1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <gw4pts@gw4pts.ampr.org> 7 * Florian La Roche, <rzsfl@rz.uni-sb.de> 8 */ 9 10 #ifndef _LINUX_SKBUFF_H 11 #define _LINUX_SKBUFF_H 12 13 #include <linux/kernel.h> 14 #include <linux/compiler.h> 15 #include <linux/time.h> 16 #include <linux/bug.h> 17 #include <linux/bvec.h> 18 #include <linux/cache.h> 19 #include <linux/rbtree.h> 20 #include <linux/socket.h> 21 #include <linux/refcount.h> 22 23 #include <linux/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <net/checksum.h> 27 #include <linux/rcupdate.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/netdev_features.h> 30 #include <net/flow_dissector.h> 31 #include <linux/in6.h> 32 #include <linux/if_packet.h> 33 #include <linux/llist.h> 34 #include <linux/page_frag_cache.h> 35 #include <net/flow.h> 36 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 37 #include <linux/netfilter/nf_conntrack_common.h> 38 #endif 39 #include <net/net_debug.h> 40 #include <net/dropreason-core.h> 41 #include <net/netmem.h> 42 43 /** 44 * DOC: skb checksums 45 * 46 * The interface for checksum offload between the stack and networking drivers 47 * is as follows... 48 * 49 * IP checksum related features 50 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 51 * 52 * Drivers advertise checksum offload capabilities in the features of a device. 53 * From the stack's point of view these are capabilities offered by the driver. 54 * A driver typically only advertises features that it is capable of offloading 55 * to its device. 56 * 57 * .. flat-table:: Checksum related device features 58 * :widths: 1 10 59 * 60 * * - %NETIF_F_HW_CSUM 61 * - The driver (or its device) is able to compute one 62 * IP (one's complement) checksum for any combination 63 * of protocols or protocol layering. The checksum is 64 * computed and set in a packet per the CHECKSUM_PARTIAL 65 * interface (see below). 66 * 67 * * - %NETIF_F_IP_CSUM 68 * - Driver (device) is only able to checksum plain 69 * TCP or UDP packets over IPv4. These are specifically 70 * unencapsulated packets of the form IPv4|TCP or 71 * IPv4|UDP where the Protocol field in the IPv4 header 72 * is TCP or UDP. The IPv4 header may contain IP options. 73 * This feature cannot be set in features for a device 74 * with NETIF_F_HW_CSUM also set. This feature is being 75 * DEPRECATED (see below). 76 * 77 * * - %NETIF_F_IPV6_CSUM 78 * - Driver (device) is only able to checksum plain 79 * TCP or UDP packets over IPv6. These are specifically 80 * unencapsulated packets of the form IPv6|TCP or 81 * IPv6|UDP where the Next Header field in the IPv6 82 * header is either TCP or UDP. IPv6 extension headers 83 * are not supported with this feature. This feature 84 * cannot be set in features for a device with 85 * NETIF_F_HW_CSUM also set. This feature is being 86 * DEPRECATED (see below). 87 * 88 * * - %NETIF_F_RXCSUM 89 * - Driver (device) performs receive checksum offload. 90 * This flag is only used to disable the RX checksum 91 * feature for a device. The stack will accept receive 92 * checksum indication in packets received on a device 93 * regardless of whether NETIF_F_RXCSUM is set. 94 * 95 * Checksumming of received packets by device 96 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 97 * 98 * Indication of checksum verification is set in &sk_buff.ip_summed. 99 * Possible values are: 100 * 101 * - %CHECKSUM_NONE 102 * 103 * Device did not checksum this packet e.g. due to lack of capabilities. 104 * The packet contains full (though not verified) checksum in packet but 105 * not in skb->csum. Thus, skb->csum is undefined in this case. 106 * 107 * - %CHECKSUM_UNNECESSARY 108 * 109 * The hardware you're dealing with doesn't calculate the full checksum 110 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums 111 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY 112 * if their checksums are okay. &sk_buff.csum is still undefined in this case 113 * though. A driver or device must never modify the checksum field in the 114 * packet even if checksum is verified. 115 * 116 * %CHECKSUM_UNNECESSARY is applicable to following protocols: 117 * 118 * - TCP: IPv6 and IPv4. 119 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 120 * zero UDP checksum for either IPv4 or IPv6, the networking stack 121 * may perform further validation in this case. 122 * - GRE: only if the checksum is present in the header. 123 * - SCTP: indicates the CRC in SCTP header has been validated. 124 * - FCOE: indicates the CRC in FC frame has been validated. 125 * 126 * &sk_buff.csum_level indicates the number of consecutive checksums found in 127 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. 128 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 129 * and a device is able to verify the checksums for UDP (possibly zero), 130 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to 131 * two. If the device were only able to verify the UDP checksum and not 132 * GRE, either because it doesn't support GRE checksum or because GRE 133 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 134 * not considered in this case). 135 * 136 * - %CHECKSUM_COMPLETE 137 * 138 * This is the most generic way. The device supplied checksum of the _whole_ 139 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the 140 * hardware doesn't need to parse L3/L4 headers to implement this. 141 * 142 * Notes: 143 * 144 * - Even if device supports only some protocols, but is able to produce 145 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 146 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 147 * 148 * - %CHECKSUM_PARTIAL 149 * 150 * A checksum is set up to be offloaded to a device as described in the 151 * output description for CHECKSUM_PARTIAL. This may occur on a packet 152 * received directly from another Linux OS, e.g., a virtualized Linux kernel 153 * on the same host, or it may be set in the input path in GRO or remote 154 * checksum offload. For the purposes of checksum verification, the checksum 155 * referred to by skb->csum_start + skb->csum_offset and any preceding 156 * checksums in the packet are considered verified. Any checksums in the 157 * packet that are after the checksum being offloaded are not considered to 158 * be verified. 159 * 160 * Checksumming on transmit for non-GSO 161 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 162 * 163 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. 164 * Values are: 165 * 166 * - %CHECKSUM_PARTIAL 167 * 168 * The driver is required to checksum the packet as seen by hard_start_xmit() 169 * from &sk_buff.csum_start up to the end, and to record/write the checksum at 170 * offset &sk_buff.csum_start + &sk_buff.csum_offset. 171 * A driver may verify that the 172 * csum_start and csum_offset values are valid values given the length and 173 * offset of the packet, but it should not attempt to validate that the 174 * checksum refers to a legitimate transport layer checksum -- it is the 175 * purview of the stack to validate that csum_start and csum_offset are set 176 * correctly. 177 * 178 * When the stack requests checksum offload for a packet, the driver MUST 179 * ensure that the checksum is set correctly. A driver can either offload the 180 * checksum calculation to the device, or call skb_checksum_help (in the case 181 * that the device does not support offload for a particular checksum). 182 * 183 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of 184 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate 185 * checksum offload capability. 186 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based 187 * on network device checksumming capabilities: if a packet does not match 188 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of 189 * &sk_buff.csum_not_inet, see :ref:`crc`) 190 * is called to resolve the checksum. 191 * 192 * - %CHECKSUM_NONE 193 * 194 * The skb was already checksummed by the protocol, or a checksum is not 195 * required. 196 * 197 * - %CHECKSUM_UNNECESSARY 198 * 199 * This has the same meaning as CHECKSUM_NONE for checksum offload on 200 * output. 201 * 202 * - %CHECKSUM_COMPLETE 203 * 204 * Not used in checksum output. If a driver observes a packet with this value 205 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. 206 * 207 * .. _crc: 208 * 209 * Non-IP checksum (CRC) offloads 210 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 211 * 212 * .. flat-table:: 213 * :widths: 1 10 214 * 215 * * - %NETIF_F_SCTP_CRC 216 * - This feature indicates that a device is capable of 217 * offloading the SCTP CRC in a packet. To perform this offload the stack 218 * will set csum_start and csum_offset accordingly, set ip_summed to 219 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication 220 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. 221 * A driver that supports both IP checksum offload and SCTP CRC32c offload 222 * must verify which offload is configured for a packet by testing the 223 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to 224 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 225 * 226 * * - %NETIF_F_FCOE_CRC 227 * - This feature indicates that a device is capable of offloading the FCOE 228 * CRC in a packet. To perform this offload the stack will set ip_summed 229 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset 230 * accordingly. Note that there is no indication in the skbuff that the 231 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 232 * both IP checksum offload and FCOE CRC offload must verify which offload 233 * is configured for a packet, presumably by inspecting packet headers. 234 * 235 * Checksumming on output with GSO 236 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 237 * 238 * In the case of a GSO packet (skb_is_gso() is true), checksum offload 239 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 240 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as 241 * part of the GSO operation is implied. If a checksum is being offloaded 242 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and 243 * csum_offset are set to refer to the outermost checksum being offloaded 244 * (two offloaded checksums are possible with UDP encapsulation). 245 */ 246 247 /* Don't change this without changing skb_csum_unnecessary! */ 248 #define CHECKSUM_NONE 0 249 #define CHECKSUM_UNNECESSARY 1 250 #define CHECKSUM_COMPLETE 2 251 #define CHECKSUM_PARTIAL 3 252 253 /* Maximum value in skb->csum_level */ 254 #define SKB_MAX_CSUM_LEVEL 3 255 256 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 257 #define SKB_WITH_OVERHEAD(X) \ 258 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 259 260 /* For X bytes available in skb->head, what is the minimal 261 * allocation needed, knowing struct skb_shared_info needs 262 * to be aligned. 263 */ 264 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \ 265 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 266 267 #define SKB_MAX_ORDER(X, ORDER) \ 268 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 269 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 270 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 271 272 /* return minimum truesize of one skb containing X bytes of data */ 273 #define SKB_TRUESIZE(X) ((X) + \ 274 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 275 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 276 277 struct ahash_request; 278 struct net_device; 279 struct scatterlist; 280 struct pipe_inode_info; 281 struct iov_iter; 282 struct napi_struct; 283 struct bpf_prog; 284 union bpf_attr; 285 struct skb_ext; 286 struct ts_config; 287 288 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 289 struct nf_bridge_info { 290 enum { 291 BRNF_PROTO_UNCHANGED, 292 BRNF_PROTO_8021Q, 293 BRNF_PROTO_PPPOE 294 } orig_proto:8; 295 u8 pkt_otherhost:1; 296 u8 in_prerouting:1; 297 u8 bridged_dnat:1; 298 u8 sabotage_in_done:1; 299 __u16 frag_max_size; 300 int physinif; 301 302 /* always valid & non-NULL from FORWARD on, for physdev match */ 303 struct net_device *physoutdev; 304 union { 305 /* prerouting: detect dnat in orig/reply direction */ 306 __be32 ipv4_daddr; 307 struct in6_addr ipv6_daddr; 308 309 /* after prerouting + nat detected: store original source 310 * mac since neigh resolution overwrites it, only used while 311 * skb is out in neigh layer. 312 */ 313 char neigh_header[8]; 314 }; 315 }; 316 #endif 317 318 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 319 /* Chain in tc_skb_ext will be used to share the tc chain with 320 * ovs recirc_id. It will be set to the current chain by tc 321 * and read by ovs to recirc_id. 322 */ 323 struct tc_skb_ext { 324 union { 325 u64 act_miss_cookie; 326 __u32 chain; 327 }; 328 __u16 mru; 329 __u16 zone; 330 u8 post_ct:1; 331 u8 post_ct_snat:1; 332 u8 post_ct_dnat:1; 333 u8 act_miss:1; /* Set if act_miss_cookie is used */ 334 u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */ 335 }; 336 #endif 337 338 struct sk_buff_head { 339 /* These two members must be first to match sk_buff. */ 340 struct_group_tagged(sk_buff_list, list, 341 struct sk_buff *next; 342 struct sk_buff *prev; 343 ); 344 345 __u32 qlen; 346 spinlock_t lock; 347 }; 348 349 struct sk_buff; 350 351 #ifndef CONFIG_MAX_SKB_FRAGS 352 # define CONFIG_MAX_SKB_FRAGS 17 353 #endif 354 355 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS 356 357 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 358 * segment using its current segmentation instead. 359 */ 360 #define GSO_BY_FRAGS 0xFFFF 361 362 typedef struct skb_frag { 363 netmem_ref netmem; 364 unsigned int len; 365 unsigned int offset; 366 } skb_frag_t; 367 368 /** 369 * skb_frag_size() - Returns the size of a skb fragment 370 * @frag: skb fragment 371 */ skb_frag_size(const skb_frag_t * frag)372 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 373 { 374 return frag->len; 375 } 376 377 /** 378 * skb_frag_size_set() - Sets the size of a skb fragment 379 * @frag: skb fragment 380 * @size: size of fragment 381 */ skb_frag_size_set(skb_frag_t * frag,unsigned int size)382 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 383 { 384 frag->len = size; 385 } 386 387 /** 388 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 389 * @frag: skb fragment 390 * @delta: value to add 391 */ skb_frag_size_add(skb_frag_t * frag,int delta)392 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 393 { 394 frag->len += delta; 395 } 396 397 /** 398 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 399 * @frag: skb fragment 400 * @delta: value to subtract 401 */ skb_frag_size_sub(skb_frag_t * frag,int delta)402 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 403 { 404 frag->len -= delta; 405 } 406 407 /** 408 * skb_frag_must_loop - Test if %p is a high memory page 409 * @p: fragment's page 410 */ skb_frag_must_loop(struct page * p)411 static inline bool skb_frag_must_loop(struct page *p) 412 { 413 #if defined(CONFIG_HIGHMEM) 414 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 415 return true; 416 #endif 417 return false; 418 } 419 420 /** 421 * skb_frag_foreach_page - loop over pages in a fragment 422 * 423 * @f: skb frag to operate on 424 * @f_off: offset from start of f->netmem 425 * @f_len: length from f_off to loop over 426 * @p: (temp var) current page 427 * @p_off: (temp var) offset from start of current page, 428 * non-zero only on first page. 429 * @p_len: (temp var) length in current page, 430 * < PAGE_SIZE only on first and last page. 431 * @copied: (temp var) length so far, excluding current p_len. 432 * 433 * A fragment can hold a compound page, in which case per-page 434 * operations, notably kmap_atomic, must be called for each 435 * regular page. 436 */ 437 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 438 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 439 p_off = (f_off) & (PAGE_SIZE - 1), \ 440 p_len = skb_frag_must_loop(p) ? \ 441 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 442 copied = 0; \ 443 copied < f_len; \ 444 copied += p_len, p++, p_off = 0, \ 445 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 446 447 /** 448 * struct skb_shared_hwtstamps - hardware time stamps 449 * @hwtstamp: hardware time stamp transformed into duration 450 * since arbitrary point in time 451 * @netdev_data: address/cookie of network device driver used as 452 * reference to actual hardware time stamp 453 * 454 * Software time stamps generated by ktime_get_real() are stored in 455 * skb->tstamp. 456 * 457 * hwtstamps can only be compared against other hwtstamps from 458 * the same device. 459 * 460 * This structure is attached to packets as part of the 461 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 462 */ 463 struct skb_shared_hwtstamps { 464 union { 465 ktime_t hwtstamp; 466 void *netdev_data; 467 }; 468 }; 469 470 /* Definitions for tx_flags in struct skb_shared_info */ 471 enum { 472 /* generate hardware time stamp */ 473 SKBTX_HW_TSTAMP_NOBPF = 1 << 0, 474 475 /* generate software time stamp when queueing packet to NIC */ 476 SKBTX_SW_TSTAMP = 1 << 1, 477 478 /* device driver is going to provide hardware time stamp */ 479 SKBTX_IN_PROGRESS = 1 << 2, 480 481 /* generate software time stamp on packet tx completion */ 482 SKBTX_COMPLETION_TSTAMP = 1 << 3, 483 484 /* generate wifi status information (where possible) */ 485 SKBTX_WIFI_STATUS = 1 << 4, 486 487 /* determine hardware time stamp based on time or cycles */ 488 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 489 490 /* generate software time stamp when entering packet scheduling */ 491 SKBTX_SCHED_TSTAMP = 1 << 6, 492 493 /* used for bpf extension when a bpf program is loaded */ 494 SKBTX_BPF = 1 << 7, 495 }; 496 497 #define SKBTX_HW_TSTAMP (SKBTX_HW_TSTAMP_NOBPF | SKBTX_BPF) 498 499 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 500 SKBTX_SCHED_TSTAMP | \ 501 SKBTX_BPF | \ 502 SKBTX_COMPLETION_TSTAMP) 503 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 504 SKBTX_ANY_SW_TSTAMP) 505 506 /* Definitions for flags in struct skb_shared_info */ 507 enum { 508 /* use zcopy routines */ 509 SKBFL_ZEROCOPY_ENABLE = BIT(0), 510 511 /* This indicates at least one fragment might be overwritten 512 * (as in vmsplice(), sendfile() ...) 513 * If we need to compute a TX checksum, we'll need to copy 514 * all frags to avoid possible bad checksum 515 */ 516 SKBFL_SHARED_FRAG = BIT(1), 517 518 /* segment contains only zerocopy data and should not be 519 * charged to the kernel memory. 520 */ 521 SKBFL_PURE_ZEROCOPY = BIT(2), 522 523 SKBFL_DONT_ORPHAN = BIT(3), 524 525 /* page references are managed by the ubuf_info, so it's safe to 526 * use frags only up until ubuf_info is released 527 */ 528 SKBFL_MANAGED_FRAG_REFS = BIT(4), 529 }; 530 531 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 532 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ 533 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) 534 535 struct ubuf_info_ops { 536 void (*complete)(struct sk_buff *, struct ubuf_info *, 537 bool zerocopy_success); 538 /* has to be compatible with skb_zcopy_set() */ 539 int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg); 540 }; 541 542 /* 543 * The callback notifies userspace to release buffers when skb DMA is done in 544 * lower device, the skb last reference should be 0 when calling this. 545 * The zerocopy_success argument is true if zero copy transmit occurred, 546 * false on data copy or out of memory error caused by data copy attempt. 547 * The ctx field is used to track device context. 548 * The desc field is used to track userspace buffer index. 549 */ 550 struct ubuf_info { 551 const struct ubuf_info_ops *ops; 552 refcount_t refcnt; 553 u8 flags; 554 }; 555 556 struct ubuf_info_msgzc { 557 struct ubuf_info ubuf; 558 559 union { 560 struct { 561 unsigned long desc; 562 void *ctx; 563 }; 564 struct { 565 u32 id; 566 u16 len; 567 u16 zerocopy:1; 568 u32 bytelen; 569 }; 570 }; 571 572 struct mmpin { 573 struct user_struct *user; 574 unsigned int num_pg; 575 } mmp; 576 }; 577 578 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 579 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \ 580 ubuf) 581 582 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 583 void mm_unaccount_pinned_pages(struct mmpin *mmp); 584 585 /* Preserve some data across TX submission and completion. 586 * 587 * Note, this state is stored in the driver. Extending the layout 588 * might need some special care. 589 */ 590 struct xsk_tx_metadata_compl { 591 __u64 *tx_timestamp; 592 }; 593 594 /* This data is invariant across clones and lives at 595 * the end of the header data, ie. at skb->end. 596 */ 597 struct skb_shared_info { 598 __u8 flags; 599 __u8 meta_len; 600 __u8 nr_frags; 601 __u8 tx_flags; 602 unsigned short gso_size; 603 /* Warning: this field is not always filled in (UFO)! */ 604 unsigned short gso_segs; 605 struct sk_buff *frag_list; 606 union { 607 struct skb_shared_hwtstamps hwtstamps; 608 struct xsk_tx_metadata_compl xsk_meta; 609 }; 610 unsigned int gso_type; 611 u32 tskey; 612 613 /* 614 * Warning : all fields before dataref are cleared in __alloc_skb() 615 */ 616 atomic_t dataref; 617 618 union { 619 struct { 620 u32 xdp_frags_size; 621 u32 xdp_frags_truesize; 622 }; 623 624 /* 625 * Intermediate layers must ensure that destructor_arg 626 * remains valid until skb destructor. 627 */ 628 void *destructor_arg; 629 }; 630 631 /* must be last field, see pskb_expand_head() */ 632 skb_frag_t frags[MAX_SKB_FRAGS]; 633 }; 634 635 /** 636 * DOC: dataref and headerless skbs 637 * 638 * Transport layers send out clones of payload skbs they hold for 639 * retransmissions. To allow lower layers of the stack to prepend their headers 640 * we split &skb_shared_info.dataref into two halves. 641 * The lower 16 bits count the overall number of references. 642 * The higher 16 bits indicate how many of the references are payload-only. 643 * skb_header_cloned() checks if skb is allowed to add / write the headers. 644 * 645 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr 646 * (via __skb_header_release()). Any clone created from marked skb will get 647 * &sk_buff.hdr_len populated with the available headroom. 648 * If there's the only clone in existence it's able to modify the headroom 649 * at will. The sequence of calls inside the transport layer is:: 650 * 651 * <alloc skb> 652 * skb_reserve() 653 * __skb_header_release() 654 * skb_clone() 655 * // send the clone down the stack 656 * 657 * This is not a very generic construct and it depends on the transport layers 658 * doing the right thing. In practice there's usually only one payload-only skb. 659 * Having multiple payload-only skbs with different lengths of hdr_len is not 660 * possible. The payload-only skbs should never leave their owner. 661 */ 662 #define SKB_DATAREF_SHIFT 16 663 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 664 665 666 enum { 667 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 668 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 669 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 670 }; 671 672 enum { 673 SKB_GSO_TCPV4 = 1 << 0, 674 675 /* This indicates the skb is from an untrusted source. */ 676 SKB_GSO_DODGY = 1 << 1, 677 678 /* This indicates the tcp segment has CWR set. */ 679 SKB_GSO_TCP_ECN = 1 << 2, 680 681 SKB_GSO_TCP_FIXEDID = 1 << 3, 682 683 SKB_GSO_TCPV6 = 1 << 4, 684 685 SKB_GSO_FCOE = 1 << 5, 686 687 SKB_GSO_GRE = 1 << 6, 688 689 SKB_GSO_GRE_CSUM = 1 << 7, 690 691 SKB_GSO_IPXIP4 = 1 << 8, 692 693 SKB_GSO_IPXIP6 = 1 << 9, 694 695 SKB_GSO_UDP_TUNNEL = 1 << 10, 696 697 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 698 699 SKB_GSO_PARTIAL = 1 << 12, 700 701 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 702 703 SKB_GSO_SCTP = 1 << 14, 704 705 SKB_GSO_ESP = 1 << 15, 706 707 SKB_GSO_UDP = 1 << 16, 708 709 SKB_GSO_UDP_L4 = 1 << 17, 710 711 SKB_GSO_FRAGLIST = 1 << 18, 712 713 SKB_GSO_TCP_ACCECN = 1 << 19, 714 }; 715 716 #if BITS_PER_LONG > 32 717 #define NET_SKBUFF_DATA_USES_OFFSET 1 718 #endif 719 720 #ifdef NET_SKBUFF_DATA_USES_OFFSET 721 typedef unsigned int sk_buff_data_t; 722 #else 723 typedef unsigned char *sk_buff_data_t; 724 #endif 725 726 enum skb_tstamp_type { 727 SKB_CLOCK_REALTIME, 728 SKB_CLOCK_MONOTONIC, 729 SKB_CLOCK_TAI, 730 __SKB_CLOCK_MAX = SKB_CLOCK_TAI, 731 }; 732 733 /** 734 * DOC: Basic sk_buff geometry 735 * 736 * struct sk_buff itself is a metadata structure and does not hold any packet 737 * data. All the data is held in associated buffers. 738 * 739 * &sk_buff.head points to the main "head" buffer. The head buffer is divided 740 * into two parts: 741 * 742 * - data buffer, containing headers and sometimes payload; 743 * this is the part of the skb operated on by the common helpers 744 * such as skb_put() or skb_pull(); 745 * - shared info (struct skb_shared_info) which holds an array of pointers 746 * to read-only data in the (page, offset, length) format. 747 * 748 * Optionally &skb_shared_info.frag_list may point to another skb. 749 * 750 * Basic diagram may look like this:: 751 * 752 * --------------- 753 * | sk_buff | 754 * --------------- 755 * ,--------------------------- + head 756 * / ,----------------- + data 757 * / / ,----------- + tail 758 * | | | , + end 759 * | | | | 760 * v v v v 761 * ----------------------------------------------- 762 * | headroom | data | tailroom | skb_shared_info | 763 * ----------------------------------------------- 764 * + [page frag] 765 * + [page frag] 766 * + [page frag] 767 * + [page frag] --------- 768 * + frag_list --> | sk_buff | 769 * --------- 770 * 771 */ 772 773 /** 774 * struct sk_buff - socket buffer 775 * @next: Next buffer in list 776 * @prev: Previous buffer in list 777 * @tstamp: Time we arrived/left 778 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 779 * for retransmit timer 780 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 781 * @list: queue head 782 * @ll_node: anchor in an llist (eg socket defer_list) 783 * @sk: Socket we are owned by 784 * @dev: Device we arrived on/are leaving by 785 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 786 * @cb: Control buffer. Free for use by every layer. Put private vars here 787 * @_skb_refdst: destination entry (with norefcount bit) 788 * @len: Length of actual data 789 * @data_len: Data length 790 * @mac_len: Length of link layer header 791 * @hdr_len: writable header length of cloned skb 792 * @csum: Checksum (must include start/offset pair) 793 * @csum_start: Offset from skb->head where checksumming should start 794 * @csum_offset: Offset from csum_start where checksum should be stored 795 * @priority: Packet queueing priority 796 * @ignore_df: allow local fragmentation 797 * @cloned: Head may be cloned (check refcnt to be sure) 798 * @ip_summed: Driver fed us an IP checksum 799 * @nohdr: Payload reference only, must not modify header 800 * @pkt_type: Packet class 801 * @fclone: skbuff clone status 802 * @ipvs_property: skbuff is owned by ipvs 803 * @inner_protocol_type: whether the inner protocol is 804 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 805 * @remcsum_offload: remote checksum offload is enabled 806 * @offload_fwd_mark: Packet was L2-forwarded in hardware 807 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 808 * @tc_skip_classify: do not classify packet. set by IFB device 809 * @tc_at_ingress: used within tc_classify to distinguish in/egress 810 * @redirected: packet was redirected by packet classifier 811 * @from_ingress: packet was redirected from the ingress path 812 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 813 * @peeked: this packet has been seen already, so stats have been 814 * done for it, don't do them again 815 * @nf_trace: netfilter packet trace flag 816 * @protocol: Packet protocol from driver 817 * @destructor: Destruct function 818 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 819 * @_sk_redir: socket redirection information for skmsg 820 * @_nfct: Associated connection, if any (with nfctinfo bits) 821 * @skb_iif: ifindex of device we arrived on 822 * @tc_index: Traffic control index 823 * @hash: the packet hash 824 * @queue_mapping: Queue mapping for multiqueue devices 825 * @head_frag: skb was allocated from page fragments, 826 * not allocated by kmalloc() or vmalloc(). 827 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 828 * @pp_recycle: mark the packet for recycling instead of freeing (implies 829 * page_pool support on driver) 830 * @active_extensions: active extensions (skb_ext_id types) 831 * @ndisc_nodetype: router type (from link layer) 832 * @ooo_okay: allow the mapping of a socket to a queue to be changed 833 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 834 * ports. 835 * @sw_hash: indicates hash was computed in software stack 836 * @wifi_acked_valid: wifi_acked was set 837 * @wifi_acked: whether frame was acked on wifi or not 838 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 839 * @encapsulation: indicates the inner headers in the skbuff are valid 840 * @encap_hdr_csum: software checksum is needed 841 * @csum_valid: checksum is already valid 842 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 843 * @csum_complete_sw: checksum was completed by software 844 * @csum_level: indicates the number of consecutive checksums found in 845 * the packet minus one that have been verified as 846 * CHECKSUM_UNNECESSARY (max 3) 847 * @unreadable: indicates that at least 1 of the fragments in this skb is 848 * unreadable. 849 * @dst_pending_confirm: need to confirm neighbour 850 * @decrypted: Decrypted SKB 851 * @slow_gro: state present at GRO time, slower prepare step required 852 * @tstamp_type: When set, skb->tstamp has the 853 * delivery_time clock base of skb->tstamp. 854 * @napi_id: id of the NAPI struct this skb came from 855 * @sender_cpu: (aka @napi_id) source CPU in XPS 856 * @alloc_cpu: CPU which did the skb allocation. 857 * @secmark: security marking 858 * @mark: Generic packet mark 859 * @reserved_tailroom: (aka @mark) number of bytes of free space available 860 * at the tail of an sk_buff 861 * @vlan_all: vlan fields (proto & tci) 862 * @vlan_proto: vlan encapsulation protocol 863 * @vlan_tci: vlan tag control information 864 * @inner_protocol: Protocol (encapsulation) 865 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 866 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 867 * @inner_transport_header: Inner transport layer header (encapsulation) 868 * @inner_network_header: Network layer header (encapsulation) 869 * @inner_mac_header: Link layer header (encapsulation) 870 * @transport_header: Transport layer header 871 * @network_header: Network layer header 872 * @mac_header: Link layer header 873 * @kcov_handle: KCOV remote handle for remote coverage collection 874 * @tail: Tail pointer 875 * @end: End pointer 876 * @head: Head of buffer 877 * @data: Data head pointer 878 * @truesize: Buffer size 879 * @users: User count - see {datagram,tcp}.c 880 * @extensions: allocated extensions, valid if active_extensions is nonzero 881 */ 882 883 struct sk_buff { 884 union { 885 struct { 886 /* These two members must be first to match sk_buff_head. */ 887 struct sk_buff *next; 888 struct sk_buff *prev; 889 890 union { 891 struct net_device *dev; 892 /* Some protocols might use this space to store information, 893 * while device pointer would be NULL. 894 * UDP receive path is one user. 895 */ 896 unsigned long dev_scratch; 897 }; 898 }; 899 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 900 struct list_head list; 901 struct llist_node ll_node; 902 }; 903 904 struct sock *sk; 905 906 union { 907 ktime_t tstamp; 908 u64 skb_mstamp_ns; /* earliest departure time */ 909 }; 910 /* 911 * This is the control buffer. It is free to use for every 912 * layer. Please put your private variables there. If you 913 * want to keep them across layers you have to do a skb_clone() 914 * first. This is owned by whoever has the skb queued ATM. 915 */ 916 char cb[48] __aligned(8); 917 918 union { 919 struct { 920 unsigned long _skb_refdst; 921 void (*destructor)(struct sk_buff *skb); 922 }; 923 struct list_head tcp_tsorted_anchor; 924 #ifdef CONFIG_NET_SOCK_MSG 925 unsigned long _sk_redir; 926 #endif 927 }; 928 929 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 930 unsigned long _nfct; 931 #endif 932 unsigned int len, 933 data_len; 934 __u16 mac_len, 935 hdr_len; 936 937 /* Following fields are _not_ copied in __copy_skb_header() 938 * Note that queue_mapping is here mostly to fill a hole. 939 */ 940 __u16 queue_mapping; 941 942 /* if you move cloned around you also must adapt those constants */ 943 #ifdef __BIG_ENDIAN_BITFIELD 944 #define CLONED_MASK (1 << 7) 945 #else 946 #define CLONED_MASK 1 947 #endif 948 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 949 950 /* private: */ 951 __u8 __cloned_offset[0]; 952 /* public: */ 953 __u8 cloned:1, 954 nohdr:1, 955 fclone:2, 956 peeked:1, 957 head_frag:1, 958 pfmemalloc:1, 959 pp_recycle:1; /* page_pool recycle indicator */ 960 #ifdef CONFIG_SKB_EXTENSIONS 961 __u8 active_extensions; 962 #endif 963 964 /* Fields enclosed in headers group are copied 965 * using a single memcpy() in __copy_skb_header() 966 */ 967 struct_group(headers, 968 969 /* private: */ 970 __u8 __pkt_type_offset[0]; 971 /* public: */ 972 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 973 __u8 ignore_df:1; 974 __u8 dst_pending_confirm:1; 975 __u8 ip_summed:2; 976 __u8 ooo_okay:1; 977 978 /* private: */ 979 __u8 __mono_tc_offset[0]; 980 /* public: */ 981 __u8 tstamp_type:2; /* See skb_tstamp_type */ 982 #ifdef CONFIG_NET_XGRESS 983 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 984 __u8 tc_skip_classify:1; 985 #endif 986 __u8 remcsum_offload:1; 987 __u8 csum_complete_sw:1; 988 __u8 csum_level:2; 989 __u8 inner_protocol_type:1; 990 991 __u8 l4_hash:1; 992 __u8 sw_hash:1; 993 #ifdef CONFIG_WIRELESS 994 __u8 wifi_acked_valid:1; 995 __u8 wifi_acked:1; 996 #endif 997 __u8 no_fcs:1; 998 /* Indicates the inner headers are valid in the skbuff. */ 999 __u8 encapsulation:1; 1000 __u8 encap_hdr_csum:1; 1001 __u8 csum_valid:1; 1002 #ifdef CONFIG_IPV6_NDISC_NODETYPE 1003 __u8 ndisc_nodetype:2; 1004 #endif 1005 1006 #if IS_ENABLED(CONFIG_IP_VS) 1007 __u8 ipvs_property:1; 1008 #endif 1009 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 1010 __u8 nf_trace:1; 1011 #endif 1012 #ifdef CONFIG_NET_SWITCHDEV 1013 __u8 offload_fwd_mark:1; 1014 __u8 offload_l3_fwd_mark:1; 1015 #endif 1016 __u8 redirected:1; 1017 #ifdef CONFIG_NET_REDIRECT 1018 __u8 from_ingress:1; 1019 #endif 1020 #ifdef CONFIG_NETFILTER_SKIP_EGRESS 1021 __u8 nf_skip_egress:1; 1022 #endif 1023 #ifdef CONFIG_SKB_DECRYPTED 1024 __u8 decrypted:1; 1025 #endif 1026 __u8 slow_gro:1; 1027 #if IS_ENABLED(CONFIG_IP_SCTP) 1028 __u8 csum_not_inet:1; 1029 #endif 1030 __u8 unreadable:1; 1031 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS) 1032 __u16 tc_index; /* traffic control index */ 1033 #endif 1034 1035 u16 alloc_cpu; 1036 1037 union { 1038 __wsum csum; 1039 struct { 1040 __u16 csum_start; 1041 __u16 csum_offset; 1042 }; 1043 }; 1044 __u32 priority; 1045 int skb_iif; 1046 __u32 hash; 1047 union { 1048 u32 vlan_all; 1049 struct { 1050 __be16 vlan_proto; 1051 __u16 vlan_tci; 1052 }; 1053 }; 1054 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 1055 union { 1056 unsigned int napi_id; 1057 unsigned int sender_cpu; 1058 }; 1059 #endif 1060 #ifdef CONFIG_NETWORK_SECMARK 1061 __u32 secmark; 1062 #endif 1063 1064 union { 1065 __u32 mark; 1066 __u32 reserved_tailroom; 1067 }; 1068 1069 union { 1070 __be16 inner_protocol; 1071 __u8 inner_ipproto; 1072 }; 1073 1074 __u16 inner_transport_header; 1075 __u16 inner_network_header; 1076 __u16 inner_mac_header; 1077 1078 __be16 protocol; 1079 __u16 transport_header; 1080 __u16 network_header; 1081 __u16 mac_header; 1082 1083 #ifdef CONFIG_KCOV 1084 u64 kcov_handle; 1085 #endif 1086 1087 ); /* end headers group */ 1088 1089 /* These elements must be at the end, see alloc_skb() for details. */ 1090 sk_buff_data_t tail; 1091 sk_buff_data_t end; 1092 unsigned char *head, 1093 *data; 1094 unsigned int truesize; 1095 refcount_t users; 1096 1097 #ifdef CONFIG_SKB_EXTENSIONS 1098 /* only usable after checking ->active_extensions != 0 */ 1099 struct skb_ext *extensions; 1100 #endif 1101 }; 1102 1103 /* if you move pkt_type around you also must adapt those constants */ 1104 #ifdef __BIG_ENDIAN_BITFIELD 1105 #define PKT_TYPE_MAX (7 << 5) 1106 #else 1107 #define PKT_TYPE_MAX 7 1108 #endif 1109 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1110 1111 /* if you move tc_at_ingress or tstamp_type 1112 * around, you also must adapt these constants. 1113 */ 1114 #ifdef __BIG_ENDIAN_BITFIELD 1115 #define SKB_TSTAMP_TYPE_MASK (3 << 6) 1116 #define SKB_TSTAMP_TYPE_RSHIFT (6) 1117 #define TC_AT_INGRESS_MASK (1 << 5) 1118 #else 1119 #define SKB_TSTAMP_TYPE_MASK (3) 1120 #define TC_AT_INGRESS_MASK (1 << 2) 1121 #endif 1122 #define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset) 1123 1124 #ifdef __KERNEL__ 1125 /* 1126 * Handling routines are only of interest to the kernel 1127 */ 1128 1129 #define SKB_ALLOC_FCLONE 0x01 1130 #define SKB_ALLOC_RX 0x02 1131 #define SKB_ALLOC_NAPI 0x04 1132 1133 /** 1134 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1135 * @skb: buffer 1136 */ skb_pfmemalloc(const struct sk_buff * skb)1137 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1138 { 1139 return unlikely(skb->pfmemalloc); 1140 } 1141 1142 /* 1143 * skb might have a dst pointer attached, refcounted or not. 1144 * _skb_refdst low order bit is set if refcount was _not_ taken 1145 */ 1146 #define SKB_DST_NOREF 1UL 1147 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1148 1149 /** 1150 * skb_dst - returns skb dst_entry 1151 * @skb: buffer 1152 * 1153 * Returns: skb dst_entry, regardless of reference taken or not. 1154 */ skb_dst(const struct sk_buff * skb)1155 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1156 { 1157 /* If refdst was not refcounted, check we still are in a 1158 * rcu_read_lock section 1159 */ 1160 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1161 !rcu_read_lock_held() && 1162 !rcu_read_lock_bh_held()); 1163 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1164 } 1165 1166 /** 1167 * skb_dst_set - sets skb dst 1168 * @skb: buffer 1169 * @dst: dst entry 1170 * 1171 * Sets skb dst, assuming a reference was taken on dst and should 1172 * be released by skb_dst_drop() 1173 */ skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)1174 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1175 { 1176 skb->slow_gro |= !!dst; 1177 skb->_skb_refdst = (unsigned long)dst; 1178 } 1179 1180 /** 1181 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1182 * @skb: buffer 1183 * @dst: dst entry 1184 * 1185 * Sets skb dst, assuming a reference was not taken on dst. 1186 * If dst entry is cached, we do not take reference and dst_release 1187 * will be avoided by refdst_drop. If dst entry is not cached, we take 1188 * reference, so that last dst_release can destroy the dst immediately. 1189 */ skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)1190 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1191 { 1192 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1193 skb->slow_gro |= !!dst; 1194 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1195 } 1196 1197 /** 1198 * skb_dst_is_noref - Test if skb dst isn't refcounted 1199 * @skb: buffer 1200 */ skb_dst_is_noref(const struct sk_buff * skb)1201 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1202 { 1203 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1204 } 1205 1206 /* For mangling skb->pkt_type from user space side from applications 1207 * such as nft, tc, etc, we only allow a conservative subset of 1208 * possible pkt_types to be set. 1209 */ skb_pkt_type_ok(u32 ptype)1210 static inline bool skb_pkt_type_ok(u32 ptype) 1211 { 1212 return ptype <= PACKET_OTHERHOST; 1213 } 1214 1215 /** 1216 * skb_napi_id - Returns the skb's NAPI id 1217 * @skb: buffer 1218 */ skb_napi_id(const struct sk_buff * skb)1219 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1220 { 1221 #ifdef CONFIG_NET_RX_BUSY_POLL 1222 return skb->napi_id; 1223 #else 1224 return 0; 1225 #endif 1226 } 1227 skb_wifi_acked_valid(const struct sk_buff * skb)1228 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb) 1229 { 1230 #ifdef CONFIG_WIRELESS 1231 return skb->wifi_acked_valid; 1232 #else 1233 return 0; 1234 #endif 1235 } 1236 1237 /** 1238 * skb_unref - decrement the skb's reference count 1239 * @skb: buffer 1240 * 1241 * Returns: true if we can free the skb. 1242 */ skb_unref(struct sk_buff * skb)1243 static inline bool skb_unref(struct sk_buff *skb) 1244 { 1245 if (unlikely(!skb)) 1246 return false; 1247 if (!IS_ENABLED(CONFIG_DEBUG_NET) && likely(refcount_read(&skb->users) == 1)) 1248 smp_rmb(); 1249 else if (likely(!refcount_dec_and_test(&skb->users))) 1250 return false; 1251 1252 return true; 1253 } 1254 skb_data_unref(const struct sk_buff * skb,struct skb_shared_info * shinfo)1255 static inline bool skb_data_unref(const struct sk_buff *skb, 1256 struct skb_shared_info *shinfo) 1257 { 1258 int bias; 1259 1260 if (!skb->cloned) 1261 return true; 1262 1263 bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1; 1264 1265 if (atomic_read(&shinfo->dataref) == bias) 1266 smp_rmb(); 1267 else if (atomic_sub_return(bias, &shinfo->dataref)) 1268 return false; 1269 1270 return true; 1271 } 1272 1273 void __fix_address sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, 1274 enum skb_drop_reason reason); 1275 1276 static inline void kfree_skb_reason(struct sk_buff * skb,enum skb_drop_reason reason)1277 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1278 { 1279 sk_skb_reason_drop(NULL, skb, reason); 1280 } 1281 1282 /** 1283 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1284 * @skb: buffer to free 1285 */ kfree_skb(struct sk_buff * skb)1286 static inline void kfree_skb(struct sk_buff *skb) 1287 { 1288 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1289 } 1290 1291 void skb_release_head_state(struct sk_buff *skb); 1292 void kfree_skb_list_reason(struct sk_buff *segs, 1293 enum skb_drop_reason reason); 1294 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1295 void skb_tx_error(struct sk_buff *skb); 1296 kfree_skb_list(struct sk_buff * segs)1297 static inline void kfree_skb_list(struct sk_buff *segs) 1298 { 1299 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1300 } 1301 1302 #ifdef CONFIG_TRACEPOINTS 1303 void consume_skb(struct sk_buff *skb); 1304 #else consume_skb(struct sk_buff * skb)1305 static inline void consume_skb(struct sk_buff *skb) 1306 { 1307 return kfree_skb(skb); 1308 } 1309 #endif 1310 1311 void __consume_stateless_skb(struct sk_buff *skb); 1312 void __kfree_skb(struct sk_buff *skb); 1313 1314 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1315 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1316 bool *fragstolen, int *delta_truesize); 1317 1318 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1319 int node); 1320 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1321 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1322 struct sk_buff *build_skb_around(struct sk_buff *skb, 1323 void *data, unsigned int frag_size); 1324 void skb_attempt_defer_free(struct sk_buff *skb); 1325 1326 u32 napi_skb_cache_get_bulk(void **skbs, u32 n); 1327 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1328 struct sk_buff *slab_build_skb(void *data); 1329 1330 /** 1331 * alloc_skb - allocate a network buffer 1332 * @size: size to allocate 1333 * @priority: allocation mask 1334 * 1335 * This function is a convenient wrapper around __alloc_skb(). 1336 */ alloc_skb(unsigned int size,gfp_t priority)1337 static inline struct sk_buff *alloc_skb(unsigned int size, 1338 gfp_t priority) 1339 { 1340 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1341 } 1342 1343 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1344 unsigned long data_len, 1345 int max_page_order, 1346 int *errcode, 1347 gfp_t gfp_mask); 1348 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1349 1350 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1351 struct sk_buff_fclones { 1352 struct sk_buff skb1; 1353 1354 struct sk_buff skb2; 1355 1356 refcount_t fclone_ref; 1357 }; 1358 1359 /** 1360 * skb_fclone_busy - check if fclone is busy 1361 * @sk: socket 1362 * @skb: buffer 1363 * 1364 * Returns: true if skb is a fast clone, and its clone is not freed. 1365 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1366 * so we also check that didn't happen. 1367 */ skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1368 static inline bool skb_fclone_busy(const struct sock *sk, 1369 const struct sk_buff *skb) 1370 { 1371 const struct sk_buff_fclones *fclones; 1372 1373 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1374 1375 return skb->fclone == SKB_FCLONE_ORIG && 1376 refcount_read(&fclones->fclone_ref) > 1 && 1377 READ_ONCE(fclones->skb2.sk) == sk; 1378 } 1379 1380 /** 1381 * alloc_skb_fclone - allocate a network buffer from fclone cache 1382 * @size: size to allocate 1383 * @priority: allocation mask 1384 * 1385 * This function is a convenient wrapper around __alloc_skb(). 1386 */ alloc_skb_fclone(unsigned int size,gfp_t priority)1387 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1388 gfp_t priority) 1389 { 1390 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1391 } 1392 1393 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1394 void skb_headers_offset_update(struct sk_buff *skb, int off); 1395 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1396 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1397 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1398 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1399 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1400 gfp_t gfp_mask, bool fclone); __pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1401 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1402 gfp_t gfp_mask) 1403 { 1404 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1405 } 1406 1407 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1408 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1409 unsigned int headroom); 1410 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1411 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1412 int newtailroom, gfp_t priority); 1413 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1414 int offset, int len); 1415 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1416 int offset, int len); 1417 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1418 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1419 1420 /** 1421 * skb_pad - zero pad the tail of an skb 1422 * @skb: buffer to pad 1423 * @pad: space to pad 1424 * 1425 * Ensure that a buffer is followed by a padding area that is zero 1426 * filled. Used by network drivers which may DMA or transfer data 1427 * beyond the buffer end onto the wire. 1428 * 1429 * May return error in out of memory cases. The skb is freed on error. 1430 */ skb_pad(struct sk_buff * skb,int pad)1431 static inline int skb_pad(struct sk_buff *skb, int pad) 1432 { 1433 return __skb_pad(skb, pad, true); 1434 } 1435 #define dev_kfree_skb(a) consume_skb(a) 1436 1437 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1438 int offset, size_t size, size_t max_frags); 1439 1440 struct skb_seq_state { 1441 __u32 lower_offset; 1442 __u32 upper_offset; 1443 __u32 frag_idx; 1444 __u32 stepped_offset; 1445 struct sk_buff *root_skb; 1446 struct sk_buff *cur_skb; 1447 __u8 *frag_data; 1448 __u32 frag_off; 1449 }; 1450 1451 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1452 unsigned int to, struct skb_seq_state *st); 1453 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1454 struct skb_seq_state *st); 1455 void skb_abort_seq_read(struct skb_seq_state *st); 1456 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len); 1457 1458 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1459 unsigned int to, struct ts_config *config); 1460 1461 /* 1462 * Packet hash types specify the type of hash in skb_set_hash. 1463 * 1464 * Hash types refer to the protocol layer addresses which are used to 1465 * construct a packet's hash. The hashes are used to differentiate or identify 1466 * flows of the protocol layer for the hash type. Hash types are either 1467 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1468 * 1469 * Properties of hashes: 1470 * 1471 * 1) Two packets in different flows have different hash values 1472 * 2) Two packets in the same flow should have the same hash value 1473 * 1474 * A hash at a higher layer is considered to be more specific. A driver should 1475 * set the most specific hash possible. 1476 * 1477 * A driver cannot indicate a more specific hash than the layer at which a hash 1478 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1479 * 1480 * A driver may indicate a hash level which is less specific than the 1481 * actual layer the hash was computed on. For instance, a hash computed 1482 * at L4 may be considered an L3 hash. This should only be done if the 1483 * driver can't unambiguously determine that the HW computed the hash at 1484 * the higher layer. Note that the "should" in the second property above 1485 * permits this. 1486 */ 1487 enum pkt_hash_types { 1488 PKT_HASH_TYPE_NONE, /* Undefined type */ 1489 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1490 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1491 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1492 }; 1493 skb_clear_hash(struct sk_buff * skb)1494 static inline void skb_clear_hash(struct sk_buff *skb) 1495 { 1496 skb->hash = 0; 1497 skb->sw_hash = 0; 1498 skb->l4_hash = 0; 1499 } 1500 skb_clear_hash_if_not_l4(struct sk_buff * skb)1501 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1502 { 1503 if (!skb->l4_hash) 1504 skb_clear_hash(skb); 1505 } 1506 1507 static inline void __skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1508 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1509 { 1510 skb->l4_hash = is_l4; 1511 skb->sw_hash = is_sw; 1512 skb->hash = hash; 1513 } 1514 1515 static inline void skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1516 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1517 { 1518 /* Used by drivers to set hash from HW */ 1519 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1520 } 1521 1522 static inline void __skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1523 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1524 { 1525 __skb_set_hash(skb, hash, true, is_l4); 1526 } 1527 1528 u32 __skb_get_hash_symmetric_net(const struct net *net, const struct sk_buff *skb); 1529 __skb_get_hash_symmetric(const struct sk_buff * skb)1530 static inline u32 __skb_get_hash_symmetric(const struct sk_buff *skb) 1531 { 1532 return __skb_get_hash_symmetric_net(NULL, skb); 1533 } 1534 1535 void __skb_get_hash_net(const struct net *net, struct sk_buff *skb); 1536 u32 skb_get_poff(const struct sk_buff *skb); 1537 u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1538 const struct flow_keys_basic *keys, int hlen); 1539 __be32 skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1540 const void *data, int hlen_proto); 1541 1542 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1543 const struct flow_dissector_key *key, 1544 unsigned int key_count); 1545 1546 struct bpf_flow_dissector; 1547 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1548 __be16 proto, int nhoff, int hlen, unsigned int flags); 1549 1550 bool __skb_flow_dissect(const struct net *net, 1551 const struct sk_buff *skb, 1552 struct flow_dissector *flow_dissector, 1553 void *target_container, const void *data, 1554 __be16 proto, int nhoff, int hlen, unsigned int flags); 1555 skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1556 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1557 struct flow_dissector *flow_dissector, 1558 void *target_container, unsigned int flags) 1559 { 1560 return __skb_flow_dissect(NULL, skb, flow_dissector, 1561 target_container, NULL, 0, 0, 0, flags); 1562 } 1563 skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1564 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1565 struct flow_keys *flow, 1566 unsigned int flags) 1567 { 1568 memset(flow, 0, sizeof(*flow)); 1569 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1570 flow, NULL, 0, 0, 0, flags); 1571 } 1572 1573 static inline bool skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,const void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1574 skb_flow_dissect_flow_keys_basic(const struct net *net, 1575 const struct sk_buff *skb, 1576 struct flow_keys_basic *flow, 1577 const void *data, __be16 proto, 1578 int nhoff, int hlen, unsigned int flags) 1579 { 1580 memset(flow, 0, sizeof(*flow)); 1581 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1582 data, proto, nhoff, hlen, flags); 1583 } 1584 1585 void skb_flow_dissect_meta(const struct sk_buff *skb, 1586 struct flow_dissector *flow_dissector, 1587 void *target_container); 1588 1589 /* Gets a skb connection tracking info, ctinfo map should be a 1590 * map of mapsize to translate enum ip_conntrack_info states 1591 * to user states. 1592 */ 1593 void 1594 skb_flow_dissect_ct(const struct sk_buff *skb, 1595 struct flow_dissector *flow_dissector, 1596 void *target_container, 1597 u16 *ctinfo_map, size_t mapsize, 1598 bool post_ct, u16 zone); 1599 void 1600 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1601 struct flow_dissector *flow_dissector, 1602 void *target_container); 1603 1604 void skb_flow_dissect_hash(const struct sk_buff *skb, 1605 struct flow_dissector *flow_dissector, 1606 void *target_container); 1607 skb_get_hash_net(const struct net * net,struct sk_buff * skb)1608 static inline __u32 skb_get_hash_net(const struct net *net, struct sk_buff *skb) 1609 { 1610 if (!skb->l4_hash && !skb->sw_hash) 1611 __skb_get_hash_net(net, skb); 1612 1613 return skb->hash; 1614 } 1615 skb_get_hash(struct sk_buff * skb)1616 static inline __u32 skb_get_hash(struct sk_buff *skb) 1617 { 1618 if (!skb->l4_hash && !skb->sw_hash) 1619 __skb_get_hash_net(NULL, skb); 1620 1621 return skb->hash; 1622 } 1623 skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1624 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1625 { 1626 if (!skb->l4_hash && !skb->sw_hash) { 1627 struct flow_keys keys; 1628 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1629 1630 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1631 } 1632 1633 return skb->hash; 1634 } 1635 1636 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1637 const siphash_key_t *perturb); 1638 skb_get_hash_raw(const struct sk_buff * skb)1639 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1640 { 1641 return skb->hash; 1642 } 1643 skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1644 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1645 { 1646 to->hash = from->hash; 1647 to->sw_hash = from->sw_hash; 1648 to->l4_hash = from->l4_hash; 1649 }; 1650 skb_cmp_decrypted(const struct sk_buff * skb1,const struct sk_buff * skb2)1651 static inline int skb_cmp_decrypted(const struct sk_buff *skb1, 1652 const struct sk_buff *skb2) 1653 { 1654 #ifdef CONFIG_SKB_DECRYPTED 1655 return skb2->decrypted - skb1->decrypted; 1656 #else 1657 return 0; 1658 #endif 1659 } 1660 skb_is_decrypted(const struct sk_buff * skb)1661 static inline bool skb_is_decrypted(const struct sk_buff *skb) 1662 { 1663 #ifdef CONFIG_SKB_DECRYPTED 1664 return skb->decrypted; 1665 #else 1666 return false; 1667 #endif 1668 } 1669 skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1670 static inline void skb_copy_decrypted(struct sk_buff *to, 1671 const struct sk_buff *from) 1672 { 1673 #ifdef CONFIG_SKB_DECRYPTED 1674 to->decrypted = from->decrypted; 1675 #endif 1676 } 1677 1678 #ifdef NET_SKBUFF_DATA_USES_OFFSET skb_end_pointer(const struct sk_buff * skb)1679 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1680 { 1681 return skb->head + skb->end; 1682 } 1683 skb_end_offset(const struct sk_buff * skb)1684 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1685 { 1686 return skb->end; 1687 } 1688 skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1689 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1690 { 1691 skb->end = offset; 1692 } 1693 #else skb_end_pointer(const struct sk_buff * skb)1694 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1695 { 1696 return skb->end; 1697 } 1698 skb_end_offset(const struct sk_buff * skb)1699 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1700 { 1701 return skb->end - skb->head; 1702 } 1703 skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1704 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1705 { 1706 skb->end = skb->head + offset; 1707 } 1708 #endif 1709 1710 extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops; 1711 1712 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1713 struct ubuf_info *uarg); 1714 1715 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1716 1717 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, 1718 struct sk_buff *skb, struct iov_iter *from, 1719 size_t length); 1720 1721 int zerocopy_fill_skb_from_iter(struct sk_buff *skb, 1722 struct iov_iter *from, size_t length); 1723 skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1724 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1725 struct msghdr *msg, int len) 1726 { 1727 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len); 1728 } 1729 1730 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1731 struct msghdr *msg, int len, 1732 struct ubuf_info *uarg); 1733 1734 /* Internal */ 1735 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1736 skb_hwtstamps(struct sk_buff * skb)1737 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1738 { 1739 return &skb_shinfo(skb)->hwtstamps; 1740 } 1741 skb_zcopy(struct sk_buff * skb)1742 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1743 { 1744 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1745 1746 return is_zcopy ? skb_uarg(skb) : NULL; 1747 } 1748 skb_zcopy_pure(const struct sk_buff * skb)1749 static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1750 { 1751 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1752 } 1753 skb_zcopy_managed(const struct sk_buff * skb)1754 static inline bool skb_zcopy_managed(const struct sk_buff *skb) 1755 { 1756 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; 1757 } 1758 skb_pure_zcopy_same(const struct sk_buff * skb1,const struct sk_buff * skb2)1759 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1760 const struct sk_buff *skb2) 1761 { 1762 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1763 } 1764 net_zcopy_get(struct ubuf_info * uarg)1765 static inline void net_zcopy_get(struct ubuf_info *uarg) 1766 { 1767 refcount_inc(&uarg->refcnt); 1768 } 1769 skb_zcopy_init(struct sk_buff * skb,struct ubuf_info * uarg)1770 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1771 { 1772 skb_shinfo(skb)->destructor_arg = uarg; 1773 skb_shinfo(skb)->flags |= uarg->flags; 1774 } 1775 skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1776 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1777 bool *have_ref) 1778 { 1779 if (skb && uarg && !skb_zcopy(skb)) { 1780 if (unlikely(have_ref && *have_ref)) 1781 *have_ref = false; 1782 else 1783 net_zcopy_get(uarg); 1784 skb_zcopy_init(skb, uarg); 1785 } 1786 } 1787 skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1788 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1789 { 1790 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1791 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1792 } 1793 skb_zcopy_is_nouarg(struct sk_buff * skb)1794 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1795 { 1796 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1797 } 1798 skb_zcopy_get_nouarg(struct sk_buff * skb)1799 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1800 { 1801 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1802 } 1803 net_zcopy_put(struct ubuf_info * uarg)1804 static inline void net_zcopy_put(struct ubuf_info *uarg) 1805 { 1806 if (uarg) 1807 uarg->ops->complete(NULL, uarg, true); 1808 } 1809 net_zcopy_put_abort(struct ubuf_info * uarg,bool have_uref)1810 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1811 { 1812 if (uarg) { 1813 if (uarg->ops == &msg_zerocopy_ubuf_ops) 1814 msg_zerocopy_put_abort(uarg, have_uref); 1815 else if (have_uref) 1816 net_zcopy_put(uarg); 1817 } 1818 } 1819 1820 /* Release a reference on a zerocopy structure */ skb_zcopy_clear(struct sk_buff * skb,bool zerocopy_success)1821 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1822 { 1823 struct ubuf_info *uarg = skb_zcopy(skb); 1824 1825 if (uarg) { 1826 if (!skb_zcopy_is_nouarg(skb)) 1827 uarg->ops->complete(skb, uarg, zerocopy_success); 1828 1829 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1830 } 1831 } 1832 1833 void __skb_zcopy_downgrade_managed(struct sk_buff *skb); 1834 skb_zcopy_downgrade_managed(struct sk_buff * skb)1835 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) 1836 { 1837 if (unlikely(skb_zcopy_managed(skb))) 1838 __skb_zcopy_downgrade_managed(skb); 1839 } 1840 1841 /* Return true if frags in this skb are readable by the host. */ skb_frags_readable(const struct sk_buff * skb)1842 static inline bool skb_frags_readable(const struct sk_buff *skb) 1843 { 1844 return !skb->unreadable; 1845 } 1846 skb_mark_not_on_list(struct sk_buff * skb)1847 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1848 { 1849 skb->next = NULL; 1850 } 1851 skb_poison_list(struct sk_buff * skb)1852 static inline void skb_poison_list(struct sk_buff *skb) 1853 { 1854 #ifdef CONFIG_DEBUG_NET 1855 skb->next = SKB_LIST_POISON_NEXT; 1856 #endif 1857 } 1858 1859 /* Iterate through singly-linked GSO fragments of an skb. */ 1860 #define skb_list_walk_safe(first, skb, next_skb) \ 1861 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1862 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1863 skb_list_del_init(struct sk_buff * skb)1864 static inline void skb_list_del_init(struct sk_buff *skb) 1865 { 1866 __list_del_entry(&skb->list); 1867 skb_mark_not_on_list(skb); 1868 } 1869 1870 /** 1871 * skb_queue_empty - check if a queue is empty 1872 * @list: queue head 1873 * 1874 * Returns true if the queue is empty, false otherwise. 1875 */ skb_queue_empty(const struct sk_buff_head * list)1876 static inline int skb_queue_empty(const struct sk_buff_head *list) 1877 { 1878 return list->next == (const struct sk_buff *) list; 1879 } 1880 1881 /** 1882 * skb_queue_empty_lockless - check if a queue is empty 1883 * @list: queue head 1884 * 1885 * Returns true if the queue is empty, false otherwise. 1886 * This variant can be used in lockless contexts. 1887 */ skb_queue_empty_lockless(const struct sk_buff_head * list)1888 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1889 { 1890 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1891 } 1892 1893 1894 /** 1895 * skb_queue_is_last - check if skb is the last entry in the queue 1896 * @list: queue head 1897 * @skb: buffer 1898 * 1899 * Returns true if @skb is the last buffer on the list. 1900 */ skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1901 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1902 const struct sk_buff *skb) 1903 { 1904 return skb->next == (const struct sk_buff *) list; 1905 } 1906 1907 /** 1908 * skb_queue_is_first - check if skb is the first entry in the queue 1909 * @list: queue head 1910 * @skb: buffer 1911 * 1912 * Returns true if @skb is the first buffer on the list. 1913 */ skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1914 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1915 const struct sk_buff *skb) 1916 { 1917 return skb->prev == (const struct sk_buff *) list; 1918 } 1919 1920 /** 1921 * skb_queue_next - return the next packet in the queue 1922 * @list: queue head 1923 * @skb: current buffer 1924 * 1925 * Return the next packet in @list after @skb. It is only valid to 1926 * call this if skb_queue_is_last() evaluates to false. 1927 */ skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1928 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1929 const struct sk_buff *skb) 1930 { 1931 /* This BUG_ON may seem severe, but if we just return then we 1932 * are going to dereference garbage. 1933 */ 1934 BUG_ON(skb_queue_is_last(list, skb)); 1935 return skb->next; 1936 } 1937 1938 /** 1939 * skb_queue_prev - return the prev packet in the queue 1940 * @list: queue head 1941 * @skb: current buffer 1942 * 1943 * Return the prev packet in @list before @skb. It is only valid to 1944 * call this if skb_queue_is_first() evaluates to false. 1945 */ skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1946 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1947 const struct sk_buff *skb) 1948 { 1949 /* This BUG_ON may seem severe, but if we just return then we 1950 * are going to dereference garbage. 1951 */ 1952 BUG_ON(skb_queue_is_first(list, skb)); 1953 return skb->prev; 1954 } 1955 1956 /** 1957 * skb_get - reference buffer 1958 * @skb: buffer to reference 1959 * 1960 * Makes another reference to a socket buffer and returns a pointer 1961 * to the buffer. 1962 */ skb_get(struct sk_buff * skb)1963 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1964 { 1965 refcount_inc(&skb->users); 1966 return skb; 1967 } 1968 1969 /* 1970 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1971 */ 1972 1973 /** 1974 * skb_cloned - is the buffer a clone 1975 * @skb: buffer to check 1976 * 1977 * Returns true if the buffer was generated with skb_clone() and is 1978 * one of multiple shared copies of the buffer. Cloned buffers are 1979 * shared data so must not be written to under normal circumstances. 1980 */ skb_cloned(const struct sk_buff * skb)1981 static inline int skb_cloned(const struct sk_buff *skb) 1982 { 1983 return skb->cloned && 1984 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1985 } 1986 skb_unclone(struct sk_buff * skb,gfp_t pri)1987 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1988 { 1989 might_sleep_if(gfpflags_allow_blocking(pri)); 1990 1991 if (skb_cloned(skb)) 1992 return pskb_expand_head(skb, 0, 0, pri); 1993 1994 return 0; 1995 } 1996 1997 /* This variant of skb_unclone() makes sure skb->truesize 1998 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1999 * 2000 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 2001 * when various debugging features are in place. 2002 */ 2003 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)2004 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2005 { 2006 might_sleep_if(gfpflags_allow_blocking(pri)); 2007 2008 if (skb_cloned(skb)) 2009 return __skb_unclone_keeptruesize(skb, pri); 2010 return 0; 2011 } 2012 2013 /** 2014 * skb_header_cloned - is the header a clone 2015 * @skb: buffer to check 2016 * 2017 * Returns true if modifying the header part of the buffer requires 2018 * the data to be copied. 2019 */ skb_header_cloned(const struct sk_buff * skb)2020 static inline int skb_header_cloned(const struct sk_buff *skb) 2021 { 2022 int dataref; 2023 2024 if (!skb->cloned) 2025 return 0; 2026 2027 dataref = atomic_read(&skb_shinfo(skb)->dataref); 2028 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 2029 return dataref != 1; 2030 } 2031 skb_header_unclone(struct sk_buff * skb,gfp_t pri)2032 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 2033 { 2034 might_sleep_if(gfpflags_allow_blocking(pri)); 2035 2036 if (skb_header_cloned(skb)) 2037 return pskb_expand_head(skb, 0, 0, pri); 2038 2039 return 0; 2040 } 2041 2042 /** 2043 * __skb_header_release() - allow clones to use the headroom 2044 * @skb: buffer to operate on 2045 * 2046 * See "DOC: dataref and headerless skbs". 2047 */ __skb_header_release(struct sk_buff * skb)2048 static inline void __skb_header_release(struct sk_buff *skb) 2049 { 2050 skb->nohdr = 1; 2051 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 2052 } 2053 2054 2055 /** 2056 * skb_shared - is the buffer shared 2057 * @skb: buffer to check 2058 * 2059 * Returns true if more than one person has a reference to this 2060 * buffer. 2061 */ skb_shared(const struct sk_buff * skb)2062 static inline int skb_shared(const struct sk_buff *skb) 2063 { 2064 return refcount_read(&skb->users) != 1; 2065 } 2066 2067 /** 2068 * skb_share_check - check if buffer is shared and if so clone it 2069 * @skb: buffer to check 2070 * @pri: priority for memory allocation 2071 * 2072 * If the buffer is shared the buffer is cloned and the old copy 2073 * drops a reference. A new clone with a single reference is returned. 2074 * If the buffer is not shared the original buffer is returned. When 2075 * being called from interrupt status or with spinlocks held pri must 2076 * be GFP_ATOMIC. 2077 * 2078 * NULL is returned on a memory allocation failure. 2079 */ skb_share_check(struct sk_buff * skb,gfp_t pri)2080 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 2081 { 2082 might_sleep_if(gfpflags_allow_blocking(pri)); 2083 if (skb_shared(skb)) { 2084 struct sk_buff *nskb = skb_clone(skb, pri); 2085 2086 if (likely(nskb)) 2087 consume_skb(skb); 2088 else 2089 kfree_skb(skb); 2090 skb = nskb; 2091 } 2092 return skb; 2093 } 2094 2095 /* 2096 * Copy shared buffers into a new sk_buff. We effectively do COW on 2097 * packets to handle cases where we have a local reader and forward 2098 * and a couple of other messy ones. The normal one is tcpdumping 2099 * a packet that's being forwarded. 2100 */ 2101 2102 /** 2103 * skb_unshare - make a copy of a shared buffer 2104 * @skb: buffer to check 2105 * @pri: priority for memory allocation 2106 * 2107 * If the socket buffer is a clone then this function creates a new 2108 * copy of the data, drops a reference count on the old copy and returns 2109 * the new copy with the reference count at 1. If the buffer is not a clone 2110 * the original buffer is returned. When called with a spinlock held or 2111 * from interrupt state @pri must be %GFP_ATOMIC 2112 * 2113 * %NULL is returned on a memory allocation failure. 2114 */ skb_unshare(struct sk_buff * skb,gfp_t pri)2115 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 2116 gfp_t pri) 2117 { 2118 might_sleep_if(gfpflags_allow_blocking(pri)); 2119 if (skb_cloned(skb)) { 2120 struct sk_buff *nskb = skb_copy(skb, pri); 2121 2122 /* Free our shared copy */ 2123 if (likely(nskb)) 2124 consume_skb(skb); 2125 else 2126 kfree_skb(skb); 2127 skb = nskb; 2128 } 2129 return skb; 2130 } 2131 2132 /** 2133 * skb_peek - peek at the head of an &sk_buff_head 2134 * @list_: list to peek at 2135 * 2136 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2137 * be careful with this one. A peek leaves the buffer on the 2138 * list and someone else may run off with it. You must hold 2139 * the appropriate locks or have a private queue to do this. 2140 * 2141 * Returns %NULL for an empty list or a pointer to the head element. 2142 * The reference count is not incremented and the reference is therefore 2143 * volatile. Use with caution. 2144 */ skb_peek(const struct sk_buff_head * list_)2145 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 2146 { 2147 struct sk_buff *skb = list_->next; 2148 2149 if (skb == (struct sk_buff *)list_) 2150 skb = NULL; 2151 return skb; 2152 } 2153 2154 /** 2155 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2156 * @list_: list to peek at 2157 * 2158 * Like skb_peek(), but the caller knows that the list is not empty. 2159 */ __skb_peek(const struct sk_buff_head * list_)2160 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2161 { 2162 return list_->next; 2163 } 2164 2165 /** 2166 * skb_peek_next - peek skb following the given one from a queue 2167 * @skb: skb to start from 2168 * @list_: list to peek at 2169 * 2170 * Returns %NULL when the end of the list is met or a pointer to the 2171 * next element. The reference count is not incremented and the 2172 * reference is therefore volatile. Use with caution. 2173 */ skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)2174 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2175 const struct sk_buff_head *list_) 2176 { 2177 struct sk_buff *next = skb->next; 2178 2179 if (next == (struct sk_buff *)list_) 2180 next = NULL; 2181 return next; 2182 } 2183 2184 /** 2185 * skb_peek_tail - peek at the tail of an &sk_buff_head 2186 * @list_: list to peek at 2187 * 2188 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2189 * be careful with this one. A peek leaves the buffer on the 2190 * list and someone else may run off with it. You must hold 2191 * the appropriate locks or have a private queue to do this. 2192 * 2193 * Returns %NULL for an empty list or a pointer to the tail element. 2194 * The reference count is not incremented and the reference is therefore 2195 * volatile. Use with caution. 2196 */ skb_peek_tail(const struct sk_buff_head * list_)2197 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2198 { 2199 struct sk_buff *skb = READ_ONCE(list_->prev); 2200 2201 if (skb == (struct sk_buff *)list_) 2202 skb = NULL; 2203 return skb; 2204 2205 } 2206 2207 /** 2208 * skb_queue_len - get queue length 2209 * @list_: list to measure 2210 * 2211 * Return the length of an &sk_buff queue. 2212 */ skb_queue_len(const struct sk_buff_head * list_)2213 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2214 { 2215 return list_->qlen; 2216 } 2217 2218 /** 2219 * skb_queue_len_lockless - get queue length 2220 * @list_: list to measure 2221 * 2222 * Return the length of an &sk_buff queue. 2223 * This variant can be used in lockless contexts. 2224 */ skb_queue_len_lockless(const struct sk_buff_head * list_)2225 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2226 { 2227 return READ_ONCE(list_->qlen); 2228 } 2229 2230 /** 2231 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2232 * @list: queue to initialize 2233 * 2234 * This initializes only the list and queue length aspects of 2235 * an sk_buff_head object. This allows to initialize the list 2236 * aspects of an sk_buff_head without reinitializing things like 2237 * the spinlock. It can also be used for on-stack sk_buff_head 2238 * objects where the spinlock is known to not be used. 2239 */ __skb_queue_head_init(struct sk_buff_head * list)2240 static inline void __skb_queue_head_init(struct sk_buff_head *list) 2241 { 2242 list->prev = list->next = (struct sk_buff *)list; 2243 list->qlen = 0; 2244 } 2245 2246 /* 2247 * This function creates a split out lock class for each invocation; 2248 * this is needed for now since a whole lot of users of the skb-queue 2249 * infrastructure in drivers have different locking usage (in hardirq) 2250 * than the networking core (in softirq only). In the long run either the 2251 * network layer or drivers should need annotation to consolidate the 2252 * main types of usage into 3 classes. 2253 */ skb_queue_head_init(struct sk_buff_head * list)2254 static inline void skb_queue_head_init(struct sk_buff_head *list) 2255 { 2256 spin_lock_init(&list->lock); 2257 __skb_queue_head_init(list); 2258 } 2259 skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)2260 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2261 struct lock_class_key *class) 2262 { 2263 skb_queue_head_init(list); 2264 lockdep_set_class(&list->lock, class); 2265 } 2266 2267 /* 2268 * Insert an sk_buff on a list. 2269 * 2270 * The "__skb_xxxx()" functions are the non-atomic ones that 2271 * can only be called with interrupts disabled. 2272 */ __skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)2273 static inline void __skb_insert(struct sk_buff *newsk, 2274 struct sk_buff *prev, struct sk_buff *next, 2275 struct sk_buff_head *list) 2276 { 2277 /* See skb_queue_empty_lockless() and skb_peek_tail() 2278 * for the opposite READ_ONCE() 2279 */ 2280 WRITE_ONCE(newsk->next, next); 2281 WRITE_ONCE(newsk->prev, prev); 2282 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2283 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2284 WRITE_ONCE(list->qlen, list->qlen + 1); 2285 } 2286 __skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)2287 static inline void __skb_queue_splice(const struct sk_buff_head *list, 2288 struct sk_buff *prev, 2289 struct sk_buff *next) 2290 { 2291 struct sk_buff *first = list->next; 2292 struct sk_buff *last = list->prev; 2293 2294 WRITE_ONCE(first->prev, prev); 2295 WRITE_ONCE(prev->next, first); 2296 2297 WRITE_ONCE(last->next, next); 2298 WRITE_ONCE(next->prev, last); 2299 } 2300 2301 /** 2302 * skb_queue_splice - join two skb lists, this is designed for stacks 2303 * @list: the new list to add 2304 * @head: the place to add it in the first list 2305 */ skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)2306 static inline void skb_queue_splice(const struct sk_buff_head *list, 2307 struct sk_buff_head *head) 2308 { 2309 if (!skb_queue_empty(list)) { 2310 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2311 head->qlen += list->qlen; 2312 } 2313 } 2314 2315 /** 2316 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2317 * @list: the new list to add 2318 * @head: the place to add it in the first list 2319 * 2320 * The list at @list is reinitialised 2321 */ skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)2322 static inline void skb_queue_splice_init(struct sk_buff_head *list, 2323 struct sk_buff_head *head) 2324 { 2325 if (!skb_queue_empty(list)) { 2326 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2327 head->qlen += list->qlen; 2328 __skb_queue_head_init(list); 2329 } 2330 } 2331 2332 /** 2333 * skb_queue_splice_tail - join two skb lists, each list being a queue 2334 * @list: the new list to add 2335 * @head: the place to add it in the first list 2336 */ skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)2337 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2338 struct sk_buff_head *head) 2339 { 2340 if (!skb_queue_empty(list)) { 2341 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2342 head->qlen += list->qlen; 2343 } 2344 } 2345 2346 /** 2347 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2348 * @list: the new list to add 2349 * @head: the place to add it in the first list 2350 * 2351 * Each of the lists is a queue. 2352 * The list at @list is reinitialised 2353 */ skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)2354 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2355 struct sk_buff_head *head) 2356 { 2357 if (!skb_queue_empty(list)) { 2358 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2359 head->qlen += list->qlen; 2360 __skb_queue_head_init(list); 2361 } 2362 } 2363 2364 /** 2365 * __skb_queue_after - queue a buffer at the list head 2366 * @list: list to use 2367 * @prev: place after this buffer 2368 * @newsk: buffer to queue 2369 * 2370 * Queue a buffer int the middle of a list. This function takes no locks 2371 * and you must therefore hold required locks before calling it. 2372 * 2373 * A buffer cannot be placed on two lists at the same time. 2374 */ __skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2375 static inline void __skb_queue_after(struct sk_buff_head *list, 2376 struct sk_buff *prev, 2377 struct sk_buff *newsk) 2378 { 2379 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2380 } 2381 2382 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2383 struct sk_buff_head *list); 2384 __skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2385 static inline void __skb_queue_before(struct sk_buff_head *list, 2386 struct sk_buff *next, 2387 struct sk_buff *newsk) 2388 { 2389 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2390 } 2391 2392 /** 2393 * __skb_queue_head - queue a buffer at the list head 2394 * @list: list to use 2395 * @newsk: buffer to queue 2396 * 2397 * Queue a buffer at the start of a list. This function takes no locks 2398 * and you must therefore hold required locks before calling it. 2399 * 2400 * A buffer cannot be placed on two lists at the same time. 2401 */ __skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2402 static inline void __skb_queue_head(struct sk_buff_head *list, 2403 struct sk_buff *newsk) 2404 { 2405 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2406 } 2407 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2408 2409 /** 2410 * __skb_queue_tail - queue a buffer at the list tail 2411 * @list: list to use 2412 * @newsk: buffer to queue 2413 * 2414 * Queue a buffer at the end of a list. This function takes no locks 2415 * and you must therefore hold required locks before calling it. 2416 * 2417 * A buffer cannot be placed on two lists at the same time. 2418 */ __skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2419 static inline void __skb_queue_tail(struct sk_buff_head *list, 2420 struct sk_buff *newsk) 2421 { 2422 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2423 } 2424 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2425 2426 /* 2427 * remove sk_buff from list. _Must_ be called atomically, and with 2428 * the list known.. 2429 */ 2430 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); __skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2431 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2432 { 2433 struct sk_buff *next, *prev; 2434 2435 WRITE_ONCE(list->qlen, list->qlen - 1); 2436 next = skb->next; 2437 prev = skb->prev; 2438 skb->next = skb->prev = NULL; 2439 WRITE_ONCE(next->prev, prev); 2440 WRITE_ONCE(prev->next, next); 2441 } 2442 2443 /** 2444 * __skb_dequeue - remove from the head of the queue 2445 * @list: list to dequeue from 2446 * 2447 * Remove the head of the list. This function does not take any locks 2448 * so must be used with appropriate locks held only. The head item is 2449 * returned or %NULL if the list is empty. 2450 */ __skb_dequeue(struct sk_buff_head * list)2451 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2452 { 2453 struct sk_buff *skb = skb_peek(list); 2454 if (skb) 2455 __skb_unlink(skb, list); 2456 return skb; 2457 } 2458 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2459 2460 /** 2461 * __skb_dequeue_tail - remove from the tail of the queue 2462 * @list: list to dequeue from 2463 * 2464 * Remove the tail of the list. This function does not take any locks 2465 * so must be used with appropriate locks held only. The tail item is 2466 * returned or %NULL if the list is empty. 2467 */ __skb_dequeue_tail(struct sk_buff_head * list)2468 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2469 { 2470 struct sk_buff *skb = skb_peek_tail(list); 2471 if (skb) 2472 __skb_unlink(skb, list); 2473 return skb; 2474 } 2475 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2476 2477 skb_is_nonlinear(const struct sk_buff * skb)2478 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2479 { 2480 return skb->data_len; 2481 } 2482 skb_headlen(const struct sk_buff * skb)2483 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2484 { 2485 return skb->len - skb->data_len; 2486 } 2487 __skb_pagelen(const struct sk_buff * skb)2488 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2489 { 2490 unsigned int i, len = 0; 2491 2492 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2493 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2494 return len; 2495 } 2496 skb_pagelen(const struct sk_buff * skb)2497 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2498 { 2499 return skb_headlen(skb) + __skb_pagelen(skb); 2500 } 2501 skb_frag_fill_netmem_desc(skb_frag_t * frag,netmem_ref netmem,int off,int size)2502 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag, 2503 netmem_ref netmem, int off, 2504 int size) 2505 { 2506 frag->netmem = netmem; 2507 frag->offset = off; 2508 skb_frag_size_set(frag, size); 2509 } 2510 skb_frag_fill_page_desc(skb_frag_t * frag,struct page * page,int off,int size)2511 static inline void skb_frag_fill_page_desc(skb_frag_t *frag, 2512 struct page *page, 2513 int off, int size) 2514 { 2515 skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size); 2516 } 2517 __skb_fill_netmem_desc_noacc(struct skb_shared_info * shinfo,int i,netmem_ref netmem,int off,int size)2518 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo, 2519 int i, netmem_ref netmem, 2520 int off, int size) 2521 { 2522 skb_frag_t *frag = &shinfo->frags[i]; 2523 2524 skb_frag_fill_netmem_desc(frag, netmem, off, size); 2525 } 2526 __skb_fill_page_desc_noacc(struct skb_shared_info * shinfo,int i,struct page * page,int off,int size)2527 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, 2528 int i, struct page *page, 2529 int off, int size) 2530 { 2531 __skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off, 2532 size); 2533 } 2534 2535 /** 2536 * skb_len_add - adds a number to len fields of skb 2537 * @skb: buffer to add len to 2538 * @delta: number of bytes to add 2539 */ skb_len_add(struct sk_buff * skb,int delta)2540 static inline void skb_len_add(struct sk_buff *skb, int delta) 2541 { 2542 skb->len += delta; 2543 skb->data_len += delta; 2544 skb->truesize += delta; 2545 } 2546 2547 /** 2548 * __skb_fill_netmem_desc - initialise a fragment in an skb 2549 * @skb: buffer containing fragment to be initialised 2550 * @i: fragment index to initialise 2551 * @netmem: the netmem to use for this fragment 2552 * @off: the offset to the data with @page 2553 * @size: the length of the data 2554 * 2555 * Initialises the @i'th fragment of @skb to point to &size bytes at 2556 * offset @off within @page. 2557 * 2558 * Does not take any additional reference on the fragment. 2559 */ __skb_fill_netmem_desc(struct sk_buff * skb,int i,netmem_ref netmem,int off,int size)2560 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i, 2561 netmem_ref netmem, int off, int size) 2562 { 2563 struct page *page; 2564 2565 __skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size); 2566 2567 if (netmem_is_net_iov(netmem)) { 2568 skb->unreadable = true; 2569 return; 2570 } 2571 2572 page = netmem_to_page(netmem); 2573 2574 /* Propagate page pfmemalloc to the skb if we can. The problem is 2575 * that not all callers have unique ownership of the page but rely 2576 * on page_is_pfmemalloc doing the right thing(tm). 2577 */ 2578 page = compound_head(page); 2579 if (page_is_pfmemalloc(page)) 2580 skb->pfmemalloc = true; 2581 } 2582 __skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2583 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2584 struct page *page, int off, int size) 2585 { 2586 __skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2587 } 2588 skb_fill_netmem_desc(struct sk_buff * skb,int i,netmem_ref netmem,int off,int size)2589 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i, 2590 netmem_ref netmem, int off, int size) 2591 { 2592 __skb_fill_netmem_desc(skb, i, netmem, off, size); 2593 skb_shinfo(skb)->nr_frags = i + 1; 2594 } 2595 2596 /** 2597 * skb_fill_page_desc - initialise a paged fragment in an skb 2598 * @skb: buffer containing fragment to be initialised 2599 * @i: paged fragment index to initialise 2600 * @page: the page to use for this fragment 2601 * @off: the offset to the data with @page 2602 * @size: the length of the data 2603 * 2604 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2605 * @skb to point to @size bytes at offset @off within @page. In 2606 * addition updates @skb such that @i is the last fragment. 2607 * 2608 * Does not take any additional reference on the fragment. 2609 */ skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2610 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2611 struct page *page, int off, int size) 2612 { 2613 skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2614 } 2615 2616 /** 2617 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb 2618 * @skb: buffer containing fragment to be initialised 2619 * @i: paged fragment index to initialise 2620 * @page: the page to use for this fragment 2621 * @off: the offset to the data with @page 2622 * @size: the length of the data 2623 * 2624 * Variant of skb_fill_page_desc() which does not deal with 2625 * pfmemalloc, if page is not owned by us. 2626 */ skb_fill_page_desc_noacc(struct sk_buff * skb,int i,struct page * page,int off,int size)2627 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, 2628 struct page *page, int off, 2629 int size) 2630 { 2631 struct skb_shared_info *shinfo = skb_shinfo(skb); 2632 2633 __skb_fill_page_desc_noacc(shinfo, i, page, off, size); 2634 shinfo->nr_frags = i + 1; 2635 } 2636 2637 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 2638 int off, int size, unsigned int truesize); 2639 skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)2640 static inline void skb_add_rx_frag(struct sk_buff *skb, int i, 2641 struct page *page, int off, int size, 2642 unsigned int truesize) 2643 { 2644 skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size, 2645 truesize); 2646 } 2647 2648 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2649 unsigned int truesize); 2650 2651 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2652 2653 #ifdef NET_SKBUFF_DATA_USES_OFFSET skb_tail_pointer(const struct sk_buff * skb)2654 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2655 { 2656 return skb->head + skb->tail; 2657 } 2658 skb_reset_tail_pointer(struct sk_buff * skb)2659 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2660 { 2661 skb->tail = skb->data - skb->head; 2662 } 2663 skb_set_tail_pointer(struct sk_buff * skb,const int offset)2664 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2665 { 2666 skb_reset_tail_pointer(skb); 2667 skb->tail += offset; 2668 } 2669 2670 #else /* NET_SKBUFF_DATA_USES_OFFSET */ skb_tail_pointer(const struct sk_buff * skb)2671 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2672 { 2673 return skb->tail; 2674 } 2675 skb_reset_tail_pointer(struct sk_buff * skb)2676 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2677 { 2678 skb->tail = skb->data; 2679 } 2680 skb_set_tail_pointer(struct sk_buff * skb,const int offset)2681 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2682 { 2683 skb->tail = skb->data + offset; 2684 } 2685 2686 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2687 skb_assert_len(struct sk_buff * skb)2688 static inline void skb_assert_len(struct sk_buff *skb) 2689 { 2690 #ifdef CONFIG_DEBUG_NET 2691 if (WARN_ONCE(!skb->len, "%s\n", __func__)) 2692 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 2693 #endif /* CONFIG_DEBUG_NET */ 2694 } 2695 2696 #if defined(CONFIG_FAIL_SKB_REALLOC) 2697 void skb_might_realloc(struct sk_buff *skb); 2698 #else skb_might_realloc(struct sk_buff * skb)2699 static inline void skb_might_realloc(struct sk_buff *skb) {} 2700 #endif 2701 2702 /* 2703 * Add data to an sk_buff 2704 */ 2705 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2706 void *skb_put(struct sk_buff *skb, unsigned int len); __skb_put(struct sk_buff * skb,unsigned int len)2707 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2708 { 2709 void *tmp = skb_tail_pointer(skb); 2710 SKB_LINEAR_ASSERT(skb); 2711 skb->tail += len; 2712 skb->len += len; 2713 return tmp; 2714 } 2715 __skb_put_zero(struct sk_buff * skb,unsigned int len)2716 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2717 { 2718 void *tmp = __skb_put(skb, len); 2719 2720 memset(tmp, 0, len); 2721 return tmp; 2722 } 2723 __skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2724 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2725 unsigned int len) 2726 { 2727 void *tmp = __skb_put(skb, len); 2728 2729 memcpy(tmp, data, len); 2730 return tmp; 2731 } 2732 __skb_put_u8(struct sk_buff * skb,u8 val)2733 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2734 { 2735 *(u8 *)__skb_put(skb, 1) = val; 2736 } 2737 skb_put_zero(struct sk_buff * skb,unsigned int len)2738 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2739 { 2740 void *tmp = skb_put(skb, len); 2741 2742 memset(tmp, 0, len); 2743 2744 return tmp; 2745 } 2746 skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2747 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2748 unsigned int len) 2749 { 2750 void *tmp = skb_put(skb, len); 2751 2752 memcpy(tmp, data, len); 2753 2754 return tmp; 2755 } 2756 skb_put_u8(struct sk_buff * skb,u8 val)2757 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2758 { 2759 *(u8 *)skb_put(skb, 1) = val; 2760 } 2761 2762 void *skb_push(struct sk_buff *skb, unsigned int len); __skb_push(struct sk_buff * skb,unsigned int len)2763 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2764 { 2765 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2766 2767 skb->data -= len; 2768 skb->len += len; 2769 return skb->data; 2770 } 2771 2772 void *skb_pull(struct sk_buff *skb, unsigned int len); __skb_pull(struct sk_buff * skb,unsigned int len)2773 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2774 { 2775 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2776 2777 skb->len -= len; 2778 if (unlikely(skb->len < skb->data_len)) { 2779 #if defined(CONFIG_DEBUG_NET) 2780 skb->len += len; 2781 pr_err("__skb_pull(len=%u)\n", len); 2782 skb_dump(KERN_ERR, skb, false); 2783 #endif 2784 BUG(); 2785 } 2786 return skb->data += len; 2787 } 2788 skb_pull_inline(struct sk_buff * skb,unsigned int len)2789 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2790 { 2791 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2792 } 2793 2794 void *skb_pull_data(struct sk_buff *skb, size_t len); 2795 2796 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2797 2798 static inline enum skb_drop_reason pskb_may_pull_reason(struct sk_buff * skb,unsigned int len)2799 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len) 2800 { 2801 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2802 skb_might_realloc(skb); 2803 2804 if (likely(len <= skb_headlen(skb))) 2805 return SKB_NOT_DROPPED_YET; 2806 2807 if (unlikely(len > skb->len)) 2808 return SKB_DROP_REASON_PKT_TOO_SMALL; 2809 2810 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb)))) 2811 return SKB_DROP_REASON_NOMEM; 2812 2813 return SKB_NOT_DROPPED_YET; 2814 } 2815 pskb_may_pull(struct sk_buff * skb,unsigned int len)2816 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2817 { 2818 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; 2819 } 2820 pskb_pull(struct sk_buff * skb,unsigned int len)2821 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2822 { 2823 if (!pskb_may_pull(skb, len)) 2824 return NULL; 2825 2826 skb->len -= len; 2827 return skb->data += len; 2828 } 2829 2830 void skb_condense(struct sk_buff *skb); 2831 2832 /** 2833 * skb_headroom - bytes at buffer head 2834 * @skb: buffer to check 2835 * 2836 * Return the number of bytes of free space at the head of an &sk_buff. 2837 */ skb_headroom(const struct sk_buff * skb)2838 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2839 { 2840 return skb->data - skb->head; 2841 } 2842 2843 /** 2844 * skb_tailroom - bytes at buffer end 2845 * @skb: buffer to check 2846 * 2847 * Return the number of bytes of free space at the tail of an sk_buff 2848 */ skb_tailroom(const struct sk_buff * skb)2849 static inline int skb_tailroom(const struct sk_buff *skb) 2850 { 2851 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2852 } 2853 2854 /** 2855 * skb_availroom - bytes at buffer end 2856 * @skb: buffer to check 2857 * 2858 * Return the number of bytes of free space at the tail of an sk_buff 2859 * allocated by sk_stream_alloc() 2860 */ skb_availroom(const struct sk_buff * skb)2861 static inline int skb_availroom(const struct sk_buff *skb) 2862 { 2863 if (skb_is_nonlinear(skb)) 2864 return 0; 2865 2866 return skb->end - skb->tail - skb->reserved_tailroom; 2867 } 2868 2869 /** 2870 * skb_reserve - adjust headroom 2871 * @skb: buffer to alter 2872 * @len: bytes to move 2873 * 2874 * Increase the headroom of an empty &sk_buff by reducing the tail 2875 * room. This is only allowed for an empty buffer. 2876 */ skb_reserve(struct sk_buff * skb,int len)2877 static inline void skb_reserve(struct sk_buff *skb, int len) 2878 { 2879 skb->data += len; 2880 skb->tail += len; 2881 } 2882 2883 /** 2884 * skb_tailroom_reserve - adjust reserved_tailroom 2885 * @skb: buffer to alter 2886 * @mtu: maximum amount of headlen permitted 2887 * @needed_tailroom: minimum amount of reserved_tailroom 2888 * 2889 * Set reserved_tailroom so that headlen can be as large as possible but 2890 * not larger than mtu and tailroom cannot be smaller than 2891 * needed_tailroom. 2892 * The required headroom should already have been reserved before using 2893 * this function. 2894 */ skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2895 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2896 unsigned int needed_tailroom) 2897 { 2898 SKB_LINEAR_ASSERT(skb); 2899 if (mtu < skb_tailroom(skb) - needed_tailroom) 2900 /* use at most mtu */ 2901 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2902 else 2903 /* use up to all available space */ 2904 skb->reserved_tailroom = needed_tailroom; 2905 } 2906 2907 #define ENCAP_TYPE_ETHER 0 2908 #define ENCAP_TYPE_IPPROTO 1 2909 skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2910 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2911 __be16 protocol) 2912 { 2913 skb->inner_protocol = protocol; 2914 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2915 } 2916 skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2917 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2918 __u8 ipproto) 2919 { 2920 skb->inner_ipproto = ipproto; 2921 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2922 } 2923 skb_reset_inner_headers(struct sk_buff * skb)2924 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2925 { 2926 skb->inner_mac_header = skb->mac_header; 2927 skb->inner_network_header = skb->network_header; 2928 skb->inner_transport_header = skb->transport_header; 2929 } 2930 skb_mac_header_was_set(const struct sk_buff * skb)2931 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2932 { 2933 return skb->mac_header != (typeof(skb->mac_header))~0U; 2934 } 2935 skb_reset_mac_len(struct sk_buff * skb)2936 static inline void skb_reset_mac_len(struct sk_buff *skb) 2937 { 2938 if (!skb_mac_header_was_set(skb)) { 2939 DEBUG_NET_WARN_ON_ONCE(1); 2940 skb->mac_len = 0; 2941 } else { 2942 skb->mac_len = skb->network_header - skb->mac_header; 2943 } 2944 } 2945 skb_inner_transport_header(const struct sk_buff * skb)2946 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2947 *skb) 2948 { 2949 return skb->head + skb->inner_transport_header; 2950 } 2951 skb_inner_transport_offset(const struct sk_buff * skb)2952 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2953 { 2954 return skb_inner_transport_header(skb) - skb->data; 2955 } 2956 skb_reset_inner_transport_header(struct sk_buff * skb)2957 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2958 { 2959 long offset = skb->data - skb->head; 2960 2961 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_transport_header))offset); 2962 skb->inner_transport_header = offset; 2963 } 2964 skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2965 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2966 const int offset) 2967 { 2968 skb_reset_inner_transport_header(skb); 2969 skb->inner_transport_header += offset; 2970 } 2971 skb_inner_network_header(const struct sk_buff * skb)2972 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2973 { 2974 return skb->head + skb->inner_network_header; 2975 } 2976 skb_reset_inner_network_header(struct sk_buff * skb)2977 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2978 { 2979 long offset = skb->data - skb->head; 2980 2981 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_network_header))offset); 2982 skb->inner_network_header = offset; 2983 } 2984 skb_set_inner_network_header(struct sk_buff * skb,const int offset)2985 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2986 const int offset) 2987 { 2988 skb_reset_inner_network_header(skb); 2989 skb->inner_network_header += offset; 2990 } 2991 skb_inner_network_header_was_set(const struct sk_buff * skb)2992 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb) 2993 { 2994 return skb->inner_network_header > 0; 2995 } 2996 skb_inner_mac_header(const struct sk_buff * skb)2997 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2998 { 2999 return skb->head + skb->inner_mac_header; 3000 } 3001 skb_reset_inner_mac_header(struct sk_buff * skb)3002 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 3003 { 3004 long offset = skb->data - skb->head; 3005 3006 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_mac_header))offset); 3007 skb->inner_mac_header = offset; 3008 } 3009 skb_set_inner_mac_header(struct sk_buff * skb,const int offset)3010 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 3011 const int offset) 3012 { 3013 skb_reset_inner_mac_header(skb); 3014 skb->inner_mac_header += offset; 3015 } skb_transport_header_was_set(const struct sk_buff * skb)3016 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 3017 { 3018 return skb->transport_header != (typeof(skb->transport_header))~0U; 3019 } 3020 skb_transport_header(const struct sk_buff * skb)3021 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 3022 { 3023 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 3024 return skb->head + skb->transport_header; 3025 } 3026 skb_reset_transport_header(struct sk_buff * skb)3027 static inline void skb_reset_transport_header(struct sk_buff *skb) 3028 { 3029 long offset = skb->data - skb->head; 3030 3031 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->transport_header))offset); 3032 skb->transport_header = offset; 3033 } 3034 skb_set_transport_header(struct sk_buff * skb,const int offset)3035 static inline void skb_set_transport_header(struct sk_buff *skb, 3036 const int offset) 3037 { 3038 skb_reset_transport_header(skb); 3039 skb->transport_header += offset; 3040 } 3041 skb_network_header(const struct sk_buff * skb)3042 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 3043 { 3044 return skb->head + skb->network_header; 3045 } 3046 skb_reset_network_header(struct sk_buff * skb)3047 static inline void skb_reset_network_header(struct sk_buff *skb) 3048 { 3049 long offset = skb->data - skb->head; 3050 3051 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->network_header))offset); 3052 skb->network_header = offset; 3053 } 3054 skb_set_network_header(struct sk_buff * skb,const int offset)3055 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 3056 { 3057 skb_reset_network_header(skb); 3058 skb->network_header += offset; 3059 } 3060 skb_mac_header(const struct sk_buff * skb)3061 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 3062 { 3063 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 3064 return skb->head + skb->mac_header; 3065 } 3066 skb_mac_offset(const struct sk_buff * skb)3067 static inline int skb_mac_offset(const struct sk_buff *skb) 3068 { 3069 return skb_mac_header(skb) - skb->data; 3070 } 3071 skb_mac_header_len(const struct sk_buff * skb)3072 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 3073 { 3074 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 3075 return skb->network_header - skb->mac_header; 3076 } 3077 skb_unset_mac_header(struct sk_buff * skb)3078 static inline void skb_unset_mac_header(struct sk_buff *skb) 3079 { 3080 skb->mac_header = (typeof(skb->mac_header))~0U; 3081 } 3082 skb_reset_mac_header(struct sk_buff * skb)3083 static inline void skb_reset_mac_header(struct sk_buff *skb) 3084 { 3085 long offset = skb->data - skb->head; 3086 3087 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->mac_header))offset); 3088 skb->mac_header = offset; 3089 } 3090 skb_set_mac_header(struct sk_buff * skb,const int offset)3091 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 3092 { 3093 skb_reset_mac_header(skb); 3094 skb->mac_header += offset; 3095 } 3096 skb_pop_mac_header(struct sk_buff * skb)3097 static inline void skb_pop_mac_header(struct sk_buff *skb) 3098 { 3099 skb->mac_header = skb->network_header; 3100 } 3101 skb_probe_transport_header(struct sk_buff * skb)3102 static inline void skb_probe_transport_header(struct sk_buff *skb) 3103 { 3104 struct flow_keys_basic keys; 3105 3106 if (skb_transport_header_was_set(skb)) 3107 return; 3108 3109 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 3110 NULL, 0, 0, 0, 0)) 3111 skb_set_transport_header(skb, keys.control.thoff); 3112 } 3113 skb_mac_header_rebuild(struct sk_buff * skb)3114 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 3115 { 3116 if (skb_mac_header_was_set(skb)) { 3117 const unsigned char *old_mac = skb_mac_header(skb); 3118 3119 skb_set_mac_header(skb, -skb->mac_len); 3120 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 3121 } 3122 } 3123 3124 /* Move the full mac header up to current network_header. 3125 * Leaves skb->data pointing at offset skb->mac_len into the mac_header. 3126 * Must be provided the complete mac header length. 3127 */ skb_mac_header_rebuild_full(struct sk_buff * skb,u32 full_mac_len)3128 static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len) 3129 { 3130 if (skb_mac_header_was_set(skb)) { 3131 const unsigned char *old_mac = skb_mac_header(skb); 3132 3133 skb_set_mac_header(skb, -full_mac_len); 3134 memmove(skb_mac_header(skb), old_mac, full_mac_len); 3135 __skb_push(skb, full_mac_len - skb->mac_len); 3136 } 3137 } 3138 skb_checksum_start_offset(const struct sk_buff * skb)3139 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 3140 { 3141 return skb->csum_start - skb_headroom(skb); 3142 } 3143 skb_checksum_start(const struct sk_buff * skb)3144 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 3145 { 3146 return skb->head + skb->csum_start; 3147 } 3148 skb_transport_offset(const struct sk_buff * skb)3149 static inline int skb_transport_offset(const struct sk_buff *skb) 3150 { 3151 return skb_transport_header(skb) - skb->data; 3152 } 3153 skb_network_header_len(const struct sk_buff * skb)3154 static inline u32 skb_network_header_len(const struct sk_buff *skb) 3155 { 3156 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 3157 return skb->transport_header - skb->network_header; 3158 } 3159 skb_inner_network_header_len(const struct sk_buff * skb)3160 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 3161 { 3162 return skb->inner_transport_header - skb->inner_network_header; 3163 } 3164 skb_network_offset(const struct sk_buff * skb)3165 static inline int skb_network_offset(const struct sk_buff *skb) 3166 { 3167 return skb_network_header(skb) - skb->data; 3168 } 3169 skb_inner_network_offset(const struct sk_buff * skb)3170 static inline int skb_inner_network_offset(const struct sk_buff *skb) 3171 { 3172 return skb_inner_network_header(skb) - skb->data; 3173 } 3174 3175 static inline enum skb_drop_reason pskb_network_may_pull_reason(struct sk_buff * skb,unsigned int len)3176 pskb_network_may_pull_reason(struct sk_buff *skb, unsigned int len) 3177 { 3178 return pskb_may_pull_reason(skb, skb_network_offset(skb) + len); 3179 } 3180 pskb_network_may_pull(struct sk_buff * skb,unsigned int len)3181 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 3182 { 3183 return pskb_network_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; 3184 } 3185 3186 /* 3187 * CPUs often take a performance hit when accessing unaligned memory 3188 * locations. The actual performance hit varies, it can be small if the 3189 * hardware handles it or large if we have to take an exception and fix it 3190 * in software. 3191 * 3192 * Since an ethernet header is 14 bytes network drivers often end up with 3193 * the IP header at an unaligned offset. The IP header can be aligned by 3194 * shifting the start of the packet by 2 bytes. Drivers should do this 3195 * with: 3196 * 3197 * skb_reserve(skb, NET_IP_ALIGN); 3198 * 3199 * The downside to this alignment of the IP header is that the DMA is now 3200 * unaligned. On some architectures the cost of an unaligned DMA is high 3201 * and this cost outweighs the gains made by aligning the IP header. 3202 * 3203 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 3204 * to be overridden. 3205 */ 3206 #ifndef NET_IP_ALIGN 3207 #define NET_IP_ALIGN 2 3208 #endif 3209 3210 /* 3211 * The networking layer reserves some headroom in skb data (via 3212 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 3213 * the header has to grow. In the default case, if the header has to grow 3214 * 32 bytes or less we avoid the reallocation. 3215 * 3216 * Unfortunately this headroom changes the DMA alignment of the resulting 3217 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 3218 * on some architectures. An architecture can override this value, 3219 * perhaps setting it to a cacheline in size (since that will maintain 3220 * cacheline alignment of the DMA). It must be a power of 2. 3221 * 3222 * Various parts of the networking layer expect at least 32 bytes of 3223 * headroom, you should not reduce this. 3224 * 3225 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 3226 * to reduce average number of cache lines per packet. 3227 * get_rps_cpu() for example only access one 64 bytes aligned block : 3228 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 3229 */ 3230 #ifndef NET_SKB_PAD 3231 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 3232 #endif 3233 3234 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 3235 __skb_set_length(struct sk_buff * skb,unsigned int len)3236 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 3237 { 3238 if (WARN_ON(skb_is_nonlinear(skb))) 3239 return; 3240 skb->len = len; 3241 skb_set_tail_pointer(skb, len); 3242 } 3243 __skb_trim(struct sk_buff * skb,unsigned int len)3244 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 3245 { 3246 __skb_set_length(skb, len); 3247 } 3248 3249 void skb_trim(struct sk_buff *skb, unsigned int len); 3250 __pskb_trim(struct sk_buff * skb,unsigned int len)3251 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 3252 { 3253 if (skb->data_len) 3254 return ___pskb_trim(skb, len); 3255 __skb_trim(skb, len); 3256 return 0; 3257 } 3258 pskb_trim(struct sk_buff * skb,unsigned int len)3259 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 3260 { 3261 skb_might_realloc(skb); 3262 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 3263 } 3264 3265 /** 3266 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 3267 * @skb: buffer to alter 3268 * @len: new length 3269 * 3270 * This is identical to pskb_trim except that the caller knows that 3271 * the skb is not cloned so we should never get an error due to out- 3272 * of-memory. 3273 */ pskb_trim_unique(struct sk_buff * skb,unsigned int len)3274 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 3275 { 3276 int err = pskb_trim(skb, len); 3277 BUG_ON(err); 3278 } 3279 __skb_grow(struct sk_buff * skb,unsigned int len)3280 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 3281 { 3282 unsigned int diff = len - skb->len; 3283 3284 if (skb_tailroom(skb) < diff) { 3285 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 3286 GFP_ATOMIC); 3287 if (ret) 3288 return ret; 3289 } 3290 __skb_set_length(skb, len); 3291 return 0; 3292 } 3293 3294 /** 3295 * skb_orphan - orphan a buffer 3296 * @skb: buffer to orphan 3297 * 3298 * If a buffer currently has an owner then we call the owner's 3299 * destructor function and make the @skb unowned. The buffer continues 3300 * to exist but is no longer charged to its former owner. 3301 */ skb_orphan(struct sk_buff * skb)3302 static inline void skb_orphan(struct sk_buff *skb) 3303 { 3304 if (skb->destructor) { 3305 skb->destructor(skb); 3306 skb->destructor = NULL; 3307 skb->sk = NULL; 3308 } else { 3309 BUG_ON(skb->sk); 3310 } 3311 } 3312 3313 /** 3314 * skb_orphan_frags - orphan the frags contained in a buffer 3315 * @skb: buffer to orphan frags from 3316 * @gfp_mask: allocation mask for replacement pages 3317 * 3318 * For each frag in the SKB which needs a destructor (i.e. has an 3319 * owner) create a copy of that frag and release the original 3320 * page by calling the destructor. 3321 */ skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)3322 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3323 { 3324 if (likely(!skb_zcopy(skb))) 3325 return 0; 3326 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) 3327 return 0; 3328 return skb_copy_ubufs(skb, gfp_mask); 3329 } 3330 3331 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)3332 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3333 { 3334 if (likely(!skb_zcopy(skb))) 3335 return 0; 3336 return skb_copy_ubufs(skb, gfp_mask); 3337 } 3338 3339 /** 3340 * __skb_queue_purge_reason - empty a list 3341 * @list: list to empty 3342 * @reason: drop reason 3343 * 3344 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3345 * the list and one reference dropped. This function does not take the 3346 * list lock and the caller must hold the relevant locks to use it. 3347 */ __skb_queue_purge_reason(struct sk_buff_head * list,enum skb_drop_reason reason)3348 static inline void __skb_queue_purge_reason(struct sk_buff_head *list, 3349 enum skb_drop_reason reason) 3350 { 3351 struct sk_buff *skb; 3352 3353 while ((skb = __skb_dequeue(list)) != NULL) 3354 kfree_skb_reason(skb, reason); 3355 } 3356 __skb_queue_purge(struct sk_buff_head * list)3357 static inline void __skb_queue_purge(struct sk_buff_head *list) 3358 { 3359 __skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3360 } 3361 3362 void skb_queue_purge_reason(struct sk_buff_head *list, 3363 enum skb_drop_reason reason); 3364 skb_queue_purge(struct sk_buff_head * list)3365 static inline void skb_queue_purge(struct sk_buff_head *list) 3366 { 3367 skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3368 } 3369 3370 unsigned int skb_rbtree_purge(struct rb_root *root); 3371 void skb_errqueue_purge(struct sk_buff_head *list); 3372 3373 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3374 3375 /** 3376 * netdev_alloc_frag - allocate a page fragment 3377 * @fragsz: fragment size 3378 * 3379 * Allocates a frag from a page for receive buffer. 3380 * Uses GFP_ATOMIC allocations. 3381 */ netdev_alloc_frag(unsigned int fragsz)3382 static inline void *netdev_alloc_frag(unsigned int fragsz) 3383 { 3384 return __netdev_alloc_frag_align(fragsz, ~0u); 3385 } 3386 netdev_alloc_frag_align(unsigned int fragsz,unsigned int align)3387 static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3388 unsigned int align) 3389 { 3390 WARN_ON_ONCE(!is_power_of_2(align)); 3391 return __netdev_alloc_frag_align(fragsz, -align); 3392 } 3393 3394 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3395 gfp_t gfp_mask); 3396 3397 /** 3398 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3399 * @dev: network device to receive on 3400 * @length: length to allocate 3401 * 3402 * Allocate a new &sk_buff and assign it a usage count of one. The 3403 * buffer has unspecified headroom built in. Users should allocate 3404 * the headroom they think they need without accounting for the 3405 * built in space. The built in space is used for optimisations. 3406 * 3407 * %NULL is returned if there is no free memory. Although this function 3408 * allocates memory it can be called from an interrupt. 3409 */ netdev_alloc_skb(struct net_device * dev,unsigned int length)3410 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3411 unsigned int length) 3412 { 3413 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3414 } 3415 3416 /* legacy helper around __netdev_alloc_skb() */ __dev_alloc_skb(unsigned int length,gfp_t gfp_mask)3417 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3418 gfp_t gfp_mask) 3419 { 3420 return __netdev_alloc_skb(NULL, length, gfp_mask); 3421 } 3422 3423 /* legacy helper around netdev_alloc_skb() */ dev_alloc_skb(unsigned int length)3424 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3425 { 3426 return netdev_alloc_skb(NULL, length); 3427 } 3428 3429 __netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)3430 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3431 unsigned int length, gfp_t gfp) 3432 { 3433 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3434 3435 if (NET_IP_ALIGN && skb) 3436 skb_reserve(skb, NET_IP_ALIGN); 3437 return skb; 3438 } 3439 netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)3440 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3441 unsigned int length) 3442 { 3443 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3444 } 3445 skb_free_frag(void * addr)3446 static inline void skb_free_frag(void *addr) 3447 { 3448 page_frag_free(addr); 3449 } 3450 3451 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3452 napi_alloc_frag(unsigned int fragsz)3453 static inline void *napi_alloc_frag(unsigned int fragsz) 3454 { 3455 return __napi_alloc_frag_align(fragsz, ~0u); 3456 } 3457 napi_alloc_frag_align(unsigned int fragsz,unsigned int align)3458 static inline void *napi_alloc_frag_align(unsigned int fragsz, 3459 unsigned int align) 3460 { 3461 WARN_ON_ONCE(!is_power_of_2(align)); 3462 return __napi_alloc_frag_align(fragsz, -align); 3463 } 3464 3465 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length); 3466 void napi_consume_skb(struct sk_buff *skb, int budget); 3467 3468 void napi_skb_free_stolen_head(struct sk_buff *skb); 3469 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason); 3470 3471 /** 3472 * __dev_alloc_pages - allocate page for network Rx 3473 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3474 * @order: size of the allocation 3475 * 3476 * Allocate a new page. 3477 * 3478 * %NULL is returned if there is no free memory. 3479 */ __dev_alloc_pages_noprof(gfp_t gfp_mask,unsigned int order)3480 static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask, 3481 unsigned int order) 3482 { 3483 /* This piece of code contains several assumptions. 3484 * 1. This is for device Rx, therefore a cold page is preferred. 3485 * 2. The expectation is the user wants a compound page. 3486 * 3. If requesting a order 0 page it will not be compound 3487 * due to the check to see if order has a value in prep_new_page 3488 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3489 * code in gfp_to_alloc_flags that should be enforcing this. 3490 */ 3491 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3492 3493 return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order); 3494 } 3495 #define __dev_alloc_pages(...) alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__)) 3496 3497 /* 3498 * This specialized allocator has to be a macro for its allocations to be 3499 * accounted separately (to have a separate alloc_tag). 3500 */ 3501 #define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order) 3502 3503 /** 3504 * __dev_alloc_page - allocate a page for network Rx 3505 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3506 * 3507 * Allocate a new page. 3508 * 3509 * %NULL is returned if there is no free memory. 3510 */ __dev_alloc_page_noprof(gfp_t gfp_mask)3511 static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask) 3512 { 3513 return __dev_alloc_pages_noprof(gfp_mask, 0); 3514 } 3515 #define __dev_alloc_page(...) alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__)) 3516 3517 /* 3518 * This specialized allocator has to be a macro for its allocations to be 3519 * accounted separately (to have a separate alloc_tag). 3520 */ 3521 #define dev_alloc_page() dev_alloc_pages(0) 3522 3523 /** 3524 * dev_page_is_reusable - check whether a page can be reused for network Rx 3525 * @page: the page to test 3526 * 3527 * A page shouldn't be considered for reusing/recycling if it was allocated 3528 * under memory pressure or at a distant memory node. 3529 * 3530 * Returns: false if this page should be returned to page allocator, true 3531 * otherwise. 3532 */ dev_page_is_reusable(const struct page * page)3533 static inline bool dev_page_is_reusable(const struct page *page) 3534 { 3535 return likely(page_to_nid(page) == numa_mem_id() && 3536 !page_is_pfmemalloc(page)); 3537 } 3538 3539 /** 3540 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3541 * @page: The page that was allocated from skb_alloc_page 3542 * @skb: The skb that may need pfmemalloc set 3543 */ skb_propagate_pfmemalloc(const struct page * page,struct sk_buff * skb)3544 static inline void skb_propagate_pfmemalloc(const struct page *page, 3545 struct sk_buff *skb) 3546 { 3547 if (page_is_pfmemalloc(page)) 3548 skb->pfmemalloc = true; 3549 } 3550 3551 /** 3552 * skb_frag_off() - Returns the offset of a skb fragment 3553 * @frag: the paged fragment 3554 */ skb_frag_off(const skb_frag_t * frag)3555 static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3556 { 3557 return frag->offset; 3558 } 3559 3560 /** 3561 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3562 * @frag: skb fragment 3563 * @delta: value to add 3564 */ skb_frag_off_add(skb_frag_t * frag,int delta)3565 static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3566 { 3567 frag->offset += delta; 3568 } 3569 3570 /** 3571 * skb_frag_off_set() - Sets the offset of a skb fragment 3572 * @frag: skb fragment 3573 * @offset: offset of fragment 3574 */ skb_frag_off_set(skb_frag_t * frag,unsigned int offset)3575 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3576 { 3577 frag->offset = offset; 3578 } 3579 3580 /** 3581 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3582 * @fragto: skb fragment where offset is set 3583 * @fragfrom: skb fragment offset is copied from 3584 */ skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3585 static inline void skb_frag_off_copy(skb_frag_t *fragto, 3586 const skb_frag_t *fragfrom) 3587 { 3588 fragto->offset = fragfrom->offset; 3589 } 3590 3591 /* Return: true if the skb_frag contains a net_iov. */ skb_frag_is_net_iov(const skb_frag_t * frag)3592 static inline bool skb_frag_is_net_iov(const skb_frag_t *frag) 3593 { 3594 return netmem_is_net_iov(frag->netmem); 3595 } 3596 3597 /** 3598 * skb_frag_net_iov - retrieve the net_iov referred to by fragment 3599 * @frag: the fragment 3600 * 3601 * Return: the &struct net_iov associated with @frag. Returns NULL if this 3602 * frag has no associated net_iov. 3603 */ skb_frag_net_iov(const skb_frag_t * frag)3604 static inline struct net_iov *skb_frag_net_iov(const skb_frag_t *frag) 3605 { 3606 if (!skb_frag_is_net_iov(frag)) 3607 return NULL; 3608 3609 return netmem_to_net_iov(frag->netmem); 3610 } 3611 3612 /** 3613 * skb_frag_page - retrieve the page referred to by a paged fragment 3614 * @frag: the paged fragment 3615 * 3616 * Return: the &struct page associated with @frag. Returns NULL if this frag 3617 * has no associated page. 3618 */ skb_frag_page(const skb_frag_t * frag)3619 static inline struct page *skb_frag_page(const skb_frag_t *frag) 3620 { 3621 if (skb_frag_is_net_iov(frag)) 3622 return NULL; 3623 3624 return netmem_to_page(frag->netmem); 3625 } 3626 3627 /** 3628 * skb_frag_netmem - retrieve the netmem referred to by a fragment 3629 * @frag: the fragment 3630 * 3631 * Return: the &netmem_ref associated with @frag. 3632 */ skb_frag_netmem(const skb_frag_t * frag)3633 static inline netmem_ref skb_frag_netmem(const skb_frag_t *frag) 3634 { 3635 return frag->netmem; 3636 } 3637 3638 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 3639 unsigned int headroom); 3640 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 3641 const struct bpf_prog *prog); 3642 3643 /** 3644 * skb_frag_address - gets the address of the data contained in a paged fragment 3645 * @frag: the paged fragment buffer 3646 * 3647 * Returns: the address of the data within @frag. The page must already 3648 * be mapped. 3649 */ skb_frag_address(const skb_frag_t * frag)3650 static inline void *skb_frag_address(const skb_frag_t *frag) 3651 { 3652 if (!skb_frag_page(frag)) 3653 return NULL; 3654 3655 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3656 } 3657 3658 /** 3659 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3660 * @frag: the paged fragment buffer 3661 * 3662 * Returns: the address of the data within @frag. Checks that the page 3663 * is mapped and returns %NULL otherwise. 3664 */ skb_frag_address_safe(const skb_frag_t * frag)3665 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3666 { 3667 void *ptr = page_address(skb_frag_page(frag)); 3668 if (unlikely(!ptr)) 3669 return NULL; 3670 3671 return ptr + skb_frag_off(frag); 3672 } 3673 3674 /** 3675 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3676 * @fragto: skb fragment where page is set 3677 * @fragfrom: skb fragment page is copied from 3678 */ skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3679 static inline void skb_frag_page_copy(skb_frag_t *fragto, 3680 const skb_frag_t *fragfrom) 3681 { 3682 fragto->netmem = fragfrom->netmem; 3683 } 3684 3685 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3686 3687 /** 3688 * __skb_frag_dma_map - maps a paged fragment via the DMA API 3689 * @dev: the device to map the fragment to 3690 * @frag: the paged fragment to map 3691 * @offset: the offset within the fragment (starting at the 3692 * fragment's own offset) 3693 * @size: the number of bytes to map 3694 * @dir: the direction of the mapping (``PCI_DMA_*``) 3695 * 3696 * Maps the page associated with @frag to @device. 3697 */ __skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3698 static inline dma_addr_t __skb_frag_dma_map(struct device *dev, 3699 const skb_frag_t *frag, 3700 size_t offset, size_t size, 3701 enum dma_data_direction dir) 3702 { 3703 return dma_map_page(dev, skb_frag_page(frag), 3704 skb_frag_off(frag) + offset, size, dir); 3705 } 3706 3707 #define skb_frag_dma_map(dev, frag, ...) \ 3708 CONCATENATE(_skb_frag_dma_map, \ 3709 COUNT_ARGS(__VA_ARGS__))(dev, frag, ##__VA_ARGS__) 3710 3711 #define __skb_frag_dma_map1(dev, frag, offset, uf, uo) ({ \ 3712 const skb_frag_t *uf = (frag); \ 3713 size_t uo = (offset); \ 3714 \ 3715 __skb_frag_dma_map(dev, uf, uo, skb_frag_size(uf) - uo, \ 3716 DMA_TO_DEVICE); \ 3717 }) 3718 #define _skb_frag_dma_map1(dev, frag, offset) \ 3719 __skb_frag_dma_map1(dev, frag, offset, __UNIQUE_ID(frag_), \ 3720 __UNIQUE_ID(offset_)) 3721 #define _skb_frag_dma_map0(dev, frag) \ 3722 _skb_frag_dma_map1(dev, frag, 0) 3723 #define _skb_frag_dma_map2(dev, frag, offset, size) \ 3724 __skb_frag_dma_map(dev, frag, offset, size, DMA_TO_DEVICE) 3725 #define _skb_frag_dma_map3(dev, frag, offset, size, dir) \ 3726 __skb_frag_dma_map(dev, frag, offset, size, dir) 3727 pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3728 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3729 gfp_t gfp_mask) 3730 { 3731 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3732 } 3733 3734 pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3735 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3736 gfp_t gfp_mask) 3737 { 3738 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3739 } 3740 3741 3742 /** 3743 * skb_clone_writable - is the header of a clone writable 3744 * @skb: buffer to check 3745 * @len: length up to which to write 3746 * 3747 * Returns true if modifying the header part of the cloned buffer 3748 * does not requires the data to be copied. 3749 */ skb_clone_writable(const struct sk_buff * skb,unsigned int len)3750 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3751 { 3752 return !skb_header_cloned(skb) && 3753 skb_headroom(skb) + len <= skb->hdr_len; 3754 } 3755 skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3756 static inline int skb_try_make_writable(struct sk_buff *skb, 3757 unsigned int write_len) 3758 { 3759 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3760 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3761 } 3762 __skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3763 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3764 int cloned) 3765 { 3766 int delta = 0; 3767 3768 if (headroom > skb_headroom(skb)) 3769 delta = headroom - skb_headroom(skb); 3770 3771 if (delta || cloned) 3772 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3773 GFP_ATOMIC); 3774 return 0; 3775 } 3776 3777 /** 3778 * skb_cow - copy header of skb when it is required 3779 * @skb: buffer to cow 3780 * @headroom: needed headroom 3781 * 3782 * If the skb passed lacks sufficient headroom or its data part 3783 * is shared, data is reallocated. If reallocation fails, an error 3784 * is returned and original skb is not changed. 3785 * 3786 * The result is skb with writable area skb->head...skb->tail 3787 * and at least @headroom of space at head. 3788 */ skb_cow(struct sk_buff * skb,unsigned int headroom)3789 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3790 { 3791 return __skb_cow(skb, headroom, skb_cloned(skb)); 3792 } 3793 3794 /** 3795 * skb_cow_head - skb_cow but only making the head writable 3796 * @skb: buffer to cow 3797 * @headroom: needed headroom 3798 * 3799 * This function is identical to skb_cow except that we replace the 3800 * skb_cloned check by skb_header_cloned. It should be used when 3801 * you only need to push on some header and do not need to modify 3802 * the data. 3803 */ skb_cow_head(struct sk_buff * skb,unsigned int headroom)3804 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3805 { 3806 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3807 } 3808 3809 /** 3810 * skb_padto - pad an skbuff up to a minimal size 3811 * @skb: buffer to pad 3812 * @len: minimal length 3813 * 3814 * Pads up a buffer to ensure the trailing bytes exist and are 3815 * blanked. If the buffer already contains sufficient data it 3816 * is untouched. Otherwise it is extended. Returns zero on 3817 * success. The skb is freed on error. 3818 */ skb_padto(struct sk_buff * skb,unsigned int len)3819 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3820 { 3821 unsigned int size = skb->len; 3822 if (likely(size >= len)) 3823 return 0; 3824 return skb_pad(skb, len - size); 3825 } 3826 3827 /** 3828 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3829 * @skb: buffer to pad 3830 * @len: minimal length 3831 * @free_on_error: free buffer on error 3832 * 3833 * Pads up a buffer to ensure the trailing bytes exist and are 3834 * blanked. If the buffer already contains sufficient data it 3835 * is untouched. Otherwise it is extended. Returns zero on 3836 * success. The skb is freed on error if @free_on_error is true. 3837 */ __skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3838 static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3839 unsigned int len, 3840 bool free_on_error) 3841 { 3842 unsigned int size = skb->len; 3843 3844 if (unlikely(size < len)) { 3845 len -= size; 3846 if (__skb_pad(skb, len, free_on_error)) 3847 return -ENOMEM; 3848 __skb_put(skb, len); 3849 } 3850 return 0; 3851 } 3852 3853 /** 3854 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3855 * @skb: buffer to pad 3856 * @len: minimal length 3857 * 3858 * Pads up a buffer to ensure the trailing bytes exist and are 3859 * blanked. If the buffer already contains sufficient data it 3860 * is untouched. Otherwise it is extended. Returns zero on 3861 * success. The skb is freed on error. 3862 */ skb_put_padto(struct sk_buff * skb,unsigned int len)3863 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3864 { 3865 return __skb_put_padto(skb, len, true); 3866 } 3867 3868 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) 3869 __must_check; 3870 skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3871 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3872 const struct page *page, int off) 3873 { 3874 if (skb_zcopy(skb)) 3875 return false; 3876 if (i) { 3877 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3878 3879 return page == skb_frag_page(frag) && 3880 off == skb_frag_off(frag) + skb_frag_size(frag); 3881 } 3882 return false; 3883 } 3884 __skb_linearize(struct sk_buff * skb)3885 static inline int __skb_linearize(struct sk_buff *skb) 3886 { 3887 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3888 } 3889 3890 /** 3891 * skb_linearize - convert paged skb to linear one 3892 * @skb: buffer to linarize 3893 * 3894 * If there is no free memory -ENOMEM is returned, otherwise zero 3895 * is returned and the old skb data released. 3896 */ skb_linearize(struct sk_buff * skb)3897 static inline int skb_linearize(struct sk_buff *skb) 3898 { 3899 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3900 } 3901 3902 /** 3903 * skb_has_shared_frag - can any frag be overwritten 3904 * @skb: buffer to test 3905 * 3906 * Return: true if the skb has at least one frag that might be modified 3907 * by an external entity (as in vmsplice()/sendfile()) 3908 */ skb_has_shared_frag(const struct sk_buff * skb)3909 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3910 { 3911 return skb_is_nonlinear(skb) && 3912 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3913 } 3914 3915 /** 3916 * skb_linearize_cow - make sure skb is linear and writable 3917 * @skb: buffer to process 3918 * 3919 * If there is no free memory -ENOMEM is returned, otherwise zero 3920 * is returned and the old skb data released. 3921 */ skb_linearize_cow(struct sk_buff * skb)3922 static inline int skb_linearize_cow(struct sk_buff *skb) 3923 { 3924 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3925 __skb_linearize(skb) : 0; 3926 } 3927 3928 static __always_inline void __skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3929 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3930 unsigned int off) 3931 { 3932 if (skb->ip_summed == CHECKSUM_COMPLETE) 3933 skb->csum = csum_block_sub(skb->csum, 3934 csum_partial(start, len, 0), off); 3935 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3936 skb_checksum_start_offset(skb) < 0) 3937 skb->ip_summed = CHECKSUM_NONE; 3938 } 3939 3940 /** 3941 * skb_postpull_rcsum - update checksum for received skb after pull 3942 * @skb: buffer to update 3943 * @start: start of data before pull 3944 * @len: length of data pulled 3945 * 3946 * After doing a pull on a received packet, you need to call this to 3947 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3948 * CHECKSUM_NONE so that it can be recomputed from scratch. 3949 */ skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3950 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3951 const void *start, unsigned int len) 3952 { 3953 if (skb->ip_summed == CHECKSUM_COMPLETE) 3954 skb->csum = wsum_negate(csum_partial(start, len, 3955 wsum_negate(skb->csum))); 3956 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3957 skb_checksum_start_offset(skb) < 0) 3958 skb->ip_summed = CHECKSUM_NONE; 3959 } 3960 3961 static __always_inline void __skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3962 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3963 unsigned int off) 3964 { 3965 if (skb->ip_summed == CHECKSUM_COMPLETE) 3966 skb->csum = csum_block_add(skb->csum, 3967 csum_partial(start, len, 0), off); 3968 } 3969 3970 /** 3971 * skb_postpush_rcsum - update checksum for received skb after push 3972 * @skb: buffer to update 3973 * @start: start of data after push 3974 * @len: length of data pushed 3975 * 3976 * After doing a push on a received packet, you need to call this to 3977 * update the CHECKSUM_COMPLETE checksum. 3978 */ skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3979 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3980 const void *start, unsigned int len) 3981 { 3982 __skb_postpush_rcsum(skb, start, len, 0); 3983 } 3984 3985 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3986 3987 /** 3988 * skb_push_rcsum - push skb and update receive checksum 3989 * @skb: buffer to update 3990 * @len: length of data pulled 3991 * 3992 * This function performs an skb_push on the packet and updates 3993 * the CHECKSUM_COMPLETE checksum. It should be used on 3994 * receive path processing instead of skb_push unless you know 3995 * that the checksum difference is zero (e.g., a valid IP header) 3996 * or you are setting ip_summed to CHECKSUM_NONE. 3997 */ skb_push_rcsum(struct sk_buff * skb,unsigned int len)3998 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3999 { 4000 skb_push(skb, len); 4001 skb_postpush_rcsum(skb, skb->data, len); 4002 return skb->data; 4003 } 4004 4005 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 4006 /** 4007 * pskb_trim_rcsum - trim received skb and update checksum 4008 * @skb: buffer to trim 4009 * @len: new length 4010 * 4011 * This is exactly the same as pskb_trim except that it ensures the 4012 * checksum of received packets are still valid after the operation. 4013 * It can change skb pointers. 4014 */ 4015 pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)4016 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 4017 { 4018 skb_might_realloc(skb); 4019 if (likely(len >= skb->len)) 4020 return 0; 4021 return pskb_trim_rcsum_slow(skb, len); 4022 } 4023 __skb_trim_rcsum(struct sk_buff * skb,unsigned int len)4024 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 4025 { 4026 if (skb->ip_summed == CHECKSUM_COMPLETE) 4027 skb->ip_summed = CHECKSUM_NONE; 4028 __skb_trim(skb, len); 4029 return 0; 4030 } 4031 __skb_grow_rcsum(struct sk_buff * skb,unsigned int len)4032 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 4033 { 4034 if (skb->ip_summed == CHECKSUM_COMPLETE) 4035 skb->ip_summed = CHECKSUM_NONE; 4036 return __skb_grow(skb, len); 4037 } 4038 4039 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 4040 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 4041 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 4042 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 4043 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 4044 4045 #define skb_queue_walk(queue, skb) \ 4046 for (skb = (queue)->next; \ 4047 skb != (struct sk_buff *)(queue); \ 4048 skb = skb->next) 4049 4050 #define skb_queue_walk_safe(queue, skb, tmp) \ 4051 for (skb = (queue)->next, tmp = skb->next; \ 4052 skb != (struct sk_buff *)(queue); \ 4053 skb = tmp, tmp = skb->next) 4054 4055 #define skb_queue_walk_from(queue, skb) \ 4056 for (; skb != (struct sk_buff *)(queue); \ 4057 skb = skb->next) 4058 4059 #define skb_rbtree_walk(skb, root) \ 4060 for (skb = skb_rb_first(root); skb != NULL; \ 4061 skb = skb_rb_next(skb)) 4062 4063 #define skb_rbtree_walk_from(skb) \ 4064 for (; skb != NULL; \ 4065 skb = skb_rb_next(skb)) 4066 4067 #define skb_rbtree_walk_from_safe(skb, tmp) \ 4068 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 4069 skb = tmp) 4070 4071 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 4072 for (tmp = skb->next; \ 4073 skb != (struct sk_buff *)(queue); \ 4074 skb = tmp, tmp = skb->next) 4075 4076 #define skb_queue_reverse_walk(queue, skb) \ 4077 for (skb = (queue)->prev; \ 4078 skb != (struct sk_buff *)(queue); \ 4079 skb = skb->prev) 4080 4081 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 4082 for (skb = (queue)->prev, tmp = skb->prev; \ 4083 skb != (struct sk_buff *)(queue); \ 4084 skb = tmp, tmp = skb->prev) 4085 4086 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 4087 for (tmp = skb->prev; \ 4088 skb != (struct sk_buff *)(queue); \ 4089 skb = tmp, tmp = skb->prev) 4090 skb_has_frag_list(const struct sk_buff * skb)4091 static inline bool skb_has_frag_list(const struct sk_buff *skb) 4092 { 4093 return skb_shinfo(skb)->frag_list != NULL; 4094 } 4095 skb_frag_list_init(struct sk_buff * skb)4096 static inline void skb_frag_list_init(struct sk_buff *skb) 4097 { 4098 skb_shinfo(skb)->frag_list = NULL; 4099 } 4100 4101 #define skb_walk_frags(skb, iter) \ 4102 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 4103 4104 4105 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 4106 int *err, long *timeo_p, 4107 const struct sk_buff *skb); 4108 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 4109 struct sk_buff_head *queue, 4110 unsigned int flags, 4111 int *off, int *err, 4112 struct sk_buff **last); 4113 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 4114 struct sk_buff_head *queue, 4115 unsigned int flags, int *off, int *err, 4116 struct sk_buff **last); 4117 struct sk_buff *__skb_recv_datagram(struct sock *sk, 4118 struct sk_buff_head *sk_queue, 4119 unsigned int flags, int *off, int *err); 4120 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 4121 __poll_t datagram_poll(struct file *file, struct socket *sock, 4122 struct poll_table_struct *wait); 4123 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 4124 struct iov_iter *to, int size); skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)4125 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 4126 struct msghdr *msg, int size) 4127 { 4128 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 4129 } 4130 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 4131 struct msghdr *msg); 4132 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 4133 struct iov_iter *to, int len, 4134 struct ahash_request *hash); 4135 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 4136 struct iov_iter *from, int len); 4137 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 4138 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 4139 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 4140 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 4141 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 4142 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 4143 int len); 4144 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 4145 struct pipe_inode_info *pipe, unsigned int len, 4146 unsigned int flags); 4147 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 4148 int len); 4149 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 4150 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 4151 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 4152 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 4153 int len, int hlen); 4154 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 4155 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 4156 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 4157 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 4158 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 4159 unsigned int offset); 4160 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 4161 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 4162 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev); 4163 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 4164 int skb_vlan_pop(struct sk_buff *skb); 4165 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 4166 int skb_eth_pop(struct sk_buff *skb); 4167 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 4168 const unsigned char *src); 4169 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 4170 int mac_len, bool ethernet); 4171 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 4172 bool ethernet); 4173 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 4174 int skb_mpls_dec_ttl(struct sk_buff *skb); 4175 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 4176 gfp_t gfp); 4177 memcpy_from_msg(void * data,struct msghdr * msg,int len)4178 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 4179 { 4180 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 4181 } 4182 memcpy_to_msg(struct msghdr * msg,void * data,int len)4183 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 4184 { 4185 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 4186 } 4187 4188 struct skb_checksum_ops { 4189 __wsum (*update)(const void *mem, int len, __wsum wsum); 4190 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 4191 }; 4192 4193 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 4194 4195 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 4196 __wsum csum, const struct skb_checksum_ops *ops); 4197 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 4198 __wsum csum); 4199 4200 static inline void * __must_check __skb_header_pointer(const struct sk_buff * skb,int offset,int len,const void * data,int hlen,void * buffer)4201 __skb_header_pointer(const struct sk_buff *skb, int offset, int len, 4202 const void *data, int hlen, void *buffer) 4203 { 4204 if (likely(hlen - offset >= len)) 4205 return (void *)data + offset; 4206 4207 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 4208 return NULL; 4209 4210 return buffer; 4211 } 4212 4213 static inline void * __must_check skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)4214 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 4215 { 4216 return __skb_header_pointer(skb, offset, len, skb->data, 4217 skb_headlen(skb), buffer); 4218 } 4219 4220 static inline void * __must_check skb_pointer_if_linear(const struct sk_buff * skb,int offset,int len)4221 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len) 4222 { 4223 if (likely(skb_headlen(skb) - offset >= len)) 4224 return skb->data + offset; 4225 return NULL; 4226 } 4227 4228 /** 4229 * skb_needs_linearize - check if we need to linearize a given skb 4230 * depending on the given device features. 4231 * @skb: socket buffer to check 4232 * @features: net device features 4233 * 4234 * Returns true if either: 4235 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 4236 * 2. skb is fragmented and the device does not support SG. 4237 */ skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)4238 static inline bool skb_needs_linearize(struct sk_buff *skb, 4239 netdev_features_t features) 4240 { 4241 return skb_is_nonlinear(skb) && 4242 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 4243 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 4244 } 4245 skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)4246 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 4247 void *to, 4248 const unsigned int len) 4249 { 4250 memcpy(to, skb->data, len); 4251 } 4252 skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)4253 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 4254 const int offset, void *to, 4255 const unsigned int len) 4256 { 4257 memcpy(to, skb->data + offset, len); 4258 } 4259 skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)4260 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 4261 const void *from, 4262 const unsigned int len) 4263 { 4264 memcpy(skb->data, from, len); 4265 } 4266 skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)4267 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 4268 const int offset, 4269 const void *from, 4270 const unsigned int len) 4271 { 4272 memcpy(skb->data + offset, from, len); 4273 } 4274 4275 void skb_init(void); 4276 skb_get_ktime(const struct sk_buff * skb)4277 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 4278 { 4279 return skb->tstamp; 4280 } 4281 4282 /** 4283 * skb_get_timestamp - get timestamp from a skb 4284 * @skb: skb to get stamp from 4285 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 4286 * 4287 * Timestamps are stored in the skb as offsets to a base timestamp. 4288 * This function converts the offset back to a struct timeval and stores 4289 * it in stamp. 4290 */ skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)4291 static inline void skb_get_timestamp(const struct sk_buff *skb, 4292 struct __kernel_old_timeval *stamp) 4293 { 4294 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 4295 } 4296 skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)4297 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 4298 struct __kernel_sock_timeval *stamp) 4299 { 4300 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4301 4302 stamp->tv_sec = ts.tv_sec; 4303 stamp->tv_usec = ts.tv_nsec / 1000; 4304 } 4305 skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)4306 static inline void skb_get_timestampns(const struct sk_buff *skb, 4307 struct __kernel_old_timespec *stamp) 4308 { 4309 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4310 4311 stamp->tv_sec = ts.tv_sec; 4312 stamp->tv_nsec = ts.tv_nsec; 4313 } 4314 skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)4315 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4316 struct __kernel_timespec *stamp) 4317 { 4318 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4319 4320 stamp->tv_sec = ts.tv_sec; 4321 stamp->tv_nsec = ts.tv_nsec; 4322 } 4323 __net_timestamp(struct sk_buff * skb)4324 static inline void __net_timestamp(struct sk_buff *skb) 4325 { 4326 skb->tstamp = ktime_get_real(); 4327 skb->tstamp_type = SKB_CLOCK_REALTIME; 4328 } 4329 net_timedelta(ktime_t t)4330 static inline ktime_t net_timedelta(ktime_t t) 4331 { 4332 return ktime_sub(ktime_get_real(), t); 4333 } 4334 skb_set_delivery_time(struct sk_buff * skb,ktime_t kt,u8 tstamp_type)4335 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4336 u8 tstamp_type) 4337 { 4338 skb->tstamp = kt; 4339 4340 if (kt) 4341 skb->tstamp_type = tstamp_type; 4342 else 4343 skb->tstamp_type = SKB_CLOCK_REALTIME; 4344 } 4345 skb_set_delivery_type_by_clockid(struct sk_buff * skb,ktime_t kt,clockid_t clockid)4346 static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb, 4347 ktime_t kt, clockid_t clockid) 4348 { 4349 u8 tstamp_type = SKB_CLOCK_REALTIME; 4350 4351 switch (clockid) { 4352 case CLOCK_REALTIME: 4353 break; 4354 case CLOCK_MONOTONIC: 4355 tstamp_type = SKB_CLOCK_MONOTONIC; 4356 break; 4357 case CLOCK_TAI: 4358 tstamp_type = SKB_CLOCK_TAI; 4359 break; 4360 default: 4361 WARN_ON_ONCE(1); 4362 kt = 0; 4363 } 4364 4365 skb_set_delivery_time(skb, kt, tstamp_type); 4366 } 4367 4368 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4369 4370 /* It is used in the ingress path to clear the delivery_time. 4371 * If needed, set the skb->tstamp to the (rcv) timestamp. 4372 */ skb_clear_delivery_time(struct sk_buff * skb)4373 static inline void skb_clear_delivery_time(struct sk_buff *skb) 4374 { 4375 if (skb->tstamp_type) { 4376 skb->tstamp_type = SKB_CLOCK_REALTIME; 4377 if (static_branch_unlikely(&netstamp_needed_key)) 4378 skb->tstamp = ktime_get_real(); 4379 else 4380 skb->tstamp = 0; 4381 } 4382 } 4383 skb_clear_tstamp(struct sk_buff * skb)4384 static inline void skb_clear_tstamp(struct sk_buff *skb) 4385 { 4386 if (skb->tstamp_type) 4387 return; 4388 4389 skb->tstamp = 0; 4390 } 4391 skb_tstamp(const struct sk_buff * skb)4392 static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4393 { 4394 if (skb->tstamp_type) 4395 return 0; 4396 4397 return skb->tstamp; 4398 } 4399 skb_tstamp_cond(const struct sk_buff * skb,bool cond)4400 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4401 { 4402 if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp) 4403 return skb->tstamp; 4404 4405 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4406 return ktime_get_real(); 4407 4408 return 0; 4409 } 4410 skb_metadata_len(const struct sk_buff * skb)4411 static inline u8 skb_metadata_len(const struct sk_buff *skb) 4412 { 4413 return skb_shinfo(skb)->meta_len; 4414 } 4415 skb_metadata_end(const struct sk_buff * skb)4416 static inline void *skb_metadata_end(const struct sk_buff *skb) 4417 { 4418 return skb_mac_header(skb); 4419 } 4420 __skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)4421 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4422 const struct sk_buff *skb_b, 4423 u8 meta_len) 4424 { 4425 const void *a = skb_metadata_end(skb_a); 4426 const void *b = skb_metadata_end(skb_b); 4427 u64 diffs = 0; 4428 4429 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || 4430 BITS_PER_LONG != 64) 4431 goto slow; 4432 4433 /* Using more efficient variant than plain call to memcmp(). */ 4434 switch (meta_len) { 4435 #define __it(x, op) (x -= sizeof(u##op)) 4436 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4437 case 32: diffs |= __it_diff(a, b, 64); 4438 fallthrough; 4439 case 24: diffs |= __it_diff(a, b, 64); 4440 fallthrough; 4441 case 16: diffs |= __it_diff(a, b, 64); 4442 fallthrough; 4443 case 8: diffs |= __it_diff(a, b, 64); 4444 break; 4445 case 28: diffs |= __it_diff(a, b, 64); 4446 fallthrough; 4447 case 20: diffs |= __it_diff(a, b, 64); 4448 fallthrough; 4449 case 12: diffs |= __it_diff(a, b, 64); 4450 fallthrough; 4451 case 4: diffs |= __it_diff(a, b, 32); 4452 break; 4453 default: 4454 slow: 4455 return memcmp(a - meta_len, b - meta_len, meta_len); 4456 } 4457 return diffs; 4458 } 4459 skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)4460 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4461 const struct sk_buff *skb_b) 4462 { 4463 u8 len_a = skb_metadata_len(skb_a); 4464 u8 len_b = skb_metadata_len(skb_b); 4465 4466 if (!(len_a | len_b)) 4467 return false; 4468 4469 return len_a != len_b ? 4470 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4471 } 4472 skb_metadata_set(struct sk_buff * skb,u8 meta_len)4473 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4474 { 4475 skb_shinfo(skb)->meta_len = meta_len; 4476 } 4477 skb_metadata_clear(struct sk_buff * skb)4478 static inline void skb_metadata_clear(struct sk_buff *skb) 4479 { 4480 skb_metadata_set(skb, 0); 4481 } 4482 4483 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4484 4485 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4486 4487 void skb_clone_tx_timestamp(struct sk_buff *skb); 4488 bool skb_defer_rx_timestamp(struct sk_buff *skb); 4489 4490 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4491 skb_clone_tx_timestamp(struct sk_buff * skb)4492 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4493 { 4494 } 4495 skb_defer_rx_timestamp(struct sk_buff * skb)4496 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4497 { 4498 return false; 4499 } 4500 4501 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4502 4503 /** 4504 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4505 * 4506 * PHY drivers may accept clones of transmitted packets for 4507 * timestamping via their phy_driver.txtstamp method. These drivers 4508 * must call this function to return the skb back to the stack with a 4509 * timestamp. 4510 * 4511 * @skb: clone of the original outgoing packet 4512 * @hwtstamps: hardware time stamps 4513 * 4514 */ 4515 void skb_complete_tx_timestamp(struct sk_buff *skb, 4516 struct skb_shared_hwtstamps *hwtstamps); 4517 4518 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4519 struct skb_shared_hwtstamps *hwtstamps, 4520 struct sock *sk, int tstype); 4521 4522 /** 4523 * skb_tstamp_tx - queue clone of skb with send time stamps 4524 * @orig_skb: the original outgoing packet 4525 * @hwtstamps: hardware time stamps, may be NULL if not available 4526 * 4527 * If the skb has a socket associated, then this function clones the 4528 * skb (thus sharing the actual data and optional structures), stores 4529 * the optional hardware time stamping information (if non NULL) or 4530 * generates a software time stamp (otherwise), then queues the clone 4531 * to the error queue of the socket. Errors are silently ignored. 4532 */ 4533 void skb_tstamp_tx(struct sk_buff *orig_skb, 4534 struct skb_shared_hwtstamps *hwtstamps); 4535 4536 /** 4537 * skb_tx_timestamp() - Driver hook for transmit timestamping 4538 * 4539 * Ethernet MAC Drivers should call this function in their hard_xmit() 4540 * function immediately before giving the sk_buff to the MAC hardware. 4541 * 4542 * Specifically, one should make absolutely sure that this function is 4543 * called before TX completion of this packet can trigger. Otherwise 4544 * the packet could potentially already be freed. 4545 * 4546 * @skb: A socket buffer. 4547 */ skb_tx_timestamp(struct sk_buff * skb)4548 static inline void skb_tx_timestamp(struct sk_buff *skb) 4549 { 4550 skb_clone_tx_timestamp(skb); 4551 if (skb_shinfo(skb)->tx_flags & (SKBTX_SW_TSTAMP | SKBTX_BPF)) 4552 skb_tstamp_tx(skb, NULL); 4553 } 4554 4555 /** 4556 * skb_complete_wifi_ack - deliver skb with wifi status 4557 * 4558 * @skb: the original outgoing packet 4559 * @acked: ack status 4560 * 4561 */ 4562 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4563 4564 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4565 __sum16 __skb_checksum_complete(struct sk_buff *skb); 4566 skb_csum_unnecessary(const struct sk_buff * skb)4567 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4568 { 4569 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4570 skb->csum_valid || 4571 (skb->ip_summed == CHECKSUM_PARTIAL && 4572 skb_checksum_start_offset(skb) >= 0)); 4573 } 4574 4575 /** 4576 * skb_checksum_complete - Calculate checksum of an entire packet 4577 * @skb: packet to process 4578 * 4579 * This function calculates the checksum over the entire packet plus 4580 * the value of skb->csum. The latter can be used to supply the 4581 * checksum of a pseudo header as used by TCP/UDP. It returns the 4582 * checksum. 4583 * 4584 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4585 * this function can be used to verify that checksum on received 4586 * packets. In that case the function should return zero if the 4587 * checksum is correct. In particular, this function will return zero 4588 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4589 * hardware has already verified the correctness of the checksum. 4590 */ skb_checksum_complete(struct sk_buff * skb)4591 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4592 { 4593 return skb_csum_unnecessary(skb) ? 4594 0 : __skb_checksum_complete(skb); 4595 } 4596 __skb_decr_checksum_unnecessary(struct sk_buff * skb)4597 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4598 { 4599 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4600 if (skb->csum_level == 0) 4601 skb->ip_summed = CHECKSUM_NONE; 4602 else 4603 skb->csum_level--; 4604 } 4605 } 4606 __skb_incr_checksum_unnecessary(struct sk_buff * skb)4607 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4608 { 4609 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4610 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4611 skb->csum_level++; 4612 } else if (skb->ip_summed == CHECKSUM_NONE) { 4613 skb->ip_summed = CHECKSUM_UNNECESSARY; 4614 skb->csum_level = 0; 4615 } 4616 } 4617 __skb_reset_checksum_unnecessary(struct sk_buff * skb)4618 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4619 { 4620 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4621 skb->ip_summed = CHECKSUM_NONE; 4622 skb->csum_level = 0; 4623 } 4624 } 4625 4626 /* Check if we need to perform checksum complete validation. 4627 * 4628 * Returns: true if checksum complete is needed, false otherwise 4629 * (either checksum is unnecessary or zero checksum is allowed). 4630 */ __skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)4631 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4632 bool zero_okay, 4633 __sum16 check) 4634 { 4635 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4636 skb->csum_valid = 1; 4637 __skb_decr_checksum_unnecessary(skb); 4638 return false; 4639 } 4640 4641 return true; 4642 } 4643 4644 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4645 * in checksum_init. 4646 */ 4647 #define CHECKSUM_BREAK 76 4648 4649 /* Unset checksum-complete 4650 * 4651 * Unset checksum complete can be done when packet is being modified 4652 * (uncompressed for instance) and checksum-complete value is 4653 * invalidated. 4654 */ skb_checksum_complete_unset(struct sk_buff * skb)4655 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4656 { 4657 if (skb->ip_summed == CHECKSUM_COMPLETE) 4658 skb->ip_summed = CHECKSUM_NONE; 4659 } 4660 4661 /* Validate (init) checksum based on checksum complete. 4662 * 4663 * Return values: 4664 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4665 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4666 * checksum is stored in skb->csum for use in __skb_checksum_complete 4667 * non-zero: value of invalid checksum 4668 * 4669 */ __skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4670 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4671 bool complete, 4672 __wsum psum) 4673 { 4674 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4675 if (!csum_fold(csum_add(psum, skb->csum))) { 4676 skb->csum_valid = 1; 4677 return 0; 4678 } 4679 } 4680 4681 skb->csum = psum; 4682 4683 if (complete || skb->len <= CHECKSUM_BREAK) { 4684 __sum16 csum; 4685 4686 csum = __skb_checksum_complete(skb); 4687 skb->csum_valid = !csum; 4688 return csum; 4689 } 4690 4691 return 0; 4692 } 4693 null_compute_pseudo(struct sk_buff * skb,int proto)4694 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4695 { 4696 return 0; 4697 } 4698 4699 /* Perform checksum validate (init). Note that this is a macro since we only 4700 * want to calculate the pseudo header which is an input function if necessary. 4701 * First we try to validate without any computation (checksum unnecessary) and 4702 * then calculate based on checksum complete calling the function to compute 4703 * pseudo header. 4704 * 4705 * Return values: 4706 * 0: checksum is validated or try to in skb_checksum_complete 4707 * non-zero: value of invalid checksum 4708 */ 4709 #define __skb_checksum_validate(skb, proto, complete, \ 4710 zero_okay, check, compute_pseudo) \ 4711 ({ \ 4712 __sum16 __ret = 0; \ 4713 skb->csum_valid = 0; \ 4714 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4715 __ret = __skb_checksum_validate_complete(skb, \ 4716 complete, compute_pseudo(skb, proto)); \ 4717 __ret; \ 4718 }) 4719 4720 #define skb_checksum_init(skb, proto, compute_pseudo) \ 4721 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4722 4723 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4724 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4725 4726 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 4727 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4728 4729 #define skb_checksum_validate_zero_check(skb, proto, check, \ 4730 compute_pseudo) \ 4731 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4732 4733 #define skb_checksum_simple_validate(skb) \ 4734 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4735 __skb_checksum_convert_check(struct sk_buff * skb)4736 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4737 { 4738 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4739 } 4740 __skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4741 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4742 { 4743 skb->csum = ~pseudo; 4744 skb->ip_summed = CHECKSUM_COMPLETE; 4745 } 4746 4747 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4748 do { \ 4749 if (__skb_checksum_convert_check(skb)) \ 4750 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4751 } while (0) 4752 skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4753 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4754 u16 start, u16 offset) 4755 { 4756 skb->ip_summed = CHECKSUM_PARTIAL; 4757 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4758 skb->csum_offset = offset - start; 4759 } 4760 4761 /* Update skbuf and packet to reflect the remote checksum offload operation. 4762 * When called, ptr indicates the starting point for skb->csum when 4763 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4764 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4765 */ skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4766 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4767 int start, int offset, bool nopartial) 4768 { 4769 __wsum delta; 4770 4771 if (!nopartial) { 4772 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4773 return; 4774 } 4775 4776 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4777 __skb_checksum_complete(skb); 4778 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4779 } 4780 4781 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4782 4783 /* Adjust skb->csum since we changed the packet */ 4784 skb->csum = csum_add(skb->csum, delta); 4785 } 4786 skb_nfct(const struct sk_buff * skb)4787 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4788 { 4789 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4790 return (void *)(skb->_nfct & NFCT_PTRMASK); 4791 #else 4792 return NULL; 4793 #endif 4794 } 4795 skb_get_nfct(const struct sk_buff * skb)4796 static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4797 { 4798 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4799 return skb->_nfct; 4800 #else 4801 return 0UL; 4802 #endif 4803 } 4804 skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4805 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4806 { 4807 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4808 skb->slow_gro |= !!nfct; 4809 skb->_nfct = nfct; 4810 #endif 4811 } 4812 4813 #ifdef CONFIG_SKB_EXTENSIONS 4814 enum skb_ext_id { 4815 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4816 SKB_EXT_BRIDGE_NF, 4817 #endif 4818 #ifdef CONFIG_XFRM 4819 SKB_EXT_SEC_PATH, 4820 #endif 4821 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4822 TC_SKB_EXT, 4823 #endif 4824 #if IS_ENABLED(CONFIG_MPTCP) 4825 SKB_EXT_MPTCP, 4826 #endif 4827 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4828 SKB_EXT_MCTP, 4829 #endif 4830 SKB_EXT_NUM, /* must be last */ 4831 }; 4832 4833 /** 4834 * struct skb_ext - sk_buff extensions 4835 * @refcnt: 1 on allocation, deallocated on 0 4836 * @offset: offset to add to @data to obtain extension address 4837 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4838 * @data: start of extension data, variable sized 4839 * 4840 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4841 * to use 'u8' types while allowing up to 2kb worth of extension data. 4842 */ 4843 struct skb_ext { 4844 refcount_t refcnt; 4845 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4846 u8 chunks; /* same */ 4847 char data[] __aligned(8); 4848 }; 4849 4850 struct skb_ext *__skb_ext_alloc(gfp_t flags); 4851 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4852 struct skb_ext *ext); 4853 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4854 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4855 void __skb_ext_put(struct skb_ext *ext); 4856 skb_ext_put(struct sk_buff * skb)4857 static inline void skb_ext_put(struct sk_buff *skb) 4858 { 4859 if (skb->active_extensions) 4860 __skb_ext_put(skb->extensions); 4861 } 4862 __skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4863 static inline void __skb_ext_copy(struct sk_buff *dst, 4864 const struct sk_buff *src) 4865 { 4866 dst->active_extensions = src->active_extensions; 4867 4868 if (src->active_extensions) { 4869 struct skb_ext *ext = src->extensions; 4870 4871 refcount_inc(&ext->refcnt); 4872 dst->extensions = ext; 4873 } 4874 } 4875 skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4876 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4877 { 4878 skb_ext_put(dst); 4879 __skb_ext_copy(dst, src); 4880 } 4881 __skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4882 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4883 { 4884 return !!ext->offset[i]; 4885 } 4886 skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4887 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4888 { 4889 return skb->active_extensions & (1 << id); 4890 } 4891 skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4892 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4893 { 4894 if (skb_ext_exist(skb, id)) 4895 __skb_ext_del(skb, id); 4896 } 4897 skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4898 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4899 { 4900 if (skb_ext_exist(skb, id)) { 4901 struct skb_ext *ext = skb->extensions; 4902 4903 return (void *)ext + (ext->offset[id] << 3); 4904 } 4905 4906 return NULL; 4907 } 4908 skb_ext_reset(struct sk_buff * skb)4909 static inline void skb_ext_reset(struct sk_buff *skb) 4910 { 4911 if (unlikely(skb->active_extensions)) { 4912 __skb_ext_put(skb->extensions); 4913 skb->active_extensions = 0; 4914 } 4915 } 4916 skb_has_extensions(struct sk_buff * skb)4917 static inline bool skb_has_extensions(struct sk_buff *skb) 4918 { 4919 return unlikely(skb->active_extensions); 4920 } 4921 #else skb_ext_put(struct sk_buff * skb)4922 static inline void skb_ext_put(struct sk_buff *skb) {} skb_ext_reset(struct sk_buff * skb)4923 static inline void skb_ext_reset(struct sk_buff *skb) {} skb_ext_del(struct sk_buff * skb,int unused)4924 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} __skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4925 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4926 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} skb_has_extensions(struct sk_buff * skb)4927 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4928 #endif /* CONFIG_SKB_EXTENSIONS */ 4929 nf_reset_ct(struct sk_buff * skb)4930 static inline void nf_reset_ct(struct sk_buff *skb) 4931 { 4932 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4933 nf_conntrack_put(skb_nfct(skb)); 4934 skb->_nfct = 0; 4935 #endif 4936 } 4937 nf_reset_trace(struct sk_buff * skb)4938 static inline void nf_reset_trace(struct sk_buff *skb) 4939 { 4940 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4941 skb->nf_trace = 0; 4942 #endif 4943 } 4944 ipvs_reset(struct sk_buff * skb)4945 static inline void ipvs_reset(struct sk_buff *skb) 4946 { 4947 #if IS_ENABLED(CONFIG_IP_VS) 4948 skb->ipvs_property = 0; 4949 #endif 4950 } 4951 4952 /* Note: This doesn't put any conntrack info in dst. */ __nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4953 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4954 bool copy) 4955 { 4956 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4957 dst->_nfct = src->_nfct; 4958 nf_conntrack_get(skb_nfct(src)); 4959 #endif 4960 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4961 if (copy) 4962 dst->nf_trace = src->nf_trace; 4963 #endif 4964 } 4965 nf_copy(struct sk_buff * dst,const struct sk_buff * src)4966 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4967 { 4968 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4969 nf_conntrack_put(skb_nfct(dst)); 4970 #endif 4971 dst->slow_gro = src->slow_gro; 4972 __nf_copy(dst, src, true); 4973 } 4974 4975 #ifdef CONFIG_NETWORK_SECMARK skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4976 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4977 { 4978 to->secmark = from->secmark; 4979 } 4980 skb_init_secmark(struct sk_buff * skb)4981 static inline void skb_init_secmark(struct sk_buff *skb) 4982 { 4983 skb->secmark = 0; 4984 } 4985 #else skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4986 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4987 { } 4988 skb_init_secmark(struct sk_buff * skb)4989 static inline void skb_init_secmark(struct sk_buff *skb) 4990 { } 4991 #endif 4992 secpath_exists(const struct sk_buff * skb)4993 static inline int secpath_exists(const struct sk_buff *skb) 4994 { 4995 #ifdef CONFIG_XFRM 4996 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4997 #else 4998 return 0; 4999 #endif 5000 } 5001 skb_irq_freeable(const struct sk_buff * skb)5002 static inline bool skb_irq_freeable(const struct sk_buff *skb) 5003 { 5004 return !skb->destructor && 5005 !secpath_exists(skb) && 5006 !skb_nfct(skb) && 5007 !skb->_skb_refdst && 5008 !skb_has_frag_list(skb); 5009 } 5010 skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)5011 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 5012 { 5013 skb->queue_mapping = queue_mapping; 5014 } 5015 skb_get_queue_mapping(const struct sk_buff * skb)5016 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 5017 { 5018 return skb->queue_mapping; 5019 } 5020 skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)5021 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 5022 { 5023 to->queue_mapping = from->queue_mapping; 5024 } 5025 skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)5026 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 5027 { 5028 skb->queue_mapping = rx_queue + 1; 5029 } 5030 skb_get_rx_queue(const struct sk_buff * skb)5031 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 5032 { 5033 return skb->queue_mapping - 1; 5034 } 5035 skb_rx_queue_recorded(const struct sk_buff * skb)5036 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 5037 { 5038 return skb->queue_mapping != 0; 5039 } 5040 skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)5041 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 5042 { 5043 skb->dst_pending_confirm = val; 5044 } 5045 skb_get_dst_pending_confirm(const struct sk_buff * skb)5046 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 5047 { 5048 return skb->dst_pending_confirm != 0; 5049 } 5050 skb_sec_path(const struct sk_buff * skb)5051 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 5052 { 5053 #ifdef CONFIG_XFRM 5054 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 5055 #else 5056 return NULL; 5057 #endif 5058 } 5059 skb_is_gso(const struct sk_buff * skb)5060 static inline bool skb_is_gso(const struct sk_buff *skb) 5061 { 5062 return skb_shinfo(skb)->gso_size; 5063 } 5064 5065 /* Note: Should be called only if skb_is_gso(skb) is true */ skb_is_gso_v6(const struct sk_buff * skb)5066 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 5067 { 5068 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 5069 } 5070 5071 /* Note: Should be called only if skb_is_gso(skb) is true */ skb_is_gso_sctp(const struct sk_buff * skb)5072 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 5073 { 5074 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 5075 } 5076 5077 /* Note: Should be called only if skb_is_gso(skb) is true */ skb_is_gso_tcp(const struct sk_buff * skb)5078 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 5079 { 5080 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 5081 } 5082 skb_gso_reset(struct sk_buff * skb)5083 static inline void skb_gso_reset(struct sk_buff *skb) 5084 { 5085 skb_shinfo(skb)->gso_size = 0; 5086 skb_shinfo(skb)->gso_segs = 0; 5087 skb_shinfo(skb)->gso_type = 0; 5088 } 5089 skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)5090 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 5091 u16 increment) 5092 { 5093 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 5094 return; 5095 shinfo->gso_size += increment; 5096 } 5097 skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)5098 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 5099 u16 decrement) 5100 { 5101 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 5102 return; 5103 shinfo->gso_size -= decrement; 5104 } 5105 5106 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 5107 skb_warn_if_lro(const struct sk_buff * skb)5108 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 5109 { 5110 /* LRO sets gso_size but not gso_type, whereas if GSO is really 5111 * wanted then gso_type will be set. */ 5112 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5113 5114 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 5115 unlikely(shinfo->gso_type == 0)) { 5116 __skb_warn_lro_forwarding(skb); 5117 return true; 5118 } 5119 return false; 5120 } 5121 skb_forward_csum(struct sk_buff * skb)5122 static inline void skb_forward_csum(struct sk_buff *skb) 5123 { 5124 /* Unfortunately we don't support this one. Any brave souls? */ 5125 if (skb->ip_summed == CHECKSUM_COMPLETE) 5126 skb->ip_summed = CHECKSUM_NONE; 5127 } 5128 5129 /** 5130 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 5131 * @skb: skb to check 5132 * 5133 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 5134 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 5135 * use this helper, to document places where we make this assertion. 5136 */ skb_checksum_none_assert(const struct sk_buff * skb)5137 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 5138 { 5139 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); 5140 } 5141 5142 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 5143 5144 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 5145 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5146 unsigned int transport_len, 5147 __sum16(*skb_chkf)(struct sk_buff *skb)); 5148 5149 /** 5150 * skb_head_is_locked - Determine if the skb->head is locked down 5151 * @skb: skb to check 5152 * 5153 * The head on skbs build around a head frag can be removed if they are 5154 * not cloned. This function returns true if the skb head is locked down 5155 * due to either being allocated via kmalloc, or by being a clone with 5156 * multiple references to the head. 5157 */ skb_head_is_locked(const struct sk_buff * skb)5158 static inline bool skb_head_is_locked(const struct sk_buff *skb) 5159 { 5160 return !skb->head_frag || skb_cloned(skb); 5161 } 5162 5163 /* Local Checksum Offload. 5164 * Compute outer checksum based on the assumption that the 5165 * inner checksum will be offloaded later. 5166 * See Documentation/networking/checksum-offloads.rst for 5167 * explanation of how this works. 5168 * Fill in outer checksum adjustment (e.g. with sum of outer 5169 * pseudo-header) before calling. 5170 * Also ensure that inner checksum is in linear data area. 5171 */ lco_csum(struct sk_buff * skb)5172 static inline __wsum lco_csum(struct sk_buff *skb) 5173 { 5174 unsigned char *csum_start = skb_checksum_start(skb); 5175 unsigned char *l4_hdr = skb_transport_header(skb); 5176 __wsum partial; 5177 5178 /* Start with complement of inner checksum adjustment */ 5179 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 5180 skb->csum_offset)); 5181 5182 /* Add in checksum of our headers (incl. outer checksum 5183 * adjustment filled in by caller) and return result. 5184 */ 5185 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 5186 } 5187 skb_is_redirected(const struct sk_buff * skb)5188 static inline bool skb_is_redirected(const struct sk_buff *skb) 5189 { 5190 return skb->redirected; 5191 } 5192 skb_set_redirected(struct sk_buff * skb,bool from_ingress)5193 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 5194 { 5195 skb->redirected = 1; 5196 #ifdef CONFIG_NET_REDIRECT 5197 skb->from_ingress = from_ingress; 5198 if (skb->from_ingress) 5199 skb_clear_tstamp(skb); 5200 #endif 5201 } 5202 skb_reset_redirect(struct sk_buff * skb)5203 static inline void skb_reset_redirect(struct sk_buff *skb) 5204 { 5205 skb->redirected = 0; 5206 } 5207 skb_set_redirected_noclear(struct sk_buff * skb,bool from_ingress)5208 static inline void skb_set_redirected_noclear(struct sk_buff *skb, 5209 bool from_ingress) 5210 { 5211 skb->redirected = 1; 5212 #ifdef CONFIG_NET_REDIRECT 5213 skb->from_ingress = from_ingress; 5214 #endif 5215 } 5216 skb_csum_is_sctp(struct sk_buff * skb)5217 static inline bool skb_csum_is_sctp(struct sk_buff *skb) 5218 { 5219 #if IS_ENABLED(CONFIG_IP_SCTP) 5220 return skb->csum_not_inet; 5221 #else 5222 return 0; 5223 #endif 5224 } 5225 skb_reset_csum_not_inet(struct sk_buff * skb)5226 static inline void skb_reset_csum_not_inet(struct sk_buff *skb) 5227 { 5228 skb->ip_summed = CHECKSUM_NONE; 5229 #if IS_ENABLED(CONFIG_IP_SCTP) 5230 skb->csum_not_inet = 0; 5231 #endif 5232 } 5233 skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)5234 static inline void skb_set_kcov_handle(struct sk_buff *skb, 5235 const u64 kcov_handle) 5236 { 5237 #ifdef CONFIG_KCOV 5238 skb->kcov_handle = kcov_handle; 5239 #endif 5240 } 5241 skb_get_kcov_handle(struct sk_buff * skb)5242 static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 5243 { 5244 #ifdef CONFIG_KCOV 5245 return skb->kcov_handle; 5246 #else 5247 return 0; 5248 #endif 5249 } 5250 skb_mark_for_recycle(struct sk_buff * skb)5251 static inline void skb_mark_for_recycle(struct sk_buff *skb) 5252 { 5253 #ifdef CONFIG_PAGE_POOL 5254 skb->pp_recycle = 1; 5255 #endif 5256 } 5257 5258 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 5259 ssize_t maxsize, gfp_t gfp); 5260 5261 #endif /* __KERNEL__ */ 5262 #endif /* _LINUX_SKBUFF_H */ 5263