Normal {} 505 } 506 507 impl DeviceContext for Bound {} 508 impl DeviceContext for Core {} 509 impl DeviceContext for CoreInternal {} 510 impl DeviceContext for Normal {} 511 512 /// # Safety 513 /// 514 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the 515 /// generic argument of `$device`. 516 #[doc(hidden)] 517 #[macro_export] 518 macro_rules! __impl_device_context_deref { 519 (unsafe { $device:ident, $src:ty => $dst:ty }) => { 520 impl ::core::ops::Deref for $device<$src> { 521 type Target = $device<$dst>; 522 523 fn deref(&self) -> &Self::Target { 524 let ptr: *const Self = self; 525 526 // CAST: `$device<$src>` and `$device<$dst>` transparently wrap the same type by the 527 // safety requirement of the macro. 528 let ptr = ptr.cast::<Self::Target>(); 529 530 // SAFETY: `ptr` was derived from `&self`. 531 unsafe { &*ptr } 532 } 533 } 534 }; 535 } 536 537 /// Implement [`core::ops::Deref`] traits for allowed [`DeviceContext`] conversions of a (bus 538 /// specific) device. 539 /// 540 /// # Safety 541 /// 542 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the 543 /// generic argument of `$device`. 544 #[macro_export] 545 macro_rules! impl_device_context_deref { 546 (unsafe { $device:ident }) => { 547 // SAFETY: This macro has the exact same safety requirement as 548 // `__impl_device_context_deref!`. 549 ::kernel::__impl_device_context_deref!(unsafe { 550 $device, 551 $crate::device::CoreInternal => $crate::device::Core 552 }); 553 554 // SAFETY: This macro has the exact same safety requirement as 555 // `__impl_device_context_deref!`. 556 ::kernel::__impl_device_context_deref!(unsafe { 557 $device, 558 $crate::device::Core => $crate::device::Bound 559 }); 560 561 // SAFETY: This macro has the exact same safety requirement as 562 // `__impl_device_context_deref!`. 563 ::kernel::__impl_device_context_deref!(unsafe { 564 $device, 565 $crate::device::Bound => $crate::device::Normal 566 }); 567 }; 568 } 569 570 #[doc(hidden)] 571 #[macro_export] 572 macro_rules! __impl_device_context_into_aref { 573 ($src:ty, $device:tt) => { 574 impl ::core::convert::From<&$device<$src>> for $crate::types::ARef<$device> { 575 fn from(dev: &$device<$src>) -> Self { 576 (&**dev).into() 577 } 578 } 579 }; 580 } 581 582 /// Implement [`core::convert::From`], such that all `&Device<Ctx>` can be converted to an 583 /// `ARef<Device>`. 584 #[macro_export] 585 macro_rules! impl_device_context_into_aref { 586 ($device:tt) => { 587 ::kernel::__impl_device_context_into_aref!($crate::device::CoreInternal, $device); 588 ::kernel::__impl_device_context_into_aref!($crate::device::Core, $device); 589 ::kernel::__impl_device_context_into_aref!($crate::device::Bound, $device); 590 }; 591 } 592 593 #[doc(hidden)] 594 #[macro_export] 595 macro_rules! dev_printk { 596 ($method:ident, $dev:expr, $($f:tt)*) => { 597 { 598 ($dev).$method(::core::format_args!($($f)*)); 599 } 600 } 601 } 602 603 /// Prints an emergency-level message (level 0) prefixed with device information. 604 /// 605 /// This level should be used if the system is unusable. 606 /// 607 /// Equivalent to the kernel's `dev_emerg` macro. 608 /// 609 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 610 /// [`core::fmt`] and [`std::format!`]. 611 /// 612 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 613 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 614 /// 615 /// # Examples 616 /// 617 /// ``` 618 /// # use kernel::device::Device; 619 /// 620 /// fn example(dev: &Device) { 621 /// dev_emerg!(dev, "hello {}\n", "there"); 622 /// } 623 /// ``` 624 #[macro_export] 625 macro_rules! dev_emerg { 626 ($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); } 627 } 628 629 /// Prints an alert-level message (level 1) prefixed with device information. 630 /// 631 /// This level should be used if action must be taken immediately. 632 /// 633 /// Equivalent to the kernel's `dev_alert` macro. 634 /// 635 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 636 /// [`core::fmt`] and [`std::format!`]. 637 /// 638 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 639 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 640 /// 641 /// # Examples 642 /// 643 /// ``` 644 /// # use kernel::device::Device; 645 /// 646 /// fn example(dev: &Device) { 647 /// dev_alert!(dev, "hello {}\n", "there"); 648 /// } 649 /// ``` 650 #[macro_export] 651 macro_rules! dev_alert { 652 ($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); } 653 } 654 655 /// Prints a critical-level message (level 2) prefixed with device information. 656 /// 657 /// This level should be used in critical conditions. 658 /// 659 /// Equivalent to the kernel's `dev_crit` macro. 660 /// 661 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 662 /// [`core::fmt`] and [`std::format!`]. 663 /// 664 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 665 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 666 /// 667 /// # Examples 668 /// 669 /// ``` 670 /// # use kernel::device::Device; 671 /// 672 /// fn example(dev: &Device) { 673 /// dev_crit!(dev, "hello {}\n", "there"); 674 /// } 675 /// ``` 676 #[macro_export] 677 macro_rules! dev_crit { 678 ($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); } 679 } 680 681 /// Prints an error-level message (level 3) prefixed with device information. 682 /// 683 /// This level should be used in error conditions. 684 /// 685 /// Equivalent to the kernel's `dev_err` macro. 686 /// 687 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 688 /// [`core::fmt`] and [`std::format!`]. 689 /// 690 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 691 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 692 /// 693 /// # Examples 694 /// 695 /// ``` 696 /// # use kernel::device::Device; 697 /// 698 /// fn example(dev: &Device) { 699 /// dev_err!(dev, "hello {}\n", "there"); 700 /// } 701 /// ``` 702 #[macro_export] 703 macro_rules! dev_err { 704 ($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); } 705 } 706 707 /// Prints a warning-level message (level 4) prefixed with device information. 708 /// 709 /// This level should be used in warning conditions. 710 /// 711 /// Equivalent to the kernel's `dev_warn` macro. 712 /// 713 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 714 /// [`core::fmt`] and [`std::format!`]. 715 /// 716 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 717 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 718 /// 719 /// # Examples 720 /// 721 /// ``` 722 /// # use kernel::device::Device; 723 /// 724 /// fn example(dev: &Device) { 725 /// dev_warn!(dev, "hello {}\n", "there"); 726 /// } 727 /// ``` 728 #[macro_export] 729 macro_rules! dev_warn { 730 ($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); } 731 } 732 733 /// Prints a notice-level message (level 5) prefixed with device information. 734 /// 735 /// This level should be used in normal but significant conditions. 736 /// 737 /// Equivalent to the kernel's `dev_notice` macro. 738 /// 739 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 740 /// [`core::fmt`] and [`std::format!`]. 741 /// 742 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 743 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 744 /// 745 /// # Examples 746 /// 747 /// ``` 748 /// # use kernel::device::Device; 749 /// 750 /// fn example(dev: &Device) { 751 /// dev_notice!(dev, "hello {}\n", "there"); 752 /// } 753 /// ``` 754 #[macro_export] 755 macro_rules! dev_notice { 756 ($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); } 757 } 758 759 /// Prints an info-level message (level 6) prefixed with device information. 760 /// 761 /// This level should be used for informational messages. 762 /// 763 /// Equivalent to the kernel's `dev_info` macro. 764 /// 765 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 766 /// [`core::fmt`] and [`std::format!`]. 767 /// 768 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 769 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 770 /// 771 /// # Examples 772 /// 773 /// ``` 774 /// # use kernel::device::Device; 775 /// 776 /// fn example(dev: &Device) { 777 /// dev_info!(dev, "hello {}\n", "there"); 778 /// } 779 /// ``` 780 #[macro_export] 781 macro_rules! dev_info { 782 ($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); } 783 } 784 785 /// Prints a debug-level message (level 7) prefixed with device information. 786 /// 787 /// This level should be used for debug messages. 788 /// 789 /// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet. 790 /// 791 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 792 /// [`core::fmt`] and [`std::format!`]. 793 /// 794 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 795 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 796 /// 797 /// # Examples 798 /// 799 /// ``` 800 /// # use kernel::device::Device; 801 /// 802 /// fn example(dev: &Device) { 803 /// dev_dbg!(dev, "hello {}\n", "there"); 804 /// } 805 /// ``` 806 #[macro_export] 807 macro_rules! dev_dbg { 808 ($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); } 809 } 810