xref: /linux/include/linux/skbuff.h (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1  /* SPDX-License-Identifier: GPL-2.0-or-later */
2  /*
3   *	Definitions for the 'struct sk_buff' memory handlers.
4   *
5   *	Authors:
6   *		Alan Cox, <gw4pts@gw4pts.ampr.org>
7   *		Florian La Roche, <rzsfl@rz.uni-sb.de>
8   */
9  
10  #ifndef _LINUX_SKBUFF_H
11  #define _LINUX_SKBUFF_H
12  
13  #include <linux/kernel.h>
14  #include <linux/compiler.h>
15  #include <linux/time.h>
16  #include <linux/bug.h>
17  #include <linux/bvec.h>
18  #include <linux/cache.h>
19  #include <linux/rbtree.h>
20  #include <linux/socket.h>
21  #include <linux/refcount.h>
22  
23  #include <linux/atomic.h>
24  #include <asm/types.h>
25  #include <linux/spinlock.h>
26  #include <net/checksum.h>
27  #include <linux/rcupdate.h>
28  #include <linux/dma-mapping.h>
29  #include <linux/netdev_features.h>
30  #include <net/flow_dissector.h>
31  #include <linux/in6.h>
32  #include <linux/if_packet.h>
33  #include <linux/llist.h>
34  #include <linux/page_frag_cache.h>
35  #include <net/flow.h>
36  #if IS_ENABLED(CONFIG_NF_CONNTRACK)
37  #include <linux/netfilter/nf_conntrack_common.h>
38  #endif
39  #include <net/net_debug.h>
40  #include <net/dropreason-core.h>
41  #include <net/netmem.h>
42  
43  /**
44   * DOC: skb checksums
45   *
46   * The interface for checksum offload between the stack and networking drivers
47   * is as follows...
48   *
49   * IP checksum related features
50   * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
51   *
52   * Drivers advertise checksum offload capabilities in the features of a device.
53   * From the stack's point of view these are capabilities offered by the driver.
54   * A driver typically only advertises features that it is capable of offloading
55   * to its device.
56   *
57   * .. flat-table:: Checksum related device features
58   *   :widths: 1 10
59   *
60   *   * - %NETIF_F_HW_CSUM
61   *     - The driver (or its device) is able to compute one
62   *	 IP (one's complement) checksum for any combination
63   *	 of protocols or protocol layering. The checksum is
64   *	 computed and set in a packet per the CHECKSUM_PARTIAL
65   *	 interface (see below).
66   *
67   *   * - %NETIF_F_IP_CSUM
68   *     - Driver (device) is only able to checksum plain
69   *	 TCP or UDP packets over IPv4. These are specifically
70   *	 unencapsulated packets of the form IPv4|TCP or
71   *	 IPv4|UDP where the Protocol field in the IPv4 header
72   *	 is TCP or UDP. The IPv4 header may contain IP options.
73   *	 This feature cannot be set in features for a device
74   *	 with NETIF_F_HW_CSUM also set. This feature is being
75   *	 DEPRECATED (see below).
76   *
77   *   * - %NETIF_F_IPV6_CSUM
78   *     - Driver (device) is only able to checksum plain
79   *	 TCP or UDP packets over IPv6. These are specifically
80   *	 unencapsulated packets of the form IPv6|TCP or
81   *	 IPv6|UDP where the Next Header field in the IPv6
82   *	 header is either TCP or UDP. IPv6 extension headers
83   *	 are not supported with this feature. This feature
84   *	 cannot be set in features for a device with
85   *	 NETIF_F_HW_CSUM also set. This feature is being
86   *	 DEPRECATED (see below).
87   *
88   *   * - %NETIF_F_RXCSUM
89   *     - Driver (device) performs receive checksum offload.
90   *	 This flag is only used to disable the RX checksum
91   *	 feature for a device. The stack will accept receive
92   *	 checksum indication in packets received on a device
93   *	 regardless of whether NETIF_F_RXCSUM is set.
94   *
95   * Checksumming of received packets by device
96   * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
97   *
98   * Indication of checksum verification is set in &sk_buff.ip_summed.
99   * Possible values are:
100   *
101   * - %CHECKSUM_NONE
102   *
103   *   Device did not checksum this packet e.g. due to lack of capabilities.
104   *   The packet contains full (though not verified) checksum in packet but
105   *   not in skb->csum. Thus, skb->csum is undefined in this case.
106   *
107   * - %CHECKSUM_UNNECESSARY
108   *
109   *   The hardware you're dealing with doesn't calculate the full checksum
110   *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
111   *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
112   *   if their checksums are okay. &sk_buff.csum is still undefined in this case
113   *   though. A driver or device must never modify the checksum field in the
114   *   packet even if checksum is verified.
115   *
116   *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
117   *
118   *     - TCP: IPv6 and IPv4.
119   *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
120   *       zero UDP checksum for either IPv4 or IPv6, the networking stack
121   *       may perform further validation in this case.
122   *     - GRE: only if the checksum is present in the header.
123   *     - SCTP: indicates the CRC in SCTP header has been validated.
124   *     - FCOE: indicates the CRC in FC frame has been validated.
125   *
126   *   &sk_buff.csum_level indicates the number of consecutive checksums found in
127   *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
128   *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
129   *   and a device is able to verify the checksums for UDP (possibly zero),
130   *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
131   *   two. If the device were only able to verify the UDP checksum and not
132   *   GRE, either because it doesn't support GRE checksum or because GRE
133   *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
134   *   not considered in this case).
135   *
136   * - %CHECKSUM_COMPLETE
137   *
138   *   This is the most generic way. The device supplied checksum of the _whole_
139   *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
140   *   hardware doesn't need to parse L3/L4 headers to implement this.
141   *
142   *   Notes:
143   *
144   *   - Even if device supports only some protocols, but is able to produce
145   *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
146   *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
147   *
148   * - %CHECKSUM_PARTIAL
149   *
150   *   A checksum is set up to be offloaded to a device as described in the
151   *   output description for CHECKSUM_PARTIAL. This may occur on a packet
152   *   received directly from another Linux OS, e.g., a virtualized Linux kernel
153   *   on the same host, or it may be set in the input path in GRO or remote
154   *   checksum offload. For the purposes of checksum verification, the checksum
155   *   referred to by skb->csum_start + skb->csum_offset and any preceding
156   *   checksums in the packet are considered verified. Any checksums in the
157   *   packet that are after the checksum being offloaded are not considered to
158   *   be verified.
159   *
160   * Checksumming on transmit for non-GSO
161   * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
162   *
163   * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
164   * Values are:
165   *
166   * - %CHECKSUM_PARTIAL
167   *
168   *   The driver is required to checksum the packet as seen by hard_start_xmit()
169   *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
170   *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
171   *   A driver may verify that the
172   *   csum_start and csum_offset values are valid values given the length and
173   *   offset of the packet, but it should not attempt to validate that the
174   *   checksum refers to a legitimate transport layer checksum -- it is the
175   *   purview of the stack to validate that csum_start and csum_offset are set
176   *   correctly.
177   *
178   *   When the stack requests checksum offload for a packet, the driver MUST
179   *   ensure that the checksum is set correctly. A driver can either offload the
180   *   checksum calculation to the device, or call skb_checksum_help (in the case
181   *   that the device does not support offload for a particular checksum).
182   *
183   *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
184   *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
185   *   checksum offload capability.
186   *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
187   *   on network device checksumming capabilities: if a packet does not match
188   *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
189   *   &sk_buff.csum_not_inet, see :ref:`crc`)
190   *   is called to resolve the checksum.
191   *
192   * - %CHECKSUM_NONE
193   *
194   *   The skb was already checksummed by the protocol, or a checksum is not
195   *   required.
196   *
197   * - %CHECKSUM_UNNECESSARY
198   *
199   *   This has the same meaning as CHECKSUM_NONE for checksum offload on
200   *   output.
201   *
202   * - %CHECKSUM_COMPLETE
203   *
204   *   Not used in checksum output. If a driver observes a packet with this value
205   *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
206   *
207   * .. _crc:
208   *
209   * Non-IP checksum (CRC) offloads
210   * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
211   *
212   * .. flat-table::
213   *   :widths: 1 10
214   *
215   *   * - %NETIF_F_SCTP_CRC
216   *     - This feature indicates that a device is capable of
217   *	 offloading the SCTP CRC in a packet. To perform this offload the stack
218   *	 will set csum_start and csum_offset accordingly, set ip_summed to
219   *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
220   *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
221   *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
222   *	 must verify which offload is configured for a packet by testing the
223   *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
224   *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
225   *
226   *   * - %NETIF_F_FCOE_CRC
227   *     - This feature indicates that a device is capable of offloading the FCOE
228   *	 CRC in a packet. To perform this offload the stack will set ip_summed
229   *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
230   *	 accordingly. Note that there is no indication in the skbuff that the
231   *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
232   *	 both IP checksum offload and FCOE CRC offload must verify which offload
233   *	 is configured for a packet, presumably by inspecting packet headers.
234   *
235   * Checksumming on output with GSO
236   * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
237   *
238   * In the case of a GSO packet (skb_is_gso() is true), checksum offload
239   * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
240   * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
241   * part of the GSO operation is implied. If a checksum is being offloaded
242   * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
243   * csum_offset are set to refer to the outermost checksum being offloaded
244   * (two offloaded checksums are possible with UDP encapsulation).
245   */
246  
247  /* Don't change this without changing skb_csum_unnecessary! */
248  #define CHECKSUM_NONE		0
249  #define CHECKSUM_UNNECESSARY	1
250  #define CHECKSUM_COMPLETE	2
251  #define CHECKSUM_PARTIAL	3
252  
253  /* Maximum value in skb->csum_level */
254  #define SKB_MAX_CSUM_LEVEL	3
255  
256  #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
257  #define SKB_WITH_OVERHEAD(X)	\
258  	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
259  
260  /* For X bytes available in skb->head, what is the minimal
261   * allocation needed, knowing struct skb_shared_info needs
262   * to be aligned.
263   */
264  #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
265  	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
266  
267  #define SKB_MAX_ORDER(X, ORDER) \
268  	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
269  #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
270  #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
271  
272  /* return minimum truesize of one skb containing X bytes of data */
273  #define SKB_TRUESIZE(X) ((X) +						\
274  			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
275  			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
276  
277  struct ahash_request;
278  struct net_device;
279  struct scatterlist;
280  struct pipe_inode_info;
281  struct iov_iter;
282  struct napi_struct;
283  struct bpf_prog;
284  union bpf_attr;
285  struct skb_ext;
286  struct ts_config;
287  
288  #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
289  struct nf_bridge_info {
290  	enum {
291  		BRNF_PROTO_UNCHANGED,
292  		BRNF_PROTO_8021Q,
293  		BRNF_PROTO_PPPOE
294  	} orig_proto:8;
295  	u8			pkt_otherhost:1;
296  	u8			in_prerouting:1;
297  	u8			bridged_dnat:1;
298  	u8			sabotage_in_done:1;
299  	__u16			frag_max_size;
300  	int			physinif;
301  
302  	/* always valid & non-NULL from FORWARD on, for physdev match */
303  	struct net_device	*physoutdev;
304  	union {
305  		/* prerouting: detect dnat in orig/reply direction */
306  		__be32          ipv4_daddr;
307  		struct in6_addr ipv6_daddr;
308  
309  		/* after prerouting + nat detected: store original source
310  		 * mac since neigh resolution overwrites it, only used while
311  		 * skb is out in neigh layer.
312  		 */
313  		char neigh_header[8];
314  	};
315  };
316  #endif
317  
318  #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
319  /* Chain in tc_skb_ext will be used to share the tc chain with
320   * ovs recirc_id. It will be set to the current chain by tc
321   * and read by ovs to recirc_id.
322   */
323  struct tc_skb_ext {
324  	union {
325  		u64 act_miss_cookie;
326  		__u32 chain;
327  	};
328  	__u16 mru;
329  	__u16 zone;
330  	u8 post_ct:1;
331  	u8 post_ct_snat:1;
332  	u8 post_ct_dnat:1;
333  	u8 act_miss:1; /* Set if act_miss_cookie is used */
334  	u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
335  };
336  #endif
337  
338  struct sk_buff_head {
339  	/* These two members must be first to match sk_buff. */
340  	struct_group_tagged(sk_buff_list, list,
341  		struct sk_buff	*next;
342  		struct sk_buff	*prev;
343  	);
344  
345  	__u32		qlen;
346  	spinlock_t	lock;
347  };
348  
349  struct sk_buff;
350  
351  #ifndef CONFIG_MAX_SKB_FRAGS
352  # define CONFIG_MAX_SKB_FRAGS 17
353  #endif
354  
355  #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
356  
357  /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
358   * segment using its current segmentation instead.
359   */
360  #define GSO_BY_FRAGS	0xFFFF
361  
362  typedef struct skb_frag {
363  	netmem_ref netmem;
364  	unsigned int len;
365  	unsigned int offset;
366  } skb_frag_t;
367  
368  /**
369   * skb_frag_size() - Returns the size of a skb fragment
370   * @frag: skb fragment
371   */
skb_frag_size(const skb_frag_t * frag)372  static inline unsigned int skb_frag_size(const skb_frag_t *frag)
373  {
374  	return frag->len;
375  }
376  
377  /**
378   * skb_frag_size_set() - Sets the size of a skb fragment
379   * @frag: skb fragment
380   * @size: size of fragment
381   */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)382  static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
383  {
384  	frag->len = size;
385  }
386  
387  /**
388   * skb_frag_size_add() - Increments the size of a skb fragment by @delta
389   * @frag: skb fragment
390   * @delta: value to add
391   */
skb_frag_size_add(skb_frag_t * frag,int delta)392  static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
393  {
394  	frag->len += delta;
395  }
396  
397  /**
398   * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
399   * @frag: skb fragment
400   * @delta: value to subtract
401   */
skb_frag_size_sub(skb_frag_t * frag,int delta)402  static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
403  {
404  	frag->len -= delta;
405  }
406  
407  /**
408   * skb_frag_must_loop - Test if %p is a high memory page
409   * @p: fragment's page
410   */
skb_frag_must_loop(struct page * p)411  static inline bool skb_frag_must_loop(struct page *p)
412  {
413  #if defined(CONFIG_HIGHMEM)
414  	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
415  		return true;
416  #endif
417  	return false;
418  }
419  
420  /**
421   *	skb_frag_foreach_page - loop over pages in a fragment
422   *
423   *	@f:		skb frag to operate on
424   *	@f_off:		offset from start of f->netmem
425   *	@f_len:		length from f_off to loop over
426   *	@p:		(temp var) current page
427   *	@p_off:		(temp var) offset from start of current page,
428   *	                           non-zero only on first page.
429   *	@p_len:		(temp var) length in current page,
430   *				   < PAGE_SIZE only on first and last page.
431   *	@copied:	(temp var) length so far, excluding current p_len.
432   *
433   *	A fragment can hold a compound page, in which case per-page
434   *	operations, notably kmap_atomic, must be called for each
435   *	regular page.
436   */
437  #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
438  	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
439  	     p_off = (f_off) & (PAGE_SIZE - 1),				\
440  	     p_len = skb_frag_must_loop(p) ?				\
441  	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
442  	     copied = 0;						\
443  	     copied < f_len;						\
444  	     copied += p_len, p++, p_off = 0,				\
445  	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
446  
447  /**
448   * struct skb_shared_hwtstamps - hardware time stamps
449   * @hwtstamp:		hardware time stamp transformed into duration
450   *			since arbitrary point in time
451   * @netdev_data:	address/cookie of network device driver used as
452   *			reference to actual hardware time stamp
453   *
454   * Software time stamps generated by ktime_get_real() are stored in
455   * skb->tstamp.
456   *
457   * hwtstamps can only be compared against other hwtstamps from
458   * the same device.
459   *
460   * This structure is attached to packets as part of the
461   * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
462   */
463  struct skb_shared_hwtstamps {
464  	union {
465  		ktime_t	hwtstamp;
466  		void *netdev_data;
467  	};
468  };
469  
470  /* Definitions for tx_flags in struct skb_shared_info */
471  enum {
472  	/* generate hardware time stamp */
473  	SKBTX_HW_TSTAMP_NOBPF = 1 << 0,
474  
475  	/* generate software time stamp when queueing packet to NIC */
476  	SKBTX_SW_TSTAMP = 1 << 1,
477  
478  	/* device driver is going to provide hardware time stamp */
479  	SKBTX_IN_PROGRESS = 1 << 2,
480  
481  	/* generate software time stamp on packet tx completion */
482  	SKBTX_COMPLETION_TSTAMP = 1 << 3,
483  
484  	/* generate wifi status information (where possible) */
485  	SKBTX_WIFI_STATUS = 1 << 4,
486  
487  	/* determine hardware time stamp based on time or cycles */
488  	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
489  
490  	/* generate software time stamp when entering packet scheduling */
491  	SKBTX_SCHED_TSTAMP = 1 << 6,
492  
493  	/* used for bpf extension when a bpf program is loaded */
494  	SKBTX_BPF = 1 << 7,
495  };
496  
497  #define SKBTX_HW_TSTAMP		(SKBTX_HW_TSTAMP_NOBPF | SKBTX_BPF)
498  
499  #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
500  				 SKBTX_SCHED_TSTAMP | \
501  				 SKBTX_BPF          | \
502  				 SKBTX_COMPLETION_TSTAMP)
503  #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
504  				 SKBTX_ANY_SW_TSTAMP)
505  
506  /* Definitions for flags in struct skb_shared_info */
507  enum {
508  	/* use zcopy routines */
509  	SKBFL_ZEROCOPY_ENABLE = BIT(0),
510  
511  	/* This indicates at least one fragment might be overwritten
512  	 * (as in vmsplice(), sendfile() ...)
513  	 * If we need to compute a TX checksum, we'll need to copy
514  	 * all frags to avoid possible bad checksum
515  	 */
516  	SKBFL_SHARED_FRAG = BIT(1),
517  
518  	/* segment contains only zerocopy data and should not be
519  	 * charged to the kernel memory.
520  	 */
521  	SKBFL_PURE_ZEROCOPY = BIT(2),
522  
523  	SKBFL_DONT_ORPHAN = BIT(3),
524  
525  	/* page references are managed by the ubuf_info, so it's safe to
526  	 * use frags only up until ubuf_info is released
527  	 */
528  	SKBFL_MANAGED_FRAG_REFS = BIT(4),
529  };
530  
531  #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
532  #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
533  				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
534  
535  struct ubuf_info_ops {
536  	void (*complete)(struct sk_buff *, struct ubuf_info *,
537  			 bool zerocopy_success);
538  	/* has to be compatible with skb_zcopy_set() */
539  	int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg);
540  };
541  
542  /*
543   * The callback notifies userspace to release buffers when skb DMA is done in
544   * lower device, the skb last reference should be 0 when calling this.
545   * The zerocopy_success argument is true if zero copy transmit occurred,
546   * false on data copy or out of memory error caused by data copy attempt.
547   * The ctx field is used to track device context.
548   * The desc field is used to track userspace buffer index.
549   */
550  struct ubuf_info {
551  	const struct ubuf_info_ops *ops;
552  	refcount_t refcnt;
553  	u8 flags;
554  };
555  
556  struct ubuf_info_msgzc {
557  	struct ubuf_info ubuf;
558  
559  	union {
560  		struct {
561  			unsigned long desc;
562  			void *ctx;
563  		};
564  		struct {
565  			u32 id;
566  			u16 len;
567  			u16 zerocopy:1;
568  			u32 bytelen;
569  		};
570  	};
571  
572  	struct mmpin {
573  		struct user_struct *user;
574  		unsigned int num_pg;
575  	} mmp;
576  };
577  
578  #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
579  #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
580  					     ubuf)
581  
582  int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
583  void mm_unaccount_pinned_pages(struct mmpin *mmp);
584  
585  /* Preserve some data across TX submission and completion.
586   *
587   * Note, this state is stored in the driver. Extending the layout
588   * might need some special care.
589   */
590  struct xsk_tx_metadata_compl {
591  	__u64 *tx_timestamp;
592  };
593  
594  /* This data is invariant across clones and lives at
595   * the end of the header data, ie. at skb->end.
596   */
597  struct skb_shared_info {
598  	__u8		flags;
599  	__u8		meta_len;
600  	__u8		nr_frags;
601  	__u8		tx_flags;
602  	unsigned short	gso_size;
603  	/* Warning: this field is not always filled in (UFO)! */
604  	unsigned short	gso_segs;
605  	struct sk_buff	*frag_list;
606  	union {
607  		struct skb_shared_hwtstamps hwtstamps;
608  		struct xsk_tx_metadata_compl xsk_meta;
609  	};
610  	unsigned int	gso_type;
611  	u32		tskey;
612  
613  	/*
614  	 * Warning : all fields before dataref are cleared in __alloc_skb()
615  	 */
616  	atomic_t	dataref;
617  
618  	union {
619  		struct {
620  			u32		xdp_frags_size;
621  			u32		xdp_frags_truesize;
622  		};
623  
624  		/*
625  		 * Intermediate layers must ensure that destructor_arg
626  		 * remains valid until skb destructor.
627  		 */
628  		void		*destructor_arg;
629  	};
630  
631  	/* must be last field, see pskb_expand_head() */
632  	skb_frag_t	frags[MAX_SKB_FRAGS];
633  };
634  
635  /**
636   * DOC: dataref and headerless skbs
637   *
638   * Transport layers send out clones of payload skbs they hold for
639   * retransmissions. To allow lower layers of the stack to prepend their headers
640   * we split &skb_shared_info.dataref into two halves.
641   * The lower 16 bits count the overall number of references.
642   * The higher 16 bits indicate how many of the references are payload-only.
643   * skb_header_cloned() checks if skb is allowed to add / write the headers.
644   *
645   * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
646   * (via __skb_header_release()). Any clone created from marked skb will get
647   * &sk_buff.hdr_len populated with the available headroom.
648   * If there's the only clone in existence it's able to modify the headroom
649   * at will. The sequence of calls inside the transport layer is::
650   *
651   *  <alloc skb>
652   *  skb_reserve()
653   *  __skb_header_release()
654   *  skb_clone()
655   *  // send the clone down the stack
656   *
657   * This is not a very generic construct and it depends on the transport layers
658   * doing the right thing. In practice there's usually only one payload-only skb.
659   * Having multiple payload-only skbs with different lengths of hdr_len is not
660   * possible. The payload-only skbs should never leave their owner.
661   */
662  #define SKB_DATAREF_SHIFT 16
663  #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
664  
665  
666  enum {
667  	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
668  	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
669  	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
670  };
671  
672  enum {
673  	SKB_GSO_TCPV4 = 1 << 0,
674  
675  	/* This indicates the skb is from an untrusted source. */
676  	SKB_GSO_DODGY = 1 << 1,
677  
678  	/* This indicates the tcp segment has CWR set. */
679  	SKB_GSO_TCP_ECN = 1 << 2,
680  
681  	SKB_GSO_TCP_FIXEDID = 1 << 3,
682  
683  	SKB_GSO_TCPV6 = 1 << 4,
684  
685  	SKB_GSO_FCOE = 1 << 5,
686  
687  	SKB_GSO_GRE = 1 << 6,
688  
689  	SKB_GSO_GRE_CSUM = 1 << 7,
690  
691  	SKB_GSO_IPXIP4 = 1 << 8,
692  
693  	SKB_GSO_IPXIP6 = 1 << 9,
694  
695  	SKB_GSO_UDP_TUNNEL = 1 << 10,
696  
697  	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
698  
699  	SKB_GSO_PARTIAL = 1 << 12,
700  
701  	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
702  
703  	SKB_GSO_SCTP = 1 << 14,
704  
705  	SKB_GSO_ESP = 1 << 15,
706  
707  	SKB_GSO_UDP = 1 << 16,
708  
709  	SKB_GSO_UDP_L4 = 1 << 17,
710  
711  	SKB_GSO_FRAGLIST = 1 << 18,
712  
713  	SKB_GSO_TCP_ACCECN = 1 << 19,
714  };
715  
716  #if BITS_PER_LONG > 32
717  #define NET_SKBUFF_DATA_USES_OFFSET 1
718  #endif
719  
720  #ifdef NET_SKBUFF_DATA_USES_OFFSET
721  typedef unsigned int sk_buff_data_t;
722  #else
723  typedef unsigned char *sk_buff_data_t;
724  #endif
725  
726  enum skb_tstamp_type {
727  	SKB_CLOCK_REALTIME,
728  	SKB_CLOCK_MONOTONIC,
729  	SKB_CLOCK_TAI,
730  	__SKB_CLOCK_MAX = SKB_CLOCK_TAI,
731  };
732  
733  /**
734   * DOC: Basic sk_buff geometry
735   *
736   * struct sk_buff itself is a metadata structure and does not hold any packet
737   * data. All the data is held in associated buffers.
738   *
739   * &sk_buff.head points to the main "head" buffer. The head buffer is divided
740   * into two parts:
741   *
742   *  - data buffer, containing headers and sometimes payload;
743   *    this is the part of the skb operated on by the common helpers
744   *    such as skb_put() or skb_pull();
745   *  - shared info (struct skb_shared_info) which holds an array of pointers
746   *    to read-only data in the (page, offset, length) format.
747   *
748   * Optionally &skb_shared_info.frag_list may point to another skb.
749   *
750   * Basic diagram may look like this::
751   *
752   *                                  ---------------
753   *                                 | sk_buff       |
754   *                                  ---------------
755   *     ,---------------------------  + head
756   *    /          ,-----------------  + data
757   *   /          /      ,-----------  + tail
758   *  |          |      |            , + end
759   *  |          |      |           |
760   *  v          v      v           v
761   *   -----------------------------------------------
762   *  | headroom | data |  tailroom | skb_shared_info |
763   *   -----------------------------------------------
764   *                                 + [page frag]
765   *                                 + [page frag]
766   *                                 + [page frag]
767   *                                 + [page frag]       ---------
768   *                                 + frag_list    --> | sk_buff |
769   *                                                     ---------
770   *
771   */
772  
773  /**
774   *	struct sk_buff - socket buffer
775   *	@next: Next buffer in list
776   *	@prev: Previous buffer in list
777   *	@tstamp: Time we arrived/left
778   *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
779   *		for retransmit timer
780   *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
781   *	@list: queue head
782   *	@ll_node: anchor in an llist (eg socket defer_list)
783   *	@sk: Socket we are owned by
784   *	@dev: Device we arrived on/are leaving by
785   *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
786   *	@cb: Control buffer. Free for use by every layer. Put private vars here
787   *	@_skb_refdst: destination entry (with norefcount bit)
788   *	@len: Length of actual data
789   *	@data_len: Data length
790   *	@mac_len: Length of link layer header
791   *	@hdr_len: writable header length of cloned skb
792   *	@csum: Checksum (must include start/offset pair)
793   *	@csum_start: Offset from skb->head where checksumming should start
794   *	@csum_offset: Offset from csum_start where checksum should be stored
795   *	@priority: Packet queueing priority
796   *	@ignore_df: allow local fragmentation
797   *	@cloned: Head may be cloned (check refcnt to be sure)
798   *	@ip_summed: Driver fed us an IP checksum
799   *	@nohdr: Payload reference only, must not modify header
800   *	@pkt_type: Packet class
801   *	@fclone: skbuff clone status
802   *	@ipvs_property: skbuff is owned by ipvs
803   *	@inner_protocol_type: whether the inner protocol is
804   *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
805   *	@remcsum_offload: remote checksum offload is enabled
806   *	@offload_fwd_mark: Packet was L2-forwarded in hardware
807   *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
808   *	@tc_skip_classify: do not classify packet. set by IFB device
809   *	@tc_at_ingress: used within tc_classify to distinguish in/egress
810   *	@redirected: packet was redirected by packet classifier
811   *	@from_ingress: packet was redirected from the ingress path
812   *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
813   *	@peeked: this packet has been seen already, so stats have been
814   *		done for it, don't do them again
815   *	@nf_trace: netfilter packet trace flag
816   *	@protocol: Packet protocol from driver
817   *	@destructor: Destruct function
818   *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
819   *	@_sk_redir: socket redirection information for skmsg
820   *	@_nfct: Associated connection, if any (with nfctinfo bits)
821   *	@skb_iif: ifindex of device we arrived on
822   *	@tc_index: Traffic control index
823   *	@hash: the packet hash
824   *	@queue_mapping: Queue mapping for multiqueue devices
825   *	@head_frag: skb was allocated from page fragments,
826   *		not allocated by kmalloc() or vmalloc().
827   *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
828   *	@pp_recycle: mark the packet for recycling instead of freeing (implies
829   *		page_pool support on driver)
830   *	@active_extensions: active extensions (skb_ext_id types)
831   *	@ndisc_nodetype: router type (from link layer)
832   *	@ooo_okay: allow the mapping of a socket to a queue to be changed
833   *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
834   *		ports.
835   *	@sw_hash: indicates hash was computed in software stack
836   *	@wifi_acked_valid: wifi_acked was set
837   *	@wifi_acked: whether frame was acked on wifi or not
838   *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
839   *	@encapsulation: indicates the inner headers in the skbuff are valid
840   *	@encap_hdr_csum: software checksum is needed
841   *	@csum_valid: checksum is already valid
842   *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
843   *	@csum_complete_sw: checksum was completed by software
844   *	@csum_level: indicates the number of consecutive checksums found in
845   *		the packet minus one that have been verified as
846   *		CHECKSUM_UNNECESSARY (max 3)
847   *	@unreadable: indicates that at least 1 of the fragments in this skb is
848   *		unreadable.
849   *	@dst_pending_confirm: need to confirm neighbour
850   *	@decrypted: Decrypted SKB
851   *	@slow_gro: state present at GRO time, slower prepare step required
852   *	@tstamp_type: When set, skb->tstamp has the
853   *		delivery_time clock base of skb->tstamp.
854   *	@napi_id: id of the NAPI struct this skb came from
855   *	@sender_cpu: (aka @napi_id) source CPU in XPS
856   *	@alloc_cpu: CPU which did the skb allocation.
857   *	@secmark: security marking
858   *	@mark: Generic packet mark
859   *	@reserved_tailroom: (aka @mark) number of bytes of free space available
860   *		at the tail of an sk_buff
861   *	@vlan_all: vlan fields (proto & tci)
862   *	@vlan_proto: vlan encapsulation protocol
863   *	@vlan_tci: vlan tag control information
864   *	@inner_protocol: Protocol (encapsulation)
865   *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
866   *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
867   *	@inner_transport_header: Inner transport layer header (encapsulation)
868   *	@inner_network_header: Network layer header (encapsulation)
869   *	@inner_mac_header: Link layer header (encapsulation)
870   *	@transport_header: Transport layer header
871   *	@network_header: Network layer header
872   *	@mac_header: Link layer header
873   *	@kcov_handle: KCOV remote handle for remote coverage collection
874   *	@tail: Tail pointer
875   *	@end: End pointer
876   *	@head: Head of buffer
877   *	@data: Data head pointer
878   *	@truesize: Buffer size
879   *	@users: User count - see {datagram,tcp}.c
880   *	@extensions: allocated extensions, valid if active_extensions is nonzero
881   */
882  
883  struct sk_buff {
884  	union {
885  		struct {
886  			/* These two members must be first to match sk_buff_head. */
887  			struct sk_buff		*next;
888  			struct sk_buff		*prev;
889  
890  			union {
891  				struct net_device	*dev;
892  				/* Some protocols might use this space to store information,
893  				 * while device pointer would be NULL.
894  				 * UDP receive path is one user.
895  				 */
896  				unsigned long		dev_scratch;
897  			};
898  		};
899  		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
900  		struct list_head	list;
901  		struct llist_node	ll_node;
902  	};
903  
904  	struct sock		*sk;
905  
906  	union {
907  		ktime_t		tstamp;
908  		u64		skb_mstamp_ns; /* earliest departure time */
909  	};
910  	/*
911  	 * This is the control buffer. It is free to use for every
912  	 * layer. Please put your private variables there. If you
913  	 * want to keep them across layers you have to do a skb_clone()
914  	 * first. This is owned by whoever has the skb queued ATM.
915  	 */
916  	char			cb[48] __aligned(8);
917  
918  	union {
919  		struct {
920  			unsigned long	_skb_refdst;
921  			void		(*destructor)(struct sk_buff *skb);
922  		};
923  		struct list_head	tcp_tsorted_anchor;
924  #ifdef CONFIG_NET_SOCK_MSG
925  		unsigned long		_sk_redir;
926  #endif
927  	};
928  
929  #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
930  	unsigned long		 _nfct;
931  #endif
932  	unsigned int		len,
933  				data_len;
934  	__u16			mac_len,
935  				hdr_len;
936  
937  	/* Following fields are _not_ copied in __copy_skb_header()
938  	 * Note that queue_mapping is here mostly to fill a hole.
939  	 */
940  	__u16			queue_mapping;
941  
942  /* if you move cloned around you also must adapt those constants */
943  #ifdef __BIG_ENDIAN_BITFIELD
944  #define CLONED_MASK	(1 << 7)
945  #else
946  #define CLONED_MASK	1
947  #endif
948  #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
949  
950  	/* private: */
951  	__u8			__cloned_offset[0];
952  	/* public: */
953  	__u8			cloned:1,
954  				nohdr:1,
955  				fclone:2,
956  				peeked:1,
957  				head_frag:1,
958  				pfmemalloc:1,
959  				pp_recycle:1; /* page_pool recycle indicator */
960  #ifdef CONFIG_SKB_EXTENSIONS
961  	__u8			active_extensions;
962  #endif
963  
964  	/* Fields enclosed in headers group are copied
965  	 * using a single memcpy() in __copy_skb_header()
966  	 */
967  	struct_group(headers,
968  
969  	/* private: */
970  	__u8			__pkt_type_offset[0];
971  	/* public: */
972  	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
973  	__u8			ignore_df:1;
974  	__u8			dst_pending_confirm:1;
975  	__u8			ip_summed:2;
976  	__u8			ooo_okay:1;
977  
978  	/* private: */
979  	__u8			__mono_tc_offset[0];
980  	/* public: */
981  	__u8			tstamp_type:2;	/* See skb_tstamp_type */
982  #ifdef CONFIG_NET_XGRESS
983  	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
984  	__u8			tc_skip_classify:1;
985  #endif
986  	__u8			remcsum_offload:1;
987  	__u8			csum_complete_sw:1;
988  	__u8			csum_level:2;
989  	__u8			inner_protocol_type:1;
990  
991  	__u8			l4_hash:1;
992  	__u8			sw_hash:1;
993  #ifdef CONFIG_WIRELESS
994  	__u8			wifi_acked_valid:1;
995  	__u8			wifi_acked:1;
996  #endif
997  	__u8			no_fcs:1;
998  	/* Indicates the inner headers are valid in the skbuff. */
999  	__u8			encapsulation:1;
1000  	__u8			encap_hdr_csum:1;
1001  	__u8			csum_valid:1;
1002  #ifdef CONFIG_IPV6_NDISC_NODETYPE
1003  	__u8			ndisc_nodetype:2;
1004  #endif
1005  
1006  #if IS_ENABLED(CONFIG_IP_VS)
1007  	__u8			ipvs_property:1;
1008  #endif
1009  #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
1010  	__u8			nf_trace:1;
1011  #endif
1012  #ifdef CONFIG_NET_SWITCHDEV
1013  	__u8			offload_fwd_mark:1;
1014  	__u8			offload_l3_fwd_mark:1;
1015  #endif
1016  	__u8			redirected:1;
1017  #ifdef CONFIG_NET_REDIRECT
1018  	__u8			from_ingress:1;
1019  #endif
1020  #ifdef CONFIG_NETFILTER_SKIP_EGRESS
1021  	__u8			nf_skip_egress:1;
1022  #endif
1023  #ifdef CONFIG_SKB_DECRYPTED
1024  	__u8			decrypted:1;
1025  #endif
1026  	__u8			slow_gro:1;
1027  #if IS_ENABLED(CONFIG_IP_SCTP)
1028  	__u8			csum_not_inet:1;
1029  #endif
1030  	__u8			unreadable:1;
1031  #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
1032  	__u16			tc_index;	/* traffic control index */
1033  #endif
1034  
1035  	u16			alloc_cpu;
1036  
1037  	union {
1038  		__wsum		csum;
1039  		struct {
1040  			__u16	csum_start;
1041  			__u16	csum_offset;
1042  		};
1043  	};
1044  	__u32			priority;
1045  	int			skb_iif;
1046  	__u32			hash;
1047  	union {
1048  		u32		vlan_all;
1049  		struct {
1050  			__be16	vlan_proto;
1051  			__u16	vlan_tci;
1052  		};
1053  	};
1054  #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1055  	union {
1056  		unsigned int	napi_id;
1057  		unsigned int	sender_cpu;
1058  	};
1059  #endif
1060  #ifdef CONFIG_NETWORK_SECMARK
1061  	__u32		secmark;
1062  #endif
1063  
1064  	union {
1065  		__u32		mark;
1066  		__u32		reserved_tailroom;
1067  	};
1068  
1069  	union {
1070  		__be16		inner_protocol;
1071  		__u8		inner_ipproto;
1072  	};
1073  
1074  	__u16			inner_transport_header;
1075  	__u16			inner_network_header;
1076  	__u16			inner_mac_header;
1077  
1078  	__be16			protocol;
1079  	__u16			transport_header;
1080  	__u16			network_header;
1081  	__u16			mac_header;
1082  
1083  #ifdef CONFIG_KCOV
1084  	u64			kcov_handle;
1085  #endif
1086  
1087  	); /* end headers group */
1088  
1089  	/* These elements must be at the end, see alloc_skb() for details.  */
1090  	sk_buff_data_t		tail;
1091  	sk_buff_data_t		end;
1092  	unsigned char		*head,
1093  				*data;
1094  	unsigned int		truesize;
1095  	refcount_t		users;
1096  
1097  #ifdef CONFIG_SKB_EXTENSIONS
1098  	/* only usable after checking ->active_extensions != 0 */
1099  	struct skb_ext		*extensions;
1100  #endif
1101  };
1102  
1103  /* if you move pkt_type around you also must adapt those constants */
1104  #ifdef __BIG_ENDIAN_BITFIELD
1105  #define PKT_TYPE_MAX	(7 << 5)
1106  #else
1107  #define PKT_TYPE_MAX	7
1108  #endif
1109  #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1110  
1111  /* if you move tc_at_ingress or tstamp_type
1112   * around, you also must adapt these constants.
1113   */
1114  #ifdef __BIG_ENDIAN_BITFIELD
1115  #define SKB_TSTAMP_TYPE_MASK		(3 << 6)
1116  #define SKB_TSTAMP_TYPE_RSHIFT		(6)
1117  #define TC_AT_INGRESS_MASK		(1 << 5)
1118  #else
1119  #define SKB_TSTAMP_TYPE_MASK		(3)
1120  #define TC_AT_INGRESS_MASK		(1 << 2)
1121  #endif
1122  #define SKB_BF_MONO_TC_OFFSET		offsetof(struct sk_buff, __mono_tc_offset)
1123  
1124  #ifdef __KERNEL__
1125  /*
1126   *	Handling routines are only of interest to the kernel
1127   */
1128  
1129  #define SKB_ALLOC_FCLONE	0x01
1130  #define SKB_ALLOC_RX		0x02
1131  #define SKB_ALLOC_NAPI		0x04
1132  
1133  /**
1134   * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1135   * @skb: buffer
1136   */
skb_pfmemalloc(const struct sk_buff * skb)1137  static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1138  {
1139  	return unlikely(skb->pfmemalloc);
1140  }
1141  
1142  /*
1143   * skb might have a dst pointer attached, refcounted or not.
1144   * _skb_refdst low order bit is set if refcount was _not_ taken
1145   */
1146  #define SKB_DST_NOREF	1UL
1147  #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1148  
1149  /**
1150   * skb_dst - returns skb dst_entry
1151   * @skb: buffer
1152   *
1153   * Returns: skb dst_entry, regardless of reference taken or not.
1154   */
skb_dst(const struct sk_buff * skb)1155  static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1156  {
1157  	/* If refdst was not refcounted, check we still are in a
1158  	 * rcu_read_lock section
1159  	 */
1160  	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1161  		!rcu_read_lock_held() &&
1162  		!rcu_read_lock_bh_held());
1163  	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1164  }
1165  
1166  /**
1167   * skb_dst_set - sets skb dst
1168   * @skb: buffer
1169   * @dst: dst entry
1170   *
1171   * Sets skb dst, assuming a reference was taken on dst and should
1172   * be released by skb_dst_drop()
1173   */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)1174  static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1175  {
1176  	skb->slow_gro |= !!dst;
1177  	skb->_skb_refdst = (unsigned long)dst;
1178  }
1179  
1180  /**
1181   * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1182   * @skb: buffer
1183   * @dst: dst entry
1184   *
1185   * Sets skb dst, assuming a reference was not taken on dst.
1186   * If dst entry is cached, we do not take reference and dst_release
1187   * will be avoided by refdst_drop. If dst entry is not cached, we take
1188   * reference, so that last dst_release can destroy the dst immediately.
1189   */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)1190  static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1191  {
1192  	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1193  	skb->slow_gro |= !!dst;
1194  	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1195  }
1196  
1197  /**
1198   * skb_dst_is_noref - Test if skb dst isn't refcounted
1199   * @skb: buffer
1200   */
skb_dst_is_noref(const struct sk_buff * skb)1201  static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1202  {
1203  	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1204  }
1205  
1206  /* For mangling skb->pkt_type from user space side from applications
1207   * such as nft, tc, etc, we only allow a conservative subset of
1208   * possible pkt_types to be set.
1209  */
skb_pkt_type_ok(u32 ptype)1210  static inline bool skb_pkt_type_ok(u32 ptype)
1211  {
1212  	return ptype <= PACKET_OTHERHOST;
1213  }
1214  
1215  /**
1216   * skb_napi_id - Returns the skb's NAPI id
1217   * @skb: buffer
1218   */
skb_napi_id(const struct sk_buff * skb)1219  static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1220  {
1221  #ifdef CONFIG_NET_RX_BUSY_POLL
1222  	return skb->napi_id;
1223  #else
1224  	return 0;
1225  #endif
1226  }
1227  
skb_wifi_acked_valid(const struct sk_buff * skb)1228  static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1229  {
1230  #ifdef CONFIG_WIRELESS
1231  	return skb->wifi_acked_valid;
1232  #else
1233  	return 0;
1234  #endif
1235  }
1236  
1237  /**
1238   * skb_unref - decrement the skb's reference count
1239   * @skb: buffer
1240   *
1241   * Returns: true if we can free the skb.
1242   */
skb_unref(struct sk_buff * skb)1243  static inline bool skb_unref(struct sk_buff *skb)
1244  {
1245  	if (unlikely(!skb))
1246  		return false;
1247  	if (!IS_ENABLED(CONFIG_DEBUG_NET) && likely(refcount_read(&skb->users) == 1))
1248  		smp_rmb();
1249  	else if (likely(!refcount_dec_and_test(&skb->users)))
1250  		return false;
1251  
1252  	return true;
1253  }
1254  
skb_data_unref(const struct sk_buff * skb,struct skb_shared_info * shinfo)1255  static inline bool skb_data_unref(const struct sk_buff *skb,
1256  				  struct skb_shared_info *shinfo)
1257  {
1258  	int bias;
1259  
1260  	if (!skb->cloned)
1261  		return true;
1262  
1263  	bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
1264  
1265  	if (atomic_read(&shinfo->dataref) == bias)
1266  		smp_rmb();
1267  	else if (atomic_sub_return(bias, &shinfo->dataref))
1268  		return false;
1269  
1270  	return true;
1271  }
1272  
1273  void __fix_address sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1274  				      enum skb_drop_reason reason);
1275  
1276  static inline void
kfree_skb_reason(struct sk_buff * skb,enum skb_drop_reason reason)1277  kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1278  {
1279  	sk_skb_reason_drop(NULL, skb, reason);
1280  }
1281  
1282  /**
1283   *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1284   *	@skb: buffer to free
1285   */
kfree_skb(struct sk_buff * skb)1286  static inline void kfree_skb(struct sk_buff *skb)
1287  {
1288  	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1289  }
1290  
1291  void skb_release_head_state(struct sk_buff *skb);
1292  void kfree_skb_list_reason(struct sk_buff *segs,
1293  			   enum skb_drop_reason reason);
1294  void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1295  void skb_tx_error(struct sk_buff *skb);
1296  
kfree_skb_list(struct sk_buff * segs)1297  static inline void kfree_skb_list(struct sk_buff *segs)
1298  {
1299  	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1300  }
1301  
1302  #ifdef CONFIG_TRACEPOINTS
1303  void consume_skb(struct sk_buff *skb);
1304  #else
consume_skb(struct sk_buff * skb)1305  static inline void consume_skb(struct sk_buff *skb)
1306  {
1307  	return kfree_skb(skb);
1308  }
1309  #endif
1310  
1311  void __consume_stateless_skb(struct sk_buff *skb);
1312  void  __kfree_skb(struct sk_buff *skb);
1313  
1314  void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1315  bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1316  		      bool *fragstolen, int *delta_truesize);
1317  
1318  struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1319  			    int node);
1320  struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1321  struct sk_buff *build_skb(void *data, unsigned int frag_size);
1322  struct sk_buff *build_skb_around(struct sk_buff *skb,
1323  				 void *data, unsigned int frag_size);
1324  void skb_attempt_defer_free(struct sk_buff *skb);
1325  
1326  u32 napi_skb_cache_get_bulk(void **skbs, u32 n);
1327  struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1328  struct sk_buff *slab_build_skb(void *data);
1329  
1330  /**
1331   * alloc_skb - allocate a network buffer
1332   * @size: size to allocate
1333   * @priority: allocation mask
1334   *
1335   * This function is a convenient wrapper around __alloc_skb().
1336   */
alloc_skb(unsigned int size,gfp_t priority)1337  static inline struct sk_buff *alloc_skb(unsigned int size,
1338  					gfp_t priority)
1339  {
1340  	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1341  }
1342  
1343  struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1344  				     unsigned long data_len,
1345  				     int max_page_order,
1346  				     int *errcode,
1347  				     gfp_t gfp_mask);
1348  struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1349  
1350  /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1351  struct sk_buff_fclones {
1352  	struct sk_buff	skb1;
1353  
1354  	struct sk_buff	skb2;
1355  
1356  	refcount_t	fclone_ref;
1357  };
1358  
1359  /**
1360   *	skb_fclone_busy - check if fclone is busy
1361   *	@sk: socket
1362   *	@skb: buffer
1363   *
1364   * Returns: true if skb is a fast clone, and its clone is not freed.
1365   * Some drivers call skb_orphan() in their ndo_start_xmit(),
1366   * so we also check that didn't happen.
1367   */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1368  static inline bool skb_fclone_busy(const struct sock *sk,
1369  				   const struct sk_buff *skb)
1370  {
1371  	const struct sk_buff_fclones *fclones;
1372  
1373  	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1374  
1375  	return skb->fclone == SKB_FCLONE_ORIG &&
1376  	       refcount_read(&fclones->fclone_ref) > 1 &&
1377  	       READ_ONCE(fclones->skb2.sk) == sk;
1378  }
1379  
1380  /**
1381   * alloc_skb_fclone - allocate a network buffer from fclone cache
1382   * @size: size to allocate
1383   * @priority: allocation mask
1384   *
1385   * This function is a convenient wrapper around __alloc_skb().
1386   */
alloc_skb_fclone(unsigned int size,gfp_t priority)1387  static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1388  					       gfp_t priority)
1389  {
1390  	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1391  }
1392  
1393  struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1394  void skb_headers_offset_update(struct sk_buff *skb, int off);
1395  int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1396  struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1397  void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1398  struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1399  struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1400  				   gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1401  static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1402  					  gfp_t gfp_mask)
1403  {
1404  	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1405  }
1406  
1407  int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1408  struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1409  				     unsigned int headroom);
1410  struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1411  struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1412  				int newtailroom, gfp_t priority);
1413  int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1414  				     int offset, int len);
1415  int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1416  			      int offset, int len);
1417  int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1418  int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1419  
1420  /**
1421   *	skb_pad			-	zero pad the tail of an skb
1422   *	@skb: buffer to pad
1423   *	@pad: space to pad
1424   *
1425   *	Ensure that a buffer is followed by a padding area that is zero
1426   *	filled. Used by network drivers which may DMA or transfer data
1427   *	beyond the buffer end onto the wire.
1428   *
1429   *	May return error in out of memory cases. The skb is freed on error.
1430   */
skb_pad(struct sk_buff * skb,int pad)1431  static inline int skb_pad(struct sk_buff *skb, int pad)
1432  {
1433  	return __skb_pad(skb, pad, true);
1434  }
1435  #define dev_kfree_skb(a)	consume_skb(a)
1436  
1437  int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1438  			 int offset, size_t size, size_t max_frags);
1439  
1440  struct skb_seq_state {
1441  	__u32		lower_offset;
1442  	__u32		upper_offset;
1443  	__u32		frag_idx;
1444  	__u32		stepped_offset;
1445  	struct sk_buff	*root_skb;
1446  	struct sk_buff	*cur_skb;
1447  	__u8		*frag_data;
1448  	__u32		frag_off;
1449  };
1450  
1451  void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1452  			  unsigned int to, struct skb_seq_state *st);
1453  unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1454  			  struct skb_seq_state *st);
1455  void skb_abort_seq_read(struct skb_seq_state *st);
1456  int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len);
1457  
1458  unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1459  			   unsigned int to, struct ts_config *config);
1460  
1461  /*
1462   * Packet hash types specify the type of hash in skb_set_hash.
1463   *
1464   * Hash types refer to the protocol layer addresses which are used to
1465   * construct a packet's hash. The hashes are used to differentiate or identify
1466   * flows of the protocol layer for the hash type. Hash types are either
1467   * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1468   *
1469   * Properties of hashes:
1470   *
1471   * 1) Two packets in different flows have different hash values
1472   * 2) Two packets in the same flow should have the same hash value
1473   *
1474   * A hash at a higher layer is considered to be more specific. A driver should
1475   * set the most specific hash possible.
1476   *
1477   * A driver cannot indicate a more specific hash than the layer at which a hash
1478   * was computed. For instance an L3 hash cannot be set as an L4 hash.
1479   *
1480   * A driver may indicate a hash level which is less specific than the
1481   * actual layer the hash was computed on. For instance, a hash computed
1482   * at L4 may be considered an L3 hash. This should only be done if the
1483   * driver can't unambiguously determine that the HW computed the hash at
1484   * the higher layer. Note that the "should" in the second property above
1485   * permits this.
1486   */
1487  enum pkt_hash_types {
1488  	PKT_HASH_TYPE_NONE,	/* Undefined type */
1489  	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1490  	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1491  	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1492  };
1493  
skb_clear_hash(struct sk_buff * skb)1494  static inline void skb_clear_hash(struct sk_buff *skb)
1495  {
1496  	skb->hash = 0;
1497  	skb->sw_hash = 0;
1498  	skb->l4_hash = 0;
1499  }
1500  
skb_clear_hash_if_not_l4(struct sk_buff * skb)1501  static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1502  {
1503  	if (!skb->l4_hash)
1504  		skb_clear_hash(skb);
1505  }
1506  
1507  static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1508  __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1509  {
1510  	skb->l4_hash = is_l4;
1511  	skb->sw_hash = is_sw;
1512  	skb->hash = hash;
1513  }
1514  
1515  static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1516  skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1517  {
1518  	/* Used by drivers to set hash from HW */
1519  	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1520  }
1521  
1522  static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1523  __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1524  {
1525  	__skb_set_hash(skb, hash, true, is_l4);
1526  }
1527  
1528  u32 __skb_get_hash_symmetric_net(const struct net *net, const struct sk_buff *skb);
1529  
__skb_get_hash_symmetric(const struct sk_buff * skb)1530  static inline u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1531  {
1532  	return __skb_get_hash_symmetric_net(NULL, skb);
1533  }
1534  
1535  void __skb_get_hash_net(const struct net *net, struct sk_buff *skb);
1536  u32 skb_get_poff(const struct sk_buff *skb);
1537  u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1538  		   const struct flow_keys_basic *keys, int hlen);
1539  __be32 skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1540  			  const void *data, int hlen_proto);
1541  
1542  void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1543  			     const struct flow_dissector_key *key,
1544  			     unsigned int key_count);
1545  
1546  struct bpf_flow_dissector;
1547  u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1548  		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1549  
1550  bool __skb_flow_dissect(const struct net *net,
1551  			const struct sk_buff *skb,
1552  			struct flow_dissector *flow_dissector,
1553  			void *target_container, const void *data,
1554  			__be16 proto, int nhoff, int hlen, unsigned int flags);
1555  
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1556  static inline bool skb_flow_dissect(const struct sk_buff *skb,
1557  				    struct flow_dissector *flow_dissector,
1558  				    void *target_container, unsigned int flags)
1559  {
1560  	return __skb_flow_dissect(NULL, skb, flow_dissector,
1561  				  target_container, NULL, 0, 0, 0, flags);
1562  }
1563  
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1564  static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1565  					      struct flow_keys *flow,
1566  					      unsigned int flags)
1567  {
1568  	memset(flow, 0, sizeof(*flow));
1569  	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1570  				  flow, NULL, 0, 0, 0, flags);
1571  }
1572  
1573  static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,const void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1574  skb_flow_dissect_flow_keys_basic(const struct net *net,
1575  				 const struct sk_buff *skb,
1576  				 struct flow_keys_basic *flow,
1577  				 const void *data, __be16 proto,
1578  				 int nhoff, int hlen, unsigned int flags)
1579  {
1580  	memset(flow, 0, sizeof(*flow));
1581  	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1582  				  data, proto, nhoff, hlen, flags);
1583  }
1584  
1585  void skb_flow_dissect_meta(const struct sk_buff *skb,
1586  			   struct flow_dissector *flow_dissector,
1587  			   void *target_container);
1588  
1589  /* Gets a skb connection tracking info, ctinfo map should be a
1590   * map of mapsize to translate enum ip_conntrack_info states
1591   * to user states.
1592   */
1593  void
1594  skb_flow_dissect_ct(const struct sk_buff *skb,
1595  		    struct flow_dissector *flow_dissector,
1596  		    void *target_container,
1597  		    u16 *ctinfo_map, size_t mapsize,
1598  		    bool post_ct, u16 zone);
1599  void
1600  skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1601  			     struct flow_dissector *flow_dissector,
1602  			     void *target_container);
1603  
1604  void skb_flow_dissect_hash(const struct sk_buff *skb,
1605  			   struct flow_dissector *flow_dissector,
1606  			   void *target_container);
1607  
skb_get_hash_net(const struct net * net,struct sk_buff * skb)1608  static inline __u32 skb_get_hash_net(const struct net *net, struct sk_buff *skb)
1609  {
1610  	if (!skb->l4_hash && !skb->sw_hash)
1611  		__skb_get_hash_net(net, skb);
1612  
1613  	return skb->hash;
1614  }
1615  
skb_get_hash(struct sk_buff * skb)1616  static inline __u32 skb_get_hash(struct sk_buff *skb)
1617  {
1618  	if (!skb->l4_hash && !skb->sw_hash)
1619  		__skb_get_hash_net(NULL, skb);
1620  
1621  	return skb->hash;
1622  }
1623  
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1624  static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1625  {
1626  	if (!skb->l4_hash && !skb->sw_hash) {
1627  		struct flow_keys keys;
1628  		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1629  
1630  		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1631  	}
1632  
1633  	return skb->hash;
1634  }
1635  
1636  __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1637  			   const siphash_key_t *perturb);
1638  
skb_get_hash_raw(const struct sk_buff * skb)1639  static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1640  {
1641  	return skb->hash;
1642  }
1643  
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1644  static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1645  {
1646  	to->hash = from->hash;
1647  	to->sw_hash = from->sw_hash;
1648  	to->l4_hash = from->l4_hash;
1649  };
1650  
skb_cmp_decrypted(const struct sk_buff * skb1,const struct sk_buff * skb2)1651  static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1652  				    const struct sk_buff *skb2)
1653  {
1654  #ifdef CONFIG_SKB_DECRYPTED
1655  	return skb2->decrypted - skb1->decrypted;
1656  #else
1657  	return 0;
1658  #endif
1659  }
1660  
skb_is_decrypted(const struct sk_buff * skb)1661  static inline bool skb_is_decrypted(const struct sk_buff *skb)
1662  {
1663  #ifdef CONFIG_SKB_DECRYPTED
1664  	return skb->decrypted;
1665  #else
1666  	return false;
1667  #endif
1668  }
1669  
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1670  static inline void skb_copy_decrypted(struct sk_buff *to,
1671  				      const struct sk_buff *from)
1672  {
1673  #ifdef CONFIG_SKB_DECRYPTED
1674  	to->decrypted = from->decrypted;
1675  #endif
1676  }
1677  
1678  #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1679  static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1680  {
1681  	return skb->head + skb->end;
1682  }
1683  
skb_end_offset(const struct sk_buff * skb)1684  static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1685  {
1686  	return skb->end;
1687  }
1688  
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1689  static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1690  {
1691  	skb->end = offset;
1692  }
1693  #else
skb_end_pointer(const struct sk_buff * skb)1694  static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1695  {
1696  	return skb->end;
1697  }
1698  
skb_end_offset(const struct sk_buff * skb)1699  static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1700  {
1701  	return skb->end - skb->head;
1702  }
1703  
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1704  static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1705  {
1706  	skb->end = skb->head + offset;
1707  }
1708  #endif
1709  
1710  extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops;
1711  
1712  struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1713  				       struct ubuf_info *uarg);
1714  
1715  void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1716  
1717  int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1718  			    struct sk_buff *skb, struct iov_iter *from,
1719  			    size_t length);
1720  
1721  int zerocopy_fill_skb_from_iter(struct sk_buff *skb,
1722  				struct iov_iter *from, size_t length);
1723  
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1724  static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1725  					  struct msghdr *msg, int len)
1726  {
1727  	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1728  }
1729  
1730  int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1731  			     struct msghdr *msg, int len,
1732  			     struct ubuf_info *uarg);
1733  
1734  /* Internal */
1735  #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1736  
skb_hwtstamps(struct sk_buff * skb)1737  static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1738  {
1739  	return &skb_shinfo(skb)->hwtstamps;
1740  }
1741  
skb_zcopy(struct sk_buff * skb)1742  static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1743  {
1744  	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1745  
1746  	return is_zcopy ? skb_uarg(skb) : NULL;
1747  }
1748  
skb_zcopy_pure(const struct sk_buff * skb)1749  static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1750  {
1751  	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1752  }
1753  
skb_zcopy_managed(const struct sk_buff * skb)1754  static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1755  {
1756  	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1757  }
1758  
skb_pure_zcopy_same(const struct sk_buff * skb1,const struct sk_buff * skb2)1759  static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1760  				       const struct sk_buff *skb2)
1761  {
1762  	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1763  }
1764  
net_zcopy_get(struct ubuf_info * uarg)1765  static inline void net_zcopy_get(struct ubuf_info *uarg)
1766  {
1767  	refcount_inc(&uarg->refcnt);
1768  }
1769  
skb_zcopy_init(struct sk_buff * skb,struct ubuf_info * uarg)1770  static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1771  {
1772  	skb_shinfo(skb)->destructor_arg = uarg;
1773  	skb_shinfo(skb)->flags |= uarg->flags;
1774  }
1775  
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1776  static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1777  				 bool *have_ref)
1778  {
1779  	if (skb && uarg && !skb_zcopy(skb)) {
1780  		if (unlikely(have_ref && *have_ref))
1781  			*have_ref = false;
1782  		else
1783  			net_zcopy_get(uarg);
1784  		skb_zcopy_init(skb, uarg);
1785  	}
1786  }
1787  
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1788  static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1789  {
1790  	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1791  	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1792  }
1793  
skb_zcopy_is_nouarg(struct sk_buff * skb)1794  static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1795  {
1796  	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1797  }
1798  
skb_zcopy_get_nouarg(struct sk_buff * skb)1799  static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1800  {
1801  	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1802  }
1803  
net_zcopy_put(struct ubuf_info * uarg)1804  static inline void net_zcopy_put(struct ubuf_info *uarg)
1805  {
1806  	if (uarg)
1807  		uarg->ops->complete(NULL, uarg, true);
1808  }
1809  
net_zcopy_put_abort(struct ubuf_info * uarg,bool have_uref)1810  static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1811  {
1812  	if (uarg) {
1813  		if (uarg->ops == &msg_zerocopy_ubuf_ops)
1814  			msg_zerocopy_put_abort(uarg, have_uref);
1815  		else if (have_uref)
1816  			net_zcopy_put(uarg);
1817  	}
1818  }
1819  
1820  /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy_success)1821  static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1822  {
1823  	struct ubuf_info *uarg = skb_zcopy(skb);
1824  
1825  	if (uarg) {
1826  		if (!skb_zcopy_is_nouarg(skb))
1827  			uarg->ops->complete(skb, uarg, zerocopy_success);
1828  
1829  		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1830  	}
1831  }
1832  
1833  void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1834  
skb_zcopy_downgrade_managed(struct sk_buff * skb)1835  static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1836  {
1837  	if (unlikely(skb_zcopy_managed(skb)))
1838  		__skb_zcopy_downgrade_managed(skb);
1839  }
1840  
1841  /* Return true if frags in this skb are readable by the host. */
skb_frags_readable(const struct sk_buff * skb)1842  static inline bool skb_frags_readable(const struct sk_buff *skb)
1843  {
1844  	return !skb->unreadable;
1845  }
1846  
skb_mark_not_on_list(struct sk_buff * skb)1847  static inline void skb_mark_not_on_list(struct sk_buff *skb)
1848  {
1849  	skb->next = NULL;
1850  }
1851  
skb_poison_list(struct sk_buff * skb)1852  static inline void skb_poison_list(struct sk_buff *skb)
1853  {
1854  #ifdef CONFIG_DEBUG_NET
1855  	skb->next = SKB_LIST_POISON_NEXT;
1856  #endif
1857  }
1858  
1859  /* Iterate through singly-linked GSO fragments of an skb. */
1860  #define skb_list_walk_safe(first, skb, next_skb)                               \
1861  	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1862  	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1863  
skb_list_del_init(struct sk_buff * skb)1864  static inline void skb_list_del_init(struct sk_buff *skb)
1865  {
1866  	__list_del_entry(&skb->list);
1867  	skb_mark_not_on_list(skb);
1868  }
1869  
1870  /**
1871   *	skb_queue_empty - check if a queue is empty
1872   *	@list: queue head
1873   *
1874   *	Returns true if the queue is empty, false otherwise.
1875   */
skb_queue_empty(const struct sk_buff_head * list)1876  static inline int skb_queue_empty(const struct sk_buff_head *list)
1877  {
1878  	return list->next == (const struct sk_buff *) list;
1879  }
1880  
1881  /**
1882   *	skb_queue_empty_lockless - check if a queue is empty
1883   *	@list: queue head
1884   *
1885   *	Returns true if the queue is empty, false otherwise.
1886   *	This variant can be used in lockless contexts.
1887   */
skb_queue_empty_lockless(const struct sk_buff_head * list)1888  static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1889  {
1890  	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1891  }
1892  
1893  
1894  /**
1895   *	skb_queue_is_last - check if skb is the last entry in the queue
1896   *	@list: queue head
1897   *	@skb: buffer
1898   *
1899   *	Returns true if @skb is the last buffer on the list.
1900   */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1901  static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1902  				     const struct sk_buff *skb)
1903  {
1904  	return skb->next == (const struct sk_buff *) list;
1905  }
1906  
1907  /**
1908   *	skb_queue_is_first - check if skb is the first entry in the queue
1909   *	@list: queue head
1910   *	@skb: buffer
1911   *
1912   *	Returns true if @skb is the first buffer on the list.
1913   */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1914  static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1915  				      const struct sk_buff *skb)
1916  {
1917  	return skb->prev == (const struct sk_buff *) list;
1918  }
1919  
1920  /**
1921   *	skb_queue_next - return the next packet in the queue
1922   *	@list: queue head
1923   *	@skb: current buffer
1924   *
1925   *	Return the next packet in @list after @skb.  It is only valid to
1926   *	call this if skb_queue_is_last() evaluates to false.
1927   */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1928  static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1929  					     const struct sk_buff *skb)
1930  {
1931  	/* This BUG_ON may seem severe, but if we just return then we
1932  	 * are going to dereference garbage.
1933  	 */
1934  	BUG_ON(skb_queue_is_last(list, skb));
1935  	return skb->next;
1936  }
1937  
1938  /**
1939   *	skb_queue_prev - return the prev packet in the queue
1940   *	@list: queue head
1941   *	@skb: current buffer
1942   *
1943   *	Return the prev packet in @list before @skb.  It is only valid to
1944   *	call this if skb_queue_is_first() evaluates to false.
1945   */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1946  static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1947  					     const struct sk_buff *skb)
1948  {
1949  	/* This BUG_ON may seem severe, but if we just return then we
1950  	 * are going to dereference garbage.
1951  	 */
1952  	BUG_ON(skb_queue_is_first(list, skb));
1953  	return skb->prev;
1954  }
1955  
1956  /**
1957   *	skb_get - reference buffer
1958   *	@skb: buffer to reference
1959   *
1960   *	Makes another reference to a socket buffer and returns a pointer
1961   *	to the buffer.
1962   */
skb_get(struct sk_buff * skb)1963  static inline struct sk_buff *skb_get(struct sk_buff *skb)
1964  {
1965  	refcount_inc(&skb->users);
1966  	return skb;
1967  }
1968  
1969  /*
1970   * If users == 1, we are the only owner and can avoid redundant atomic changes.
1971   */
1972  
1973  /**
1974   *	skb_cloned - is the buffer a clone
1975   *	@skb: buffer to check
1976   *
1977   *	Returns true if the buffer was generated with skb_clone() and is
1978   *	one of multiple shared copies of the buffer. Cloned buffers are
1979   *	shared data so must not be written to under normal circumstances.
1980   */
skb_cloned(const struct sk_buff * skb)1981  static inline int skb_cloned(const struct sk_buff *skb)
1982  {
1983  	return skb->cloned &&
1984  	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1985  }
1986  
skb_unclone(struct sk_buff * skb,gfp_t pri)1987  static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1988  {
1989  	might_sleep_if(gfpflags_allow_blocking(pri));
1990  
1991  	if (skb_cloned(skb))
1992  		return pskb_expand_head(skb, 0, 0, pri);
1993  
1994  	return 0;
1995  }
1996  
1997  /* This variant of skb_unclone() makes sure skb->truesize
1998   * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1999   *
2000   * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
2001   * when various debugging features are in place.
2002   */
2003  int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)2004  static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2005  {
2006  	might_sleep_if(gfpflags_allow_blocking(pri));
2007  
2008  	if (skb_cloned(skb))
2009  		return __skb_unclone_keeptruesize(skb, pri);
2010  	return 0;
2011  }
2012  
2013  /**
2014   *	skb_header_cloned - is the header a clone
2015   *	@skb: buffer to check
2016   *
2017   *	Returns true if modifying the header part of the buffer requires
2018   *	the data to be copied.
2019   */
skb_header_cloned(const struct sk_buff * skb)2020  static inline int skb_header_cloned(const struct sk_buff *skb)
2021  {
2022  	int dataref;
2023  
2024  	if (!skb->cloned)
2025  		return 0;
2026  
2027  	dataref = atomic_read(&skb_shinfo(skb)->dataref);
2028  	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
2029  	return dataref != 1;
2030  }
2031  
skb_header_unclone(struct sk_buff * skb,gfp_t pri)2032  static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
2033  {
2034  	might_sleep_if(gfpflags_allow_blocking(pri));
2035  
2036  	if (skb_header_cloned(skb))
2037  		return pskb_expand_head(skb, 0, 0, pri);
2038  
2039  	return 0;
2040  }
2041  
2042  /**
2043   * __skb_header_release() - allow clones to use the headroom
2044   * @skb: buffer to operate on
2045   *
2046   * See "DOC: dataref and headerless skbs".
2047   */
__skb_header_release(struct sk_buff * skb)2048  static inline void __skb_header_release(struct sk_buff *skb)
2049  {
2050  	skb->nohdr = 1;
2051  	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
2052  }
2053  
2054  
2055  /**
2056   *	skb_shared - is the buffer shared
2057   *	@skb: buffer to check
2058   *
2059   *	Returns true if more than one person has a reference to this
2060   *	buffer.
2061   */
skb_shared(const struct sk_buff * skb)2062  static inline int skb_shared(const struct sk_buff *skb)
2063  {
2064  	return refcount_read(&skb->users) != 1;
2065  }
2066  
2067  /**
2068   *	skb_share_check - check if buffer is shared and if so clone it
2069   *	@skb: buffer to check
2070   *	@pri: priority for memory allocation
2071   *
2072   *	If the buffer is shared the buffer is cloned and the old copy
2073   *	drops a reference. A new clone with a single reference is returned.
2074   *	If the buffer is not shared the original buffer is returned. When
2075   *	being called from interrupt status or with spinlocks held pri must
2076   *	be GFP_ATOMIC.
2077   *
2078   *	NULL is returned on a memory allocation failure.
2079   */
skb_share_check(struct sk_buff * skb,gfp_t pri)2080  static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2081  {
2082  	might_sleep_if(gfpflags_allow_blocking(pri));
2083  	if (skb_shared(skb)) {
2084  		struct sk_buff *nskb = skb_clone(skb, pri);
2085  
2086  		if (likely(nskb))
2087  			consume_skb(skb);
2088  		else
2089  			kfree_skb(skb);
2090  		skb = nskb;
2091  	}
2092  	return skb;
2093  }
2094  
2095  /*
2096   *	Copy shared buffers into a new sk_buff. We effectively do COW on
2097   *	packets to handle cases where we have a local reader and forward
2098   *	and a couple of other messy ones. The normal one is tcpdumping
2099   *	a packet that's being forwarded.
2100   */
2101  
2102  /**
2103   *	skb_unshare - make a copy of a shared buffer
2104   *	@skb: buffer to check
2105   *	@pri: priority for memory allocation
2106   *
2107   *	If the socket buffer is a clone then this function creates a new
2108   *	copy of the data, drops a reference count on the old copy and returns
2109   *	the new copy with the reference count at 1. If the buffer is not a clone
2110   *	the original buffer is returned. When called with a spinlock held or
2111   *	from interrupt state @pri must be %GFP_ATOMIC
2112   *
2113   *	%NULL is returned on a memory allocation failure.
2114   */
skb_unshare(struct sk_buff * skb,gfp_t pri)2115  static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2116  					  gfp_t pri)
2117  {
2118  	might_sleep_if(gfpflags_allow_blocking(pri));
2119  	if (skb_cloned(skb)) {
2120  		struct sk_buff *nskb = skb_copy(skb, pri);
2121  
2122  		/* Free our shared copy */
2123  		if (likely(nskb))
2124  			consume_skb(skb);
2125  		else
2126  			kfree_skb(skb);
2127  		skb = nskb;
2128  	}
2129  	return skb;
2130  }
2131  
2132  /**
2133   *	skb_peek - peek at the head of an &sk_buff_head
2134   *	@list_: list to peek at
2135   *
2136   *	Peek an &sk_buff. Unlike most other operations you _MUST_
2137   *	be careful with this one. A peek leaves the buffer on the
2138   *	list and someone else may run off with it. You must hold
2139   *	the appropriate locks or have a private queue to do this.
2140   *
2141   *	Returns %NULL for an empty list or a pointer to the head element.
2142   *	The reference count is not incremented and the reference is therefore
2143   *	volatile. Use with caution.
2144   */
skb_peek(const struct sk_buff_head * list_)2145  static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2146  {
2147  	struct sk_buff *skb = list_->next;
2148  
2149  	if (skb == (struct sk_buff *)list_)
2150  		skb = NULL;
2151  	return skb;
2152  }
2153  
2154  /**
2155   *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2156   *	@list_: list to peek at
2157   *
2158   *	Like skb_peek(), but the caller knows that the list is not empty.
2159   */
__skb_peek(const struct sk_buff_head * list_)2160  static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2161  {
2162  	return list_->next;
2163  }
2164  
2165  /**
2166   *	skb_peek_next - peek skb following the given one from a queue
2167   *	@skb: skb to start from
2168   *	@list_: list to peek at
2169   *
2170   *	Returns %NULL when the end of the list is met or a pointer to the
2171   *	next element. The reference count is not incremented and the
2172   *	reference is therefore volatile. Use with caution.
2173   */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)2174  static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2175  		const struct sk_buff_head *list_)
2176  {
2177  	struct sk_buff *next = skb->next;
2178  
2179  	if (next == (struct sk_buff *)list_)
2180  		next = NULL;
2181  	return next;
2182  }
2183  
2184  /**
2185   *	skb_peek_tail - peek at the tail of an &sk_buff_head
2186   *	@list_: list to peek at
2187   *
2188   *	Peek an &sk_buff. Unlike most other operations you _MUST_
2189   *	be careful with this one. A peek leaves the buffer on the
2190   *	list and someone else may run off with it. You must hold
2191   *	the appropriate locks or have a private queue to do this.
2192   *
2193   *	Returns %NULL for an empty list or a pointer to the tail element.
2194   *	The reference count is not incremented and the reference is therefore
2195   *	volatile. Use with caution.
2196   */
skb_peek_tail(const struct sk_buff_head * list_)2197  static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2198  {
2199  	struct sk_buff *skb = READ_ONCE(list_->prev);
2200  
2201  	if (skb == (struct sk_buff *)list_)
2202  		skb = NULL;
2203  	return skb;
2204  
2205  }
2206  
2207  /**
2208   *	skb_queue_len	- get queue length
2209   *	@list_: list to measure
2210   *
2211   *	Return the length of an &sk_buff queue.
2212   */
skb_queue_len(const struct sk_buff_head * list_)2213  static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2214  {
2215  	return list_->qlen;
2216  }
2217  
2218  /**
2219   *	skb_queue_len_lockless	- get queue length
2220   *	@list_: list to measure
2221   *
2222   *	Return the length of an &sk_buff queue.
2223   *	This variant can be used in lockless contexts.
2224   */
skb_queue_len_lockless(const struct sk_buff_head * list_)2225  static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2226  {
2227  	return READ_ONCE(list_->qlen);
2228  }
2229  
2230  /**
2231   *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2232   *	@list: queue to initialize
2233   *
2234   *	This initializes only the list and queue length aspects of
2235   *	an sk_buff_head object.  This allows to initialize the list
2236   *	aspects of an sk_buff_head without reinitializing things like
2237   *	the spinlock.  It can also be used for on-stack sk_buff_head
2238   *	objects where the spinlock is known to not be used.
2239   */
__skb_queue_head_init(struct sk_buff_head * list)2240  static inline void __skb_queue_head_init(struct sk_buff_head *list)
2241  {
2242  	list->prev = list->next = (struct sk_buff *)list;
2243  	list->qlen = 0;
2244  }
2245  
2246  /*
2247   * This function creates a split out lock class for each invocation;
2248   * this is needed for now since a whole lot of users of the skb-queue
2249   * infrastructure in drivers have different locking usage (in hardirq)
2250   * than the networking core (in softirq only). In the long run either the
2251   * network layer or drivers should need annotation to consolidate the
2252   * main types of usage into 3 classes.
2253   */
skb_queue_head_init(struct sk_buff_head * list)2254  static inline void skb_queue_head_init(struct sk_buff_head *list)
2255  {
2256  	spin_lock_init(&list->lock);
2257  	__skb_queue_head_init(list);
2258  }
2259  
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)2260  static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2261  		struct lock_class_key *class)
2262  {
2263  	skb_queue_head_init(list);
2264  	lockdep_set_class(&list->lock, class);
2265  }
2266  
2267  /*
2268   *	Insert an sk_buff on a list.
2269   *
2270   *	The "__skb_xxxx()" functions are the non-atomic ones that
2271   *	can only be called with interrupts disabled.
2272   */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)2273  static inline void __skb_insert(struct sk_buff *newsk,
2274  				struct sk_buff *prev, struct sk_buff *next,
2275  				struct sk_buff_head *list)
2276  {
2277  	/* See skb_queue_empty_lockless() and skb_peek_tail()
2278  	 * for the opposite READ_ONCE()
2279  	 */
2280  	WRITE_ONCE(newsk->next, next);
2281  	WRITE_ONCE(newsk->prev, prev);
2282  	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2283  	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2284  	WRITE_ONCE(list->qlen, list->qlen + 1);
2285  }
2286  
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)2287  static inline void __skb_queue_splice(const struct sk_buff_head *list,
2288  				      struct sk_buff *prev,
2289  				      struct sk_buff *next)
2290  {
2291  	struct sk_buff *first = list->next;
2292  	struct sk_buff *last = list->prev;
2293  
2294  	WRITE_ONCE(first->prev, prev);
2295  	WRITE_ONCE(prev->next, first);
2296  
2297  	WRITE_ONCE(last->next, next);
2298  	WRITE_ONCE(next->prev, last);
2299  }
2300  
2301  /**
2302   *	skb_queue_splice - join two skb lists, this is designed for stacks
2303   *	@list: the new list to add
2304   *	@head: the place to add it in the first list
2305   */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)2306  static inline void skb_queue_splice(const struct sk_buff_head *list,
2307  				    struct sk_buff_head *head)
2308  {
2309  	if (!skb_queue_empty(list)) {
2310  		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2311  		head->qlen += list->qlen;
2312  	}
2313  }
2314  
2315  /**
2316   *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2317   *	@list: the new list to add
2318   *	@head: the place to add it in the first list
2319   *
2320   *	The list at @list is reinitialised
2321   */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)2322  static inline void skb_queue_splice_init(struct sk_buff_head *list,
2323  					 struct sk_buff_head *head)
2324  {
2325  	if (!skb_queue_empty(list)) {
2326  		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2327  		head->qlen += list->qlen;
2328  		__skb_queue_head_init(list);
2329  	}
2330  }
2331  
2332  /**
2333   *	skb_queue_splice_tail - join two skb lists, each list being a queue
2334   *	@list: the new list to add
2335   *	@head: the place to add it in the first list
2336   */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)2337  static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2338  					 struct sk_buff_head *head)
2339  {
2340  	if (!skb_queue_empty(list)) {
2341  		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2342  		head->qlen += list->qlen;
2343  	}
2344  }
2345  
2346  /**
2347   *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2348   *	@list: the new list to add
2349   *	@head: the place to add it in the first list
2350   *
2351   *	Each of the lists is a queue.
2352   *	The list at @list is reinitialised
2353   */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)2354  static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2355  					      struct sk_buff_head *head)
2356  {
2357  	if (!skb_queue_empty(list)) {
2358  		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2359  		head->qlen += list->qlen;
2360  		__skb_queue_head_init(list);
2361  	}
2362  }
2363  
2364  /**
2365   *	__skb_queue_after - queue a buffer at the list head
2366   *	@list: list to use
2367   *	@prev: place after this buffer
2368   *	@newsk: buffer to queue
2369   *
2370   *	Queue a buffer int the middle of a list. This function takes no locks
2371   *	and you must therefore hold required locks before calling it.
2372   *
2373   *	A buffer cannot be placed on two lists at the same time.
2374   */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2375  static inline void __skb_queue_after(struct sk_buff_head *list,
2376  				     struct sk_buff *prev,
2377  				     struct sk_buff *newsk)
2378  {
2379  	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2380  }
2381  
2382  void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2383  		struct sk_buff_head *list);
2384  
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2385  static inline void __skb_queue_before(struct sk_buff_head *list,
2386  				      struct sk_buff *next,
2387  				      struct sk_buff *newsk)
2388  {
2389  	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2390  }
2391  
2392  /**
2393   *	__skb_queue_head - queue a buffer at the list head
2394   *	@list: list to use
2395   *	@newsk: buffer to queue
2396   *
2397   *	Queue a buffer at the start of a list. This function takes no locks
2398   *	and you must therefore hold required locks before calling it.
2399   *
2400   *	A buffer cannot be placed on two lists at the same time.
2401   */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2402  static inline void __skb_queue_head(struct sk_buff_head *list,
2403  				    struct sk_buff *newsk)
2404  {
2405  	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2406  }
2407  void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2408  
2409  /**
2410   *	__skb_queue_tail - queue a buffer at the list tail
2411   *	@list: list to use
2412   *	@newsk: buffer to queue
2413   *
2414   *	Queue a buffer at the end of a list. This function takes no locks
2415   *	and you must therefore hold required locks before calling it.
2416   *
2417   *	A buffer cannot be placed on two lists at the same time.
2418   */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2419  static inline void __skb_queue_tail(struct sk_buff_head *list,
2420  				   struct sk_buff *newsk)
2421  {
2422  	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2423  }
2424  void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2425  
2426  /*
2427   * remove sk_buff from list. _Must_ be called atomically, and with
2428   * the list known..
2429   */
2430  void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2431  static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2432  {
2433  	struct sk_buff *next, *prev;
2434  
2435  	WRITE_ONCE(list->qlen, list->qlen - 1);
2436  	next	   = skb->next;
2437  	prev	   = skb->prev;
2438  	skb->next  = skb->prev = NULL;
2439  	WRITE_ONCE(next->prev, prev);
2440  	WRITE_ONCE(prev->next, next);
2441  }
2442  
2443  /**
2444   *	__skb_dequeue - remove from the head of the queue
2445   *	@list: list to dequeue from
2446   *
2447   *	Remove the head of the list. This function does not take any locks
2448   *	so must be used with appropriate locks held only. The head item is
2449   *	returned or %NULL if the list is empty.
2450   */
__skb_dequeue(struct sk_buff_head * list)2451  static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2452  {
2453  	struct sk_buff *skb = skb_peek(list);
2454  	if (skb)
2455  		__skb_unlink(skb, list);
2456  	return skb;
2457  }
2458  struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2459  
2460  /**
2461   *	__skb_dequeue_tail - remove from the tail of the queue
2462   *	@list: list to dequeue from
2463   *
2464   *	Remove the tail of the list. This function does not take any locks
2465   *	so must be used with appropriate locks held only. The tail item is
2466   *	returned or %NULL if the list is empty.
2467   */
__skb_dequeue_tail(struct sk_buff_head * list)2468  static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2469  {
2470  	struct sk_buff *skb = skb_peek_tail(list);
2471  	if (skb)
2472  		__skb_unlink(skb, list);
2473  	return skb;
2474  }
2475  struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2476  
2477  
skb_is_nonlinear(const struct sk_buff * skb)2478  static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2479  {
2480  	return skb->data_len;
2481  }
2482  
skb_headlen(const struct sk_buff * skb)2483  static inline unsigned int skb_headlen(const struct sk_buff *skb)
2484  {
2485  	return skb->len - skb->data_len;
2486  }
2487  
__skb_pagelen(const struct sk_buff * skb)2488  static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2489  {
2490  	unsigned int i, len = 0;
2491  
2492  	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2493  		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2494  	return len;
2495  }
2496  
skb_pagelen(const struct sk_buff * skb)2497  static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2498  {
2499  	return skb_headlen(skb) + __skb_pagelen(skb);
2500  }
2501  
skb_frag_fill_netmem_desc(skb_frag_t * frag,netmem_ref netmem,int off,int size)2502  static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag,
2503  					     netmem_ref netmem, int off,
2504  					     int size)
2505  {
2506  	frag->netmem = netmem;
2507  	frag->offset = off;
2508  	skb_frag_size_set(frag, size);
2509  }
2510  
skb_frag_fill_page_desc(skb_frag_t * frag,struct page * page,int off,int size)2511  static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2512  					   struct page *page,
2513  					   int off, int size)
2514  {
2515  	skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size);
2516  }
2517  
__skb_fill_netmem_desc_noacc(struct skb_shared_info * shinfo,int i,netmem_ref netmem,int off,int size)2518  static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo,
2519  						int i, netmem_ref netmem,
2520  						int off, int size)
2521  {
2522  	skb_frag_t *frag = &shinfo->frags[i];
2523  
2524  	skb_frag_fill_netmem_desc(frag, netmem, off, size);
2525  }
2526  
__skb_fill_page_desc_noacc(struct skb_shared_info * shinfo,int i,struct page * page,int off,int size)2527  static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2528  					      int i, struct page *page,
2529  					      int off, int size)
2530  {
2531  	__skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off,
2532  				     size);
2533  }
2534  
2535  /**
2536   * skb_len_add - adds a number to len fields of skb
2537   * @skb: buffer to add len to
2538   * @delta: number of bytes to add
2539   */
skb_len_add(struct sk_buff * skb,int delta)2540  static inline void skb_len_add(struct sk_buff *skb, int delta)
2541  {
2542  	skb->len += delta;
2543  	skb->data_len += delta;
2544  	skb->truesize += delta;
2545  }
2546  
2547  /**
2548   * __skb_fill_netmem_desc - initialise a fragment in an skb
2549   * @skb: buffer containing fragment to be initialised
2550   * @i: fragment index to initialise
2551   * @netmem: the netmem to use for this fragment
2552   * @off: the offset to the data with @page
2553   * @size: the length of the data
2554   *
2555   * Initialises the @i'th fragment of @skb to point to &size bytes at
2556   * offset @off within @page.
2557   *
2558   * Does not take any additional reference on the fragment.
2559   */
__skb_fill_netmem_desc(struct sk_buff * skb,int i,netmem_ref netmem,int off,int size)2560  static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i,
2561  					  netmem_ref netmem, int off, int size)
2562  {
2563  	struct page *page;
2564  
2565  	__skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size);
2566  
2567  	if (netmem_is_net_iov(netmem)) {
2568  		skb->unreadable = true;
2569  		return;
2570  	}
2571  
2572  	page = netmem_to_page(netmem);
2573  
2574  	/* Propagate page pfmemalloc to the skb if we can. The problem is
2575  	 * that not all callers have unique ownership of the page but rely
2576  	 * on page_is_pfmemalloc doing the right thing(tm).
2577  	 */
2578  	page = compound_head(page);
2579  	if (page_is_pfmemalloc(page))
2580  		skb->pfmemalloc = true;
2581  }
2582  
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2583  static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2584  					struct page *page, int off, int size)
2585  {
2586  	__skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2587  }
2588  
skb_fill_netmem_desc(struct sk_buff * skb,int i,netmem_ref netmem,int off,int size)2589  static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i,
2590  					netmem_ref netmem, int off, int size)
2591  {
2592  	__skb_fill_netmem_desc(skb, i, netmem, off, size);
2593  	skb_shinfo(skb)->nr_frags = i + 1;
2594  }
2595  
2596  /**
2597   * skb_fill_page_desc - initialise a paged fragment in an skb
2598   * @skb: buffer containing fragment to be initialised
2599   * @i: paged fragment index to initialise
2600   * @page: the page to use for this fragment
2601   * @off: the offset to the data with @page
2602   * @size: the length of the data
2603   *
2604   * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2605   * @skb to point to @size bytes at offset @off within @page. In
2606   * addition updates @skb such that @i is the last fragment.
2607   *
2608   * Does not take any additional reference on the fragment.
2609   */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2610  static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2611  				      struct page *page, int off, int size)
2612  {
2613  	skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2614  }
2615  
2616  /**
2617   * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2618   * @skb: buffer containing fragment to be initialised
2619   * @i: paged fragment index to initialise
2620   * @page: the page to use for this fragment
2621   * @off: the offset to the data with @page
2622   * @size: the length of the data
2623   *
2624   * Variant of skb_fill_page_desc() which does not deal with
2625   * pfmemalloc, if page is not owned by us.
2626   */
skb_fill_page_desc_noacc(struct sk_buff * skb,int i,struct page * page,int off,int size)2627  static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2628  					    struct page *page, int off,
2629  					    int size)
2630  {
2631  	struct skb_shared_info *shinfo = skb_shinfo(skb);
2632  
2633  	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2634  	shinfo->nr_frags = i + 1;
2635  }
2636  
2637  void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
2638  			    int off, int size, unsigned int truesize);
2639  
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)2640  static inline void skb_add_rx_frag(struct sk_buff *skb, int i,
2641  				   struct page *page, int off, int size,
2642  				   unsigned int truesize)
2643  {
2644  	skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size,
2645  			       truesize);
2646  }
2647  
2648  void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2649  			  unsigned int truesize);
2650  
2651  #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2652  
2653  #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2654  static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2655  {
2656  	return skb->head + skb->tail;
2657  }
2658  
skb_reset_tail_pointer(struct sk_buff * skb)2659  static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2660  {
2661  	skb->tail = skb->data - skb->head;
2662  }
2663  
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2664  static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2665  {
2666  	skb_reset_tail_pointer(skb);
2667  	skb->tail += offset;
2668  }
2669  
2670  #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2671  static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2672  {
2673  	return skb->tail;
2674  }
2675  
skb_reset_tail_pointer(struct sk_buff * skb)2676  static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2677  {
2678  	skb->tail = skb->data;
2679  }
2680  
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2681  static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2682  {
2683  	skb->tail = skb->data + offset;
2684  }
2685  
2686  #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2687  
skb_assert_len(struct sk_buff * skb)2688  static inline void skb_assert_len(struct sk_buff *skb)
2689  {
2690  #ifdef CONFIG_DEBUG_NET
2691  	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2692  		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2693  #endif /* CONFIG_DEBUG_NET */
2694  }
2695  
2696  #if defined(CONFIG_FAIL_SKB_REALLOC)
2697  void skb_might_realloc(struct sk_buff *skb);
2698  #else
skb_might_realloc(struct sk_buff * skb)2699  static inline void skb_might_realloc(struct sk_buff *skb) {}
2700  #endif
2701  
2702  /*
2703   *	Add data to an sk_buff
2704   */
2705  void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2706  void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2707  static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2708  {
2709  	void *tmp = skb_tail_pointer(skb);
2710  	SKB_LINEAR_ASSERT(skb);
2711  	skb->tail += len;
2712  	skb->len  += len;
2713  	return tmp;
2714  }
2715  
__skb_put_zero(struct sk_buff * skb,unsigned int len)2716  static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2717  {
2718  	void *tmp = __skb_put(skb, len);
2719  
2720  	memset(tmp, 0, len);
2721  	return tmp;
2722  }
2723  
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2724  static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2725  				   unsigned int len)
2726  {
2727  	void *tmp = __skb_put(skb, len);
2728  
2729  	memcpy(tmp, data, len);
2730  	return tmp;
2731  }
2732  
__skb_put_u8(struct sk_buff * skb,u8 val)2733  static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2734  {
2735  	*(u8 *)__skb_put(skb, 1) = val;
2736  }
2737  
skb_put_zero(struct sk_buff * skb,unsigned int len)2738  static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2739  {
2740  	void *tmp = skb_put(skb, len);
2741  
2742  	memset(tmp, 0, len);
2743  
2744  	return tmp;
2745  }
2746  
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2747  static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2748  				 unsigned int len)
2749  {
2750  	void *tmp = skb_put(skb, len);
2751  
2752  	memcpy(tmp, data, len);
2753  
2754  	return tmp;
2755  }
2756  
skb_put_u8(struct sk_buff * skb,u8 val)2757  static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2758  {
2759  	*(u8 *)skb_put(skb, 1) = val;
2760  }
2761  
2762  void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2763  static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2764  {
2765  	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2766  
2767  	skb->data -= len;
2768  	skb->len  += len;
2769  	return skb->data;
2770  }
2771  
2772  void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2773  static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2774  {
2775  	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2776  
2777  	skb->len -= len;
2778  	if (unlikely(skb->len < skb->data_len)) {
2779  #if defined(CONFIG_DEBUG_NET)
2780  		skb->len += len;
2781  		pr_err("__skb_pull(len=%u)\n", len);
2782  		skb_dump(KERN_ERR, skb, false);
2783  #endif
2784  		BUG();
2785  	}
2786  	return skb->data += len;
2787  }
2788  
skb_pull_inline(struct sk_buff * skb,unsigned int len)2789  static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2790  {
2791  	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2792  }
2793  
2794  void *skb_pull_data(struct sk_buff *skb, size_t len);
2795  
2796  void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2797  
2798  static inline enum skb_drop_reason
pskb_may_pull_reason(struct sk_buff * skb,unsigned int len)2799  pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2800  {
2801  	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2802  	skb_might_realloc(skb);
2803  
2804  	if (likely(len <= skb_headlen(skb)))
2805  		return SKB_NOT_DROPPED_YET;
2806  
2807  	if (unlikely(len > skb->len))
2808  		return SKB_DROP_REASON_PKT_TOO_SMALL;
2809  
2810  	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2811  		return SKB_DROP_REASON_NOMEM;
2812  
2813  	return SKB_NOT_DROPPED_YET;
2814  }
2815  
pskb_may_pull(struct sk_buff * skb,unsigned int len)2816  static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2817  {
2818  	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2819  }
2820  
pskb_pull(struct sk_buff * skb,unsigned int len)2821  static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2822  {
2823  	if (!pskb_may_pull(skb, len))
2824  		return NULL;
2825  
2826  	skb->len -= len;
2827  	return skb->data += len;
2828  }
2829  
2830  void skb_condense(struct sk_buff *skb);
2831  
2832  /**
2833   *	skb_headroom - bytes at buffer head
2834   *	@skb: buffer to check
2835   *
2836   *	Return the number of bytes of free space at the head of an &sk_buff.
2837   */
skb_headroom(const struct sk_buff * skb)2838  static inline unsigned int skb_headroom(const struct sk_buff *skb)
2839  {
2840  	return skb->data - skb->head;
2841  }
2842  
2843  /**
2844   *	skb_tailroom - bytes at buffer end
2845   *	@skb: buffer to check
2846   *
2847   *	Return the number of bytes of free space at the tail of an sk_buff
2848   */
skb_tailroom(const struct sk_buff * skb)2849  static inline int skb_tailroom(const struct sk_buff *skb)
2850  {
2851  	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2852  }
2853  
2854  /**
2855   *	skb_availroom - bytes at buffer end
2856   *	@skb: buffer to check
2857   *
2858   *	Return the number of bytes of free space at the tail of an sk_buff
2859   *	allocated by sk_stream_alloc()
2860   */
skb_availroom(const struct sk_buff * skb)2861  static inline int skb_availroom(const struct sk_buff *skb)
2862  {
2863  	if (skb_is_nonlinear(skb))
2864  		return 0;
2865  
2866  	return skb->end - skb->tail - skb->reserved_tailroom;
2867  }
2868  
2869  /**
2870   *	skb_reserve - adjust headroom
2871   *	@skb: buffer to alter
2872   *	@len: bytes to move
2873   *
2874   *	Increase the headroom of an empty &sk_buff by reducing the tail
2875   *	room. This is only allowed for an empty buffer.
2876   */
skb_reserve(struct sk_buff * skb,int len)2877  static inline void skb_reserve(struct sk_buff *skb, int len)
2878  {
2879  	skb->data += len;
2880  	skb->tail += len;
2881  }
2882  
2883  /**
2884   *	skb_tailroom_reserve - adjust reserved_tailroom
2885   *	@skb: buffer to alter
2886   *	@mtu: maximum amount of headlen permitted
2887   *	@needed_tailroom: minimum amount of reserved_tailroom
2888   *
2889   *	Set reserved_tailroom so that headlen can be as large as possible but
2890   *	not larger than mtu and tailroom cannot be smaller than
2891   *	needed_tailroom.
2892   *	The required headroom should already have been reserved before using
2893   *	this function.
2894   */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2895  static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2896  					unsigned int needed_tailroom)
2897  {
2898  	SKB_LINEAR_ASSERT(skb);
2899  	if (mtu < skb_tailroom(skb) - needed_tailroom)
2900  		/* use at most mtu */
2901  		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2902  	else
2903  		/* use up to all available space */
2904  		skb->reserved_tailroom = needed_tailroom;
2905  }
2906  
2907  #define ENCAP_TYPE_ETHER	0
2908  #define ENCAP_TYPE_IPPROTO	1
2909  
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2910  static inline void skb_set_inner_protocol(struct sk_buff *skb,
2911  					  __be16 protocol)
2912  {
2913  	skb->inner_protocol = protocol;
2914  	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2915  }
2916  
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2917  static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2918  					 __u8 ipproto)
2919  {
2920  	skb->inner_ipproto = ipproto;
2921  	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2922  }
2923  
skb_reset_inner_headers(struct sk_buff * skb)2924  static inline void skb_reset_inner_headers(struct sk_buff *skb)
2925  {
2926  	skb->inner_mac_header = skb->mac_header;
2927  	skb->inner_network_header = skb->network_header;
2928  	skb->inner_transport_header = skb->transport_header;
2929  }
2930  
skb_mac_header_was_set(const struct sk_buff * skb)2931  static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2932  {
2933  	return skb->mac_header != (typeof(skb->mac_header))~0U;
2934  }
2935  
skb_reset_mac_len(struct sk_buff * skb)2936  static inline void skb_reset_mac_len(struct sk_buff *skb)
2937  {
2938  	if (!skb_mac_header_was_set(skb)) {
2939  		DEBUG_NET_WARN_ON_ONCE(1);
2940  		skb->mac_len = 0;
2941  	} else {
2942  		skb->mac_len = skb->network_header - skb->mac_header;
2943  	}
2944  }
2945  
skb_inner_transport_header(const struct sk_buff * skb)2946  static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2947  							*skb)
2948  {
2949  	return skb->head + skb->inner_transport_header;
2950  }
2951  
skb_inner_transport_offset(const struct sk_buff * skb)2952  static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2953  {
2954  	return skb_inner_transport_header(skb) - skb->data;
2955  }
2956  
skb_reset_inner_transport_header(struct sk_buff * skb)2957  static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2958  {
2959  	long offset = skb->data - skb->head;
2960  
2961  	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_transport_header))offset);
2962  	skb->inner_transport_header = offset;
2963  }
2964  
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2965  static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2966  						   const int offset)
2967  {
2968  	skb_reset_inner_transport_header(skb);
2969  	skb->inner_transport_header += offset;
2970  }
2971  
skb_inner_network_header(const struct sk_buff * skb)2972  static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2973  {
2974  	return skb->head + skb->inner_network_header;
2975  }
2976  
skb_reset_inner_network_header(struct sk_buff * skb)2977  static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2978  {
2979  	long offset = skb->data - skb->head;
2980  
2981  	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_network_header))offset);
2982  	skb->inner_network_header = offset;
2983  }
2984  
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2985  static inline void skb_set_inner_network_header(struct sk_buff *skb,
2986  						const int offset)
2987  {
2988  	skb_reset_inner_network_header(skb);
2989  	skb->inner_network_header += offset;
2990  }
2991  
skb_inner_network_header_was_set(const struct sk_buff * skb)2992  static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb)
2993  {
2994  	return skb->inner_network_header > 0;
2995  }
2996  
skb_inner_mac_header(const struct sk_buff * skb)2997  static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2998  {
2999  	return skb->head + skb->inner_mac_header;
3000  }
3001  
skb_reset_inner_mac_header(struct sk_buff * skb)3002  static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
3003  {
3004  	long offset = skb->data - skb->head;
3005  
3006  	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_mac_header))offset);
3007  	skb->inner_mac_header = offset;
3008  }
3009  
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)3010  static inline void skb_set_inner_mac_header(struct sk_buff *skb,
3011  					    const int offset)
3012  {
3013  	skb_reset_inner_mac_header(skb);
3014  	skb->inner_mac_header += offset;
3015  }
skb_transport_header_was_set(const struct sk_buff * skb)3016  static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
3017  {
3018  	return skb->transport_header != (typeof(skb->transport_header))~0U;
3019  }
3020  
skb_transport_header(const struct sk_buff * skb)3021  static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
3022  {
3023  	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3024  	return skb->head + skb->transport_header;
3025  }
3026  
skb_reset_transport_header(struct sk_buff * skb)3027  static inline void skb_reset_transport_header(struct sk_buff *skb)
3028  {
3029  	long offset = skb->data - skb->head;
3030  
3031  	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->transport_header))offset);
3032  	skb->transport_header = offset;
3033  }
3034  
skb_set_transport_header(struct sk_buff * skb,const int offset)3035  static inline void skb_set_transport_header(struct sk_buff *skb,
3036  					    const int offset)
3037  {
3038  	skb_reset_transport_header(skb);
3039  	skb->transport_header += offset;
3040  }
3041  
skb_network_header(const struct sk_buff * skb)3042  static inline unsigned char *skb_network_header(const struct sk_buff *skb)
3043  {
3044  	return skb->head + skb->network_header;
3045  }
3046  
skb_reset_network_header(struct sk_buff * skb)3047  static inline void skb_reset_network_header(struct sk_buff *skb)
3048  {
3049  	long offset = skb->data - skb->head;
3050  
3051  	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->network_header))offset);
3052  	skb->network_header = offset;
3053  }
3054  
skb_set_network_header(struct sk_buff * skb,const int offset)3055  static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
3056  {
3057  	skb_reset_network_header(skb);
3058  	skb->network_header += offset;
3059  }
3060  
skb_mac_header(const struct sk_buff * skb)3061  static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
3062  {
3063  	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3064  	return skb->head + skb->mac_header;
3065  }
3066  
skb_mac_offset(const struct sk_buff * skb)3067  static inline int skb_mac_offset(const struct sk_buff *skb)
3068  {
3069  	return skb_mac_header(skb) - skb->data;
3070  }
3071  
skb_mac_header_len(const struct sk_buff * skb)3072  static inline u32 skb_mac_header_len(const struct sk_buff *skb)
3073  {
3074  	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3075  	return skb->network_header - skb->mac_header;
3076  }
3077  
skb_unset_mac_header(struct sk_buff * skb)3078  static inline void skb_unset_mac_header(struct sk_buff *skb)
3079  {
3080  	skb->mac_header = (typeof(skb->mac_header))~0U;
3081  }
3082  
skb_reset_mac_header(struct sk_buff * skb)3083  static inline void skb_reset_mac_header(struct sk_buff *skb)
3084  {
3085  	long offset = skb->data - skb->head;
3086  
3087  	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->mac_header))offset);
3088  	skb->mac_header = offset;
3089  }
3090  
skb_set_mac_header(struct sk_buff * skb,const int offset)3091  static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
3092  {
3093  	skb_reset_mac_header(skb);
3094  	skb->mac_header += offset;
3095  }
3096  
skb_pop_mac_header(struct sk_buff * skb)3097  static inline void skb_pop_mac_header(struct sk_buff *skb)
3098  {
3099  	skb->mac_header = skb->network_header;
3100  }
3101  
skb_probe_transport_header(struct sk_buff * skb)3102  static inline void skb_probe_transport_header(struct sk_buff *skb)
3103  {
3104  	struct flow_keys_basic keys;
3105  
3106  	if (skb_transport_header_was_set(skb))
3107  		return;
3108  
3109  	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
3110  					     NULL, 0, 0, 0, 0))
3111  		skb_set_transport_header(skb, keys.control.thoff);
3112  }
3113  
skb_mac_header_rebuild(struct sk_buff * skb)3114  static inline void skb_mac_header_rebuild(struct sk_buff *skb)
3115  {
3116  	if (skb_mac_header_was_set(skb)) {
3117  		const unsigned char *old_mac = skb_mac_header(skb);
3118  
3119  		skb_set_mac_header(skb, -skb->mac_len);
3120  		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3121  	}
3122  }
3123  
3124  /* Move the full mac header up to current network_header.
3125   * Leaves skb->data pointing at offset skb->mac_len into the mac_header.
3126   * Must be provided the complete mac header length.
3127   */
skb_mac_header_rebuild_full(struct sk_buff * skb,u32 full_mac_len)3128  static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len)
3129  {
3130  	if (skb_mac_header_was_set(skb)) {
3131  		const unsigned char *old_mac = skb_mac_header(skb);
3132  
3133  		skb_set_mac_header(skb, -full_mac_len);
3134  		memmove(skb_mac_header(skb), old_mac, full_mac_len);
3135  		__skb_push(skb, full_mac_len - skb->mac_len);
3136  	}
3137  }
3138  
skb_checksum_start_offset(const struct sk_buff * skb)3139  static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3140  {
3141  	return skb->csum_start - skb_headroom(skb);
3142  }
3143  
skb_checksum_start(const struct sk_buff * skb)3144  static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3145  {
3146  	return skb->head + skb->csum_start;
3147  }
3148  
skb_transport_offset(const struct sk_buff * skb)3149  static inline int skb_transport_offset(const struct sk_buff *skb)
3150  {
3151  	return skb_transport_header(skb) - skb->data;
3152  }
3153  
skb_network_header_len(const struct sk_buff * skb)3154  static inline u32 skb_network_header_len(const struct sk_buff *skb)
3155  {
3156  	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3157  	return skb->transport_header - skb->network_header;
3158  }
3159  
skb_inner_network_header_len(const struct sk_buff * skb)3160  static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3161  {
3162  	return skb->inner_transport_header - skb->inner_network_header;
3163  }
3164  
skb_network_offset(const struct sk_buff * skb)3165  static inline int skb_network_offset(const struct sk_buff *skb)
3166  {
3167  	return skb_network_header(skb) - skb->data;
3168  }
3169  
skb_inner_network_offset(const struct sk_buff * skb)3170  static inline int skb_inner_network_offset(const struct sk_buff *skb)
3171  {
3172  	return skb_inner_network_header(skb) - skb->data;
3173  }
3174  
3175  static inline enum skb_drop_reason
pskb_network_may_pull_reason(struct sk_buff * skb,unsigned int len)3176  pskb_network_may_pull_reason(struct sk_buff *skb, unsigned int len)
3177  {
3178  	return pskb_may_pull_reason(skb, skb_network_offset(skb) + len);
3179  }
3180  
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)3181  static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3182  {
3183  	return pskb_network_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
3184  }
3185  
3186  /*
3187   * CPUs often take a performance hit when accessing unaligned memory
3188   * locations. The actual performance hit varies, it can be small if the
3189   * hardware handles it or large if we have to take an exception and fix it
3190   * in software.
3191   *
3192   * Since an ethernet header is 14 bytes network drivers often end up with
3193   * the IP header at an unaligned offset. The IP header can be aligned by
3194   * shifting the start of the packet by 2 bytes. Drivers should do this
3195   * with:
3196   *
3197   * skb_reserve(skb, NET_IP_ALIGN);
3198   *
3199   * The downside to this alignment of the IP header is that the DMA is now
3200   * unaligned. On some architectures the cost of an unaligned DMA is high
3201   * and this cost outweighs the gains made by aligning the IP header.
3202   *
3203   * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3204   * to be overridden.
3205   */
3206  #ifndef NET_IP_ALIGN
3207  #define NET_IP_ALIGN	2
3208  #endif
3209  
3210  /*
3211   * The networking layer reserves some headroom in skb data (via
3212   * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3213   * the header has to grow. In the default case, if the header has to grow
3214   * 32 bytes or less we avoid the reallocation.
3215   *
3216   * Unfortunately this headroom changes the DMA alignment of the resulting
3217   * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3218   * on some architectures. An architecture can override this value,
3219   * perhaps setting it to a cacheline in size (since that will maintain
3220   * cacheline alignment of the DMA). It must be a power of 2.
3221   *
3222   * Various parts of the networking layer expect at least 32 bytes of
3223   * headroom, you should not reduce this.
3224   *
3225   * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3226   * to reduce average number of cache lines per packet.
3227   * get_rps_cpu() for example only access one 64 bytes aligned block :
3228   * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3229   */
3230  #ifndef NET_SKB_PAD
3231  #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3232  #endif
3233  
3234  int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3235  
__skb_set_length(struct sk_buff * skb,unsigned int len)3236  static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3237  {
3238  	if (WARN_ON(skb_is_nonlinear(skb)))
3239  		return;
3240  	skb->len = len;
3241  	skb_set_tail_pointer(skb, len);
3242  }
3243  
__skb_trim(struct sk_buff * skb,unsigned int len)3244  static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3245  {
3246  	__skb_set_length(skb, len);
3247  }
3248  
3249  void skb_trim(struct sk_buff *skb, unsigned int len);
3250  
__pskb_trim(struct sk_buff * skb,unsigned int len)3251  static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3252  {
3253  	if (skb->data_len)
3254  		return ___pskb_trim(skb, len);
3255  	__skb_trim(skb, len);
3256  	return 0;
3257  }
3258  
pskb_trim(struct sk_buff * skb,unsigned int len)3259  static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3260  {
3261  	skb_might_realloc(skb);
3262  	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3263  }
3264  
3265  /**
3266   *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3267   *	@skb: buffer to alter
3268   *	@len: new length
3269   *
3270   *	This is identical to pskb_trim except that the caller knows that
3271   *	the skb is not cloned so we should never get an error due to out-
3272   *	of-memory.
3273   */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)3274  static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3275  {
3276  	int err = pskb_trim(skb, len);
3277  	BUG_ON(err);
3278  }
3279  
__skb_grow(struct sk_buff * skb,unsigned int len)3280  static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3281  {
3282  	unsigned int diff = len - skb->len;
3283  
3284  	if (skb_tailroom(skb) < diff) {
3285  		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3286  					   GFP_ATOMIC);
3287  		if (ret)
3288  			return ret;
3289  	}
3290  	__skb_set_length(skb, len);
3291  	return 0;
3292  }
3293  
3294  /**
3295   *	skb_orphan - orphan a buffer
3296   *	@skb: buffer to orphan
3297   *
3298   *	If a buffer currently has an owner then we call the owner's
3299   *	destructor function and make the @skb unowned. The buffer continues
3300   *	to exist but is no longer charged to its former owner.
3301   */
skb_orphan(struct sk_buff * skb)3302  static inline void skb_orphan(struct sk_buff *skb)
3303  {
3304  	if (skb->destructor) {
3305  		skb->destructor(skb);
3306  		skb->destructor = NULL;
3307  		skb->sk		= NULL;
3308  	} else {
3309  		BUG_ON(skb->sk);
3310  	}
3311  }
3312  
3313  /**
3314   *	skb_orphan_frags - orphan the frags contained in a buffer
3315   *	@skb: buffer to orphan frags from
3316   *	@gfp_mask: allocation mask for replacement pages
3317   *
3318   *	For each frag in the SKB which needs a destructor (i.e. has an
3319   *	owner) create a copy of that frag and release the original
3320   *	page by calling the destructor.
3321   */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)3322  static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3323  {
3324  	if (likely(!skb_zcopy(skb)))
3325  		return 0;
3326  	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3327  		return 0;
3328  	return skb_copy_ubufs(skb, gfp_mask);
3329  }
3330  
3331  /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)3332  static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3333  {
3334  	if (likely(!skb_zcopy(skb)))
3335  		return 0;
3336  	return skb_copy_ubufs(skb, gfp_mask);
3337  }
3338  
3339  /**
3340   *	__skb_queue_purge_reason - empty a list
3341   *	@list: list to empty
3342   *	@reason: drop reason
3343   *
3344   *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3345   *	the list and one reference dropped. This function does not take the
3346   *	list lock and the caller must hold the relevant locks to use it.
3347   */
__skb_queue_purge_reason(struct sk_buff_head * list,enum skb_drop_reason reason)3348  static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3349  					    enum skb_drop_reason reason)
3350  {
3351  	struct sk_buff *skb;
3352  
3353  	while ((skb = __skb_dequeue(list)) != NULL)
3354  		kfree_skb_reason(skb, reason);
3355  }
3356  
__skb_queue_purge(struct sk_buff_head * list)3357  static inline void __skb_queue_purge(struct sk_buff_head *list)
3358  {
3359  	__skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3360  }
3361  
3362  void skb_queue_purge_reason(struct sk_buff_head *list,
3363  			    enum skb_drop_reason reason);
3364  
skb_queue_purge(struct sk_buff_head * list)3365  static inline void skb_queue_purge(struct sk_buff_head *list)
3366  {
3367  	skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3368  }
3369  
3370  unsigned int skb_rbtree_purge(struct rb_root *root);
3371  void skb_errqueue_purge(struct sk_buff_head *list);
3372  
3373  void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3374  
3375  /**
3376   * netdev_alloc_frag - allocate a page fragment
3377   * @fragsz: fragment size
3378   *
3379   * Allocates a frag from a page for receive buffer.
3380   * Uses GFP_ATOMIC allocations.
3381   */
netdev_alloc_frag(unsigned int fragsz)3382  static inline void *netdev_alloc_frag(unsigned int fragsz)
3383  {
3384  	return __netdev_alloc_frag_align(fragsz, ~0u);
3385  }
3386  
netdev_alloc_frag_align(unsigned int fragsz,unsigned int align)3387  static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3388  					    unsigned int align)
3389  {
3390  	WARN_ON_ONCE(!is_power_of_2(align));
3391  	return __netdev_alloc_frag_align(fragsz, -align);
3392  }
3393  
3394  struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3395  				   gfp_t gfp_mask);
3396  
3397  /**
3398   *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3399   *	@dev: network device to receive on
3400   *	@length: length to allocate
3401   *
3402   *	Allocate a new &sk_buff and assign it a usage count of one. The
3403   *	buffer has unspecified headroom built in. Users should allocate
3404   *	the headroom they think they need without accounting for the
3405   *	built in space. The built in space is used for optimisations.
3406   *
3407   *	%NULL is returned if there is no free memory. Although this function
3408   *	allocates memory it can be called from an interrupt.
3409   */
netdev_alloc_skb(struct net_device * dev,unsigned int length)3410  static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3411  					       unsigned int length)
3412  {
3413  	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3414  }
3415  
3416  /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)3417  static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3418  					      gfp_t gfp_mask)
3419  {
3420  	return __netdev_alloc_skb(NULL, length, gfp_mask);
3421  }
3422  
3423  /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)3424  static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3425  {
3426  	return netdev_alloc_skb(NULL, length);
3427  }
3428  
3429  
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)3430  static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3431  		unsigned int length, gfp_t gfp)
3432  {
3433  	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3434  
3435  	if (NET_IP_ALIGN && skb)
3436  		skb_reserve(skb, NET_IP_ALIGN);
3437  	return skb;
3438  }
3439  
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)3440  static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3441  		unsigned int length)
3442  {
3443  	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3444  }
3445  
skb_free_frag(void * addr)3446  static inline void skb_free_frag(void *addr)
3447  {
3448  	page_frag_free(addr);
3449  }
3450  
3451  void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3452  
napi_alloc_frag(unsigned int fragsz)3453  static inline void *napi_alloc_frag(unsigned int fragsz)
3454  {
3455  	return __napi_alloc_frag_align(fragsz, ~0u);
3456  }
3457  
napi_alloc_frag_align(unsigned int fragsz,unsigned int align)3458  static inline void *napi_alloc_frag_align(unsigned int fragsz,
3459  					  unsigned int align)
3460  {
3461  	WARN_ON_ONCE(!is_power_of_2(align));
3462  	return __napi_alloc_frag_align(fragsz, -align);
3463  }
3464  
3465  struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length);
3466  void napi_consume_skb(struct sk_buff *skb, int budget);
3467  
3468  void napi_skb_free_stolen_head(struct sk_buff *skb);
3469  void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3470  
3471  /**
3472   * __dev_alloc_pages - allocate page for network Rx
3473   * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3474   * @order: size of the allocation
3475   *
3476   * Allocate a new page.
3477   *
3478   * %NULL is returned if there is no free memory.
3479  */
__dev_alloc_pages_noprof(gfp_t gfp_mask,unsigned int order)3480  static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask,
3481  					     unsigned int order)
3482  {
3483  	/* This piece of code contains several assumptions.
3484  	 * 1.  This is for device Rx, therefore a cold page is preferred.
3485  	 * 2.  The expectation is the user wants a compound page.
3486  	 * 3.  If requesting a order 0 page it will not be compound
3487  	 *     due to the check to see if order has a value in prep_new_page
3488  	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3489  	 *     code in gfp_to_alloc_flags that should be enforcing this.
3490  	 */
3491  	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3492  
3493  	return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order);
3494  }
3495  #define __dev_alloc_pages(...)	alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__))
3496  
3497  /*
3498   * This specialized allocator has to be a macro for its allocations to be
3499   * accounted separately (to have a separate alloc_tag).
3500   */
3501  #define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order)
3502  
3503  /**
3504   * __dev_alloc_page - allocate a page for network Rx
3505   * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3506   *
3507   * Allocate a new page.
3508   *
3509   * %NULL is returned if there is no free memory.
3510   */
__dev_alloc_page_noprof(gfp_t gfp_mask)3511  static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask)
3512  {
3513  	return __dev_alloc_pages_noprof(gfp_mask, 0);
3514  }
3515  #define __dev_alloc_page(...)	alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__))
3516  
3517  /*
3518   * This specialized allocator has to be a macro for its allocations to be
3519   * accounted separately (to have a separate alloc_tag).
3520   */
3521  #define dev_alloc_page()	dev_alloc_pages(0)
3522  
3523  /**
3524   * dev_page_is_reusable - check whether a page can be reused for network Rx
3525   * @page: the page to test
3526   *
3527   * A page shouldn't be considered for reusing/recycling if it was allocated
3528   * under memory pressure or at a distant memory node.
3529   *
3530   * Returns: false if this page should be returned to page allocator, true
3531   * otherwise.
3532   */
dev_page_is_reusable(const struct page * page)3533  static inline bool dev_page_is_reusable(const struct page *page)
3534  {
3535  	return likely(page_to_nid(page) == numa_mem_id() &&
3536  		      !page_is_pfmemalloc(page));
3537  }
3538  
3539  /**
3540   *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3541   *	@page: The page that was allocated from skb_alloc_page
3542   *	@skb: The skb that may need pfmemalloc set
3543   */
skb_propagate_pfmemalloc(const struct page * page,struct sk_buff * skb)3544  static inline void skb_propagate_pfmemalloc(const struct page *page,
3545  					    struct sk_buff *skb)
3546  {
3547  	if (page_is_pfmemalloc(page))
3548  		skb->pfmemalloc = true;
3549  }
3550  
3551  /**
3552   * skb_frag_off() - Returns the offset of a skb fragment
3553   * @frag: the paged fragment
3554   */
skb_frag_off(const skb_frag_t * frag)3555  static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3556  {
3557  	return frag->offset;
3558  }
3559  
3560  /**
3561   * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3562   * @frag: skb fragment
3563   * @delta: value to add
3564   */
skb_frag_off_add(skb_frag_t * frag,int delta)3565  static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3566  {
3567  	frag->offset += delta;
3568  }
3569  
3570  /**
3571   * skb_frag_off_set() - Sets the offset of a skb fragment
3572   * @frag: skb fragment
3573   * @offset: offset of fragment
3574   */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)3575  static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3576  {
3577  	frag->offset = offset;
3578  }
3579  
3580  /**
3581   * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3582   * @fragto: skb fragment where offset is set
3583   * @fragfrom: skb fragment offset is copied from
3584   */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3585  static inline void skb_frag_off_copy(skb_frag_t *fragto,
3586  				     const skb_frag_t *fragfrom)
3587  {
3588  	fragto->offset = fragfrom->offset;
3589  }
3590  
3591  /* Return: true if the skb_frag contains a net_iov. */
skb_frag_is_net_iov(const skb_frag_t * frag)3592  static inline bool skb_frag_is_net_iov(const skb_frag_t *frag)
3593  {
3594  	return netmem_is_net_iov(frag->netmem);
3595  }
3596  
3597  /**
3598   * skb_frag_net_iov - retrieve the net_iov referred to by fragment
3599   * @frag: the fragment
3600   *
3601   * Return: the &struct net_iov associated with @frag. Returns NULL if this
3602   * frag has no associated net_iov.
3603   */
skb_frag_net_iov(const skb_frag_t * frag)3604  static inline struct net_iov *skb_frag_net_iov(const skb_frag_t *frag)
3605  {
3606  	if (!skb_frag_is_net_iov(frag))
3607  		return NULL;
3608  
3609  	return netmem_to_net_iov(frag->netmem);
3610  }
3611  
3612  /**
3613   * skb_frag_page - retrieve the page referred to by a paged fragment
3614   * @frag: the paged fragment
3615   *
3616   * Return: the &struct page associated with @frag. Returns NULL if this frag
3617   * has no associated page.
3618   */
skb_frag_page(const skb_frag_t * frag)3619  static inline struct page *skb_frag_page(const skb_frag_t *frag)
3620  {
3621  	if (skb_frag_is_net_iov(frag))
3622  		return NULL;
3623  
3624  	return netmem_to_page(frag->netmem);
3625  }
3626  
3627  /**
3628   * skb_frag_netmem - retrieve the netmem referred to by a fragment
3629   * @frag: the fragment
3630   *
3631   * Return: the &netmem_ref associated with @frag.
3632   */
skb_frag_netmem(const skb_frag_t * frag)3633  static inline netmem_ref skb_frag_netmem(const skb_frag_t *frag)
3634  {
3635  	return frag->netmem;
3636  }
3637  
3638  int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
3639  		    unsigned int headroom);
3640  int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
3641  			 const struct bpf_prog *prog);
3642  
3643  /**
3644   * skb_frag_address - gets the address of the data contained in a paged fragment
3645   * @frag: the paged fragment buffer
3646   *
3647   * Returns: the address of the data within @frag. The page must already
3648   * be mapped.
3649   */
skb_frag_address(const skb_frag_t * frag)3650  static inline void *skb_frag_address(const skb_frag_t *frag)
3651  {
3652  	if (!skb_frag_page(frag))
3653  		return NULL;
3654  
3655  	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3656  }
3657  
3658  /**
3659   * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3660   * @frag: the paged fragment buffer
3661   *
3662   * Returns: the address of the data within @frag. Checks that the page
3663   * is mapped and returns %NULL otherwise.
3664   */
skb_frag_address_safe(const skb_frag_t * frag)3665  static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3666  {
3667  	void *ptr = page_address(skb_frag_page(frag));
3668  	if (unlikely(!ptr))
3669  		return NULL;
3670  
3671  	return ptr + skb_frag_off(frag);
3672  }
3673  
3674  /**
3675   * skb_frag_page_copy() - sets the page in a fragment from another fragment
3676   * @fragto: skb fragment where page is set
3677   * @fragfrom: skb fragment page is copied from
3678   */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3679  static inline void skb_frag_page_copy(skb_frag_t *fragto,
3680  				      const skb_frag_t *fragfrom)
3681  {
3682  	fragto->netmem = fragfrom->netmem;
3683  }
3684  
3685  bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3686  
3687  /**
3688   * __skb_frag_dma_map - maps a paged fragment via the DMA API
3689   * @dev: the device to map the fragment to
3690   * @frag: the paged fragment to map
3691   * @offset: the offset within the fragment (starting at the
3692   *          fragment's own offset)
3693   * @size: the number of bytes to map
3694   * @dir: the direction of the mapping (``PCI_DMA_*``)
3695   *
3696   * Maps the page associated with @frag to @device.
3697   */
__skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3698  static inline dma_addr_t __skb_frag_dma_map(struct device *dev,
3699  					    const skb_frag_t *frag,
3700  					    size_t offset, size_t size,
3701  					    enum dma_data_direction dir)
3702  {
3703  	return dma_map_page(dev, skb_frag_page(frag),
3704  			    skb_frag_off(frag) + offset, size, dir);
3705  }
3706  
3707  #define skb_frag_dma_map(dev, frag, ...)				\
3708  	CONCATENATE(_skb_frag_dma_map,					\
3709  		    COUNT_ARGS(__VA_ARGS__))(dev, frag, ##__VA_ARGS__)
3710  
3711  #define __skb_frag_dma_map1(dev, frag, offset, uf, uo) ({		\
3712  	const skb_frag_t *uf = (frag);					\
3713  	size_t uo = (offset);						\
3714  									\
3715  	__skb_frag_dma_map(dev, uf, uo, skb_frag_size(uf) - uo,		\
3716  			   DMA_TO_DEVICE);				\
3717  })
3718  #define _skb_frag_dma_map1(dev, frag, offset)				\
3719  	__skb_frag_dma_map1(dev, frag, offset, __UNIQUE_ID(frag_),	\
3720  			    __UNIQUE_ID(offset_))
3721  #define _skb_frag_dma_map0(dev, frag)					\
3722  	_skb_frag_dma_map1(dev, frag, 0)
3723  #define _skb_frag_dma_map2(dev, frag, offset, size)			\
3724  	__skb_frag_dma_map(dev, frag, offset, size, DMA_TO_DEVICE)
3725  #define _skb_frag_dma_map3(dev, frag, offset, size, dir)		\
3726  	__skb_frag_dma_map(dev, frag, offset, size, dir)
3727  
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3728  static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3729  					gfp_t gfp_mask)
3730  {
3731  	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3732  }
3733  
3734  
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3735  static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3736  						  gfp_t gfp_mask)
3737  {
3738  	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3739  }
3740  
3741  
3742  /**
3743   *	skb_clone_writable - is the header of a clone writable
3744   *	@skb: buffer to check
3745   *	@len: length up to which to write
3746   *
3747   *	Returns true if modifying the header part of the cloned buffer
3748   *	does not requires the data to be copied.
3749   */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3750  static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3751  {
3752  	return !skb_header_cloned(skb) &&
3753  	       skb_headroom(skb) + len <= skb->hdr_len;
3754  }
3755  
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3756  static inline int skb_try_make_writable(struct sk_buff *skb,
3757  					unsigned int write_len)
3758  {
3759  	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3760  	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3761  }
3762  
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3763  static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3764  			    int cloned)
3765  {
3766  	int delta = 0;
3767  
3768  	if (headroom > skb_headroom(skb))
3769  		delta = headroom - skb_headroom(skb);
3770  
3771  	if (delta || cloned)
3772  		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3773  					GFP_ATOMIC);
3774  	return 0;
3775  }
3776  
3777  /**
3778   *	skb_cow - copy header of skb when it is required
3779   *	@skb: buffer to cow
3780   *	@headroom: needed headroom
3781   *
3782   *	If the skb passed lacks sufficient headroom or its data part
3783   *	is shared, data is reallocated. If reallocation fails, an error
3784   *	is returned and original skb is not changed.
3785   *
3786   *	The result is skb with writable area skb->head...skb->tail
3787   *	and at least @headroom of space at head.
3788   */
skb_cow(struct sk_buff * skb,unsigned int headroom)3789  static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3790  {
3791  	return __skb_cow(skb, headroom, skb_cloned(skb));
3792  }
3793  
3794  /**
3795   *	skb_cow_head - skb_cow but only making the head writable
3796   *	@skb: buffer to cow
3797   *	@headroom: needed headroom
3798   *
3799   *	This function is identical to skb_cow except that we replace the
3800   *	skb_cloned check by skb_header_cloned.  It should be used when
3801   *	you only need to push on some header and do not need to modify
3802   *	the data.
3803   */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3804  static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3805  {
3806  	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3807  }
3808  
3809  /**
3810   *	skb_padto	- pad an skbuff up to a minimal size
3811   *	@skb: buffer to pad
3812   *	@len: minimal length
3813   *
3814   *	Pads up a buffer to ensure the trailing bytes exist and are
3815   *	blanked. If the buffer already contains sufficient data it
3816   *	is untouched. Otherwise it is extended. Returns zero on
3817   *	success. The skb is freed on error.
3818   */
skb_padto(struct sk_buff * skb,unsigned int len)3819  static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3820  {
3821  	unsigned int size = skb->len;
3822  	if (likely(size >= len))
3823  		return 0;
3824  	return skb_pad(skb, len - size);
3825  }
3826  
3827  /**
3828   *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3829   *	@skb: buffer to pad
3830   *	@len: minimal length
3831   *	@free_on_error: free buffer on error
3832   *
3833   *	Pads up a buffer to ensure the trailing bytes exist and are
3834   *	blanked. If the buffer already contains sufficient data it
3835   *	is untouched. Otherwise it is extended. Returns zero on
3836   *	success. The skb is freed on error if @free_on_error is true.
3837   */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3838  static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3839  					       unsigned int len,
3840  					       bool free_on_error)
3841  {
3842  	unsigned int size = skb->len;
3843  
3844  	if (unlikely(size < len)) {
3845  		len -= size;
3846  		if (__skb_pad(skb, len, free_on_error))
3847  			return -ENOMEM;
3848  		__skb_put(skb, len);
3849  	}
3850  	return 0;
3851  }
3852  
3853  /**
3854   *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3855   *	@skb: buffer to pad
3856   *	@len: minimal length
3857   *
3858   *	Pads up a buffer to ensure the trailing bytes exist and are
3859   *	blanked. If the buffer already contains sufficient data it
3860   *	is untouched. Otherwise it is extended. Returns zero on
3861   *	success. The skb is freed on error.
3862   */
skb_put_padto(struct sk_buff * skb,unsigned int len)3863  static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3864  {
3865  	return __skb_put_padto(skb, len, true);
3866  }
3867  
3868  bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3869  	__must_check;
3870  
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3871  static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3872  				    const struct page *page, int off)
3873  {
3874  	if (skb_zcopy(skb))
3875  		return false;
3876  	if (i) {
3877  		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3878  
3879  		return page == skb_frag_page(frag) &&
3880  		       off == skb_frag_off(frag) + skb_frag_size(frag);
3881  	}
3882  	return false;
3883  }
3884  
__skb_linearize(struct sk_buff * skb)3885  static inline int __skb_linearize(struct sk_buff *skb)
3886  {
3887  	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3888  }
3889  
3890  /**
3891   *	skb_linearize - convert paged skb to linear one
3892   *	@skb: buffer to linarize
3893   *
3894   *	If there is no free memory -ENOMEM is returned, otherwise zero
3895   *	is returned and the old skb data released.
3896   */
skb_linearize(struct sk_buff * skb)3897  static inline int skb_linearize(struct sk_buff *skb)
3898  {
3899  	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3900  }
3901  
3902  /**
3903   * skb_has_shared_frag - can any frag be overwritten
3904   * @skb: buffer to test
3905   *
3906   * Return: true if the skb has at least one frag that might be modified
3907   * by an external entity (as in vmsplice()/sendfile())
3908   */
skb_has_shared_frag(const struct sk_buff * skb)3909  static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3910  {
3911  	return skb_is_nonlinear(skb) &&
3912  	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3913  }
3914  
3915  /**
3916   *	skb_linearize_cow - make sure skb is linear and writable
3917   *	@skb: buffer to process
3918   *
3919   *	If there is no free memory -ENOMEM is returned, otherwise zero
3920   *	is returned and the old skb data released.
3921   */
skb_linearize_cow(struct sk_buff * skb)3922  static inline int skb_linearize_cow(struct sk_buff *skb)
3923  {
3924  	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3925  	       __skb_linearize(skb) : 0;
3926  }
3927  
3928  static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3929  __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3930  		     unsigned int off)
3931  {
3932  	if (skb->ip_summed == CHECKSUM_COMPLETE)
3933  		skb->csum = csum_block_sub(skb->csum,
3934  					   csum_partial(start, len, 0), off);
3935  	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3936  		 skb_checksum_start_offset(skb) < 0)
3937  		skb->ip_summed = CHECKSUM_NONE;
3938  }
3939  
3940  /**
3941   *	skb_postpull_rcsum - update checksum for received skb after pull
3942   *	@skb: buffer to update
3943   *	@start: start of data before pull
3944   *	@len: length of data pulled
3945   *
3946   *	After doing a pull on a received packet, you need to call this to
3947   *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3948   *	CHECKSUM_NONE so that it can be recomputed from scratch.
3949   */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3950  static inline void skb_postpull_rcsum(struct sk_buff *skb,
3951  				      const void *start, unsigned int len)
3952  {
3953  	if (skb->ip_summed == CHECKSUM_COMPLETE)
3954  		skb->csum = wsum_negate(csum_partial(start, len,
3955  						     wsum_negate(skb->csum)));
3956  	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3957  		 skb_checksum_start_offset(skb) < 0)
3958  		skb->ip_summed = CHECKSUM_NONE;
3959  }
3960  
3961  static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3962  __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3963  		     unsigned int off)
3964  {
3965  	if (skb->ip_summed == CHECKSUM_COMPLETE)
3966  		skb->csum = csum_block_add(skb->csum,
3967  					   csum_partial(start, len, 0), off);
3968  }
3969  
3970  /**
3971   *	skb_postpush_rcsum - update checksum for received skb after push
3972   *	@skb: buffer to update
3973   *	@start: start of data after push
3974   *	@len: length of data pushed
3975   *
3976   *	After doing a push on a received packet, you need to call this to
3977   *	update the CHECKSUM_COMPLETE checksum.
3978   */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3979  static inline void skb_postpush_rcsum(struct sk_buff *skb,
3980  				      const void *start, unsigned int len)
3981  {
3982  	__skb_postpush_rcsum(skb, start, len, 0);
3983  }
3984  
3985  void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3986  
3987  /**
3988   *	skb_push_rcsum - push skb and update receive checksum
3989   *	@skb: buffer to update
3990   *	@len: length of data pulled
3991   *
3992   *	This function performs an skb_push on the packet and updates
3993   *	the CHECKSUM_COMPLETE checksum.  It should be used on
3994   *	receive path processing instead of skb_push unless you know
3995   *	that the checksum difference is zero (e.g., a valid IP header)
3996   *	or you are setting ip_summed to CHECKSUM_NONE.
3997   */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3998  static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3999  {
4000  	skb_push(skb, len);
4001  	skb_postpush_rcsum(skb, skb->data, len);
4002  	return skb->data;
4003  }
4004  
4005  int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
4006  /**
4007   *	pskb_trim_rcsum - trim received skb and update checksum
4008   *	@skb: buffer to trim
4009   *	@len: new length
4010   *
4011   *	This is exactly the same as pskb_trim except that it ensures the
4012   *	checksum of received packets are still valid after the operation.
4013   *	It can change skb pointers.
4014   */
4015  
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)4016  static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
4017  {
4018  	skb_might_realloc(skb);
4019  	if (likely(len >= skb->len))
4020  		return 0;
4021  	return pskb_trim_rcsum_slow(skb, len);
4022  }
4023  
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)4024  static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
4025  {
4026  	if (skb->ip_summed == CHECKSUM_COMPLETE)
4027  		skb->ip_summed = CHECKSUM_NONE;
4028  	__skb_trim(skb, len);
4029  	return 0;
4030  }
4031  
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)4032  static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
4033  {
4034  	if (skb->ip_summed == CHECKSUM_COMPLETE)
4035  		skb->ip_summed = CHECKSUM_NONE;
4036  	return __skb_grow(skb, len);
4037  }
4038  
4039  #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
4040  #define skb_rb_first(root) rb_to_skb(rb_first(root))
4041  #define skb_rb_last(root)  rb_to_skb(rb_last(root))
4042  #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
4043  #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
4044  
4045  #define skb_queue_walk(queue, skb) \
4046  		for (skb = (queue)->next;					\
4047  		     skb != (struct sk_buff *)(queue);				\
4048  		     skb = skb->next)
4049  
4050  #define skb_queue_walk_safe(queue, skb, tmp)					\
4051  		for (skb = (queue)->next, tmp = skb->next;			\
4052  		     skb != (struct sk_buff *)(queue);				\
4053  		     skb = tmp, tmp = skb->next)
4054  
4055  #define skb_queue_walk_from(queue, skb)						\
4056  		for (; skb != (struct sk_buff *)(queue);			\
4057  		     skb = skb->next)
4058  
4059  #define skb_rbtree_walk(skb, root)						\
4060  		for (skb = skb_rb_first(root); skb != NULL;			\
4061  		     skb = skb_rb_next(skb))
4062  
4063  #define skb_rbtree_walk_from(skb)						\
4064  		for (; skb != NULL;						\
4065  		     skb = skb_rb_next(skb))
4066  
4067  #define skb_rbtree_walk_from_safe(skb, tmp)					\
4068  		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
4069  		     skb = tmp)
4070  
4071  #define skb_queue_walk_from_safe(queue, skb, tmp)				\
4072  		for (tmp = skb->next;						\
4073  		     skb != (struct sk_buff *)(queue);				\
4074  		     skb = tmp, tmp = skb->next)
4075  
4076  #define skb_queue_reverse_walk(queue, skb) \
4077  		for (skb = (queue)->prev;					\
4078  		     skb != (struct sk_buff *)(queue);				\
4079  		     skb = skb->prev)
4080  
4081  #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
4082  		for (skb = (queue)->prev, tmp = skb->prev;			\
4083  		     skb != (struct sk_buff *)(queue);				\
4084  		     skb = tmp, tmp = skb->prev)
4085  
4086  #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
4087  		for (tmp = skb->prev;						\
4088  		     skb != (struct sk_buff *)(queue);				\
4089  		     skb = tmp, tmp = skb->prev)
4090  
skb_has_frag_list(const struct sk_buff * skb)4091  static inline bool skb_has_frag_list(const struct sk_buff *skb)
4092  {
4093  	return skb_shinfo(skb)->frag_list != NULL;
4094  }
4095  
skb_frag_list_init(struct sk_buff * skb)4096  static inline void skb_frag_list_init(struct sk_buff *skb)
4097  {
4098  	skb_shinfo(skb)->frag_list = NULL;
4099  }
4100  
4101  #define skb_walk_frags(skb, iter)	\
4102  	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
4103  
4104  
4105  int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
4106  				int *err, long *timeo_p,
4107  				const struct sk_buff *skb);
4108  struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
4109  					  struct sk_buff_head *queue,
4110  					  unsigned int flags,
4111  					  int *off, int *err,
4112  					  struct sk_buff **last);
4113  struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
4114  					struct sk_buff_head *queue,
4115  					unsigned int flags, int *off, int *err,
4116  					struct sk_buff **last);
4117  struct sk_buff *__skb_recv_datagram(struct sock *sk,
4118  				    struct sk_buff_head *sk_queue,
4119  				    unsigned int flags, int *off, int *err);
4120  struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
4121  __poll_t datagram_poll(struct file *file, struct socket *sock,
4122  			   struct poll_table_struct *wait);
4123  int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
4124  			   struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)4125  static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
4126  					struct msghdr *msg, int size)
4127  {
4128  	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
4129  }
4130  int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
4131  				   struct msghdr *msg);
4132  int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
4133  			   struct iov_iter *to, int len,
4134  			   struct ahash_request *hash);
4135  int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
4136  				 struct iov_iter *from, int len);
4137  int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
4138  void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4139  int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4140  int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4141  int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4142  __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4143  			      int len);
4144  int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4145  		    struct pipe_inode_info *pipe, unsigned int len,
4146  		    unsigned int flags);
4147  int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4148  			 int len);
4149  int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4150  void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4151  unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4152  int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4153  		 int len, int hlen);
4154  void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4155  int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4156  void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4157  struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4158  struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4159  				 unsigned int offset);
4160  struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4161  int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4162  int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev);
4163  int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4164  int skb_vlan_pop(struct sk_buff *skb);
4165  int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4166  int skb_eth_pop(struct sk_buff *skb);
4167  int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4168  		 const unsigned char *src);
4169  int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4170  		  int mac_len, bool ethernet);
4171  int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4172  		 bool ethernet);
4173  int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4174  int skb_mpls_dec_ttl(struct sk_buff *skb);
4175  struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4176  			     gfp_t gfp);
4177  
memcpy_from_msg(void * data,struct msghdr * msg,int len)4178  static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4179  {
4180  	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4181  }
4182  
memcpy_to_msg(struct msghdr * msg,void * data,int len)4183  static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4184  {
4185  	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4186  }
4187  
4188  struct skb_checksum_ops {
4189  	__wsum (*update)(const void *mem, int len, __wsum wsum);
4190  	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4191  };
4192  
4193  extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4194  
4195  __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4196  		      __wsum csum, const struct skb_checksum_ops *ops);
4197  __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4198  		    __wsum csum);
4199  
4200  static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,const void * data,int hlen,void * buffer)4201  __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4202  		     const void *data, int hlen, void *buffer)
4203  {
4204  	if (likely(hlen - offset >= len))
4205  		return (void *)data + offset;
4206  
4207  	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4208  		return NULL;
4209  
4210  	return buffer;
4211  }
4212  
4213  static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)4214  skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4215  {
4216  	return __skb_header_pointer(skb, offset, len, skb->data,
4217  				    skb_headlen(skb), buffer);
4218  }
4219  
4220  static inline void * __must_check
skb_pointer_if_linear(const struct sk_buff * skb,int offset,int len)4221  skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4222  {
4223  	if (likely(skb_headlen(skb) - offset >= len))
4224  		return skb->data + offset;
4225  	return NULL;
4226  }
4227  
4228  /**
4229   *	skb_needs_linearize - check if we need to linearize a given skb
4230   *			      depending on the given device features.
4231   *	@skb: socket buffer to check
4232   *	@features: net device features
4233   *
4234   *	Returns true if either:
4235   *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4236   *	2. skb is fragmented and the device does not support SG.
4237   */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)4238  static inline bool skb_needs_linearize(struct sk_buff *skb,
4239  				       netdev_features_t features)
4240  {
4241  	return skb_is_nonlinear(skb) &&
4242  	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4243  		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4244  }
4245  
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)4246  static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4247  					     void *to,
4248  					     const unsigned int len)
4249  {
4250  	memcpy(to, skb->data, len);
4251  }
4252  
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)4253  static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4254  						    const int offset, void *to,
4255  						    const unsigned int len)
4256  {
4257  	memcpy(to, skb->data + offset, len);
4258  }
4259  
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)4260  static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4261  					   const void *from,
4262  					   const unsigned int len)
4263  {
4264  	memcpy(skb->data, from, len);
4265  }
4266  
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)4267  static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4268  						  const int offset,
4269  						  const void *from,
4270  						  const unsigned int len)
4271  {
4272  	memcpy(skb->data + offset, from, len);
4273  }
4274  
4275  void skb_init(void);
4276  
skb_get_ktime(const struct sk_buff * skb)4277  static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4278  {
4279  	return skb->tstamp;
4280  }
4281  
4282  /**
4283   *	skb_get_timestamp - get timestamp from a skb
4284   *	@skb: skb to get stamp from
4285   *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4286   *
4287   *	Timestamps are stored in the skb as offsets to a base timestamp.
4288   *	This function converts the offset back to a struct timeval and stores
4289   *	it in stamp.
4290   */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)4291  static inline void skb_get_timestamp(const struct sk_buff *skb,
4292  				     struct __kernel_old_timeval *stamp)
4293  {
4294  	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4295  }
4296  
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)4297  static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4298  					 struct __kernel_sock_timeval *stamp)
4299  {
4300  	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4301  
4302  	stamp->tv_sec = ts.tv_sec;
4303  	stamp->tv_usec = ts.tv_nsec / 1000;
4304  }
4305  
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)4306  static inline void skb_get_timestampns(const struct sk_buff *skb,
4307  				       struct __kernel_old_timespec *stamp)
4308  {
4309  	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4310  
4311  	stamp->tv_sec = ts.tv_sec;
4312  	stamp->tv_nsec = ts.tv_nsec;
4313  }
4314  
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)4315  static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4316  					   struct __kernel_timespec *stamp)
4317  {
4318  	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4319  
4320  	stamp->tv_sec = ts.tv_sec;
4321  	stamp->tv_nsec = ts.tv_nsec;
4322  }
4323  
__net_timestamp(struct sk_buff * skb)4324  static inline void __net_timestamp(struct sk_buff *skb)
4325  {
4326  	skb->tstamp = ktime_get_real();
4327  	skb->tstamp_type = SKB_CLOCK_REALTIME;
4328  }
4329  
net_timedelta(ktime_t t)4330  static inline ktime_t net_timedelta(ktime_t t)
4331  {
4332  	return ktime_sub(ktime_get_real(), t);
4333  }
4334  
skb_set_delivery_time(struct sk_buff * skb,ktime_t kt,u8 tstamp_type)4335  static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4336  					 u8 tstamp_type)
4337  {
4338  	skb->tstamp = kt;
4339  
4340  	if (kt)
4341  		skb->tstamp_type = tstamp_type;
4342  	else
4343  		skb->tstamp_type = SKB_CLOCK_REALTIME;
4344  }
4345  
skb_set_delivery_type_by_clockid(struct sk_buff * skb,ktime_t kt,clockid_t clockid)4346  static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb,
4347  						    ktime_t kt, clockid_t clockid)
4348  {
4349  	u8 tstamp_type = SKB_CLOCK_REALTIME;
4350  
4351  	switch (clockid) {
4352  	case CLOCK_REALTIME:
4353  		break;
4354  	case CLOCK_MONOTONIC:
4355  		tstamp_type = SKB_CLOCK_MONOTONIC;
4356  		break;
4357  	case CLOCK_TAI:
4358  		tstamp_type = SKB_CLOCK_TAI;
4359  		break;
4360  	default:
4361  		WARN_ON_ONCE(1);
4362  		kt = 0;
4363  	}
4364  
4365  	skb_set_delivery_time(skb, kt, tstamp_type);
4366  }
4367  
4368  DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4369  
4370  /* It is used in the ingress path to clear the delivery_time.
4371   * If needed, set the skb->tstamp to the (rcv) timestamp.
4372   */
skb_clear_delivery_time(struct sk_buff * skb)4373  static inline void skb_clear_delivery_time(struct sk_buff *skb)
4374  {
4375  	if (skb->tstamp_type) {
4376  		skb->tstamp_type = SKB_CLOCK_REALTIME;
4377  		if (static_branch_unlikely(&netstamp_needed_key))
4378  			skb->tstamp = ktime_get_real();
4379  		else
4380  			skb->tstamp = 0;
4381  	}
4382  }
4383  
skb_clear_tstamp(struct sk_buff * skb)4384  static inline void skb_clear_tstamp(struct sk_buff *skb)
4385  {
4386  	if (skb->tstamp_type)
4387  		return;
4388  
4389  	skb->tstamp = 0;
4390  }
4391  
skb_tstamp(const struct sk_buff * skb)4392  static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4393  {
4394  	if (skb->tstamp_type)
4395  		return 0;
4396  
4397  	return skb->tstamp;
4398  }
4399  
skb_tstamp_cond(const struct sk_buff * skb,bool cond)4400  static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4401  {
4402  	if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp)
4403  		return skb->tstamp;
4404  
4405  	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4406  		return ktime_get_real();
4407  
4408  	return 0;
4409  }
4410  
skb_metadata_len(const struct sk_buff * skb)4411  static inline u8 skb_metadata_len(const struct sk_buff *skb)
4412  {
4413  	return skb_shinfo(skb)->meta_len;
4414  }
4415  
skb_metadata_end(const struct sk_buff * skb)4416  static inline void *skb_metadata_end(const struct sk_buff *skb)
4417  {
4418  	return skb_mac_header(skb);
4419  }
4420  
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)4421  static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4422  					  const struct sk_buff *skb_b,
4423  					  u8 meta_len)
4424  {
4425  	const void *a = skb_metadata_end(skb_a);
4426  	const void *b = skb_metadata_end(skb_b);
4427  	u64 diffs = 0;
4428  
4429  	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
4430  	    BITS_PER_LONG != 64)
4431  		goto slow;
4432  
4433  	/* Using more efficient variant than plain call to memcmp(). */
4434  	switch (meta_len) {
4435  #define __it(x, op) (x -= sizeof(u##op))
4436  #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4437  	case 32: diffs |= __it_diff(a, b, 64);
4438  		fallthrough;
4439  	case 24: diffs |= __it_diff(a, b, 64);
4440  		fallthrough;
4441  	case 16: diffs |= __it_diff(a, b, 64);
4442  		fallthrough;
4443  	case  8: diffs |= __it_diff(a, b, 64);
4444  		break;
4445  	case 28: diffs |= __it_diff(a, b, 64);
4446  		fallthrough;
4447  	case 20: diffs |= __it_diff(a, b, 64);
4448  		fallthrough;
4449  	case 12: diffs |= __it_diff(a, b, 64);
4450  		fallthrough;
4451  	case  4: diffs |= __it_diff(a, b, 32);
4452  		break;
4453  	default:
4454  slow:
4455  		return memcmp(a - meta_len, b - meta_len, meta_len);
4456  	}
4457  	return diffs;
4458  }
4459  
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)4460  static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4461  					const struct sk_buff *skb_b)
4462  {
4463  	u8 len_a = skb_metadata_len(skb_a);
4464  	u8 len_b = skb_metadata_len(skb_b);
4465  
4466  	if (!(len_a | len_b))
4467  		return false;
4468  
4469  	return len_a != len_b ?
4470  	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4471  }
4472  
skb_metadata_set(struct sk_buff * skb,u8 meta_len)4473  static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4474  {
4475  	skb_shinfo(skb)->meta_len = meta_len;
4476  }
4477  
skb_metadata_clear(struct sk_buff * skb)4478  static inline void skb_metadata_clear(struct sk_buff *skb)
4479  {
4480  	skb_metadata_set(skb, 0);
4481  }
4482  
4483  struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4484  
4485  #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4486  
4487  void skb_clone_tx_timestamp(struct sk_buff *skb);
4488  bool skb_defer_rx_timestamp(struct sk_buff *skb);
4489  
4490  #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4491  
skb_clone_tx_timestamp(struct sk_buff * skb)4492  static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4493  {
4494  }
4495  
skb_defer_rx_timestamp(struct sk_buff * skb)4496  static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4497  {
4498  	return false;
4499  }
4500  
4501  #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4502  
4503  /**
4504   * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4505   *
4506   * PHY drivers may accept clones of transmitted packets for
4507   * timestamping via their phy_driver.txtstamp method. These drivers
4508   * must call this function to return the skb back to the stack with a
4509   * timestamp.
4510   *
4511   * @skb: clone of the original outgoing packet
4512   * @hwtstamps: hardware time stamps
4513   *
4514   */
4515  void skb_complete_tx_timestamp(struct sk_buff *skb,
4516  			       struct skb_shared_hwtstamps *hwtstamps);
4517  
4518  void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4519  		     struct skb_shared_hwtstamps *hwtstamps,
4520  		     struct sock *sk, int tstype);
4521  
4522  /**
4523   * skb_tstamp_tx - queue clone of skb with send time stamps
4524   * @orig_skb:	the original outgoing packet
4525   * @hwtstamps:	hardware time stamps, may be NULL if not available
4526   *
4527   * If the skb has a socket associated, then this function clones the
4528   * skb (thus sharing the actual data and optional structures), stores
4529   * the optional hardware time stamping information (if non NULL) or
4530   * generates a software time stamp (otherwise), then queues the clone
4531   * to the error queue of the socket.  Errors are silently ignored.
4532   */
4533  void skb_tstamp_tx(struct sk_buff *orig_skb,
4534  		   struct skb_shared_hwtstamps *hwtstamps);
4535  
4536  /**
4537   * skb_tx_timestamp() - Driver hook for transmit timestamping
4538   *
4539   * Ethernet MAC Drivers should call this function in their hard_xmit()
4540   * function immediately before giving the sk_buff to the MAC hardware.
4541   *
4542   * Specifically, one should make absolutely sure that this function is
4543   * called before TX completion of this packet can trigger.  Otherwise
4544   * the packet could potentially already be freed.
4545   *
4546   * @skb: A socket buffer.
4547   */
skb_tx_timestamp(struct sk_buff * skb)4548  static inline void skb_tx_timestamp(struct sk_buff *skb)
4549  {
4550  	skb_clone_tx_timestamp(skb);
4551  	if (skb_shinfo(skb)->tx_flags & (SKBTX_SW_TSTAMP | SKBTX_BPF))
4552  		skb_tstamp_tx(skb, NULL);
4553  }
4554  
4555  /**
4556   * skb_complete_wifi_ack - deliver skb with wifi status
4557   *
4558   * @skb: the original outgoing packet
4559   * @acked: ack status
4560   *
4561   */
4562  void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4563  
4564  __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4565  __sum16 __skb_checksum_complete(struct sk_buff *skb);
4566  
skb_csum_unnecessary(const struct sk_buff * skb)4567  static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4568  {
4569  	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4570  		skb->csum_valid ||
4571  		(skb->ip_summed == CHECKSUM_PARTIAL &&
4572  		 skb_checksum_start_offset(skb) >= 0));
4573  }
4574  
4575  /**
4576   *	skb_checksum_complete - Calculate checksum of an entire packet
4577   *	@skb: packet to process
4578   *
4579   *	This function calculates the checksum over the entire packet plus
4580   *	the value of skb->csum.  The latter can be used to supply the
4581   *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4582   *	checksum.
4583   *
4584   *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4585   *	this function can be used to verify that checksum on received
4586   *	packets.  In that case the function should return zero if the
4587   *	checksum is correct.  In particular, this function will return zero
4588   *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4589   *	hardware has already verified the correctness of the checksum.
4590   */
skb_checksum_complete(struct sk_buff * skb)4591  static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4592  {
4593  	return skb_csum_unnecessary(skb) ?
4594  	       0 : __skb_checksum_complete(skb);
4595  }
4596  
__skb_decr_checksum_unnecessary(struct sk_buff * skb)4597  static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4598  {
4599  	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4600  		if (skb->csum_level == 0)
4601  			skb->ip_summed = CHECKSUM_NONE;
4602  		else
4603  			skb->csum_level--;
4604  	}
4605  }
4606  
__skb_incr_checksum_unnecessary(struct sk_buff * skb)4607  static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4608  {
4609  	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4610  		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4611  			skb->csum_level++;
4612  	} else if (skb->ip_summed == CHECKSUM_NONE) {
4613  		skb->ip_summed = CHECKSUM_UNNECESSARY;
4614  		skb->csum_level = 0;
4615  	}
4616  }
4617  
__skb_reset_checksum_unnecessary(struct sk_buff * skb)4618  static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4619  {
4620  	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4621  		skb->ip_summed = CHECKSUM_NONE;
4622  		skb->csum_level = 0;
4623  	}
4624  }
4625  
4626  /* Check if we need to perform checksum complete validation.
4627   *
4628   * Returns: true if checksum complete is needed, false otherwise
4629   * (either checksum is unnecessary or zero checksum is allowed).
4630   */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)4631  static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4632  						  bool zero_okay,
4633  						  __sum16 check)
4634  {
4635  	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4636  		skb->csum_valid = 1;
4637  		__skb_decr_checksum_unnecessary(skb);
4638  		return false;
4639  	}
4640  
4641  	return true;
4642  }
4643  
4644  /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4645   * in checksum_init.
4646   */
4647  #define CHECKSUM_BREAK 76
4648  
4649  /* Unset checksum-complete
4650   *
4651   * Unset checksum complete can be done when packet is being modified
4652   * (uncompressed for instance) and checksum-complete value is
4653   * invalidated.
4654   */
skb_checksum_complete_unset(struct sk_buff * skb)4655  static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4656  {
4657  	if (skb->ip_summed == CHECKSUM_COMPLETE)
4658  		skb->ip_summed = CHECKSUM_NONE;
4659  }
4660  
4661  /* Validate (init) checksum based on checksum complete.
4662   *
4663   * Return values:
4664   *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4665   *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4666   *	checksum is stored in skb->csum for use in __skb_checksum_complete
4667   *   non-zero: value of invalid checksum
4668   *
4669   */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4670  static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4671  						       bool complete,
4672  						       __wsum psum)
4673  {
4674  	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4675  		if (!csum_fold(csum_add(psum, skb->csum))) {
4676  			skb->csum_valid = 1;
4677  			return 0;
4678  		}
4679  	}
4680  
4681  	skb->csum = psum;
4682  
4683  	if (complete || skb->len <= CHECKSUM_BREAK) {
4684  		__sum16 csum;
4685  
4686  		csum = __skb_checksum_complete(skb);
4687  		skb->csum_valid = !csum;
4688  		return csum;
4689  	}
4690  
4691  	return 0;
4692  }
4693  
null_compute_pseudo(struct sk_buff * skb,int proto)4694  static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4695  {
4696  	return 0;
4697  }
4698  
4699  /* Perform checksum validate (init). Note that this is a macro since we only
4700   * want to calculate the pseudo header which is an input function if necessary.
4701   * First we try to validate without any computation (checksum unnecessary) and
4702   * then calculate based on checksum complete calling the function to compute
4703   * pseudo header.
4704   *
4705   * Return values:
4706   *   0: checksum is validated or try to in skb_checksum_complete
4707   *   non-zero: value of invalid checksum
4708   */
4709  #define __skb_checksum_validate(skb, proto, complete,			\
4710  				zero_okay, check, compute_pseudo)	\
4711  ({									\
4712  	__sum16 __ret = 0;						\
4713  	skb->csum_valid = 0;						\
4714  	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4715  		__ret = __skb_checksum_validate_complete(skb,		\
4716  				complete, compute_pseudo(skb, proto));	\
4717  	__ret;								\
4718  })
4719  
4720  #define skb_checksum_init(skb, proto, compute_pseudo)			\
4721  	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4722  
4723  #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4724  	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4725  
4726  #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4727  	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4728  
4729  #define skb_checksum_validate_zero_check(skb, proto, check,		\
4730  					 compute_pseudo)		\
4731  	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4732  
4733  #define skb_checksum_simple_validate(skb)				\
4734  	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4735  
__skb_checksum_convert_check(struct sk_buff * skb)4736  static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4737  {
4738  	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4739  }
4740  
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4741  static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4742  {
4743  	skb->csum = ~pseudo;
4744  	skb->ip_summed = CHECKSUM_COMPLETE;
4745  }
4746  
4747  #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4748  do {									\
4749  	if (__skb_checksum_convert_check(skb))				\
4750  		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4751  } while (0)
4752  
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4753  static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4754  					      u16 start, u16 offset)
4755  {
4756  	skb->ip_summed = CHECKSUM_PARTIAL;
4757  	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4758  	skb->csum_offset = offset - start;
4759  }
4760  
4761  /* Update skbuf and packet to reflect the remote checksum offload operation.
4762   * When called, ptr indicates the starting point for skb->csum when
4763   * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4764   * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4765   */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4766  static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4767  				       int start, int offset, bool nopartial)
4768  {
4769  	__wsum delta;
4770  
4771  	if (!nopartial) {
4772  		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4773  		return;
4774  	}
4775  
4776  	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4777  		__skb_checksum_complete(skb);
4778  		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4779  	}
4780  
4781  	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4782  
4783  	/* Adjust skb->csum since we changed the packet */
4784  	skb->csum = csum_add(skb->csum, delta);
4785  }
4786  
skb_nfct(const struct sk_buff * skb)4787  static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4788  {
4789  #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4790  	return (void *)(skb->_nfct & NFCT_PTRMASK);
4791  #else
4792  	return NULL;
4793  #endif
4794  }
4795  
skb_get_nfct(const struct sk_buff * skb)4796  static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4797  {
4798  #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4799  	return skb->_nfct;
4800  #else
4801  	return 0UL;
4802  #endif
4803  }
4804  
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4805  static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4806  {
4807  #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4808  	skb->slow_gro |= !!nfct;
4809  	skb->_nfct = nfct;
4810  #endif
4811  }
4812  
4813  #ifdef CONFIG_SKB_EXTENSIONS
4814  enum skb_ext_id {
4815  #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4816  	SKB_EXT_BRIDGE_NF,
4817  #endif
4818  #ifdef CONFIG_XFRM
4819  	SKB_EXT_SEC_PATH,
4820  #endif
4821  #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4822  	TC_SKB_EXT,
4823  #endif
4824  #if IS_ENABLED(CONFIG_MPTCP)
4825  	SKB_EXT_MPTCP,
4826  #endif
4827  #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4828  	SKB_EXT_MCTP,
4829  #endif
4830  	SKB_EXT_NUM, /* must be last */
4831  };
4832  
4833  /**
4834   *	struct skb_ext - sk_buff extensions
4835   *	@refcnt: 1 on allocation, deallocated on 0
4836   *	@offset: offset to add to @data to obtain extension address
4837   *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4838   *	@data: start of extension data, variable sized
4839   *
4840   *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4841   *	to use 'u8' types while allowing up to 2kb worth of extension data.
4842   */
4843  struct skb_ext {
4844  	refcount_t refcnt;
4845  	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4846  	u8 chunks;		/* same */
4847  	char data[] __aligned(8);
4848  };
4849  
4850  struct skb_ext *__skb_ext_alloc(gfp_t flags);
4851  void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4852  		    struct skb_ext *ext);
4853  void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4854  void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4855  void __skb_ext_put(struct skb_ext *ext);
4856  
skb_ext_put(struct sk_buff * skb)4857  static inline void skb_ext_put(struct sk_buff *skb)
4858  {
4859  	if (skb->active_extensions)
4860  		__skb_ext_put(skb->extensions);
4861  }
4862  
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4863  static inline void __skb_ext_copy(struct sk_buff *dst,
4864  				  const struct sk_buff *src)
4865  {
4866  	dst->active_extensions = src->active_extensions;
4867  
4868  	if (src->active_extensions) {
4869  		struct skb_ext *ext = src->extensions;
4870  
4871  		refcount_inc(&ext->refcnt);
4872  		dst->extensions = ext;
4873  	}
4874  }
4875  
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4876  static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4877  {
4878  	skb_ext_put(dst);
4879  	__skb_ext_copy(dst, src);
4880  }
4881  
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4882  static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4883  {
4884  	return !!ext->offset[i];
4885  }
4886  
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4887  static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4888  {
4889  	return skb->active_extensions & (1 << id);
4890  }
4891  
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4892  static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4893  {
4894  	if (skb_ext_exist(skb, id))
4895  		__skb_ext_del(skb, id);
4896  }
4897  
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4898  static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4899  {
4900  	if (skb_ext_exist(skb, id)) {
4901  		struct skb_ext *ext = skb->extensions;
4902  
4903  		return (void *)ext + (ext->offset[id] << 3);
4904  	}
4905  
4906  	return NULL;
4907  }
4908  
skb_ext_reset(struct sk_buff * skb)4909  static inline void skb_ext_reset(struct sk_buff *skb)
4910  {
4911  	if (unlikely(skb->active_extensions)) {
4912  		__skb_ext_put(skb->extensions);
4913  		skb->active_extensions = 0;
4914  	}
4915  }
4916  
skb_has_extensions(struct sk_buff * skb)4917  static inline bool skb_has_extensions(struct sk_buff *skb)
4918  {
4919  	return unlikely(skb->active_extensions);
4920  }
4921  #else
skb_ext_put(struct sk_buff * skb)4922  static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4923  static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4924  static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4925  static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4926  static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4927  static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4928  #endif /* CONFIG_SKB_EXTENSIONS */
4929  
nf_reset_ct(struct sk_buff * skb)4930  static inline void nf_reset_ct(struct sk_buff *skb)
4931  {
4932  #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4933  	nf_conntrack_put(skb_nfct(skb));
4934  	skb->_nfct = 0;
4935  #endif
4936  }
4937  
nf_reset_trace(struct sk_buff * skb)4938  static inline void nf_reset_trace(struct sk_buff *skb)
4939  {
4940  #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4941  	skb->nf_trace = 0;
4942  #endif
4943  }
4944  
ipvs_reset(struct sk_buff * skb)4945  static inline void ipvs_reset(struct sk_buff *skb)
4946  {
4947  #if IS_ENABLED(CONFIG_IP_VS)
4948  	skb->ipvs_property = 0;
4949  #endif
4950  }
4951  
4952  /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4953  static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4954  			     bool copy)
4955  {
4956  #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4957  	dst->_nfct = src->_nfct;
4958  	nf_conntrack_get(skb_nfct(src));
4959  #endif
4960  #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4961  	if (copy)
4962  		dst->nf_trace = src->nf_trace;
4963  #endif
4964  }
4965  
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4966  static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4967  {
4968  #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4969  	nf_conntrack_put(skb_nfct(dst));
4970  #endif
4971  	dst->slow_gro = src->slow_gro;
4972  	__nf_copy(dst, src, true);
4973  }
4974  
4975  #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4976  static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4977  {
4978  	to->secmark = from->secmark;
4979  }
4980  
skb_init_secmark(struct sk_buff * skb)4981  static inline void skb_init_secmark(struct sk_buff *skb)
4982  {
4983  	skb->secmark = 0;
4984  }
4985  #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4986  static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4987  { }
4988  
skb_init_secmark(struct sk_buff * skb)4989  static inline void skb_init_secmark(struct sk_buff *skb)
4990  { }
4991  #endif
4992  
secpath_exists(const struct sk_buff * skb)4993  static inline int secpath_exists(const struct sk_buff *skb)
4994  {
4995  #ifdef CONFIG_XFRM
4996  	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4997  #else
4998  	return 0;
4999  #endif
5000  }
5001  
skb_irq_freeable(const struct sk_buff * skb)5002  static inline bool skb_irq_freeable(const struct sk_buff *skb)
5003  {
5004  	return !skb->destructor &&
5005  		!secpath_exists(skb) &&
5006  		!skb_nfct(skb) &&
5007  		!skb->_skb_refdst &&
5008  		!skb_has_frag_list(skb);
5009  }
5010  
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)5011  static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
5012  {
5013  	skb->queue_mapping = queue_mapping;
5014  }
5015  
skb_get_queue_mapping(const struct sk_buff * skb)5016  static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
5017  {
5018  	return skb->queue_mapping;
5019  }
5020  
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)5021  static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
5022  {
5023  	to->queue_mapping = from->queue_mapping;
5024  }
5025  
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)5026  static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
5027  {
5028  	skb->queue_mapping = rx_queue + 1;
5029  }
5030  
skb_get_rx_queue(const struct sk_buff * skb)5031  static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
5032  {
5033  	return skb->queue_mapping - 1;
5034  }
5035  
skb_rx_queue_recorded(const struct sk_buff * skb)5036  static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
5037  {
5038  	return skb->queue_mapping != 0;
5039  }
5040  
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)5041  static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
5042  {
5043  	skb->dst_pending_confirm = val;
5044  }
5045  
skb_get_dst_pending_confirm(const struct sk_buff * skb)5046  static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
5047  {
5048  	return skb->dst_pending_confirm != 0;
5049  }
5050  
skb_sec_path(const struct sk_buff * skb)5051  static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
5052  {
5053  #ifdef CONFIG_XFRM
5054  	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
5055  #else
5056  	return NULL;
5057  #endif
5058  }
5059  
skb_is_gso(const struct sk_buff * skb)5060  static inline bool skb_is_gso(const struct sk_buff *skb)
5061  {
5062  	return skb_shinfo(skb)->gso_size;
5063  }
5064  
5065  /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)5066  static inline bool skb_is_gso_v6(const struct sk_buff *skb)
5067  {
5068  	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
5069  }
5070  
5071  /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)5072  static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
5073  {
5074  	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
5075  }
5076  
5077  /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)5078  static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
5079  {
5080  	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
5081  }
5082  
skb_gso_reset(struct sk_buff * skb)5083  static inline void skb_gso_reset(struct sk_buff *skb)
5084  {
5085  	skb_shinfo(skb)->gso_size = 0;
5086  	skb_shinfo(skb)->gso_segs = 0;
5087  	skb_shinfo(skb)->gso_type = 0;
5088  }
5089  
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)5090  static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
5091  					 u16 increment)
5092  {
5093  	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5094  		return;
5095  	shinfo->gso_size += increment;
5096  }
5097  
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)5098  static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
5099  					 u16 decrement)
5100  {
5101  	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5102  		return;
5103  	shinfo->gso_size -= decrement;
5104  }
5105  
5106  void __skb_warn_lro_forwarding(const struct sk_buff *skb);
5107  
skb_warn_if_lro(const struct sk_buff * skb)5108  static inline bool skb_warn_if_lro(const struct sk_buff *skb)
5109  {
5110  	/* LRO sets gso_size but not gso_type, whereas if GSO is really
5111  	 * wanted then gso_type will be set. */
5112  	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5113  
5114  	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
5115  	    unlikely(shinfo->gso_type == 0)) {
5116  		__skb_warn_lro_forwarding(skb);
5117  		return true;
5118  	}
5119  	return false;
5120  }
5121  
skb_forward_csum(struct sk_buff * skb)5122  static inline void skb_forward_csum(struct sk_buff *skb)
5123  {
5124  	/* Unfortunately we don't support this one.  Any brave souls? */
5125  	if (skb->ip_summed == CHECKSUM_COMPLETE)
5126  		skb->ip_summed = CHECKSUM_NONE;
5127  }
5128  
5129  /**
5130   * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
5131   * @skb: skb to check
5132   *
5133   * fresh skbs have their ip_summed set to CHECKSUM_NONE.
5134   * Instead of forcing ip_summed to CHECKSUM_NONE, we can
5135   * use this helper, to document places where we make this assertion.
5136   */
skb_checksum_none_assert(const struct sk_buff * skb)5137  static inline void skb_checksum_none_assert(const struct sk_buff *skb)
5138  {
5139  	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5140  }
5141  
5142  bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5143  
5144  int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5145  struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5146  				     unsigned int transport_len,
5147  				     __sum16(*skb_chkf)(struct sk_buff *skb));
5148  
5149  /**
5150   * skb_head_is_locked - Determine if the skb->head is locked down
5151   * @skb: skb to check
5152   *
5153   * The head on skbs build around a head frag can be removed if they are
5154   * not cloned.  This function returns true if the skb head is locked down
5155   * due to either being allocated via kmalloc, or by being a clone with
5156   * multiple references to the head.
5157   */
skb_head_is_locked(const struct sk_buff * skb)5158  static inline bool skb_head_is_locked(const struct sk_buff *skb)
5159  {
5160  	return !skb->head_frag || skb_cloned(skb);
5161  }
5162  
5163  /* Local Checksum Offload.
5164   * Compute outer checksum based on the assumption that the
5165   * inner checksum will be offloaded later.
5166   * See Documentation/networking/checksum-offloads.rst for
5167   * explanation of how this works.
5168   * Fill in outer checksum adjustment (e.g. with sum of outer
5169   * pseudo-header) before calling.
5170   * Also ensure that inner checksum is in linear data area.
5171   */
lco_csum(struct sk_buff * skb)5172  static inline __wsum lco_csum(struct sk_buff *skb)
5173  {
5174  	unsigned char *csum_start = skb_checksum_start(skb);
5175  	unsigned char *l4_hdr = skb_transport_header(skb);
5176  	__wsum partial;
5177  
5178  	/* Start with complement of inner checksum adjustment */
5179  	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5180  						    skb->csum_offset));
5181  
5182  	/* Add in checksum of our headers (incl. outer checksum
5183  	 * adjustment filled in by caller) and return result.
5184  	 */
5185  	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5186  }
5187  
skb_is_redirected(const struct sk_buff * skb)5188  static inline bool skb_is_redirected(const struct sk_buff *skb)
5189  {
5190  	return skb->redirected;
5191  }
5192  
skb_set_redirected(struct sk_buff * skb,bool from_ingress)5193  static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5194  {
5195  	skb->redirected = 1;
5196  #ifdef CONFIG_NET_REDIRECT
5197  	skb->from_ingress = from_ingress;
5198  	if (skb->from_ingress)
5199  		skb_clear_tstamp(skb);
5200  #endif
5201  }
5202  
skb_reset_redirect(struct sk_buff * skb)5203  static inline void skb_reset_redirect(struct sk_buff *skb)
5204  {
5205  	skb->redirected = 0;
5206  }
5207  
skb_set_redirected_noclear(struct sk_buff * skb,bool from_ingress)5208  static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5209  					      bool from_ingress)
5210  {
5211  	skb->redirected = 1;
5212  #ifdef CONFIG_NET_REDIRECT
5213  	skb->from_ingress = from_ingress;
5214  #endif
5215  }
5216  
skb_csum_is_sctp(struct sk_buff * skb)5217  static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5218  {
5219  #if IS_ENABLED(CONFIG_IP_SCTP)
5220  	return skb->csum_not_inet;
5221  #else
5222  	return 0;
5223  #endif
5224  }
5225  
skb_reset_csum_not_inet(struct sk_buff * skb)5226  static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5227  {
5228  	skb->ip_summed = CHECKSUM_NONE;
5229  #if IS_ENABLED(CONFIG_IP_SCTP)
5230  	skb->csum_not_inet = 0;
5231  #endif
5232  }
5233  
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)5234  static inline void skb_set_kcov_handle(struct sk_buff *skb,
5235  				       const u64 kcov_handle)
5236  {
5237  #ifdef CONFIG_KCOV
5238  	skb->kcov_handle = kcov_handle;
5239  #endif
5240  }
5241  
skb_get_kcov_handle(struct sk_buff * skb)5242  static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5243  {
5244  #ifdef CONFIG_KCOV
5245  	return skb->kcov_handle;
5246  #else
5247  	return 0;
5248  #endif
5249  }
5250  
skb_mark_for_recycle(struct sk_buff * skb)5251  static inline void skb_mark_for_recycle(struct sk_buff *skb)
5252  {
5253  #ifdef CONFIG_PAGE_POOL
5254  	skb->pp_recycle = 1;
5255  #endif
5256  }
5257  
5258  ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5259  			     ssize_t maxsize, gfp_t gfp);
5260  
5261  #endif	/* __KERNEL__ */
5262  #endif	/* _LINUX_SKBUFF_H */
5263