1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Universal Flash Storage Host controller driver Core
4 * Copyright (C) 2011-2013 Samsung India Software Operations
5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6 *
7 * Authors:
8 * Santosh Yaraganavi <santosh.sy@samsung.com>
9 * Vinayak Holikatti <h.vinayak@samsung.com>
10 */
11
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/hex.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/pm_opp.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/sched/clock.h>
27 #include <linux/iopoll.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_tcq.h>
33 #include "ufshcd-priv.h"
34 #include <ufs/ufs_quirks.h>
35 #include <ufs/unipro.h>
36 #include "ufs-sysfs.h"
37 #include "ufs-debugfs.h"
38 #include "ufs-fault-injection.h"
39 #include "ufs_bsg.h"
40 #include "ufshcd-crypto.h"
41 #include <linux/unaligned.h>
42
43 #define CREATE_TRACE_POINTS
44 #include "ufs_trace.h"
45
46 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\
47 UTP_TASK_REQ_COMPL |\
48 UFSHCD_ERROR_MASK)
49
50 /* UIC command timeout, unit: ms */
51 enum {
52 UIC_CMD_TIMEOUT_DEFAULT = 500,
53 UIC_CMD_TIMEOUT_MAX = 5000,
54 };
55 /* NOP OUT retries waiting for NOP IN response */
56 #define NOP_OUT_RETRIES 10
57 /* Timeout after 50 msecs if NOP OUT hangs without response */
58 #define NOP_OUT_TIMEOUT 50 /* msecs */
59
60 /* Query request retries */
61 #define QUERY_REQ_RETRIES 3
62 /* Query request timeout */
63 enum {
64 QUERY_REQ_TIMEOUT_MIN = 1,
65 QUERY_REQ_TIMEOUT_DEFAULT = 1500,
66 QUERY_REQ_TIMEOUT_MAX = 30000
67 };
68
69 /* Advanced RPMB request timeout */
70 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */
71
72 /* Task management command timeout */
73 #define TM_CMD_TIMEOUT 100 /* msecs */
74
75 /* maximum number of retries for a general UIC command */
76 #define UFS_UIC_COMMAND_RETRIES 3
77
78 /* maximum number of link-startup retries */
79 #define DME_LINKSTARTUP_RETRIES 3
80
81 /* maximum number of reset retries before giving up */
82 #define MAX_HOST_RESET_RETRIES 5
83
84 /* Maximum number of error handler retries before giving up */
85 #define MAX_ERR_HANDLER_RETRIES 5
86
87 /* Expose the flag value from utp_upiu_query.value */
88 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
89
90 /* Interrupt aggregation default timeout, unit: 40us */
91 #define INT_AGGR_DEF_TO 0x02
92
93 /* default delay of autosuspend: 2000 ms */
94 #define RPM_AUTOSUSPEND_DELAY_MS 2000
95
96 /* Default delay of RPM device flush delayed work */
97 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
98
99 /* Default value of wait time before gating device ref clock */
100 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
101
102 /* Polling time to wait for fDeviceInit */
103 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
104
105 /* Default RTC update every 10 seconds */
106 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
107
108 /* bMaxNumOfRTT is equal to two after device manufacturing */
109 #define DEFAULT_MAX_NUM_RTT 2
110
111 /* UFSHC 4.0 compliant HC support this mode. */
112 static bool use_mcq_mode = true;
113
is_mcq_supported(struct ufs_hba * hba)114 static bool is_mcq_supported(struct ufs_hba *hba)
115 {
116 return hba->mcq_sup && use_mcq_mode;
117 }
118
119 module_param(use_mcq_mode, bool, 0644);
120 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
121
122 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT;
123
uic_cmd_timeout_set(const char * val,const struct kernel_param * kp)124 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp)
125 {
126 return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT,
127 UIC_CMD_TIMEOUT_MAX);
128 }
129
130 static const struct kernel_param_ops uic_cmd_timeout_ops = {
131 .set = uic_cmd_timeout_set,
132 .get = param_get_uint,
133 };
134
135 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644);
136 MODULE_PARM_DESC(uic_cmd_timeout,
137 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 5 seconds inclusively");
138
139 static unsigned int dev_cmd_timeout = QUERY_REQ_TIMEOUT_DEFAULT;
140
dev_cmd_timeout_set(const char * val,const struct kernel_param * kp)141 static int dev_cmd_timeout_set(const char *val, const struct kernel_param *kp)
142 {
143 return param_set_uint_minmax(val, kp, QUERY_REQ_TIMEOUT_MIN,
144 QUERY_REQ_TIMEOUT_MAX);
145 }
146
147 static const struct kernel_param_ops dev_cmd_timeout_ops = {
148 .set = dev_cmd_timeout_set,
149 .get = param_get_uint,
150 };
151
152 module_param_cb(dev_cmd_timeout, &dev_cmd_timeout_ops, &dev_cmd_timeout, 0644);
153 MODULE_PARM_DESC(dev_cmd_timeout,
154 "UFS Device command timeout in milliseconds. Defaults to 1.5s. Supported values range from 1ms to 30 seconds inclusively");
155
156 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \
157 ({ \
158 int _ret; \
159 if (_on) \
160 _ret = ufshcd_enable_vreg(_dev, _vreg); \
161 else \
162 _ret = ufshcd_disable_vreg(_dev, _vreg); \
163 _ret; \
164 })
165
166 #define ufshcd_hex_dump(prefix_str, buf, len) do { \
167 size_t __len = (len); \
168 print_hex_dump(KERN_ERR, prefix_str, \
169 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
170 16, 4, buf, __len, false); \
171 } while (0)
172
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)173 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
174 const char *prefix)
175 {
176 u32 *regs;
177 size_t pos;
178
179 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
180 return -EINVAL;
181
182 regs = kzalloc(len, GFP_ATOMIC);
183 if (!regs)
184 return -ENOMEM;
185
186 for (pos = 0; pos < len; pos += 4) {
187 if (offset == 0 &&
188 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
189 pos <= REG_UIC_ERROR_CODE_DME)
190 continue;
191 regs[pos / 4] = ufshcd_readl(hba, offset + pos);
192 }
193
194 ufshcd_hex_dump(prefix, regs, len);
195 kfree(regs);
196
197 return 0;
198 }
199 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
200
201 enum {
202 UFSHCD_MAX_CHANNEL = 0,
203 UFSHCD_MAX_ID = 1,
204 };
205
206 static const char *const ufshcd_state_name[] = {
207 [UFSHCD_STATE_RESET] = "reset",
208 [UFSHCD_STATE_OPERATIONAL] = "operational",
209 [UFSHCD_STATE_ERROR] = "error",
210 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal",
211 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal",
212 };
213
214 /* UFSHCD error handling flags */
215 enum {
216 UFSHCD_EH_IN_PROGRESS = (1 << 0),
217 };
218
219 /* UFSHCD UIC layer error flags */
220 enum {
221 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
222 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
223 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
224 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
225 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
226 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
227 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
228 };
229
230 #define ufshcd_set_eh_in_progress(h) \
231 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
232 #define ufshcd_eh_in_progress(h) \
233 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
234 #define ufshcd_clear_eh_in_progress(h) \
235 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
236
237 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
238 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
239 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
240 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
241 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
242 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
243 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
244 /*
245 * For DeepSleep, the link is first put in hibern8 and then off.
246 * Leaving the link in hibern8 is not supported.
247 */
248 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
249 };
250
251 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)252 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
253 {
254 return ufs_pm_lvl_states[lvl].dev_state;
255 }
256
257 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)258 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
259 {
260 return ufs_pm_lvl_states[lvl].link_state;
261 }
262
263 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)264 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
265 enum uic_link_state link_state)
266 {
267 enum ufs_pm_level lvl;
268
269 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
270 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
271 (ufs_pm_lvl_states[lvl].link_state == link_state))
272 return lvl;
273 }
274
275 /* if no match found, return the level 0 */
276 return UFS_PM_LVL_0;
277 }
278
ufshcd_has_pending_tasks(struct ufs_hba * hba)279 static bool ufshcd_has_pending_tasks(struct ufs_hba *hba)
280 {
281 return hba->outstanding_tasks || hba->active_uic_cmd ||
282 hba->uic_async_done;
283 }
284
ufshcd_is_ufs_dev_busy(struct ufs_hba * hba)285 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
286 {
287 return (hba->scsi_host_added && scsi_host_busy(hba->host)) ||
288 ufshcd_has_pending_tasks(hba);
289 }
290
291 static const struct ufs_dev_quirk ufs_fixups[] = {
292 /* UFS cards deviations table */
293 { .wmanufacturerid = UFS_VENDOR_MICRON,
294 .model = UFS_ANY_MODEL,
295 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
296 { .wmanufacturerid = UFS_VENDOR_SAMSUNG,
297 .model = UFS_ANY_MODEL,
298 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
299 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
300 UFS_DEVICE_QUIRK_PA_HIBER8TIME |
301 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
302 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
303 .model = UFS_ANY_MODEL,
304 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
305 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
306 .model = "hB8aL1" /*H28U62301AMR*/,
307 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
308 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
309 .model = UFS_ANY_MODEL,
310 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
311 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
312 .model = "THGLF2G9C8KBADG",
313 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
314 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
315 .model = "THGLF2G9D8KBADG",
316 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
317 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
318 .model = "THGJFJT1E45BATP",
319 .quirk = UFS_DEVICE_QUIRK_NO_TIMESTAMP_SUPPORT },
320 {}
321 };
322
323 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
324 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
325 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
326 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
327 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
328 static void ufshcd_hba_exit(struct ufs_hba *hba);
329 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params);
330 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
331 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
332 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
333 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
334 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
335 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
336 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
337 bool scale_up);
338 static irqreturn_t ufshcd_intr(int irq, void *__hba);
339 static int ufshcd_change_power_mode(struct ufs_hba *hba,
340 struct ufs_pa_layer_attr *pwr_mode);
341 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
342 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
343 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
344 struct ufs_vreg *vreg);
345 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
346 bool enable);
347 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
348 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
349
ufshcd_enable_irq(struct ufs_hba * hba)350 void ufshcd_enable_irq(struct ufs_hba *hba)
351 {
352 if (!hba->is_irq_enabled) {
353 enable_irq(hba->irq);
354 hba->is_irq_enabled = true;
355 }
356 }
357 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
358
ufshcd_disable_irq(struct ufs_hba * hba)359 void ufshcd_disable_irq(struct ufs_hba *hba)
360 {
361 if (hba->is_irq_enabled) {
362 disable_irq(hba->irq);
363 hba->is_irq_enabled = false;
364 }
365 }
366 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
367
368 /**
369 * ufshcd_enable_intr - enable interrupts
370 * @hba: per adapter instance
371 * @intrs: interrupt bits
372 */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)373 void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
374 {
375 u32 old_val = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
376 u32 new_val = old_val | intrs;
377
378 if (new_val != old_val)
379 ufshcd_writel(hba, new_val, REG_INTERRUPT_ENABLE);
380 }
381
382 /**
383 * ufshcd_disable_intr - disable interrupts
384 * @hba: per adapter instance
385 * @intrs: interrupt bits
386 */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)387 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
388 {
389 u32 old_val = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
390 u32 new_val = old_val & ~intrs;
391
392 if (new_val != old_val)
393 ufshcd_writel(hba, new_val, REG_INTERRUPT_ENABLE);
394 }
395
ufshcd_configure_wb(struct ufs_hba * hba)396 static void ufshcd_configure_wb(struct ufs_hba *hba)
397 {
398 if (!ufshcd_is_wb_allowed(hba))
399 return;
400
401 ufshcd_wb_toggle(hba, true);
402
403 ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
404
405 if (ufshcd_is_wb_buf_flush_allowed(hba))
406 ufshcd_wb_toggle_buf_flush(hba, true);
407 }
408
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,struct ufshcd_lrb * lrb,enum ufs_trace_str_t str_t)409 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba,
410 struct ufshcd_lrb *lrb,
411 enum ufs_trace_str_t str_t)
412 {
413 struct utp_upiu_req *rq = lrb->ucd_req_ptr;
414 struct utp_upiu_header *header;
415
416 if (!trace_ufshcd_upiu_enabled())
417 return;
418
419 if (str_t == UFS_CMD_SEND)
420 header = &rq->header;
421 else
422 header = &lrb->ucd_rsp_ptr->header;
423
424 trace_ufshcd_upiu(hba, str_t, header, &rq->sc.cdb,
425 UFS_TSF_CDB);
426 }
427
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,enum ufs_trace_str_t str_t,struct utp_upiu_req * rq_rsp)428 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
429 enum ufs_trace_str_t str_t,
430 struct utp_upiu_req *rq_rsp)
431 {
432 if (!trace_ufshcd_upiu_enabled())
433 return;
434
435 trace_ufshcd_upiu(hba, str_t, &rq_rsp->header,
436 &rq_rsp->qr, UFS_TSF_OSF);
437 }
438
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)439 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
440 enum ufs_trace_str_t str_t)
441 {
442 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
443
444 if (!trace_ufshcd_upiu_enabled())
445 return;
446
447 if (str_t == UFS_TM_SEND)
448 trace_ufshcd_upiu(hba, str_t,
449 &descp->upiu_req.req_header,
450 &descp->upiu_req.input_param1,
451 UFS_TSF_TM_INPUT);
452 else
453 trace_ufshcd_upiu(hba, str_t,
454 &descp->upiu_rsp.rsp_header,
455 &descp->upiu_rsp.output_param1,
456 UFS_TSF_TM_OUTPUT);
457 }
458
ufshcd_add_uic_command_trace(struct ufs_hba * hba,const struct uic_command * ucmd,enum ufs_trace_str_t str_t)459 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
460 const struct uic_command *ucmd,
461 enum ufs_trace_str_t str_t)
462 {
463 u32 cmd;
464
465 if (!trace_ufshcd_uic_command_enabled())
466 return;
467
468 if (str_t == UFS_CMD_SEND)
469 cmd = ucmd->command;
470 else
471 cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
472
473 trace_ufshcd_uic_command(hba, str_t, cmd,
474 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
475 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
476 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
477 }
478
ufshcd_add_command_trace(struct ufs_hba * hba,struct scsi_cmnd * cmd,enum ufs_trace_str_t str_t)479 static void ufshcd_add_command_trace(struct ufs_hba *hba, struct scsi_cmnd *cmd,
480 enum ufs_trace_str_t str_t)
481 {
482 u64 lba = 0;
483 u8 opcode = 0, group_id = 0;
484 u32 doorbell = 0;
485 u32 intr;
486 u32 hwq_id = 0;
487 struct request *rq = scsi_cmd_to_rq(cmd);
488 unsigned int tag = rq->tag;
489 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
490 int transfer_len = -1;
491
492 /* trace UPIU also */
493 ufshcd_add_cmd_upiu_trace(hba, lrbp, str_t);
494 if (!trace_ufshcd_command_enabled())
495 return;
496
497 opcode = cmd->cmnd[0];
498
499 if (opcode == READ_10 || opcode == WRITE_10) {
500 /*
501 * Currently we only fully trace read(10) and write(10) commands
502 */
503 transfer_len =
504 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
505 lba = scsi_get_lba(cmd);
506 if (opcode == WRITE_10)
507 group_id = cmd->cmnd[6];
508 } else if (opcode == UNMAP) {
509 /*
510 * The number of Bytes to be unmapped beginning with the lba.
511 */
512 transfer_len = blk_rq_bytes(rq);
513 lba = scsi_get_lba(cmd);
514 }
515
516 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
517
518 if (hba->mcq_enabled) {
519 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
520
521 hwq_id = hwq->id;
522 } else {
523 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
524 }
525 trace_ufshcd_command(cmd->device, hba, str_t, tag, doorbell, hwq_id,
526 transfer_len, intr, lba, opcode, group_id);
527 }
528
ufshcd_print_clk_freqs(struct ufs_hba * hba)529 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
530 {
531 struct ufs_clk_info *clki;
532 struct list_head *head = &hba->clk_list_head;
533
534 if (list_empty(head))
535 return;
536
537 list_for_each_entry(clki, head, list) {
538 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
539 clki->max_freq)
540 dev_err(hba->dev, "clk: %s, rate: %u\n",
541 clki->name, clki->curr_freq);
542 }
543 }
544
ufshcd_print_evt(struct ufs_hba * hba,u32 id,const char * err_name)545 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
546 const char *err_name)
547 {
548 int i;
549 bool found = false;
550 const struct ufs_event_hist *e;
551
552 if (id >= UFS_EVT_CNT)
553 return;
554
555 e = &hba->ufs_stats.event[id];
556
557 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
558 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
559
560 if (e->tstamp[p] == 0)
561 continue;
562 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
563 e->val[p], div_u64(e->tstamp[p], 1000));
564 found = true;
565 }
566
567 if (!found)
568 dev_err(hba->dev, "No record of %s\n", err_name);
569 else
570 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
571 }
572
ufshcd_print_evt_hist(struct ufs_hba * hba)573 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
574 {
575 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
576
577 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
578 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
579 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
580 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
581 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
582 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
583 "auto_hibern8_err");
584 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
585 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
586 "link_startup_fail");
587 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
588 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
589 "suspend_fail");
590 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
591 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
592 "wlun suspend_fail");
593 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
594 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
595 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
596
597 ufshcd_vops_dbg_register_dump(hba);
598 }
599
ufshcd_print_tr(struct ufs_hba * hba,struct scsi_cmnd * cmd,bool pr_prdt)600 static void ufshcd_print_tr(struct ufs_hba *hba, struct scsi_cmnd *cmd,
601 bool pr_prdt)
602 {
603 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
604 const int tag = scsi_cmd_to_rq(cmd)->tag;
605 int prdt_length;
606
607 if (hba->monitor.enabled) {
608 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n", tag,
609 div_u64(lrbp->issue_time_stamp_local_clock, 1000));
610 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n", tag,
611 div_u64(lrbp->compl_time_stamp_local_clock, 1000));
612 }
613 dev_err(hba->dev,
614 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
615 tag, (u64)lrbp->utrd_dma_addr);
616
617 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
618 sizeof(struct utp_transfer_req_desc));
619 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
620 (u64)lrbp->ucd_req_dma_addr);
621 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
622 sizeof(struct utp_upiu_req));
623 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
624 (u64)lrbp->ucd_rsp_dma_addr);
625 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
626 sizeof(struct utp_upiu_rsp));
627
628 prdt_length = le16_to_cpu(
629 lrbp->utr_descriptor_ptr->prd_table_length);
630 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
631 prdt_length /= ufshcd_sg_entry_size(hba);
632
633 dev_err(hba->dev,
634 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n",
635 tag, prdt_length,
636 (u64)lrbp->ucd_prdt_dma_addr);
637
638 if (pr_prdt)
639 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
640 ufshcd_sg_entry_size(hba) * prdt_length);
641 }
642
ufshcd_print_tr_iter(struct request * req,void * priv)643 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
644 {
645 struct scsi_device *sdev = req->q->queuedata;
646 struct Scsi_Host *shost = sdev->host;
647 struct ufs_hba *hba = shost_priv(shost);
648
649 if (!blk_mq_is_reserved_rq(req))
650 ufshcd_print_tr(hba, blk_mq_rq_to_pdu(req), *(bool *)priv);
651
652 return true;
653 }
654
655 /**
656 * ufshcd_print_trs_all - print trs for all started requests.
657 * @hba: per-adapter instance.
658 * @pr_prdt: need to print prdt or not.
659 */
ufshcd_print_trs_all(struct ufs_hba * hba,bool pr_prdt)660 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
661 {
662 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
663 }
664
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)665 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
666 {
667 int tag;
668
669 for_each_set_bit(tag, &bitmap, hba->nutmrs) {
670 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
671
672 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
673 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
674 }
675 }
676
ufshcd_print_host_state(struct ufs_hba * hba)677 static void ufshcd_print_host_state(struct ufs_hba *hba)
678 {
679 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
680
681 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
682 dev_err(hba->dev, "%d outstanding reqs, tasks=0x%lx\n",
683 hba->scsi_host_added ? scsi_host_busy(hba->host) : 0,
684 hba->outstanding_tasks);
685 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
686 hba->saved_err, hba->saved_uic_err);
687 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
688 hba->curr_dev_pwr_mode, hba->uic_link_state);
689 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
690 hba->pm_op_in_progress, hba->is_sys_suspended);
691 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
692 hba->auto_bkops_enabled, hba->host->host_self_blocked);
693 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
694 dev_err(hba->dev,
695 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
696 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
697 hba->ufs_stats.hibern8_exit_cnt);
698 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
699 hba->eh_flags, hba->req_abort_count);
700 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
701 hba->ufs_version, hba->capabilities, hba->caps);
702 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
703 hba->dev_quirks);
704 if (sdev_ufs)
705 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
706 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
707
708 ufshcd_print_clk_freqs(hba);
709 }
710
711 /**
712 * ufshcd_print_pwr_info - print power params as saved in hba
713 * power info
714 * @hba: per-adapter instance
715 */
ufshcd_print_pwr_info(struct ufs_hba * hba)716 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
717 {
718 static const char * const names[] = {
719 "INVALID MODE",
720 "FAST MODE",
721 "SLOW_MODE",
722 "INVALID MODE",
723 "FASTAUTO_MODE",
724 "SLOWAUTO_MODE",
725 "INVALID MODE",
726 };
727
728 /*
729 * Using dev_dbg to avoid messages during runtime PM to avoid
730 * never-ending cycles of messages written back to storage by user space
731 * causing runtime resume, causing more messages and so on.
732 */
733 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
734 __func__,
735 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
736 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
737 names[hba->pwr_info.pwr_rx],
738 names[hba->pwr_info.pwr_tx],
739 hba->pwr_info.hs_rate);
740 }
741
ufshcd_device_reset(struct ufs_hba * hba)742 static void ufshcd_device_reset(struct ufs_hba *hba)
743 {
744 int err;
745
746 err = ufshcd_vops_device_reset(hba);
747
748 if (!err) {
749 ufshcd_set_ufs_dev_active(hba);
750 if (ufshcd_is_wb_allowed(hba)) {
751 hba->dev_info.wb_enabled = false;
752 hba->dev_info.wb_buf_flush_enabled = false;
753 }
754 if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
755 hba->dev_info.rtc_time_baseline = 0;
756 }
757 if (err != -EOPNOTSUPP)
758 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
759 }
760
ufshcd_delay_us(unsigned long us,unsigned long tolerance)761 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
762 {
763 if (!us)
764 return;
765
766 if (us < 10)
767 udelay(us);
768 else
769 usleep_range(us, us + tolerance);
770 }
771 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
772
773 /**
774 * ufshcd_wait_for_register - wait for register value to change
775 * @hba: per-adapter interface
776 * @reg: mmio register offset
777 * @mask: mask to apply to the read register value
778 * @val: value to wait for
779 * @interval_us: polling interval in microseconds
780 * @timeout_ms: timeout in milliseconds
781 *
782 * Return: -ETIMEDOUT on error, zero on success.
783 */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)784 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
785 u32 val, unsigned long interval_us,
786 unsigned long timeout_ms)
787 {
788 u32 v;
789
790 val &= mask; /* ignore bits that we don't intend to wait on */
791
792 return read_poll_timeout(ufshcd_readl, v, (v & mask) == val,
793 interval_us, timeout_ms * 1000, false, hba, reg);
794 }
795
796 /**
797 * ufshcd_get_intr_mask - Get the interrupt bit mask
798 * @hba: Pointer to adapter instance
799 *
800 * Return: interrupt bit mask per version
801 */
ufshcd_get_intr_mask(struct ufs_hba * hba)802 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
803 {
804 if (hba->ufs_version <= ufshci_version(2, 0))
805 return INTERRUPT_MASK_ALL_VER_11;
806
807 return INTERRUPT_MASK_ALL_VER_21;
808 }
809
810 /**
811 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
812 * @hba: Pointer to adapter instance
813 *
814 * Return: UFSHCI version supported by the controller
815 */
ufshcd_get_ufs_version(struct ufs_hba * hba)816 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
817 {
818 u32 ufshci_ver;
819
820 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
821 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
822 else
823 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
824
825 /*
826 * UFSHCI v1.x uses a different version scheme, in order
827 * to allow the use of comparisons with the ufshci_version
828 * function, we convert it to the same scheme as ufs 2.0+.
829 */
830 if (ufshci_ver & 0x00010000)
831 return ufshci_version(1, ufshci_ver & 0x00000100);
832
833 return ufshci_ver;
834 }
835
836 /**
837 * ufshcd_is_device_present - Check if any device connected to
838 * the host controller
839 * @hba: pointer to adapter instance
840 *
841 * Return: true if device present, false if no device detected
842 */
ufshcd_is_device_present(struct ufs_hba * hba)843 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
844 {
845 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
846 }
847
848 /**
849 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
850 * @lrbp: pointer to local command reference block
851 * @cqe: pointer to the completion queue entry
852 *
853 * This function is used to get the OCS field from UTRD
854 *
855 * Return: the OCS field in the UTRD.
856 */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp,struct cq_entry * cqe)857 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
858 struct cq_entry *cqe)
859 {
860 if (cqe)
861 return cqe->overall_status & MASK_OCS;
862
863 return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
864 }
865
866 /**
867 * ufshcd_utrl_clear() - Clear requests from the controller request list.
868 * @hba: per adapter instance
869 * @mask: mask with one bit set for each request to be cleared
870 */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 mask)871 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
872 {
873 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
874 mask = ~mask;
875 /*
876 * From the UFSHCI specification: "UTP Transfer Request List CLear
877 * Register (UTRLCLR): This field is bit significant. Each bit
878 * corresponds to a slot in the UTP Transfer Request List, where bit 0
879 * corresponds to request slot 0. A bit in this field is set to ‘0’
880 * by host software to indicate to the host controller that a transfer
881 * request slot is cleared. The host controller
882 * shall free up any resources associated to the request slot
883 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
884 * host software indicates no change to request slots by setting the
885 * associated bits in this field to ‘1’. Bits in this field shall only
886 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
887 */
888 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
889 }
890
891 /**
892 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
893 * @hba: per adapter instance
894 * @pos: position of the bit to be cleared
895 */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)896 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
897 {
898 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
899 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
900 else
901 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
902 }
903
904 /**
905 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
906 * @reg: Register value of host controller status
907 *
908 * Return: 0 on success; a positive value if failed.
909 */
ufshcd_get_lists_status(u32 reg)910 static inline int ufshcd_get_lists_status(u32 reg)
911 {
912 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
913 }
914
915 /**
916 * ufshcd_get_uic_cmd_result - Get the UIC command result
917 * @hba: Pointer to adapter instance
918 *
919 * This function gets the result of UIC command completion
920 *
921 * Return: 0 on success; non-zero value on error.
922 */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)923 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
924 {
925 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
926 MASK_UIC_COMMAND_RESULT;
927 }
928
929 /**
930 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
931 * @hba: Pointer to adapter instance
932 *
933 * This function gets UIC command argument3
934 *
935 * Return: 0 on success; non-zero value on error.
936 */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)937 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
938 {
939 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
940 }
941
942 /**
943 * ufshcd_get_req_rsp - returns the TR response transaction type
944 * @ucd_rsp_ptr: pointer to response UPIU
945 *
946 * Return: UPIU type.
947 */
948 static inline enum upiu_response_transaction
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)949 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
950 {
951 return ucd_rsp_ptr->header.transaction_code;
952 }
953
954 /**
955 * ufshcd_is_exception_event - Check if the device raised an exception event
956 * @ucd_rsp_ptr: pointer to response UPIU
957 *
958 * The function checks if the device raised an exception event indicated in
959 * the Device Information field of response UPIU.
960 *
961 * Return: true if exception is raised, false otherwise.
962 */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)963 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
964 {
965 return ucd_rsp_ptr->header.device_information & 1;
966 }
967
968 /**
969 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
970 * @hba: per adapter instance
971 */
972 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)973 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
974 {
975 ufshcd_writel(hba, INT_AGGR_ENABLE |
976 INT_AGGR_COUNTER_AND_TIMER_RESET,
977 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
978 }
979
980 /**
981 * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
982 * @hba: per adapter instance
983 * @cnt: Interrupt aggregation counter threshold
984 * @tmout: Interrupt aggregation timeout value
985 */
986 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)987 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
988 {
989 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
990 INT_AGGR_COUNTER_THLD_VAL(cnt) |
991 INT_AGGR_TIMEOUT_VAL(tmout),
992 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
993 }
994
995 /**
996 * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
997 * @hba: per adapter instance
998 */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)999 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
1000 {
1001 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
1002 }
1003
1004 /**
1005 * ufshcd_enable_run_stop_reg - Enable run-stop registers,
1006 * When run-stop registers are set to 1, it indicates the
1007 * host controller that it can process the requests
1008 * @hba: per adapter instance
1009 */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)1010 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
1011 {
1012 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
1013 REG_UTP_TASK_REQ_LIST_RUN_STOP);
1014 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
1015 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
1016 }
1017
1018 /**
1019 * ufshcd_hba_start - Start controller initialization sequence
1020 * @hba: per adapter instance
1021 */
ufshcd_hba_start(struct ufs_hba * hba)1022 static inline void ufshcd_hba_start(struct ufs_hba *hba)
1023 {
1024 u32 val = CONTROLLER_ENABLE;
1025
1026 if (ufshcd_crypto_enable(hba))
1027 val |= CRYPTO_GENERAL_ENABLE;
1028
1029 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
1030 }
1031
1032 /**
1033 * ufshcd_is_hba_active - Get controller state
1034 * @hba: per adapter instance
1035 *
1036 * Return: true if and only if the controller is active.
1037 */
ufshcd_is_hba_active(struct ufs_hba * hba)1038 bool ufshcd_is_hba_active(struct ufs_hba *hba)
1039 {
1040 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
1041 }
1042 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
1043
1044 /**
1045 * ufshcd_pm_qos_init - initialize PM QoS request
1046 * @hba: per adapter instance
1047 */
ufshcd_pm_qos_init(struct ufs_hba * hba)1048 void ufshcd_pm_qos_init(struct ufs_hba *hba)
1049 {
1050 guard(mutex)(&hba->pm_qos_mutex);
1051
1052 if (hba->pm_qos_enabled)
1053 return;
1054
1055 cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1056
1057 if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1058 hba->pm_qos_enabled = true;
1059 }
1060
1061 /**
1062 * ufshcd_pm_qos_exit - remove request from PM QoS
1063 * @hba: per adapter instance
1064 */
ufshcd_pm_qos_exit(struct ufs_hba * hba)1065 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1066 {
1067 guard(mutex)(&hba->pm_qos_mutex);
1068
1069 if (!hba->pm_qos_enabled)
1070 return;
1071
1072 cpu_latency_qos_remove_request(&hba->pm_qos_req);
1073 hba->pm_qos_enabled = false;
1074 }
1075
1076 /**
1077 * ufshcd_pm_qos_update - update PM QoS request
1078 * @hba: per adapter instance
1079 * @on: If True, vote for perf PM QoS mode otherwise power save mode
1080 */
ufshcd_pm_qos_update(struct ufs_hba * hba,bool on)1081 void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1082 {
1083 guard(mutex)(&hba->pm_qos_mutex);
1084
1085 if (!hba->pm_qos_enabled)
1086 return;
1087
1088 cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1089 }
1090 EXPORT_SYMBOL_GPL(ufshcd_pm_qos_update);
1091
1092 /**
1093 * ufshcd_set_clk_freq - set UFS controller clock frequencies
1094 * @hba: per adapter instance
1095 * @scale_up: If True, set max possible frequency othewise set low frequency
1096 *
1097 * Return: 0 if successful; < 0 upon failure.
1098 */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)1099 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1100 {
1101 int ret = 0;
1102 struct ufs_clk_info *clki;
1103 struct list_head *head = &hba->clk_list_head;
1104
1105 if (list_empty(head))
1106 goto out;
1107
1108 list_for_each_entry(clki, head, list) {
1109 if (!IS_ERR_OR_NULL(clki->clk)) {
1110 if (scale_up && clki->max_freq) {
1111 if (clki->curr_freq == clki->max_freq)
1112 continue;
1113
1114 ret = clk_set_rate(clki->clk, clki->max_freq);
1115 if (ret) {
1116 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1117 __func__, clki->name,
1118 clki->max_freq, ret);
1119 break;
1120 }
1121 trace_ufshcd_clk_scaling(hba,
1122 "scaled up", clki->name,
1123 clki->curr_freq,
1124 clki->max_freq);
1125
1126 clki->curr_freq = clki->max_freq;
1127
1128 } else if (!scale_up && clki->min_freq) {
1129 if (clki->curr_freq == clki->min_freq)
1130 continue;
1131
1132 ret = clk_set_rate(clki->clk, clki->min_freq);
1133 if (ret) {
1134 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1135 __func__, clki->name,
1136 clki->min_freq, ret);
1137 break;
1138 }
1139 trace_ufshcd_clk_scaling(hba,
1140 "scaled down", clki->name,
1141 clki->curr_freq,
1142 clki->min_freq);
1143 clki->curr_freq = clki->min_freq;
1144 }
1145 }
1146 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1147 clki->name, clk_get_rate(clki->clk));
1148 }
1149
1150 out:
1151 return ret;
1152 }
1153
ufshcd_opp_config_clks(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)1154 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1155 struct dev_pm_opp *opp, void *data,
1156 bool scaling_down)
1157 {
1158 struct ufs_hba *hba = dev_get_drvdata(dev);
1159 struct list_head *head = &hba->clk_list_head;
1160 struct ufs_clk_info *clki;
1161 unsigned long freq;
1162 u8 idx = 0;
1163 int ret;
1164
1165 list_for_each_entry(clki, head, list) {
1166 if (!IS_ERR_OR_NULL(clki->clk)) {
1167 freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1168
1169 /* Do not set rate for clocks having frequency as 0 */
1170 if (!freq)
1171 continue;
1172
1173 ret = clk_set_rate(clki->clk, freq);
1174 if (ret) {
1175 dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1176 __func__, clki->name, freq, ret);
1177 return ret;
1178 }
1179
1180 trace_ufshcd_clk_scaling(hba,
1181 (scaling_down ? "scaled down" : "scaled up"),
1182 clki->name, hba->clk_scaling.target_freq, freq);
1183 }
1184 }
1185
1186 return 0;
1187 }
1188 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1189
ufshcd_opp_set_rate(struct ufs_hba * hba,unsigned long freq)1190 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1191 {
1192 struct dev_pm_opp *opp;
1193 int ret;
1194
1195 opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1196 &freq, 0);
1197 if (IS_ERR(opp))
1198 return PTR_ERR(opp);
1199
1200 ret = dev_pm_opp_set_opp(hba->dev, opp);
1201 dev_pm_opp_put(opp);
1202
1203 return ret;
1204 }
1205
1206 /**
1207 * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1208 * @hba: per adapter instance
1209 * @freq: frequency to scale
1210 * @scale_up: True if scaling up and false if scaling down
1211 *
1212 * Return: 0 if successful; < 0 upon failure.
1213 */
ufshcd_scale_clks(struct ufs_hba * hba,unsigned long freq,bool scale_up)1214 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1215 bool scale_up)
1216 {
1217 int ret = 0;
1218 ktime_t start = ktime_get();
1219
1220 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, PRE_CHANGE);
1221 if (ret)
1222 goto out;
1223
1224 if (hba->use_pm_opp)
1225 ret = ufshcd_opp_set_rate(hba, freq);
1226 else
1227 ret = ufshcd_set_clk_freq(hba, scale_up);
1228 if (ret)
1229 goto out;
1230
1231 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, POST_CHANGE);
1232 if (ret) {
1233 if (hba->use_pm_opp)
1234 ufshcd_opp_set_rate(hba,
1235 hba->devfreq->previous_freq);
1236 else
1237 ufshcd_set_clk_freq(hba, !scale_up);
1238 goto out;
1239 }
1240
1241 ufshcd_pm_qos_update(hba, scale_up);
1242
1243 out:
1244 trace_ufshcd_profile_clk_scaling(hba,
1245 (scale_up ? "up" : "down"),
1246 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1247 return ret;
1248 }
1249
1250 /**
1251 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1252 * @hba: per adapter instance
1253 * @freq: frequency to scale
1254 * @scale_up: True if scaling up and false if scaling down
1255 *
1256 * Return: true if scaling is required, false otherwise.
1257 */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,unsigned long freq,bool scale_up)1258 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1259 unsigned long freq, bool scale_up)
1260 {
1261 struct ufs_clk_info *clki;
1262 struct list_head *head = &hba->clk_list_head;
1263
1264 if (list_empty(head))
1265 return false;
1266
1267 if (hba->use_pm_opp)
1268 return freq != hba->clk_scaling.target_freq;
1269
1270 list_for_each_entry(clki, head, list) {
1271 if (!IS_ERR_OR_NULL(clki->clk)) {
1272 if (scale_up && clki->max_freq) {
1273 if (clki->curr_freq == clki->max_freq)
1274 continue;
1275 return true;
1276 } else if (!scale_up && clki->min_freq) {
1277 if (clki->curr_freq == clki->min_freq)
1278 continue;
1279 return true;
1280 }
1281 }
1282 }
1283
1284 return false;
1285 }
1286
1287 /*
1288 * Determine the number of pending commands by counting the bits in the SCSI
1289 * device budget maps. This approach has been selected because a bit is set in
1290 * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1291 * flag. The host_self_blocked flag can be modified by calling
1292 * scsi_block_requests() or scsi_unblock_requests().
1293 */
ufshcd_pending_cmds(struct ufs_hba * hba)1294 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1295 {
1296 struct scsi_device *sdev;
1297 unsigned long flags;
1298 u32 pending = 0;
1299
1300 spin_lock_irqsave(hba->host->host_lock, flags);
1301 __shost_for_each_device(sdev, hba->host)
1302 pending += scsi_device_busy(sdev);
1303 spin_unlock_irqrestore(hba->host->host_lock, flags);
1304
1305 return pending;
1306 }
1307
1308 /*
1309 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1310 * has expired.
1311 *
1312 * Return: 0 upon success; -EBUSY upon timeout.
1313 */
ufshcd_wait_for_pending_cmds(struct ufs_hba * hba,u64 wait_timeout_us)1314 static int ufshcd_wait_for_pending_cmds(struct ufs_hba *hba,
1315 u64 wait_timeout_us)
1316 {
1317 int ret = 0;
1318 u32 tm_doorbell;
1319 u32 tr_pending;
1320 bool timeout = false, do_last_check = false;
1321 ktime_t start;
1322
1323 ufshcd_hold(hba);
1324 /*
1325 * Wait for all the outstanding tasks/transfer requests.
1326 * Verify by checking the doorbell registers are clear.
1327 */
1328 start = ktime_get();
1329 do {
1330 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1331 ret = -EBUSY;
1332 goto out;
1333 }
1334
1335 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1336 tr_pending = ufshcd_pending_cmds(hba);
1337 if (!tm_doorbell && !tr_pending) {
1338 timeout = false;
1339 break;
1340 } else if (do_last_check) {
1341 break;
1342 }
1343
1344 io_schedule_timeout(msecs_to_jiffies(20));
1345 if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1346 wait_timeout_us) {
1347 timeout = true;
1348 /*
1349 * We might have scheduled out for long time so make
1350 * sure to check if doorbells are cleared by this time
1351 * or not.
1352 */
1353 do_last_check = true;
1354 }
1355 } while (tm_doorbell || tr_pending);
1356
1357 if (timeout) {
1358 dev_err(hba->dev,
1359 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1360 __func__, tm_doorbell, tr_pending);
1361 ret = -EBUSY;
1362 }
1363 out:
1364 ufshcd_release(hba);
1365 return ret;
1366 }
1367
1368 /**
1369 * ufshcd_scale_gear - scale up/down UFS gear
1370 * @hba: per adapter instance
1371 * @target_gear: target gear to scale to
1372 * @scale_up: True for scaling up gear and false for scaling down
1373 *
1374 * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1375 * non-zero for any other errors.
1376 */
ufshcd_scale_gear(struct ufs_hba * hba,u32 target_gear,bool scale_up)1377 static int ufshcd_scale_gear(struct ufs_hba *hba, u32 target_gear, bool scale_up)
1378 {
1379 int ret = 0;
1380 struct ufs_pa_layer_attr new_pwr_info;
1381
1382 if (target_gear) {
1383 new_pwr_info = hba->pwr_info;
1384 new_pwr_info.gear_tx = target_gear;
1385 new_pwr_info.gear_rx = target_gear;
1386
1387 goto config_pwr_mode;
1388 }
1389
1390 /* Legacy gear scaling, in case vops_freq_to_gear_speed() is not implemented */
1391 if (scale_up) {
1392 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1393 sizeof(struct ufs_pa_layer_attr));
1394 } else {
1395 memcpy(&new_pwr_info, &hba->pwr_info,
1396 sizeof(struct ufs_pa_layer_attr));
1397
1398 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1399 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1400 /* save the current power mode */
1401 memcpy(&hba->clk_scaling.saved_pwr_info,
1402 &hba->pwr_info,
1403 sizeof(struct ufs_pa_layer_attr));
1404
1405 /* scale down gear */
1406 new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1407 new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1408 }
1409 }
1410
1411 config_pwr_mode:
1412 /* check if the power mode needs to be changed or not? */
1413 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1414 if (ret)
1415 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1416 __func__, ret,
1417 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1418 new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1419
1420 return ret;
1421 }
1422
1423 /*
1424 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1425 * has expired.
1426 *
1427 * Return: 0 upon success; -EBUSY upon timeout.
1428 */
ufshcd_clock_scaling_prepare(struct ufs_hba * hba,u64 timeout_us)1429 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1430 {
1431 int ret = 0;
1432 /*
1433 * make sure that there are no outstanding requests when
1434 * clock scaling is in progress
1435 */
1436 mutex_lock(&hba->host->scan_mutex);
1437 blk_mq_quiesce_tagset(&hba->host->tag_set);
1438 mutex_lock(&hba->wb_mutex);
1439 down_write(&hba->clk_scaling_lock);
1440
1441 if (!hba->clk_scaling.is_allowed ||
1442 ufshcd_wait_for_pending_cmds(hba, timeout_us)) {
1443 ret = -EBUSY;
1444 up_write(&hba->clk_scaling_lock);
1445 mutex_unlock(&hba->wb_mutex);
1446 blk_mq_unquiesce_tagset(&hba->host->tag_set);
1447 mutex_unlock(&hba->host->scan_mutex);
1448 goto out;
1449 }
1450
1451 /* let's not get into low power until clock scaling is completed */
1452 ufshcd_hold(hba);
1453
1454 out:
1455 return ret;
1456 }
1457
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,int err)1458 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err)
1459 {
1460 up_write(&hba->clk_scaling_lock);
1461 mutex_unlock(&hba->wb_mutex);
1462 blk_mq_unquiesce_tagset(&hba->host->tag_set);
1463 mutex_unlock(&hba->host->scan_mutex);
1464
1465 /* Enable Write Booster if current gear requires it else disable it */
1466 if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1467 ufshcd_wb_toggle(hba, hba->pwr_info.gear_rx >= hba->clk_scaling.wb_gear);
1468
1469 ufshcd_release(hba);
1470 }
1471
1472 /**
1473 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1474 * @hba: per adapter instance
1475 * @freq: frequency to scale
1476 * @scale_up: True for scaling up and false for scalin down
1477 *
1478 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1479 * for any other errors.
1480 */
ufshcd_devfreq_scale(struct ufs_hba * hba,unsigned long freq,bool scale_up)1481 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1482 bool scale_up)
1483 {
1484 u32 old_gear = hba->pwr_info.gear_rx;
1485 u32 new_gear = 0;
1486 int ret = 0;
1487
1488 new_gear = ufshcd_vops_freq_to_gear_speed(hba, freq);
1489
1490 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1491 if (ret)
1492 return ret;
1493
1494 /* scale down the gear before scaling down clocks */
1495 if (!scale_up) {
1496 ret = ufshcd_scale_gear(hba, new_gear, false);
1497 if (ret)
1498 goto out_unprepare;
1499 }
1500
1501 ret = ufshcd_scale_clks(hba, freq, scale_up);
1502 if (ret) {
1503 if (!scale_up)
1504 ufshcd_scale_gear(hba, old_gear, true);
1505 goto out_unprepare;
1506 }
1507
1508 /* scale up the gear after scaling up clocks */
1509 if (scale_up) {
1510 ret = ufshcd_scale_gear(hba, new_gear, true);
1511 if (ret) {
1512 ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1513 false);
1514 goto out_unprepare;
1515 }
1516 }
1517
1518 out_unprepare:
1519 ufshcd_clock_scaling_unprepare(hba, ret);
1520 return ret;
1521 }
1522
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1523 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1524 {
1525 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1526 clk_scaling.suspend_work);
1527
1528 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1529 {
1530 if (hba->clk_scaling.active_reqs ||
1531 hba->clk_scaling.is_suspended)
1532 return;
1533
1534 hba->clk_scaling.is_suspended = true;
1535 hba->clk_scaling.window_start_t = 0;
1536 }
1537
1538 devfreq_suspend_device(hba->devfreq);
1539 }
1540
ufshcd_clk_scaling_resume_work(struct work_struct * work)1541 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1542 {
1543 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1544 clk_scaling.resume_work);
1545
1546 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1547 {
1548 if (!hba->clk_scaling.is_suspended)
1549 return;
1550 hba->clk_scaling.is_suspended = false;
1551 }
1552
1553 devfreq_resume_device(hba->devfreq);
1554 }
1555
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1556 static int ufshcd_devfreq_target(struct device *dev,
1557 unsigned long *freq, u32 flags)
1558 {
1559 int ret = 0;
1560 struct ufs_hba *hba = dev_get_drvdata(dev);
1561 ktime_t start;
1562 bool scale_up = false, sched_clk_scaling_suspend_work = false;
1563 struct list_head *clk_list = &hba->clk_list_head;
1564 struct ufs_clk_info *clki;
1565
1566 if (!ufshcd_is_clkscaling_supported(hba))
1567 return -EINVAL;
1568
1569 if (hba->use_pm_opp) {
1570 struct dev_pm_opp *opp;
1571
1572 /* Get the recommended frequency from OPP framework */
1573 opp = devfreq_recommended_opp(dev, freq, flags);
1574 if (IS_ERR(opp))
1575 return PTR_ERR(opp);
1576
1577 dev_pm_opp_put(opp);
1578 } else {
1579 /* Override with the closest supported frequency */
1580 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1581 list);
1582 *freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1583 }
1584
1585 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1586 {
1587 if (ufshcd_eh_in_progress(hba))
1588 return 0;
1589
1590 /* Skip scaling clock when clock scaling is suspended */
1591 if (hba->clk_scaling.is_suspended) {
1592 dev_warn(hba->dev, "clock scaling is suspended, skip");
1593 return 0;
1594 }
1595
1596 if (!hba->clk_scaling.active_reqs)
1597 sched_clk_scaling_suspend_work = true;
1598
1599 if (list_empty(clk_list))
1600 goto out;
1601
1602 /* Decide based on the target or rounded-off frequency and update */
1603 if (hba->use_pm_opp)
1604 scale_up = *freq > hba->clk_scaling.target_freq;
1605 else
1606 scale_up = *freq == clki->max_freq;
1607
1608 if (!hba->use_pm_opp && !scale_up)
1609 *freq = clki->min_freq;
1610
1611 /* Update the frequency */
1612 if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1613 ret = 0;
1614 goto out; /* no state change required */
1615 }
1616 }
1617
1618 start = ktime_get();
1619 ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1620 if (!ret)
1621 hba->clk_scaling.target_freq = *freq;
1622
1623 trace_ufshcd_profile_clk_scaling(hba,
1624 (scale_up ? "up" : "down"),
1625 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1626
1627 out:
1628 if (sched_clk_scaling_suspend_work &&
1629 (!scale_up || hba->clk_scaling.suspend_on_no_request))
1630 queue_work(hba->clk_scaling.workq,
1631 &hba->clk_scaling.suspend_work);
1632
1633 return ret;
1634 }
1635
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1636 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1637 struct devfreq_dev_status *stat)
1638 {
1639 struct ufs_hba *hba = dev_get_drvdata(dev);
1640 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1641 ktime_t curr_t;
1642
1643 if (!ufshcd_is_clkscaling_supported(hba))
1644 return -EINVAL;
1645
1646 memset(stat, 0, sizeof(*stat));
1647
1648 guard(spinlock_irqsave)(&hba->clk_scaling.lock);
1649
1650 curr_t = ktime_get();
1651 if (!scaling->window_start_t)
1652 goto start_window;
1653
1654 /*
1655 * If current frequency is 0, then the ondemand governor considers
1656 * there's no initial frequency set. And it always requests to set
1657 * to max. frequency.
1658 */
1659 if (hba->use_pm_opp) {
1660 stat->current_frequency = hba->clk_scaling.target_freq;
1661 } else {
1662 struct list_head *clk_list = &hba->clk_list_head;
1663 struct ufs_clk_info *clki;
1664
1665 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1666 stat->current_frequency = clki->curr_freq;
1667 }
1668
1669 if (scaling->is_busy_started)
1670 scaling->tot_busy_t += ktime_us_delta(curr_t,
1671 scaling->busy_start_t);
1672 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1673 stat->busy_time = scaling->tot_busy_t;
1674 start_window:
1675 scaling->window_start_t = curr_t;
1676 scaling->tot_busy_t = 0;
1677
1678 if (scaling->active_reqs) {
1679 scaling->busy_start_t = curr_t;
1680 scaling->is_busy_started = true;
1681 } else {
1682 scaling->busy_start_t = 0;
1683 scaling->is_busy_started = false;
1684 }
1685
1686 return 0;
1687 }
1688
ufshcd_devfreq_init(struct ufs_hba * hba)1689 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1690 {
1691 struct list_head *clk_list = &hba->clk_list_head;
1692 struct ufs_clk_info *clki;
1693 struct devfreq *devfreq;
1694 int ret;
1695
1696 /* Skip devfreq if we don't have any clocks in the list */
1697 if (list_empty(clk_list))
1698 return 0;
1699
1700 if (!hba->use_pm_opp) {
1701 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1702 dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1703 dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1704 }
1705
1706 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1707 &hba->vps->ondemand_data);
1708 devfreq = devfreq_add_device(hba->dev,
1709 &hba->vps->devfreq_profile,
1710 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1711 &hba->vps->ondemand_data);
1712 if (IS_ERR(devfreq)) {
1713 ret = PTR_ERR(devfreq);
1714 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1715
1716 if (!hba->use_pm_opp) {
1717 dev_pm_opp_remove(hba->dev, clki->min_freq);
1718 dev_pm_opp_remove(hba->dev, clki->max_freq);
1719 }
1720 return ret;
1721 }
1722
1723 hba->devfreq = devfreq;
1724
1725 return 0;
1726 }
1727
ufshcd_devfreq_remove(struct ufs_hba * hba)1728 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1729 {
1730 struct list_head *clk_list = &hba->clk_list_head;
1731
1732 if (!hba->devfreq)
1733 return;
1734
1735 devfreq_remove_device(hba->devfreq);
1736 hba->devfreq = NULL;
1737
1738 if (!hba->use_pm_opp) {
1739 struct ufs_clk_info *clki;
1740
1741 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1742 dev_pm_opp_remove(hba->dev, clki->min_freq);
1743 dev_pm_opp_remove(hba->dev, clki->max_freq);
1744 }
1745 }
1746
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1747 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1748 {
1749 bool suspend = false;
1750
1751 cancel_work_sync(&hba->clk_scaling.suspend_work);
1752 cancel_work_sync(&hba->clk_scaling.resume_work);
1753
1754 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1755 {
1756 if (!hba->clk_scaling.is_suspended) {
1757 suspend = true;
1758 hba->clk_scaling.is_suspended = true;
1759 hba->clk_scaling.window_start_t = 0;
1760 }
1761 }
1762
1763 if (suspend)
1764 devfreq_suspend_device(hba->devfreq);
1765 }
1766
ufshcd_resume_clkscaling(struct ufs_hba * hba)1767 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1768 {
1769 bool resume = false;
1770
1771 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1772 {
1773 if (hba->clk_scaling.is_suspended) {
1774 resume = true;
1775 hba->clk_scaling.is_suspended = false;
1776 }
1777 }
1778
1779 if (resume)
1780 devfreq_resume_device(hba->devfreq);
1781 }
1782
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1783 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1784 struct device_attribute *attr, char *buf)
1785 {
1786 struct ufs_hba *hba = dev_get_drvdata(dev);
1787
1788 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1789 }
1790
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1791 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1792 struct device_attribute *attr, const char *buf, size_t count)
1793 {
1794 struct ufs_hba *hba = dev_get_drvdata(dev);
1795 struct ufs_clk_info *clki;
1796 unsigned long freq;
1797 u32 value;
1798 int err = 0;
1799
1800 if (kstrtou32(buf, 0, &value))
1801 return -EINVAL;
1802
1803 down(&hba->host_sem);
1804 if (!ufshcd_is_user_access_allowed(hba)) {
1805 err = -EBUSY;
1806 goto out;
1807 }
1808
1809 value = !!value;
1810 if (value == hba->clk_scaling.is_enabled)
1811 goto out;
1812
1813 ufshcd_rpm_get_sync(hba);
1814 ufshcd_hold(hba);
1815
1816 hba->clk_scaling.is_enabled = value;
1817
1818 if (value) {
1819 ufshcd_resume_clkscaling(hba);
1820 goto out_rel;
1821 }
1822
1823 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1824 freq = clki->max_freq;
1825
1826 ufshcd_suspend_clkscaling(hba);
1827
1828 if (!ufshcd_is_devfreq_scaling_required(hba, freq, true))
1829 goto out_rel;
1830
1831 err = ufshcd_devfreq_scale(hba, freq, true);
1832 if (err)
1833 dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1834 __func__, err);
1835 else
1836 hba->clk_scaling.target_freq = freq;
1837
1838 out_rel:
1839 ufshcd_release(hba);
1840 ufshcd_rpm_put_sync(hba);
1841 out:
1842 up(&hba->host_sem);
1843 return err ? err : count;
1844 }
1845
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1846 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1847 {
1848 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1849 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1850 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1851 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1852 hba->clk_scaling.enable_attr.attr.mode = 0644;
1853 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1854 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1855 }
1856
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1857 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1858 {
1859 if (hba->clk_scaling.enable_attr.attr.name)
1860 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1861 }
1862
ufshcd_init_clk_scaling(struct ufs_hba * hba)1863 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1864 {
1865 if (!ufshcd_is_clkscaling_supported(hba))
1866 return;
1867
1868 if (!hba->clk_scaling.min_gear)
1869 hba->clk_scaling.min_gear = UFS_HS_G1;
1870
1871 if (!hba->clk_scaling.wb_gear)
1872 /* Use intermediate gear speed HS_G3 as the default wb_gear */
1873 hba->clk_scaling.wb_gear = UFS_HS_G3;
1874
1875 INIT_WORK(&hba->clk_scaling.suspend_work,
1876 ufshcd_clk_scaling_suspend_work);
1877 INIT_WORK(&hba->clk_scaling.resume_work,
1878 ufshcd_clk_scaling_resume_work);
1879
1880 spin_lock_init(&hba->clk_scaling.lock);
1881
1882 hba->clk_scaling.workq = alloc_ordered_workqueue(
1883 "ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no);
1884
1885 hba->clk_scaling.is_initialized = true;
1886 }
1887
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1888 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1889 {
1890 if (!hba->clk_scaling.is_initialized)
1891 return;
1892
1893 ufshcd_remove_clk_scaling_sysfs(hba);
1894 destroy_workqueue(hba->clk_scaling.workq);
1895 ufshcd_devfreq_remove(hba);
1896 hba->clk_scaling.is_initialized = false;
1897 }
1898
ufshcd_ungate_work(struct work_struct * work)1899 static void ufshcd_ungate_work(struct work_struct *work)
1900 {
1901 int ret;
1902 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1903 clk_gating.ungate_work);
1904
1905 cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1906
1907 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
1908 if (hba->clk_gating.state == CLKS_ON)
1909 return;
1910 }
1911
1912 ufshcd_hba_vreg_set_hpm(hba);
1913 ufshcd_setup_clocks(hba, true);
1914
1915 ufshcd_enable_irq(hba);
1916
1917 /* Exit from hibern8 */
1918 if (ufshcd_can_hibern8_during_gating(hba)) {
1919 /* Prevent gating in this path */
1920 hba->clk_gating.is_suspended = true;
1921 if (ufshcd_is_link_hibern8(hba)) {
1922 ret = ufshcd_uic_hibern8_exit(hba);
1923 if (ret)
1924 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1925 __func__, ret);
1926 else
1927 ufshcd_set_link_active(hba);
1928 }
1929 hba->clk_gating.is_suspended = false;
1930 }
1931 }
1932
1933 /**
1934 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1935 * Also, exit from hibern8 mode and set the link as active.
1936 * @hba: per adapter instance
1937 */
ufshcd_hold(struct ufs_hba * hba)1938 void ufshcd_hold(struct ufs_hba *hba)
1939 {
1940 bool flush_result;
1941 unsigned long flags;
1942
1943 if (!ufshcd_is_clkgating_allowed(hba) ||
1944 !hba->clk_gating.is_initialized)
1945 return;
1946 spin_lock_irqsave(&hba->clk_gating.lock, flags);
1947 hba->clk_gating.active_reqs++;
1948
1949 start:
1950 switch (hba->clk_gating.state) {
1951 case CLKS_ON:
1952 /*
1953 * Wait for the ungate work to complete if in progress.
1954 * Though the clocks may be in ON state, the link could
1955 * still be in hibner8 state if hibern8 is allowed
1956 * during clock gating.
1957 * Make sure we exit hibern8 state also in addition to
1958 * clocks being ON.
1959 */
1960 if (ufshcd_can_hibern8_during_gating(hba) &&
1961 ufshcd_is_link_hibern8(hba)) {
1962 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1963 flush_result = flush_work(&hba->clk_gating.ungate_work);
1964 if (hba->clk_gating.is_suspended && !flush_result)
1965 return;
1966 spin_lock_irqsave(&hba->clk_gating.lock, flags);
1967 goto start;
1968 }
1969 break;
1970 case REQ_CLKS_OFF:
1971 if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1972 hba->clk_gating.state = CLKS_ON;
1973 trace_ufshcd_clk_gating(hba,
1974 hba->clk_gating.state);
1975 break;
1976 }
1977 /*
1978 * If we are here, it means gating work is either done or
1979 * currently running. Hence, fall through to cancel gating
1980 * work and to enable clocks.
1981 */
1982 fallthrough;
1983 case CLKS_OFF:
1984 hba->clk_gating.state = REQ_CLKS_ON;
1985 trace_ufshcd_clk_gating(hba,
1986 hba->clk_gating.state);
1987 queue_work(hba->clk_gating.clk_gating_workq,
1988 &hba->clk_gating.ungate_work);
1989 /*
1990 * fall through to check if we should wait for this
1991 * work to be done or not.
1992 */
1993 fallthrough;
1994 case REQ_CLKS_ON:
1995 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1996 flush_work(&hba->clk_gating.ungate_work);
1997 /* Make sure state is CLKS_ON before returning */
1998 spin_lock_irqsave(&hba->clk_gating.lock, flags);
1999 goto start;
2000 default:
2001 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
2002 __func__, hba->clk_gating.state);
2003 break;
2004 }
2005 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
2006 }
2007 EXPORT_SYMBOL_GPL(ufshcd_hold);
2008
ufshcd_gate_work(struct work_struct * work)2009 static void ufshcd_gate_work(struct work_struct *work)
2010 {
2011 struct ufs_hba *hba = container_of(work, struct ufs_hba,
2012 clk_gating.gate_work.work);
2013 int ret;
2014
2015 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
2016 /*
2017 * In case you are here to cancel this work the gating state
2018 * would be marked as REQ_CLKS_ON. In this case save time by
2019 * skipping the gating work and exit after changing the clock
2020 * state to CLKS_ON.
2021 */
2022 if (hba->clk_gating.is_suspended ||
2023 hba->clk_gating.state != REQ_CLKS_OFF) {
2024 hba->clk_gating.state = CLKS_ON;
2025 trace_ufshcd_clk_gating(hba,
2026 hba->clk_gating.state);
2027 return;
2028 }
2029
2030 if (hba->clk_gating.active_reqs)
2031 return;
2032 }
2033
2034 scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2035 if (ufshcd_is_ufs_dev_busy(hba) ||
2036 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2037 return;
2038 }
2039
2040 /* put the link into hibern8 mode before turning off clocks */
2041 if (ufshcd_can_hibern8_during_gating(hba)) {
2042 ret = ufshcd_uic_hibern8_enter(hba);
2043 if (ret) {
2044 hba->clk_gating.state = CLKS_ON;
2045 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
2046 __func__, ret);
2047 trace_ufshcd_clk_gating(hba,
2048 hba->clk_gating.state);
2049 return;
2050 }
2051 ufshcd_set_link_hibern8(hba);
2052 }
2053
2054 ufshcd_disable_irq(hba);
2055
2056 ufshcd_setup_clocks(hba, false);
2057
2058 /* Put the host controller in low power mode if possible */
2059 ufshcd_hba_vreg_set_lpm(hba);
2060 /*
2061 * In case you are here to cancel this work the gating state
2062 * would be marked as REQ_CLKS_ON. In this case keep the state
2063 * as REQ_CLKS_ON which would anyway imply that clocks are off
2064 * and a request to turn them on is pending. By doing this way,
2065 * we keep the state machine in tact and this would ultimately
2066 * prevent from doing cancel work multiple times when there are
2067 * new requests arriving before the current cancel work is done.
2068 */
2069 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2070 if (hba->clk_gating.state == REQ_CLKS_OFF) {
2071 hba->clk_gating.state = CLKS_OFF;
2072 trace_ufshcd_clk_gating(hba,
2073 hba->clk_gating.state);
2074 }
2075 }
2076
__ufshcd_release(struct ufs_hba * hba)2077 static void __ufshcd_release(struct ufs_hba *hba)
2078 {
2079 lockdep_assert_held(&hba->clk_gating.lock);
2080
2081 if (!ufshcd_is_clkgating_allowed(hba))
2082 return;
2083
2084 hba->clk_gating.active_reqs--;
2085
2086 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2087 !hba->clk_gating.is_initialized ||
2088 hba->clk_gating.state == CLKS_OFF)
2089 return;
2090
2091 scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2092 if (ufshcd_has_pending_tasks(hba) ||
2093 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2094 return;
2095 }
2096
2097 hba->clk_gating.state = REQ_CLKS_OFF;
2098 trace_ufshcd_clk_gating(hba, hba->clk_gating.state);
2099 queue_delayed_work(hba->clk_gating.clk_gating_workq,
2100 &hba->clk_gating.gate_work,
2101 msecs_to_jiffies(hba->clk_gating.delay_ms));
2102 }
2103
ufshcd_release(struct ufs_hba * hba)2104 void ufshcd_release(struct ufs_hba *hba)
2105 {
2106 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2107 __ufshcd_release(hba);
2108 }
2109 EXPORT_SYMBOL_GPL(ufshcd_release);
2110
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)2111 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2112 struct device_attribute *attr, char *buf)
2113 {
2114 struct ufs_hba *hba = dev_get_drvdata(dev);
2115
2116 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2117 }
2118
ufshcd_clkgate_delay_set(struct device * dev,unsigned long value)2119 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2120 {
2121 struct ufs_hba *hba = dev_get_drvdata(dev);
2122
2123 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2124 hba->clk_gating.delay_ms = value;
2125 }
2126 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2127
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2128 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2129 struct device_attribute *attr, const char *buf, size_t count)
2130 {
2131 unsigned long value;
2132
2133 if (kstrtoul(buf, 0, &value))
2134 return -EINVAL;
2135
2136 ufshcd_clkgate_delay_set(dev, value);
2137 return count;
2138 }
2139
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)2140 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2141 struct device_attribute *attr, char *buf)
2142 {
2143 struct ufs_hba *hba = dev_get_drvdata(dev);
2144
2145 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2146 }
2147
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2148 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2149 struct device_attribute *attr, const char *buf, size_t count)
2150 {
2151 struct ufs_hba *hba = dev_get_drvdata(dev);
2152 u32 value;
2153
2154 if (kstrtou32(buf, 0, &value))
2155 return -EINVAL;
2156
2157 value = !!value;
2158
2159 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2160
2161 if (value == hba->clk_gating.is_enabled)
2162 return count;
2163
2164 if (value)
2165 __ufshcd_release(hba);
2166 else
2167 hba->clk_gating.active_reqs++;
2168
2169 hba->clk_gating.is_enabled = value;
2170
2171 return count;
2172 }
2173
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)2174 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2175 {
2176 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2177 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2178 sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2179 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2180 hba->clk_gating.delay_attr.attr.mode = 0644;
2181 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2182 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2183
2184 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2185 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2186 sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2187 hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2188 hba->clk_gating.enable_attr.attr.mode = 0644;
2189 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2190 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2191 }
2192
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)2193 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2194 {
2195 if (hba->clk_gating.delay_attr.attr.name)
2196 device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2197 if (hba->clk_gating.enable_attr.attr.name)
2198 device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2199 }
2200
ufshcd_init_clk_gating(struct ufs_hba * hba)2201 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2202 {
2203 if (!ufshcd_is_clkgating_allowed(hba))
2204 return;
2205
2206 hba->clk_gating.state = CLKS_ON;
2207
2208 hba->clk_gating.delay_ms = 150;
2209 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2210 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2211
2212 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(
2213 "ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI,
2214 hba->host->host_no);
2215
2216 ufshcd_init_clk_gating_sysfs(hba);
2217
2218 hba->clk_gating.is_enabled = true;
2219 hba->clk_gating.is_initialized = true;
2220 }
2221
ufshcd_exit_clk_gating(struct ufs_hba * hba)2222 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2223 {
2224 if (!hba->clk_gating.is_initialized)
2225 return;
2226
2227 ufshcd_remove_clk_gating_sysfs(hba);
2228
2229 /* Ungate the clock if necessary. */
2230 ufshcd_hold(hba);
2231 hba->clk_gating.is_initialized = false;
2232 ufshcd_release(hba);
2233
2234 destroy_workqueue(hba->clk_gating.clk_gating_workq);
2235 }
2236
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)2237 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2238 {
2239 bool queue_resume_work = false;
2240 ktime_t curr_t;
2241
2242 if (!ufshcd_is_clkscaling_supported(hba))
2243 return;
2244
2245 curr_t = ktime_get();
2246
2247 guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2248
2249 if (!hba->clk_scaling.active_reqs++)
2250 queue_resume_work = true;
2251
2252 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress)
2253 return;
2254
2255 if (queue_resume_work)
2256 queue_work(hba->clk_scaling.workq,
2257 &hba->clk_scaling.resume_work);
2258
2259 if (!hba->clk_scaling.window_start_t) {
2260 hba->clk_scaling.window_start_t = curr_t;
2261 hba->clk_scaling.tot_busy_t = 0;
2262 hba->clk_scaling.is_busy_started = false;
2263 }
2264
2265 if (!hba->clk_scaling.is_busy_started) {
2266 hba->clk_scaling.busy_start_t = curr_t;
2267 hba->clk_scaling.is_busy_started = true;
2268 }
2269 }
2270
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2271 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2272 {
2273 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2274
2275 if (!ufshcd_is_clkscaling_supported(hba))
2276 return;
2277
2278 guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2279
2280 hba->clk_scaling.active_reqs--;
2281 if (!scaling->active_reqs && scaling->is_busy_started) {
2282 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2283 scaling->busy_start_t));
2284 scaling->busy_start_t = 0;
2285 scaling->is_busy_started = false;
2286 }
2287 }
2288
ufshcd_monitor_opcode2dir(u8 opcode)2289 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2290 {
2291 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2292 return READ;
2293 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2294 return WRITE;
2295 else
2296 return -EINVAL;
2297 }
2298
2299 /* Must only be called for SCSI commands. */
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct scsi_cmnd * cmd)2300 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2301 struct scsi_cmnd *cmd)
2302 {
2303 const struct ufs_hba_monitor *m = &hba->monitor;
2304 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2305
2306 return m->enabled &&
2307 (!m->chunk_size || m->chunk_size == cmd->sdb.length) &&
2308 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp);
2309 }
2310
ufshcd_start_monitor(struct ufs_hba * hba,struct scsi_cmnd * cmd)2311 static void ufshcd_start_monitor(struct ufs_hba *hba, struct scsi_cmnd *cmd)
2312 {
2313 int dir = ufshcd_monitor_opcode2dir(cmd->cmnd[0]);
2314 unsigned long flags;
2315
2316 spin_lock_irqsave(hba->host->host_lock, flags);
2317 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2318 hba->monitor.busy_start_ts[dir] = ktime_get();
2319 spin_unlock_irqrestore(hba->host->host_lock, flags);
2320 }
2321
ufshcd_update_monitor(struct ufs_hba * hba,struct scsi_cmnd * cmd)2322 static void ufshcd_update_monitor(struct ufs_hba *hba, struct scsi_cmnd *cmd)
2323 {
2324 struct request *req = scsi_cmd_to_rq(cmd);
2325 const struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2326 int dir = ufshcd_monitor_opcode2dir(cmd->cmnd[0]);
2327 unsigned long flags;
2328
2329 spin_lock_irqsave(hba->host->host_lock, flags);
2330 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2331 struct ufs_hba_monitor *m = &hba->monitor;
2332 ktime_t now, inc, lat;
2333
2334 now = lrbp->compl_time_stamp;
2335 inc = ktime_sub(now, m->busy_start_ts[dir]);
2336 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2337 m->nr_sec_rw[dir] += blk_rq_sectors(req);
2338
2339 /* Update latencies */
2340 m->nr_req[dir]++;
2341 lat = ktime_sub(now, lrbp->issue_time_stamp);
2342 m->lat_sum[dir] += lat;
2343 if (m->lat_max[dir] < lat || !m->lat_max[dir])
2344 m->lat_max[dir] = lat;
2345 if (m->lat_min[dir] > lat || !m->lat_min[dir])
2346 m->lat_min[dir] = lat;
2347
2348 m->nr_queued[dir]--;
2349 /* Push forward the busy start of monitor */
2350 m->busy_start_ts[dir] = now;
2351 }
2352 spin_unlock_irqrestore(hba->host->host_lock, flags);
2353 }
2354
2355 /* Returns %true for SCSI commands and %false for device management commands. */
ufshcd_is_scsi_cmd(struct scsi_cmnd * cmd)2356 static bool ufshcd_is_scsi_cmd(struct scsi_cmnd *cmd)
2357 {
2358 return !blk_mq_is_reserved_rq(scsi_cmd_to_rq(cmd));
2359 }
2360
2361 /**
2362 * ufshcd_send_command - Send SCSI or device management commands
2363 * @hba: per adapter instance
2364 * @cmd: SCSI command or device management command pointer
2365 * @hwq: pointer to hardware queue instance
2366 */
ufshcd_send_command(struct ufs_hba * hba,struct scsi_cmnd * cmd,struct ufs_hw_queue * hwq)2367 static inline void ufshcd_send_command(struct ufs_hba *hba,
2368 struct scsi_cmnd *cmd,
2369 struct ufs_hw_queue *hwq)
2370 {
2371 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2372 const int tag = scsi_cmd_to_rq(cmd)->tag;
2373 unsigned long flags;
2374
2375 if (hba->monitor.enabled) {
2376 lrbp->issue_time_stamp = ktime_get();
2377 lrbp->issue_time_stamp_local_clock = local_clock();
2378 lrbp->compl_time_stamp = ktime_set(0, 0);
2379 lrbp->compl_time_stamp_local_clock = 0;
2380 }
2381 if (ufshcd_is_scsi_cmd(cmd)) {
2382 ufshcd_add_command_trace(hba, cmd, UFS_CMD_SEND);
2383 ufshcd_clk_scaling_start_busy(hba);
2384 if (unlikely(ufshcd_should_inform_monitor(hba, cmd)))
2385 ufshcd_start_monitor(hba, cmd);
2386 }
2387
2388 if (hba->mcq_enabled) {
2389 int utrd_size = sizeof(struct utp_transfer_req_desc);
2390 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2391 struct utp_transfer_req_desc *dest;
2392
2393 spin_lock(&hwq->sq_lock);
2394 dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2395 memcpy(dest, src, utrd_size);
2396 ufshcd_inc_sq_tail(hwq);
2397 spin_unlock(&hwq->sq_lock);
2398 } else {
2399 spin_lock_irqsave(&hba->outstanding_lock, flags);
2400 if (hba->vops && hba->vops->setup_xfer_req)
2401 hba->vops->setup_xfer_req(hba, tag,
2402 ufshcd_is_scsi_cmd(cmd));
2403 __set_bit(tag, &hba->outstanding_reqs);
2404 ufshcd_writel(hba, 1 << tag, REG_UTP_TRANSFER_REQ_DOOR_BELL);
2405 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2406 }
2407 }
2408
2409 /**
2410 * ufshcd_copy_sense_data - Copy sense data in case of check condition
2411 * @cmd: SCSI command
2412 */
ufshcd_copy_sense_data(struct scsi_cmnd * cmd)2413 static inline void ufshcd_copy_sense_data(struct scsi_cmnd *cmd)
2414 {
2415 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2416 u8 *const sense_buffer = cmd->sense_buffer;
2417 u16 resp_len;
2418 int len;
2419
2420 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2421 if (sense_buffer && resp_len) {
2422 int len_to_copy;
2423
2424 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2425 len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2426
2427 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2428 len_to_copy);
2429 }
2430 }
2431
2432 /**
2433 * ufshcd_copy_query_response() - Copy the Query Response and the data
2434 * descriptor
2435 * @hba: per adapter instance
2436 * @lrbp: pointer to local reference block
2437 *
2438 * Return: 0 upon success; < 0 upon failure.
2439 */
2440 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2441 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2442 {
2443 struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2444
2445 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2446
2447 /* Get the descriptor */
2448 if (hba->dev_cmd.query.descriptor &&
2449 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2450 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2451 GENERAL_UPIU_REQUEST_SIZE;
2452 u16 resp_len;
2453 u16 buf_len;
2454
2455 /* data segment length */
2456 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2457 .data_segment_length);
2458 buf_len = be16_to_cpu(
2459 hba->dev_cmd.query.request.upiu_req.length);
2460 if (likely(buf_len >= resp_len)) {
2461 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2462 } else {
2463 dev_warn(hba->dev,
2464 "%s: rsp size %d is bigger than buffer size %d",
2465 __func__, resp_len, buf_len);
2466 return -EINVAL;
2467 }
2468 }
2469
2470 return 0;
2471 }
2472
2473 /**
2474 * ufshcd_hba_capabilities - Read controller capabilities
2475 * @hba: per adapter instance
2476 *
2477 * Return: 0 on success, negative on error.
2478 */
ufshcd_hba_capabilities(struct ufs_hba * hba)2479 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2480 {
2481 int err;
2482
2483 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2484
2485 /* nutrs and nutmrs are 0 based values */
2486 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1;
2487 hba->nutmrs =
2488 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2489
2490 hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1;
2491
2492 /* Read crypto capabilities */
2493 err = ufshcd_hba_init_crypto_capabilities(hba);
2494 if (err) {
2495 dev_err(hba->dev, "crypto setup failed\n");
2496 return err;
2497 }
2498
2499 /*
2500 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2501 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2502 * means we can simply read values regardless of version.
2503 */
2504 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2505 /*
2506 * 0h: legacy single doorbell support is available
2507 * 1h: indicate that legacy single doorbell support has been removed
2508 */
2509 if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP))
2510 hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2511 else
2512 hba->lsdb_sup = true;
2513
2514 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2515
2516 return 0;
2517 }
2518
2519 /**
2520 * ufshcd_ready_for_uic_cmd - Check if controller is ready
2521 * to accept UIC commands
2522 * @hba: per adapter instance
2523 *
2524 * Return: true on success, else false.
2525 */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2526 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2527 {
2528 u32 val;
2529 int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2530 500, uic_cmd_timeout * 1000, false, hba,
2531 REG_CONTROLLER_STATUS);
2532 return ret == 0;
2533 }
2534
2535 /**
2536 * ufshcd_get_upmcrs - Get the power mode change request status
2537 * @hba: Pointer to adapter instance
2538 *
2539 * This function gets the UPMCRS field of HCS register
2540 *
2541 * Return: value of UPMCRS field.
2542 */
ufshcd_get_upmcrs(struct ufs_hba * hba)2543 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2544 {
2545 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2546 }
2547
2548 /**
2549 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2550 * @hba: per adapter instance
2551 * @uic_cmd: UIC command
2552 */
2553 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2554 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2555 {
2556 lockdep_assert_held(&hba->uic_cmd_mutex);
2557
2558 WARN_ON(hba->active_uic_cmd);
2559
2560 hba->active_uic_cmd = uic_cmd;
2561
2562 /* Write Args */
2563 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2564 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2565 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2566
2567 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2568
2569 /* Write UIC Cmd */
2570 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2571 REG_UIC_COMMAND);
2572 }
2573
2574 /**
2575 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2576 * @hba: per adapter instance
2577 * @uic_cmd: UIC command
2578 *
2579 * Return: 0 only if success.
2580 */
2581 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2582 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2583 {
2584 int ret;
2585 unsigned long flags;
2586
2587 lockdep_assert_held(&hba->uic_cmd_mutex);
2588
2589 if (wait_for_completion_timeout(&uic_cmd->done,
2590 msecs_to_jiffies(uic_cmd_timeout))) {
2591 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2592 } else {
2593 ret = -ETIMEDOUT;
2594 dev_err(hba->dev,
2595 "uic cmd 0x%x with arg3 0x%x completion timeout\n",
2596 uic_cmd->command, uic_cmd->argument3);
2597
2598 if (!uic_cmd->cmd_active) {
2599 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2600 __func__);
2601 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2602 }
2603 }
2604
2605 spin_lock_irqsave(hba->host->host_lock, flags);
2606 hba->active_uic_cmd = NULL;
2607 spin_unlock_irqrestore(hba->host->host_lock, flags);
2608
2609 return ret;
2610 }
2611
2612 /**
2613 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2614 * @hba: per adapter instance
2615 * @uic_cmd: UIC command
2616 *
2617 * Return: 0 if successful; < 0 upon failure.
2618 */
2619 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2620 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2621 {
2622 lockdep_assert_held(&hba->uic_cmd_mutex);
2623
2624 if (!ufshcd_ready_for_uic_cmd(hba)) {
2625 dev_err(hba->dev,
2626 "Controller not ready to accept UIC commands\n");
2627 return -EIO;
2628 }
2629
2630 init_completion(&uic_cmd->done);
2631
2632 uic_cmd->cmd_active = true;
2633 ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2634
2635 return 0;
2636 }
2637
2638 /**
2639 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2640 * @hba: per adapter instance
2641 * @uic_cmd: UIC command
2642 *
2643 * Return: 0 only if success.
2644 */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2645 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2646 {
2647 unsigned long flags;
2648 int ret;
2649
2650 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2651 return 0;
2652
2653 ufshcd_hold(hba);
2654 mutex_lock(&hba->uic_cmd_mutex);
2655 ufshcd_add_delay_before_dme_cmd(hba);
2656
2657 spin_lock_irqsave(hba->host->host_lock, flags);
2658 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
2659 spin_unlock_irqrestore(hba->host->host_lock, flags);
2660
2661 ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2662 if (!ret)
2663 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2664
2665 mutex_unlock(&hba->uic_cmd_mutex);
2666
2667 ufshcd_release(hba);
2668 return ret;
2669 }
2670
2671 /**
2672 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2673 * @hba: per-adapter instance
2674 * @lrbp: pointer to local reference block
2675 * @sg_entries: The number of sg lists actually used
2676 * @sg_list: Pointer to SG list
2677 */
ufshcd_sgl_to_prdt(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int sg_entries,struct scatterlist * sg_list)2678 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2679 struct scatterlist *sg_list)
2680 {
2681 struct ufshcd_sg_entry *prd;
2682 struct scatterlist *sg;
2683 int i;
2684
2685 if (sg_entries) {
2686
2687 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2688 lrbp->utr_descriptor_ptr->prd_table_length =
2689 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2690 else
2691 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2692
2693 prd = lrbp->ucd_prdt_ptr;
2694
2695 for_each_sg(sg_list, sg, sg_entries, i) {
2696 const unsigned int len = sg_dma_len(sg);
2697
2698 /*
2699 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2700 * based value that indicates the length, in bytes, of
2701 * the data block. A maximum of length of 256KB may
2702 * exist for any entry. Bits 1:0 of this field shall be
2703 * 11b to indicate Dword granularity. A value of '3'
2704 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2705 */
2706 WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2707 prd->size = cpu_to_le32(len - 1);
2708 prd->addr = cpu_to_le64(sg->dma_address);
2709 prd->reserved = 0;
2710 prd = (void *)prd + ufshcd_sg_entry_size(hba);
2711 }
2712 } else {
2713 lrbp->utr_descriptor_ptr->prd_table_length = 0;
2714 }
2715 }
2716
2717 /**
2718 * ufshcd_map_sg - Map scatter-gather list to prdt
2719 * @hba: per adapter instance
2720 * @cmd: SCSI command
2721 *
2722 * Return: 0 in case of success, non-zero value in case of failure.
2723 */
ufshcd_map_sg(struct ufs_hba * hba,struct scsi_cmnd * cmd)2724 static int ufshcd_map_sg(struct ufs_hba *hba, struct scsi_cmnd *cmd)
2725 {
2726 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2727 int sg_segments = scsi_dma_map(cmd);
2728
2729 if (sg_segments < 0)
2730 return sg_segments;
2731
2732 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2733
2734 return ufshcd_crypto_fill_prdt(hba, cmd);
2735 }
2736
2737 /**
2738 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2739 * descriptor according to request
2740 * @hba: per adapter instance
2741 * @lrbp: pointer to local reference block
2742 * @upiu_flags: flags required in the header
2743 * @cmd_dir: requests data direction
2744 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2745 */
2746 static void
ufshcd_prepare_req_desc_hdr(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir,int ehs_length)2747 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2748 u8 *upiu_flags, enum dma_data_direction cmd_dir,
2749 int ehs_length)
2750 {
2751 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2752 struct request_desc_header *h = &req_desc->header;
2753 enum utp_data_direction data_direction;
2754
2755 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2756
2757 *h = (typeof(*h)){ };
2758
2759 if (cmd_dir == DMA_FROM_DEVICE) {
2760 data_direction = UTP_DEVICE_TO_HOST;
2761 *upiu_flags = UPIU_CMD_FLAGS_READ;
2762 } else if (cmd_dir == DMA_TO_DEVICE) {
2763 data_direction = UTP_HOST_TO_DEVICE;
2764 *upiu_flags = UPIU_CMD_FLAGS_WRITE;
2765 } else {
2766 data_direction = UTP_NO_DATA_TRANSFER;
2767 *upiu_flags = UPIU_CMD_FLAGS_NONE;
2768 }
2769
2770 h->command_type = lrbp->command_type;
2771 h->data_direction = data_direction;
2772 h->ehs_length = ehs_length;
2773
2774 if (lrbp->intr_cmd)
2775 h->interrupt = 1;
2776
2777 /* Prepare crypto related dwords */
2778 ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2779
2780 /*
2781 * assigning invalid value for command status. Controller
2782 * updates OCS on command completion, with the command
2783 * status
2784 */
2785 h->ocs = OCS_INVALID_COMMAND_STATUS;
2786
2787 req_desc->prd_table_length = 0;
2788 }
2789
2790 /**
2791 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2792 * for scsi commands
2793 * @cmd: SCSI command
2794 * @upiu_flags: flags
2795 */
ufshcd_prepare_utp_scsi_cmd_upiu(struct scsi_cmnd * cmd,u8 upiu_flags)2796 static void ufshcd_prepare_utp_scsi_cmd_upiu(struct scsi_cmnd *cmd,
2797 u8 upiu_flags)
2798 {
2799 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2800 const int tag = scsi_cmd_to_rq(cmd)->tag;
2801 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2802 unsigned short cdb_len;
2803
2804 ucd_req_ptr->header = (struct utp_upiu_header){
2805 .transaction_code = UPIU_TRANSACTION_COMMAND,
2806 .flags = upiu_flags,
2807 .lun = lrbp->lun,
2808 .task_tag = tag,
2809 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2810 };
2811
2812 WARN_ON_ONCE(ucd_req_ptr->header.task_tag != tag);
2813
2814 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2815
2816 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2817 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2818
2819 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2820 }
2821
2822 /**
2823 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2824 * @hba: UFS hba
2825 * @cmd: SCSI command pointer
2826 * @upiu_flags: flags
2827 */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct scsi_cmnd * cmd,u8 upiu_flags)2828 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2829 struct scsi_cmnd *cmd, u8 upiu_flags)
2830 {
2831 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2832 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2833 const int tag = scsi_cmd_to_rq(cmd)->tag;
2834 struct ufs_query *query = &hba->dev_cmd.query;
2835 u16 len = be16_to_cpu(query->request.upiu_req.length);
2836
2837 /* Query request header */
2838 ucd_req_ptr->header = (struct utp_upiu_header){
2839 .transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2840 .flags = upiu_flags,
2841 .lun = lrbp->lun,
2842 .task_tag = tag,
2843 .query_function = query->request.query_func,
2844 /* Data segment length only need for WRITE_DESC */
2845 .data_segment_length =
2846 query->request.upiu_req.opcode ==
2847 UPIU_QUERY_OPCODE_WRITE_DESC ?
2848 cpu_to_be16(len) :
2849 0,
2850 };
2851
2852 /* Copy the Query Request buffer as is */
2853 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2854 QUERY_OSF_SIZE);
2855
2856 /* Copy the Descriptor */
2857 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2858 memcpy(ucd_req_ptr + 1, query->descriptor, len);
2859 }
2860
ufshcd_prepare_utp_nop_upiu(struct scsi_cmnd * cmd)2861 static inline void ufshcd_prepare_utp_nop_upiu(struct scsi_cmnd *cmd)
2862 {
2863 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2864 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2865 const int tag = scsi_cmd_to_rq(cmd)->tag;
2866
2867 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2868
2869 ucd_req_ptr->header = (struct utp_upiu_header){
2870 .transaction_code = UPIU_TRANSACTION_NOP_OUT,
2871 .task_tag = tag,
2872 };
2873 }
2874
2875 /**
2876 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2877 * for Device Management Purposes
2878 * @hba: per adapter instance
2879 * @cmd: SCSI command pointer
2880 *
2881 * Return: 0 upon success; < 0 upon failure.
2882 */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct scsi_cmnd * cmd)2883 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2884 struct scsi_cmnd *cmd)
2885 {
2886 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2887 u8 upiu_flags;
2888 int ret = 0;
2889
2890 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2891
2892 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2893 ufshcd_prepare_utp_query_req_upiu(hba, cmd, upiu_flags);
2894 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2895 ufshcd_prepare_utp_nop_upiu(cmd);
2896 else
2897 ret = -EINVAL;
2898
2899 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2900
2901 return ret;
2902 }
2903
2904 /**
2905 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2906 * for SCSI Purposes
2907 * @hba: per adapter instance
2908 * @cmd: SCSI command
2909 */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct scsi_cmnd * cmd)2910 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct scsi_cmnd *cmd)
2911 {
2912 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2913 struct request *rq = scsi_cmd_to_rq(cmd);
2914 unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2915 u8 upiu_flags;
2916
2917 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags,
2918 cmd->sc_data_direction, 0);
2919 if (ioprio_class == IOPRIO_CLASS_RT)
2920 upiu_flags |= UPIU_CMD_FLAGS_CP;
2921 ufshcd_prepare_utp_scsi_cmd_upiu(cmd, upiu_flags);
2922 }
2923
ufshcd_init_lrb(struct ufs_hba * hba,struct scsi_cmnd * cmd)2924 static void ufshcd_init_lrb(struct ufs_hba *hba, struct scsi_cmnd *cmd)
2925 {
2926 const int i = scsi_cmd_to_rq(cmd)->tag;
2927 struct utp_transfer_cmd_desc *cmd_descp =
2928 (void *)hba->ucdl_base_addr + i * ufshcd_get_ucd_size(hba);
2929 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2930 dma_addr_t cmd_desc_element_addr =
2931 hba->ucdl_dma_addr + i * ufshcd_get_ucd_size(hba);
2932 u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
2933 u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
2934 struct ufshcd_lrb *lrb = scsi_cmd_priv(cmd);
2935
2936 lrb->utr_descriptor_ptr = utrdlp + i;
2937 lrb->utrd_dma_addr =
2938 hba->utrdl_dma_addr + i * sizeof(struct utp_transfer_req_desc);
2939 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2940 lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2941 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2942 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2943 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2944 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2945 }
2946
__ufshcd_setup_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd,u8 lun,int tag)2947 static void __ufshcd_setup_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd,
2948 u8 lun, int tag)
2949 {
2950 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2951
2952 ufshcd_init_lrb(hba, cmd);
2953
2954 memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr));
2955
2956 lrbp->lun = lun;
2957 ufshcd_prepare_lrbp_crypto(ufshcd_is_scsi_cmd(cmd) ?
2958 scsi_cmd_to_rq(cmd) : NULL, lrbp);
2959 }
2960
ufshcd_setup_scsi_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd,u8 lun,int tag)2961 static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd,
2962 u8 lun, int tag)
2963 {
2964 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2965
2966 __ufshcd_setup_cmd(hba, cmd, lun, tag);
2967 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2968 lrbp->req_abort_skip = false;
2969
2970 ufshcd_comp_scsi_upiu(hba, cmd);
2971 }
2972
2973 /**
2974 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2975 * @upiu_wlun_id: UPIU W-LUN id
2976 *
2977 * Return: SCSI W-LUN id.
2978 */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2979 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2980 {
2981 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2982 }
2983
is_device_wlun(struct scsi_device * sdev)2984 static inline bool is_device_wlun(struct scsi_device *sdev)
2985 {
2986 return sdev->lun ==
2987 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2988 }
2989
2990 /*
2991 * Associate the UFS controller queue with the default and poll HCTX types.
2992 * Initialize the mq_map[] arrays.
2993 */
ufshcd_map_queues(struct Scsi_Host * shost)2994 static void ufshcd_map_queues(struct Scsi_Host *shost)
2995 {
2996 struct ufs_hba *hba = shost_priv(shost);
2997 int i, queue_offset = 0;
2998
2999 if (!is_mcq_supported(hba)) {
3000 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
3001 hba->nr_queues[HCTX_TYPE_READ] = 0;
3002 hba->nr_queues[HCTX_TYPE_POLL] = 1;
3003 hba->nr_hw_queues = 1;
3004 }
3005
3006 for (i = 0; i < shost->nr_maps; i++) {
3007 struct blk_mq_queue_map *map = &shost->tag_set.map[i];
3008
3009 map->nr_queues = hba->nr_queues[i];
3010 if (!map->nr_queues)
3011 continue;
3012 map->queue_offset = queue_offset;
3013 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
3014 map->queue_offset = 0;
3015
3016 blk_mq_map_queues(map);
3017 queue_offset += map->nr_queues;
3018 }
3019 }
3020
3021 /*
3022 * The only purpose of this function is to make the SCSI core skip the memset()
3023 * call for the private command data.
3024 */
ufshcd_init_cmd_priv(struct Scsi_Host * host,struct scsi_cmnd * cmd)3025 static int ufshcd_init_cmd_priv(struct Scsi_Host *host, struct scsi_cmnd *cmd)
3026 {
3027 return 0;
3028 }
3029
3030 /**
3031 * ufshcd_queuecommand - main entry point for SCSI requests
3032 * @host: SCSI host pointer
3033 * @cmd: command from SCSI Midlayer
3034 *
3035 * Return: 0 for success, non-zero in case of failure.
3036 */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)3037 static enum scsi_qc_status ufshcd_queuecommand(struct Scsi_Host *host,
3038 struct scsi_cmnd *cmd)
3039 {
3040 struct ufs_hba *hba = shost_priv(host);
3041 int tag = scsi_cmd_to_rq(cmd)->tag;
3042 int err = 0;
3043 struct ufs_hw_queue *hwq = NULL;
3044
3045 switch (hba->ufshcd_state) {
3046 case UFSHCD_STATE_OPERATIONAL:
3047 break;
3048 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
3049 /*
3050 * SCSI error handler can call ->queuecommand() while UFS error
3051 * handler is in progress. Error interrupts could change the
3052 * state from UFSHCD_STATE_RESET to
3053 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
3054 * being issued in that case.
3055 */
3056 if (ufshcd_eh_in_progress(hba)) {
3057 err = SCSI_MLQUEUE_HOST_BUSY;
3058 goto out;
3059 }
3060 break;
3061 case UFSHCD_STATE_EH_SCHEDULED_FATAL:
3062 /*
3063 * pm_runtime_get_sync() is used at error handling preparation
3064 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
3065 * PM ops, it can never be finished if we let SCSI layer keep
3066 * retrying it, which gets err handler stuck forever. Neither
3067 * can we let the scsi cmd pass through, because UFS is in bad
3068 * state, the scsi cmd may eventually time out, which will get
3069 * err handler blocked for too long. So, just fail the scsi cmd
3070 * sent from PM ops, err handler can recover PM error anyways.
3071 */
3072 if (hba->pm_op_in_progress) {
3073 hba->force_reset = true;
3074 set_host_byte(cmd, DID_BAD_TARGET);
3075 scsi_done(cmd);
3076 goto out;
3077 }
3078 fallthrough;
3079 case UFSHCD_STATE_RESET:
3080 err = SCSI_MLQUEUE_HOST_BUSY;
3081 goto out;
3082 case UFSHCD_STATE_ERROR:
3083 set_host_byte(cmd, DID_ERROR);
3084 scsi_done(cmd);
3085 goto out;
3086 }
3087
3088 hba->req_abort_count = 0;
3089
3090 ufshcd_hold(hba);
3091
3092 ufshcd_setup_scsi_cmd(hba, cmd,
3093 ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag);
3094
3095 err = ufshcd_map_sg(hba, cmd);
3096 if (err) {
3097 ufshcd_release(hba);
3098 goto out;
3099 }
3100
3101 if (hba->mcq_enabled)
3102 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3103
3104 ufshcd_send_command(hba, cmd, hwq);
3105
3106 out:
3107 if (ufs_trigger_eh(hba)) {
3108 unsigned long flags;
3109
3110 spin_lock_irqsave(hba->host->host_lock, flags);
3111 ufshcd_schedule_eh_work(hba);
3112 spin_unlock_irqrestore(hba->host->host_lock, flags);
3113 }
3114
3115 return err;
3116 }
3117
ufshcd_queue_reserved_command(struct Scsi_Host * host,struct scsi_cmnd * cmd)3118 static enum scsi_qc_status ufshcd_queue_reserved_command(struct Scsi_Host *host,
3119 struct scsi_cmnd *cmd)
3120 {
3121 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
3122 struct request *rq = scsi_cmd_to_rq(cmd);
3123 struct ufs_hba *hba = shost_priv(host);
3124 struct ufs_hw_queue *hwq =
3125 hba->mcq_enabled ? ufshcd_mcq_req_to_hwq(hba, rq) : NULL;
3126
3127 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3128 ufshcd_send_command(hba, cmd, hwq);
3129 return 0;
3130 }
3131
ufshcd_setup_dev_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd,enum dev_cmd_type cmd_type,u8 lun,int tag)3132 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd,
3133 enum dev_cmd_type cmd_type, u8 lun, int tag)
3134 {
3135 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
3136
3137 __ufshcd_setup_cmd(hba, cmd, lun, tag);
3138 lrbp->intr_cmd = true; /* No interrupt aggregation */
3139 hba->dev_cmd.type = cmd_type;
3140 }
3141
3142 /*
3143 * Return: 0 upon success; < 0 upon failure.
3144 */
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd,enum dev_cmd_type cmd_type,int tag)3145 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd,
3146 enum dev_cmd_type cmd_type, int tag)
3147 {
3148 ufshcd_setup_dev_cmd(hba, cmd, cmd_type, 0, tag);
3149
3150 return ufshcd_compose_devman_upiu(hba, cmd);
3151 }
3152
3153 /*
3154 * Check with the block layer if the command is inflight
3155 * @cmd: command to check.
3156 *
3157 * Return: true if command is inflight; false if not.
3158 */
ufshcd_cmd_inflight(struct scsi_cmnd * cmd)3159 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3160 {
3161 return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3162 }
3163
3164 /*
3165 * Clear the pending command in the controller and wait until
3166 * the controller confirms that the command has been cleared.
3167 * @hba: per adapter instance
3168 * @task_tag: The tag number of the command to be cleared.
3169 */
ufshcd_clear_cmd(struct ufs_hba * hba,u32 task_tag)3170 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3171 {
3172 u32 mask;
3173 int err;
3174
3175 if (hba->mcq_enabled) {
3176 /*
3177 * MCQ mode. Clean up the MCQ resources similar to
3178 * what the ufshcd_utrl_clear() does for SDB mode.
3179 */
3180 err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3181 if (err) {
3182 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3183 __func__, task_tag, err);
3184 return err;
3185 }
3186 return 0;
3187 }
3188
3189 mask = 1U << task_tag;
3190
3191 /* clear outstanding transaction before retry */
3192 ufshcd_utrl_clear(hba, mask);
3193
3194 /*
3195 * wait for h/w to clear corresponding bit in door-bell.
3196 * max. wait is 1 sec.
3197 */
3198 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3199 mask, ~mask, 1000, 1000);
3200 }
3201
3202 /**
3203 * ufshcd_dev_cmd_completion() - handles device management command responses
3204 * @hba: per adapter instance
3205 * @lrbp: pointer to local reference block
3206 *
3207 * Return: 0 upon success; < 0 upon failure.
3208 */
3209 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)3210 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3211 {
3212 enum upiu_response_transaction resp;
3213 int err = 0;
3214
3215 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3216 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3217
3218 switch (resp) {
3219 case UPIU_TRANSACTION_NOP_IN:
3220 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3221 err = -EINVAL;
3222 dev_err(hba->dev, "%s: unexpected response %x\n",
3223 __func__, resp);
3224 }
3225 break;
3226 case UPIU_TRANSACTION_QUERY_RSP: {
3227 u8 response = lrbp->ucd_rsp_ptr->header.response;
3228
3229 if (response == 0) {
3230 err = ufshcd_copy_query_response(hba, lrbp);
3231 } else {
3232 err = -EINVAL;
3233 dev_err(hba->dev, "%s: unexpected response in Query RSP: %x\n",
3234 __func__, response);
3235 }
3236 break;
3237 }
3238 case UPIU_TRANSACTION_REJECT_UPIU:
3239 /* TODO: handle Reject UPIU Response */
3240 err = -EPERM;
3241 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3242 __func__);
3243 break;
3244 case UPIU_TRANSACTION_RESPONSE:
3245 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3246 err = -EINVAL;
3247 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3248 }
3249 break;
3250 default:
3251 err = -EINVAL;
3252 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3253 __func__, resp);
3254 break;
3255 }
3256
3257 WARN_ONCE(err > 0, "Incorrect return value %d > 0\n", err);
3258 return err;
3259 }
3260
ufshcd_dev_man_lock(struct ufs_hba * hba)3261 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3262 {
3263 ufshcd_hold(hba);
3264 mutex_lock(&hba->dev_cmd.lock);
3265 down_read(&hba->clk_scaling_lock);
3266 }
3267
ufshcd_dev_man_unlock(struct ufs_hba * hba)3268 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3269 {
3270 up_read(&hba->clk_scaling_lock);
3271 mutex_unlock(&hba->dev_cmd.lock);
3272 ufshcd_release(hba);
3273 }
3274
ufshcd_get_dev_mgmt_cmd(struct ufs_hba * hba)3275 static struct scsi_cmnd *ufshcd_get_dev_mgmt_cmd(struct ufs_hba *hba)
3276 {
3277 /*
3278 * The caller must hold this lock to guarantee that the NOWAIT
3279 * allocation will succeed.
3280 */
3281 lockdep_assert_held(&hba->dev_cmd.lock);
3282
3283 return scsi_get_internal_cmd(
3284 hba->host->pseudo_sdev, DMA_TO_DEVICE,
3285 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
3286 }
3287
ufshcd_put_dev_mgmt_cmd(struct scsi_cmnd * cmd)3288 static void ufshcd_put_dev_mgmt_cmd(struct scsi_cmnd *cmd)
3289 {
3290 scsi_put_internal_cmd(cmd);
3291 }
3292
3293 /*
3294 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3295 * < 0 if another error occurred.
3296 */
ufshcd_issue_dev_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd,const u32 tag,int timeout)3297 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd,
3298 const u32 tag, int timeout)
3299 {
3300 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
3301 struct request *rq = scsi_cmd_to_rq(cmd);
3302 blk_status_t sts;
3303
3304 rq->timeout = timeout;
3305 sts = blk_execute_rq(rq, true);
3306 if (sts != BLK_STS_OK)
3307 return blk_status_to_errno(sts);
3308 return lrbp->utr_descriptor_ptr->header.ocs;
3309 }
3310
3311 /**
3312 * ufshcd_exec_dev_cmd - API for sending device management requests
3313 * @hba: UFS hba
3314 * @cmd_type: specifies the type (NOP, Query...)
3315 * @timeout: timeout in milliseconds
3316 *
3317 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3318 * < 0 if another error occurred.
3319 *
3320 * NOTE: Since there is only one available tag for device management commands,
3321 * it is expected you hold the hba->dev_cmd.lock mutex.
3322 */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)3323 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3324 enum dev_cmd_type cmd_type, int timeout)
3325 {
3326 struct scsi_cmnd *cmd = ufshcd_get_dev_mgmt_cmd(hba);
3327 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
3328 u32 tag;
3329 int err;
3330
3331 /* Protects use of hba->dev_cmd. */
3332 lockdep_assert_held(&hba->dev_cmd.lock);
3333
3334 if (WARN_ON_ONCE(!cmd))
3335 return -ENOMEM;
3336
3337 tag = scsi_cmd_to_rq(cmd)->tag;
3338
3339 err = ufshcd_compose_dev_cmd(hba, cmd, cmd_type, tag);
3340 if (unlikely(err))
3341 goto out;
3342
3343 err = ufshcd_issue_dev_cmd(hba, cmd, tag, timeout);
3344 if (err == 0)
3345 err = ufshcd_dev_cmd_completion(hba, lrbp);
3346
3347 out:
3348 ufshcd_put_dev_mgmt_cmd(cmd);
3349
3350 return err;
3351 }
3352
3353 /**
3354 * ufshcd_init_query() - init the query response and request parameters
3355 * @hba: per-adapter instance
3356 * @request: address of the request pointer to be initialized
3357 * @response: address of the response pointer to be initialized
3358 * @opcode: operation to perform
3359 * @idn: flag idn to access
3360 * @index: LU number to access
3361 * @selector: query/flag/descriptor further identification
3362 */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)3363 static inline void ufshcd_init_query(struct ufs_hba *hba,
3364 struct ufs_query_req **request, struct ufs_query_res **response,
3365 enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3366 {
3367 *request = &hba->dev_cmd.query.request;
3368 *response = &hba->dev_cmd.query.response;
3369 memset(*request, 0, sizeof(struct ufs_query_req));
3370 memset(*response, 0, sizeof(struct ufs_query_res));
3371 (*request)->upiu_req.opcode = opcode;
3372 (*request)->upiu_req.idn = idn;
3373 (*request)->upiu_req.index = index;
3374 (*request)->upiu_req.selector = selector;
3375 }
3376
3377 /*
3378 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3379 * < 0 if another error occurred.
3380 */
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3381 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3382 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3383 {
3384 int ret;
3385 int retries;
3386
3387 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3388 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3389 if (ret)
3390 dev_dbg(hba->dev,
3391 "%s: failed with error %d, retries %d\n",
3392 __func__, ret, retries);
3393 else
3394 break;
3395 }
3396
3397 if (ret)
3398 dev_err(hba->dev,
3399 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3400 __func__, opcode, idn, ret, retries);
3401 return ret;
3402 }
3403
3404 /**
3405 * ufshcd_query_flag() - API function for sending flag query requests
3406 * @hba: per-adapter instance
3407 * @opcode: flag query to perform
3408 * @idn: flag idn to access
3409 * @index: flag index to access
3410 * @flag_res: the flag value after the query request completes
3411 *
3412 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3413 * < 0 if another error occurred.
3414 */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3415 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3416 enum flag_idn idn, u8 index, bool *flag_res)
3417 {
3418 struct ufs_query_req *request = NULL;
3419 struct ufs_query_res *response = NULL;
3420 int err, selector = 0;
3421 int timeout = dev_cmd_timeout;
3422
3423 BUG_ON(!hba);
3424
3425 ufshcd_dev_man_lock(hba);
3426
3427 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3428 selector);
3429
3430 switch (opcode) {
3431 case UPIU_QUERY_OPCODE_SET_FLAG:
3432 case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3433 case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3434 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3435 break;
3436 case UPIU_QUERY_OPCODE_READ_FLAG:
3437 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3438 if (!flag_res) {
3439 /* No dummy reads */
3440 dev_err(hba->dev, "%s: Invalid argument for read request\n",
3441 __func__);
3442 err = -EINVAL;
3443 goto out_unlock;
3444 }
3445 break;
3446 default:
3447 dev_err(hba->dev,
3448 "%s: Expected query flag opcode but got = %d\n",
3449 __func__, opcode);
3450 err = -EINVAL;
3451 goto out_unlock;
3452 }
3453
3454 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3455
3456 if (err) {
3457 dev_err(hba->dev,
3458 "%s: Sending flag query for idn %d failed, err = %d\n",
3459 __func__, idn, err);
3460 goto out_unlock;
3461 }
3462
3463 if (flag_res)
3464 *flag_res = (be32_to_cpu(response->upiu_res.value) &
3465 MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3466
3467 out_unlock:
3468 ufshcd_dev_man_unlock(hba);
3469 return err;
3470 }
3471
3472 /**
3473 * ufshcd_query_attr - API function for sending attribute requests
3474 * @hba: per-adapter instance
3475 * @opcode: attribute opcode
3476 * @idn: attribute idn to access
3477 * @index: index field
3478 * @selector: selector field
3479 * @attr_val: the attribute value after the query request completes
3480 *
3481 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3482 * < 0 if another error occurred.
3483 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3484 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3485 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3486 {
3487 struct ufs_query_req *request = NULL;
3488 struct ufs_query_res *response = NULL;
3489 int err;
3490
3491 BUG_ON(!hba);
3492
3493 if (!attr_val) {
3494 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3495 __func__, opcode);
3496 return -EINVAL;
3497 }
3498
3499 ufshcd_dev_man_lock(hba);
3500
3501 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3502 selector);
3503
3504 switch (opcode) {
3505 case UPIU_QUERY_OPCODE_WRITE_ATTR:
3506 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3507 request->upiu_req.value = cpu_to_be32(*attr_val);
3508 break;
3509 case UPIU_QUERY_OPCODE_READ_ATTR:
3510 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3511 break;
3512 default:
3513 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3514 __func__, opcode);
3515 err = -EINVAL;
3516 goto out_unlock;
3517 }
3518
3519 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3520
3521 if (err) {
3522 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3523 __func__, opcode, idn, index, err);
3524 goto out_unlock;
3525 }
3526
3527 *attr_val = be32_to_cpu(response->upiu_res.value);
3528
3529 out_unlock:
3530 ufshcd_dev_man_unlock(hba);
3531 return err;
3532 }
3533
3534 /**
3535 * ufshcd_query_attr_retry() - API function for sending query
3536 * attribute with retries
3537 * @hba: per-adapter instance
3538 * @opcode: attribute opcode
3539 * @idn: attribute idn to access
3540 * @index: index field
3541 * @selector: selector field
3542 * @attr_val: the attribute value after the query request
3543 * completes
3544 *
3545 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3546 * < 0 if another error occurred.
3547 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3548 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3549 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3550 u32 *attr_val)
3551 {
3552 int ret = 0;
3553 u32 retries;
3554
3555 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3556 ret = ufshcd_query_attr(hba, opcode, idn, index,
3557 selector, attr_val);
3558 if (ret)
3559 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3560 __func__, ret, retries);
3561 else
3562 break;
3563 }
3564
3565 if (ret)
3566 dev_err(hba->dev,
3567 "%s: query attribute, idn %d, failed with error %d after %d retries\n",
3568 __func__, idn, ret, QUERY_REQ_RETRIES);
3569 return ret;
3570 }
3571
3572 /*
3573 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3574 * < 0 if another error occurred.
3575 */
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3576 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3577 enum query_opcode opcode, enum desc_idn idn, u8 index,
3578 u8 selector, u8 *desc_buf, int *buf_len)
3579 {
3580 struct ufs_query_req *request = NULL;
3581 struct ufs_query_res *response = NULL;
3582 int err;
3583
3584 BUG_ON(!hba);
3585
3586 if (!desc_buf) {
3587 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3588 __func__, opcode);
3589 return -EINVAL;
3590 }
3591
3592 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3593 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3594 __func__, *buf_len);
3595 return -EINVAL;
3596 }
3597
3598 ufshcd_dev_man_lock(hba);
3599
3600 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3601 selector);
3602 hba->dev_cmd.query.descriptor = desc_buf;
3603 request->upiu_req.length = cpu_to_be16(*buf_len);
3604
3605 switch (opcode) {
3606 case UPIU_QUERY_OPCODE_WRITE_DESC:
3607 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3608 break;
3609 case UPIU_QUERY_OPCODE_READ_DESC:
3610 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3611 break;
3612 default:
3613 dev_err(hba->dev,
3614 "%s: Expected query descriptor opcode but got = 0x%.2x\n",
3615 __func__, opcode);
3616 err = -EINVAL;
3617 goto out_unlock;
3618 }
3619
3620 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3621
3622 if (err) {
3623 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3624 __func__, opcode, idn, index, err);
3625 goto out_unlock;
3626 }
3627
3628 *buf_len = be16_to_cpu(response->upiu_res.length);
3629
3630 out_unlock:
3631 hba->dev_cmd.query.descriptor = NULL;
3632 ufshcd_dev_man_unlock(hba);
3633 return err;
3634 }
3635
3636 /**
3637 * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3638 * @hba: per-adapter instance
3639 * @opcode: attribute opcode
3640 * @idn: attribute idn to access
3641 * @index: index field
3642 * @selector: selector field
3643 * @desc_buf: the buffer that contains the descriptor
3644 * @buf_len: length parameter passed to the device
3645 *
3646 * The buf_len parameter will contain, on return, the length parameter
3647 * received on the response.
3648 *
3649 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3650 * < 0 if another error occurred.
3651 */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3652 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3653 enum query_opcode opcode,
3654 enum desc_idn idn, u8 index,
3655 u8 selector,
3656 u8 *desc_buf, int *buf_len)
3657 {
3658 int err;
3659 int retries;
3660
3661 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3662 err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3663 selector, desc_buf, buf_len);
3664 if (!err || err == -EINVAL)
3665 break;
3666 }
3667
3668 return err;
3669 }
3670
3671 /**
3672 * ufshcd_read_desc_param - read the specified descriptor parameter
3673 * @hba: Pointer to adapter instance
3674 * @desc_id: descriptor idn value
3675 * @desc_index: descriptor index
3676 * @param_offset: offset of the parameter to read
3677 * @param_read_buf: pointer to buffer where parameter would be read
3678 * @param_size: sizeof(param_read_buf)
3679 *
3680 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3681 * < 0 if another error occurred.
3682 */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3683 int ufshcd_read_desc_param(struct ufs_hba *hba,
3684 enum desc_idn desc_id,
3685 int desc_index,
3686 u8 param_offset,
3687 u8 *param_read_buf,
3688 u8 param_size)
3689 {
3690 int ret;
3691 u8 *desc_buf;
3692 int buff_len = QUERY_DESC_MAX_SIZE;
3693 bool is_kmalloc = true;
3694
3695 /* Safety check */
3696 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3697 return -EINVAL;
3698
3699 /* Check whether we need temp memory */
3700 if (param_offset != 0 || param_size < buff_len) {
3701 desc_buf = kzalloc(buff_len, GFP_KERNEL);
3702 if (!desc_buf)
3703 return -ENOMEM;
3704 } else {
3705 desc_buf = param_read_buf;
3706 is_kmalloc = false;
3707 }
3708
3709 /* Request for full descriptor */
3710 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3711 desc_id, desc_index, 0,
3712 desc_buf, &buff_len);
3713 if (ret) {
3714 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3715 __func__, desc_id, desc_index, param_offset, ret);
3716 goto out;
3717 }
3718
3719 /* Update descriptor length */
3720 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3721
3722 if (param_offset >= buff_len) {
3723 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3724 __func__, param_offset, desc_id, buff_len);
3725 ret = -EINVAL;
3726 goto out;
3727 }
3728
3729 /* Sanity check */
3730 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3731 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3732 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3733 ret = -EINVAL;
3734 goto out;
3735 }
3736
3737 if (is_kmalloc) {
3738 /* Make sure we don't copy more data than available */
3739 if (param_offset >= buff_len)
3740 ret = -EINVAL;
3741 else
3742 memcpy(param_read_buf, &desc_buf[param_offset],
3743 min_t(u32, param_size, buff_len - param_offset));
3744 }
3745 out:
3746 if (is_kmalloc)
3747 kfree(desc_buf);
3748 return ret;
3749 }
3750
3751 /**
3752 * struct uc_string_id - unicode string
3753 *
3754 * @len: size of this descriptor inclusive
3755 * @type: descriptor type
3756 * @uc: unicode string character
3757 */
3758 struct uc_string_id {
3759 u8 len;
3760 u8 type;
3761 wchar_t uc[];
3762 } __packed;
3763
3764 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3765 static inline char ufshcd_remove_non_printable(u8 ch)
3766 {
3767 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3768 }
3769
3770 /**
3771 * ufshcd_read_string_desc - read string descriptor
3772 * @hba: pointer to adapter instance
3773 * @desc_index: descriptor index
3774 * @buf: pointer to buffer where descriptor would be read,
3775 * the caller should free the memory.
3776 * @fmt: if %SD_ASCII_STD, convert from UTF-16 to ASCII
3777 *
3778 * Return:
3779 * * string size on success.
3780 * * -ENOMEM: on allocation failure
3781 * * -EINVAL: on a wrong parameter
3782 */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,enum ufs_descr_fmt fmt)3783 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index, u8 **buf, enum ufs_descr_fmt fmt)
3784 {
3785 struct uc_string_id *uc_str;
3786 u8 *str;
3787 int ret;
3788
3789 if (!buf)
3790 return -EINVAL;
3791
3792 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3793 if (!uc_str)
3794 return -ENOMEM;
3795
3796 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3797 (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3798 if (ret < 0) {
3799 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3800 QUERY_REQ_RETRIES, ret);
3801 str = NULL;
3802 goto out;
3803 }
3804
3805 if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3806 dev_dbg(hba->dev, "String Desc is of zero length\n");
3807 str = NULL;
3808 ret = 0;
3809 goto out;
3810 }
3811
3812 if (fmt == SD_ASCII_STD) {
3813 ssize_t ascii_len;
3814 int i;
3815 /* remove header and divide by 2 to move from UTF16 to UTF8 */
3816 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3817 str = kzalloc(ascii_len, GFP_KERNEL);
3818 if (!str) {
3819 ret = -ENOMEM;
3820 goto out;
3821 }
3822
3823 /*
3824 * the descriptor contains string in UTF16 format
3825 * we need to convert to utf-8 so it can be displayed
3826 */
3827 ret = utf16s_to_utf8s(uc_str->uc,
3828 uc_str->len - QUERY_DESC_HDR_SIZE,
3829 UTF16_BIG_ENDIAN, str, ascii_len - 1);
3830
3831 /* replace non-printable or non-ASCII characters with spaces */
3832 for (i = 0; i < ret; i++)
3833 str[i] = ufshcd_remove_non_printable(str[i]);
3834
3835 str[ret++] = '\0';
3836
3837 } else {
3838 str = kmemdup(uc_str->uc, uc_str->len, GFP_KERNEL);
3839 if (!str) {
3840 ret = -ENOMEM;
3841 goto out;
3842 }
3843 ret = uc_str->len;
3844 }
3845 out:
3846 *buf = str;
3847 kfree(uc_str);
3848 return ret;
3849 }
3850
3851 /**
3852 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3853 * @hba: Pointer to adapter instance
3854 * @lun: lun id
3855 * @param_offset: offset of the parameter to read
3856 * @param_read_buf: pointer to buffer where parameter would be read
3857 * @param_size: sizeof(param_read_buf)
3858 *
3859 * Return: 0 in case of success; < 0 upon failure.
3860 */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3861 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3862 int lun,
3863 enum unit_desc_param param_offset,
3864 u8 *param_read_buf,
3865 u32 param_size)
3866 {
3867 /*
3868 * Unit descriptors are only available for general purpose LUs (LUN id
3869 * from 0 to 7) and RPMB Well known LU.
3870 */
3871 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3872 return -EOPNOTSUPP;
3873
3874 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3875 param_offset, param_read_buf, param_size);
3876 }
3877
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3878 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3879 {
3880 int err = 0;
3881 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3882
3883 if (hba->dev_info.wspecversion >= 0x300) {
3884 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3885 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3886 &gating_wait);
3887 if (err)
3888 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3889 err, gating_wait);
3890
3891 if (gating_wait == 0) {
3892 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3893 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3894 gating_wait);
3895 }
3896
3897 hba->dev_info.clk_gating_wait_us = gating_wait;
3898 }
3899
3900 return err;
3901 }
3902
3903 /**
3904 * ufshcd_memory_alloc - allocate memory for host memory space data structures
3905 * @hba: per adapter instance
3906 *
3907 * 1. Allocate DMA memory for Command Descriptor array
3908 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3909 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3910 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3911 * (UTMRDL)
3912 * 4. Allocate memory for local reference block(lrb).
3913 *
3914 * Return: 0 for success, non-zero in case of failure.
3915 */
ufshcd_memory_alloc(struct ufs_hba * hba)3916 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3917 {
3918 size_t utmrdl_size, utrdl_size, ucdl_size;
3919
3920 /* Allocate memory for UTP command descriptors */
3921 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3922 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3923 ucdl_size,
3924 &hba->ucdl_dma_addr,
3925 GFP_KERNEL);
3926
3927 /*
3928 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3929 */
3930 if (!hba->ucdl_base_addr ||
3931 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3932 dev_err(hba->dev,
3933 "Command Descriptor Memory allocation failed\n");
3934 goto out;
3935 }
3936
3937 /*
3938 * Allocate memory for UTP Transfer descriptors
3939 * UFSHCI requires 1KB alignment of UTRD
3940 */
3941 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3942 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3943 utrdl_size,
3944 &hba->utrdl_dma_addr,
3945 GFP_KERNEL);
3946 if (!hba->utrdl_base_addr ||
3947 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3948 dev_err(hba->dev,
3949 "Transfer Descriptor Memory allocation failed\n");
3950 goto out;
3951 }
3952
3953 /*
3954 * Skip utmrdl allocation; it may have been
3955 * allocated during first pass and not released during
3956 * MCQ memory allocation.
3957 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3958 */
3959 if (hba->utmrdl_base_addr)
3960 goto skip_utmrdl;
3961 /*
3962 * Allocate memory for UTP Task Management descriptors
3963 * UFSHCI requires 1KB alignment of UTMRD
3964 */
3965 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3966 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3967 utmrdl_size,
3968 &hba->utmrdl_dma_addr,
3969 GFP_KERNEL);
3970 if (!hba->utmrdl_base_addr ||
3971 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3972 dev_err(hba->dev,
3973 "Task Management Descriptor Memory allocation failed\n");
3974 goto out;
3975 }
3976
3977 skip_utmrdl:
3978 return 0;
3979 out:
3980 return -ENOMEM;
3981 }
3982
3983 /**
3984 * ufshcd_host_memory_configure - configure local reference block with
3985 * memory offsets
3986 * @hba: per adapter instance
3987 *
3988 * Configure Host memory space
3989 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3990 * address.
3991 * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3992 * and PRDT offset.
3993 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3994 * into local reference block.
3995 */
ufshcd_host_memory_configure(struct ufs_hba * hba)3996 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3997 {
3998 struct utp_transfer_req_desc *utrdlp;
3999 dma_addr_t cmd_desc_dma_addr;
4000 dma_addr_t cmd_desc_element_addr;
4001 u16 response_offset;
4002 u16 prdt_offset;
4003 int cmd_desc_size;
4004 int i;
4005
4006 utrdlp = hba->utrdl_base_addr;
4007
4008 response_offset =
4009 offsetof(struct utp_transfer_cmd_desc, response_upiu);
4010 prdt_offset =
4011 offsetof(struct utp_transfer_cmd_desc, prd_table);
4012
4013 cmd_desc_size = ufshcd_get_ucd_size(hba);
4014 cmd_desc_dma_addr = hba->ucdl_dma_addr;
4015
4016 for (i = 0; i < hba->nutrs; i++) {
4017 /* Configure UTRD with command descriptor base address */
4018 cmd_desc_element_addr =
4019 (cmd_desc_dma_addr + (cmd_desc_size * i));
4020 utrdlp[i].command_desc_base_addr =
4021 cpu_to_le64(cmd_desc_element_addr);
4022
4023 /* Response upiu and prdt offset should be in double words */
4024 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
4025 utrdlp[i].response_upiu_offset =
4026 cpu_to_le16(response_offset);
4027 utrdlp[i].prd_table_offset =
4028 cpu_to_le16(prdt_offset);
4029 utrdlp[i].response_upiu_length =
4030 cpu_to_le16(ALIGNED_UPIU_SIZE);
4031 } else {
4032 utrdlp[i].response_upiu_offset =
4033 cpu_to_le16(response_offset >> 2);
4034 utrdlp[i].prd_table_offset =
4035 cpu_to_le16(prdt_offset >> 2);
4036 utrdlp[i].response_upiu_length =
4037 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
4038 }
4039 }
4040 }
4041
4042 /**
4043 * ufshcd_dme_link_startup - Notify Unipro to perform link startup
4044 * @hba: per adapter instance
4045 *
4046 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
4047 * in order to initialize the Unipro link startup procedure.
4048 * Once the Unipro links are up, the device connected to the controller
4049 * is detected.
4050 *
4051 * Return: 0 on success, non-zero value on failure.
4052 */
ufshcd_dme_link_startup(struct ufs_hba * hba)4053 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
4054 {
4055 struct uic_command uic_cmd = {
4056 .command = UIC_CMD_DME_LINK_STARTUP,
4057 };
4058 int ret;
4059
4060 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4061 if (ret)
4062 dev_dbg(hba->dev,
4063 "dme-link-startup: error code %d\n", ret);
4064 return ret;
4065 }
4066 /**
4067 * ufshcd_dme_reset - UIC command for DME_RESET
4068 * @hba: per adapter instance
4069 *
4070 * DME_RESET command is issued in order to reset UniPro stack.
4071 * This function now deals with cold reset.
4072 *
4073 * Return: 0 on success, non-zero value on failure.
4074 */
ufshcd_dme_reset(struct ufs_hba * hba)4075 int ufshcd_dme_reset(struct ufs_hba *hba)
4076 {
4077 struct uic_command uic_cmd = {
4078 .command = UIC_CMD_DME_RESET,
4079 };
4080 int ret;
4081
4082 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4083 if (ret)
4084 dev_err(hba->dev,
4085 "dme-reset: error code %d\n", ret);
4086
4087 return ret;
4088 }
4089 EXPORT_SYMBOL_GPL(ufshcd_dme_reset);
4090
ufshcd_dme_configure_adapt(struct ufs_hba * hba,int agreed_gear,int adapt_val)4091 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4092 int agreed_gear,
4093 int adapt_val)
4094 {
4095 int ret;
4096
4097 if (agreed_gear < UFS_HS_G4)
4098 adapt_val = PA_NO_ADAPT;
4099
4100 ret = ufshcd_dme_set(hba,
4101 UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4102 adapt_val);
4103 return ret;
4104 }
4105 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4106
4107 /**
4108 * ufshcd_dme_enable - UIC command for DME_ENABLE
4109 * @hba: per adapter instance
4110 *
4111 * DME_ENABLE command is issued in order to enable UniPro stack.
4112 *
4113 * Return: 0 on success, non-zero value on failure.
4114 */
ufshcd_dme_enable(struct ufs_hba * hba)4115 int ufshcd_dme_enable(struct ufs_hba *hba)
4116 {
4117 struct uic_command uic_cmd = {
4118 .command = UIC_CMD_DME_ENABLE,
4119 };
4120 int ret;
4121
4122 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4123 if (ret)
4124 dev_err(hba->dev,
4125 "dme-enable: error code %d\n", ret);
4126
4127 return ret;
4128 }
4129 EXPORT_SYMBOL_GPL(ufshcd_dme_enable);
4130
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)4131 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4132 {
4133 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000
4134 unsigned long min_sleep_time_us;
4135
4136 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4137 return;
4138
4139 /*
4140 * last_dme_cmd_tstamp will be 0 only for 1st call to
4141 * this function
4142 */
4143 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4144 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4145 } else {
4146 unsigned long delta =
4147 (unsigned long) ktime_to_us(
4148 ktime_sub(ktime_get(),
4149 hba->last_dme_cmd_tstamp));
4150
4151 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4152 min_sleep_time_us =
4153 MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4154 else
4155 min_sleep_time_us = 0; /* no more delay required */
4156 }
4157
4158 if (min_sleep_time_us > 0) {
4159 /* allow sleep for extra 50us if needed */
4160 usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4161 }
4162
4163 /* update the last_dme_cmd_tstamp */
4164 hba->last_dme_cmd_tstamp = ktime_get();
4165 }
4166
4167 /**
4168 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4169 * @hba: per adapter instance
4170 * @attr_sel: uic command argument1
4171 * @attr_set: attribute set type as uic command argument2
4172 * @mib_val: setting value as uic command argument3
4173 * @peer: indicate whether peer or local
4174 *
4175 * Return: 0 on success, non-zero value on failure.
4176 */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)4177 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4178 u8 attr_set, u32 mib_val, u8 peer)
4179 {
4180 struct uic_command uic_cmd = {
4181 .command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET,
4182 .argument1 = attr_sel,
4183 .argument2 = UIC_ARG_ATTR_TYPE(attr_set),
4184 .argument3 = mib_val,
4185 };
4186 static const char *const action[] = {
4187 "dme-set",
4188 "dme-peer-set"
4189 };
4190 const char *set = action[!!peer];
4191 int ret;
4192 int retries = UFS_UIC_COMMAND_RETRIES;
4193
4194 do {
4195 /* for peer attributes we retry upon failure */
4196 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4197 if (ret)
4198 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4199 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4200 } while (ret && peer && --retries);
4201
4202 if (ret)
4203 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4204 set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4205 UFS_UIC_COMMAND_RETRIES - retries);
4206
4207 return ret;
4208 }
4209 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4210
4211 /**
4212 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4213 * @hba: per adapter instance
4214 * @attr_sel: uic command argument1
4215 * @mib_val: the value of the attribute as returned by the UIC command
4216 * @peer: indicate whether peer or local
4217 *
4218 * Return: 0 on success, non-zero value on failure.
4219 */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)4220 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4221 u32 *mib_val, u8 peer)
4222 {
4223 struct uic_command uic_cmd = {
4224 .command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET,
4225 .argument1 = attr_sel,
4226 };
4227 static const char *const action[] = {
4228 "dme-get",
4229 "dme-peer-get"
4230 };
4231 const char *get = action[!!peer];
4232 int ret;
4233 int retries = UFS_UIC_COMMAND_RETRIES;
4234 struct ufs_pa_layer_attr orig_pwr_info;
4235 struct ufs_pa_layer_attr temp_pwr_info;
4236 bool pwr_mode_change = false;
4237
4238 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4239 orig_pwr_info = hba->pwr_info;
4240 temp_pwr_info = orig_pwr_info;
4241
4242 if (orig_pwr_info.pwr_tx == FAST_MODE ||
4243 orig_pwr_info.pwr_rx == FAST_MODE) {
4244 temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4245 temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4246 pwr_mode_change = true;
4247 } else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4248 orig_pwr_info.pwr_rx == SLOW_MODE) {
4249 temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4250 temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4251 pwr_mode_change = true;
4252 }
4253 if (pwr_mode_change) {
4254 ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4255 if (ret)
4256 goto out;
4257 }
4258 }
4259
4260 do {
4261 /* for peer attributes we retry upon failure */
4262 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4263 if (ret)
4264 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4265 get, UIC_GET_ATTR_ID(attr_sel), ret);
4266 } while (ret && peer && --retries);
4267
4268 if (ret)
4269 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4270 get, UIC_GET_ATTR_ID(attr_sel),
4271 UFS_UIC_COMMAND_RETRIES - retries);
4272
4273 if (mib_val)
4274 *mib_val = ret == 0 ? uic_cmd.argument3 : 0;
4275
4276 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4277 && pwr_mode_change)
4278 ufshcd_change_power_mode(hba, &orig_pwr_info);
4279 out:
4280 return ret;
4281 }
4282 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4283
4284 /**
4285 * ufshcd_dme_rmw - get modify set a DME attribute
4286 * @hba: per adapter instance
4287 * @mask: indicates which bits to clear from the value that has been read
4288 * @val: actual value to write
4289 * @attr: dme attribute
4290 */
ufshcd_dme_rmw(struct ufs_hba * hba,u32 mask,u32 val,u32 attr)4291 int ufshcd_dme_rmw(struct ufs_hba *hba, u32 mask,
4292 u32 val, u32 attr)
4293 {
4294 u32 cfg = 0;
4295 int err;
4296
4297 err = ufshcd_dme_get(hba, UIC_ARG_MIB(attr), &cfg);
4298 if (err)
4299 return err;
4300
4301 cfg &= ~mask;
4302 cfg |= (val & mask);
4303
4304 return ufshcd_dme_set(hba, UIC_ARG_MIB(attr), cfg);
4305 }
4306 EXPORT_SYMBOL_GPL(ufshcd_dme_rmw);
4307
4308 /**
4309 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4310 * state) and waits for it to take effect.
4311 *
4312 * @hba: per adapter instance
4313 * @cmd: UIC command to execute
4314 *
4315 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4316 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4317 * and device UniPro link and hence it's final completion would be indicated by
4318 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4319 * addition to normal UIC command completion Status (UCCS). This function only
4320 * returns after the relevant status bits indicate the completion.
4321 *
4322 * Return: 0 on success, non-zero value on failure.
4323 */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)4324 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4325 {
4326 DECLARE_COMPLETION_ONSTACK(uic_async_done);
4327 unsigned long flags;
4328 u8 status;
4329 int ret;
4330
4331 mutex_lock(&hba->uic_cmd_mutex);
4332 ufshcd_add_delay_before_dme_cmd(hba);
4333
4334 spin_lock_irqsave(hba->host->host_lock, flags);
4335 if (ufshcd_is_link_broken(hba)) {
4336 ret = -ENOLINK;
4337 goto out_unlock;
4338 }
4339 hba->uic_async_done = &uic_async_done;
4340 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4341 spin_unlock_irqrestore(hba->host->host_lock, flags);
4342 ret = __ufshcd_send_uic_cmd(hba, cmd);
4343 if (ret) {
4344 dev_err(hba->dev,
4345 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4346 cmd->command, cmd->argument3, ret);
4347 goto out;
4348 }
4349
4350 if (!wait_for_completion_timeout(hba->uic_async_done,
4351 msecs_to_jiffies(uic_cmd_timeout))) {
4352 dev_err(hba->dev,
4353 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4354 cmd->command, cmd->argument3);
4355
4356 if (!cmd->cmd_active) {
4357 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4358 __func__);
4359 goto check_upmcrs;
4360 }
4361
4362 ret = -ETIMEDOUT;
4363 goto out;
4364 }
4365
4366 check_upmcrs:
4367 status = ufshcd_get_upmcrs(hba);
4368 if (status != PWR_LOCAL) {
4369 dev_err(hba->dev,
4370 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4371 cmd->command, status);
4372 ret = (status != PWR_OK) ? status : -1;
4373 }
4374 out:
4375 if (ret) {
4376 ufshcd_print_host_state(hba);
4377 ufshcd_print_pwr_info(hba);
4378 ufshcd_print_evt_hist(hba);
4379 }
4380
4381 spin_lock_irqsave(hba->host->host_lock, flags);
4382 hba->active_uic_cmd = NULL;
4383 hba->uic_async_done = NULL;
4384 if (ret && !hba->pm_op_in_progress) {
4385 ufshcd_set_link_broken(hba);
4386 ufshcd_schedule_eh_work(hba);
4387 }
4388 out_unlock:
4389 spin_unlock_irqrestore(hba->host->host_lock, flags);
4390 mutex_unlock(&hba->uic_cmd_mutex);
4391
4392 /*
4393 * If the h8 exit fails during the runtime resume process, it becomes
4394 * stuck and cannot be recovered through the error handler. To fix
4395 * this, use link recovery instead of the error handler.
4396 */
4397 if (ret && hba->pm_op_in_progress)
4398 ret = ufshcd_link_recovery(hba);
4399
4400 return ret;
4401 }
4402
4403 /**
4404 * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result
4405 * @hba: per adapter instance
4406 * @uic_cmd: UIC command
4407 *
4408 * Return: 0 only if success.
4409 */
ufshcd_send_bsg_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)4410 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
4411 {
4412 int ret;
4413
4414 if (uic_cmd->argument1 != UIC_ARG_MIB(PA_PWRMODE) ||
4415 uic_cmd->command != UIC_CMD_DME_SET)
4416 return ufshcd_send_uic_cmd(hba, uic_cmd);
4417
4418 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
4419 return 0;
4420
4421 ufshcd_hold(hba);
4422 ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd);
4423 ufshcd_release(hba);
4424
4425 return ret;
4426 }
4427
4428 /**
4429 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4430 * using DME_SET primitives.
4431 * @hba: per adapter instance
4432 * @mode: powr mode value
4433 *
4434 * Return: 0 on success, non-zero value on failure.
4435 */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4436 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4437 {
4438 struct uic_command uic_cmd = {
4439 .command = UIC_CMD_DME_SET,
4440 .argument1 = UIC_ARG_MIB(PA_PWRMODE),
4441 .argument3 = mode,
4442 };
4443 int ret;
4444
4445 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4446 ret = ufshcd_dme_set(hba,
4447 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4448 if (ret) {
4449 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4450 __func__, ret);
4451 goto out;
4452 }
4453 }
4454
4455 ufshcd_hold(hba);
4456 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4457 ufshcd_release(hba);
4458
4459 out:
4460 return ret;
4461 }
4462 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4463
ufshcd_link_recovery(struct ufs_hba * hba)4464 int ufshcd_link_recovery(struct ufs_hba *hba)
4465 {
4466 int ret;
4467 unsigned long flags;
4468
4469 spin_lock_irqsave(hba->host->host_lock, flags);
4470 hba->ufshcd_state = UFSHCD_STATE_RESET;
4471 ufshcd_set_eh_in_progress(hba);
4472 spin_unlock_irqrestore(hba->host->host_lock, flags);
4473
4474 /* Reset the attached device */
4475 ufshcd_device_reset(hba);
4476
4477 ret = ufshcd_host_reset_and_restore(hba);
4478
4479 spin_lock_irqsave(hba->host->host_lock, flags);
4480 if (ret)
4481 hba->ufshcd_state = UFSHCD_STATE_ERROR;
4482 ufshcd_clear_eh_in_progress(hba);
4483 spin_unlock_irqrestore(hba->host->host_lock, flags);
4484
4485 if (ret)
4486 dev_err(hba->dev, "%s: link recovery failed, err %d",
4487 __func__, ret);
4488
4489 return ret;
4490 }
4491 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4492
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4493 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4494 {
4495 struct uic_command uic_cmd = {
4496 .command = UIC_CMD_DME_HIBER_ENTER,
4497 };
4498 ktime_t start = ktime_get();
4499 int ret;
4500
4501 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4502
4503 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4504 trace_ufshcd_profile_hibern8(hba, "enter",
4505 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4506
4507 if (ret)
4508 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4509 __func__, ret);
4510 else
4511 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4512 POST_CHANGE);
4513
4514 return ret;
4515 }
4516 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4517
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4518 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4519 {
4520 struct uic_command uic_cmd = {
4521 .command = UIC_CMD_DME_HIBER_EXIT,
4522 };
4523 int ret;
4524 ktime_t start = ktime_get();
4525
4526 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4527
4528 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4529 trace_ufshcd_profile_hibern8(hba, "exit",
4530 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4531
4532 if (ret) {
4533 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4534 __func__, ret);
4535 } else {
4536 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4537 POST_CHANGE);
4538 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4539 hba->ufs_stats.hibern8_exit_cnt++;
4540 }
4541
4542 return ret;
4543 }
4544 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4545
ufshcd_configure_auto_hibern8(struct ufs_hba * hba)4546 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4547 {
4548 if (!ufshcd_is_auto_hibern8_supported(hba))
4549 return;
4550
4551 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4552 }
4553
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4554 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4555 {
4556 const u32 cur_ahit = READ_ONCE(hba->ahit);
4557
4558 if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4559 return;
4560
4561 WRITE_ONCE(hba->ahit, ahit);
4562 if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4563 ufshcd_rpm_get_sync(hba);
4564 ufshcd_hold(hba);
4565 ufshcd_configure_auto_hibern8(hba);
4566 ufshcd_release(hba);
4567 ufshcd_rpm_put_sync(hba);
4568 }
4569 }
4570 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4571
4572 /**
4573 * ufshcd_init_pwr_info - setting the POR (power on reset)
4574 * values in hba power info
4575 * @hba: per-adapter instance
4576 */
ufshcd_init_pwr_info(struct ufs_hba * hba)4577 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4578 {
4579 hba->pwr_info.gear_rx = UFS_PWM_G1;
4580 hba->pwr_info.gear_tx = UFS_PWM_G1;
4581 hba->pwr_info.lane_rx = UFS_LANE_1;
4582 hba->pwr_info.lane_tx = UFS_LANE_1;
4583 hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4584 hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4585 hba->pwr_info.hs_rate = 0;
4586 }
4587
4588 /**
4589 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4590 * @hba: per-adapter instance
4591 *
4592 * Return: 0 upon success; < 0 upon failure.
4593 */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4594 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4595 {
4596 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4597
4598 if (hba->max_pwr_info.is_valid)
4599 return 0;
4600
4601 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4602 pwr_info->pwr_tx = FASTAUTO_MODE;
4603 pwr_info->pwr_rx = FASTAUTO_MODE;
4604 } else {
4605 pwr_info->pwr_tx = FAST_MODE;
4606 pwr_info->pwr_rx = FAST_MODE;
4607 }
4608 pwr_info->hs_rate = PA_HS_MODE_B;
4609
4610 /* Get the connected lane count */
4611 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4612 &pwr_info->lane_rx);
4613 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4614 &pwr_info->lane_tx);
4615
4616 if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4617 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4618 __func__,
4619 pwr_info->lane_rx,
4620 pwr_info->lane_tx);
4621 return -EINVAL;
4622 }
4623
4624 if (pwr_info->lane_rx != pwr_info->lane_tx) {
4625 dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n",
4626 __func__,
4627 pwr_info->lane_rx,
4628 pwr_info->lane_tx);
4629 return -EINVAL;
4630 }
4631
4632 /*
4633 * First, get the maximum gears of HS speed.
4634 * If a zero value, it means there is no HSGEAR capability.
4635 * Then, get the maximum gears of PWM speed.
4636 */
4637 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4638 if (!pwr_info->gear_rx) {
4639 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4640 &pwr_info->gear_rx);
4641 if (!pwr_info->gear_rx) {
4642 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4643 __func__, pwr_info->gear_rx);
4644 return -EINVAL;
4645 }
4646 pwr_info->pwr_rx = SLOW_MODE;
4647 }
4648
4649 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4650 &pwr_info->gear_tx);
4651 if (!pwr_info->gear_tx) {
4652 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4653 &pwr_info->gear_tx);
4654 if (!pwr_info->gear_tx) {
4655 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4656 __func__, pwr_info->gear_tx);
4657 return -EINVAL;
4658 }
4659 pwr_info->pwr_tx = SLOW_MODE;
4660 }
4661
4662 hba->max_pwr_info.is_valid = true;
4663 return 0;
4664 }
4665
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4666 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4667 struct ufs_pa_layer_attr *pwr_mode)
4668 {
4669 int ret;
4670
4671 /* if already configured to the requested pwr_mode */
4672 if (!hba->force_pmc &&
4673 pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4674 pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4675 pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4676 pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4677 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4678 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4679 pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4680 dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4681 return 0;
4682 }
4683
4684 /*
4685 * Configure attributes for power mode change with below.
4686 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4687 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4688 * - PA_HSSERIES
4689 */
4690 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4691 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4692 pwr_mode->lane_rx);
4693 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4694 pwr_mode->pwr_rx == FAST_MODE)
4695 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4696 else
4697 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4698
4699 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4700 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4701 pwr_mode->lane_tx);
4702 if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4703 pwr_mode->pwr_tx == FAST_MODE)
4704 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4705 else
4706 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4707
4708 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4709 pwr_mode->pwr_tx == FASTAUTO_MODE ||
4710 pwr_mode->pwr_rx == FAST_MODE ||
4711 pwr_mode->pwr_tx == FAST_MODE)
4712 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4713 pwr_mode->hs_rate);
4714
4715 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4716 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4717 DL_FC0ProtectionTimeOutVal_Default);
4718 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4719 DL_TC0ReplayTimeOutVal_Default);
4720 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4721 DL_AFC0ReqTimeOutVal_Default);
4722 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4723 DL_FC1ProtectionTimeOutVal_Default);
4724 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4725 DL_TC1ReplayTimeOutVal_Default);
4726 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4727 DL_AFC1ReqTimeOutVal_Default);
4728
4729 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4730 DL_FC0ProtectionTimeOutVal_Default);
4731 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4732 DL_TC0ReplayTimeOutVal_Default);
4733 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4734 DL_AFC0ReqTimeOutVal_Default);
4735 }
4736
4737 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4738 | pwr_mode->pwr_tx);
4739
4740 if (ret) {
4741 dev_err(hba->dev,
4742 "%s: power mode change failed %d\n", __func__, ret);
4743 } else {
4744 memcpy(&hba->pwr_info, pwr_mode,
4745 sizeof(struct ufs_pa_layer_attr));
4746 }
4747
4748 return ret;
4749 }
4750
4751 /**
4752 * ufshcd_config_pwr_mode - configure a new power mode
4753 * @hba: per-adapter instance
4754 * @desired_pwr_mode: desired power configuration
4755 *
4756 * Return: 0 upon success; < 0 upon failure.
4757 */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4758 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4759 struct ufs_pa_layer_attr *desired_pwr_mode)
4760 {
4761 struct ufs_pa_layer_attr final_params = { 0 };
4762 int ret;
4763
4764 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4765 desired_pwr_mode, &final_params);
4766
4767 if (ret)
4768 memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4769
4770 ret = ufshcd_change_power_mode(hba, &final_params);
4771
4772 if (!ret)
4773 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4774 &final_params);
4775
4776 return ret;
4777 }
4778 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4779
4780 /**
4781 * ufshcd_complete_dev_init() - checks device readiness
4782 * @hba: per-adapter instance
4783 *
4784 * Set fDeviceInit flag and poll until device toggles it.
4785 *
4786 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
4787 * < 0 if another error occurred.
4788 */
ufshcd_complete_dev_init(struct ufs_hba * hba)4789 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4790 {
4791 int err;
4792 bool flag_res = true;
4793 ktime_t timeout;
4794
4795 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4796 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4797 if (err) {
4798 dev_err(hba->dev,
4799 "%s: setting fDeviceInit flag failed with error %d\n",
4800 __func__, err);
4801 goto out;
4802 }
4803
4804 /* Poll fDeviceInit flag to be cleared */
4805 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4806 do {
4807 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4808 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4809 if (!flag_res)
4810 break;
4811 usleep_range(500, 1000);
4812 } while (ktime_before(ktime_get(), timeout));
4813
4814 if (err) {
4815 dev_err(hba->dev,
4816 "%s: reading fDeviceInit flag failed with error %d\n",
4817 __func__, err);
4818 } else if (flag_res) {
4819 dev_err(hba->dev,
4820 "%s: fDeviceInit was not cleared by the device\n",
4821 __func__);
4822 err = -EBUSY;
4823 }
4824 out:
4825 return err;
4826 }
4827
4828 /**
4829 * ufshcd_make_hba_operational - Make UFS controller operational
4830 * @hba: per adapter instance
4831 *
4832 * To bring UFS host controller to operational state,
4833 * 1. Enable required interrupts
4834 * 2. Configure interrupt aggregation
4835 * 3. Program UTRL and UTMRL base address
4836 * 4. Configure run-stop-registers
4837 *
4838 * Return: 0 if successful; < 0 upon failure.
4839 */
ufshcd_make_hba_operational(struct ufs_hba * hba)4840 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4841 {
4842 int err = 0;
4843 u32 reg;
4844
4845 /* Enable required interrupts */
4846 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4847
4848 /* Configure interrupt aggregation */
4849 if (ufshcd_is_intr_aggr_allowed(hba))
4850 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4851 else
4852 ufshcd_disable_intr_aggr(hba);
4853
4854 /* Configure UTRL and UTMRL base address registers */
4855 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4856 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4857 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4858 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4859 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4860 REG_UTP_TASK_REQ_LIST_BASE_L);
4861 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4862 REG_UTP_TASK_REQ_LIST_BASE_H);
4863
4864 /*
4865 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4866 */
4867 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4868 if (!(ufshcd_get_lists_status(reg))) {
4869 ufshcd_enable_run_stop_reg(hba);
4870 } else {
4871 dev_err(hba->dev,
4872 "Host controller not ready to process requests");
4873 err = -EIO;
4874 }
4875
4876 return err;
4877 }
4878 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4879
4880 /**
4881 * ufshcd_hba_stop - Send controller to reset state
4882 * @hba: per adapter instance
4883 */
ufshcd_hba_stop(struct ufs_hba * hba)4884 void ufshcd_hba_stop(struct ufs_hba *hba)
4885 {
4886 int err;
4887
4888 ufshcd_disable_irq(hba);
4889 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE);
4890 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4891 CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4892 10, 1);
4893 ufshcd_enable_irq(hba);
4894 if (err)
4895 dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4896 }
4897 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4898
4899 /**
4900 * ufshcd_hba_execute_hce - initialize the controller
4901 * @hba: per adapter instance
4902 *
4903 * The controller resets itself and controller firmware initialization
4904 * sequence kicks off. When controller is ready it will set
4905 * the Host Controller Enable bit to 1.
4906 *
4907 * Return: 0 on success, non-zero value on failure.
4908 */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4909 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4910 {
4911 int retry;
4912
4913 for (retry = 3; retry > 0; retry--) {
4914 if (ufshcd_is_hba_active(hba))
4915 /* change controller state to "reset state" */
4916 ufshcd_hba_stop(hba);
4917
4918 /* UniPro link is disabled at this point */
4919 ufshcd_set_link_off(hba);
4920
4921 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4922
4923 /* start controller initialization sequence */
4924 ufshcd_hba_start(hba);
4925
4926 /*
4927 * To initialize a UFS host controller HCE bit must be set to 1.
4928 * During initialization the HCE bit value changes from 1->0->1.
4929 * When the host controller completes initialization sequence
4930 * it sets the value of HCE bit to 1. The same HCE bit is read back
4931 * to check if the controller has completed initialization sequence.
4932 * So without this delay the value HCE = 1, set in the previous
4933 * instruction might be read back.
4934 * This delay can be changed based on the controller.
4935 */
4936 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4937
4938 /* wait for the host controller to complete initialization */
4939 if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE,
4940 CONTROLLER_ENABLE, 1000, 50))
4941 break;
4942
4943 dev_err(hba->dev, "Enabling the controller failed\n");
4944 }
4945
4946 if (!retry)
4947 return -EIO;
4948
4949 /* enable UIC related interrupts */
4950 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4951
4952 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4953
4954 return 0;
4955 }
4956
ufshcd_hba_enable(struct ufs_hba * hba)4957 int ufshcd_hba_enable(struct ufs_hba *hba)
4958 {
4959 int ret;
4960
4961 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4962 ufshcd_set_link_off(hba);
4963 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4964
4965 /* enable UIC related interrupts */
4966 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4967 ret = ufshcd_dme_reset(hba);
4968 if (ret) {
4969 dev_err(hba->dev, "DME_RESET failed\n");
4970 return ret;
4971 }
4972
4973 ret = ufshcd_dme_enable(hba);
4974 if (ret) {
4975 dev_err(hba->dev, "Enabling DME failed\n");
4976 return ret;
4977 }
4978
4979 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4980 } else {
4981 ret = ufshcd_hba_execute_hce(hba);
4982 }
4983
4984 return ret;
4985 }
4986 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4987
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4988 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4989 {
4990 int tx_lanes, i, err = 0;
4991
4992 if (!peer)
4993 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4994 &tx_lanes);
4995 else
4996 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4997 &tx_lanes);
4998 for (i = 0; i < tx_lanes; i++) {
4999 if (!peer)
5000 err = ufshcd_dme_set(hba,
5001 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
5002 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
5003 0);
5004 else
5005 err = ufshcd_dme_peer_set(hba,
5006 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
5007 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
5008 0);
5009 if (err) {
5010 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
5011 __func__, peer, i, err);
5012 break;
5013 }
5014 }
5015
5016 return err;
5017 }
5018
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)5019 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
5020 {
5021 return ufshcd_disable_tx_lcc(hba, true);
5022 }
5023
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)5024 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
5025 {
5026 struct ufs_event_hist *e;
5027
5028 if (id >= UFS_EVT_CNT)
5029 return;
5030
5031 e = &hba->ufs_stats.event[id];
5032 e->val[e->pos] = val;
5033 e->tstamp[e->pos] = local_clock();
5034 e->cnt += 1;
5035 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
5036
5037 ufshcd_vops_event_notify(hba, id, &val);
5038 }
5039 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
5040
5041 /**
5042 * ufshcd_link_startup - Initialize unipro link startup
5043 * @hba: per adapter instance
5044 *
5045 * Return: 0 for success, non-zero in case of failure.
5046 */
ufshcd_link_startup(struct ufs_hba * hba)5047 static int ufshcd_link_startup(struct ufs_hba *hba)
5048 {
5049 int ret;
5050 int retries = DME_LINKSTARTUP_RETRIES;
5051 bool link_startup_again = false;
5052
5053 /*
5054 * If UFS device isn't active then we will have to issue link startup
5055 * 2 times to make sure the device state move to active.
5056 */
5057 if (!(hba->quirks & UFSHCD_QUIRK_PERFORM_LINK_STARTUP_ONCE) &&
5058 !ufshcd_is_ufs_dev_active(hba))
5059 link_startup_again = true;
5060
5061 link_startup:
5062 do {
5063 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
5064
5065 ret = ufshcd_dme_link_startup(hba);
5066
5067 /* check if device is detected by inter-connect layer */
5068 if (!ret && !ufshcd_is_device_present(hba)) {
5069 ufshcd_update_evt_hist(hba,
5070 UFS_EVT_LINK_STARTUP_FAIL,
5071 0);
5072 dev_err(hba->dev, "%s: Device not present\n", __func__);
5073 ret = -ENXIO;
5074 goto out;
5075 }
5076
5077 /*
5078 * DME link lost indication is only received when link is up,
5079 * but we can't be sure if the link is up until link startup
5080 * succeeds. So reset the local Uni-Pro and try again.
5081 */
5082 if (ret && retries && ufshcd_hba_enable(hba)) {
5083 ufshcd_update_evt_hist(hba,
5084 UFS_EVT_LINK_STARTUP_FAIL,
5085 (u32)ret);
5086 goto out;
5087 }
5088 } while (ret && retries--);
5089
5090 if (ret) {
5091 /* failed to get the link up... retire */
5092 ufshcd_update_evt_hist(hba,
5093 UFS_EVT_LINK_STARTUP_FAIL,
5094 (u32)ret);
5095 goto out;
5096 }
5097
5098 if (link_startup_again) {
5099 link_startup_again = false;
5100 retries = DME_LINKSTARTUP_RETRIES;
5101 goto link_startup;
5102 }
5103
5104 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5105 ufshcd_init_pwr_info(hba);
5106 ufshcd_print_pwr_info(hba);
5107
5108 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5109 ret = ufshcd_disable_device_tx_lcc(hba);
5110 if (ret)
5111 goto out;
5112 }
5113
5114 /* Include any host controller configuration via UIC commands */
5115 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5116 if (ret)
5117 goto out;
5118
5119 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5120 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5121 ret = ufshcd_make_hba_operational(hba);
5122 out:
5123 if (ret)
5124 dev_err(hba->dev, "link startup failed %d\n", ret);
5125 return ret;
5126 }
5127
5128 /**
5129 * ufshcd_verify_dev_init() - Verify device initialization
5130 * @hba: per-adapter instance
5131 *
5132 * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5133 * device Transport Protocol (UTP) layer is ready after a reset.
5134 * If the UTP layer at the device side is not initialized, it may
5135 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5136 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5137 *
5138 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
5139 * < 0 if another error occurred.
5140 */
ufshcd_verify_dev_init(struct ufs_hba * hba)5141 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5142 {
5143 int err = 0;
5144 int retries;
5145
5146 ufshcd_dev_man_lock(hba);
5147
5148 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5149 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5150 hba->nop_out_timeout);
5151
5152 if (!err || err == -ETIMEDOUT)
5153 break;
5154
5155 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5156 }
5157
5158 ufshcd_dev_man_unlock(hba);
5159
5160 if (err)
5161 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5162 return err;
5163 }
5164
5165 /**
5166 * ufshcd_setup_links - associate link b/w device wlun and other luns
5167 * @sdev: pointer to SCSI device
5168 * @hba: pointer to ufs hba
5169 */
ufshcd_setup_links(struct ufs_hba * hba,struct scsi_device * sdev)5170 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5171 {
5172 struct device_link *link;
5173
5174 /*
5175 * Device wlun is the supplier & rest of the luns are consumers.
5176 * This ensures that device wlun suspends after all other luns.
5177 */
5178 if (hba->ufs_device_wlun) {
5179 link = device_link_add(&sdev->sdev_gendev,
5180 &hba->ufs_device_wlun->sdev_gendev,
5181 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5182 if (!link) {
5183 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5184 dev_name(&hba->ufs_device_wlun->sdev_gendev));
5185 return;
5186 }
5187 hba->luns_avail--;
5188 /* Ignore REPORT_LUN wlun probing */
5189 if (hba->luns_avail == 1) {
5190 ufshcd_rpm_put(hba);
5191 return;
5192 }
5193 } else {
5194 /*
5195 * Device wlun is probed. The assumption is that WLUNs are
5196 * scanned before other LUNs.
5197 */
5198 hba->luns_avail--;
5199 }
5200 }
5201
5202 /**
5203 * ufshcd_lu_init - Initialize the relevant parameters of the LU
5204 * @hba: per-adapter instance
5205 * @sdev: pointer to SCSI device
5206 */
ufshcd_lu_init(struct ufs_hba * hba,struct scsi_device * sdev)5207 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5208 {
5209 int len = QUERY_DESC_MAX_SIZE;
5210 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5211 u8 lun_qdepth = hba->nutrs;
5212 u8 *desc_buf;
5213 int ret;
5214
5215 desc_buf = kzalloc(len, GFP_KERNEL);
5216 if (!desc_buf)
5217 goto set_qdepth;
5218
5219 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5220 if (ret < 0) {
5221 if (ret == -EOPNOTSUPP)
5222 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5223 lun_qdepth = 1;
5224 kfree(desc_buf);
5225 goto set_qdepth;
5226 }
5227
5228 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5229 /*
5230 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5231 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5232 */
5233 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5234 }
5235 /*
5236 * According to UFS device specification, the write protection mode is only supported by
5237 * normal LU, not supported by WLUN.
5238 */
5239 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5240 !hba->dev_info.is_lu_power_on_wp &&
5241 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5242 hba->dev_info.is_lu_power_on_wp = true;
5243
5244 /* In case of RPMB LU, check if advanced RPMB mode is enabled, and get region size */
5245 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN) {
5246 if (desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5247 hba->dev_info.b_advanced_rpmb_en = true;
5248 hba->dev_info.rpmb_region_size[0] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION0_SIZE];
5249 hba->dev_info.rpmb_region_size[1] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION1_SIZE];
5250 hba->dev_info.rpmb_region_size[2] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION2_SIZE];
5251 hba->dev_info.rpmb_region_size[3] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION3_SIZE];
5252 }
5253
5254
5255 kfree(desc_buf);
5256 set_qdepth:
5257 /*
5258 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5259 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5260 */
5261 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5262 scsi_change_queue_depth(sdev, lun_qdepth);
5263 }
5264
5265 /**
5266 * ufshcd_sdev_init - handle initial SCSI device configurations
5267 * @sdev: pointer to SCSI device
5268 *
5269 * Return: success.
5270 */
ufshcd_sdev_init(struct scsi_device * sdev)5271 static int ufshcd_sdev_init(struct scsi_device *sdev)
5272 {
5273 struct ufs_hba *hba;
5274
5275 hba = shost_priv(sdev->host);
5276
5277 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5278 sdev->use_10_for_ms = 1;
5279
5280 /* DBD field should be set to 1 in mode sense(10) */
5281 sdev->set_dbd_for_ms = 1;
5282
5283 /* allow SCSI layer to restart the device in case of errors */
5284 sdev->allow_restart = 1;
5285
5286 /* REPORT SUPPORTED OPERATION CODES is not supported */
5287 sdev->no_report_opcodes = 1;
5288
5289 /* WRITE_SAME command is not supported */
5290 sdev->no_write_same = 1;
5291
5292 ufshcd_lu_init(hba, sdev);
5293
5294 ufshcd_setup_links(hba, sdev);
5295
5296 return 0;
5297 }
5298
5299 /**
5300 * ufshcd_change_queue_depth - change queue depth
5301 * @sdev: pointer to SCSI device
5302 * @depth: required depth to set
5303 *
5304 * Change queue depth and make sure the max. limits are not crossed.
5305 *
5306 * Return: new queue depth.
5307 */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)5308 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5309 {
5310 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5311 }
5312
5313 /**
5314 * ufshcd_sdev_configure - adjust SCSI device configurations
5315 * @sdev: pointer to SCSI device
5316 * @lim: queue limits
5317 *
5318 * Return: 0 (success).
5319 */
ufshcd_sdev_configure(struct scsi_device * sdev,struct queue_limits * lim)5320 static int ufshcd_sdev_configure(struct scsi_device *sdev,
5321 struct queue_limits *lim)
5322 {
5323 struct ufs_hba *hba = shost_priv(sdev->host);
5324 struct request_queue *q = sdev->request_queue;
5325
5326 lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1;
5327
5328 /*
5329 * Block runtime-pm until all consumers are added.
5330 * Refer ufshcd_setup_links().
5331 */
5332 if (is_device_wlun(sdev))
5333 pm_runtime_get_noresume(&sdev->sdev_gendev);
5334 else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5335 sdev->rpm_autosuspend = 1;
5336 /*
5337 * Do not print messages during runtime PM to avoid never-ending cycles
5338 * of messages written back to storage by user space causing runtime
5339 * resume, causing more messages and so on.
5340 */
5341 sdev->silence_suspend = 1;
5342
5343 if (hba->vops && hba->vops->config_scsi_dev)
5344 hba->vops->config_scsi_dev(sdev);
5345
5346 ufshcd_crypto_register(hba, q);
5347
5348 return 0;
5349 }
5350
5351 /**
5352 * ufshcd_sdev_destroy - remove SCSI device configurations
5353 * @sdev: pointer to SCSI device
5354 */
ufshcd_sdev_destroy(struct scsi_device * sdev)5355 static void ufshcd_sdev_destroy(struct scsi_device *sdev)
5356 {
5357 struct ufs_hba *hba;
5358 unsigned long flags;
5359
5360 hba = shost_priv(sdev->host);
5361
5362 /* Drop the reference as it won't be needed anymore */
5363 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5364 spin_lock_irqsave(hba->host->host_lock, flags);
5365 hba->ufs_device_wlun = NULL;
5366 spin_unlock_irqrestore(hba->host->host_lock, flags);
5367 } else if (hba->ufs_device_wlun) {
5368 struct device *supplier = NULL;
5369
5370 /* Ensure UFS Device WLUN exists and does not disappear */
5371 spin_lock_irqsave(hba->host->host_lock, flags);
5372 if (hba->ufs_device_wlun) {
5373 supplier = &hba->ufs_device_wlun->sdev_gendev;
5374 get_device(supplier);
5375 }
5376 spin_unlock_irqrestore(hba->host->host_lock, flags);
5377
5378 if (supplier) {
5379 /*
5380 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5381 * device will not have been registered but can still
5382 * have a device link holding a reference to the device.
5383 */
5384 device_link_remove(&sdev->sdev_gendev, supplier);
5385 put_device(supplier);
5386 }
5387 }
5388 }
5389
5390 /**
5391 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5392 * @cmd: SCSI command
5393 * @scsi_status: SCSI command status
5394 *
5395 * Return: value base on SCSI command status.
5396 */
ufshcd_scsi_cmd_status(struct scsi_cmnd * cmd,int scsi_status)5397 static inline int ufshcd_scsi_cmd_status(struct scsi_cmnd *cmd, int scsi_status)
5398 {
5399 int result = 0;
5400
5401 switch (scsi_status) {
5402 case SAM_STAT_CHECK_CONDITION:
5403 ufshcd_copy_sense_data(cmd);
5404 fallthrough;
5405 case SAM_STAT_GOOD:
5406 result |= DID_OK << 16 | scsi_status;
5407 break;
5408 case SAM_STAT_TASK_SET_FULL:
5409 case SAM_STAT_BUSY:
5410 case SAM_STAT_TASK_ABORTED:
5411 ufshcd_copy_sense_data(cmd);
5412 result |= scsi_status;
5413 break;
5414 default:
5415 result |= DID_ERROR << 16;
5416 break;
5417 } /* end of switch */
5418
5419 return result;
5420 }
5421
5422 /**
5423 * ufshcd_transfer_rsp_status - Get overall status of the response
5424 * @hba: per adapter instance
5425 * @cmd: SCSI command
5426 * @cqe: pointer to the completion queue entry
5427 *
5428 * Return: result of the command to notify SCSI midlayer.
5429 */
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct scsi_cmnd * cmd,struct cq_entry * cqe)5430 static inline int ufshcd_transfer_rsp_status(struct ufs_hba *hba,
5431 struct scsi_cmnd *cmd,
5432 struct cq_entry *cqe)
5433 {
5434 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
5435 const int tag = scsi_cmd_to_rq(cmd)->tag;
5436 int result = 0;
5437 int scsi_status;
5438 enum utp_ocs ocs;
5439 u8 upiu_flags;
5440 u32 resid;
5441
5442 upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5443 resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5444 /*
5445 * Test !overflow instead of underflow to support UFS devices that do
5446 * not set either flag.
5447 */
5448 if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5449 scsi_set_resid(cmd, resid);
5450
5451 /* overall command status of utrd */
5452 ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5453
5454 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5455 if (lrbp->ucd_rsp_ptr->header.response ||
5456 lrbp->ucd_rsp_ptr->header.status)
5457 ocs = OCS_SUCCESS;
5458 }
5459
5460 switch (ocs) {
5461 case OCS_SUCCESS:
5462 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5463 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5464 case UPIU_TRANSACTION_RESPONSE:
5465 /*
5466 * get the result based on SCSI status response
5467 * to notify the SCSI midlayer of the command status
5468 */
5469 scsi_status = lrbp->ucd_rsp_ptr->header.status;
5470 result = ufshcd_scsi_cmd_status(cmd, scsi_status);
5471
5472 /*
5473 * Currently we are only supporting BKOPs exception
5474 * events hence we can ignore BKOPs exception event
5475 * during power management callbacks. BKOPs exception
5476 * event is not expected to be raised in runtime suspend
5477 * callback as it allows the urgent bkops.
5478 * During system suspend, we are anyway forcefully
5479 * disabling the bkops and if urgent bkops is needed
5480 * it will be enabled on system resume. Long term
5481 * solution could be to abort the system suspend if
5482 * UFS device needs urgent BKOPs.
5483 */
5484 if (!hba->pm_op_in_progress &&
5485 !ufshcd_eh_in_progress(hba) &&
5486 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5487 /* Flushed in suspend */
5488 schedule_work(&hba->eeh_work);
5489 break;
5490 case UPIU_TRANSACTION_REJECT_UPIU:
5491 /* TODO: handle Reject UPIU Response */
5492 result = DID_ERROR << 16;
5493 dev_err(hba->dev,
5494 "Reject UPIU not fully implemented\n");
5495 break;
5496 default:
5497 dev_err(hba->dev,
5498 "Unexpected request response code = %x\n",
5499 result);
5500 result = DID_ERROR << 16;
5501 break;
5502 }
5503 break;
5504 case OCS_ABORTED:
5505 case OCS_INVALID_COMMAND_STATUS:
5506 result |= DID_REQUEUE << 16;
5507 dev_warn(hba->dev, "OCS %s from controller for tag %d\n",
5508 ocs == OCS_ABORTED ? "aborted" : "invalid", tag);
5509 break;
5510 case OCS_INVALID_CMD_TABLE_ATTR:
5511 case OCS_INVALID_PRDT_ATTR:
5512 case OCS_MISMATCH_DATA_BUF_SIZE:
5513 case OCS_MISMATCH_RESP_UPIU_SIZE:
5514 case OCS_PEER_COMM_FAILURE:
5515 case OCS_FATAL_ERROR:
5516 case OCS_DEVICE_FATAL_ERROR:
5517 case OCS_INVALID_CRYPTO_CONFIG:
5518 case OCS_GENERAL_CRYPTO_ERROR:
5519 default:
5520 result |= DID_ERROR << 16;
5521 dev_err(hba->dev, "OCS error from controller = %x for tag %d\n",
5522 ocs, tag);
5523 ufshcd_print_evt_hist(hba);
5524 ufshcd_print_host_state(hba);
5525 break;
5526 } /* end of switch */
5527
5528 if ((host_byte(result) != DID_OK) &&
5529 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs) {
5530 if (cqe)
5531 ufshcd_hex_dump("UPIU CQE: ", cqe, sizeof(struct cq_entry));
5532 ufshcd_print_tr(hba, cmd, true);
5533 }
5534 return result;
5535 }
5536
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5537 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5538 u32 intr_mask)
5539 {
5540 if (!ufshcd_is_auto_hibern8_supported(hba) ||
5541 !ufshcd_is_auto_hibern8_enabled(hba))
5542 return false;
5543
5544 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5545 return false;
5546
5547 if (hba->active_uic_cmd &&
5548 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5549 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5550 return false;
5551
5552 return true;
5553 }
5554
5555 /**
5556 * ufshcd_uic_cmd_compl - handle completion of uic command
5557 * @hba: per adapter instance
5558 * @intr_status: interrupt status generated by the controller
5559 *
5560 * Return:
5561 * IRQ_HANDLED - If interrupt is valid
5562 * IRQ_NONE - If invalid interrupt
5563 */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5564 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5565 {
5566 irqreturn_t retval = IRQ_NONE;
5567 struct uic_command *cmd;
5568
5569 guard(spinlock_irqsave)(hba->host->host_lock);
5570 cmd = hba->active_uic_cmd;
5571 if (!cmd)
5572 return retval;
5573
5574 if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5575 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5576
5577 if (intr_status & UIC_COMMAND_COMPL) {
5578 cmd->argument2 |= ufshcd_get_uic_cmd_result(hba);
5579 cmd->argument3 = ufshcd_get_dme_attr_val(hba);
5580 if (!hba->uic_async_done)
5581 cmd->cmd_active = false;
5582 complete(&cmd->done);
5583 retval = IRQ_HANDLED;
5584 }
5585
5586 if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) {
5587 cmd->cmd_active = false;
5588 complete(hba->uic_async_done);
5589 retval = IRQ_HANDLED;
5590 }
5591
5592 if (retval == IRQ_HANDLED)
5593 ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP);
5594
5595 return retval;
5596 }
5597
5598 /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd)5599 void ufshcd_release_scsi_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd)
5600 {
5601 scsi_dma_unmap(cmd);
5602 ufshcd_crypto_clear_prdt(hba, cmd);
5603 ufshcd_release(hba);
5604 ufshcd_clk_scaling_update_busy(hba);
5605 }
5606
5607 /**
5608 * ufshcd_compl_one_cqe - handle a completion queue entry
5609 * @hba: per adapter instance
5610 * @task_tag: the task tag of the request to be completed
5611 * @cqe: pointer to the completion queue entry
5612 */
ufshcd_compl_one_cqe(struct ufs_hba * hba,int task_tag,struct cq_entry * cqe)5613 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5614 struct cq_entry *cqe)
5615 {
5616 struct scsi_cmnd *cmd = ufshcd_tag_to_cmd(hba, task_tag);
5617 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
5618 enum utp_ocs ocs;
5619
5620 if (WARN_ONCE(!cmd, "cqe->command_desc_base_addr = %#llx\n",
5621 le64_to_cpu(cqe->command_desc_base_addr)))
5622 return;
5623
5624 if (hba->monitor.enabled) {
5625 lrbp->compl_time_stamp = ktime_get();
5626 lrbp->compl_time_stamp_local_clock = local_clock();
5627 }
5628 if (ufshcd_is_scsi_cmd(cmd)) {
5629 if (unlikely(ufshcd_should_inform_monitor(hba, cmd)))
5630 ufshcd_update_monitor(hba, cmd);
5631 ufshcd_add_command_trace(hba, cmd, UFS_CMD_COMP);
5632 cmd->result = ufshcd_transfer_rsp_status(hba, cmd, cqe);
5633 ufshcd_release_scsi_cmd(hba, cmd);
5634 } else {
5635 if (cqe) {
5636 ocs = cqe->overall_status & MASK_OCS;
5637 lrbp->utr_descriptor_ptr->header.ocs = ocs;
5638 } else {
5639 ocs = lrbp->utr_descriptor_ptr->header.ocs;
5640 }
5641 ufshcd_add_query_upiu_trace(
5642 hba,
5643 ocs == OCS_SUCCESS ? UFS_QUERY_COMP : UFS_QUERY_ERR,
5644 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
5645 cmd->result = 0;
5646 }
5647 /* Do not touch lrbp after scsi_done() has been called. */
5648 scsi_done(cmd);
5649 }
5650
5651 /**
5652 * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5653 * @hba: per adapter instance
5654 * @completed_reqs: bitmask that indicates which requests to complete
5655 */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5656 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5657 unsigned long completed_reqs)
5658 {
5659 int tag;
5660
5661 for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5662 ufshcd_compl_one_cqe(hba, tag, NULL);
5663 }
5664
5665 /* Any value that is not an existing queue number is fine for this constant. */
5666 enum {
5667 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5668 };
5669
ufshcd_clear_polled(struct ufs_hba * hba,unsigned long * completed_reqs)5670 static void ufshcd_clear_polled(struct ufs_hba *hba,
5671 unsigned long *completed_reqs)
5672 {
5673 int tag;
5674
5675 for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5676 struct scsi_cmnd *cmd = scsi_host_find_tag(hba->host, tag);
5677
5678 if (!cmd)
5679 continue;
5680 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5681 __clear_bit(tag, completed_reqs);
5682 }
5683 }
5684
5685 /*
5686 * Return: > 0 if one or more commands have been completed or 0 if no
5687 * requests have been completed.
5688 */
ufshcd_poll(struct Scsi_Host * shost,unsigned int queue_num)5689 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5690 {
5691 struct ufs_hba *hba = shost_priv(shost);
5692 unsigned long completed_reqs, flags;
5693 u32 tr_doorbell;
5694 struct ufs_hw_queue *hwq;
5695
5696 if (hba->mcq_enabled) {
5697 hwq = &hba->uhq[queue_num];
5698
5699 return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5700 }
5701
5702 spin_lock_irqsave(&hba->outstanding_lock, flags);
5703 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5704 completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5705 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5706 "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5707 hba->outstanding_reqs);
5708 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5709 /* Do not complete polled requests from interrupt context. */
5710 ufshcd_clear_polled(hba, &completed_reqs);
5711 }
5712 hba->outstanding_reqs &= ~completed_reqs;
5713 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5714
5715 if (completed_reqs)
5716 __ufshcd_transfer_req_compl(hba, completed_reqs);
5717
5718 return completed_reqs != 0;
5719 }
5720
ufshcd_mcq_force_compl_one(struct request * rq,void * priv)5721 static bool ufshcd_mcq_force_compl_one(struct request *rq, void *priv)
5722 {
5723 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
5724 struct scsi_device *sdev = rq->q->queuedata;
5725 struct Scsi_Host *shost = sdev->host;
5726 struct ufs_hba *hba = shost_priv(shost);
5727 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
5728
5729 if (blk_mq_is_reserved_rq(rq) || !hwq)
5730 return true;
5731
5732 ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5733
5734 /*
5735 * For those cmds of which the cqes are not present in the cq, complete
5736 * them explicitly.
5737 */
5738 scoped_guard(spinlock_irqsave, &hwq->cq_lock) {
5739 if (!test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5740 set_host_byte(cmd, DID_REQUEUE);
5741 ufshcd_release_scsi_cmd(hba, cmd);
5742 scsi_done(cmd);
5743 }
5744 }
5745
5746 return true;
5747 }
5748
ufshcd_mcq_compl_one(struct request * rq,void * priv)5749 static bool ufshcd_mcq_compl_one(struct request *rq, void *priv)
5750 {
5751 struct scsi_device *sdev = rq->q->queuedata;
5752 struct Scsi_Host *shost = sdev->host;
5753 struct ufs_hba *hba = shost_priv(shost);
5754 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
5755
5756 if (!blk_mq_is_reserved_rq(rq) && hwq)
5757 ufshcd_mcq_poll_cqe_lock(hba, hwq);
5758
5759 return true;
5760 }
5761
5762 /**
5763 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5764 * invoked from the error handler context or ufshcd_host_reset_and_restore()
5765 * to complete the pending transfers and free the resources associated with
5766 * the scsi command.
5767 *
5768 * @hba: per adapter instance
5769 * @force_compl: This flag is set to true when invoked
5770 * from ufshcd_host_reset_and_restore() in which case it requires special
5771 * handling because the host controller has been reset by ufshcd_hba_stop().
5772 */
ufshcd_mcq_compl_pending_transfer(struct ufs_hba * hba,bool force_compl)5773 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5774 bool force_compl)
5775 {
5776 blk_mq_tagset_busy_iter(&hba->host->tag_set,
5777 force_compl ? ufshcd_mcq_force_compl_one :
5778 ufshcd_mcq_compl_one,
5779 NULL);
5780 }
5781
5782 /**
5783 * ufshcd_transfer_req_compl - handle SCSI and query command completion
5784 * @hba: per adapter instance
5785 *
5786 * Return:
5787 * IRQ_HANDLED - If interrupt is valid
5788 * IRQ_NONE - If invalid interrupt
5789 */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5790 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5791 {
5792 /* Resetting interrupt aggregation counters first and reading the
5793 * DOOR_BELL afterward allows us to handle all the completed requests.
5794 * In order to prevent other interrupts starvation the DB is read once
5795 * after reset. The down side of this solution is the possibility of
5796 * false interrupt if device completes another request after resetting
5797 * aggregation and before reading the DB.
5798 */
5799 if (ufshcd_is_intr_aggr_allowed(hba) &&
5800 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5801 ufshcd_reset_intr_aggr(hba);
5802
5803 if (ufs_fail_completion(hba))
5804 return IRQ_HANDLED;
5805
5806 /*
5807 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5808 * do not want polling to trigger spurious interrupt complaints.
5809 */
5810 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5811
5812 return IRQ_HANDLED;
5813 }
5814
__ufshcd_write_ee_control(struct ufs_hba * hba,u32 ee_ctrl_mask)5815 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5816 {
5817 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5818 QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5819 &ee_ctrl_mask);
5820 }
5821
ufshcd_write_ee_control(struct ufs_hba * hba)5822 int ufshcd_write_ee_control(struct ufs_hba *hba)
5823 {
5824 int err;
5825
5826 mutex_lock(&hba->ee_ctrl_mutex);
5827 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5828 mutex_unlock(&hba->ee_ctrl_mutex);
5829 if (err)
5830 dev_err(hba->dev, "%s: failed to write ee control %d\n",
5831 __func__, err);
5832 return err;
5833 }
5834
ufshcd_update_ee_control(struct ufs_hba * hba,u16 * mask,const u16 * other_mask,u16 set,u16 clr)5835 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5836 const u16 *other_mask, u16 set, u16 clr)
5837 {
5838 u16 new_mask, ee_ctrl_mask;
5839 int err = 0;
5840
5841 mutex_lock(&hba->ee_ctrl_mutex);
5842 new_mask = (*mask & ~clr) | set;
5843 ee_ctrl_mask = new_mask | *other_mask;
5844 if (ee_ctrl_mask != hba->ee_ctrl_mask)
5845 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5846 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5847 if (!err) {
5848 hba->ee_ctrl_mask = ee_ctrl_mask;
5849 *mask = new_mask;
5850 }
5851 mutex_unlock(&hba->ee_ctrl_mutex);
5852 return err;
5853 }
5854
5855 /**
5856 * ufshcd_disable_ee - disable exception event
5857 * @hba: per-adapter instance
5858 * @mask: exception event to disable
5859 *
5860 * Disables exception event in the device so that the EVENT_ALERT
5861 * bit is not set.
5862 *
5863 * Return: zero on success, non-zero error value on failure.
5864 */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5865 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5866 {
5867 return ufshcd_update_ee_drv_mask(hba, 0, mask);
5868 }
5869
5870 /**
5871 * ufshcd_enable_ee - enable exception event
5872 * @hba: per-adapter instance
5873 * @mask: exception event to enable
5874 *
5875 * Enable corresponding exception event in the device to allow
5876 * device to alert host in critical scenarios.
5877 *
5878 * Return: zero on success, non-zero error value on failure.
5879 */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5880 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5881 {
5882 return ufshcd_update_ee_drv_mask(hba, mask, 0);
5883 }
5884
5885 /**
5886 * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5887 * @hba: per-adapter instance
5888 *
5889 * Allow device to manage background operations on its own. Enabling
5890 * this might lead to inconsistent latencies during normal data transfers
5891 * as the device is allowed to manage its own way of handling background
5892 * operations.
5893 *
5894 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
5895 * < 0 if another error occurred.
5896 */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5897 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5898 {
5899 int err = 0;
5900
5901 if (hba->auto_bkops_enabled)
5902 goto out;
5903
5904 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5905 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5906 if (err) {
5907 dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5908 __func__, err);
5909 goto out;
5910 }
5911
5912 hba->auto_bkops_enabled = true;
5913 trace_ufshcd_auto_bkops_state(hba, "Enabled");
5914
5915 /* No need of URGENT_BKOPS exception from the device */
5916 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5917 if (err)
5918 dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5919 __func__, err);
5920 out:
5921 return err;
5922 }
5923
5924 /**
5925 * ufshcd_disable_auto_bkops - block device in doing background operations
5926 * @hba: per-adapter instance
5927 *
5928 * Disabling background operations improves command response latency but
5929 * has drawback of device moving into critical state where the device is
5930 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5931 * host is idle so that BKOPS are managed effectively without any negative
5932 * impacts.
5933 *
5934 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
5935 * < 0 if another error occurred.
5936 */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5937 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5938 {
5939 int err = 0;
5940
5941 if (!hba->auto_bkops_enabled)
5942 goto out;
5943
5944 /*
5945 * If host assisted BKOPs is to be enabled, make sure
5946 * urgent bkops exception is allowed.
5947 */
5948 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5949 if (err) {
5950 dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5951 __func__, err);
5952 goto out;
5953 }
5954
5955 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5956 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5957 if (err) {
5958 dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5959 __func__, err);
5960 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5961 goto out;
5962 }
5963
5964 hba->auto_bkops_enabled = false;
5965 trace_ufshcd_auto_bkops_state(hba, "Disabled");
5966 hba->is_urgent_bkops_lvl_checked = false;
5967 out:
5968 return err;
5969 }
5970
5971 /**
5972 * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5973 * @hba: per adapter instance
5974 *
5975 * After a device reset the device may toggle the BKOPS_EN flag
5976 * to default value. The s/w tracking variables should be updated
5977 * as well. This function would change the auto-bkops state based on
5978 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5979 */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5980 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5981 {
5982 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5983 hba->auto_bkops_enabled = false;
5984 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5985 ufshcd_enable_auto_bkops(hba);
5986 } else {
5987 hba->auto_bkops_enabled = true;
5988 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5989 ufshcd_disable_auto_bkops(hba);
5990 }
5991 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5992 hba->is_urgent_bkops_lvl_checked = false;
5993 }
5994
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5995 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5996 {
5997 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5998 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5999 }
6000
6001 /**
6002 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
6003 * @hba: per-adapter instance
6004 *
6005 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
6006 * flag in the device to permit background operations if the device
6007 * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl",
6008 * disable otherwise.
6009 *
6010 * Return: 0 for success, non-zero in case of failure.
6011 *
6012 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
6013 * to know whether auto bkops is enabled or disabled after this function
6014 * returns control to it.
6015 */
ufshcd_bkops_ctrl(struct ufs_hba * hba)6016 static int ufshcd_bkops_ctrl(struct ufs_hba *hba)
6017 {
6018 enum bkops_status status = hba->urgent_bkops_lvl;
6019 u32 curr_status = 0;
6020 int err;
6021
6022 err = ufshcd_get_bkops_status(hba, &curr_status);
6023 if (err) {
6024 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
6025 __func__, err);
6026 goto out;
6027 } else if (curr_status > BKOPS_STATUS_MAX) {
6028 dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
6029 __func__, curr_status);
6030 err = -EINVAL;
6031 goto out;
6032 }
6033
6034 if (curr_status >= status)
6035 err = ufshcd_enable_auto_bkops(hba);
6036 else
6037 err = ufshcd_disable_auto_bkops(hba);
6038 out:
6039 return err;
6040 }
6041
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)6042 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
6043 {
6044 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6045 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
6046 }
6047
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)6048 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
6049 {
6050 int err;
6051 u32 curr_status = 0;
6052
6053 if (hba->is_urgent_bkops_lvl_checked)
6054 goto enable_auto_bkops;
6055
6056 err = ufshcd_get_bkops_status(hba, &curr_status);
6057 if (err) {
6058 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
6059 __func__, err);
6060 goto out;
6061 }
6062
6063 /*
6064 * We are seeing that some devices are raising the urgent bkops
6065 * exception events even when BKOPS status doesn't indicate performace
6066 * impacted or critical. Handle these device by determining their urgent
6067 * bkops status at runtime.
6068 */
6069 if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
6070 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
6071 __func__, curr_status);
6072 /* update the current status as the urgent bkops level */
6073 hba->urgent_bkops_lvl = curr_status;
6074 hba->is_urgent_bkops_lvl_checked = true;
6075 }
6076
6077 enable_auto_bkops:
6078 err = ufshcd_enable_auto_bkops(hba);
6079 out:
6080 if (err < 0)
6081 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
6082 __func__, err);
6083 }
6084
6085 /*
6086 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
6087 * < 0 if another error occurred.
6088 */
ufshcd_read_device_lvl_exception_id(struct ufs_hba * hba,u64 * exception_id)6089 int ufshcd_read_device_lvl_exception_id(struct ufs_hba *hba, u64 *exception_id)
6090 {
6091 struct utp_upiu_query_v4_0 *upiu_resp;
6092 struct ufs_query_req *request = NULL;
6093 struct ufs_query_res *response = NULL;
6094 int err;
6095
6096 if (hba->dev_info.wspecversion < 0x410)
6097 return -EOPNOTSUPP;
6098
6099 ufshcd_hold(hba);
6100 mutex_lock(&hba->dev_cmd.lock);
6101
6102 ufshcd_init_query(hba, &request, &response,
6103 UPIU_QUERY_OPCODE_READ_ATTR,
6104 QUERY_ATTR_IDN_DEV_LVL_EXCEPTION_ID, 0, 0);
6105
6106 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
6107
6108 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
6109
6110 if (err) {
6111 dev_err(hba->dev, "%s: failed to read device level exception %d\n",
6112 __func__, err);
6113 goto out;
6114 }
6115
6116 upiu_resp = (struct utp_upiu_query_v4_0 *)response;
6117 *exception_id = get_unaligned_be64(&upiu_resp->osf3);
6118 out:
6119 mutex_unlock(&hba->dev_cmd.lock);
6120 ufshcd_release(hba);
6121
6122 return err;
6123 }
6124
__ufshcd_wb_toggle(struct ufs_hba * hba,bool set,enum flag_idn idn)6125 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
6126 {
6127 u8 index;
6128 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
6129 UPIU_QUERY_OPCODE_CLEAR_FLAG;
6130
6131 index = ufshcd_wb_get_query_index(hba);
6132 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
6133 }
6134
ufshcd_wb_toggle(struct ufs_hba * hba,bool enable)6135 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
6136 {
6137 int ret;
6138
6139 if (!ufshcd_is_wb_allowed(hba) ||
6140 hba->dev_info.wb_enabled == enable)
6141 return 0;
6142
6143 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
6144 if (ret) {
6145 dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
6146 __func__, enable ? "enabling" : "disabling", ret);
6147 return ret;
6148 }
6149
6150 hba->dev_info.wb_enabled = enable;
6151 dev_dbg(hba->dev, "%s: Write Booster %s\n",
6152 __func__, enable ? "enabled" : "disabled");
6153
6154 return ret;
6155 }
6156
ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba * hba,bool enable)6157 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6158 bool enable)
6159 {
6160 int ret;
6161
6162 ret = __ufshcd_wb_toggle(hba, enable,
6163 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6164 if (ret) {
6165 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6166 __func__, enable ? "enabling" : "disabling", ret);
6167 return;
6168 }
6169 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6170 __func__, enable ? "enabled" : "disabled");
6171 }
6172
ufshcd_wb_toggle_buf_flush(struct ufs_hba * hba,bool enable)6173 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6174 {
6175 int ret;
6176
6177 if (!ufshcd_is_wb_allowed(hba) ||
6178 hba->dev_info.wb_buf_flush_enabled == enable)
6179 return 0;
6180
6181 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6182 if (ret) {
6183 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6184 __func__, enable ? "enabling" : "disabling", ret);
6185 return ret;
6186 }
6187
6188 hba->dev_info.wb_buf_flush_enabled = enable;
6189 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6190 __func__, enable ? "enabled" : "disabled");
6191
6192 return ret;
6193 }
6194
ufshcd_wb_set_resize_en(struct ufs_hba * hba,enum wb_resize_en en_mode)6195 int ufshcd_wb_set_resize_en(struct ufs_hba *hba, enum wb_resize_en en_mode)
6196 {
6197 int ret;
6198 u8 index;
6199
6200 index = ufshcd_wb_get_query_index(hba);
6201 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
6202 QUERY_ATTR_IDN_WB_BUF_RESIZE_EN, index, 0, &en_mode);
6203 if (ret)
6204 dev_err(hba->dev, "%s: Enable WB buf resize operation failed %d\n",
6205 __func__, ret);
6206
6207 return ret;
6208 }
6209
ufshcd_wb_curr_buff_threshold_check(struct ufs_hba * hba,u32 avail_buf)6210 static bool ufshcd_wb_curr_buff_threshold_check(struct ufs_hba *hba,
6211 u32 avail_buf)
6212 {
6213 u32 cur_buf;
6214 int ret;
6215 u8 index;
6216
6217 index = ufshcd_wb_get_query_index(hba);
6218 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6219 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6220 index, 0, &cur_buf);
6221 if (ret) {
6222 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6223 __func__, ret);
6224 return false;
6225 }
6226
6227 if (!cur_buf) {
6228 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6229 cur_buf);
6230 return false;
6231 }
6232 /* Let it continue to flush when available buffer exceeds threshold */
6233 return avail_buf < hba->vps->wb_flush_threshold;
6234 }
6235
ufshcd_wb_force_disable(struct ufs_hba * hba)6236 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6237 {
6238 if (ufshcd_is_wb_buf_flush_allowed(hba))
6239 ufshcd_wb_toggle_buf_flush(hba, false);
6240
6241 ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6242 ufshcd_wb_toggle(hba, false);
6243 hba->caps &= ~UFSHCD_CAP_WB_EN;
6244
6245 dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6246 }
6247
ufshcd_is_wb_buf_lifetime_available(struct ufs_hba * hba)6248 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6249 {
6250 u32 lifetime;
6251 int ret;
6252 u8 index;
6253
6254 index = ufshcd_wb_get_query_index(hba);
6255 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6256 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6257 index, 0, &lifetime);
6258 if (ret) {
6259 dev_err(hba->dev,
6260 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6261 __func__, ret);
6262 return false;
6263 }
6264
6265 if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6266 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6267 __func__, lifetime);
6268 return false;
6269 }
6270
6271 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6272 __func__, lifetime);
6273
6274 return true;
6275 }
6276
ufshcd_wb_need_flush(struct ufs_hba * hba)6277 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6278 {
6279 int ret;
6280 u32 avail_buf;
6281 u8 index;
6282
6283 if (!ufshcd_is_wb_allowed(hba))
6284 return false;
6285
6286 if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6287 ufshcd_wb_force_disable(hba);
6288 return false;
6289 }
6290
6291 /*
6292 * With user-space reduction enabled, it's enough to enable flush
6293 * by checking only the available buffer. The threshold
6294 * defined here is > 90% full.
6295 * With user-space preserved enabled, the current-buffer
6296 * should be checked too because the wb buffer size can reduce
6297 * when disk tends to be full. This info is provided by current
6298 * buffer (dCurrentWriteBoosterBufferSize).
6299 */
6300 index = ufshcd_wb_get_query_index(hba);
6301 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6302 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6303 index, 0, &avail_buf);
6304 if (ret) {
6305 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6306 __func__, ret);
6307 return false;
6308 }
6309
6310 if (!hba->dev_info.b_presrv_uspc_en)
6311 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6312
6313 return ufshcd_wb_curr_buff_threshold_check(hba, avail_buf);
6314 }
6315
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)6316 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6317 {
6318 struct ufs_hba *hba = container_of(to_delayed_work(work),
6319 struct ufs_hba,
6320 rpm_dev_flush_recheck_work);
6321 /*
6322 * To prevent unnecessary VCC power drain after device finishes
6323 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6324 * after a certain delay to recheck the threshold by next runtime
6325 * suspend.
6326 */
6327 ufshcd_rpm_get_sync(hba);
6328 ufshcd_rpm_put_sync(hba);
6329 }
6330
6331 /**
6332 * ufshcd_exception_event_handler - handle exceptions raised by device
6333 * @work: pointer to work data
6334 *
6335 * Read bExceptionEventStatus attribute from the device and handle the
6336 * exception event accordingly.
6337 */
ufshcd_exception_event_handler(struct work_struct * work)6338 static void ufshcd_exception_event_handler(struct work_struct *work)
6339 {
6340 struct ufs_hba *hba;
6341 int err;
6342 u32 status = 0;
6343 hba = container_of(work, struct ufs_hba, eeh_work);
6344
6345 err = ufshcd_get_ee_status(hba, &status);
6346 if (err) {
6347 dev_err(hba->dev, "%s: failed to get exception status %d\n",
6348 __func__, err);
6349 return;
6350 }
6351
6352 trace_ufshcd_exception_event(hba, status);
6353
6354 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6355 ufshcd_bkops_exception_event_handler(hba);
6356
6357 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6358 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
6359
6360 if (status & hba->ee_drv_mask & MASK_EE_HEALTH_CRITICAL) {
6361 hba->critical_health_count++;
6362 sysfs_notify(&hba->dev->kobj, NULL, "critical_health");
6363 }
6364
6365 if (status & hba->ee_drv_mask & MASK_EE_DEV_LVL_EXCEPTION) {
6366 atomic_inc(&hba->dev_lvl_exception_count);
6367 sysfs_notify(&hba->dev->kobj, NULL, "device_lvl_exception_count");
6368 }
6369
6370 ufs_debugfs_exception_event(hba, status);
6371 }
6372
6373 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba,bool force_compl)6374 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6375 {
6376 if (hba->mcq_enabled)
6377 ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6378 else
6379 ufshcd_transfer_req_compl(hba);
6380
6381 ufshcd_tmc_handler(hba);
6382 }
6383
6384 /**
6385 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6386 * to recover from the DL NAC errors or not.
6387 * @hba: per-adapter instance
6388 *
6389 * Return: true if error handling is required, false otherwise.
6390 */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)6391 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6392 {
6393 unsigned long flags;
6394 bool err_handling = true;
6395
6396 spin_lock_irqsave(hba->host->host_lock, flags);
6397 /*
6398 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6399 * device fatal error and/or DL NAC & REPLAY timeout errors.
6400 */
6401 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6402 goto out;
6403
6404 if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6405 ((hba->saved_err & UIC_ERROR) &&
6406 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6407 goto out;
6408
6409 if ((hba->saved_err & UIC_ERROR) &&
6410 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6411 int err;
6412 /*
6413 * wait for 50ms to see if we can get any other errors or not.
6414 */
6415 spin_unlock_irqrestore(hba->host->host_lock, flags);
6416 msleep(50);
6417 spin_lock_irqsave(hba->host->host_lock, flags);
6418
6419 /*
6420 * now check if we have got any other severe errors other than
6421 * DL NAC error?
6422 */
6423 if ((hba->saved_err & INT_FATAL_ERRORS) ||
6424 ((hba->saved_err & UIC_ERROR) &&
6425 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6426 goto out;
6427
6428 /*
6429 * As DL NAC is the only error received so far, send out NOP
6430 * command to confirm if link is still active or not.
6431 * - If we don't get any response then do error recovery.
6432 * - If we get response then clear the DL NAC error bit.
6433 */
6434
6435 spin_unlock_irqrestore(hba->host->host_lock, flags);
6436 err = ufshcd_verify_dev_init(hba);
6437 spin_lock_irqsave(hba->host->host_lock, flags);
6438
6439 if (err)
6440 goto out;
6441
6442 /* Link seems to be alive hence ignore the DL NAC errors */
6443 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6444 hba->saved_err &= ~UIC_ERROR;
6445 /* clear NAC error */
6446 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6447 if (!hba->saved_uic_err)
6448 err_handling = false;
6449 }
6450 out:
6451 spin_unlock_irqrestore(hba->host->host_lock, flags);
6452 return err_handling;
6453 }
6454
6455 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)6456 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6457 {
6458 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6459 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6460 }
6461
ufshcd_schedule_eh_work(struct ufs_hba * hba)6462 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6463 {
6464 lockdep_assert_held(hba->host->host_lock);
6465
6466 /* handle fatal errors only when link is not in error state */
6467 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6468 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6469 ufshcd_is_saved_err_fatal(hba))
6470 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6471 else
6472 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6473 queue_work(hba->eh_wq, &hba->eh_work);
6474 }
6475 }
6476
ufshcd_force_error_recovery(struct ufs_hba * hba)6477 void ufshcd_force_error_recovery(struct ufs_hba *hba)
6478 {
6479 spin_lock_irq(hba->host->host_lock);
6480 hba->force_reset = true;
6481 ufshcd_schedule_eh_work(hba);
6482 spin_unlock_irq(hba->host->host_lock);
6483 }
6484 EXPORT_SYMBOL_GPL(ufshcd_force_error_recovery);
6485
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)6486 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6487 {
6488 mutex_lock(&hba->wb_mutex);
6489 down_write(&hba->clk_scaling_lock);
6490 hba->clk_scaling.is_allowed = allow;
6491 up_write(&hba->clk_scaling_lock);
6492 mutex_unlock(&hba->wb_mutex);
6493 }
6494
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)6495 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6496 {
6497 if (suspend) {
6498 if (hba->clk_scaling.is_enabled)
6499 ufshcd_suspend_clkscaling(hba);
6500 ufshcd_clk_scaling_allow(hba, false);
6501 } else {
6502 ufshcd_clk_scaling_allow(hba, true);
6503 if (hba->clk_scaling.is_enabled)
6504 ufshcd_resume_clkscaling(hba);
6505 }
6506 }
6507
ufshcd_err_handling_prepare(struct ufs_hba * hba)6508 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6509 {
6510 /*
6511 * A WLUN resume failure could potentially lead to the HBA being
6512 * runtime suspended, so take an extra reference on hba->dev.
6513 */
6514 pm_runtime_get_sync(hba->dev);
6515 ufshcd_rpm_get_sync(hba);
6516 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6517 hba->is_sys_suspended) {
6518 enum ufs_pm_op pm_op;
6519
6520 /*
6521 * Don't assume anything of resume, if
6522 * resume fails, irq and clocks can be OFF, and powers
6523 * can be OFF or in LPM.
6524 */
6525 ufshcd_setup_hba_vreg(hba, true);
6526 ufshcd_enable_irq(hba);
6527 ufshcd_setup_vreg(hba, true);
6528 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6529 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6530 ufshcd_hold(hba);
6531 if (!ufshcd_is_clkgating_allowed(hba))
6532 ufshcd_setup_clocks(hba, true);
6533 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6534 ufshcd_vops_resume(hba, pm_op);
6535 } else {
6536 ufshcd_hold(hba);
6537 if (ufshcd_is_clkscaling_supported(hba) &&
6538 hba->clk_scaling.is_enabled)
6539 ufshcd_suspend_clkscaling(hba);
6540 ufshcd_clk_scaling_allow(hba, false);
6541 }
6542 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6543 blk_mq_quiesce_tagset(&hba->host->tag_set);
6544 cancel_work_sync(&hba->eeh_work);
6545 }
6546
ufshcd_err_handling_unprepare(struct ufs_hba * hba)6547 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6548 {
6549 blk_mq_unquiesce_tagset(&hba->host->tag_set);
6550 ufshcd_release(hba);
6551 if (ufshcd_is_clkscaling_supported(hba))
6552 ufshcd_clk_scaling_suspend(hba, false);
6553 ufshcd_rpm_put(hba);
6554 pm_runtime_put(hba->dev);
6555 }
6556
ufshcd_err_handling_should_stop(struct ufs_hba * hba)6557 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6558 {
6559 return (!hba->is_powered || hba->shutting_down ||
6560 !hba->ufs_device_wlun ||
6561 hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6562 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6563 ufshcd_is_link_broken(hba))));
6564 }
6565
6566 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)6567 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6568 {
6569 struct scsi_target *starget = hba->ufs_device_wlun->sdev_target;
6570 struct Scsi_Host *shost = hba->host;
6571 struct scsi_device *sdev;
6572 struct request_queue *q;
6573 bool resume_sdev_queues = false;
6574
6575 hba->is_sys_suspended = false;
6576
6577 /*
6578 * Ensure the parent's error status is cleared before proceeding
6579 * to the child, as the parent must be active to activate the child.
6580 */
6581 if (hba->dev->power.runtime_error) {
6582 /* hba->dev has no functional parent thus simplily set RPM_ACTIVE */
6583 pm_runtime_set_active(hba->dev);
6584 resume_sdev_queues = true;
6585 }
6586
6587 if (hba->ufs_device_wlun->sdev_gendev.power.runtime_error) {
6588 /*
6589 * starget, parent of wlun, might be suspended if wlun resume failed.
6590 * Make sure parent is resumed before set child (wlun) active.
6591 */
6592 pm_runtime_get_sync(&starget->dev);
6593 pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6594 pm_runtime_put_sync(&starget->dev);
6595 resume_sdev_queues = true;
6596 }
6597
6598 /*
6599 * If wlun device had runtime error, we also need to resume those
6600 * consumer scsi devices in case any of them has failed to be
6601 * resumed due to supplier runtime resume failure. This is to unblock
6602 * blk_queue_enter in case there are bios waiting inside it.
6603 */
6604 if (resume_sdev_queues) {
6605 shost_for_each_device(sdev, shost) {
6606 q = sdev->request_queue;
6607 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6608 q->rpm_status == RPM_SUSPENDING))
6609 pm_request_resume(q->dev);
6610 }
6611 }
6612 }
6613 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6614 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6615 {
6616 }
6617 #endif
6618
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6619 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6620 {
6621 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6622 u32 mode;
6623
6624 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6625
6626 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6627 return true;
6628
6629 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6630 return true;
6631
6632 return false;
6633 }
6634
ufshcd_abort_one(struct request * rq,void * priv)6635 static bool ufshcd_abort_one(struct request *rq, void *priv)
6636 {
6637 int *ret = priv;
6638 u32 tag = rq->tag;
6639 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6640 struct scsi_device *sdev = cmd->device;
6641 struct Scsi_Host *shost = sdev->host;
6642 struct ufs_hba *hba = shost_priv(shost);
6643
6644 if (blk_mq_is_reserved_rq(rq))
6645 return true;
6646
6647 *ret = ufshcd_try_to_abort_task(hba, tag);
6648 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6649 ufshcd_is_scsi_cmd(cmd) ? cmd->cmnd[0] : -1,
6650 *ret ? "failed" : "succeeded");
6651
6652 return *ret == 0;
6653 }
6654
6655 /**
6656 * ufshcd_abort_all - Abort all pending commands.
6657 * @hba: Host bus adapter pointer.
6658 *
6659 * Return: true if and only if the host controller needs to be reset.
6660 */
ufshcd_abort_all(struct ufs_hba * hba)6661 static bool ufshcd_abort_all(struct ufs_hba *hba)
6662 {
6663 int tag, ret = 0;
6664
6665 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6666 if (ret)
6667 goto out;
6668
6669 /* Clear pending task management requests */
6670 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6671 ret = ufshcd_clear_tm_cmd(hba, tag);
6672 if (ret)
6673 goto out;
6674 }
6675
6676 out:
6677 /* Complete the requests that are cleared by s/w */
6678 ufshcd_complete_requests(hba, false);
6679
6680 return ret != 0;
6681 }
6682
6683 /**
6684 * ufshcd_err_handler - handle UFS errors that require s/w attention
6685 * @work: pointer to work structure
6686 */
ufshcd_err_handler(struct work_struct * work)6687 static void ufshcd_err_handler(struct work_struct *work)
6688 {
6689 int retries = MAX_ERR_HANDLER_RETRIES;
6690 struct ufs_hba *hba;
6691 unsigned long flags;
6692 bool needs_restore;
6693 bool needs_reset;
6694 int pmc_err;
6695
6696 hba = container_of(work, struct ufs_hba, eh_work);
6697
6698 dev_info(hba->dev,
6699 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = 0x%x; saved_uic_err = 0x%x; force_reset = %d%s\n",
6700 __func__, ufshcd_state_name[hba->ufshcd_state],
6701 hba->is_powered, hba->shutting_down, hba->saved_err,
6702 hba->saved_uic_err, hba->force_reset,
6703 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6704
6705 if (hba->ufs_device_wlun) {
6706 /*
6707 * Use ufshcd_rpm_get_noresume() here to safely perform link
6708 * recovery even if an error occurs during runtime suspend or
6709 * runtime resume. This avoids potential deadlocks that could
6710 * happen if we tried to resume the device while a PM operation
6711 * is already in progress.
6712 */
6713 ufshcd_rpm_get_noresume(hba);
6714 if (hba->pm_op_in_progress) {
6715 ufshcd_link_recovery(hba);
6716 ufshcd_rpm_put(hba);
6717 return;
6718 }
6719 ufshcd_rpm_put(hba);
6720 }
6721
6722 down(&hba->host_sem);
6723 spin_lock_irqsave(hba->host->host_lock, flags);
6724 if (ufshcd_err_handling_should_stop(hba)) {
6725 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6726 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6727 spin_unlock_irqrestore(hba->host->host_lock, flags);
6728 up(&hba->host_sem);
6729 return;
6730 }
6731 spin_unlock_irqrestore(hba->host->host_lock, flags);
6732
6733 ufshcd_err_handling_prepare(hba);
6734
6735 spin_lock_irqsave(hba->host->host_lock, flags);
6736 ufshcd_set_eh_in_progress(hba);
6737 spin_unlock_irqrestore(hba->host->host_lock, flags);
6738
6739 /* Complete requests that have door-bell cleared by h/w */
6740 ufshcd_complete_requests(hba, false);
6741 spin_lock_irqsave(hba->host->host_lock, flags);
6742 again:
6743 needs_restore = false;
6744 needs_reset = false;
6745
6746 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6747 hba->ufshcd_state = UFSHCD_STATE_RESET;
6748 /*
6749 * A full reset and restore might have happened after preparation
6750 * is finished, double check whether we should stop.
6751 */
6752 if (ufshcd_err_handling_should_stop(hba))
6753 goto skip_err_handling;
6754
6755 if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6756 !hba->force_reset) {
6757 bool ret;
6758
6759 spin_unlock_irqrestore(hba->host->host_lock, flags);
6760 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6761 ret = ufshcd_quirk_dl_nac_errors(hba);
6762 spin_lock_irqsave(hba->host->host_lock, flags);
6763 if (!ret && ufshcd_err_handling_should_stop(hba))
6764 goto skip_err_handling;
6765 }
6766
6767 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6768 (hba->saved_uic_err &&
6769 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6770 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6771
6772 spin_unlock_irqrestore(hba->host->host_lock, flags);
6773 ufshcd_print_host_state(hba);
6774 ufshcd_print_pwr_info(hba);
6775 ufshcd_print_evt_hist(hba);
6776 ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6777 ufshcd_print_trs_all(hba, pr_prdt);
6778 spin_lock_irqsave(hba->host->host_lock, flags);
6779 }
6780
6781 /*
6782 * if host reset is required then skip clearing the pending
6783 * transfers forcefully because they will get cleared during
6784 * host reset and restore
6785 */
6786 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6787 ufshcd_is_saved_err_fatal(hba) ||
6788 ((hba->saved_err & UIC_ERROR) &&
6789 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6790 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6791 needs_reset = true;
6792 goto do_reset;
6793 }
6794
6795 /*
6796 * If LINERESET was caught, UFS might have been put to PWM mode,
6797 * check if power mode restore is needed.
6798 */
6799 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6800 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6801 if (!hba->saved_uic_err)
6802 hba->saved_err &= ~UIC_ERROR;
6803 spin_unlock_irqrestore(hba->host->host_lock, flags);
6804 if (ufshcd_is_pwr_mode_restore_needed(hba))
6805 needs_restore = true;
6806 spin_lock_irqsave(hba->host->host_lock, flags);
6807 if (!hba->saved_err && !needs_restore)
6808 goto skip_err_handling;
6809 }
6810
6811 hba->silence_err_logs = true;
6812 /* release lock as clear command might sleep */
6813 spin_unlock_irqrestore(hba->host->host_lock, flags);
6814
6815 needs_reset = ufshcd_abort_all(hba);
6816
6817 spin_lock_irqsave(hba->host->host_lock, flags);
6818 hba->silence_err_logs = false;
6819 if (needs_reset)
6820 goto do_reset;
6821
6822 /*
6823 * After all reqs and tasks are cleared from doorbell,
6824 * now it is safe to retore power mode.
6825 */
6826 if (needs_restore) {
6827 spin_unlock_irqrestore(hba->host->host_lock, flags);
6828 /*
6829 * Hold the scaling lock just in case dev cmds
6830 * are sent via bsg and/or sysfs.
6831 */
6832 down_write(&hba->clk_scaling_lock);
6833 hba->force_pmc = true;
6834 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6835 if (pmc_err) {
6836 needs_reset = true;
6837 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6838 __func__, pmc_err);
6839 }
6840 hba->force_pmc = false;
6841 ufshcd_print_pwr_info(hba);
6842 up_write(&hba->clk_scaling_lock);
6843 spin_lock_irqsave(hba->host->host_lock, flags);
6844 }
6845
6846 do_reset:
6847 /* Fatal errors need reset */
6848 if (needs_reset) {
6849 int err;
6850
6851 hba->force_reset = false;
6852 spin_unlock_irqrestore(hba->host->host_lock, flags);
6853 err = ufshcd_reset_and_restore(hba);
6854 if (err)
6855 dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6856 __func__, err);
6857 else
6858 ufshcd_recover_pm_error(hba);
6859 spin_lock_irqsave(hba->host->host_lock, flags);
6860 }
6861
6862 skip_err_handling:
6863 if (!needs_reset) {
6864 if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6865 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6866 if (hba->saved_err || hba->saved_uic_err)
6867 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6868 __func__, hba->saved_err, hba->saved_uic_err);
6869 }
6870 /* Exit in an operational state or dead */
6871 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6872 hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6873 if (--retries)
6874 goto again;
6875 hba->ufshcd_state = UFSHCD_STATE_ERROR;
6876 }
6877 ufshcd_clear_eh_in_progress(hba);
6878 spin_unlock_irqrestore(hba->host->host_lock, flags);
6879 ufshcd_err_handling_unprepare(hba);
6880 up(&hba->host_sem);
6881
6882 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6883 ufshcd_state_name[hba->ufshcd_state]);
6884 }
6885
6886 /**
6887 * ufshcd_update_uic_error - check and set fatal UIC error flags.
6888 * @hba: per-adapter instance
6889 *
6890 * Return:
6891 * IRQ_HANDLED - If interrupt is valid
6892 * IRQ_NONE - If invalid interrupt
6893 */
ufshcd_update_uic_error(struct ufs_hba * hba)6894 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6895 {
6896 u32 reg;
6897 irqreturn_t retval = IRQ_NONE;
6898
6899 /* PHY layer error */
6900 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6901 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6902 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6903 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6904 /*
6905 * To know whether this error is fatal or not, DB timeout
6906 * must be checked but this error is handled separately.
6907 */
6908 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6909 dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6910 __func__);
6911
6912 /* Got a LINERESET indication. */
6913 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6914 struct uic_command *cmd = NULL;
6915
6916 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6917 if (hba->uic_async_done && hba->active_uic_cmd)
6918 cmd = hba->active_uic_cmd;
6919 /*
6920 * Ignore the LINERESET during power mode change
6921 * operation via DME_SET command.
6922 */
6923 if (cmd && (cmd->command == UIC_CMD_DME_SET))
6924 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6925 }
6926 retval |= IRQ_HANDLED;
6927 }
6928
6929 /* PA_INIT_ERROR is fatal and needs UIC reset */
6930 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6931 if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6932 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6933 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6934
6935 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6936 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6937 else if (hba->dev_quirks &
6938 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6939 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6940 hba->uic_error |=
6941 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6942 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6943 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6944 }
6945 retval |= IRQ_HANDLED;
6946 }
6947
6948 /* UIC NL/TL/DME errors needs software retry */
6949 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6950 if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6951 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6952 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6953 hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6954 retval |= IRQ_HANDLED;
6955 }
6956
6957 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6958 if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6959 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6960 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6961 hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6962 retval |= IRQ_HANDLED;
6963 }
6964
6965 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6966 if ((reg & UIC_DME_ERROR) &&
6967 (reg & UIC_DME_ERROR_CODE_MASK)) {
6968 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6969 hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6970 retval |= IRQ_HANDLED;
6971 }
6972
6973 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6974 __func__, hba->uic_error);
6975 return retval;
6976 }
6977
6978 /**
6979 * ufshcd_check_errors - Check for errors that need s/w attention
6980 * @hba: per-adapter instance
6981 * @intr_status: interrupt status generated by the controller
6982 *
6983 * Return:
6984 * IRQ_HANDLED - If interrupt is valid
6985 * IRQ_NONE - If invalid interrupt
6986 */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6987 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6988 {
6989 bool queue_eh_work = false;
6990 irqreturn_t retval = IRQ_NONE;
6991
6992 guard(spinlock_irqsave)(hba->host->host_lock);
6993 hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6994
6995 if (hba->errors & INT_FATAL_ERRORS) {
6996 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6997 hba->errors);
6998 queue_eh_work = true;
6999 }
7000
7001 if (hba->errors & UIC_ERROR) {
7002 hba->uic_error = 0;
7003 retval = ufshcd_update_uic_error(hba);
7004 if (hba->uic_error)
7005 queue_eh_work = true;
7006 }
7007
7008 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
7009 dev_err(hba->dev,
7010 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
7011 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
7012 "Enter" : "Exit",
7013 hba->errors, ufshcd_get_upmcrs(hba));
7014 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
7015 hba->errors);
7016 ufshcd_set_link_broken(hba);
7017 queue_eh_work = true;
7018 }
7019
7020 if (queue_eh_work) {
7021 /*
7022 * update the transfer error masks to sticky bits, let's do this
7023 * irrespective of current ufshcd_state.
7024 */
7025 hba->saved_err |= hba->errors;
7026 hba->saved_uic_err |= hba->uic_error;
7027
7028 /* dump controller state before resetting */
7029 if ((hba->saved_err &
7030 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
7031 (hba->saved_uic_err &&
7032 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
7033 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
7034 __func__, hba->saved_err,
7035 hba->saved_uic_err);
7036 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
7037 "host_regs: ");
7038 ufshcd_print_pwr_info(hba);
7039 }
7040 ufshcd_schedule_eh_work(hba);
7041 retval |= IRQ_HANDLED;
7042 }
7043 /*
7044 * if (!queue_eh_work) -
7045 * Other errors are either non-fatal where host recovers
7046 * itself without s/w intervention or errors that will be
7047 * handled by the SCSI core layer.
7048 */
7049 hba->errors = 0;
7050 hba->uic_error = 0;
7051
7052 return retval;
7053 }
7054
7055 /**
7056 * ufshcd_tmc_handler - handle task management function completion
7057 * @hba: per adapter instance
7058 *
7059 * Return:
7060 * IRQ_HANDLED - If interrupt is valid
7061 * IRQ_NONE - If invalid interrupt
7062 */
ufshcd_tmc_handler(struct ufs_hba * hba)7063 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
7064 {
7065 unsigned long flags, pending, issued;
7066 irqreturn_t ret = IRQ_NONE;
7067 int tag;
7068
7069 spin_lock_irqsave(hba->host->host_lock, flags);
7070 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
7071 issued = hba->outstanding_tasks & ~pending;
7072 for_each_set_bit(tag, &issued, hba->nutmrs) {
7073 struct request *req = hba->tmf_rqs[tag];
7074 struct completion *c = req->end_io_data;
7075
7076 complete(c);
7077 ret = IRQ_HANDLED;
7078 }
7079 spin_unlock_irqrestore(hba->host->host_lock, flags);
7080
7081 return ret;
7082 }
7083
7084 /**
7085 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
7086 * @hba: per adapter instance
7087 *
7088 * Return: IRQ_HANDLED if interrupt is handled.
7089 */
ufshcd_handle_mcq_cq_events(struct ufs_hba * hba)7090 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
7091 {
7092 struct ufs_hw_queue *hwq;
7093 unsigned long outstanding_cqs;
7094 unsigned int nr_queues;
7095 int i, ret;
7096 u32 events;
7097
7098 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
7099 if (ret)
7100 outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
7101
7102 /* Exclude the poll queues */
7103 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
7104 for_each_set_bit(i, &outstanding_cqs, nr_queues) {
7105 hwq = &hba->uhq[i];
7106
7107 events = ufshcd_mcq_read_cqis(hba, i);
7108 if (events)
7109 ufshcd_mcq_write_cqis(hba, events, i);
7110
7111 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
7112 ufshcd_mcq_poll_cqe_lock(hba, hwq);
7113 }
7114
7115 return IRQ_HANDLED;
7116 }
7117
7118 /**
7119 * ufshcd_sl_intr - Interrupt service routine
7120 * @hba: per adapter instance
7121 * @intr_status: contains interrupts generated by the controller
7122 *
7123 * Return:
7124 * IRQ_HANDLED - If interrupt is valid
7125 * IRQ_NONE - If invalid interrupt
7126 */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)7127 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
7128 {
7129 irqreturn_t retval = IRQ_NONE;
7130
7131 if (intr_status & UFSHCD_UIC_MASK)
7132 retval |= ufshcd_uic_cmd_compl(hba, intr_status);
7133
7134 if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
7135 retval |= ufshcd_check_errors(hba, intr_status);
7136
7137 if (intr_status & UTP_TASK_REQ_COMPL)
7138 retval |= ufshcd_tmc_handler(hba);
7139
7140 if (intr_status & UTP_TRANSFER_REQ_COMPL)
7141 retval |= ufshcd_transfer_req_compl(hba);
7142
7143 if (intr_status & MCQ_CQ_EVENT_STATUS)
7144 retval |= ufshcd_handle_mcq_cq_events(hba);
7145
7146 return retval;
7147 }
7148
7149 /**
7150 * ufshcd_threaded_intr - Threaded interrupt service routine
7151 * @irq: irq number
7152 * @__hba: pointer to adapter instance
7153 *
7154 * Return:
7155 * IRQ_HANDLED - If interrupt is valid
7156 * IRQ_NONE - If invalid interrupt
7157 */
ufshcd_threaded_intr(int irq,void * __hba)7158 static irqreturn_t ufshcd_threaded_intr(int irq, void *__hba)
7159 {
7160 u32 last_intr_status, intr_status, enabled_intr_status = 0;
7161 irqreturn_t retval = IRQ_NONE;
7162 struct ufs_hba *hba = __hba;
7163 int retries = hba->nutrs;
7164
7165 last_intr_status = intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7166
7167 /*
7168 * There could be max of hba->nutrs reqs in flight and in worst case
7169 * if the reqs get finished 1 by 1 after the interrupt status is
7170 * read, make sure we handle them by checking the interrupt status
7171 * again in a loop until we process all of the reqs before returning.
7172 */
7173 while (intr_status && retries--) {
7174 enabled_intr_status =
7175 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7176 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7177 if (enabled_intr_status)
7178 retval |= ufshcd_sl_intr(hba, enabled_intr_status);
7179
7180 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7181 }
7182
7183 if (enabled_intr_status && retval == IRQ_NONE &&
7184 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
7185 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
7186 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
7187 __func__,
7188 intr_status,
7189 last_intr_status,
7190 enabled_intr_status);
7191 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
7192 }
7193
7194 return retval;
7195 }
7196
7197 /**
7198 * ufshcd_intr - Main interrupt service routine
7199 * @irq: irq number
7200 * @__hba: pointer to adapter instance
7201 *
7202 * Return:
7203 * IRQ_HANDLED - If interrupt is valid
7204 * IRQ_WAKE_THREAD - If handling is moved to threaded handled
7205 * IRQ_NONE - If invalid interrupt
7206 */
ufshcd_intr(int irq,void * __hba)7207 static irqreturn_t ufshcd_intr(int irq, void *__hba)
7208 {
7209 struct ufs_hba *hba = __hba;
7210 u32 intr_status, enabled_intr_status;
7211
7212 /* Move interrupt handling to thread when MCQ & ESI are not enabled */
7213 if (!hba->mcq_enabled || !hba->mcq_esi_enabled)
7214 return IRQ_WAKE_THREAD;
7215
7216 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7217 enabled_intr_status = intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7218
7219 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7220
7221 /* Directly handle interrupts since MCQ ESI handlers does the hard job */
7222 return ufshcd_sl_intr(hba, enabled_intr_status);
7223 }
7224
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)7225 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
7226 {
7227 int err = 0;
7228 u32 mask = 1 << tag;
7229
7230 if (!test_bit(tag, &hba->outstanding_tasks))
7231 goto out;
7232
7233 ufshcd_utmrl_clear(hba, tag);
7234
7235 /* poll for max. 1 sec to clear door bell register by h/w */
7236 err = ufshcd_wait_for_register(hba,
7237 REG_UTP_TASK_REQ_DOOR_BELL,
7238 mask, 0, 1000, 1000);
7239
7240 dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7241 tag, err < 0 ? "failed" : "succeeded");
7242
7243 out:
7244 return err;
7245 }
7246
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)7247 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7248 struct utp_task_req_desc *treq, u8 tm_function)
7249 {
7250 struct request_queue *q = hba->tmf_queue;
7251 struct Scsi_Host *host = hba->host;
7252 DECLARE_COMPLETION_ONSTACK(wait);
7253 struct request *req;
7254 unsigned long flags;
7255 int task_tag, err;
7256
7257 /*
7258 * blk_mq_alloc_request() is used here only to get a free tag.
7259 */
7260 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7261 if (IS_ERR(req))
7262 return PTR_ERR(req);
7263
7264 req->end_io_data = &wait;
7265 ufshcd_hold(hba);
7266
7267 spin_lock_irqsave(host->host_lock, flags);
7268
7269 task_tag = req->tag;
7270 hba->tmf_rqs[req->tag] = req;
7271 treq->upiu_req.req_header.task_tag = task_tag;
7272
7273 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7274 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7275
7276 __set_bit(task_tag, &hba->outstanding_tasks);
7277
7278 spin_unlock_irqrestore(host->host_lock, flags);
7279
7280 /* send command to the controller */
7281 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7282
7283 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7284
7285 /* wait until the task management command is completed */
7286 err = wait_for_completion_io_timeout(&wait,
7287 msecs_to_jiffies(TM_CMD_TIMEOUT));
7288 if (!err) {
7289 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7290 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7291 __func__, tm_function);
7292 if (ufshcd_clear_tm_cmd(hba, task_tag))
7293 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7294 __func__, task_tag);
7295 err = -ETIMEDOUT;
7296 } else {
7297 err = 0;
7298 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7299
7300 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7301 }
7302
7303 spin_lock_irqsave(hba->host->host_lock, flags);
7304 hba->tmf_rqs[req->tag] = NULL;
7305 __clear_bit(task_tag, &hba->outstanding_tasks);
7306 spin_unlock_irqrestore(hba->host->host_lock, flags);
7307
7308 ufshcd_release(hba);
7309 blk_mq_free_request(req);
7310
7311 return err;
7312 }
7313
7314 /**
7315 * ufshcd_issue_tm_cmd - issues task management commands to controller
7316 * @hba: per adapter instance
7317 * @lun_id: LUN ID to which TM command is sent
7318 * @task_id: task ID to which the TM command is applicable
7319 * @tm_function: task management function opcode
7320 * @tm_response: task management service response return value
7321 *
7322 * Return: non-zero value on error, zero on success.
7323 */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)7324 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7325 u8 tm_function, u8 *tm_response)
7326 {
7327 struct utp_task_req_desc treq = { };
7328 enum utp_ocs ocs_value;
7329 int err;
7330
7331 /* Configure task request descriptor */
7332 treq.header.interrupt = 1;
7333 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7334
7335 /* Configure task request UPIU */
7336 treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7337 treq.upiu_req.req_header.lun = lun_id;
7338 treq.upiu_req.req_header.tm_function = tm_function;
7339
7340 /*
7341 * The host shall provide the same value for LUN field in the basic
7342 * header and for Input Parameter.
7343 */
7344 treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7345 treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7346
7347 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7348 if (err == -ETIMEDOUT)
7349 return err;
7350
7351 ocs_value = treq.header.ocs & MASK_OCS;
7352 if (ocs_value != OCS_SUCCESS)
7353 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7354 __func__, ocs_value);
7355 else if (tm_response)
7356 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7357 MASK_TM_SERVICE_RESP;
7358 return err;
7359 }
7360
7361 /**
7362 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7363 * @hba: per-adapter instance
7364 * @req_upiu: upiu request
7365 * @rsp_upiu: upiu reply
7366 * @desc_buff: pointer to descriptor buffer, NULL if NA
7367 * @buff_len: descriptor size, 0 if NA
7368 * @cmd_type: specifies the type (NOP, Query...)
7369 * @desc_op: descriptor operation
7370 *
7371 * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7372 * Therefore, it "rides" the device management infrastructure: uses its tag and
7373 * tasks work queues.
7374 *
7375 * Since there is only one available tag for device management commands,
7376 * the caller is expected to hold the hba->dev_cmd.lock mutex.
7377 *
7378 * Return: 0 upon success; < 0 upon failure.
7379 */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)7380 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7381 struct utp_upiu_req *req_upiu,
7382 struct utp_upiu_req *rsp_upiu,
7383 u8 *desc_buff, int *buff_len,
7384 enum dev_cmd_type cmd_type,
7385 enum query_opcode desc_op)
7386 {
7387 struct scsi_cmnd *cmd = ufshcd_get_dev_mgmt_cmd(hba);
7388 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
7389 u32 tag;
7390 int err = 0;
7391 u8 upiu_flags;
7392
7393 /* Protects use of hba->dev_cmd. */
7394 lockdep_assert_held(&hba->dev_cmd.lock);
7395
7396 if (WARN_ON_ONCE(!cmd))
7397 return -ENOMEM;
7398
7399 tag = scsi_cmd_to_rq(cmd)->tag;
7400
7401 ufshcd_setup_dev_cmd(hba, cmd, cmd_type, 0, tag);
7402
7403 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7404
7405 /* update the task tag in the request upiu */
7406 req_upiu->header.task_tag = tag;
7407
7408 /* just copy the upiu request as it is */
7409 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7410 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7411 /* The Data Segment Area is optional depending upon the query
7412 * function value. for WRITE DESCRIPTOR, the data segment
7413 * follows right after the tsf.
7414 */
7415 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7416 *buff_len = 0;
7417 }
7418
7419 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7420
7421 err = ufshcd_issue_dev_cmd(hba, cmd, tag, dev_cmd_timeout);
7422 if (err)
7423 goto put_dev_mgmt_cmd;
7424
7425 /* just copy the upiu response as it is */
7426 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7427 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7428 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7429 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7430 .data_segment_length);
7431
7432 if (*buff_len >= resp_len) {
7433 memcpy(desc_buff, descp, resp_len);
7434 *buff_len = resp_len;
7435 } else {
7436 dev_warn(hba->dev,
7437 "%s: rsp size %d is bigger than buffer size %d",
7438 __func__, resp_len, *buff_len);
7439 *buff_len = 0;
7440 err = -EINVAL;
7441 }
7442 }
7443
7444 put_dev_mgmt_cmd:
7445 ufshcd_put_dev_mgmt_cmd(cmd);
7446
7447 return err;
7448 }
7449
7450 /**
7451 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7452 * @hba: per-adapter instance
7453 * @req_upiu: upiu request
7454 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands
7455 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target
7456 * @desc_buff: pointer to descriptor buffer, NULL if NA
7457 * @buff_len: descriptor size, 0 if NA
7458 * @desc_op: descriptor operation
7459 *
7460 * Supports UTP Transfer requests (nop and query), and UTP Task
7461 * Management requests.
7462 * It is up to the caller to fill the upiu conent properly, as it will
7463 * be copied without any further input validations.
7464 *
7465 * Return: 0 upon success; < 0 upon failure.
7466 */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,enum upiu_request_transaction msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)7467 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7468 struct utp_upiu_req *req_upiu,
7469 struct utp_upiu_req *rsp_upiu,
7470 enum upiu_request_transaction msgcode,
7471 u8 *desc_buff, int *buff_len,
7472 enum query_opcode desc_op)
7473 {
7474 int err;
7475 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7476 struct utp_task_req_desc treq = { };
7477 enum utp_ocs ocs_value;
7478 u8 tm_f = req_upiu->header.tm_function;
7479
7480 switch (msgcode) {
7481 case UPIU_TRANSACTION_NOP_OUT:
7482 cmd_type = DEV_CMD_TYPE_NOP;
7483 fallthrough;
7484 case UPIU_TRANSACTION_QUERY_REQ:
7485 ufshcd_dev_man_lock(hba);
7486 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7487 desc_buff, buff_len,
7488 cmd_type, desc_op);
7489 ufshcd_dev_man_unlock(hba);
7490
7491 break;
7492 case UPIU_TRANSACTION_TASK_REQ:
7493 treq.header.interrupt = 1;
7494 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7495
7496 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7497
7498 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7499 if (err == -ETIMEDOUT)
7500 break;
7501
7502 ocs_value = treq.header.ocs & MASK_OCS;
7503 if (ocs_value != OCS_SUCCESS) {
7504 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7505 ocs_value);
7506 break;
7507 }
7508
7509 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7510
7511 break;
7512 default:
7513 err = -EINVAL;
7514
7515 break;
7516 }
7517
7518 return err;
7519 }
7520
7521 /**
7522 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7523 * @hba: per adapter instance
7524 * @req_upiu: upiu request
7525 * @rsp_upiu: upiu reply
7526 * @req_ehs: EHS field which contains Advanced RPMB Request Message
7527 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message
7528 * @sg_cnt: The number of sg lists actually used
7529 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7530 * @dir: DMA direction
7531 *
7532 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
7533 * < 0 if another error occurred.
7534 */
ufshcd_advanced_rpmb_req_handler(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,struct ufs_ehs * req_ehs,struct ufs_ehs * rsp_ehs,int sg_cnt,struct scatterlist * sg_list,enum dma_data_direction dir)7535 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7536 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7537 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7538 enum dma_data_direction dir)
7539 {
7540 struct scsi_cmnd *cmd;
7541 struct ufshcd_lrb *lrbp;
7542 u32 tag;
7543 int err = 0;
7544 int result;
7545 u8 upiu_flags;
7546 u8 *ehs_data;
7547 u16 ehs_len;
7548 int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7549
7550 ufshcd_dev_man_lock(hba);
7551
7552 cmd = ufshcd_get_dev_mgmt_cmd(hba);
7553
7554 if (WARN_ON_ONCE(!cmd)) {
7555 err = -ENOMEM;
7556 goto unlock;
7557 }
7558
7559 lrbp = scsi_cmd_priv(cmd);
7560 tag = scsi_cmd_to_rq(cmd)->tag;
7561
7562 ufshcd_setup_dev_cmd(hba, cmd, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN,
7563 tag);
7564
7565 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7566
7567 /* update the task tag */
7568 req_upiu->header.task_tag = tag;
7569
7570 /* copy the UPIU(contains CDB) request as it is */
7571 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7572 /* Copy EHS, starting with byte32, immediately after the CDB package */
7573 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7574
7575 if (dir != DMA_NONE && sg_list)
7576 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7577
7578 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7579
7580 err = ufshcd_issue_dev_cmd(hba, cmd, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7581 if (err)
7582 goto put_dev_mgmt_cmd;
7583
7584 err = ufshcd_dev_cmd_completion(hba, lrbp);
7585 if (!err) {
7586 /* Just copy the upiu response as it is */
7587 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7588 /* Get the response UPIU result */
7589 result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7590 lrbp->ucd_rsp_ptr->header.status;
7591
7592 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7593 /*
7594 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7595 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7596 * Message is 02h
7597 */
7598 if (ehs_len == 2 && rsp_ehs) {
7599 /*
7600 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7601 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7602 */
7603 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7604 memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7605 }
7606 }
7607
7608 put_dev_mgmt_cmd:
7609 ufshcd_put_dev_mgmt_cmd(cmd);
7610
7611 unlock:
7612 ufshcd_dev_man_unlock(hba);
7613
7614 return err ? : result;
7615 }
7616
ufshcd_clear_lu_cmds(struct request * req,void * priv)7617 static bool ufshcd_clear_lu_cmds(struct request *req, void *priv)
7618 {
7619 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
7620 struct scsi_device *sdev = cmd->device;
7621 struct Scsi_Host *shost = sdev->host;
7622 struct ufs_hba *hba = shost_priv(shost);
7623 const u64 lun = *(u64 *)priv;
7624 const u32 tag = req->tag;
7625
7626 if (blk_mq_is_reserved_rq(req) || sdev->lun != lun)
7627 return true;
7628
7629 if (ufshcd_clear_cmd(hba, tag) < 0) {
7630 dev_err(hba->dev, "%s: failed to clear request %d\n", __func__,
7631 tag);
7632 return true;
7633 }
7634
7635 if (hba->mcq_enabled) {
7636 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, req);
7637
7638 if (hwq)
7639 ufshcd_mcq_poll_cqe_lock(hba, hwq);
7640 return true;
7641 }
7642
7643 ufshcd_compl_one_cqe(hba, tag, NULL);
7644 return true;
7645 }
7646
7647 /**
7648 * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7649 * @cmd: SCSI command pointer
7650 *
7651 * Return: SUCCESS or FAILED.
7652 */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)7653 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7654 {
7655 struct Scsi_Host *host;
7656 struct ufs_hba *hba;
7657 int err;
7658 u8 resp = 0xF, lun;
7659
7660 host = cmd->device->host;
7661 hba = shost_priv(host);
7662
7663 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7664 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7665 if (err) {
7666 } else if (resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7667 err = resp;
7668 } else {
7669 /* clear the commands that were pending for corresponding LUN */
7670 blk_mq_tagset_busy_iter(&hba->host->tag_set,
7671 ufshcd_clear_lu_cmds,
7672 &cmd->device->lun);
7673 }
7674
7675 hba->req_abort_count = 0;
7676 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7677 if (!err) {
7678 err = SUCCESS;
7679 } else {
7680 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7681 err = FAILED;
7682 }
7683 return err;
7684 }
7685
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)7686 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7687 {
7688 int tag;
7689
7690 for_each_set_bit(tag, &bitmap, hba->nutrs) {
7691 struct scsi_cmnd *cmd = ufshcd_tag_to_cmd(hba, tag);
7692 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
7693
7694 lrbp->req_abort_skip = true;
7695 }
7696 }
7697
7698 /**
7699 * ufshcd_try_to_abort_task - abort a specific task
7700 * @hba: Pointer to adapter instance
7701 * @tag: Tag of the task to be aborted
7702 *
7703 * Abort the pending command in device by sending UFS_ABORT_TASK task management
7704 * command, and in host controller by clearing the door-bell register. There can
7705 * be race between controller sending the command to the device while abort is
7706 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7707 * really issued and then try to abort it.
7708 *
7709 * Return: zero on success, non-zero on failure.
7710 */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)7711 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7712 {
7713 struct scsi_cmnd *cmd = ufshcd_tag_to_cmd(hba, tag);
7714 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
7715 int err;
7716 int poll_cnt;
7717 u8 resp = 0xF;
7718
7719 for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7720 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, tag, UFS_QUERY_TASK,
7721 &resp);
7722 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7723 /* cmd pending in the device */
7724 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7725 __func__, tag);
7726 break;
7727 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7728 /*
7729 * cmd not pending in the device, check if it is
7730 * in transition.
7731 */
7732 dev_info(
7733 hba->dev,
7734 "%s: cmd with tag %d not pending in the device.\n",
7735 __func__, tag);
7736 if (!ufshcd_cmd_inflight(cmd)) {
7737 dev_info(hba->dev,
7738 "%s: cmd with tag=%d completed.\n",
7739 __func__, tag);
7740 return 0;
7741 }
7742 usleep_range(100, 200);
7743 } else {
7744 dev_err(hba->dev,
7745 "%s: no response from device. tag = %d, err %d\n",
7746 __func__, tag, err);
7747 return err ? : resp;
7748 }
7749 }
7750
7751 if (!poll_cnt)
7752 return -EBUSY;
7753
7754 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, tag, UFS_ABORT_TASK, &resp);
7755 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7756 if (!err) {
7757 err = resp; /* service response error */
7758 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7759 __func__, tag, err);
7760 }
7761 return err;
7762 }
7763
7764 err = ufshcd_clear_cmd(hba, tag);
7765 if (err)
7766 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7767 __func__, tag, err);
7768
7769 return err;
7770 }
7771
7772 /**
7773 * ufshcd_abort - scsi host template eh_abort_handler callback
7774 * @cmd: SCSI command pointer
7775 *
7776 * Return: SUCCESS or FAILED.
7777 */
ufshcd_abort(struct scsi_cmnd * cmd)7778 static int ufshcd_abort(struct scsi_cmnd *cmd)
7779 {
7780 struct Scsi_Host *host = cmd->device->host;
7781 struct ufs_hba *hba = shost_priv(host);
7782 struct request *rq = scsi_cmd_to_rq(cmd);
7783 int tag = rq->tag;
7784 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
7785 unsigned long flags;
7786 int err = FAILED;
7787 bool outstanding;
7788 u32 reg;
7789
7790 ufshcd_hold(hba);
7791
7792 if (!hba->mcq_enabled) {
7793 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7794 if (!test_bit(tag, &hba->outstanding_reqs)) {
7795 /* If command is already aborted/completed, return FAILED. */
7796 dev_err(hba->dev,
7797 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7798 __func__, tag, hba->outstanding_reqs, reg);
7799 goto release;
7800 }
7801 }
7802
7803 /* Print Transfer Request of aborted task */
7804 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7805
7806 /*
7807 * Print detailed info about aborted request.
7808 * As more than one request might get aborted at the same time,
7809 * print full information only for the first aborted request in order
7810 * to reduce repeated printouts. For other aborted requests only print
7811 * basic details.
7812 */
7813 if (ufshcd_is_scsi_cmd(cmd))
7814 scsi_print_command(cmd);
7815 if (!hba->req_abort_count) {
7816 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7817 ufshcd_print_evt_hist(hba);
7818 ufshcd_print_host_state(hba);
7819 ufshcd_print_pwr_info(hba);
7820 ufshcd_print_tr(hba, cmd, true);
7821 } else {
7822 ufshcd_print_tr(hba, cmd, false);
7823 }
7824 hba->req_abort_count++;
7825
7826 if (!hba->mcq_enabled && !(reg & (1 << tag))) {
7827 /* only execute this code in single doorbell mode */
7828 dev_err(hba->dev,
7829 "%s: cmd was completed, but without a notifying intr, tag = %d",
7830 __func__, tag);
7831 __ufshcd_transfer_req_compl(hba, 1UL << tag);
7832 goto release;
7833 }
7834
7835 /*
7836 * Task abort to the device W-LUN is illegal. When this command
7837 * will fail, due to spec violation, scsi err handling next step
7838 * will be to send LU reset which, again, is a spec violation.
7839 * To avoid these unnecessary/illegal steps, first we clean up
7840 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7841 * then queue the eh_work and bail.
7842 */
7843 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7844 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7845
7846 spin_lock_irqsave(host->host_lock, flags);
7847 hba->force_reset = true;
7848 ufshcd_schedule_eh_work(hba);
7849 spin_unlock_irqrestore(host->host_lock, flags);
7850 goto release;
7851 }
7852
7853 if (hba->mcq_enabled) {
7854 /* MCQ mode. Branch off to handle abort for mcq mode */
7855 err = ufshcd_mcq_abort(cmd);
7856 goto release;
7857 }
7858
7859 /* Skip task abort in case previous aborts failed and report failure */
7860 if (lrbp->req_abort_skip) {
7861 dev_err(hba->dev, "%s: skipping abort\n", __func__);
7862 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7863 goto release;
7864 }
7865
7866 if (blk_mq_is_reserved_rq(rq))
7867 err = ufshcd_clear_cmd(hba, tag);
7868 else
7869 err = ufshcd_try_to_abort_task(hba, tag);
7870 if (err) {
7871 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7872 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7873 err = FAILED;
7874 goto release;
7875 }
7876
7877 /*
7878 * Clear the corresponding bit from outstanding_reqs since the command
7879 * has been aborted successfully.
7880 */
7881 spin_lock_irqsave(&hba->outstanding_lock, flags);
7882 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7883 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7884
7885 if (outstanding)
7886 ufshcd_release_scsi_cmd(hba, cmd);
7887
7888 err = SUCCESS;
7889
7890 release:
7891 /* Matches the ufshcd_hold() call at the start of this function. */
7892 ufshcd_release(hba);
7893 return err;
7894 }
7895
7896 /**
7897 * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result.
7898 * @hba: UFS host controller instance.
7899 * @probe_start: time when the ufshcd_probe_hba() call started.
7900 * @ret: ufshcd_probe_hba() return value.
7901 */
ufshcd_process_probe_result(struct ufs_hba * hba,ktime_t probe_start,int ret)7902 static void ufshcd_process_probe_result(struct ufs_hba *hba,
7903 ktime_t probe_start, int ret)
7904 {
7905 unsigned long flags;
7906
7907 spin_lock_irqsave(hba->host->host_lock, flags);
7908 if (ret)
7909 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7910 else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7911 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7912 spin_unlock_irqrestore(hba->host->host_lock, flags);
7913
7914 trace_ufshcd_init(hba, ret,
7915 ktime_to_us(ktime_sub(ktime_get(), probe_start)),
7916 hba->curr_dev_pwr_mode, hba->uic_link_state);
7917 }
7918
7919 /**
7920 * ufshcd_host_reset_and_restore - reset and restore host controller
7921 * @hba: per-adapter instance
7922 *
7923 * Note that host controller reset may issue DME_RESET to
7924 * local and remote (device) Uni-Pro stack and the attributes
7925 * are reset to default state.
7926 *
7927 * Return: zero on success, non-zero on failure.
7928 */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7929 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7930 {
7931 int err;
7932
7933 /*
7934 * Stop the host controller and complete the requests
7935 * cleared by h/w
7936 */
7937 ufshcd_hba_stop(hba);
7938 hba->silence_err_logs = true;
7939 ufshcd_complete_requests(hba, true);
7940 hba->silence_err_logs = false;
7941
7942 /* scale up clocks to max frequency before full reinitialization */
7943 if (ufshcd_is_clkscaling_supported(hba))
7944 ufshcd_scale_clks(hba, ULONG_MAX, true);
7945
7946 err = ufshcd_hba_enable(hba);
7947
7948 /* Establish the link again and restore the device */
7949 if (!err) {
7950 ktime_t probe_start = ktime_get();
7951
7952 err = ufshcd_device_init(hba, /*init_dev_params=*/false);
7953 if (!err)
7954 err = ufshcd_probe_hba(hba, false);
7955 ufshcd_process_probe_result(hba, probe_start, err);
7956 }
7957
7958 if (err)
7959 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7960 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7961 return err;
7962 }
7963
7964 /**
7965 * ufshcd_reset_and_restore - reset and re-initialize host/device
7966 * @hba: per-adapter instance
7967 *
7968 * Reset and recover device, host and re-establish link. This
7969 * is helpful to recover the communication in fatal error conditions.
7970 *
7971 * Return: zero on success, non-zero on failure.
7972 */
ufshcd_reset_and_restore(struct ufs_hba * hba)7973 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7974 {
7975 u32 saved_err = 0;
7976 u32 saved_uic_err = 0;
7977 int err = 0;
7978 unsigned long flags;
7979 int retries = MAX_HOST_RESET_RETRIES;
7980
7981 spin_lock_irqsave(hba->host->host_lock, flags);
7982 do {
7983 /*
7984 * This is a fresh start, cache and clear saved error first,
7985 * in case new error generated during reset and restore.
7986 */
7987 saved_err |= hba->saved_err;
7988 saved_uic_err |= hba->saved_uic_err;
7989 hba->saved_err = 0;
7990 hba->saved_uic_err = 0;
7991 hba->force_reset = false;
7992 hba->ufshcd_state = UFSHCD_STATE_RESET;
7993 spin_unlock_irqrestore(hba->host->host_lock, flags);
7994
7995 /* Reset the attached device */
7996 ufshcd_device_reset(hba);
7997
7998 err = ufshcd_host_reset_and_restore(hba);
7999
8000 spin_lock_irqsave(hba->host->host_lock, flags);
8001 if (err)
8002 continue;
8003 /* Do not exit unless operational or dead */
8004 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
8005 hba->ufshcd_state != UFSHCD_STATE_ERROR &&
8006 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
8007 err = -EAGAIN;
8008 } while (err && --retries);
8009
8010 /*
8011 * Inform scsi mid-layer that we did reset and allow to handle
8012 * Unit Attention properly.
8013 */
8014 scsi_report_bus_reset(hba->host, 0);
8015 if (err) {
8016 hba->ufshcd_state = UFSHCD_STATE_ERROR;
8017 hba->saved_err |= saved_err;
8018 hba->saved_uic_err |= saved_uic_err;
8019 }
8020 spin_unlock_irqrestore(hba->host->host_lock, flags);
8021
8022 return err;
8023 }
8024
8025 /**
8026 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
8027 * @cmd: SCSI command pointer
8028 *
8029 * Return: SUCCESS or FAILED.
8030 */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)8031 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
8032 {
8033 int err = SUCCESS;
8034 unsigned long flags;
8035 struct ufs_hba *hba;
8036
8037 hba = shost_priv(cmd->device->host);
8038
8039 /*
8040 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
8041 * stuck in this function waiting for flush_work(&hba->eh_work). And
8042 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
8043 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
8044 */
8045 if (hba->pm_op_in_progress) {
8046 if (ufshcd_link_recovery(hba))
8047 err = FAILED;
8048
8049 return err;
8050 }
8051
8052 spin_lock_irqsave(hba->host->host_lock, flags);
8053 hba->force_reset = true;
8054 ufshcd_schedule_eh_work(hba);
8055 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
8056 spin_unlock_irqrestore(hba->host->host_lock, flags);
8057
8058 flush_work(&hba->eh_work);
8059
8060 spin_lock_irqsave(hba->host->host_lock, flags);
8061 if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
8062 err = FAILED;
8063 spin_unlock_irqrestore(hba->host->host_lock, flags);
8064
8065 return err;
8066 }
8067
8068 /**
8069 * ufshcd_get_max_icc_level - calculate the ICC level
8070 * @sup_curr_uA: max. current supported by the regulator
8071 * @start_scan: row at the desc table to start scan from
8072 * @buff: power descriptor buffer
8073 *
8074 * Return: calculated max ICC level for specific regulator.
8075 */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,const char * buff)8076 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
8077 const char *buff)
8078 {
8079 int i;
8080 int curr_uA;
8081 u16 data;
8082 u16 unit;
8083
8084 for (i = start_scan; i >= 0; i--) {
8085 data = get_unaligned_be16(&buff[2 * i]);
8086 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
8087 ATTR_ICC_LVL_UNIT_OFFSET;
8088 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
8089 switch (unit) {
8090 case UFSHCD_NANO_AMP:
8091 curr_uA = curr_uA / 1000;
8092 break;
8093 case UFSHCD_MILI_AMP:
8094 curr_uA = curr_uA * 1000;
8095 break;
8096 case UFSHCD_AMP:
8097 curr_uA = curr_uA * 1000 * 1000;
8098 break;
8099 case UFSHCD_MICRO_AMP:
8100 default:
8101 break;
8102 }
8103 if (sup_curr_uA >= curr_uA)
8104 break;
8105 }
8106 if (i < 0) {
8107 i = 0;
8108 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
8109 }
8110
8111 return (u32)i;
8112 }
8113
8114 /**
8115 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
8116 * In case regulators are not initialized we'll return 0
8117 * @hba: per-adapter instance
8118 * @desc_buf: power descriptor buffer to extract ICC levels from.
8119 *
8120 * Return: calculated ICC level.
8121 */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,const u8 * desc_buf)8122 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
8123 const u8 *desc_buf)
8124 {
8125 u32 icc_level = 0;
8126
8127 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
8128 !hba->vreg_info.vccq2) {
8129 /*
8130 * Using dev_dbg to avoid messages during runtime PM to avoid
8131 * never-ending cycles of messages written back to storage by
8132 * user space causing runtime resume, causing more messages and
8133 * so on.
8134 */
8135 dev_dbg(hba->dev,
8136 "%s: Regulator capability was not set, actvIccLevel=%d",
8137 __func__, icc_level);
8138 goto out;
8139 }
8140
8141 if (hba->vreg_info.vcc->max_uA)
8142 icc_level = ufshcd_get_max_icc_level(
8143 hba->vreg_info.vcc->max_uA,
8144 POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
8145 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
8146
8147 if (hba->vreg_info.vccq->max_uA)
8148 icc_level = ufshcd_get_max_icc_level(
8149 hba->vreg_info.vccq->max_uA,
8150 icc_level,
8151 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
8152
8153 if (hba->vreg_info.vccq2->max_uA)
8154 icc_level = ufshcd_get_max_icc_level(
8155 hba->vreg_info.vccq2->max_uA,
8156 icc_level,
8157 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
8158 out:
8159 return icc_level;
8160 }
8161
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)8162 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
8163 {
8164 int ret;
8165 u8 *desc_buf;
8166 u32 icc_level;
8167
8168 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8169 if (!desc_buf)
8170 return;
8171
8172 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
8173 desc_buf, QUERY_DESC_MAX_SIZE);
8174 if (ret) {
8175 dev_err(hba->dev,
8176 "%s: Failed reading power descriptor ret = %d",
8177 __func__, ret);
8178 goto out;
8179 }
8180
8181 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
8182 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
8183
8184 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8185 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
8186
8187 if (ret)
8188 dev_err(hba->dev,
8189 "%s: Failed configuring bActiveICCLevel = %d ret = %d",
8190 __func__, icc_level, ret);
8191
8192 out:
8193 kfree(desc_buf);
8194 }
8195
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)8196 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
8197 {
8198 struct Scsi_Host *shost = sdev->host;
8199
8200 scsi_autopm_get_device(sdev);
8201 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
8202 if (sdev->rpm_autosuspend)
8203 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
8204 shost->rpm_autosuspend_delay);
8205 scsi_autopm_put_device(sdev);
8206 }
8207
8208 /**
8209 * ufshcd_scsi_add_wlus - Adds required W-LUs
8210 * @hba: per-adapter instance
8211 *
8212 * UFS device specification requires the UFS devices to support 4 well known
8213 * logical units:
8214 * "REPORT_LUNS" (address: 01h)
8215 * "UFS Device" (address: 50h)
8216 * "RPMB" (address: 44h)
8217 * "BOOT" (address: 30h)
8218 * UFS device's power management needs to be controlled by "POWER CONDITION"
8219 * field of SSU (START STOP UNIT) command. But this "power condition" field
8220 * will take effect only when its sent to "UFS device" well known logical unit
8221 * hence we require the scsi_device instance to represent this logical unit in
8222 * order for the UFS host driver to send the SSU command for power management.
8223 *
8224 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
8225 * Block) LU so user space process can control this LU. User space may also
8226 * want to have access to BOOT LU.
8227 *
8228 * This function adds scsi device instances for each of all well known LUs
8229 * (except "REPORT LUNS" LU).
8230 *
8231 * Return: zero on success (all required W-LUs are added successfully),
8232 * non-zero error value on failure (if failed to add any of the required W-LU).
8233 */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)8234 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8235 {
8236 int ret = 0;
8237 struct scsi_device *sdev_boot, *sdev_rpmb;
8238
8239 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8240 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8241 if (IS_ERR(hba->ufs_device_wlun)) {
8242 ret = PTR_ERR(hba->ufs_device_wlun);
8243 hba->ufs_device_wlun = NULL;
8244 goto out;
8245 }
8246 scsi_device_put(hba->ufs_device_wlun);
8247
8248 sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8249 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8250 if (IS_ERR(sdev_rpmb)) {
8251 ret = PTR_ERR(sdev_rpmb);
8252 hba->ufs_rpmb_wlun = NULL;
8253 dev_err(hba->dev, "%s: RPMB WLUN not found\n", __func__);
8254 goto remove_ufs_device_wlun;
8255 }
8256 hba->ufs_rpmb_wlun = sdev_rpmb;
8257 ufshcd_blk_pm_runtime_init(sdev_rpmb);
8258 scsi_device_put(sdev_rpmb);
8259
8260 sdev_boot = __scsi_add_device(hba->host, 0, 0,
8261 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8262 if (IS_ERR(sdev_boot)) {
8263 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8264 } else {
8265 ufshcd_blk_pm_runtime_init(sdev_boot);
8266 scsi_device_put(sdev_boot);
8267 }
8268 goto out;
8269
8270 remove_ufs_device_wlun:
8271 scsi_remove_device(hba->ufs_device_wlun);
8272 out:
8273 return ret;
8274 }
8275
ufshcd_wb_probe(struct ufs_hba * hba,const u8 * desc_buf)8276 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8277 {
8278 struct ufs_dev_info *dev_info = &hba->dev_info;
8279 u8 lun;
8280 u32 d_lu_wb_buf_alloc;
8281 u32 ext_ufs_feature;
8282
8283 if (!ufshcd_is_wb_allowed(hba))
8284 return;
8285
8286 /*
8287 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8288 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8289 * enabled
8290 */
8291 if (!(dev_info->wspecversion >= 0x310 ||
8292 dev_info->wspecversion == 0x220 ||
8293 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8294 goto wb_disabled;
8295
8296 ext_ufs_feature = get_unaligned_be32(desc_buf +
8297 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8298
8299 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8300 goto wb_disabled;
8301
8302 /*
8303 * WB may be supported but not configured while provisioning. The spec
8304 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8305 * buffer configured.
8306 */
8307 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8308
8309 dev_info->ext_wb_sup = get_unaligned_be16(desc_buf +
8310 DEVICE_DESC_PARAM_EXT_WB_SUP);
8311
8312 dev_info->b_presrv_uspc_en =
8313 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8314
8315 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8316 if (!get_unaligned_be32(desc_buf +
8317 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8318 goto wb_disabled;
8319 } else {
8320 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8321 d_lu_wb_buf_alloc = 0;
8322 ufshcd_read_unit_desc_param(hba,
8323 lun,
8324 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8325 (u8 *)&d_lu_wb_buf_alloc,
8326 sizeof(d_lu_wb_buf_alloc));
8327 if (d_lu_wb_buf_alloc) {
8328 dev_info->wb_dedicated_lu = lun;
8329 break;
8330 }
8331 }
8332
8333 if (!d_lu_wb_buf_alloc)
8334 goto wb_disabled;
8335 }
8336
8337 if (!ufshcd_is_wb_buf_lifetime_available(hba))
8338 goto wb_disabled;
8339
8340 return;
8341
8342 wb_disabled:
8343 hba->caps &= ~UFSHCD_CAP_WB_EN;
8344 }
8345
ufshcd_temp_notif_probe(struct ufs_hba * hba,const u8 * desc_buf)8346 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8347 {
8348 struct ufs_dev_info *dev_info = &hba->dev_info;
8349 u32 ext_ufs_feature;
8350 u8 mask = 0;
8351
8352 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8353 return;
8354
8355 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8356
8357 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8358 mask |= MASK_EE_TOO_LOW_TEMP;
8359
8360 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8361 mask |= MASK_EE_TOO_HIGH_TEMP;
8362
8363 if (mask) {
8364 ufshcd_enable_ee(hba, mask);
8365 ufs_hwmon_probe(hba, mask);
8366 }
8367 }
8368
ufshcd_device_lvl_exception_probe(struct ufs_hba * hba,u8 * desc_buf)8369 static void ufshcd_device_lvl_exception_probe(struct ufs_hba *hba, u8 *desc_buf)
8370 {
8371 u32 ext_ufs_feature;
8372
8373 if (hba->dev_info.wspecversion < 0x410)
8374 return;
8375
8376 ext_ufs_feature = get_unaligned_be32(desc_buf +
8377 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8378 if (!(ext_ufs_feature & UFS_DEV_LVL_EXCEPTION_SUP))
8379 return;
8380
8381 atomic_set(&hba->dev_lvl_exception_count, 0);
8382 ufshcd_enable_ee(hba, MASK_EE_DEV_LVL_EXCEPTION);
8383 }
8384
ufshcd_set_rtt(struct ufs_hba * hba)8385 static void ufshcd_set_rtt(struct ufs_hba *hba)
8386 {
8387 struct ufs_dev_info *dev_info = &hba->dev_info;
8388 u32 rtt = 0;
8389 u32 dev_rtt = 0;
8390 int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ?
8391 hba->vops->max_num_rtt : hba->nortt;
8392
8393 /* RTT override makes sense only for UFS-4.0 and above */
8394 if (dev_info->wspecversion < 0x400)
8395 return;
8396
8397 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8398 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) {
8399 dev_err(hba->dev, "failed reading bMaxNumOfRTT\n");
8400 return;
8401 }
8402
8403 /* do not override if it was already written */
8404 if (dev_rtt != DEFAULT_MAX_NUM_RTT)
8405 return;
8406
8407 rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap);
8408
8409 if (rtt == dev_rtt)
8410 return;
8411
8412 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8413 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt))
8414 dev_err(hba->dev, "failed writing bMaxNumOfRTT\n");
8415 }
8416
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,const struct ufs_dev_quirk * fixups)8417 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8418 const struct ufs_dev_quirk *fixups)
8419 {
8420 const struct ufs_dev_quirk *f;
8421 struct ufs_dev_info *dev_info = &hba->dev_info;
8422
8423 if (!fixups)
8424 return;
8425
8426 for (f = fixups; f->quirk; f++) {
8427 if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8428 f->wmanufacturerid == UFS_ANY_VENDOR) &&
8429 ((dev_info->model &&
8430 STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8431 !strcmp(f->model, UFS_ANY_MODEL)))
8432 hba->dev_quirks |= f->quirk;
8433 }
8434 }
8435 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8436
ufs_fixup_device_setup(struct ufs_hba * hba)8437 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8438 {
8439 /* fix by general quirk table */
8440 ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8441
8442 /* allow vendors to fix quirks */
8443 ufshcd_vops_fixup_dev_quirks(hba);
8444 }
8445
ufshcd_update_rtc(struct ufs_hba * hba)8446 static void ufshcd_update_rtc(struct ufs_hba *hba)
8447 {
8448 struct timespec64 ts64;
8449 int err;
8450 u32 val;
8451
8452 ktime_get_real_ts64(&ts64);
8453
8454 if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8455 dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8456 return;
8457 }
8458
8459 /*
8460 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8461 * 2146 is required, it is recommended to choose the relative RTC mode.
8462 */
8463 val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8464
8465 /* Skip update RTC if RPM state is not RPM_ACTIVE */
8466 if (ufshcd_rpm_get_if_active(hba) <= 0)
8467 return;
8468
8469 err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8470 0, 0, &val);
8471 ufshcd_rpm_put(hba);
8472
8473 if (err)
8474 dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8475 else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8476 hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8477 }
8478
ufshcd_rtc_work(struct work_struct * work)8479 static void ufshcd_rtc_work(struct work_struct *work)
8480 {
8481 struct ufs_hba *hba;
8482
8483 hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8484
8485 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8486 if (!ufshcd_is_ufs_dev_busy(hba) &&
8487 hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL &&
8488 !hba->clk_gating.active_reqs)
8489 ufshcd_update_rtc(hba);
8490
8491 if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8492 schedule_delayed_work(&hba->ufs_rtc_update_work,
8493 msecs_to_jiffies(hba->dev_info.rtc_update_period));
8494 }
8495
ufs_init_rtc(struct ufs_hba * hba,u8 * desc_buf)8496 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8497 {
8498 u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8499 struct ufs_dev_info *dev_info = &hba->dev_info;
8500
8501 if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8502 dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8503
8504 /*
8505 * The concept of measuring time in Linux as the number of seconds elapsed since
8506 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8507 * 2010 00:00, here we need to adjust ABS baseline.
8508 */
8509 dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8510 mktime64(1970, 1, 1, 0, 0, 0);
8511 } else {
8512 dev_info->rtc_type = UFS_RTC_RELATIVE;
8513 dev_info->rtc_time_baseline = 0;
8514 }
8515
8516 /*
8517 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8518 * how to calculate the specific update period for each time unit. And we disable periodic
8519 * RTC update work, let user configure by sysfs node according to specific circumstance.
8520 */
8521 dev_info->rtc_update_period = 0;
8522 }
8523
8524 /**
8525 * ufshcd_create_device_id - Generate unique device identifier string
8526 * @hba: per-adapter instance
8527 * @desc_buf: device descriptor buffer
8528 *
8529 * Creates a unique device ID string combining manufacturer ID, spec version,
8530 * model name, serial number (as hex), device version, and manufacture date.
8531 *
8532 * Returns: Allocated device ID string on success, NULL on failure
8533 */
ufshcd_create_device_id(struct ufs_hba * hba,u8 * desc_buf)8534 static char *ufshcd_create_device_id(struct ufs_hba *hba, u8 *desc_buf)
8535 {
8536 struct ufs_dev_info *dev_info = &hba->dev_info;
8537 u16 manufacture_date;
8538 u16 device_version;
8539 u8 *serial_number;
8540 char *serial_hex;
8541 char *device_id;
8542 u8 serial_index;
8543 int serial_len;
8544 int ret;
8545
8546 serial_index = desc_buf[DEVICE_DESC_PARAM_SN];
8547
8548 ret = ufshcd_read_string_desc(hba, serial_index, &serial_number, SD_RAW);
8549 if (ret < 0) {
8550 dev_err(hba->dev, "Failed reading Serial Number. err = %d\n", ret);
8551 return NULL;
8552 }
8553
8554 device_version = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_DEV_VER]);
8555 manufacture_date = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_MANF_DATE]);
8556
8557 serial_len = ret;
8558 /* Allocate buffer for hex string: 2 chars per byte + null terminator */
8559 serial_hex = kzalloc(serial_len * 2 + 1, GFP_KERNEL);
8560 if (!serial_hex) {
8561 kfree(serial_number);
8562 return NULL;
8563 }
8564
8565 bin2hex(serial_hex, serial_number, serial_len);
8566
8567 /*
8568 * Device ID format is ABI with secure world - do not change without firmware
8569 * coordination.
8570 */
8571 device_id = kasprintf(GFP_KERNEL, "%04X-%04X-%s-%s-%04X-%04X",
8572 dev_info->wmanufacturerid, dev_info->wspecversion,
8573 dev_info->model, serial_hex, device_version,
8574 manufacture_date);
8575
8576 kfree(serial_hex);
8577 kfree(serial_number);
8578
8579 if (!device_id)
8580 dev_warn(hba->dev, "Failed to allocate unique device ID\n");
8581
8582 return device_id;
8583 }
8584
ufs_get_device_desc(struct ufs_hba * hba)8585 static int ufs_get_device_desc(struct ufs_hba *hba)
8586 {
8587 struct ufs_dev_info *dev_info = &hba->dev_info;
8588 struct Scsi_Host *shost = hba->host;
8589 int err;
8590 u8 model_index;
8591 u8 *desc_buf;
8592
8593 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8594 if (!desc_buf) {
8595 err = -ENOMEM;
8596 goto out;
8597 }
8598
8599 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8600 QUERY_DESC_MAX_SIZE);
8601 if (err) {
8602 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8603 __func__, err);
8604 goto out;
8605 }
8606
8607 /*
8608 * getting vendor (manufacturerID) and Bank Index in big endian
8609 * format
8610 */
8611 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8612 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8613
8614 /* getting Specification Version in big endian format */
8615 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8616 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8617 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8618
8619 /*
8620 * According to the UFS standard, the UFS device queue depth
8621 * (bQueueDepth) must be in the range 1..255 if the shared queueing
8622 * architecture is supported. bQueueDepth is zero if the shared queueing
8623 * architecture is not supported.
8624 */
8625 if (dev_info->bqueuedepth)
8626 shost->cmd_per_lun = min(hba->nutrs, dev_info->bqueuedepth) -
8627 UFSHCD_NUM_RESERVED;
8628 else
8629 shost->cmd_per_lun = shost->can_queue;
8630
8631 dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP];
8632
8633 dev_info->hid_sup = get_unaligned_be32(desc_buf +
8634 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP) &
8635 UFS_DEV_HID_SUPPORT;
8636
8637 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8638
8639 err = ufshcd_read_string_desc(hba, model_index,
8640 &dev_info->model, SD_ASCII_STD);
8641 if (err < 0) {
8642 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8643 __func__, err);
8644 goto out;
8645 }
8646
8647 /* Generate unique device ID */
8648 dev_info->device_id = ufshcd_create_device_id(hba, desc_buf);
8649
8650 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8651 desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8652
8653 ufs_fixup_device_setup(hba);
8654
8655 ufshcd_wb_probe(hba, desc_buf);
8656
8657 ufshcd_temp_notif_probe(hba, desc_buf);
8658
8659 if (dev_info->wspecversion >= 0x410) {
8660 hba->critical_health_count = 0;
8661 ufshcd_enable_ee(hba, MASK_EE_HEALTH_CRITICAL);
8662 }
8663
8664 ufs_init_rtc(hba, desc_buf);
8665
8666 ufshcd_device_lvl_exception_probe(hba, desc_buf);
8667
8668 /*
8669 * ufshcd_read_string_desc returns size of the string
8670 * reset the error value
8671 */
8672 err = 0;
8673
8674 out:
8675 kfree(desc_buf);
8676 return err;
8677 }
8678
ufs_put_device_desc(struct ufs_hba * hba)8679 static void ufs_put_device_desc(struct ufs_hba *hba)
8680 {
8681 struct ufs_dev_info *dev_info = &hba->dev_info;
8682
8683 kfree(dev_info->model);
8684 dev_info->model = NULL;
8685 kfree(dev_info->device_id);
8686 dev_info->device_id = NULL;
8687 }
8688
8689 /**
8690 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8691 * less than device PA_TACTIVATE time.
8692 * @hba: per-adapter instance
8693 *
8694 * Some UFS devices require host PA_TACTIVATE to be lower than device
8695 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8696 * for such devices.
8697 *
8698 * Return: zero on success, non-zero error value on failure.
8699 */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)8700 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8701 {
8702 int ret = 0;
8703 u32 granularity, peer_granularity;
8704 u32 pa_tactivate, peer_pa_tactivate;
8705 u32 pa_tactivate_us, peer_pa_tactivate_us;
8706 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8707
8708 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8709 &granularity);
8710 if (ret)
8711 goto out;
8712
8713 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8714 &peer_granularity);
8715 if (ret)
8716 goto out;
8717
8718 if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8719 (granularity > PA_GRANULARITY_MAX_VAL)) {
8720 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8721 __func__, granularity);
8722 return -EINVAL;
8723 }
8724
8725 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8726 (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8727 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8728 __func__, peer_granularity);
8729 return -EINVAL;
8730 }
8731
8732 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8733 if (ret)
8734 goto out;
8735
8736 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8737 &peer_pa_tactivate);
8738 if (ret)
8739 goto out;
8740
8741 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8742 peer_pa_tactivate_us = peer_pa_tactivate *
8743 gran_to_us_table[peer_granularity - 1];
8744
8745 if (pa_tactivate_us >= peer_pa_tactivate_us) {
8746 u32 new_peer_pa_tactivate;
8747
8748 new_peer_pa_tactivate = pa_tactivate_us /
8749 gran_to_us_table[peer_granularity - 1];
8750 new_peer_pa_tactivate++;
8751 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8752 new_peer_pa_tactivate);
8753 }
8754
8755 out:
8756 return ret;
8757 }
8758
8759 /**
8760 * ufshcd_quirk_override_pa_h8time - Ensures proper adjustment of PA_HIBERN8TIME.
8761 * @hba: per-adapter instance
8762 *
8763 * Some UFS devices require specific adjustments to the PA_HIBERN8TIME parameter
8764 * to ensure proper hibernation timing. This function retrieves the current
8765 * PA_HIBERN8TIME value and increments it by 100us.
8766 */
ufshcd_quirk_override_pa_h8time(struct ufs_hba * hba)8767 static void ufshcd_quirk_override_pa_h8time(struct ufs_hba *hba)
8768 {
8769 u32 pa_h8time;
8770 int ret;
8771
8772 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_HIBERN8TIME), &pa_h8time);
8773 if (ret) {
8774 dev_err(hba->dev, "Failed to get PA_HIBERN8TIME: %d\n", ret);
8775 return;
8776 }
8777
8778 /* Increment by 1 to increase hibernation time by 100 µs */
8779 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), pa_h8time + 1);
8780 if (ret)
8781 dev_err(hba->dev, "Failed updating PA_HIBERN8TIME: %d\n", ret);
8782 }
8783
ufshcd_tune_unipro_params(struct ufs_hba * hba)8784 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8785 {
8786 ufshcd_vops_apply_dev_quirks(hba);
8787
8788 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8789 /* set 1ms timeout for PA_TACTIVATE */
8790 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8791
8792 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8793 ufshcd_quirk_tune_host_pa_tactivate(hba);
8794
8795 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_HIBER8TIME)
8796 ufshcd_quirk_override_pa_h8time(hba);
8797 }
8798
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)8799 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8800 {
8801 hba->ufs_stats.hibern8_exit_cnt = 0;
8802 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8803 hba->req_abort_count = 0;
8804 }
8805
ufshcd_device_geo_params_init(struct ufs_hba * hba)8806 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8807 {
8808 int err;
8809 u8 *desc_buf;
8810
8811 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8812 if (!desc_buf) {
8813 err = -ENOMEM;
8814 goto out;
8815 }
8816
8817 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8818 desc_buf, QUERY_DESC_MAX_SIZE);
8819 if (err) {
8820 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8821 __func__, err);
8822 goto out;
8823 }
8824
8825 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8826 hba->dev_info.max_lu_supported = 32;
8827 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8828 hba->dev_info.max_lu_supported = 8;
8829
8830 hba->dev_info.rpmb_io_size = desc_buf[GEOMETRY_DESC_PARAM_RPMB_RW_SIZE];
8831
8832 out:
8833 kfree(desc_buf);
8834 return err;
8835 }
8836
8837 struct ufs_ref_clk {
8838 unsigned long freq_hz;
8839 enum ufs_ref_clk_freq val;
8840 };
8841
8842 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8843 {19200000, REF_CLK_FREQ_19_2_MHZ},
8844 {26000000, REF_CLK_FREQ_26_MHZ},
8845 {38400000, REF_CLK_FREQ_38_4_MHZ},
8846 {52000000, REF_CLK_FREQ_52_MHZ},
8847 {0, REF_CLK_FREQ_INVAL},
8848 };
8849
8850 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)8851 ufs_get_bref_clk_from_hz(unsigned long freq)
8852 {
8853 int i;
8854
8855 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8856 if (ufs_ref_clk_freqs[i].freq_hz == freq)
8857 return ufs_ref_clk_freqs[i].val;
8858
8859 return REF_CLK_FREQ_INVAL;
8860 }
8861
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)8862 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8863 {
8864 unsigned long freq;
8865
8866 freq = clk_get_rate(refclk);
8867
8868 hba->dev_ref_clk_freq =
8869 ufs_get_bref_clk_from_hz(freq);
8870
8871 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8872 dev_err(hba->dev,
8873 "invalid ref_clk setting = %ld\n", freq);
8874 }
8875
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)8876 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8877 {
8878 int err;
8879 u32 ref_clk;
8880 u32 freq = hba->dev_ref_clk_freq;
8881
8882 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8883 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8884
8885 if (err) {
8886 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8887 err);
8888 goto out;
8889 }
8890
8891 if (ref_clk == freq)
8892 goto out; /* nothing to update */
8893
8894 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8895 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8896
8897 if (err) {
8898 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8899 ufs_ref_clk_freqs[freq].freq_hz);
8900 goto out;
8901 }
8902
8903 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8904 ufs_ref_clk_freqs[freq].freq_hz);
8905
8906 out:
8907 return err;
8908 }
8909
ufshcd_device_params_init(struct ufs_hba * hba)8910 static int ufshcd_device_params_init(struct ufs_hba *hba)
8911 {
8912 bool flag;
8913 int ret;
8914
8915 /* Init UFS geometry descriptor related parameters */
8916 ret = ufshcd_device_geo_params_init(hba);
8917 if (ret)
8918 goto out;
8919
8920 /* Check and apply UFS device quirks */
8921 ret = ufs_get_device_desc(hba);
8922 if (ret) {
8923 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8924 __func__, ret);
8925 goto out;
8926 }
8927
8928 ufshcd_set_rtt(hba);
8929
8930 ufshcd_get_ref_clk_gating_wait(hba);
8931
8932 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8933 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8934 hba->dev_info.f_power_on_wp_en = flag;
8935
8936 /* Probe maximum power mode co-supported by both UFS host and device */
8937 if (ufshcd_get_max_pwr_mode(hba))
8938 dev_err(hba->dev,
8939 "%s: Failed getting max supported power mode\n",
8940 __func__);
8941 out:
8942 return ret;
8943 }
8944
ufshcd_set_timestamp_attr(struct ufs_hba * hba)8945 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8946 {
8947 int err;
8948 struct ufs_query_req *request = NULL;
8949 struct ufs_query_res *response = NULL;
8950 struct ufs_dev_info *dev_info = &hba->dev_info;
8951 struct utp_upiu_query_v4_0 *upiu_data;
8952
8953 if (dev_info->wspecversion < 0x400 ||
8954 hba->dev_quirks & UFS_DEVICE_QUIRK_NO_TIMESTAMP_SUPPORT)
8955 return;
8956
8957 ufshcd_dev_man_lock(hba);
8958
8959 ufshcd_init_query(hba, &request, &response,
8960 UPIU_QUERY_OPCODE_WRITE_ATTR,
8961 QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8962
8963 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8964
8965 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8966
8967 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8968
8969 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
8970
8971 if (err)
8972 dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8973 __func__, err);
8974
8975 ufshcd_dev_man_unlock(hba);
8976 }
8977
8978 /**
8979 * ufshcd_add_lus - probe and add UFS logical units
8980 * @hba: per-adapter instance
8981 *
8982 * Return: 0 upon success; < 0 upon failure.
8983 */
ufshcd_add_lus(struct ufs_hba * hba)8984 static int ufshcd_add_lus(struct ufs_hba *hba)
8985 {
8986 int ret;
8987
8988 /* Add required well known logical units to scsi mid layer */
8989 ret = ufshcd_scsi_add_wlus(hba);
8990 if (ret)
8991 goto out;
8992
8993 /* Initialize devfreq after UFS device is detected */
8994 if (ufshcd_is_clkscaling_supported(hba)) {
8995 memcpy(&hba->clk_scaling.saved_pwr_info,
8996 &hba->pwr_info,
8997 sizeof(struct ufs_pa_layer_attr));
8998 hba->clk_scaling.is_allowed = true;
8999
9000 ret = ufshcd_devfreq_init(hba);
9001 if (ret)
9002 goto out;
9003
9004 hba->clk_scaling.is_enabled = true;
9005 ufshcd_init_clk_scaling_sysfs(hba);
9006 }
9007
9008 /*
9009 * The RTC update code accesses the hba->ufs_device_wlun->sdev_gendev
9010 * pointer and hence must only be started after the WLUN pointer has
9011 * been initialized by ufshcd_scsi_add_wlus().
9012 */
9013 schedule_delayed_work(&hba->ufs_rtc_update_work,
9014 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
9015
9016 ufs_bsg_probe(hba);
9017 scsi_scan_host(hba->host);
9018 ufs_rpmb_probe(hba);
9019
9020 out:
9021 return ret;
9022 }
9023
9024 /* SDB - Single Doorbell */
ufshcd_release_sdb_queue(struct ufs_hba * hba,int nutrs)9025 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
9026 {
9027 size_t ucdl_size, utrdl_size;
9028
9029 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
9030 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
9031 hba->ucdl_dma_addr);
9032
9033 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
9034 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
9035 hba->utrdl_dma_addr);
9036 }
9037
ufshcd_alloc_mcq(struct ufs_hba * hba)9038 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
9039 {
9040 int ret;
9041 int old_nutrs = hba->nutrs;
9042
9043 ret = ufshcd_get_hba_mac(hba);
9044 if (ret < 0)
9045 return ret;
9046
9047 hba->nutrs = ret;
9048 ret = ufshcd_mcq_init(hba);
9049 if (ret)
9050 goto err;
9051
9052 /*
9053 * Previously allocated memory for nutrs may not be enough in MCQ mode.
9054 * Number of supported tags in MCQ mode may be larger than SDB mode.
9055 */
9056 if (hba->nutrs != old_nutrs) {
9057 ufshcd_release_sdb_queue(hba, old_nutrs);
9058 ret = ufshcd_memory_alloc(hba);
9059 if (ret)
9060 goto err;
9061 ufshcd_host_memory_configure(hba);
9062 }
9063
9064 ret = ufshcd_mcq_memory_alloc(hba);
9065 if (ret)
9066 goto err;
9067
9068 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
9069
9070 return 0;
9071 err:
9072 hba->nutrs = old_nutrs;
9073 return ret;
9074 }
9075
ufshcd_config_mcq(struct ufs_hba * hba)9076 static void ufshcd_config_mcq(struct ufs_hba *hba)
9077 {
9078 int ret;
9079
9080 ret = ufshcd_mcq_vops_config_esi(hba);
9081 hba->mcq_esi_enabled = !ret;
9082 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
9083
9084 ufshcd_mcq_make_queues_operational(hba);
9085 ufshcd_mcq_config_mac(hba, hba->nutrs);
9086
9087 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
9088 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
9089 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
9090 hba->nutrs);
9091 }
9092
ufshcd_post_device_init(struct ufs_hba * hba)9093 static int ufshcd_post_device_init(struct ufs_hba *hba)
9094 {
9095 int ret;
9096
9097 ufshcd_tune_unipro_params(hba);
9098
9099 /* UFS device is also active now */
9100 ufshcd_set_ufs_dev_active(hba);
9101 ufshcd_force_reset_auto_bkops(hba);
9102
9103 ufshcd_set_timestamp_attr(hba);
9104
9105 if (!hba->max_pwr_info.is_valid)
9106 return 0;
9107
9108 /*
9109 * Set the right value to bRefClkFreq before attempting to
9110 * switch to HS gears.
9111 */
9112 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
9113 ufshcd_set_dev_ref_clk(hba);
9114 /* Gear up to HS gear. */
9115 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
9116 if (ret) {
9117 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
9118 __func__, ret);
9119 return ret;
9120 }
9121
9122 return 0;
9123 }
9124
ufshcd_device_init(struct ufs_hba * hba,bool init_dev_params)9125 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
9126 {
9127 int ret;
9128
9129 WARN_ON_ONCE(!hba->scsi_host_added);
9130
9131 hba->ufshcd_state = UFSHCD_STATE_RESET;
9132
9133 ret = ufshcd_link_startup(hba);
9134 if (ret)
9135 return ret;
9136
9137 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
9138 return ret;
9139
9140 /* Debug counters initialization */
9141 ufshcd_clear_dbg_ufs_stats(hba);
9142
9143 /* UniPro link is active now */
9144 ufshcd_set_link_active(hba);
9145
9146 /* Reconfigure MCQ upon reset */
9147 if (hba->mcq_enabled && !init_dev_params) {
9148 ufshcd_config_mcq(hba);
9149 ufshcd_mcq_enable(hba);
9150 }
9151
9152 /* Verify device initialization by sending NOP OUT UPIU */
9153 ret = ufshcd_verify_dev_init(hba);
9154 if (ret)
9155 return ret;
9156
9157 /* Initiate UFS initialization, and waiting until completion */
9158 ret = ufshcd_complete_dev_init(hba);
9159 if (ret)
9160 return ret;
9161
9162 /*
9163 * Initialize UFS device parameters used by driver, these
9164 * parameters are associated with UFS descriptors.
9165 */
9166 if (init_dev_params) {
9167 ret = ufshcd_device_params_init(hba);
9168 if (ret)
9169 return ret;
9170 if (is_mcq_supported(hba) &&
9171 hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
9172 ufshcd_config_mcq(hba);
9173 ufshcd_mcq_enable(hba);
9174 }
9175 }
9176
9177 return ufshcd_post_device_init(hba);
9178 }
9179
9180 /**
9181 * ufshcd_probe_hba - probe hba to detect device and initialize it
9182 * @hba: per-adapter instance
9183 * @init_dev_params: whether or not to call ufshcd_device_params_init().
9184 *
9185 * Execute link-startup and verify device initialization
9186 *
9187 * Return: 0 upon success; < 0 upon failure.
9188 */
ufshcd_probe_hba(struct ufs_hba * hba,bool init_dev_params)9189 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
9190 {
9191 int ret;
9192
9193 if (!hba->pm_op_in_progress &&
9194 (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
9195 /* Reset the device and controller before doing reinit */
9196 ufshcd_device_reset(hba);
9197 ufs_put_device_desc(hba);
9198 ufshcd_hba_stop(hba);
9199 ret = ufshcd_hba_enable(hba);
9200 if (ret) {
9201 dev_err(hba->dev, "Host controller enable failed\n");
9202 ufshcd_print_evt_hist(hba);
9203 ufshcd_print_host_state(hba);
9204 return ret;
9205 }
9206
9207 /* Reinit the device */
9208 ret = ufshcd_device_init(hba, init_dev_params);
9209 if (ret)
9210 return ret;
9211 }
9212
9213 ufshcd_print_pwr_info(hba);
9214
9215 /*
9216 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
9217 * and for removable UFS card as well, hence always set the parameter.
9218 * Note: Error handler may issue the device reset hence resetting
9219 * bActiveICCLevel as well so it is always safe to set this here.
9220 */
9221 ufshcd_set_active_icc_lvl(hba);
9222
9223 /* Enable UFS Write Booster if supported */
9224 ufshcd_configure_wb(hba);
9225
9226 if (hba->ee_usr_mask)
9227 ufshcd_write_ee_control(hba);
9228 ufshcd_configure_auto_hibern8(hba);
9229
9230 return 0;
9231 }
9232
9233 /**
9234 * ufshcd_async_scan - asynchronous execution for probing hba
9235 * @data: data pointer to pass to this function
9236 * @cookie: cookie data
9237 */
ufshcd_async_scan(void * data,async_cookie_t cookie)9238 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
9239 {
9240 struct ufs_hba *hba = (struct ufs_hba *)data;
9241 ktime_t probe_start;
9242 int ret;
9243
9244 down(&hba->host_sem);
9245 /* Initialize hba, detect and initialize UFS device */
9246 probe_start = ktime_get();
9247 ret = ufshcd_probe_hba(hba, true);
9248 ufshcd_process_probe_result(hba, probe_start, ret);
9249 up(&hba->host_sem);
9250 if (ret)
9251 goto out;
9252
9253 /* Probe and add UFS logical units */
9254 ret = ufshcd_add_lus(hba);
9255
9256 out:
9257 pm_runtime_put_sync(hba->dev);
9258
9259 if (ret)
9260 dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
9261 }
9262
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)9263 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
9264 {
9265 struct ufs_hba *hba = shost_priv(scmd->device->host);
9266
9267 if (!hba->system_suspending) {
9268 /* Activate the error handler in the SCSI core. */
9269 return SCSI_EH_NOT_HANDLED;
9270 }
9271
9272 /*
9273 * If we get here we know that no TMFs are outstanding and also that
9274 * the only pending command is a START STOP UNIT command. Handle the
9275 * timeout of that command directly to prevent a deadlock between
9276 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
9277 */
9278 ufshcd_link_recovery(hba);
9279 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
9280 __func__, hba->outstanding_tasks);
9281
9282 return scsi_host_busy(hba->host) ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
9283 }
9284
9285 static const struct attribute_group *ufshcd_driver_groups[] = {
9286 &ufs_sysfs_unit_descriptor_group,
9287 &ufs_sysfs_lun_attributes_group,
9288 NULL,
9289 };
9290
9291 static struct ufs_hba_variant_params ufs_hba_vps = {
9292 .hba_enable_delay_us = 1000,
9293 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40),
9294 .devfreq_profile.polling_ms = 100,
9295 .devfreq_profile.target = ufshcd_devfreq_target,
9296 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status,
9297 .ondemand_data.upthreshold = 70,
9298 .ondemand_data.downdifferential = 5,
9299 };
9300
9301 static const struct scsi_host_template ufshcd_driver_template = {
9302 .module = THIS_MODULE,
9303 .name = UFSHCD,
9304 .proc_name = UFSHCD,
9305 .map_queues = ufshcd_map_queues,
9306 .cmd_size = sizeof(struct ufshcd_lrb),
9307 .init_cmd_priv = ufshcd_init_cmd_priv,
9308 .queuecommand = ufshcd_queuecommand,
9309 .queue_reserved_command = ufshcd_queue_reserved_command,
9310 .nr_reserved_cmds = UFSHCD_NUM_RESERVED,
9311 .mq_poll = ufshcd_poll,
9312 .sdev_init = ufshcd_sdev_init,
9313 .sdev_configure = ufshcd_sdev_configure,
9314 .sdev_destroy = ufshcd_sdev_destroy,
9315 .change_queue_depth = ufshcd_change_queue_depth,
9316 .eh_abort_handler = ufshcd_abort,
9317 .eh_device_reset_handler = ufshcd_eh_device_reset_handler,
9318 .eh_host_reset_handler = ufshcd_eh_host_reset_handler,
9319 .eh_timed_out = ufshcd_eh_timed_out,
9320 .this_id = -1,
9321 .sg_tablesize = SG_ALL,
9322 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX,
9323 .max_sectors = SZ_1M / SECTOR_SIZE,
9324 .max_host_blocked = 1,
9325 .host_tagset = true,
9326 .track_queue_depth = 1,
9327 .skip_settle_delay = 1,
9328 .sdev_groups = ufshcd_driver_groups,
9329 };
9330
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)9331 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
9332 int ua)
9333 {
9334 int ret;
9335
9336 if (!vreg)
9337 return 0;
9338
9339 /*
9340 * "set_load" operation shall be required on those regulators
9341 * which specifically configured current limitation. Otherwise
9342 * zero max_uA may cause unexpected behavior when regulator is
9343 * enabled or set as high power mode.
9344 */
9345 if (!vreg->max_uA)
9346 return 0;
9347
9348 ret = regulator_set_load(vreg->reg, ua);
9349 if (ret < 0) {
9350 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9351 __func__, vreg->name, ua, ret);
9352 }
9353
9354 return ret;
9355 }
9356
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9357 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9358 struct ufs_vreg *vreg)
9359 {
9360 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9361 }
9362
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9363 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9364 struct ufs_vreg *vreg)
9365 {
9366 if (!vreg)
9367 return 0;
9368
9369 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9370 }
9371
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)9372 static int ufshcd_config_vreg(struct device *dev,
9373 struct ufs_vreg *vreg, bool on)
9374 {
9375 if (regulator_count_voltages(vreg->reg) <= 0)
9376 return 0;
9377
9378 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9379 }
9380
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)9381 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9382 {
9383 int ret = 0;
9384
9385 if (!vreg || vreg->enabled)
9386 goto out;
9387
9388 ret = ufshcd_config_vreg(dev, vreg, true);
9389 if (!ret)
9390 ret = regulator_enable(vreg->reg);
9391
9392 if (!ret)
9393 vreg->enabled = true;
9394 else
9395 dev_err(dev, "%s: %s enable failed, err=%d\n",
9396 __func__, vreg->name, ret);
9397 out:
9398 return ret;
9399 }
9400
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)9401 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9402 {
9403 int ret = 0;
9404
9405 if (!vreg || !vreg->enabled || vreg->always_on)
9406 goto out;
9407
9408 ret = regulator_disable(vreg->reg);
9409
9410 if (!ret) {
9411 /* ignore errors on applying disable config */
9412 ufshcd_config_vreg(dev, vreg, false);
9413 vreg->enabled = false;
9414 } else {
9415 dev_err(dev, "%s: %s disable failed, err=%d\n",
9416 __func__, vreg->name, ret);
9417 }
9418 out:
9419 return ret;
9420 }
9421
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)9422 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9423 {
9424 int ret = 0;
9425 struct device *dev = hba->dev;
9426 struct ufs_vreg_info *info = &hba->vreg_info;
9427
9428 ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9429 if (ret)
9430 goto out;
9431
9432 ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9433 if (ret)
9434 goto out;
9435
9436 ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9437
9438 out:
9439 if (ret) {
9440 ufshcd_toggle_vreg(dev, info->vccq2, false);
9441 ufshcd_toggle_vreg(dev, info->vccq, false);
9442 ufshcd_toggle_vreg(dev, info->vcc, false);
9443 }
9444 return ret;
9445 }
9446
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)9447 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9448 {
9449 struct ufs_vreg_info *info = &hba->vreg_info;
9450
9451 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9452 }
9453
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)9454 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9455 {
9456 int ret = 0;
9457
9458 if (!vreg)
9459 goto out;
9460
9461 vreg->reg = devm_regulator_get(dev, vreg->name);
9462 if (IS_ERR(vreg->reg)) {
9463 ret = PTR_ERR(vreg->reg);
9464 dev_err(dev, "%s: %s get failed, err=%d\n",
9465 __func__, vreg->name, ret);
9466 }
9467 out:
9468 return ret;
9469 }
9470 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9471
ufshcd_init_vreg(struct ufs_hba * hba)9472 static int ufshcd_init_vreg(struct ufs_hba *hba)
9473 {
9474 int ret = 0;
9475 struct device *dev = hba->dev;
9476 struct ufs_vreg_info *info = &hba->vreg_info;
9477
9478 ret = ufshcd_get_vreg(dev, info->vcc);
9479 if (ret)
9480 goto out;
9481
9482 ret = ufshcd_get_vreg(dev, info->vccq);
9483 if (!ret)
9484 ret = ufshcd_get_vreg(dev, info->vccq2);
9485 out:
9486 return ret;
9487 }
9488
ufshcd_init_hba_vreg(struct ufs_hba * hba)9489 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9490 {
9491 struct ufs_vreg_info *info = &hba->vreg_info;
9492
9493 return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9494 }
9495
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)9496 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9497 {
9498 int ret = 0;
9499 struct ufs_clk_info *clki;
9500 struct list_head *head = &hba->clk_list_head;
9501 ktime_t start = ktime_get();
9502 bool clk_state_changed = false;
9503
9504 if (list_empty(head))
9505 goto out;
9506
9507 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9508 if (ret)
9509 return ret;
9510
9511 list_for_each_entry(clki, head, list) {
9512 if (!IS_ERR_OR_NULL(clki->clk)) {
9513 /*
9514 * Don't disable clocks which are needed
9515 * to keep the link active.
9516 */
9517 if (ufshcd_is_link_active(hba) &&
9518 clki->keep_link_active)
9519 continue;
9520
9521 clk_state_changed = on ^ clki->enabled;
9522 if (on && !clki->enabled) {
9523 ret = clk_prepare_enable(clki->clk);
9524 if (ret) {
9525 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9526 __func__, clki->name, ret);
9527 goto out;
9528 }
9529 } else if (!on && clki->enabled) {
9530 clk_disable_unprepare(clki->clk);
9531 }
9532 clki->enabled = on;
9533 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9534 clki->name, on ? "en" : "dis");
9535 }
9536 }
9537
9538 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9539 if (ret)
9540 return ret;
9541
9542 if (!ufshcd_is_clkscaling_supported(hba))
9543 ufshcd_pm_qos_update(hba, on);
9544 out:
9545 if (ret) {
9546 list_for_each_entry(clki, head, list) {
9547 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9548 clk_disable_unprepare(clki->clk);
9549 }
9550 } else if (!ret && on && hba->clk_gating.is_initialized) {
9551 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock)
9552 hba->clk_gating.state = CLKS_ON;
9553 trace_ufshcd_clk_gating(hba,
9554 hba->clk_gating.state);
9555 }
9556
9557 if (clk_state_changed)
9558 trace_ufshcd_profile_clk_gating(hba,
9559 (on ? "on" : "off"),
9560 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9561 return ret;
9562 }
9563
ufshcd_parse_ref_clk_property(struct ufs_hba * hba)9564 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9565 {
9566 u32 freq;
9567 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9568
9569 if (ret) {
9570 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9571 return REF_CLK_FREQ_INVAL;
9572 }
9573
9574 return ufs_get_bref_clk_from_hz(freq);
9575 }
9576
ufshcd_init_clocks(struct ufs_hba * hba)9577 static int ufshcd_init_clocks(struct ufs_hba *hba)
9578 {
9579 int ret = 0;
9580 struct ufs_clk_info *clki;
9581 struct device *dev = hba->dev;
9582 struct list_head *head = &hba->clk_list_head;
9583
9584 if (list_empty(head))
9585 goto out;
9586
9587 list_for_each_entry(clki, head, list) {
9588 if (!clki->name)
9589 continue;
9590
9591 clki->clk = devm_clk_get(dev, clki->name);
9592 if (IS_ERR(clki->clk)) {
9593 ret = PTR_ERR(clki->clk);
9594 dev_err(dev, "%s: %s clk get failed, %d\n",
9595 __func__, clki->name, ret);
9596 goto out;
9597 }
9598
9599 /*
9600 * Parse device ref clk freq as per device tree "ref_clk".
9601 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9602 * in ufshcd_alloc_host().
9603 */
9604 if (!strcmp(clki->name, "ref_clk"))
9605 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9606
9607 if (clki->max_freq) {
9608 ret = clk_set_rate(clki->clk, clki->max_freq);
9609 if (ret) {
9610 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9611 __func__, clki->name,
9612 clki->max_freq, ret);
9613 goto out;
9614 }
9615 clki->curr_freq = clki->max_freq;
9616 }
9617 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9618 clki->name, clk_get_rate(clki->clk));
9619 }
9620
9621 /* Set Max. frequency for all clocks */
9622 if (hba->use_pm_opp) {
9623 ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9624 if (ret) {
9625 dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9626 ret);
9627 goto out;
9628 }
9629 }
9630
9631 out:
9632 return ret;
9633 }
9634
ufshcd_variant_hba_init(struct ufs_hba * hba)9635 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9636 {
9637 int err = 0;
9638
9639 if (!hba->vops)
9640 goto out;
9641
9642 err = ufshcd_vops_init(hba);
9643 if (err)
9644 dev_err_probe(hba->dev, err,
9645 "%s: variant %s init failed with err %d\n",
9646 __func__, ufshcd_get_var_name(hba), err);
9647 out:
9648 return err;
9649 }
9650
ufshcd_variant_hba_exit(struct ufs_hba * hba)9651 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9652 {
9653 if (!hba->vops)
9654 return;
9655
9656 ufshcd_vops_exit(hba);
9657 }
9658
ufshcd_hba_init(struct ufs_hba * hba)9659 static int ufshcd_hba_init(struct ufs_hba *hba)
9660 {
9661 int err;
9662
9663 /*
9664 * Handle host controller power separately from the UFS device power
9665 * rails as it will help controlling the UFS host controller power
9666 * collapse easily which is different than UFS device power collapse.
9667 * Also, enable the host controller power before we go ahead with rest
9668 * of the initialization here.
9669 */
9670 err = ufshcd_init_hba_vreg(hba);
9671 if (err)
9672 goto out;
9673
9674 err = ufshcd_setup_hba_vreg(hba, true);
9675 if (err)
9676 goto out;
9677
9678 err = ufshcd_init_clocks(hba);
9679 if (err)
9680 goto out_disable_hba_vreg;
9681
9682 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9683 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9684
9685 err = ufshcd_setup_clocks(hba, true);
9686 if (err)
9687 goto out_disable_hba_vreg;
9688
9689 err = ufshcd_init_vreg(hba);
9690 if (err)
9691 goto out_disable_clks;
9692
9693 err = ufshcd_setup_vreg(hba, true);
9694 if (err)
9695 goto out_disable_clks;
9696
9697 err = ufshcd_variant_hba_init(hba);
9698 if (err)
9699 goto out_disable_vreg;
9700
9701 ufs_debugfs_hba_init(hba);
9702 ufs_fault_inject_hba_init(hba);
9703
9704 hba->is_powered = true;
9705 goto out;
9706
9707 out_disable_vreg:
9708 ufshcd_setup_vreg(hba, false);
9709 out_disable_clks:
9710 ufshcd_setup_clocks(hba, false);
9711 out_disable_hba_vreg:
9712 ufshcd_setup_hba_vreg(hba, false);
9713 out:
9714 return err;
9715 }
9716
ufshcd_hba_exit(struct ufs_hba * hba)9717 static void ufshcd_hba_exit(struct ufs_hba *hba)
9718 {
9719 if (hba->is_powered) {
9720 ufshcd_pm_qos_exit(hba);
9721 ufshcd_exit_clk_scaling(hba);
9722 ufshcd_exit_clk_gating(hba);
9723 if (hba->eh_wq)
9724 destroy_workqueue(hba->eh_wq);
9725 ufs_debugfs_hba_exit(hba);
9726 ufshcd_variant_hba_exit(hba);
9727 ufshcd_setup_vreg(hba, false);
9728 ufshcd_setup_clocks(hba, false);
9729 ufshcd_setup_hba_vreg(hba, false);
9730 hba->is_powered = false;
9731 ufs_put_device_desc(hba);
9732 }
9733 }
9734
ufshcd_execute_start_stop(struct scsi_device * sdev,enum ufs_dev_pwr_mode pwr_mode,struct scsi_sense_hdr * sshdr)9735 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9736 enum ufs_dev_pwr_mode pwr_mode,
9737 struct scsi_sense_hdr *sshdr)
9738 {
9739 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9740 struct scsi_failure failure_defs[] = {
9741 {
9742 .allowed = 2,
9743 .result = SCMD_FAILURE_RESULT_ANY,
9744 },
9745 };
9746 struct scsi_failures failures = {
9747 .failure_definitions = failure_defs,
9748 };
9749 const struct scsi_exec_args args = {
9750 .failures = &failures,
9751 .sshdr = sshdr,
9752 .req_flags = BLK_MQ_REQ_PM,
9753 .scmd_flags = SCMD_FAIL_IF_RECOVERING,
9754 };
9755
9756 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9757 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9758 &args);
9759 }
9760
9761 /**
9762 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9763 * power mode
9764 * @hba: per adapter instance
9765 * @pwr_mode: device power mode to set
9766 *
9767 * Return: 0 if requested power mode is set successfully;
9768 * < 0 if failed to set the requested power mode.
9769 */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)9770 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9771 enum ufs_dev_pwr_mode pwr_mode)
9772 {
9773 struct scsi_sense_hdr sshdr;
9774 struct scsi_device *sdp;
9775 unsigned long flags;
9776 int ret;
9777
9778 spin_lock_irqsave(hba->host->host_lock, flags);
9779 sdp = hba->ufs_device_wlun;
9780 if (sdp && scsi_device_online(sdp))
9781 ret = scsi_device_get(sdp);
9782 else
9783 ret = -ENODEV;
9784 spin_unlock_irqrestore(hba->host->host_lock, flags);
9785
9786 if (ret)
9787 return ret;
9788
9789 /*
9790 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9791 * handling, which would wait for host to be resumed. Since we know
9792 * we are functional while we are here, skip host resume in error
9793 * handling context.
9794 */
9795 hba->host->eh_noresume = 1;
9796
9797 /*
9798 * Current function would be generally called from the power management
9799 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9800 * already suspended childs.
9801 */
9802 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9803 if (ret) {
9804 sdev_printk(KERN_WARNING, sdp,
9805 "START_STOP failed for power mode: %d, result %x\n",
9806 pwr_mode, ret);
9807 if (ret > 0) {
9808 if (scsi_sense_valid(&sshdr))
9809 scsi_print_sense_hdr(sdp, NULL, &sshdr);
9810 ret = -EIO;
9811 }
9812 } else {
9813 hba->curr_dev_pwr_mode = pwr_mode;
9814 }
9815
9816 scsi_device_put(sdp);
9817 hba->host->eh_noresume = 0;
9818 return ret;
9819 }
9820
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,bool check_for_bkops)9821 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9822 enum uic_link_state req_link_state,
9823 bool check_for_bkops)
9824 {
9825 int ret = 0;
9826
9827 if (req_link_state == hba->uic_link_state)
9828 return 0;
9829
9830 if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9831 ret = ufshcd_uic_hibern8_enter(hba);
9832 if (!ret) {
9833 ufshcd_set_link_hibern8(hba);
9834 } else {
9835 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9836 __func__, ret);
9837 goto out;
9838 }
9839 }
9840 /*
9841 * If autobkops is enabled, link can't be turned off because
9842 * turning off the link would also turn off the device, except in the
9843 * case of DeepSleep where the device is expected to remain powered.
9844 */
9845 else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9846 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9847 /*
9848 * Let's make sure that link is in low power mode, we are doing
9849 * this currently by putting the link in Hibern8. Otherway to
9850 * put the link in low power mode is to send the DME end point
9851 * to device and then send the DME reset command to local
9852 * unipro. But putting the link in hibern8 is much faster.
9853 *
9854 * Note also that putting the link in Hibern8 is a requirement
9855 * for entering DeepSleep.
9856 */
9857 ret = ufshcd_uic_hibern8_enter(hba);
9858 if (ret) {
9859 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9860 __func__, ret);
9861 goto out;
9862 }
9863 /*
9864 * Change controller state to "reset state" which
9865 * should also put the link in off/reset state
9866 */
9867 ufshcd_hba_stop(hba);
9868 /*
9869 * TODO: Check if we need any delay to make sure that
9870 * controller is reset
9871 */
9872 ufshcd_set_link_off(hba);
9873 }
9874
9875 out:
9876 return ret;
9877 }
9878
ufshcd_vreg_set_lpm(struct ufs_hba * hba)9879 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9880 {
9881 bool vcc_off = false;
9882
9883 /*
9884 * It seems some UFS devices may keep drawing more than sleep current
9885 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9886 * To avoid this situation, add 2ms delay before putting these UFS
9887 * rails in LPM mode.
9888 */
9889 if (!ufshcd_is_link_active(hba) &&
9890 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9891 usleep_range(2000, 2100);
9892
9893 /*
9894 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9895 * power.
9896 *
9897 * If UFS device and link is in OFF state, all power supplies (VCC,
9898 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9899 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9900 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9901 *
9902 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9903 * in low power state which would save some power.
9904 *
9905 * If Write Booster is enabled and the device needs to flush the WB
9906 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9907 */
9908 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9909 !hba->dev_info.is_lu_power_on_wp) {
9910 ufshcd_setup_vreg(hba, false);
9911 vcc_off = true;
9912 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9913 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9914 vcc_off = true;
9915 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9916 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9917 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9918 }
9919 }
9920
9921 /*
9922 * All UFS devices require delay after VCC power rail is turned-off.
9923 */
9924 if (vcc_off && hba->vreg_info.vcc && !hba->vreg_info.vcc->always_on)
9925 usleep_range(hba->vcc_off_delay_us,
9926 hba->vcc_off_delay_us + 100);
9927 }
9928
9929 #ifdef CONFIG_PM
ufshcd_vreg_set_hpm(struct ufs_hba * hba)9930 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9931 {
9932 int ret = 0;
9933
9934 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9935 !hba->dev_info.is_lu_power_on_wp) {
9936 ret = ufshcd_setup_vreg(hba, true);
9937 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9938 if (!ufshcd_is_link_active(hba)) {
9939 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9940 if (ret)
9941 goto vcc_disable;
9942 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9943 if (ret)
9944 goto vccq_lpm;
9945 }
9946 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9947 }
9948 goto out;
9949
9950 vccq_lpm:
9951 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9952 vcc_disable:
9953 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9954 out:
9955 return ret;
9956 }
9957 #endif /* CONFIG_PM */
9958
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)9959 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9960 {
9961 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9962 ufshcd_setup_hba_vreg(hba, false);
9963 }
9964
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)9965 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9966 {
9967 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9968 ufshcd_setup_hba_vreg(hba, true);
9969 }
9970
__ufshcd_wl_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)9971 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9972 {
9973 int ret = 0;
9974 bool check_for_bkops;
9975 enum ufs_pm_level pm_lvl;
9976 enum ufs_dev_pwr_mode req_dev_pwr_mode;
9977 enum uic_link_state req_link_state;
9978
9979 hba->pm_op_in_progress = true;
9980 if (pm_op != UFS_SHUTDOWN_PM) {
9981 pm_lvl = pm_op == UFS_RUNTIME_PM ?
9982 hba->rpm_lvl : hba->spm_lvl;
9983 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9984 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9985 } else {
9986 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9987 req_link_state = UIC_LINK_OFF_STATE;
9988 }
9989
9990 /*
9991 * If we can't transition into any of the low power modes
9992 * just gate the clocks.
9993 */
9994 ufshcd_hold(hba);
9995 hba->clk_gating.is_suspended = true;
9996
9997 if (ufshcd_is_clkscaling_supported(hba))
9998 ufshcd_clk_scaling_suspend(hba, true);
9999
10000 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
10001 req_link_state == UIC_LINK_ACTIVE_STATE) {
10002 ufshcd_disable_auto_bkops(hba);
10003 flush_work(&hba->eeh_work);
10004 goto vops_suspend;
10005 }
10006
10007 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
10008 (req_link_state == hba->uic_link_state))
10009 goto enable_scaling;
10010
10011 /* UFS device & link must be active before we enter in this function */
10012 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
10013 /* Wait err handler finish or trigger err recovery */
10014 if (!ufshcd_eh_in_progress(hba))
10015 ufshcd_force_error_recovery(hba);
10016 ret = -EBUSY;
10017 goto enable_scaling;
10018 }
10019
10020 if (pm_op == UFS_RUNTIME_PM) {
10021 if (ufshcd_can_autobkops_during_suspend(hba)) {
10022 /*
10023 * The device is idle with no requests in the queue,
10024 * allow background operations if bkops status shows
10025 * that performance might be impacted.
10026 */
10027 ret = ufshcd_bkops_ctrl(hba);
10028 if (ret) {
10029 /*
10030 * If return err in suspend flow, IO will hang.
10031 * Trigger error handler and break suspend for
10032 * error recovery.
10033 */
10034 ufshcd_force_error_recovery(hba);
10035 ret = -EBUSY;
10036 goto enable_scaling;
10037 }
10038 } else {
10039 /* make sure that auto bkops is disabled */
10040 ufshcd_disable_auto_bkops(hba);
10041 }
10042 /*
10043 * If device needs to do BKOP or WB buffer flush during
10044 * Hibern8, keep device power mode as "active power mode"
10045 * and VCC supply.
10046 */
10047 hba->dev_info.b_rpm_dev_flush_capable =
10048 hba->auto_bkops_enabled ||
10049 (((req_link_state == UIC_LINK_HIBERN8_STATE) ||
10050 ((req_link_state == UIC_LINK_ACTIVE_STATE) &&
10051 ufshcd_is_auto_hibern8_enabled(hba))) &&
10052 ufshcd_wb_need_flush(hba));
10053 }
10054
10055 flush_work(&hba->eeh_work);
10056
10057 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
10058 if (ret)
10059 goto enable_scaling;
10060
10061 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
10062 if (pm_op != UFS_RUNTIME_PM)
10063 /* ensure that bkops is disabled */
10064 ufshcd_disable_auto_bkops(hba);
10065
10066 if (!hba->dev_info.b_rpm_dev_flush_capable) {
10067 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
10068 if (ret && pm_op != UFS_SHUTDOWN_PM) {
10069 /*
10070 * If return err in suspend flow, IO will hang.
10071 * Trigger error handler and break suspend for
10072 * error recovery.
10073 */
10074 ufshcd_force_error_recovery(hba);
10075 ret = -EBUSY;
10076 }
10077 if (ret)
10078 goto enable_scaling;
10079 }
10080 }
10081
10082 /*
10083 * In the case of DeepSleep, the device is expected to remain powered
10084 * with the link off, so do not check for bkops.
10085 */
10086 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
10087 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
10088 if (ret && pm_op != UFS_SHUTDOWN_PM) {
10089 /*
10090 * If return err in suspend flow, IO will hang.
10091 * Trigger error handler and break suspend for
10092 * error recovery.
10093 */
10094 ufshcd_force_error_recovery(hba);
10095 ret = -EBUSY;
10096 }
10097 if (ret)
10098 goto set_dev_active;
10099
10100 vops_suspend:
10101 /*
10102 * Call vendor specific suspend callback. As these callbacks may access
10103 * vendor specific host controller register space call them before the
10104 * host clocks are ON.
10105 */
10106 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
10107 if (ret)
10108 goto set_link_active;
10109
10110 cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10111 goto out;
10112
10113 set_link_active:
10114 /*
10115 * Device hardware reset is required to exit DeepSleep. Also, for
10116 * DeepSleep, the link is off so host reset and restore will be done
10117 * further below.
10118 */
10119 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
10120 ufshcd_device_reset(hba);
10121 WARN_ON(!ufshcd_is_link_off(hba));
10122 }
10123 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
10124 ufshcd_set_link_active(hba);
10125 else if (ufshcd_is_link_off(hba))
10126 ufshcd_host_reset_and_restore(hba);
10127 set_dev_active:
10128 /* Can also get here needing to exit DeepSleep */
10129 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
10130 ufshcd_device_reset(hba);
10131 ufshcd_host_reset_and_restore(hba);
10132 }
10133 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
10134 ufshcd_disable_auto_bkops(hba);
10135 enable_scaling:
10136 if (ufshcd_is_clkscaling_supported(hba))
10137 ufshcd_clk_scaling_suspend(hba, false);
10138
10139 hba->dev_info.b_rpm_dev_flush_capable = false;
10140 out:
10141 if (hba->dev_info.b_rpm_dev_flush_capable) {
10142 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
10143 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
10144 }
10145
10146 if (ret) {
10147 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
10148 hba->clk_gating.is_suspended = false;
10149 ufshcd_release(hba);
10150 }
10151 hba->pm_op_in_progress = false;
10152 return ret;
10153 }
10154
10155 #ifdef CONFIG_PM
__ufshcd_wl_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)10156 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
10157 {
10158 int ret;
10159 enum uic_link_state old_link_state = hba->uic_link_state;
10160
10161 hba->pm_op_in_progress = true;
10162
10163 /*
10164 * Call vendor specific resume callback. As these callbacks may access
10165 * vendor specific host controller register space call them when the
10166 * host clocks are ON.
10167 */
10168 ret = ufshcd_vops_resume(hba, pm_op);
10169 if (ret)
10170 goto out;
10171
10172 /* For DeepSleep, the only supported option is to have the link off */
10173 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
10174
10175 if (ufshcd_is_link_hibern8(hba)) {
10176 ret = ufshcd_uic_hibern8_exit(hba);
10177 if (!ret) {
10178 ufshcd_set_link_active(hba);
10179 } else {
10180 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
10181 __func__, ret);
10182 goto vendor_suspend;
10183 }
10184 } else if (ufshcd_is_link_off(hba)) {
10185 /*
10186 * A full initialization of the host and the device is
10187 * required since the link was put to off during suspend.
10188 * Note, in the case of DeepSleep, the device will exit
10189 * DeepSleep due to device reset.
10190 */
10191 ret = ufshcd_reset_and_restore(hba);
10192 /*
10193 * ufshcd_reset_and_restore() should have already
10194 * set the link state as active
10195 */
10196 if (ret || !ufshcd_is_link_active(hba))
10197 goto vendor_suspend;
10198 }
10199
10200 if (!ufshcd_is_ufs_dev_active(hba)) {
10201 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
10202 if (ret)
10203 goto set_old_link_state;
10204 ufshcd_set_timestamp_attr(hba);
10205 schedule_delayed_work(&hba->ufs_rtc_update_work,
10206 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
10207 }
10208
10209 if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
10210 ufshcd_enable_auto_bkops(hba);
10211 else
10212 /*
10213 * If BKOPs operations are urgently needed at this moment then
10214 * keep auto-bkops enabled or else disable it.
10215 */
10216 ufshcd_bkops_ctrl(hba);
10217
10218 if (hba->ee_usr_mask)
10219 ufshcd_write_ee_control(hba);
10220
10221 if (ufshcd_is_clkscaling_supported(hba))
10222 ufshcd_clk_scaling_suspend(hba, false);
10223
10224 if (hba->dev_info.b_rpm_dev_flush_capable) {
10225 hba->dev_info.b_rpm_dev_flush_capable = false;
10226 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
10227 }
10228
10229 ufshcd_configure_auto_hibern8(hba);
10230
10231 goto out;
10232
10233 set_old_link_state:
10234 ufshcd_link_state_transition(hba, old_link_state, 0);
10235 vendor_suspend:
10236 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
10237 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
10238 out:
10239 if (ret)
10240 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
10241 hba->clk_gating.is_suspended = false;
10242 ufshcd_release(hba);
10243 hba->pm_op_in_progress = false;
10244 return ret;
10245 }
10246
ufshcd_wl_runtime_suspend(struct device * dev)10247 static int ufshcd_wl_runtime_suspend(struct device *dev)
10248 {
10249 struct scsi_device *sdev = to_scsi_device(dev);
10250 struct ufs_hba *hba;
10251 int ret;
10252 ktime_t start = ktime_get();
10253
10254 hba = shost_priv(sdev->host);
10255
10256 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
10257 if (ret)
10258 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10259
10260 trace_ufshcd_wl_runtime_suspend(hba, ret,
10261 ktime_to_us(ktime_sub(ktime_get(), start)),
10262 hba->curr_dev_pwr_mode, hba->uic_link_state);
10263
10264 return ret;
10265 }
10266
ufshcd_wl_runtime_resume(struct device * dev)10267 static int ufshcd_wl_runtime_resume(struct device *dev)
10268 {
10269 struct scsi_device *sdev = to_scsi_device(dev);
10270 struct ufs_hba *hba;
10271 int ret = 0;
10272 ktime_t start = ktime_get();
10273
10274 hba = shost_priv(sdev->host);
10275
10276 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
10277 if (ret)
10278 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10279
10280 trace_ufshcd_wl_runtime_resume(hba, ret,
10281 ktime_to_us(ktime_sub(ktime_get(), start)),
10282 hba->curr_dev_pwr_mode, hba->uic_link_state);
10283
10284 return ret;
10285 }
10286 #endif
10287
10288 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_suspend(struct device * dev)10289 static int ufshcd_wl_suspend(struct device *dev)
10290 {
10291 struct scsi_device *sdev = to_scsi_device(dev);
10292 struct ufs_hba *hba;
10293 int ret = 0;
10294 ktime_t start = ktime_get();
10295
10296 hba = shost_priv(sdev->host);
10297 down(&hba->host_sem);
10298 hba->system_suspending = true;
10299
10300 if (pm_runtime_suspended(dev))
10301 goto out;
10302
10303 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
10304 if (ret) {
10305 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10306 up(&hba->host_sem);
10307 }
10308
10309 out:
10310 if (!ret)
10311 hba->is_sys_suspended = true;
10312 trace_ufshcd_wl_suspend(hba, ret,
10313 ktime_to_us(ktime_sub(ktime_get(), start)),
10314 hba->curr_dev_pwr_mode, hba->uic_link_state);
10315
10316 return ret;
10317 }
10318
ufshcd_wl_resume(struct device * dev)10319 static int ufshcd_wl_resume(struct device *dev)
10320 {
10321 struct scsi_device *sdev = to_scsi_device(dev);
10322 struct ufs_hba *hba;
10323 int ret = 0;
10324 ktime_t start = ktime_get();
10325
10326 hba = shost_priv(sdev->host);
10327
10328 if (pm_runtime_suspended(dev))
10329 goto out;
10330
10331 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
10332 if (ret)
10333 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10334 out:
10335 trace_ufshcd_wl_resume(hba, ret,
10336 ktime_to_us(ktime_sub(ktime_get(), start)),
10337 hba->curr_dev_pwr_mode, hba->uic_link_state);
10338 if (!ret)
10339 hba->is_sys_suspended = false;
10340 hba->system_suspending = false;
10341 up(&hba->host_sem);
10342 return ret;
10343 }
10344 #endif
10345
10346 /**
10347 * ufshcd_suspend - helper function for suspend operations
10348 * @hba: per adapter instance
10349 *
10350 * This function will put disable irqs, turn off clocks
10351 * and set vreg and hba-vreg in lpm mode.
10352 *
10353 * Return: 0 upon success; < 0 upon failure.
10354 */
ufshcd_suspend(struct ufs_hba * hba)10355 static int ufshcd_suspend(struct ufs_hba *hba)
10356 {
10357 int ret;
10358
10359 if (!hba->is_powered)
10360 return 0;
10361 /*
10362 * Disable the host irq as host controller as there won't be any
10363 * host controller transaction expected till resume.
10364 */
10365 ufshcd_disable_irq(hba);
10366 ret = ufshcd_setup_clocks(hba, false);
10367 if (ret) {
10368 ufshcd_enable_irq(hba);
10369 goto out;
10370 }
10371 if (ufshcd_is_clkgating_allowed(hba)) {
10372 hba->clk_gating.state = CLKS_OFF;
10373 trace_ufshcd_clk_gating(hba,
10374 hba->clk_gating.state);
10375 }
10376
10377 ufshcd_vreg_set_lpm(hba);
10378 /* Put the host controller in low power mode if possible */
10379 ufshcd_hba_vreg_set_lpm(hba);
10380 ufshcd_pm_qos_update(hba, false);
10381 out:
10382 if (ret)
10383 ufshcd_update_evt_hist(hba, UFS_EVT_SUSPEND_ERR, (u32)ret);
10384 return ret;
10385 }
10386
10387 #ifdef CONFIG_PM
10388 /**
10389 * ufshcd_resume - helper function for resume operations
10390 * @hba: per adapter instance
10391 *
10392 * This function basically turns on the regulators, clocks and
10393 * irqs of the hba.
10394 *
10395 * Return: 0 for success and non-zero for failure.
10396 */
ufshcd_resume(struct ufs_hba * hba)10397 static int ufshcd_resume(struct ufs_hba *hba)
10398 {
10399 int ret;
10400
10401 if (!hba->is_powered)
10402 return 0;
10403
10404 ufshcd_hba_vreg_set_hpm(hba);
10405 ret = ufshcd_vreg_set_hpm(hba);
10406 if (ret)
10407 goto out;
10408
10409 /* Make sure clocks are enabled before accessing controller */
10410 ret = ufshcd_setup_clocks(hba, true);
10411 if (ret)
10412 goto disable_vreg;
10413
10414 /* enable the host irq as host controller would be active soon */
10415 ufshcd_enable_irq(hba);
10416
10417 goto out;
10418
10419 disable_vreg:
10420 ufshcd_vreg_set_lpm(hba);
10421 out:
10422 if (ret)
10423 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10424 return ret;
10425 }
10426 #endif /* CONFIG_PM */
10427
10428 #ifdef CONFIG_PM_SLEEP
10429 /**
10430 * ufshcd_system_suspend - system suspend callback
10431 * @dev: Device associated with the UFS controller.
10432 *
10433 * Executed before putting the system into a sleep state in which the contents
10434 * of main memory are preserved.
10435 *
10436 * Return: 0 for success and non-zero for failure.
10437 */
ufshcd_system_suspend(struct device * dev)10438 int ufshcd_system_suspend(struct device *dev)
10439 {
10440 struct ufs_hba *hba = dev_get_drvdata(dev);
10441 int ret = 0;
10442 ktime_t start = ktime_get();
10443
10444 if (pm_runtime_suspended(hba->dev))
10445 goto out;
10446
10447 ret = ufshcd_suspend(hba);
10448 out:
10449 trace_ufshcd_system_suspend(hba, ret,
10450 ktime_to_us(ktime_sub(ktime_get(), start)),
10451 hba->curr_dev_pwr_mode, hba->uic_link_state);
10452 return ret;
10453 }
10454 EXPORT_SYMBOL(ufshcd_system_suspend);
10455
10456 /**
10457 * ufshcd_system_resume - system resume callback
10458 * @dev: Device associated with the UFS controller.
10459 *
10460 * Executed after waking the system up from a sleep state in which the contents
10461 * of main memory were preserved.
10462 *
10463 * Return: 0 for success and non-zero for failure.
10464 */
ufshcd_system_resume(struct device * dev)10465 int ufshcd_system_resume(struct device *dev)
10466 {
10467 struct ufs_hba *hba = dev_get_drvdata(dev);
10468 ktime_t start = ktime_get();
10469 int ret = 0;
10470
10471 if (pm_runtime_suspended(hba->dev))
10472 goto out;
10473
10474 ret = ufshcd_resume(hba);
10475
10476 out:
10477 trace_ufshcd_system_resume(hba, ret,
10478 ktime_to_us(ktime_sub(ktime_get(), start)),
10479 hba->curr_dev_pwr_mode, hba->uic_link_state);
10480
10481 return ret;
10482 }
10483 EXPORT_SYMBOL(ufshcd_system_resume);
10484 #endif /* CONFIG_PM_SLEEP */
10485
10486 #ifdef CONFIG_PM
10487 /**
10488 * ufshcd_runtime_suspend - runtime suspend callback
10489 * @dev: Device associated with the UFS controller.
10490 *
10491 * Check the description of ufshcd_suspend() function for more details.
10492 *
10493 * Return: 0 for success and non-zero for failure.
10494 */
ufshcd_runtime_suspend(struct device * dev)10495 int ufshcd_runtime_suspend(struct device *dev)
10496 {
10497 struct ufs_hba *hba = dev_get_drvdata(dev);
10498 int ret;
10499 ktime_t start = ktime_get();
10500
10501 ret = ufshcd_suspend(hba);
10502
10503 trace_ufshcd_runtime_suspend(hba, ret,
10504 ktime_to_us(ktime_sub(ktime_get(), start)),
10505 hba->curr_dev_pwr_mode, hba->uic_link_state);
10506 return ret;
10507 }
10508 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10509
10510 /**
10511 * ufshcd_runtime_resume - runtime resume routine
10512 * @dev: Device associated with the UFS controller.
10513 *
10514 * This function basically brings controller
10515 * to active state. Following operations are done in this function:
10516 *
10517 * 1. Turn on all the controller related clocks
10518 * 2. Turn ON VCC rail
10519 *
10520 * Return: 0 upon success; < 0 upon failure.
10521 */
ufshcd_runtime_resume(struct device * dev)10522 int ufshcd_runtime_resume(struct device *dev)
10523 {
10524 struct ufs_hba *hba = dev_get_drvdata(dev);
10525 int ret;
10526 ktime_t start = ktime_get();
10527
10528 ret = ufshcd_resume(hba);
10529
10530 trace_ufshcd_runtime_resume(hba, ret,
10531 ktime_to_us(ktime_sub(ktime_get(), start)),
10532 hba->curr_dev_pwr_mode, hba->uic_link_state);
10533 return ret;
10534 }
10535 EXPORT_SYMBOL(ufshcd_runtime_resume);
10536 #endif /* CONFIG_PM */
10537
ufshcd_wl_shutdown(struct scsi_device * sdev)10538 static void ufshcd_wl_shutdown(struct scsi_device *sdev)
10539 {
10540 struct ufs_hba *hba = shost_priv(sdev->host);
10541
10542 down(&hba->host_sem);
10543 hba->shutting_down = true;
10544 up(&hba->host_sem);
10545
10546 /* Turn on everything while shutting down */
10547 ufshcd_rpm_get_sync(hba);
10548 scsi_device_quiesce(sdev);
10549 shost_for_each_device(sdev, hba->host) {
10550 if (sdev == hba->ufs_device_wlun)
10551 continue;
10552 mutex_lock(&sdev->state_mutex);
10553 scsi_device_set_state(sdev, SDEV_OFFLINE);
10554 mutex_unlock(&sdev->state_mutex);
10555 }
10556 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10557
10558 /*
10559 * Next, turn off the UFS controller and the UFS regulators. Disable
10560 * clocks.
10561 */
10562 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10563 ufshcd_suspend(hba);
10564
10565 hba->is_powered = false;
10566 }
10567
10568 /**
10569 * ufshcd_remove - de-allocate SCSI host and host memory space
10570 * data structure memory
10571 * @hba: per adapter instance
10572 */
ufshcd_remove(struct ufs_hba * hba)10573 void ufshcd_remove(struct ufs_hba *hba)
10574 {
10575 if (hba->ufs_device_wlun)
10576 ufshcd_rpm_get_sync(hba);
10577 ufs_hwmon_remove(hba);
10578 ufs_bsg_remove(hba);
10579 ufs_rpmb_remove(hba);
10580 ufs_sysfs_remove_nodes(hba->dev);
10581 cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10582 blk_mq_destroy_queue(hba->tmf_queue);
10583 blk_put_queue(hba->tmf_queue);
10584 blk_mq_free_tag_set(&hba->tmf_tag_set);
10585 if (hba->scsi_host_added)
10586 scsi_remove_host(hba->host);
10587 /* disable interrupts */
10588 ufshcd_disable_intr(hba, hba->intr_mask);
10589 ufshcd_hba_stop(hba);
10590 ufshcd_hba_exit(hba);
10591 }
10592 EXPORT_SYMBOL_GPL(ufshcd_remove);
10593
10594 #ifdef CONFIG_PM_SLEEP
ufshcd_system_freeze(struct device * dev)10595 int ufshcd_system_freeze(struct device *dev)
10596 {
10597
10598 return ufshcd_system_suspend(dev);
10599
10600 }
10601 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10602
ufshcd_system_restore(struct device * dev)10603 int ufshcd_system_restore(struct device *dev)
10604 {
10605
10606 struct ufs_hba *hba = dev_get_drvdata(dev);
10607 int ret;
10608
10609 ret = ufshcd_system_resume(dev);
10610 if (ret)
10611 return ret;
10612
10613 /* Configure UTRL and UTMRL base address registers */
10614 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10615 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10616 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10617 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10618 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10619 REG_UTP_TASK_REQ_LIST_BASE_L);
10620 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10621 REG_UTP_TASK_REQ_LIST_BASE_H);
10622 /*
10623 * Make sure that UTRL and UTMRL base address registers
10624 * are updated with the latest queue addresses. Only after
10625 * updating these addresses, we can queue the new commands.
10626 */
10627 ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10628
10629 return 0;
10630
10631 }
10632 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10633
ufshcd_system_thaw(struct device * dev)10634 int ufshcd_system_thaw(struct device *dev)
10635 {
10636 return ufshcd_system_resume(dev);
10637 }
10638 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10639 #endif /* CONFIG_PM_SLEEP */
10640
10641 /**
10642 * ufshcd_set_dma_mask - Set dma mask based on the controller
10643 * addressing capability
10644 * @hba: per adapter instance
10645 *
10646 * Return: 0 for success, non-zero for failure.
10647 */
ufshcd_set_dma_mask(struct ufs_hba * hba)10648 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10649 {
10650 if (hba->vops && hba->vops->set_dma_mask)
10651 return hba->vops->set_dma_mask(hba);
10652 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10653 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10654 return 0;
10655 }
10656 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10657 }
10658
10659 /**
10660 * ufshcd_devres_release - devres cleanup handler, invoked during release of
10661 * hba->dev
10662 * @host: pointer to SCSI host
10663 */
ufshcd_devres_release(void * host)10664 static void ufshcd_devres_release(void *host)
10665 {
10666 scsi_host_put(host);
10667 }
10668
10669 /**
10670 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10671 * @dev: pointer to device handle
10672 * @hba_handle: driver private handle
10673 *
10674 * Return: 0 on success, non-zero value on failure.
10675 *
10676 * NOTE: There is no corresponding ufshcd_dealloc_host() because this function
10677 * keeps track of its allocations using devres and deallocates everything on
10678 * device removal automatically.
10679 */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)10680 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10681 {
10682 struct Scsi_Host *host;
10683 struct ufs_hba *hba;
10684 int err = 0;
10685
10686 if (!dev) {
10687 dev_err(dev,
10688 "Invalid memory reference for dev is NULL\n");
10689 err = -ENODEV;
10690 goto out_error;
10691 }
10692
10693 host = scsi_host_alloc(&ufshcd_driver_template,
10694 sizeof(struct ufs_hba));
10695 if (!host) {
10696 dev_err(dev, "scsi_host_alloc failed\n");
10697 err = -ENOMEM;
10698 goto out_error;
10699 }
10700
10701 err = devm_add_action_or_reset(dev, ufshcd_devres_release,
10702 host);
10703 if (err)
10704 return err;
10705
10706 host->nr_maps = HCTX_TYPE_POLL + 1;
10707 hba = shost_priv(host);
10708 hba->host = host;
10709 hba->dev = dev;
10710 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10711 hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10712 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10713 INIT_LIST_HEAD(&hba->clk_list_head);
10714 spin_lock_init(&hba->outstanding_lock);
10715
10716 *hba_handle = hba;
10717
10718 out_error:
10719 return err;
10720 }
10721 EXPORT_SYMBOL(ufshcd_alloc_host);
10722
10723 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)10724 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10725 const struct blk_mq_queue_data *qd)
10726 {
10727 WARN_ON_ONCE(true);
10728 return BLK_STS_NOTSUPP;
10729 }
10730
10731 static const struct blk_mq_ops ufshcd_tmf_ops = {
10732 .queue_rq = ufshcd_queue_tmf,
10733 };
10734
ufshcd_add_scsi_host(struct ufs_hba * hba)10735 static int ufshcd_add_scsi_host(struct ufs_hba *hba)
10736 {
10737 int err;
10738
10739 WARN_ON_ONCE(!hba->host->can_queue);
10740 WARN_ON_ONCE(!hba->host->cmd_per_lun);
10741
10742 if (is_mcq_supported(hba)) {
10743 ufshcd_mcq_enable(hba);
10744 err = ufshcd_alloc_mcq(hba);
10745 if (err) {
10746 /* Continue with SDB mode */
10747 ufshcd_mcq_disable(hba);
10748 use_mcq_mode = false;
10749 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
10750 err);
10751 }
10752 }
10753 if (!is_mcq_supported(hba) && !hba->lsdb_sup) {
10754 dev_err(hba->dev,
10755 "%s: failed to initialize (legacy doorbell mode not supported)\n",
10756 __func__);
10757 return -EINVAL;
10758 }
10759
10760 err = scsi_add_host(hba->host, hba->dev);
10761 if (err) {
10762 dev_err(hba->dev, "scsi_add_host failed\n");
10763 return err;
10764 }
10765 hba->scsi_host_added = true;
10766
10767 hba->tmf_tag_set = (struct blk_mq_tag_set) {
10768 .nr_hw_queues = 1,
10769 .queue_depth = hba->nutmrs,
10770 .ops = &ufshcd_tmf_ops,
10771 };
10772 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10773 if (err < 0)
10774 goto remove_scsi_host;
10775 hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10776 if (IS_ERR(hba->tmf_queue)) {
10777 err = PTR_ERR(hba->tmf_queue);
10778 goto free_tmf_tag_set;
10779 }
10780 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10781 sizeof(*hba->tmf_rqs), GFP_KERNEL);
10782 if (!hba->tmf_rqs) {
10783 err = -ENOMEM;
10784 goto free_tmf_queue;
10785 }
10786
10787 return 0;
10788
10789 free_tmf_queue:
10790 blk_mq_destroy_queue(hba->tmf_queue);
10791 blk_put_queue(hba->tmf_queue);
10792
10793 free_tmf_tag_set:
10794 blk_mq_free_tag_set(&hba->tmf_tag_set);
10795
10796 remove_scsi_host:
10797 if (hba->scsi_host_added)
10798 scsi_remove_host(hba->host);
10799
10800 return err;
10801 }
10802
10803 /**
10804 * ufshcd_init - Driver initialization routine
10805 * @hba: per-adapter instance
10806 * @mmio_base: base register address
10807 * @irq: Interrupt line of device
10808 *
10809 * Return: 0 on success; < 0 on failure.
10810 */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)10811 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10812 {
10813 int err;
10814 struct Scsi_Host *host = hba->host;
10815 struct device *dev = hba->dev;
10816
10817 /*
10818 * dev_set_drvdata() must be called before any callbacks are registered
10819 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10820 * sysfs).
10821 */
10822 dev_set_drvdata(dev, hba);
10823
10824 if (!mmio_base) {
10825 dev_err(hba->dev,
10826 "Invalid memory reference for mmio_base is NULL\n");
10827 err = -ENODEV;
10828 goto out_error;
10829 }
10830
10831 hba->mmio_base = mmio_base;
10832 hba->irq = irq;
10833 hba->vps = &ufs_hba_vps;
10834
10835 /*
10836 * Initialize clk_gating.lock early since it is being used in
10837 * ufshcd_setup_clocks()
10838 */
10839 spin_lock_init(&hba->clk_gating.lock);
10840
10841 /* Initialize mutex for PM QoS request synchronization */
10842 mutex_init(&hba->pm_qos_mutex);
10843
10844 /*
10845 * Set the default power management level for runtime and system PM.
10846 * Host controller drivers can override them in their
10847 * 'ufs_hba_variant_ops::init' callback.
10848 *
10849 * Default power saving mode is to keep UFS link in Hibern8 state
10850 * and UFS device in sleep state.
10851 */
10852 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10853 UFS_SLEEP_PWR_MODE,
10854 UIC_LINK_HIBERN8_STATE);
10855 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10856 UFS_SLEEP_PWR_MODE,
10857 UIC_LINK_HIBERN8_STATE);
10858
10859 /*
10860 * Most ufs devices require 1ms delay after vcc is powered off before
10861 * it can be powered on again. Set the default to 2ms. The platform
10862 * drivers can override this setting as needed.
10863 */
10864 hba->vcc_off_delay_us = 2000;
10865
10866 err = ufshcd_hba_init(hba);
10867 if (err)
10868 goto out_error;
10869
10870 /* Read capabilities registers */
10871 err = ufshcd_hba_capabilities(hba);
10872 if (err)
10873 goto out_disable;
10874
10875 /* Get UFS version supported by the controller */
10876 hba->ufs_version = ufshcd_get_ufs_version(hba);
10877
10878 /* Get Interrupt bit mask per version */
10879 hba->intr_mask = ufshcd_get_intr_mask(hba);
10880
10881 err = ufshcd_set_dma_mask(hba);
10882 if (err) {
10883 dev_err(hba->dev, "set dma mask failed\n");
10884 goto out_disable;
10885 }
10886
10887 /* Allocate memory for host memory space */
10888 err = ufshcd_memory_alloc(hba);
10889 if (err) {
10890 dev_err(hba->dev, "Memory allocation failed\n");
10891 goto out_disable;
10892 }
10893
10894 /* Configure LRB */
10895 ufshcd_host_memory_configure(hba);
10896
10897 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10898 /*
10899 * Set the queue depth for WLUNs. ufs_get_device_desc() will increase
10900 * host->cmd_per_lun to a larger value.
10901 */
10902 host->cmd_per_lun = 1;
10903 host->max_id = UFSHCD_MAX_ID;
10904 host->max_lun = UFS_MAX_LUNS;
10905 host->max_channel = UFSHCD_MAX_CHANNEL;
10906 host->unique_id = host->host_no;
10907 host->max_cmd_len = UFS_CDB_SIZE;
10908 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10909
10910 /* Use default RPM delay if host not set */
10911 if (host->rpm_autosuspend_delay == 0)
10912 host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10913
10914 hba->max_pwr_info.is_valid = false;
10915
10916 /* Initialize work queues */
10917 hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM,
10918 hba->host->host_no);
10919 if (!hba->eh_wq) {
10920 dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10921 __func__);
10922 err = -ENOMEM;
10923 goto out_disable;
10924 }
10925 INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10926 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10927
10928 sema_init(&hba->host_sem, 1);
10929
10930 /* Initialize UIC command mutex */
10931 mutex_init(&hba->uic_cmd_mutex);
10932
10933 /* Initialize mutex for device management commands */
10934 mutex_init(&hba->dev_cmd.lock);
10935
10936 /* Initialize mutex for exception event control */
10937 mutex_init(&hba->ee_ctrl_mutex);
10938
10939 mutex_init(&hba->wb_mutex);
10940
10941 init_rwsem(&hba->clk_scaling_lock);
10942
10943 ufshcd_init_clk_gating(hba);
10944
10945 ufshcd_init_clk_scaling(hba);
10946
10947 /*
10948 * In order to avoid any spurious interrupt immediately after
10949 * registering UFS controller interrupt handler, clear any pending UFS
10950 * interrupt status and disable all the UFS interrupts.
10951 */
10952 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10953 REG_INTERRUPT_STATUS);
10954 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10955 /*
10956 * Make sure that UFS interrupts are disabled and any pending interrupt
10957 * status is cleared before registering UFS interrupt handler.
10958 */
10959 ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10960
10961 /* IRQ registration */
10962 err = devm_request_threaded_irq(dev, irq, ufshcd_intr, ufshcd_threaded_intr,
10963 IRQF_ONESHOT | IRQF_SHARED, UFSHCD, hba);
10964 if (err) {
10965 dev_err(hba->dev, "request irq failed\n");
10966 goto out_disable;
10967 } else {
10968 hba->is_irq_enabled = true;
10969 }
10970
10971 /* Reset the attached device */
10972 ufshcd_device_reset(hba);
10973
10974 ufshcd_init_crypto(hba);
10975
10976 /* Host controller enable */
10977 err = ufshcd_hba_enable(hba);
10978 if (err) {
10979 dev_err(hba->dev, "Host controller enable failed\n");
10980 ufshcd_print_evt_hist(hba);
10981 ufshcd_print_host_state(hba);
10982 goto out_disable;
10983 }
10984
10985 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10986 INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10987
10988 /* Set the default auto-hiberate idle timer value to 150 ms */
10989 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10990 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10991 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10992 }
10993
10994 err = ufshcd_add_scsi_host(hba);
10995 if (err)
10996 goto out_disable;
10997
10998 /* Hold auto suspend until async scan completes */
10999 pm_runtime_get_sync(dev);
11000
11001 /*
11002 * We are assuming that device wasn't put in sleep/power-down
11003 * state exclusively during the boot stage before kernel.
11004 * This assumption helps avoid doing link startup twice during
11005 * ufshcd_probe_hba().
11006 */
11007 ufshcd_set_ufs_dev_active(hba);
11008
11009 /* Initialize hba, detect and initialize UFS device */
11010 ktime_t probe_start = ktime_get();
11011
11012 hba->ufshcd_state = UFSHCD_STATE_RESET;
11013
11014 err = ufshcd_link_startup(hba);
11015 if (err)
11016 goto out_disable;
11017
11018 if (hba->mcq_enabled)
11019 ufshcd_config_mcq(hba);
11020
11021 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
11022 goto initialized;
11023
11024 /* Debug counters initialization */
11025 ufshcd_clear_dbg_ufs_stats(hba);
11026
11027 /* UniPro link is active now */
11028 ufshcd_set_link_active(hba);
11029
11030 /* Verify device initialization by sending NOP OUT UPIU */
11031 err = ufshcd_verify_dev_init(hba);
11032 if (err)
11033 goto out_disable;
11034
11035 /* Initiate UFS initialization, and waiting until completion */
11036 err = ufshcd_complete_dev_init(hba);
11037 if (err)
11038 goto out_disable;
11039
11040 err = ufshcd_device_params_init(hba);
11041 if (err)
11042 goto out_disable;
11043
11044 err = ufshcd_post_device_init(hba);
11045
11046 initialized:
11047 ufshcd_process_probe_result(hba, probe_start, err);
11048 if (err)
11049 goto out_disable;
11050
11051 ufs_sysfs_add_nodes(hba->dev);
11052 async_schedule(ufshcd_async_scan, hba);
11053
11054 device_enable_async_suspend(dev);
11055 ufshcd_pm_qos_init(hba);
11056 return 0;
11057
11058 out_disable:
11059 hba->is_irq_enabled = false;
11060 ufshcd_hba_exit(hba);
11061 out_error:
11062 return err > 0 ? -EIO : err;
11063 }
11064 EXPORT_SYMBOL_GPL(ufshcd_init);
11065
ufshcd_resume_complete(struct device * dev)11066 void ufshcd_resume_complete(struct device *dev)
11067 {
11068 struct ufs_hba *hba = dev_get_drvdata(dev);
11069
11070 if (hba->complete_put) {
11071 ufshcd_rpm_put(hba);
11072 hba->complete_put = false;
11073 }
11074 }
11075 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
11076
ufshcd_rpm_ok_for_spm(struct ufs_hba * hba)11077 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
11078 {
11079 struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
11080 enum ufs_dev_pwr_mode dev_pwr_mode;
11081 enum uic_link_state link_state;
11082 unsigned long flags;
11083 bool res;
11084
11085 spin_lock_irqsave(&dev->power.lock, flags);
11086 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
11087 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
11088 res = pm_runtime_suspended(dev) &&
11089 hba->curr_dev_pwr_mode == dev_pwr_mode &&
11090 hba->uic_link_state == link_state &&
11091 !hba->dev_info.b_rpm_dev_flush_capable;
11092 spin_unlock_irqrestore(&dev->power.lock, flags);
11093
11094 return res;
11095 }
11096
__ufshcd_suspend_prepare(struct device * dev,bool rpm_ok_for_spm)11097 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
11098 {
11099 struct ufs_hba *hba = dev_get_drvdata(dev);
11100 int ret;
11101
11102 /*
11103 * SCSI assumes that runtime-pm and system-pm for scsi drivers
11104 * are same. And it doesn't wake up the device for system-suspend
11105 * if it's runtime suspended. But ufs doesn't follow that.
11106 * Refer ufshcd_resume_complete()
11107 */
11108 if (hba->ufs_device_wlun) {
11109 /* Prevent runtime suspend */
11110 ufshcd_rpm_get_noresume(hba);
11111 /*
11112 * Check if already runtime suspended in same state as system
11113 * suspend would be.
11114 */
11115 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
11116 /* RPM state is not ok for SPM, so runtime resume */
11117 ret = ufshcd_rpm_resume(hba);
11118 if (ret < 0 && ret != -EACCES) {
11119 ufshcd_rpm_put(hba);
11120 return ret;
11121 }
11122 }
11123 hba->complete_put = true;
11124 }
11125 return 0;
11126 }
11127 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
11128
ufshcd_suspend_prepare(struct device * dev)11129 int ufshcd_suspend_prepare(struct device *dev)
11130 {
11131 return __ufshcd_suspend_prepare(dev, true);
11132 }
11133 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
11134
11135 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_poweroff(struct device * dev)11136 static int ufshcd_wl_poweroff(struct device *dev)
11137 {
11138 struct scsi_device *sdev = to_scsi_device(dev);
11139 struct ufs_hba *hba = shost_priv(sdev->host);
11140
11141 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
11142 return 0;
11143 }
11144 #endif
11145
ufshcd_wl_probe(struct scsi_device * sdev)11146 static int ufshcd_wl_probe(struct scsi_device *sdev)
11147 {
11148 struct device *dev = &sdev->sdev_gendev;
11149
11150 if (!is_device_wlun(sdev))
11151 return -ENODEV;
11152
11153 blk_pm_runtime_init(sdev->request_queue, dev);
11154 pm_runtime_set_autosuspend_delay(dev, 0);
11155 pm_runtime_allow(dev);
11156
11157 return 0;
11158 }
11159
ufshcd_wl_remove(struct scsi_device * sdev)11160 static void ufshcd_wl_remove(struct scsi_device *sdev)
11161 {
11162 struct device *dev = &sdev->sdev_gendev;
11163
11164 pm_runtime_forbid(dev);
11165 }
11166
11167 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
11168 #ifdef CONFIG_PM_SLEEP
11169 .suspend = ufshcd_wl_suspend,
11170 .resume = ufshcd_wl_resume,
11171 .freeze = ufshcd_wl_suspend,
11172 .thaw = ufshcd_wl_resume,
11173 .poweroff = ufshcd_wl_poweroff,
11174 .restore = ufshcd_wl_resume,
11175 #endif
11176 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
11177 };
11178
ufshcd_check_header_layout(void)11179 static void ufshcd_check_header_layout(void)
11180 {
11181 /*
11182 * gcc compilers before version 10 cannot do constant-folding for
11183 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
11184 * before.
11185 */
11186 if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
11187 return;
11188
11189 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11190 .cci = 3})[0] != 3);
11191
11192 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11193 .ehs_length = 2})[1] != 2);
11194
11195 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11196 .enable_crypto = 1})[2]
11197 != 0x80);
11198
11199 BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
11200 .command_type = 5,
11201 .data_direction = 3,
11202 .interrupt = 1,
11203 })[3]) != ((5 << 4) | (3 << 1) | 1));
11204
11205 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
11206 .dunl = cpu_to_le32(0xdeadbeef)})[1] !=
11207 cpu_to_le32(0xdeadbeef));
11208
11209 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11210 .ocs = 4})[8] != 4);
11211
11212 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11213 .cds = 5})[9] != 5);
11214
11215 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
11216 .dunu = cpu_to_le32(0xbadcafe)})[3] !=
11217 cpu_to_le32(0xbadcafe));
11218
11219 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
11220 .iid = 0xf })[4] != 0xf0);
11221
11222 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
11223 .command_set_type = 0xf })[4] != 0xf);
11224 }
11225
11226 /*
11227 * ufs_dev_wlun_template - describes ufs device wlun
11228 * ufs-device wlun - used to send pm commands
11229 * All luns are consumers of ufs-device wlun.
11230 *
11231 * Currently, no sd driver is present for wluns.
11232 * Hence the no specific pm operations are performed.
11233 * With ufs design, SSU should be sent to ufs-device wlun.
11234 * Hence register a scsi driver for ufs wluns only.
11235 */
11236 static struct scsi_driver ufs_dev_wlun_template = {
11237 .probe = ufshcd_wl_probe,
11238 .remove = ufshcd_wl_remove,
11239 .shutdown = ufshcd_wl_shutdown,
11240 .gendrv = {
11241 .name = "ufs_device_wlun",
11242 .pm = &ufshcd_wl_pm_ops,
11243 },
11244 };
11245
ufshcd_core_init(void)11246 static int __init ufshcd_core_init(void)
11247 {
11248 int ret;
11249
11250 ufshcd_check_header_layout();
11251
11252 ufs_debugfs_init();
11253
11254 ret = scsi_register_driver(&ufs_dev_wlun_template);
11255 if (ret)
11256 ufs_debugfs_exit();
11257 return ret;
11258 }
11259
ufshcd_core_exit(void)11260 static void __exit ufshcd_core_exit(void)
11261 {
11262 ufs_debugfs_exit();
11263 scsi_unregister_driver(&ufs_dev_wlun_template);
11264 }
11265
11266 module_init(ufshcd_core_init);
11267 module_exit(ufshcd_core_exit);
11268
11269 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
11270 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
11271 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
11272 MODULE_SOFTDEP("pre: governor_simpleondemand");
11273 MODULE_LICENSE("GPL");
11274