xref: /linux/kernel/workqueue.c (revision 77fc3f6696554a10cf7557c89bb3f1892ec29559)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58 
59 #include "workqueue_internal.h"
60 
61 enum worker_pool_flags {
62 	/*
63 	 * worker_pool flags
64 	 *
65 	 * A bound pool is either associated or disassociated with its CPU.
66 	 * While associated (!DISASSOCIATED), all workers are bound to the
67 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 	 * is in effect.
69 	 *
70 	 * While DISASSOCIATED, the cpu may be offline and all workers have
71 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 	 * be executing on any CPU.  The pool behaves as an unbound one.
73 	 *
74 	 * Note that DISASSOCIATED should be flipped only while holding
75 	 * wq_pool_attach_mutex to avoid changing binding state while
76 	 * worker_attach_to_pool() is in progress.
77 	 *
78 	 * As there can only be one concurrent BH execution context per CPU, a
79 	 * BH pool is per-CPU and always DISASSOCIATED.
80 	 */
81 	POOL_BH			= 1 << 0,	/* is a BH pool */
82 	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
83 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
84 	POOL_BH_DRAINING	= 1 << 3,	/* draining after CPU offline */
85 };
86 
87 enum worker_flags {
88 	/* worker flags */
89 	WORKER_DIE		= 1 << 1,	/* die die die */
90 	WORKER_IDLE		= 1 << 2,	/* is idle */
91 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
92 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
93 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
94 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
95 
96 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
97 				  WORKER_UNBOUND | WORKER_REBOUND,
98 };
99 
100 enum work_cancel_flags {
101 	WORK_CANCEL_DELAYED	= 1 << 0,	/* canceling a delayed_work */
102 	WORK_CANCEL_DISABLE	= 1 << 1,	/* canceling to disable */
103 };
104 
105 enum wq_internal_consts {
106 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
107 
108 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
109 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
110 
111 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
112 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
113 
114 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
115 						/* call for help after 10ms
116 						   (min two ticks) */
117 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
118 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
119 
120 	/*
121 	 * Rescue workers are used only on emergencies and shared by
122 	 * all cpus.  Give MIN_NICE.
123 	 */
124 	RESCUER_NICE_LEVEL	= MIN_NICE,
125 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
126 
127 	WQ_NAME_LEN		= 32,
128 	WORKER_ID_LEN		= 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */
129 };
130 
131 /*
132  * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
133  * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
134  * msecs_to_jiffies() can't be an initializer.
135  */
136 #define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
137 #define BH_WORKER_RESTARTS	10
138 
139 /*
140  * Structure fields follow one of the following exclusion rules.
141  *
142  * I: Modifiable by initialization/destruction paths and read-only for
143  *    everyone else.
144  *
145  * P: Preemption protected.  Disabling preemption is enough and should
146  *    only be modified and accessed from the local cpu.
147  *
148  * L: pool->lock protected.  Access with pool->lock held.
149  *
150  * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
151  *     reads.
152  *
153  * K: Only modified by worker while holding pool->lock. Can be safely read by
154  *    self, while holding pool->lock or from IRQ context if %current is the
155  *    kworker.
156  *
157  * S: Only modified by worker self.
158  *
159  * A: wq_pool_attach_mutex protected.
160  *
161  * PL: wq_pool_mutex protected.
162  *
163  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
164  *
165  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
166  *
167  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
168  *      RCU for reads.
169  *
170  * WQ: wq->mutex protected.
171  *
172  * WR: wq->mutex protected for writes.  RCU protected for reads.
173  *
174  * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
175  *     with READ_ONCE() without locking.
176  *
177  * MD: wq_mayday_lock protected.
178  *
179  * WD: Used internally by the watchdog.
180  */
181 
182 /* struct worker is defined in workqueue_internal.h */
183 
184 struct worker_pool {
185 	raw_spinlock_t		lock;		/* the pool lock */
186 	int			cpu;		/* I: the associated cpu */
187 	int			node;		/* I: the associated node ID */
188 	int			id;		/* I: pool ID */
189 	unsigned int		flags;		/* L: flags */
190 
191 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
192 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
193 
194 	/*
195 	 * The counter is incremented in a process context on the associated CPU
196 	 * w/ preemption disabled, and decremented or reset in the same context
197 	 * but w/ pool->lock held. The readers grab pool->lock and are
198 	 * guaranteed to see if the counter reached zero.
199 	 */
200 	int			nr_running;
201 
202 	struct list_head	worklist;	/* L: list of pending works */
203 
204 	int			nr_workers;	/* L: total number of workers */
205 	int			nr_idle;	/* L: currently idle workers */
206 
207 	struct list_head	idle_list;	/* L: list of idle workers */
208 	struct timer_list	idle_timer;	/* L: worker idle timeout */
209 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
210 
211 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
212 
213 	/* a workers is either on busy_hash or idle_list, or the manager */
214 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
215 						/* L: hash of busy workers */
216 
217 	struct worker		*manager;	/* L: purely informational */
218 	struct list_head	workers;	/* A: attached workers */
219 
220 	struct ida		worker_ida;	/* worker IDs for task name */
221 
222 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
223 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
224 	int			refcnt;		/* PL: refcnt for unbound pools */
225 #ifdef CONFIG_PREEMPT_RT
226 	spinlock_t		cb_lock;	/* BH worker cancel lock */
227 #endif
228 	/*
229 	 * Destruction of pool is RCU protected to allow dereferences
230 	 * from get_work_pool().
231 	 */
232 	struct rcu_head		rcu;
233 };
234 
235 /*
236  * Per-pool_workqueue statistics. These can be monitored using
237  * tools/workqueue/wq_monitor.py.
238  */
239 enum pool_workqueue_stats {
240 	PWQ_STAT_STARTED,	/* work items started execution */
241 	PWQ_STAT_COMPLETED,	/* work items completed execution */
242 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
243 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
244 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
245 	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
246 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
247 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
248 
249 	PWQ_NR_STATS,
250 };
251 
252 /*
253  * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
254  * of work_struct->data are used for flags and the remaining high bits
255  * point to the pwq; thus, pwqs need to be aligned at two's power of the
256  * number of flag bits.
257  */
258 struct pool_workqueue {
259 	struct worker_pool	*pool;		/* I: the associated pool */
260 	struct workqueue_struct *wq;		/* I: the owning workqueue */
261 	int			work_color;	/* L: current color */
262 	int			flush_color;	/* L: flushing color */
263 	int			refcnt;		/* L: reference count */
264 	int			nr_in_flight[WORK_NR_COLORS];
265 						/* L: nr of in_flight works */
266 	bool			plugged;	/* L: execution suspended */
267 
268 	/*
269 	 * nr_active management and WORK_STRUCT_INACTIVE:
270 	 *
271 	 * When pwq->nr_active >= max_active, new work item is queued to
272 	 * pwq->inactive_works instead of pool->worklist and marked with
273 	 * WORK_STRUCT_INACTIVE.
274 	 *
275 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
276 	 * nr_active and all work items in pwq->inactive_works are marked with
277 	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
278 	 * in pwq->inactive_works. Some of them are ready to run in
279 	 * pool->worklist or worker->scheduled. Those work itmes are only struct
280 	 * wq_barrier which is used for flush_work() and should not participate
281 	 * in nr_active. For non-barrier work item, it is marked with
282 	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
283 	 */
284 	int			nr_active;	/* L: nr of active works */
285 	struct list_head	inactive_works;	/* L: inactive works */
286 	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
287 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
288 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
289 
290 	u64			stats[PWQ_NR_STATS];
291 
292 	/*
293 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
294 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
295 	 * RCU protected so that the first pwq can be determined without
296 	 * grabbing wq->mutex.
297 	 */
298 	struct kthread_work	release_work;
299 	struct rcu_head		rcu;
300 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
301 
302 /*
303  * Structure used to wait for workqueue flush.
304  */
305 struct wq_flusher {
306 	struct list_head	list;		/* WQ: list of flushers */
307 	int			flush_color;	/* WQ: flush color waiting for */
308 	struct completion	done;		/* flush completion */
309 };
310 
311 struct wq_device;
312 
313 /*
314  * Unlike in a per-cpu workqueue where max_active limits its concurrency level
315  * on each CPU, in an unbound workqueue, max_active applies to the whole system.
316  * As sharing a single nr_active across multiple sockets can be very expensive,
317  * the counting and enforcement is per NUMA node.
318  *
319  * The following struct is used to enforce per-node max_active. When a pwq wants
320  * to start executing a work item, it should increment ->nr using
321  * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
322  * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
323  * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
324  * round-robin order.
325  */
326 struct wq_node_nr_active {
327 	int			max;		/* per-node max_active */
328 	atomic_t		nr;		/* per-node nr_active */
329 	raw_spinlock_t		lock;		/* nests inside pool locks */
330 	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
331 };
332 
333 /*
334  * The externally visible workqueue.  It relays the issued work items to
335  * the appropriate worker_pool through its pool_workqueues.
336  */
337 struct workqueue_struct {
338 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
339 	struct list_head	list;		/* PR: list of all workqueues */
340 
341 	struct mutex		mutex;		/* protects this wq */
342 	int			work_color;	/* WQ: current work color */
343 	int			flush_color;	/* WQ: current flush color */
344 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
345 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
346 	struct list_head	flusher_queue;	/* WQ: flush waiters */
347 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
348 
349 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
350 	struct worker		*rescuer;	/* MD: rescue worker */
351 
352 	int			nr_drainers;	/* WQ: drain in progress */
353 
354 	/* See alloc_workqueue() function comment for info on min/max_active */
355 	int			max_active;	/* WO: max active works */
356 	int			min_active;	/* WO: min active works */
357 	int			saved_max_active; /* WQ: saved max_active */
358 	int			saved_min_active; /* WQ: saved min_active */
359 
360 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
361 	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
362 
363 #ifdef CONFIG_SYSFS
364 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
365 #endif
366 #ifdef CONFIG_LOCKDEP
367 	char			*lock_name;
368 	struct lock_class_key	key;
369 	struct lockdep_map	__lockdep_map;
370 	struct lockdep_map	*lockdep_map;
371 #endif
372 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
373 
374 	/*
375 	 * Destruction of workqueue_struct is RCU protected to allow walking
376 	 * the workqueues list without grabbing wq_pool_mutex.
377 	 * This is used to dump all workqueues from sysrq.
378 	 */
379 	struct rcu_head		rcu;
380 
381 	/* hot fields used during command issue, aligned to cacheline */
382 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
383 	struct pool_workqueue __rcu * __percpu *cpu_pwq; /* I: per-cpu pwqs */
384 	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
385 };
386 
387 /*
388  * Each pod type describes how CPUs should be grouped for unbound workqueues.
389  * See the comment above workqueue_attrs->affn_scope.
390  */
391 struct wq_pod_type {
392 	int			nr_pods;	/* number of pods */
393 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
394 	int			*pod_node;	/* pod -> node */
395 	int			*cpu_pod;	/* cpu -> pod */
396 };
397 
398 struct work_offq_data {
399 	u32			pool_id;
400 	u32			disable;
401 	u32			flags;
402 };
403 
404 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
405 	[WQ_AFFN_DFL]		= "default",
406 	[WQ_AFFN_CPU]		= "cpu",
407 	[WQ_AFFN_SMT]		= "smt",
408 	[WQ_AFFN_CACHE]		= "cache",
409 	[WQ_AFFN_NUMA]		= "numa",
410 	[WQ_AFFN_SYSTEM]	= "system",
411 };
412 
413 /*
414  * Per-cpu work items which run for longer than the following threshold are
415  * automatically considered CPU intensive and excluded from concurrency
416  * management to prevent them from noticeably delaying other per-cpu work items.
417  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
418  * The actual value is initialized in wq_cpu_intensive_thresh_init().
419  */
420 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
421 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
422 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
423 static unsigned int wq_cpu_intensive_warning_thresh = 4;
424 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
425 #endif
426 
427 /* see the comment above the definition of WQ_POWER_EFFICIENT */
428 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
429 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
430 
431 static bool wq_online;			/* can kworkers be created yet? */
432 static bool wq_topo_initialized __read_mostly = false;
433 
434 static struct kmem_cache *pwq_cache;
435 
436 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
437 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
438 
439 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
440 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf;
441 
442 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
443 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
444 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
445 /* wait for manager to go away */
446 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
447 
448 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
449 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
450 
451 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */
452 static cpumask_var_t wq_online_cpumask;
453 
454 /* PL&A: allowable cpus for unbound wqs and work items */
455 static cpumask_var_t wq_unbound_cpumask;
456 
457 /* PL: user requested unbound cpumask via sysfs */
458 static cpumask_var_t wq_requested_unbound_cpumask;
459 
460 /* PL: isolated cpumask to be excluded from unbound cpumask */
461 static cpumask_var_t wq_isolated_cpumask;
462 
463 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
464 static struct cpumask wq_cmdline_cpumask __initdata;
465 
466 /* CPU where unbound work was last round robin scheduled from this CPU */
467 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
468 
469 /*
470  * Local execution of unbound work items is no longer guaranteed.  The
471  * following always forces round-robin CPU selection on unbound work items
472  * to uncover usages which depend on it.
473  */
474 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
475 static bool wq_debug_force_rr_cpu = true;
476 #else
477 static bool wq_debug_force_rr_cpu = false;
478 #endif
479 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
480 
481 /* to raise softirq for the BH worker pools on other CPUs */
482 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], bh_pool_irq_works);
483 
484 /* the BH worker pools */
485 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], bh_worker_pools);
486 
487 /* the per-cpu worker pools */
488 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
489 
490 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
491 
492 /* PL: hash of all unbound pools keyed by pool->attrs */
493 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
494 
495 /* I: attributes used when instantiating standard unbound pools on demand */
496 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
497 
498 /* I: attributes used when instantiating ordered pools on demand */
499 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
500 
501 /*
502  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
503  * process context while holding a pool lock. Bounce to a dedicated kthread
504  * worker to avoid A-A deadlocks.
505  */
506 static struct kthread_worker *pwq_release_worker __ro_after_init;
507 
508 struct workqueue_struct *system_wq __ro_after_init;
509 EXPORT_SYMBOL(system_wq);
510 struct workqueue_struct *system_percpu_wq __ro_after_init;
511 EXPORT_SYMBOL(system_percpu_wq);
512 struct workqueue_struct *system_highpri_wq __ro_after_init;
513 EXPORT_SYMBOL_GPL(system_highpri_wq);
514 struct workqueue_struct *system_long_wq __ro_after_init;
515 EXPORT_SYMBOL_GPL(system_long_wq);
516 struct workqueue_struct *system_unbound_wq __ro_after_init;
517 EXPORT_SYMBOL_GPL(system_unbound_wq);
518 struct workqueue_struct *system_dfl_wq __ro_after_init;
519 EXPORT_SYMBOL_GPL(system_dfl_wq);
520 struct workqueue_struct *system_freezable_wq __ro_after_init;
521 EXPORT_SYMBOL_GPL(system_freezable_wq);
522 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
523 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
524 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
525 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
526 struct workqueue_struct *system_bh_wq;
527 EXPORT_SYMBOL_GPL(system_bh_wq);
528 struct workqueue_struct *system_bh_highpri_wq;
529 EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
530 
531 static int worker_thread(void *__worker);
532 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
533 static void show_pwq(struct pool_workqueue *pwq);
534 static void show_one_worker_pool(struct worker_pool *pool);
535 
536 #define CREATE_TRACE_POINTS
537 #include <trace/events/workqueue.h>
538 
539 #define assert_rcu_or_pool_mutex()					\
540 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
541 			 !lockdep_is_held(&wq_pool_mutex),		\
542 			 "RCU or wq_pool_mutex should be held")
543 
544 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
545 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
546 			 !lockdep_is_held(&wq->mutex) &&		\
547 			 !lockdep_is_held(&wq_pool_mutex),		\
548 			 "RCU, wq->mutex or wq_pool_mutex should be held")
549 
550 #define for_each_bh_worker_pool(pool, cpu)				\
551 	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
552 	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
553 	     (pool)++)
554 
555 #define for_each_cpu_worker_pool(pool, cpu)				\
556 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
557 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
558 	     (pool)++)
559 
560 /**
561  * for_each_pool - iterate through all worker_pools in the system
562  * @pool: iteration cursor
563  * @pi: integer used for iteration
564  *
565  * This must be called either with wq_pool_mutex held or RCU read
566  * locked.  If the pool needs to be used beyond the locking in effect, the
567  * caller is responsible for guaranteeing that the pool stays online.
568  *
569  * The if/else clause exists only for the lockdep assertion and can be
570  * ignored.
571  */
572 #define for_each_pool(pool, pi)						\
573 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
574 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
575 		else
576 
577 /**
578  * for_each_pool_worker - iterate through all workers of a worker_pool
579  * @worker: iteration cursor
580  * @pool: worker_pool to iterate workers of
581  *
582  * This must be called with wq_pool_attach_mutex.
583  *
584  * The if/else clause exists only for the lockdep assertion and can be
585  * ignored.
586  */
587 #define for_each_pool_worker(worker, pool)				\
588 	list_for_each_entry((worker), &(pool)->workers, node)		\
589 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
590 		else
591 
592 /**
593  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
594  * @pwq: iteration cursor
595  * @wq: the target workqueue
596  *
597  * This must be called either with wq->mutex held or RCU read locked.
598  * If the pwq needs to be used beyond the locking in effect, the caller is
599  * responsible for guaranteeing that the pwq stays online.
600  *
601  * The if/else clause exists only for the lockdep assertion and can be
602  * ignored.
603  */
604 #define for_each_pwq(pwq, wq)						\
605 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
606 				 lockdep_is_held(&(wq->mutex)))
607 
608 #ifdef CONFIG_DEBUG_OBJECTS_WORK
609 
610 static const struct debug_obj_descr work_debug_descr;
611 
work_debug_hint(void * addr)612 static void *work_debug_hint(void *addr)
613 {
614 	return ((struct work_struct *) addr)->func;
615 }
616 
work_is_static_object(void * addr)617 static bool work_is_static_object(void *addr)
618 {
619 	struct work_struct *work = addr;
620 
621 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
622 }
623 
624 /*
625  * fixup_init is called when:
626  * - an active object is initialized
627  */
work_fixup_init(void * addr,enum debug_obj_state state)628 static bool work_fixup_init(void *addr, enum debug_obj_state state)
629 {
630 	struct work_struct *work = addr;
631 
632 	switch (state) {
633 	case ODEBUG_STATE_ACTIVE:
634 		cancel_work_sync(work);
635 		debug_object_init(work, &work_debug_descr);
636 		return true;
637 	default:
638 		return false;
639 	}
640 }
641 
642 /*
643  * fixup_free is called when:
644  * - an active object is freed
645  */
work_fixup_free(void * addr,enum debug_obj_state state)646 static bool work_fixup_free(void *addr, enum debug_obj_state state)
647 {
648 	struct work_struct *work = addr;
649 
650 	switch (state) {
651 	case ODEBUG_STATE_ACTIVE:
652 		cancel_work_sync(work);
653 		debug_object_free(work, &work_debug_descr);
654 		return true;
655 	default:
656 		return false;
657 	}
658 }
659 
660 static const struct debug_obj_descr work_debug_descr = {
661 	.name		= "work_struct",
662 	.debug_hint	= work_debug_hint,
663 	.is_static_object = work_is_static_object,
664 	.fixup_init	= work_fixup_init,
665 	.fixup_free	= work_fixup_free,
666 };
667 
debug_work_activate(struct work_struct * work)668 static inline void debug_work_activate(struct work_struct *work)
669 {
670 	debug_object_activate(work, &work_debug_descr);
671 }
672 
debug_work_deactivate(struct work_struct * work)673 static inline void debug_work_deactivate(struct work_struct *work)
674 {
675 	debug_object_deactivate(work, &work_debug_descr);
676 }
677 
__init_work(struct work_struct * work,int onstack)678 void __init_work(struct work_struct *work, int onstack)
679 {
680 	if (onstack)
681 		debug_object_init_on_stack(work, &work_debug_descr);
682 	else
683 		debug_object_init(work, &work_debug_descr);
684 }
685 EXPORT_SYMBOL_GPL(__init_work);
686 
destroy_work_on_stack(struct work_struct * work)687 void destroy_work_on_stack(struct work_struct *work)
688 {
689 	debug_object_free(work, &work_debug_descr);
690 }
691 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
692 
destroy_delayed_work_on_stack(struct delayed_work * work)693 void destroy_delayed_work_on_stack(struct delayed_work *work)
694 {
695 	timer_destroy_on_stack(&work->timer);
696 	debug_object_free(&work->work, &work_debug_descr);
697 }
698 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
699 
700 #else
debug_work_activate(struct work_struct * work)701 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)702 static inline void debug_work_deactivate(struct work_struct *work) { }
703 #endif
704 
705 /**
706  * worker_pool_assign_id - allocate ID and assign it to @pool
707  * @pool: the pool pointer of interest
708  *
709  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
710  * successfully, -errno on failure.
711  */
worker_pool_assign_id(struct worker_pool * pool)712 static int worker_pool_assign_id(struct worker_pool *pool)
713 {
714 	int ret;
715 
716 	lockdep_assert_held(&wq_pool_mutex);
717 
718 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
719 			GFP_KERNEL);
720 	if (ret >= 0) {
721 		pool->id = ret;
722 		return 0;
723 	}
724 	return ret;
725 }
726 
727 static struct pool_workqueue __rcu **
unbound_pwq_slot(struct workqueue_struct * wq,int cpu)728 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
729 {
730        if (cpu >= 0)
731                return per_cpu_ptr(wq->cpu_pwq, cpu);
732        else
733                return &wq->dfl_pwq;
734 }
735 
736 /* @cpu < 0 for dfl_pwq */
unbound_pwq(struct workqueue_struct * wq,int cpu)737 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
738 {
739 	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
740 				     lockdep_is_held(&wq_pool_mutex) ||
741 				     lockdep_is_held(&wq->mutex));
742 }
743 
744 /**
745  * unbound_effective_cpumask - effective cpumask of an unbound workqueue
746  * @wq: workqueue of interest
747  *
748  * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
749  * is masked with wq_unbound_cpumask to determine the effective cpumask. The
750  * default pwq is always mapped to the pool with the current effective cpumask.
751  */
unbound_effective_cpumask(struct workqueue_struct * wq)752 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
753 {
754 	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
755 }
756 
work_color_to_flags(int color)757 static unsigned int work_color_to_flags(int color)
758 {
759 	return color << WORK_STRUCT_COLOR_SHIFT;
760 }
761 
get_work_color(unsigned long work_data)762 static int get_work_color(unsigned long work_data)
763 {
764 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
765 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
766 }
767 
work_next_color(int color)768 static int work_next_color(int color)
769 {
770 	return (color + 1) % WORK_NR_COLORS;
771 }
772 
pool_offq_flags(struct worker_pool * pool)773 static unsigned long pool_offq_flags(struct worker_pool *pool)
774 {
775 	return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
776 }
777 
778 /*
779  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
780  * contain the pointer to the queued pwq.  Once execution starts, the flag
781  * is cleared and the high bits contain OFFQ flags and pool ID.
782  *
783  * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
784  * can be used to set the pwq, pool or clear work->data. These functions should
785  * only be called while the work is owned - ie. while the PENDING bit is set.
786  *
787  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
788  * corresponding to a work.  Pool is available once the work has been
789  * queued anywhere after initialization until it is sync canceled.  pwq is
790  * available only while the work item is queued.
791  */
set_work_data(struct work_struct * work,unsigned long data)792 static inline void set_work_data(struct work_struct *work, unsigned long data)
793 {
794 	WARN_ON_ONCE(!work_pending(work));
795 	atomic_long_set(&work->data, data | work_static(work));
796 }
797 
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long flags)798 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
799 			 unsigned long flags)
800 {
801 	set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
802 		      WORK_STRUCT_PWQ | flags);
803 }
804 
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id,unsigned long flags)805 static void set_work_pool_and_keep_pending(struct work_struct *work,
806 					   int pool_id, unsigned long flags)
807 {
808 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
809 		      WORK_STRUCT_PENDING | flags);
810 }
811 
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id,unsigned long flags)812 static void set_work_pool_and_clear_pending(struct work_struct *work,
813 					    int pool_id, unsigned long flags)
814 {
815 	/*
816 	 * The following wmb is paired with the implied mb in
817 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
818 	 * here are visible to and precede any updates by the next PENDING
819 	 * owner.
820 	 */
821 	smp_wmb();
822 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
823 		      flags);
824 	/*
825 	 * The following mb guarantees that previous clear of a PENDING bit
826 	 * will not be reordered with any speculative LOADS or STORES from
827 	 * work->current_func, which is executed afterwards.  This possible
828 	 * reordering can lead to a missed execution on attempt to queue
829 	 * the same @work.  E.g. consider this case:
830 	 *
831 	 *   CPU#0                         CPU#1
832 	 *   ----------------------------  --------------------------------
833 	 *
834 	 * 1  STORE event_indicated
835 	 * 2  queue_work_on() {
836 	 * 3    test_and_set_bit(PENDING)
837 	 * 4 }                             set_..._and_clear_pending() {
838 	 * 5                                 set_work_data() # clear bit
839 	 * 6                                 smp_mb()
840 	 * 7                               work->current_func() {
841 	 * 8				      LOAD event_indicated
842 	 *				   }
843 	 *
844 	 * Without an explicit full barrier speculative LOAD on line 8 can
845 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
846 	 * CPU#0 observes the PENDING bit is still set and new execution of
847 	 * a @work is not queued in a hope, that CPU#1 will eventually
848 	 * finish the queued @work.  Meanwhile CPU#1 does not see
849 	 * event_indicated is set, because speculative LOAD was executed
850 	 * before actual STORE.
851 	 */
852 	smp_mb();
853 }
854 
work_struct_pwq(unsigned long data)855 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
856 {
857 	return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
858 }
859 
get_work_pwq(struct work_struct * work)860 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
861 {
862 	unsigned long data = atomic_long_read(&work->data);
863 
864 	if (data & WORK_STRUCT_PWQ)
865 		return work_struct_pwq(data);
866 	else
867 		return NULL;
868 }
869 
870 /**
871  * get_work_pool - return the worker_pool a given work was associated with
872  * @work: the work item of interest
873  *
874  * Pools are created and destroyed under wq_pool_mutex, and allows read
875  * access under RCU read lock.  As such, this function should be
876  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
877  *
878  * All fields of the returned pool are accessible as long as the above
879  * mentioned locking is in effect.  If the returned pool needs to be used
880  * beyond the critical section, the caller is responsible for ensuring the
881  * returned pool is and stays online.
882  *
883  * Return: The worker_pool @work was last associated with.  %NULL if none.
884  */
get_work_pool(struct work_struct * work)885 static struct worker_pool *get_work_pool(struct work_struct *work)
886 {
887 	unsigned long data = atomic_long_read(&work->data);
888 	int pool_id;
889 
890 	assert_rcu_or_pool_mutex();
891 
892 	if (data & WORK_STRUCT_PWQ)
893 		return work_struct_pwq(data)->pool;
894 
895 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
896 	if (pool_id == WORK_OFFQ_POOL_NONE)
897 		return NULL;
898 
899 	return idr_find(&worker_pool_idr, pool_id);
900 }
901 
shift_and_mask(unsigned long v,u32 shift,u32 bits)902 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
903 {
904 	return (v >> shift) & ((1U << bits) - 1);
905 }
906 
work_offqd_unpack(struct work_offq_data * offqd,unsigned long data)907 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
908 {
909 	WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
910 
911 	offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
912 					WORK_OFFQ_POOL_BITS);
913 	offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
914 					WORK_OFFQ_DISABLE_BITS);
915 	offqd->flags = data & WORK_OFFQ_FLAG_MASK;
916 }
917 
work_offqd_pack_flags(struct work_offq_data * offqd)918 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
919 {
920 	return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
921 		((unsigned long)offqd->flags);
922 }
923 
924 /*
925  * Policy functions.  These define the policies on how the global worker
926  * pools are managed.  Unless noted otherwise, these functions assume that
927  * they're being called with pool->lock held.
928  */
929 
930 /*
931  * Need to wake up a worker?  Called from anything but currently
932  * running workers.
933  *
934  * Note that, because unbound workers never contribute to nr_running, this
935  * function will always return %true for unbound pools as long as the
936  * worklist isn't empty.
937  */
need_more_worker(struct worker_pool * pool)938 static bool need_more_worker(struct worker_pool *pool)
939 {
940 	return !list_empty(&pool->worklist) && !pool->nr_running;
941 }
942 
943 /* Can I start working?  Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)944 static bool may_start_working(struct worker_pool *pool)
945 {
946 	return pool->nr_idle;
947 }
948 
949 /* Do I need to keep working?  Called from currently running workers. */
keep_working(struct worker_pool * pool)950 static bool keep_working(struct worker_pool *pool)
951 {
952 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
953 }
954 
955 /* Do we need a new worker?  Called from manager. */
need_to_create_worker(struct worker_pool * pool)956 static bool need_to_create_worker(struct worker_pool *pool)
957 {
958 	return need_more_worker(pool) && !may_start_working(pool);
959 }
960 
961 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)962 static bool too_many_workers(struct worker_pool *pool)
963 {
964 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
965 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
966 	int nr_busy = pool->nr_workers - nr_idle;
967 
968 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
969 }
970 
971 /**
972  * worker_set_flags - set worker flags and adjust nr_running accordingly
973  * @worker: self
974  * @flags: flags to set
975  *
976  * Set @flags in @worker->flags and adjust nr_running accordingly.
977  */
worker_set_flags(struct worker * worker,unsigned int flags)978 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
979 {
980 	struct worker_pool *pool = worker->pool;
981 
982 	lockdep_assert_held(&pool->lock);
983 
984 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
985 	if ((flags & WORKER_NOT_RUNNING) &&
986 	    !(worker->flags & WORKER_NOT_RUNNING)) {
987 		pool->nr_running--;
988 	}
989 
990 	worker->flags |= flags;
991 }
992 
993 /**
994  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
995  * @worker: self
996  * @flags: flags to clear
997  *
998  * Clear @flags in @worker->flags and adjust nr_running accordingly.
999  */
worker_clr_flags(struct worker * worker,unsigned int flags)1000 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1001 {
1002 	struct worker_pool *pool = worker->pool;
1003 	unsigned int oflags = worker->flags;
1004 
1005 	lockdep_assert_held(&pool->lock);
1006 
1007 	worker->flags &= ~flags;
1008 
1009 	/*
1010 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1011 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1012 	 * of multiple flags, not a single flag.
1013 	 */
1014 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1015 		if (!(worker->flags & WORKER_NOT_RUNNING))
1016 			pool->nr_running++;
1017 }
1018 
1019 /* Return the first idle worker.  Called with pool->lock held. */
first_idle_worker(struct worker_pool * pool)1020 static struct worker *first_idle_worker(struct worker_pool *pool)
1021 {
1022 	if (unlikely(list_empty(&pool->idle_list)))
1023 		return NULL;
1024 
1025 	return list_first_entry(&pool->idle_list, struct worker, entry);
1026 }
1027 
1028 /**
1029  * worker_enter_idle - enter idle state
1030  * @worker: worker which is entering idle state
1031  *
1032  * @worker is entering idle state.  Update stats and idle timer if
1033  * necessary.
1034  *
1035  * LOCKING:
1036  * raw_spin_lock_irq(pool->lock).
1037  */
worker_enter_idle(struct worker * worker)1038 static void worker_enter_idle(struct worker *worker)
1039 {
1040 	struct worker_pool *pool = worker->pool;
1041 
1042 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1043 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1044 			 (worker->hentry.next || worker->hentry.pprev)))
1045 		return;
1046 
1047 	/* can't use worker_set_flags(), also called from create_worker() */
1048 	worker->flags |= WORKER_IDLE;
1049 	pool->nr_idle++;
1050 	worker->last_active = jiffies;
1051 
1052 	/* idle_list is LIFO */
1053 	list_add(&worker->entry, &pool->idle_list);
1054 
1055 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1056 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1057 
1058 	/* Sanity check nr_running. */
1059 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1060 }
1061 
1062 /**
1063  * worker_leave_idle - leave idle state
1064  * @worker: worker which is leaving idle state
1065  *
1066  * @worker is leaving idle state.  Update stats.
1067  *
1068  * LOCKING:
1069  * raw_spin_lock_irq(pool->lock).
1070  */
worker_leave_idle(struct worker * worker)1071 static void worker_leave_idle(struct worker *worker)
1072 {
1073 	struct worker_pool *pool = worker->pool;
1074 
1075 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1076 		return;
1077 	worker_clr_flags(worker, WORKER_IDLE);
1078 	pool->nr_idle--;
1079 	list_del_init(&worker->entry);
1080 }
1081 
1082 /**
1083  * find_worker_executing_work - find worker which is executing a work
1084  * @pool: pool of interest
1085  * @work: work to find worker for
1086  *
1087  * Find a worker which is executing @work on @pool by searching
1088  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1089  * to match, its current execution should match the address of @work and
1090  * its work function.  This is to avoid unwanted dependency between
1091  * unrelated work executions through a work item being recycled while still
1092  * being executed.
1093  *
1094  * This is a bit tricky.  A work item may be freed once its execution
1095  * starts and nothing prevents the freed area from being recycled for
1096  * another work item.  If the same work item address ends up being reused
1097  * before the original execution finishes, workqueue will identify the
1098  * recycled work item as currently executing and make it wait until the
1099  * current execution finishes, introducing an unwanted dependency.
1100  *
1101  * This function checks the work item address and work function to avoid
1102  * false positives.  Note that this isn't complete as one may construct a
1103  * work function which can introduce dependency onto itself through a
1104  * recycled work item.  Well, if somebody wants to shoot oneself in the
1105  * foot that badly, there's only so much we can do, and if such deadlock
1106  * actually occurs, it should be easy to locate the culprit work function.
1107  *
1108  * CONTEXT:
1109  * raw_spin_lock_irq(pool->lock).
1110  *
1111  * Return:
1112  * Pointer to worker which is executing @work if found, %NULL
1113  * otherwise.
1114  */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1115 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1116 						 struct work_struct *work)
1117 {
1118 	struct worker *worker;
1119 
1120 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1121 			       (unsigned long)work)
1122 		if (worker->current_work == work &&
1123 		    worker->current_func == work->func)
1124 			return worker;
1125 
1126 	return NULL;
1127 }
1128 
1129 /**
1130  * move_linked_works - move linked works to a list
1131  * @work: start of series of works to be scheduled
1132  * @head: target list to append @work to
1133  * @nextp: out parameter for nested worklist walking
1134  *
1135  * Schedule linked works starting from @work to @head. Work series to be
1136  * scheduled starts at @work and includes any consecutive work with
1137  * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1138  * @nextp.
1139  *
1140  * CONTEXT:
1141  * raw_spin_lock_irq(pool->lock).
1142  */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1143 static void move_linked_works(struct work_struct *work, struct list_head *head,
1144 			      struct work_struct **nextp)
1145 {
1146 	struct work_struct *n;
1147 
1148 	/*
1149 	 * Linked worklist will always end before the end of the list,
1150 	 * use NULL for list head.
1151 	 */
1152 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1153 		list_move_tail(&work->entry, head);
1154 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1155 			break;
1156 	}
1157 
1158 	/*
1159 	 * If we're already inside safe list traversal and have moved
1160 	 * multiple works to the scheduled queue, the next position
1161 	 * needs to be updated.
1162 	 */
1163 	if (nextp)
1164 		*nextp = n;
1165 }
1166 
1167 /**
1168  * assign_work - assign a work item and its linked work items to a worker
1169  * @work: work to assign
1170  * @worker: worker to assign to
1171  * @nextp: out parameter for nested worklist walking
1172  *
1173  * Assign @work and its linked work items to @worker. If @work is already being
1174  * executed by another worker in the same pool, it'll be punted there.
1175  *
1176  * If @nextp is not NULL, it's updated to point to the next work of the last
1177  * scheduled work. This allows assign_work() to be nested inside
1178  * list_for_each_entry_safe().
1179  *
1180  * Returns %true if @work was successfully assigned to @worker. %false if @work
1181  * was punted to another worker already executing it.
1182  */
assign_work(struct work_struct * work,struct worker * worker,struct work_struct ** nextp)1183 static bool assign_work(struct work_struct *work, struct worker *worker,
1184 			struct work_struct **nextp)
1185 {
1186 	struct worker_pool *pool = worker->pool;
1187 	struct worker *collision;
1188 
1189 	lockdep_assert_held(&pool->lock);
1190 
1191 	/*
1192 	 * A single work shouldn't be executed concurrently by multiple workers.
1193 	 * __queue_work() ensures that @work doesn't jump to a different pool
1194 	 * while still running in the previous pool. Here, we should ensure that
1195 	 * @work is not executed concurrently by multiple workers from the same
1196 	 * pool. Check whether anyone is already processing the work. If so,
1197 	 * defer the work to the currently executing one.
1198 	 */
1199 	collision = find_worker_executing_work(pool, work);
1200 	if (unlikely(collision)) {
1201 		move_linked_works(work, &collision->scheduled, nextp);
1202 		return false;
1203 	}
1204 
1205 	move_linked_works(work, &worker->scheduled, nextp);
1206 	return true;
1207 }
1208 
bh_pool_irq_work(struct worker_pool * pool)1209 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1210 {
1211 	int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1212 
1213 	return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1214 }
1215 
kick_bh_pool(struct worker_pool * pool)1216 static void kick_bh_pool(struct worker_pool *pool)
1217 {
1218 #ifdef CONFIG_SMP
1219 	/* see drain_dead_softirq_workfn() for BH_DRAINING */
1220 	if (unlikely(pool->cpu != smp_processor_id() &&
1221 		     !(pool->flags & POOL_BH_DRAINING))) {
1222 		irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1223 		return;
1224 	}
1225 #endif
1226 	if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1227 		raise_softirq_irqoff(HI_SOFTIRQ);
1228 	else
1229 		raise_softirq_irqoff(TASKLET_SOFTIRQ);
1230 }
1231 
1232 /**
1233  * kick_pool - wake up an idle worker if necessary
1234  * @pool: pool to kick
1235  *
1236  * @pool may have pending work items. Wake up worker if necessary. Returns
1237  * whether a worker was woken up.
1238  */
kick_pool(struct worker_pool * pool)1239 static bool kick_pool(struct worker_pool *pool)
1240 {
1241 	struct worker *worker = first_idle_worker(pool);
1242 	struct task_struct *p;
1243 
1244 	lockdep_assert_held(&pool->lock);
1245 
1246 	if (!need_more_worker(pool) || !worker)
1247 		return false;
1248 
1249 	if (pool->flags & POOL_BH) {
1250 		kick_bh_pool(pool);
1251 		return true;
1252 	}
1253 
1254 	p = worker->task;
1255 
1256 #ifdef CONFIG_SMP
1257 	/*
1258 	 * Idle @worker is about to execute @work and waking up provides an
1259 	 * opportunity to migrate @worker at a lower cost by setting the task's
1260 	 * wake_cpu field. Let's see if we want to move @worker to improve
1261 	 * execution locality.
1262 	 *
1263 	 * We're waking the worker that went idle the latest and there's some
1264 	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1265 	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1266 	 * optimization and the race window is narrow, let's leave as-is for
1267 	 * now. If this becomes pronounced, we can skip over workers which are
1268 	 * still on cpu when picking an idle worker.
1269 	 *
1270 	 * If @pool has non-strict affinity, @worker might have ended up outside
1271 	 * its affinity scope. Repatriate.
1272 	 */
1273 	if (!pool->attrs->affn_strict &&
1274 	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1275 		struct work_struct *work = list_first_entry(&pool->worklist,
1276 						struct work_struct, entry);
1277 		int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1278 							  cpu_online_mask);
1279 		if (wake_cpu < nr_cpu_ids) {
1280 			p->wake_cpu = wake_cpu;
1281 			get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1282 		}
1283 	}
1284 #endif
1285 	wake_up_process(p);
1286 	return true;
1287 }
1288 
1289 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1290 
1291 /*
1292  * Concurrency-managed per-cpu work items that hog CPU for longer than
1293  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1294  * which prevents them from stalling other concurrency-managed work items. If a
1295  * work function keeps triggering this mechanism, it's likely that the work item
1296  * should be using an unbound workqueue instead.
1297  *
1298  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1299  * and report them so that they can be examined and converted to use unbound
1300  * workqueues as appropriate. To avoid flooding the console, each violating work
1301  * function is tracked and reported with exponential backoff.
1302  */
1303 #define WCI_MAX_ENTS 128
1304 
1305 struct wci_ent {
1306 	work_func_t		func;
1307 	atomic64_t		cnt;
1308 	struct hlist_node	hash_node;
1309 };
1310 
1311 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1312 static int wci_nr_ents;
1313 static DEFINE_RAW_SPINLOCK(wci_lock);
1314 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1315 
wci_find_ent(work_func_t func)1316 static struct wci_ent *wci_find_ent(work_func_t func)
1317 {
1318 	struct wci_ent *ent;
1319 
1320 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1321 				   (unsigned long)func) {
1322 		if (ent->func == func)
1323 			return ent;
1324 	}
1325 	return NULL;
1326 }
1327 
wq_cpu_intensive_report(work_func_t func)1328 static void wq_cpu_intensive_report(work_func_t func)
1329 {
1330 	struct wci_ent *ent;
1331 
1332 restart:
1333 	ent = wci_find_ent(func);
1334 	if (ent) {
1335 		u64 cnt;
1336 
1337 		/*
1338 		 * Start reporting from the warning_thresh and back off
1339 		 * exponentially.
1340 		 */
1341 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1342 		if (wq_cpu_intensive_warning_thresh &&
1343 		    cnt >= wq_cpu_intensive_warning_thresh &&
1344 		    is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1345 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1346 					ent->func, wq_cpu_intensive_thresh_us,
1347 					atomic64_read(&ent->cnt));
1348 		return;
1349 	}
1350 
1351 	/*
1352 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1353 	 * is exhausted, something went really wrong and we probably made enough
1354 	 * noise already.
1355 	 */
1356 	if (wci_nr_ents >= WCI_MAX_ENTS)
1357 		return;
1358 
1359 	raw_spin_lock(&wci_lock);
1360 
1361 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1362 		raw_spin_unlock(&wci_lock);
1363 		return;
1364 	}
1365 
1366 	if (wci_find_ent(func)) {
1367 		raw_spin_unlock(&wci_lock);
1368 		goto restart;
1369 	}
1370 
1371 	ent = &wci_ents[wci_nr_ents++];
1372 	ent->func = func;
1373 	atomic64_set(&ent->cnt, 0);
1374 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1375 
1376 	raw_spin_unlock(&wci_lock);
1377 
1378 	goto restart;
1379 }
1380 
1381 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
wq_cpu_intensive_report(work_func_t func)1382 static void wq_cpu_intensive_report(work_func_t func) {}
1383 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1384 
1385 /**
1386  * wq_worker_running - a worker is running again
1387  * @task: task waking up
1388  *
1389  * This function is called when a worker returns from schedule()
1390  */
wq_worker_running(struct task_struct * task)1391 void wq_worker_running(struct task_struct *task)
1392 {
1393 	struct worker *worker = kthread_data(task);
1394 
1395 	if (!READ_ONCE(worker->sleeping))
1396 		return;
1397 
1398 	/*
1399 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1400 	 * and the nr_running increment below, we may ruin the nr_running reset
1401 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1402 	 * pool. Protect against such race.
1403 	 */
1404 	preempt_disable();
1405 	if (!(worker->flags & WORKER_NOT_RUNNING))
1406 		worker->pool->nr_running++;
1407 	preempt_enable();
1408 
1409 	/*
1410 	 * CPU intensive auto-detection cares about how long a work item hogged
1411 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1412 	 */
1413 	worker->current_at = worker->task->se.sum_exec_runtime;
1414 
1415 	WRITE_ONCE(worker->sleeping, 0);
1416 }
1417 
1418 /**
1419  * wq_worker_sleeping - a worker is going to sleep
1420  * @task: task going to sleep
1421  *
1422  * This function is called from schedule() when a busy worker is
1423  * going to sleep.
1424  */
wq_worker_sleeping(struct task_struct * task)1425 void wq_worker_sleeping(struct task_struct *task)
1426 {
1427 	struct worker *worker = kthread_data(task);
1428 	struct worker_pool *pool;
1429 
1430 	/*
1431 	 * Rescuers, which may not have all the fields set up like normal
1432 	 * workers, also reach here, let's not access anything before
1433 	 * checking NOT_RUNNING.
1434 	 */
1435 	if (worker->flags & WORKER_NOT_RUNNING)
1436 		return;
1437 
1438 	pool = worker->pool;
1439 
1440 	/* Return if preempted before wq_worker_running() was reached */
1441 	if (READ_ONCE(worker->sleeping))
1442 		return;
1443 
1444 	WRITE_ONCE(worker->sleeping, 1);
1445 	raw_spin_lock_irq(&pool->lock);
1446 
1447 	/*
1448 	 * Recheck in case unbind_workers() preempted us. We don't
1449 	 * want to decrement nr_running after the worker is unbound
1450 	 * and nr_running has been reset.
1451 	 */
1452 	if (worker->flags & WORKER_NOT_RUNNING) {
1453 		raw_spin_unlock_irq(&pool->lock);
1454 		return;
1455 	}
1456 
1457 	pool->nr_running--;
1458 	if (kick_pool(pool))
1459 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1460 
1461 	raw_spin_unlock_irq(&pool->lock);
1462 }
1463 
1464 /**
1465  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1466  * @task: task currently running
1467  *
1468  * Called from sched_tick(). We're in the IRQ context and the current
1469  * worker's fields which follow the 'K' locking rule can be accessed safely.
1470  */
wq_worker_tick(struct task_struct * task)1471 void wq_worker_tick(struct task_struct *task)
1472 {
1473 	struct worker *worker = kthread_data(task);
1474 	struct pool_workqueue *pwq = worker->current_pwq;
1475 	struct worker_pool *pool = worker->pool;
1476 
1477 	if (!pwq)
1478 		return;
1479 
1480 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1481 
1482 	if (!wq_cpu_intensive_thresh_us)
1483 		return;
1484 
1485 	/*
1486 	 * If the current worker is concurrency managed and hogged the CPU for
1487 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1488 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1489 	 *
1490 	 * Set @worker->sleeping means that @worker is in the process of
1491 	 * switching out voluntarily and won't be contributing to
1492 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1493 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1494 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1495 	 * We probably want to make this prettier in the future.
1496 	 */
1497 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1498 	    worker->task->se.sum_exec_runtime - worker->current_at <
1499 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1500 		return;
1501 
1502 	raw_spin_lock(&pool->lock);
1503 
1504 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1505 	wq_cpu_intensive_report(worker->current_func);
1506 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1507 
1508 	if (kick_pool(pool))
1509 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1510 
1511 	raw_spin_unlock(&pool->lock);
1512 }
1513 
1514 /**
1515  * wq_worker_last_func - retrieve worker's last work function
1516  * @task: Task to retrieve last work function of.
1517  *
1518  * Determine the last function a worker executed. This is called from
1519  * the scheduler to get a worker's last known identity.
1520  *
1521  * CONTEXT:
1522  * raw_spin_lock_irq(rq->lock)
1523  *
1524  * This function is called during schedule() when a kworker is going
1525  * to sleep. It's used by psi to identify aggregation workers during
1526  * dequeuing, to allow periodic aggregation to shut-off when that
1527  * worker is the last task in the system or cgroup to go to sleep.
1528  *
1529  * As this function doesn't involve any workqueue-related locking, it
1530  * only returns stable values when called from inside the scheduler's
1531  * queuing and dequeuing paths, when @task, which must be a kworker,
1532  * is guaranteed to not be processing any works.
1533  *
1534  * Return:
1535  * The last work function %current executed as a worker, NULL if it
1536  * hasn't executed any work yet.
1537  */
wq_worker_last_func(struct task_struct * task)1538 work_func_t wq_worker_last_func(struct task_struct *task)
1539 {
1540 	struct worker *worker = kthread_data(task);
1541 
1542 	return worker->last_func;
1543 }
1544 
1545 /**
1546  * wq_node_nr_active - Determine wq_node_nr_active to use
1547  * @wq: workqueue of interest
1548  * @node: NUMA node, can be %NUMA_NO_NODE
1549  *
1550  * Determine wq_node_nr_active to use for @wq on @node. Returns:
1551  *
1552  * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1553  *
1554  * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1555  *
1556  * - Otherwise, node_nr_active[@node].
1557  */
wq_node_nr_active(struct workqueue_struct * wq,int node)1558 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1559 						   int node)
1560 {
1561 	if (!(wq->flags & WQ_UNBOUND))
1562 		return NULL;
1563 
1564 	if (node == NUMA_NO_NODE)
1565 		node = nr_node_ids;
1566 
1567 	return wq->node_nr_active[node];
1568 }
1569 
1570 /**
1571  * wq_update_node_max_active - Update per-node max_actives to use
1572  * @wq: workqueue to update
1573  * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1574  *
1575  * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1576  * distributed among nodes according to the proportions of numbers of online
1577  * cpus. The result is always between @wq->min_active and max_active.
1578  */
wq_update_node_max_active(struct workqueue_struct * wq,int off_cpu)1579 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1580 {
1581 	struct cpumask *effective = unbound_effective_cpumask(wq);
1582 	int min_active = READ_ONCE(wq->min_active);
1583 	int max_active = READ_ONCE(wq->max_active);
1584 	int total_cpus, node;
1585 
1586 	lockdep_assert_held(&wq->mutex);
1587 
1588 	if (!wq_topo_initialized)
1589 		return;
1590 
1591 	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1592 		off_cpu = -1;
1593 
1594 	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1595 	if (off_cpu >= 0)
1596 		total_cpus--;
1597 
1598 	/* If all CPUs of the wq get offline, use the default values */
1599 	if (unlikely(!total_cpus)) {
1600 		for_each_node(node)
1601 			wq_node_nr_active(wq, node)->max = min_active;
1602 
1603 		wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1604 		return;
1605 	}
1606 
1607 	for_each_node(node) {
1608 		int node_cpus;
1609 
1610 		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1611 		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1612 			node_cpus--;
1613 
1614 		wq_node_nr_active(wq, node)->max =
1615 			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1616 			      min_active, max_active);
1617 	}
1618 
1619 	wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1620 }
1621 
1622 /**
1623  * get_pwq - get an extra reference on the specified pool_workqueue
1624  * @pwq: pool_workqueue to get
1625  *
1626  * Obtain an extra reference on @pwq.  The caller should guarantee that
1627  * @pwq has positive refcnt and be holding the matching pool->lock.
1628  */
get_pwq(struct pool_workqueue * pwq)1629 static void get_pwq(struct pool_workqueue *pwq)
1630 {
1631 	lockdep_assert_held(&pwq->pool->lock);
1632 	WARN_ON_ONCE(pwq->refcnt <= 0);
1633 	pwq->refcnt++;
1634 }
1635 
1636 /**
1637  * put_pwq - put a pool_workqueue reference
1638  * @pwq: pool_workqueue to put
1639  *
1640  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1641  * destruction.  The caller should be holding the matching pool->lock.
1642  */
put_pwq(struct pool_workqueue * pwq)1643 static void put_pwq(struct pool_workqueue *pwq)
1644 {
1645 	lockdep_assert_held(&pwq->pool->lock);
1646 	if (likely(--pwq->refcnt))
1647 		return;
1648 	/*
1649 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1650 	 * kthread_worker to avoid A-A deadlocks.
1651 	 */
1652 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1653 }
1654 
1655 /**
1656  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1657  * @pwq: pool_workqueue to put (can be %NULL)
1658  *
1659  * put_pwq() with locking.  This function also allows %NULL @pwq.
1660  */
put_pwq_unlocked(struct pool_workqueue * pwq)1661 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1662 {
1663 	if (pwq) {
1664 		/*
1665 		 * As both pwqs and pools are RCU protected, the
1666 		 * following lock operations are safe.
1667 		 */
1668 		raw_spin_lock_irq(&pwq->pool->lock);
1669 		put_pwq(pwq);
1670 		raw_spin_unlock_irq(&pwq->pool->lock);
1671 	}
1672 }
1673 
pwq_is_empty(struct pool_workqueue * pwq)1674 static bool pwq_is_empty(struct pool_workqueue *pwq)
1675 {
1676 	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1677 }
1678 
__pwq_activate_work(struct pool_workqueue * pwq,struct work_struct * work)1679 static void __pwq_activate_work(struct pool_workqueue *pwq,
1680 				struct work_struct *work)
1681 {
1682 	unsigned long *wdb = work_data_bits(work);
1683 
1684 	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1685 	trace_workqueue_activate_work(work);
1686 	if (list_empty(&pwq->pool->worklist))
1687 		pwq->pool->watchdog_ts = jiffies;
1688 	move_linked_works(work, &pwq->pool->worklist, NULL);
1689 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1690 }
1691 
tryinc_node_nr_active(struct wq_node_nr_active * nna)1692 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1693 {
1694 	int max = READ_ONCE(nna->max);
1695 	int old = atomic_read(&nna->nr);
1696 
1697 	do {
1698 		if (old >= max)
1699 			return false;
1700 	} while (!atomic_try_cmpxchg_relaxed(&nna->nr, &old, old + 1));
1701 
1702 	return true;
1703 }
1704 
1705 /**
1706  * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1707  * @pwq: pool_workqueue of interest
1708  * @fill: max_active may have increased, try to increase concurrency level
1709  *
1710  * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1711  * successfully obtained. %false otherwise.
1712  */
pwq_tryinc_nr_active(struct pool_workqueue * pwq,bool fill)1713 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1714 {
1715 	struct workqueue_struct *wq = pwq->wq;
1716 	struct worker_pool *pool = pwq->pool;
1717 	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1718 	bool obtained = false;
1719 
1720 	lockdep_assert_held(&pool->lock);
1721 
1722 	if (!nna) {
1723 		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1724 		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1725 		goto out;
1726 	}
1727 
1728 	if (unlikely(pwq->plugged))
1729 		return false;
1730 
1731 	/*
1732 	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1733 	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1734 	 * concurrency level. Don't jump the line.
1735 	 *
1736 	 * We need to ignore the pending test after max_active has increased as
1737 	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1738 	 * increase it. This is indicated by @fill.
1739 	 */
1740 	if (!list_empty(&pwq->pending_node) && likely(!fill))
1741 		goto out;
1742 
1743 	obtained = tryinc_node_nr_active(nna);
1744 	if (obtained)
1745 		goto out;
1746 
1747 	/*
1748 	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1749 	 * and try again. The smp_mb() is paired with the implied memory barrier
1750 	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1751 	 * we see the decremented $nna->nr or they see non-empty
1752 	 * $nna->pending_pwqs.
1753 	 */
1754 	raw_spin_lock(&nna->lock);
1755 
1756 	if (list_empty(&pwq->pending_node))
1757 		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1758 	else if (likely(!fill))
1759 		goto out_unlock;
1760 
1761 	smp_mb();
1762 
1763 	obtained = tryinc_node_nr_active(nna);
1764 
1765 	/*
1766 	 * If @fill, @pwq might have already been pending. Being spuriously
1767 	 * pending in cold paths doesn't affect anything. Let's leave it be.
1768 	 */
1769 	if (obtained && likely(!fill))
1770 		list_del_init(&pwq->pending_node);
1771 
1772 out_unlock:
1773 	raw_spin_unlock(&nna->lock);
1774 out:
1775 	if (obtained)
1776 		pwq->nr_active++;
1777 	return obtained;
1778 }
1779 
1780 /**
1781  * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1782  * @pwq: pool_workqueue of interest
1783  * @fill: max_active may have increased, try to increase concurrency level
1784  *
1785  * Activate the first inactive work item of @pwq if available and allowed by
1786  * max_active limit.
1787  *
1788  * Returns %true if an inactive work item has been activated. %false if no
1789  * inactive work item is found or max_active limit is reached.
1790  */
pwq_activate_first_inactive(struct pool_workqueue * pwq,bool fill)1791 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1792 {
1793 	struct work_struct *work =
1794 		list_first_entry_or_null(&pwq->inactive_works,
1795 					 struct work_struct, entry);
1796 
1797 	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1798 		__pwq_activate_work(pwq, work);
1799 		return true;
1800 	} else {
1801 		return false;
1802 	}
1803 }
1804 
1805 /**
1806  * unplug_oldest_pwq - unplug the oldest pool_workqueue
1807  * @wq: workqueue_struct where its oldest pwq is to be unplugged
1808  *
1809  * This function should only be called for ordered workqueues where only the
1810  * oldest pwq is unplugged, the others are plugged to suspend execution to
1811  * ensure proper work item ordering::
1812  *
1813  *    dfl_pwq --------------+     [P] - plugged
1814  *                          |
1815  *                          v
1816  *    pwqs -> A -> B [P] -> C [P] (newest)
1817  *            |    |        |
1818  *            1    3        5
1819  *            |    |        |
1820  *            2    4        6
1821  *
1822  * When the oldest pwq is drained and removed, this function should be called
1823  * to unplug the next oldest one to start its work item execution. Note that
1824  * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1825  * the list is the oldest.
1826  */
unplug_oldest_pwq(struct workqueue_struct * wq)1827 static void unplug_oldest_pwq(struct workqueue_struct *wq)
1828 {
1829 	struct pool_workqueue *pwq;
1830 
1831 	lockdep_assert_held(&wq->mutex);
1832 
1833 	/* Caller should make sure that pwqs isn't empty before calling */
1834 	pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1835 				       pwqs_node);
1836 	raw_spin_lock_irq(&pwq->pool->lock);
1837 	if (pwq->plugged) {
1838 		pwq->plugged = false;
1839 		if (pwq_activate_first_inactive(pwq, true))
1840 			kick_pool(pwq->pool);
1841 	}
1842 	raw_spin_unlock_irq(&pwq->pool->lock);
1843 }
1844 
1845 /**
1846  * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1847  * @nna: wq_node_nr_active to activate a pending pwq for
1848  * @caller_pool: worker_pool the caller is locking
1849  *
1850  * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1851  * @caller_pool may be unlocked and relocked to lock other worker_pools.
1852  */
node_activate_pending_pwq(struct wq_node_nr_active * nna,struct worker_pool * caller_pool)1853 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1854 				      struct worker_pool *caller_pool)
1855 {
1856 	struct worker_pool *locked_pool = caller_pool;
1857 	struct pool_workqueue *pwq;
1858 	struct work_struct *work;
1859 
1860 	lockdep_assert_held(&caller_pool->lock);
1861 
1862 	raw_spin_lock(&nna->lock);
1863 retry:
1864 	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1865 				       struct pool_workqueue, pending_node);
1866 	if (!pwq)
1867 		goto out_unlock;
1868 
1869 	/*
1870 	 * If @pwq is for a different pool than @locked_pool, we need to lock
1871 	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1872 	 * / lock dance. For that, we also need to release @nna->lock as it's
1873 	 * nested inside pool locks.
1874 	 */
1875 	if (pwq->pool != locked_pool) {
1876 		raw_spin_unlock(&locked_pool->lock);
1877 		locked_pool = pwq->pool;
1878 		if (!raw_spin_trylock(&locked_pool->lock)) {
1879 			raw_spin_unlock(&nna->lock);
1880 			raw_spin_lock(&locked_pool->lock);
1881 			raw_spin_lock(&nna->lock);
1882 			goto retry;
1883 		}
1884 	}
1885 
1886 	/*
1887 	 * $pwq may not have any inactive work items due to e.g. cancellations.
1888 	 * Drop it from pending_pwqs and see if there's another one.
1889 	 */
1890 	work = list_first_entry_or_null(&pwq->inactive_works,
1891 					struct work_struct, entry);
1892 	if (!work) {
1893 		list_del_init(&pwq->pending_node);
1894 		goto retry;
1895 	}
1896 
1897 	/*
1898 	 * Acquire an nr_active count and activate the inactive work item. If
1899 	 * $pwq still has inactive work items, rotate it to the end of the
1900 	 * pending_pwqs so that we round-robin through them. This means that
1901 	 * inactive work items are not activated in queueing order which is fine
1902 	 * given that there has never been any ordering across different pwqs.
1903 	 */
1904 	if (likely(tryinc_node_nr_active(nna))) {
1905 		pwq->nr_active++;
1906 		__pwq_activate_work(pwq, work);
1907 
1908 		if (list_empty(&pwq->inactive_works))
1909 			list_del_init(&pwq->pending_node);
1910 		else
1911 			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1912 
1913 		/* if activating a foreign pool, make sure it's running */
1914 		if (pwq->pool != caller_pool)
1915 			kick_pool(pwq->pool);
1916 	}
1917 
1918 out_unlock:
1919 	raw_spin_unlock(&nna->lock);
1920 	if (locked_pool != caller_pool) {
1921 		raw_spin_unlock(&locked_pool->lock);
1922 		raw_spin_lock(&caller_pool->lock);
1923 	}
1924 }
1925 
1926 /**
1927  * pwq_dec_nr_active - Retire an active count
1928  * @pwq: pool_workqueue of interest
1929  *
1930  * Decrement @pwq's nr_active and try to activate the first inactive work item.
1931  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1932  */
pwq_dec_nr_active(struct pool_workqueue * pwq)1933 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1934 {
1935 	struct worker_pool *pool = pwq->pool;
1936 	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1937 
1938 	lockdep_assert_held(&pool->lock);
1939 
1940 	/*
1941 	 * @pwq->nr_active should be decremented for both percpu and unbound
1942 	 * workqueues.
1943 	 */
1944 	pwq->nr_active--;
1945 
1946 	/*
1947 	 * For a percpu workqueue, it's simple. Just need to kick the first
1948 	 * inactive work item on @pwq itself.
1949 	 */
1950 	if (!nna) {
1951 		pwq_activate_first_inactive(pwq, false);
1952 		return;
1953 	}
1954 
1955 	/*
1956 	 * If @pwq is for an unbound workqueue, it's more complicated because
1957 	 * multiple pwqs and pools may be sharing the nr_active count. When a
1958 	 * pwq needs to wait for an nr_active count, it puts itself on
1959 	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1960 	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1961 	 * guarantee that either we see non-empty pending_pwqs or they see
1962 	 * decremented $nna->nr.
1963 	 *
1964 	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1965 	 * max_active gets updated. However, it is guaranteed to be equal to or
1966 	 * larger than @pwq->wq->min_active which is above zero unless freezing.
1967 	 * This maintains the forward progress guarantee.
1968 	 */
1969 	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1970 		return;
1971 
1972 	if (!list_empty(&nna->pending_pwqs))
1973 		node_activate_pending_pwq(nna, pool);
1974 }
1975 
1976 /**
1977  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1978  * @pwq: pwq of interest
1979  * @work_data: work_data of work which left the queue
1980  *
1981  * A work either has completed or is removed from pending queue,
1982  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1983  *
1984  * NOTE:
1985  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1986  * and thus should be called after all other state updates for the in-flight
1987  * work item is complete.
1988  *
1989  * CONTEXT:
1990  * raw_spin_lock_irq(pool->lock).
1991  */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,unsigned long work_data)1992 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1993 {
1994 	int color = get_work_color(work_data);
1995 
1996 	if (!(work_data & WORK_STRUCT_INACTIVE))
1997 		pwq_dec_nr_active(pwq);
1998 
1999 	pwq->nr_in_flight[color]--;
2000 
2001 	/* is flush in progress and are we at the flushing tip? */
2002 	if (likely(pwq->flush_color != color))
2003 		goto out_put;
2004 
2005 	/* are there still in-flight works? */
2006 	if (pwq->nr_in_flight[color])
2007 		goto out_put;
2008 
2009 	/* this pwq is done, clear flush_color */
2010 	pwq->flush_color = -1;
2011 
2012 	/*
2013 	 * If this was the last pwq, wake up the first flusher.  It
2014 	 * will handle the rest.
2015 	 */
2016 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2017 		complete(&pwq->wq->first_flusher->done);
2018 out_put:
2019 	put_pwq(pwq);
2020 }
2021 
2022 /**
2023  * try_to_grab_pending - steal work item from worklist and disable irq
2024  * @work: work item to steal
2025  * @cflags: %WORK_CANCEL_ flags
2026  * @irq_flags: place to store irq state
2027  *
2028  * Try to grab PENDING bit of @work.  This function can handle @work in any
2029  * stable state - idle, on timer or on worklist.
2030  *
2031  * Return:
2032  *
2033  *  ========	================================================================
2034  *  1		if @work was pending and we successfully stole PENDING
2035  *  0		if @work was idle and we claimed PENDING
2036  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
2037  *  ========	================================================================
2038  *
2039  * Note:
2040  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
2041  * interrupted while holding PENDING and @work off queue, irq must be
2042  * disabled on entry.  This, combined with delayed_work->timer being
2043  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2044  *
2045  * On successful return, >= 0, irq is disabled and the caller is
2046  * responsible for releasing it using local_irq_restore(*@irq_flags).
2047  *
2048  * This function is safe to call from any context including IRQ handler.
2049  */
try_to_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2050 static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2051 			       unsigned long *irq_flags)
2052 {
2053 	struct worker_pool *pool;
2054 	struct pool_workqueue *pwq;
2055 
2056 	local_irq_save(*irq_flags);
2057 
2058 	/* try to steal the timer if it exists */
2059 	if (cflags & WORK_CANCEL_DELAYED) {
2060 		struct delayed_work *dwork = to_delayed_work(work);
2061 
2062 		/*
2063 		 * dwork->timer is irqsafe.  If timer_delete() fails, it's
2064 		 * guaranteed that the timer is not queued anywhere and not
2065 		 * running on the local CPU.
2066 		 */
2067 		if (likely(timer_delete(&dwork->timer)))
2068 			return 1;
2069 	}
2070 
2071 	/* try to claim PENDING the normal way */
2072 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2073 		return 0;
2074 
2075 	rcu_read_lock();
2076 	/*
2077 	 * The queueing is in progress, or it is already queued. Try to
2078 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2079 	 */
2080 	pool = get_work_pool(work);
2081 	if (!pool)
2082 		goto fail;
2083 
2084 	raw_spin_lock(&pool->lock);
2085 	/*
2086 	 * work->data is guaranteed to point to pwq only while the work
2087 	 * item is queued on pwq->wq, and both updating work->data to point
2088 	 * to pwq on queueing and to pool on dequeueing are done under
2089 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
2090 	 * points to pwq which is associated with a locked pool, the work
2091 	 * item is currently queued on that pool.
2092 	 */
2093 	pwq = get_work_pwq(work);
2094 	if (pwq && pwq->pool == pool) {
2095 		unsigned long work_data = *work_data_bits(work);
2096 
2097 		debug_work_deactivate(work);
2098 
2099 		/*
2100 		 * A cancelable inactive work item must be in the
2101 		 * pwq->inactive_works since a queued barrier can't be
2102 		 * canceled (see the comments in insert_wq_barrier()).
2103 		 *
2104 		 * An inactive work item cannot be deleted directly because
2105 		 * it might have linked barrier work items which, if left
2106 		 * on the inactive_works list, will confuse pwq->nr_active
2107 		 * management later on and cause stall.  Move the linked
2108 		 * barrier work items to the worklist when deleting the grabbed
2109 		 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that
2110 		 * it doesn't participate in nr_active management in later
2111 		 * pwq_dec_nr_in_flight().
2112 		 */
2113 		if (work_data & WORK_STRUCT_INACTIVE)
2114 			move_linked_works(work, &pwq->pool->worklist, NULL);
2115 
2116 		list_del_init(&work->entry);
2117 
2118 		/*
2119 		 * work->data points to pwq iff queued. Let's point to pool. As
2120 		 * this destroys work->data needed by the next step, stash it.
2121 		 */
2122 		set_work_pool_and_keep_pending(work, pool->id,
2123 					       pool_offq_flags(pool));
2124 
2125 		/* must be the last step, see the function comment */
2126 		pwq_dec_nr_in_flight(pwq, work_data);
2127 
2128 		raw_spin_unlock(&pool->lock);
2129 		rcu_read_unlock();
2130 		return 1;
2131 	}
2132 	raw_spin_unlock(&pool->lock);
2133 fail:
2134 	rcu_read_unlock();
2135 	local_irq_restore(*irq_flags);
2136 	return -EAGAIN;
2137 }
2138 
2139 /**
2140  * work_grab_pending - steal work item from worklist and disable irq
2141  * @work: work item to steal
2142  * @cflags: %WORK_CANCEL_ flags
2143  * @irq_flags: place to store IRQ state
2144  *
2145  * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2146  * or on worklist.
2147  *
2148  * Can be called from any context. IRQ is disabled on return with IRQ state
2149  * stored in *@irq_flags. The caller is responsible for re-enabling it using
2150  * local_irq_restore().
2151  *
2152  * Returns %true if @work was pending. %false if idle.
2153  */
work_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2154 static bool work_grab_pending(struct work_struct *work, u32 cflags,
2155 			      unsigned long *irq_flags)
2156 {
2157 	int ret;
2158 
2159 	while (true) {
2160 		ret = try_to_grab_pending(work, cflags, irq_flags);
2161 		if (ret >= 0)
2162 			return ret;
2163 		cpu_relax();
2164 	}
2165 }
2166 
2167 /**
2168  * insert_work - insert a work into a pool
2169  * @pwq: pwq @work belongs to
2170  * @work: work to insert
2171  * @head: insertion point
2172  * @extra_flags: extra WORK_STRUCT_* flags to set
2173  *
2174  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2175  * work_struct flags.
2176  *
2177  * CONTEXT:
2178  * raw_spin_lock_irq(pool->lock).
2179  */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)2180 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2181 			struct list_head *head, unsigned int extra_flags)
2182 {
2183 	debug_work_activate(work);
2184 
2185 	/* record the work call stack in order to print it in KASAN reports */
2186 	kasan_record_aux_stack(work);
2187 
2188 	/* we own @work, set data and link */
2189 	set_work_pwq(work, pwq, extra_flags);
2190 	list_add_tail(&work->entry, head);
2191 	get_pwq(pwq);
2192 }
2193 
2194 /*
2195  * Test whether @work is being queued from another work executing on the
2196  * same workqueue.
2197  */
is_chained_work(struct workqueue_struct * wq)2198 static bool is_chained_work(struct workqueue_struct *wq)
2199 {
2200 	struct worker *worker;
2201 
2202 	worker = current_wq_worker();
2203 	/*
2204 	 * Return %true iff I'm a worker executing a work item on @wq.  If
2205 	 * I'm @worker, it's safe to dereference it without locking.
2206 	 */
2207 	return worker && worker->current_pwq->wq == wq;
2208 }
2209 
2210 /*
2211  * When queueing an unbound work item to a wq, prefer local CPU if allowed
2212  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2213  * avoid perturbing sensitive tasks.
2214  */
wq_select_unbound_cpu(int cpu)2215 static int wq_select_unbound_cpu(int cpu)
2216 {
2217 	int new_cpu;
2218 
2219 	if (likely(!wq_debug_force_rr_cpu)) {
2220 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2221 			return cpu;
2222 	} else {
2223 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2224 	}
2225 
2226 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2227 	new_cpu = cpumask_next_and_wrap(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2228 	if (unlikely(new_cpu >= nr_cpu_ids))
2229 		return cpu;
2230 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2231 
2232 	return new_cpu;
2233 }
2234 
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)2235 static void __queue_work(int cpu, struct workqueue_struct *wq,
2236 			 struct work_struct *work)
2237 {
2238 	struct pool_workqueue *pwq;
2239 	struct worker_pool *last_pool, *pool;
2240 	unsigned int work_flags;
2241 	unsigned int req_cpu = cpu;
2242 
2243 	/*
2244 	 * While a work item is PENDING && off queue, a task trying to
2245 	 * steal the PENDING will busy-loop waiting for it to either get
2246 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2247 	 * happen with IRQ disabled.
2248 	 */
2249 	lockdep_assert_irqs_disabled();
2250 
2251 	/*
2252 	 * For a draining wq, only works from the same workqueue are
2253 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2254 	 * queues a new work item to a wq after destroy_workqueue(wq).
2255 	 */
2256 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2257 		     WARN_ONCE(!is_chained_work(wq), "workqueue: cannot queue %ps on wq %s\n",
2258 			       work->func, wq->name))) {
2259 		return;
2260 	}
2261 	rcu_read_lock();
2262 retry:
2263 	/* pwq which will be used unless @work is executing elsewhere */
2264 	if (req_cpu == WORK_CPU_UNBOUND) {
2265 		if (wq->flags & WQ_UNBOUND)
2266 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2267 		else
2268 			cpu = raw_smp_processor_id();
2269 	}
2270 
2271 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2272 	pool = pwq->pool;
2273 
2274 	/*
2275 	 * If @work was previously on a different pool, it might still be
2276 	 * running there, in which case the work needs to be queued on that
2277 	 * pool to guarantee non-reentrancy.
2278 	 *
2279 	 * For ordered workqueue, work items must be queued on the newest pwq
2280 	 * for accurate order management.  Guaranteed order also guarantees
2281 	 * non-reentrancy.  See the comments above unplug_oldest_pwq().
2282 	 */
2283 	last_pool = get_work_pool(work);
2284 	if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) {
2285 		struct worker *worker;
2286 
2287 		raw_spin_lock(&last_pool->lock);
2288 
2289 		worker = find_worker_executing_work(last_pool, work);
2290 
2291 		if (worker && worker->current_pwq->wq == wq) {
2292 			pwq = worker->current_pwq;
2293 			pool = pwq->pool;
2294 			WARN_ON_ONCE(pool != last_pool);
2295 		} else {
2296 			/* meh... not running there, queue here */
2297 			raw_spin_unlock(&last_pool->lock);
2298 			raw_spin_lock(&pool->lock);
2299 		}
2300 	} else {
2301 		raw_spin_lock(&pool->lock);
2302 	}
2303 
2304 	/*
2305 	 * pwq is determined and locked. For unbound pools, we could have raced
2306 	 * with pwq release and it could already be dead. If its refcnt is zero,
2307 	 * repeat pwq selection. Note that unbound pwqs never die without
2308 	 * another pwq replacing it in cpu_pwq or while work items are executing
2309 	 * on it, so the retrying is guaranteed to make forward-progress.
2310 	 */
2311 	if (unlikely(!pwq->refcnt)) {
2312 		if (wq->flags & WQ_UNBOUND) {
2313 			raw_spin_unlock(&pool->lock);
2314 			cpu_relax();
2315 			goto retry;
2316 		}
2317 		/* oops */
2318 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2319 			  wq->name, cpu);
2320 	}
2321 
2322 	/* pwq determined, queue */
2323 	trace_workqueue_queue_work(req_cpu, pwq, work);
2324 
2325 	if (WARN_ON(!list_empty(&work->entry)))
2326 		goto out;
2327 
2328 	pwq->nr_in_flight[pwq->work_color]++;
2329 	work_flags = work_color_to_flags(pwq->work_color);
2330 
2331 	/*
2332 	 * Limit the number of concurrently active work items to max_active.
2333 	 * @work must also queue behind existing inactive work items to maintain
2334 	 * ordering when max_active changes. See wq_adjust_max_active().
2335 	 */
2336 	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2337 		if (list_empty(&pool->worklist))
2338 			pool->watchdog_ts = jiffies;
2339 
2340 		trace_workqueue_activate_work(work);
2341 		insert_work(pwq, work, &pool->worklist, work_flags);
2342 		kick_pool(pool);
2343 	} else {
2344 		work_flags |= WORK_STRUCT_INACTIVE;
2345 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2346 	}
2347 
2348 out:
2349 	raw_spin_unlock(&pool->lock);
2350 	rcu_read_unlock();
2351 }
2352 
clear_pending_if_disabled(struct work_struct * work)2353 static bool clear_pending_if_disabled(struct work_struct *work)
2354 {
2355 	unsigned long data = *work_data_bits(work);
2356 	struct work_offq_data offqd;
2357 
2358 	if (likely((data & WORK_STRUCT_PWQ) ||
2359 		   !(data & WORK_OFFQ_DISABLE_MASK)))
2360 		return false;
2361 
2362 	work_offqd_unpack(&offqd, data);
2363 	set_work_pool_and_clear_pending(work, offqd.pool_id,
2364 					work_offqd_pack_flags(&offqd));
2365 	return true;
2366 }
2367 
2368 /**
2369  * queue_work_on - queue work on specific cpu
2370  * @cpu: CPU number to execute work on
2371  * @wq: workqueue to use
2372  * @work: work to queue
2373  *
2374  * We queue the work to a specific CPU, the caller must ensure it
2375  * can't go away.  Callers that fail to ensure that the specified
2376  * CPU cannot go away will execute on a randomly chosen CPU.
2377  * But note well that callers specifying a CPU that never has been
2378  * online will get a splat.
2379  *
2380  * Return: %false if @work was already on a queue, %true otherwise.
2381  */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)2382 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2383 		   struct work_struct *work)
2384 {
2385 	bool ret = false;
2386 	unsigned long irq_flags;
2387 
2388 	local_irq_save(irq_flags);
2389 
2390 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2391 	    !clear_pending_if_disabled(work)) {
2392 		__queue_work(cpu, wq, work);
2393 		ret = true;
2394 	}
2395 
2396 	local_irq_restore(irq_flags);
2397 	return ret;
2398 }
2399 EXPORT_SYMBOL(queue_work_on);
2400 
2401 /**
2402  * select_numa_node_cpu - Select a CPU based on NUMA node
2403  * @node: NUMA node ID that we want to select a CPU from
2404  *
2405  * This function will attempt to find a "random" cpu available on a given
2406  * node. If there are no CPUs available on the given node it will return
2407  * WORK_CPU_UNBOUND indicating that we should just schedule to any
2408  * available CPU if we need to schedule this work.
2409  */
select_numa_node_cpu(int node)2410 static int select_numa_node_cpu(int node)
2411 {
2412 	int cpu;
2413 
2414 	/* Delay binding to CPU if node is not valid or online */
2415 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2416 		return WORK_CPU_UNBOUND;
2417 
2418 	/* Use local node/cpu if we are already there */
2419 	cpu = raw_smp_processor_id();
2420 	if (node == cpu_to_node(cpu))
2421 		return cpu;
2422 
2423 	/* Use "random" otherwise know as "first" online CPU of node */
2424 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2425 
2426 	/* If CPU is valid return that, otherwise just defer */
2427 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2428 }
2429 
2430 /**
2431  * queue_work_node - queue work on a "random" cpu for a given NUMA node
2432  * @node: NUMA node that we are targeting the work for
2433  * @wq: workqueue to use
2434  * @work: work to queue
2435  *
2436  * We queue the work to a "random" CPU within a given NUMA node. The basic
2437  * idea here is to provide a way to somehow associate work with a given
2438  * NUMA node.
2439  *
2440  * This function will only make a best effort attempt at getting this onto
2441  * the right NUMA node. If no node is requested or the requested node is
2442  * offline then we just fall back to standard queue_work behavior.
2443  *
2444  * Currently the "random" CPU ends up being the first available CPU in the
2445  * intersection of cpu_online_mask and the cpumask of the node, unless we
2446  * are running on the node. In that case we just use the current CPU.
2447  *
2448  * Return: %false if @work was already on a queue, %true otherwise.
2449  */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)2450 bool queue_work_node(int node, struct workqueue_struct *wq,
2451 		     struct work_struct *work)
2452 {
2453 	unsigned long irq_flags;
2454 	bool ret = false;
2455 
2456 	/*
2457 	 * This current implementation is specific to unbound workqueues.
2458 	 * Specifically we only return the first available CPU for a given
2459 	 * node instead of cycling through individual CPUs within the node.
2460 	 *
2461 	 * If this is used with a per-cpu workqueue then the logic in
2462 	 * workqueue_select_cpu_near would need to be updated to allow for
2463 	 * some round robin type logic.
2464 	 */
2465 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2466 
2467 	local_irq_save(irq_flags);
2468 
2469 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2470 	    !clear_pending_if_disabled(work)) {
2471 		int cpu = select_numa_node_cpu(node);
2472 
2473 		__queue_work(cpu, wq, work);
2474 		ret = true;
2475 	}
2476 
2477 	local_irq_restore(irq_flags);
2478 	return ret;
2479 }
2480 EXPORT_SYMBOL_GPL(queue_work_node);
2481 
delayed_work_timer_fn(struct timer_list * t)2482 void delayed_work_timer_fn(struct timer_list *t)
2483 {
2484 	struct delayed_work *dwork = timer_container_of(dwork, t, timer);
2485 
2486 	/* should have been called from irqsafe timer with irq already off */
2487 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2488 }
2489 EXPORT_SYMBOL(delayed_work_timer_fn);
2490 
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2491 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2492 				struct delayed_work *dwork, unsigned long delay)
2493 {
2494 	struct timer_list *timer = &dwork->timer;
2495 	struct work_struct *work = &dwork->work;
2496 
2497 	WARN_ON_ONCE(!wq);
2498 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2499 	WARN_ON_ONCE(timer_pending(timer));
2500 	WARN_ON_ONCE(!list_empty(&work->entry));
2501 
2502 	/*
2503 	 * If @delay is 0, queue @dwork->work immediately.  This is for
2504 	 * both optimization and correctness.  The earliest @timer can
2505 	 * expire is on the closest next tick and delayed_work users depend
2506 	 * on that there's no such delay when @delay is 0.
2507 	 */
2508 	if (!delay) {
2509 		__queue_work(cpu, wq, &dwork->work);
2510 		return;
2511 	}
2512 
2513 	WARN_ON_ONCE(cpu != WORK_CPU_UNBOUND && !cpu_online(cpu));
2514 	dwork->wq = wq;
2515 	dwork->cpu = cpu;
2516 	timer->expires = jiffies + delay;
2517 
2518 	if (housekeeping_enabled(HK_TYPE_TIMER)) {
2519 		/* If the current cpu is a housekeeping cpu, use it. */
2520 		cpu = smp_processor_id();
2521 		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2522 			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2523 		add_timer_on(timer, cpu);
2524 	} else {
2525 		if (likely(cpu == WORK_CPU_UNBOUND))
2526 			add_timer_global(timer);
2527 		else
2528 			add_timer_on(timer, cpu);
2529 	}
2530 }
2531 
2532 /**
2533  * queue_delayed_work_on - queue work on specific CPU after delay
2534  * @cpu: CPU number to execute work on
2535  * @wq: workqueue to use
2536  * @dwork: work to queue
2537  * @delay: number of jiffies to wait before queueing
2538  *
2539  * We queue the delayed_work to a specific CPU, for non-zero delays the
2540  * caller must ensure it is online and can't go away. Callers that fail
2541  * to ensure this, may get @dwork->timer queued to an offlined CPU and
2542  * this will prevent queueing of @dwork->work unless the offlined CPU
2543  * becomes online again.
2544  *
2545  * Return: %false if @work was already on a queue, %true otherwise.  If
2546  * @delay is zero and @dwork is idle, it will be scheduled for immediate
2547  * execution.
2548  */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2549 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2550 			   struct delayed_work *dwork, unsigned long delay)
2551 {
2552 	struct work_struct *work = &dwork->work;
2553 	bool ret = false;
2554 	unsigned long irq_flags;
2555 
2556 	/* read the comment in __queue_work() */
2557 	local_irq_save(irq_flags);
2558 
2559 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2560 	    !clear_pending_if_disabled(work)) {
2561 		__queue_delayed_work(cpu, wq, dwork, delay);
2562 		ret = true;
2563 	}
2564 
2565 	local_irq_restore(irq_flags);
2566 	return ret;
2567 }
2568 EXPORT_SYMBOL(queue_delayed_work_on);
2569 
2570 /**
2571  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2572  * @cpu: CPU number to execute work on
2573  * @wq: workqueue to use
2574  * @dwork: work to queue
2575  * @delay: number of jiffies to wait before queueing
2576  *
2577  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2578  * modify @dwork's timer so that it expires after @delay.  If @delay is
2579  * zero, @work is guaranteed to be scheduled immediately regardless of its
2580  * current state.
2581  *
2582  * Return: %false if @dwork was idle and queued, %true if @dwork was
2583  * pending and its timer was modified.
2584  *
2585  * This function is safe to call from any context including IRQ handler.
2586  * See try_to_grab_pending() for details.
2587  */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2588 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2589 			 struct delayed_work *dwork, unsigned long delay)
2590 {
2591 	unsigned long irq_flags;
2592 	bool ret;
2593 
2594 	ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
2595 
2596 	if (!clear_pending_if_disabled(&dwork->work))
2597 		__queue_delayed_work(cpu, wq, dwork, delay);
2598 
2599 	local_irq_restore(irq_flags);
2600 	return ret;
2601 }
2602 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2603 
rcu_work_rcufn(struct rcu_head * rcu)2604 static void rcu_work_rcufn(struct rcu_head *rcu)
2605 {
2606 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2607 
2608 	/* read the comment in __queue_work() */
2609 	local_irq_disable();
2610 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2611 	local_irq_enable();
2612 }
2613 
2614 /**
2615  * queue_rcu_work - queue work after a RCU grace period
2616  * @wq: workqueue to use
2617  * @rwork: work to queue
2618  *
2619  * Return: %false if @rwork was already pending, %true otherwise.  Note
2620  * that a full RCU grace period is guaranteed only after a %true return.
2621  * While @rwork is guaranteed to be executed after a %false return, the
2622  * execution may happen before a full RCU grace period has passed.
2623  */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)2624 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2625 {
2626 	struct work_struct *work = &rwork->work;
2627 
2628 	/*
2629 	 * rcu_work can't be canceled or disabled. Warn if the user reached
2630 	 * inside @rwork and disabled the inner work.
2631 	 */
2632 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2633 	    !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
2634 		rwork->wq = wq;
2635 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2636 		return true;
2637 	}
2638 
2639 	return false;
2640 }
2641 EXPORT_SYMBOL(queue_rcu_work);
2642 
alloc_worker(int node)2643 static struct worker *alloc_worker(int node)
2644 {
2645 	struct worker *worker;
2646 
2647 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2648 	if (worker) {
2649 		INIT_LIST_HEAD(&worker->entry);
2650 		INIT_LIST_HEAD(&worker->scheduled);
2651 		INIT_LIST_HEAD(&worker->node);
2652 		/* on creation a worker is in !idle && prep state */
2653 		worker->flags = WORKER_PREP;
2654 	}
2655 	return worker;
2656 }
2657 
pool_allowed_cpus(struct worker_pool * pool)2658 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2659 {
2660 	if (pool->cpu < 0 && pool->attrs->affn_strict)
2661 		return pool->attrs->__pod_cpumask;
2662 	else
2663 		return pool->attrs->cpumask;
2664 }
2665 
2666 /**
2667  * worker_attach_to_pool() - attach a worker to a pool
2668  * @worker: worker to be attached
2669  * @pool: the target pool
2670  *
2671  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2672  * cpu-binding of @worker are kept coordinated with the pool across
2673  * cpu-[un]hotplugs.
2674  */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)2675 static void worker_attach_to_pool(struct worker *worker,
2676 				  struct worker_pool *pool)
2677 {
2678 	mutex_lock(&wq_pool_attach_mutex);
2679 
2680 	/*
2681 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2682 	 * across this function. See the comments above the flag definition for
2683 	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2684 	 */
2685 	if (pool->flags & POOL_DISASSOCIATED) {
2686 		worker->flags |= WORKER_UNBOUND;
2687 	} else {
2688 		WARN_ON_ONCE(pool->flags & POOL_BH);
2689 		kthread_set_per_cpu(worker->task, pool->cpu);
2690 	}
2691 
2692 	if (worker->rescue_wq)
2693 		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2694 
2695 	list_add_tail(&worker->node, &pool->workers);
2696 	worker->pool = pool;
2697 
2698 	mutex_unlock(&wq_pool_attach_mutex);
2699 }
2700 
unbind_worker(struct worker * worker)2701 static void unbind_worker(struct worker *worker)
2702 {
2703 	lockdep_assert_held(&wq_pool_attach_mutex);
2704 
2705 	kthread_set_per_cpu(worker->task, -1);
2706 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2707 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2708 	else
2709 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2710 }
2711 
2712 
detach_worker(struct worker * worker)2713 static void detach_worker(struct worker *worker)
2714 {
2715 	lockdep_assert_held(&wq_pool_attach_mutex);
2716 
2717 	unbind_worker(worker);
2718 	list_del(&worker->node);
2719 }
2720 
2721 /**
2722  * worker_detach_from_pool() - detach a worker from its pool
2723  * @worker: worker which is attached to its pool
2724  *
2725  * Undo the attaching which had been done in worker_attach_to_pool().  The
2726  * caller worker shouldn't access to the pool after detached except it has
2727  * other reference to the pool.
2728  */
worker_detach_from_pool(struct worker * worker)2729 static void worker_detach_from_pool(struct worker *worker)
2730 {
2731 	struct worker_pool *pool = worker->pool;
2732 
2733 	/* there is one permanent BH worker per CPU which should never detach */
2734 	WARN_ON_ONCE(pool->flags & POOL_BH);
2735 
2736 	mutex_lock(&wq_pool_attach_mutex);
2737 	detach_worker(worker);
2738 	worker->pool = NULL;
2739 	mutex_unlock(&wq_pool_attach_mutex);
2740 
2741 	/* clear leftover flags without pool->lock after it is detached */
2742 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2743 }
2744 
format_worker_id(char * buf,size_t size,struct worker * worker,struct worker_pool * pool)2745 static int format_worker_id(char *buf, size_t size, struct worker *worker,
2746 			    struct worker_pool *pool)
2747 {
2748 	if (worker->rescue_wq)
2749 		return scnprintf(buf, size, "kworker/R-%s",
2750 				 worker->rescue_wq->name);
2751 
2752 	if (pool) {
2753 		if (pool->cpu >= 0)
2754 			return scnprintf(buf, size, "kworker/%d:%d%s",
2755 					 pool->cpu, worker->id,
2756 					 pool->attrs->nice < 0  ? "H" : "");
2757 		else
2758 			return scnprintf(buf, size, "kworker/u%d:%d",
2759 					 pool->id, worker->id);
2760 	} else {
2761 		return scnprintf(buf, size, "kworker/dying");
2762 	}
2763 }
2764 
2765 /**
2766  * create_worker - create a new workqueue worker
2767  * @pool: pool the new worker will belong to
2768  *
2769  * Create and start a new worker which is attached to @pool.
2770  *
2771  * CONTEXT:
2772  * Might sleep.  Does GFP_KERNEL allocations.
2773  *
2774  * Return:
2775  * Pointer to the newly created worker.
2776  */
create_worker(struct worker_pool * pool)2777 static struct worker *create_worker(struct worker_pool *pool)
2778 {
2779 	struct worker *worker;
2780 	int id;
2781 
2782 	/* ID is needed to determine kthread name */
2783 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2784 	if (id < 0) {
2785 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2786 			    ERR_PTR(id));
2787 		return NULL;
2788 	}
2789 
2790 	worker = alloc_worker(pool->node);
2791 	if (!worker) {
2792 		pr_err_once("workqueue: Failed to allocate a worker\n");
2793 		goto fail;
2794 	}
2795 
2796 	worker->id = id;
2797 
2798 	if (!(pool->flags & POOL_BH)) {
2799 		char id_buf[WORKER_ID_LEN];
2800 
2801 		format_worker_id(id_buf, sizeof(id_buf), worker, pool);
2802 		worker->task = kthread_create_on_node(worker_thread, worker,
2803 						      pool->node, "%s", id_buf);
2804 		if (IS_ERR(worker->task)) {
2805 			if (PTR_ERR(worker->task) == -EINTR) {
2806 				pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n",
2807 				       id_buf);
2808 			} else {
2809 				pr_err_once("workqueue: Failed to create a worker thread: %pe",
2810 					    worker->task);
2811 			}
2812 			goto fail;
2813 		}
2814 
2815 		set_user_nice(worker->task, pool->attrs->nice);
2816 		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2817 	}
2818 
2819 	/* successful, attach the worker to the pool */
2820 	worker_attach_to_pool(worker, pool);
2821 
2822 	/* start the newly created worker */
2823 	raw_spin_lock_irq(&pool->lock);
2824 
2825 	worker->pool->nr_workers++;
2826 	worker_enter_idle(worker);
2827 
2828 	/*
2829 	 * @worker is waiting on a completion in kthread() and will trigger hung
2830 	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2831 	 * wake it up explicitly.
2832 	 */
2833 	if (worker->task)
2834 		wake_up_process(worker->task);
2835 
2836 	raw_spin_unlock_irq(&pool->lock);
2837 
2838 	return worker;
2839 
2840 fail:
2841 	ida_free(&pool->worker_ida, id);
2842 	kfree(worker);
2843 	return NULL;
2844 }
2845 
detach_dying_workers(struct list_head * cull_list)2846 static void detach_dying_workers(struct list_head *cull_list)
2847 {
2848 	struct worker *worker;
2849 
2850 	list_for_each_entry(worker, cull_list, entry)
2851 		detach_worker(worker);
2852 }
2853 
reap_dying_workers(struct list_head * cull_list)2854 static void reap_dying_workers(struct list_head *cull_list)
2855 {
2856 	struct worker *worker, *tmp;
2857 
2858 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2859 		list_del_init(&worker->entry);
2860 		kthread_stop_put(worker->task);
2861 		kfree(worker);
2862 	}
2863 }
2864 
2865 /**
2866  * set_worker_dying - Tag a worker for destruction
2867  * @worker: worker to be destroyed
2868  * @list: transfer worker away from its pool->idle_list and into list
2869  *
2870  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2871  * should be idle.
2872  *
2873  * CONTEXT:
2874  * raw_spin_lock_irq(pool->lock).
2875  */
set_worker_dying(struct worker * worker,struct list_head * list)2876 static void set_worker_dying(struct worker *worker, struct list_head *list)
2877 {
2878 	struct worker_pool *pool = worker->pool;
2879 
2880 	lockdep_assert_held(&pool->lock);
2881 	lockdep_assert_held(&wq_pool_attach_mutex);
2882 
2883 	/* sanity check frenzy */
2884 	if (WARN_ON(worker->current_work) ||
2885 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2886 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2887 		return;
2888 
2889 	pool->nr_workers--;
2890 	pool->nr_idle--;
2891 
2892 	worker->flags |= WORKER_DIE;
2893 
2894 	list_move(&worker->entry, list);
2895 
2896 	/* get an extra task struct reference for later kthread_stop_put() */
2897 	get_task_struct(worker->task);
2898 }
2899 
2900 /**
2901  * idle_worker_timeout - check if some idle workers can now be deleted.
2902  * @t: The pool's idle_timer that just expired
2903  *
2904  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2905  * worker_leave_idle(), as a worker flicking between idle and active while its
2906  * pool is at the too_many_workers() tipping point would cause too much timer
2907  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2908  * it expire and re-evaluate things from there.
2909  */
idle_worker_timeout(struct timer_list * t)2910 static void idle_worker_timeout(struct timer_list *t)
2911 {
2912 	struct worker_pool *pool = timer_container_of(pool, t, idle_timer);
2913 	bool do_cull = false;
2914 
2915 	if (work_pending(&pool->idle_cull_work))
2916 		return;
2917 
2918 	raw_spin_lock_irq(&pool->lock);
2919 
2920 	if (too_many_workers(pool)) {
2921 		struct worker *worker;
2922 		unsigned long expires;
2923 
2924 		/* idle_list is kept in LIFO order, check the last one */
2925 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2926 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2927 		do_cull = !time_before(jiffies, expires);
2928 
2929 		if (!do_cull)
2930 			mod_timer(&pool->idle_timer, expires);
2931 	}
2932 	raw_spin_unlock_irq(&pool->lock);
2933 
2934 	if (do_cull)
2935 		queue_work(system_dfl_wq, &pool->idle_cull_work);
2936 }
2937 
2938 /**
2939  * idle_cull_fn - cull workers that have been idle for too long.
2940  * @work: the pool's work for handling these idle workers
2941  *
2942  * This goes through a pool's idle workers and gets rid of those that have been
2943  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2944  *
2945  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2946  * culled, so this also resets worker affinity. This requires a sleepable
2947  * context, hence the split between timer callback and work item.
2948  */
idle_cull_fn(struct work_struct * work)2949 static void idle_cull_fn(struct work_struct *work)
2950 {
2951 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2952 	LIST_HEAD(cull_list);
2953 
2954 	/*
2955 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2956 	 * cannot proceed beyong set_pf_worker() in its self-destruct path.
2957 	 * This is required as a previously-preempted worker could run after
2958 	 * set_worker_dying() has happened but before detach_dying_workers() did.
2959 	 */
2960 	mutex_lock(&wq_pool_attach_mutex);
2961 	raw_spin_lock_irq(&pool->lock);
2962 
2963 	while (too_many_workers(pool)) {
2964 		struct worker *worker;
2965 		unsigned long expires;
2966 
2967 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2968 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2969 
2970 		if (time_before(jiffies, expires)) {
2971 			mod_timer(&pool->idle_timer, expires);
2972 			break;
2973 		}
2974 
2975 		set_worker_dying(worker, &cull_list);
2976 	}
2977 
2978 	raw_spin_unlock_irq(&pool->lock);
2979 	detach_dying_workers(&cull_list);
2980 	mutex_unlock(&wq_pool_attach_mutex);
2981 
2982 	reap_dying_workers(&cull_list);
2983 }
2984 
send_mayday(struct work_struct * work)2985 static void send_mayday(struct work_struct *work)
2986 {
2987 	struct pool_workqueue *pwq = get_work_pwq(work);
2988 	struct workqueue_struct *wq = pwq->wq;
2989 
2990 	lockdep_assert_held(&wq_mayday_lock);
2991 
2992 	if (!wq->rescuer)
2993 		return;
2994 
2995 	/* mayday mayday mayday */
2996 	if (list_empty(&pwq->mayday_node)) {
2997 		/*
2998 		 * If @pwq is for an unbound wq, its base ref may be put at
2999 		 * any time due to an attribute change.  Pin @pwq until the
3000 		 * rescuer is done with it.
3001 		 */
3002 		get_pwq(pwq);
3003 		list_add_tail(&pwq->mayday_node, &wq->maydays);
3004 		wake_up_process(wq->rescuer->task);
3005 		pwq->stats[PWQ_STAT_MAYDAY]++;
3006 	}
3007 }
3008 
pool_mayday_timeout(struct timer_list * t)3009 static void pool_mayday_timeout(struct timer_list *t)
3010 {
3011 	struct worker_pool *pool = timer_container_of(pool, t, mayday_timer);
3012 	struct work_struct *work;
3013 
3014 	raw_spin_lock_irq(&pool->lock);
3015 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
3016 
3017 	if (need_to_create_worker(pool)) {
3018 		/*
3019 		 * We've been trying to create a new worker but
3020 		 * haven't been successful.  We might be hitting an
3021 		 * allocation deadlock.  Send distress signals to
3022 		 * rescuers.
3023 		 */
3024 		list_for_each_entry(work, &pool->worklist, entry)
3025 			send_mayday(work);
3026 	}
3027 
3028 	raw_spin_unlock(&wq_mayday_lock);
3029 	raw_spin_unlock_irq(&pool->lock);
3030 
3031 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3032 }
3033 
3034 /**
3035  * maybe_create_worker - create a new worker if necessary
3036  * @pool: pool to create a new worker for
3037  *
3038  * Create a new worker for @pool if necessary.  @pool is guaranteed to
3039  * have at least one idle worker on return from this function.  If
3040  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3041  * sent to all rescuers with works scheduled on @pool to resolve
3042  * possible allocation deadlock.
3043  *
3044  * On return, need_to_create_worker() is guaranteed to be %false and
3045  * may_start_working() %true.
3046  *
3047  * LOCKING:
3048  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3049  * multiple times.  Does GFP_KERNEL allocations.  Called only from
3050  * manager.
3051  */
maybe_create_worker(struct worker_pool * pool)3052 static void maybe_create_worker(struct worker_pool *pool)
3053 __releases(&pool->lock)
3054 __acquires(&pool->lock)
3055 {
3056 restart:
3057 	raw_spin_unlock_irq(&pool->lock);
3058 
3059 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3060 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3061 
3062 	while (true) {
3063 		if (create_worker(pool) || !need_to_create_worker(pool))
3064 			break;
3065 
3066 		schedule_timeout_interruptible(CREATE_COOLDOWN);
3067 
3068 		if (!need_to_create_worker(pool))
3069 			break;
3070 	}
3071 
3072 	timer_delete_sync(&pool->mayday_timer);
3073 	raw_spin_lock_irq(&pool->lock);
3074 	/*
3075 	 * This is necessary even after a new worker was just successfully
3076 	 * created as @pool->lock was dropped and the new worker might have
3077 	 * already become busy.
3078 	 */
3079 	if (need_to_create_worker(pool))
3080 		goto restart;
3081 }
3082 
3083 #ifdef CONFIG_PREEMPT_RT
worker_lock_callback(struct worker_pool * pool)3084 static void worker_lock_callback(struct worker_pool *pool)
3085 {
3086 	spin_lock(&pool->cb_lock);
3087 }
3088 
worker_unlock_callback(struct worker_pool * pool)3089 static void worker_unlock_callback(struct worker_pool *pool)
3090 {
3091 	spin_unlock(&pool->cb_lock);
3092 }
3093 
workqueue_callback_cancel_wait_running(struct worker_pool * pool)3094 static void workqueue_callback_cancel_wait_running(struct worker_pool *pool)
3095 {
3096 	spin_lock(&pool->cb_lock);
3097 	spin_unlock(&pool->cb_lock);
3098 }
3099 
3100 #else
3101 
worker_lock_callback(struct worker_pool * pool)3102 static void worker_lock_callback(struct worker_pool *pool) { }
worker_unlock_callback(struct worker_pool * pool)3103 static void worker_unlock_callback(struct worker_pool *pool) { }
workqueue_callback_cancel_wait_running(struct worker_pool * pool)3104 static void workqueue_callback_cancel_wait_running(struct worker_pool *pool) { }
3105 
3106 #endif
3107 
3108 /**
3109  * manage_workers - manage worker pool
3110  * @worker: self
3111  *
3112  * Assume the manager role and manage the worker pool @worker belongs
3113  * to.  At any given time, there can be only zero or one manager per
3114  * pool.  The exclusion is handled automatically by this function.
3115  *
3116  * The caller can safely start processing works on false return.  On
3117  * true return, it's guaranteed that need_to_create_worker() is false
3118  * and may_start_working() is true.
3119  *
3120  * CONTEXT:
3121  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3122  * multiple times.  Does GFP_KERNEL allocations.
3123  *
3124  * Return:
3125  * %false if the pool doesn't need management and the caller can safely
3126  * start processing works, %true if management function was performed and
3127  * the conditions that the caller verified before calling the function may
3128  * no longer be true.
3129  */
manage_workers(struct worker * worker)3130 static bool manage_workers(struct worker *worker)
3131 {
3132 	struct worker_pool *pool = worker->pool;
3133 
3134 	if (pool->flags & POOL_MANAGER_ACTIVE)
3135 		return false;
3136 
3137 	pool->flags |= POOL_MANAGER_ACTIVE;
3138 	pool->manager = worker;
3139 
3140 	maybe_create_worker(pool);
3141 
3142 	pool->manager = NULL;
3143 	pool->flags &= ~POOL_MANAGER_ACTIVE;
3144 	rcuwait_wake_up(&manager_wait);
3145 	return true;
3146 }
3147 
3148 /**
3149  * process_one_work - process single work
3150  * @worker: self
3151  * @work: work to process
3152  *
3153  * Process @work.  This function contains all the logics necessary to
3154  * process a single work including synchronization against and
3155  * interaction with other workers on the same cpu, queueing and
3156  * flushing.  As long as context requirement is met, any worker can
3157  * call this function to process a work.
3158  *
3159  * CONTEXT:
3160  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3161  */
process_one_work(struct worker * worker,struct work_struct * work)3162 static void process_one_work(struct worker *worker, struct work_struct *work)
3163 __releases(&pool->lock)
3164 __acquires(&pool->lock)
3165 {
3166 	struct pool_workqueue *pwq = get_work_pwq(work);
3167 	struct worker_pool *pool = worker->pool;
3168 	unsigned long work_data;
3169 	int lockdep_start_depth, rcu_start_depth;
3170 	bool bh_draining = pool->flags & POOL_BH_DRAINING;
3171 #ifdef CONFIG_LOCKDEP
3172 	/*
3173 	 * It is permissible to free the struct work_struct from
3174 	 * inside the function that is called from it, this we need to
3175 	 * take into account for lockdep too.  To avoid bogus "held
3176 	 * lock freed" warnings as well as problems when looking into
3177 	 * work->lockdep_map, make a copy and use that here.
3178 	 */
3179 	struct lockdep_map lockdep_map;
3180 
3181 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3182 #endif
3183 	/* ensure we're on the correct CPU */
3184 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3185 		     raw_smp_processor_id() != pool->cpu);
3186 
3187 	/* claim and dequeue */
3188 	debug_work_deactivate(work);
3189 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3190 	worker->current_work = work;
3191 	worker->current_func = work->func;
3192 	worker->current_pwq = pwq;
3193 	if (worker->task)
3194 		worker->current_at = worker->task->se.sum_exec_runtime;
3195 	work_data = *work_data_bits(work);
3196 	worker->current_color = get_work_color(work_data);
3197 
3198 	/*
3199 	 * Record wq name for cmdline and debug reporting, may get
3200 	 * overridden through set_worker_desc().
3201 	 */
3202 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3203 
3204 	list_del_init(&work->entry);
3205 
3206 	/*
3207 	 * CPU intensive works don't participate in concurrency management.
3208 	 * They're the scheduler's responsibility.  This takes @worker out
3209 	 * of concurrency management and the next code block will chain
3210 	 * execution of the pending work items.
3211 	 */
3212 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3213 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3214 
3215 	/*
3216 	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3217 	 * since nr_running would always be >= 1 at this point. This is used to
3218 	 * chain execution of the pending work items for WORKER_NOT_RUNNING
3219 	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3220 	 */
3221 	kick_pool(pool);
3222 
3223 	/*
3224 	 * Record the last pool and clear PENDING which should be the last
3225 	 * update to @work.  Also, do this inside @pool->lock so that
3226 	 * PENDING and queued state changes happen together while IRQ is
3227 	 * disabled.
3228 	 */
3229 	set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
3230 
3231 	pwq->stats[PWQ_STAT_STARTED]++;
3232 	raw_spin_unlock_irq(&pool->lock);
3233 
3234 	rcu_start_depth = rcu_preempt_depth();
3235 	lockdep_start_depth = lockdep_depth(current);
3236 	/* see drain_dead_softirq_workfn() */
3237 	if (!bh_draining)
3238 		lock_map_acquire(pwq->wq->lockdep_map);
3239 	lock_map_acquire(&lockdep_map);
3240 	/*
3241 	 * Strictly speaking we should mark the invariant state without holding
3242 	 * any locks, that is, before these two lock_map_acquire()'s.
3243 	 *
3244 	 * However, that would result in:
3245 	 *
3246 	 *   A(W1)
3247 	 *   WFC(C)
3248 	 *		A(W1)
3249 	 *		C(C)
3250 	 *
3251 	 * Which would create W1->C->W1 dependencies, even though there is no
3252 	 * actual deadlock possible. There are two solutions, using a
3253 	 * read-recursive acquire on the work(queue) 'locks', but this will then
3254 	 * hit the lockdep limitation on recursive locks, or simply discard
3255 	 * these locks.
3256 	 *
3257 	 * AFAICT there is no possible deadlock scenario between the
3258 	 * flush_work() and complete() primitives (except for single-threaded
3259 	 * workqueues), so hiding them isn't a problem.
3260 	 */
3261 	lockdep_invariant_state(true);
3262 	trace_workqueue_execute_start(work);
3263 	worker->current_func(work);
3264 	/*
3265 	 * While we must be careful to not use "work" after this, the trace
3266 	 * point will only record its address.
3267 	 */
3268 	trace_workqueue_execute_end(work, worker->current_func);
3269 
3270 	lock_map_release(&lockdep_map);
3271 	if (!bh_draining)
3272 		lock_map_release(pwq->wq->lockdep_map);
3273 
3274 	if (unlikely((worker->task && in_atomic()) ||
3275 		     lockdep_depth(current) != lockdep_start_depth ||
3276 		     rcu_preempt_depth() != rcu_start_depth)) {
3277 		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3278 		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3279 		       current->comm, task_pid_nr(current), preempt_count(),
3280 		       lockdep_start_depth, lockdep_depth(current),
3281 		       rcu_start_depth, rcu_preempt_depth(),
3282 		       worker->current_func);
3283 		debug_show_held_locks(current);
3284 		dump_stack();
3285 	}
3286 
3287 	/*
3288 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3289 	 * kernels, where a requeueing work item waiting for something to
3290 	 * happen could deadlock with stop_machine as such work item could
3291 	 * indefinitely requeue itself while all other CPUs are trapped in
3292 	 * stop_machine. At the same time, report a quiescent RCU state so
3293 	 * the same condition doesn't freeze RCU.
3294 	 */
3295 	if (worker->task)
3296 		cond_resched();
3297 
3298 	raw_spin_lock_irq(&pool->lock);
3299 
3300 	pwq->stats[PWQ_STAT_COMPLETED]++;
3301 
3302 	/*
3303 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3304 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3305 	 * wq_cpu_intensive_thresh_us. Clear it.
3306 	 */
3307 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3308 
3309 	/* tag the worker for identification in schedule() */
3310 	worker->last_func = worker->current_func;
3311 
3312 	/* we're done with it, release */
3313 	hash_del(&worker->hentry);
3314 	worker->current_work = NULL;
3315 	worker->current_func = NULL;
3316 	worker->current_pwq = NULL;
3317 	worker->current_color = INT_MAX;
3318 
3319 	/* must be the last step, see the function comment */
3320 	pwq_dec_nr_in_flight(pwq, work_data);
3321 }
3322 
3323 /**
3324  * process_scheduled_works - process scheduled works
3325  * @worker: self
3326  *
3327  * Process all scheduled works.  Please note that the scheduled list
3328  * may change while processing a work, so this function repeatedly
3329  * fetches a work from the top and executes it.
3330  *
3331  * CONTEXT:
3332  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3333  * multiple times.
3334  */
process_scheduled_works(struct worker * worker)3335 static void process_scheduled_works(struct worker *worker)
3336 {
3337 	struct work_struct *work;
3338 	bool first = true;
3339 
3340 	while ((work = list_first_entry_or_null(&worker->scheduled,
3341 						struct work_struct, entry))) {
3342 		if (first) {
3343 			worker->pool->watchdog_ts = jiffies;
3344 			first = false;
3345 		}
3346 		process_one_work(worker, work);
3347 	}
3348 }
3349 
set_pf_worker(bool val)3350 static void set_pf_worker(bool val)
3351 {
3352 	mutex_lock(&wq_pool_attach_mutex);
3353 	if (val)
3354 		current->flags |= PF_WQ_WORKER;
3355 	else
3356 		current->flags &= ~PF_WQ_WORKER;
3357 	mutex_unlock(&wq_pool_attach_mutex);
3358 }
3359 
3360 /**
3361  * worker_thread - the worker thread function
3362  * @__worker: self
3363  *
3364  * The worker thread function.  All workers belong to a worker_pool -
3365  * either a per-cpu one or dynamic unbound one.  These workers process all
3366  * work items regardless of their specific target workqueue.  The only
3367  * exception is work items which belong to workqueues with a rescuer which
3368  * will be explained in rescuer_thread().
3369  *
3370  * Return: 0
3371  */
worker_thread(void * __worker)3372 static int worker_thread(void *__worker)
3373 {
3374 	struct worker *worker = __worker;
3375 	struct worker_pool *pool = worker->pool;
3376 
3377 	/* tell the scheduler that this is a workqueue worker */
3378 	set_pf_worker(true);
3379 woke_up:
3380 	raw_spin_lock_irq(&pool->lock);
3381 
3382 	/* am I supposed to die? */
3383 	if (unlikely(worker->flags & WORKER_DIE)) {
3384 		raw_spin_unlock_irq(&pool->lock);
3385 		set_pf_worker(false);
3386 		/*
3387 		 * The worker is dead and PF_WQ_WORKER is cleared, worker->pool
3388 		 * shouldn't be accessed, reset it to NULL in case otherwise.
3389 		 */
3390 		worker->pool = NULL;
3391 		ida_free(&pool->worker_ida, worker->id);
3392 		return 0;
3393 	}
3394 
3395 	worker_leave_idle(worker);
3396 recheck:
3397 	/* no more worker necessary? */
3398 	if (!need_more_worker(pool))
3399 		goto sleep;
3400 
3401 	/* do we need to manage? */
3402 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3403 		goto recheck;
3404 
3405 	/*
3406 	 * ->scheduled list can only be filled while a worker is
3407 	 * preparing to process a work or actually processing it.
3408 	 * Make sure nobody diddled with it while I was sleeping.
3409 	 */
3410 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3411 
3412 	/*
3413 	 * Finish PREP stage.  We're guaranteed to have at least one idle
3414 	 * worker or that someone else has already assumed the manager
3415 	 * role.  This is where @worker starts participating in concurrency
3416 	 * management if applicable and concurrency management is restored
3417 	 * after being rebound.  See rebind_workers() for details.
3418 	 */
3419 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3420 
3421 	do {
3422 		struct work_struct *work =
3423 			list_first_entry(&pool->worklist,
3424 					 struct work_struct, entry);
3425 
3426 		if (assign_work(work, worker, NULL))
3427 			process_scheduled_works(worker);
3428 	} while (keep_working(pool));
3429 
3430 	worker_set_flags(worker, WORKER_PREP);
3431 sleep:
3432 	/*
3433 	 * pool->lock is held and there's no work to process and no need to
3434 	 * manage, sleep.  Workers are woken up only while holding
3435 	 * pool->lock or from local cpu, so setting the current state
3436 	 * before releasing pool->lock is enough to prevent losing any
3437 	 * event.
3438 	 */
3439 	worker_enter_idle(worker);
3440 	__set_current_state(TASK_IDLE);
3441 	raw_spin_unlock_irq(&pool->lock);
3442 	schedule();
3443 	goto woke_up;
3444 }
3445 
3446 /**
3447  * rescuer_thread - the rescuer thread function
3448  * @__rescuer: self
3449  *
3450  * Workqueue rescuer thread function.  There's one rescuer for each
3451  * workqueue which has WQ_MEM_RECLAIM set.
3452  *
3453  * Regular work processing on a pool may block trying to create a new
3454  * worker which uses GFP_KERNEL allocation which has slight chance of
3455  * developing into deadlock if some works currently on the same queue
3456  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3457  * the problem rescuer solves.
3458  *
3459  * When such condition is possible, the pool summons rescuers of all
3460  * workqueues which have works queued on the pool and let them process
3461  * those works so that forward progress can be guaranteed.
3462  *
3463  * This should happen rarely.
3464  *
3465  * Return: 0
3466  */
rescuer_thread(void * __rescuer)3467 static int rescuer_thread(void *__rescuer)
3468 {
3469 	struct worker *rescuer = __rescuer;
3470 	struct workqueue_struct *wq = rescuer->rescue_wq;
3471 	bool should_stop;
3472 
3473 	set_user_nice(current, RESCUER_NICE_LEVEL);
3474 
3475 	/*
3476 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3477 	 * doesn't participate in concurrency management.
3478 	 */
3479 	set_pf_worker(true);
3480 repeat:
3481 	set_current_state(TASK_IDLE);
3482 
3483 	/*
3484 	 * By the time the rescuer is requested to stop, the workqueue
3485 	 * shouldn't have any work pending, but @wq->maydays may still have
3486 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3487 	 * all the work items before the rescuer got to them.  Go through
3488 	 * @wq->maydays processing before acting on should_stop so that the
3489 	 * list is always empty on exit.
3490 	 */
3491 	should_stop = kthread_should_stop();
3492 
3493 	/* see whether any pwq is asking for help */
3494 	raw_spin_lock_irq(&wq_mayday_lock);
3495 
3496 	while (!list_empty(&wq->maydays)) {
3497 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3498 					struct pool_workqueue, mayday_node);
3499 		struct worker_pool *pool = pwq->pool;
3500 		struct work_struct *work, *n;
3501 
3502 		__set_current_state(TASK_RUNNING);
3503 		list_del_init(&pwq->mayday_node);
3504 
3505 		raw_spin_unlock_irq(&wq_mayday_lock);
3506 
3507 		worker_attach_to_pool(rescuer, pool);
3508 
3509 		raw_spin_lock_irq(&pool->lock);
3510 
3511 		/*
3512 		 * Slurp in all works issued via this workqueue and
3513 		 * process'em.
3514 		 */
3515 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3516 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3517 			if (get_work_pwq(work) == pwq &&
3518 			    assign_work(work, rescuer, &n))
3519 				pwq->stats[PWQ_STAT_RESCUED]++;
3520 		}
3521 
3522 		if (!list_empty(&rescuer->scheduled)) {
3523 			process_scheduled_works(rescuer);
3524 
3525 			/*
3526 			 * The above execution of rescued work items could
3527 			 * have created more to rescue through
3528 			 * pwq_activate_first_inactive() or chained
3529 			 * queueing.  Let's put @pwq back on mayday list so
3530 			 * that such back-to-back work items, which may be
3531 			 * being used to relieve memory pressure, don't
3532 			 * incur MAYDAY_INTERVAL delay inbetween.
3533 			 */
3534 			if (pwq->nr_active && need_to_create_worker(pool)) {
3535 				raw_spin_lock(&wq_mayday_lock);
3536 				/*
3537 				 * Queue iff we aren't racing destruction
3538 				 * and somebody else hasn't queued it already.
3539 				 */
3540 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3541 					get_pwq(pwq);
3542 					list_add_tail(&pwq->mayday_node, &wq->maydays);
3543 				}
3544 				raw_spin_unlock(&wq_mayday_lock);
3545 			}
3546 		}
3547 
3548 		/*
3549 		 * Leave this pool. Notify regular workers; otherwise, we end up
3550 		 * with 0 concurrency and stalling the execution.
3551 		 */
3552 		kick_pool(pool);
3553 
3554 		raw_spin_unlock_irq(&pool->lock);
3555 
3556 		worker_detach_from_pool(rescuer);
3557 
3558 		/*
3559 		 * Put the reference grabbed by send_mayday().  @pool might
3560 		 * go away any time after it.
3561 		 */
3562 		put_pwq_unlocked(pwq);
3563 
3564 		raw_spin_lock_irq(&wq_mayday_lock);
3565 	}
3566 
3567 	raw_spin_unlock_irq(&wq_mayday_lock);
3568 
3569 	if (should_stop) {
3570 		__set_current_state(TASK_RUNNING);
3571 		set_pf_worker(false);
3572 		return 0;
3573 	}
3574 
3575 	/* rescuers should never participate in concurrency management */
3576 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3577 	schedule();
3578 	goto repeat;
3579 }
3580 
bh_worker(struct worker * worker)3581 static void bh_worker(struct worker *worker)
3582 {
3583 	struct worker_pool *pool = worker->pool;
3584 	int nr_restarts = BH_WORKER_RESTARTS;
3585 	unsigned long end = jiffies + BH_WORKER_JIFFIES;
3586 
3587 	worker_lock_callback(pool);
3588 	raw_spin_lock_irq(&pool->lock);
3589 	worker_leave_idle(worker);
3590 
3591 	/*
3592 	 * This function follows the structure of worker_thread(). See there for
3593 	 * explanations on each step.
3594 	 */
3595 	if (!need_more_worker(pool))
3596 		goto done;
3597 
3598 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3599 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3600 
3601 	do {
3602 		struct work_struct *work =
3603 			list_first_entry(&pool->worklist,
3604 					 struct work_struct, entry);
3605 
3606 		if (assign_work(work, worker, NULL))
3607 			process_scheduled_works(worker);
3608 	} while (keep_working(pool) &&
3609 		 --nr_restarts && time_before(jiffies, end));
3610 
3611 	worker_set_flags(worker, WORKER_PREP);
3612 done:
3613 	worker_enter_idle(worker);
3614 	kick_pool(pool);
3615 	raw_spin_unlock_irq(&pool->lock);
3616 	worker_unlock_callback(pool);
3617 }
3618 
3619 /*
3620  * TODO: Convert all tasklet users to workqueue and use softirq directly.
3621  *
3622  * This is currently called from tasklet[_hi]action() and thus is also called
3623  * whenever there are tasklets to run. Let's do an early exit if there's nothing
3624  * queued. Once conversion from tasklet is complete, the need_more_worker() test
3625  * can be dropped.
3626  *
3627  * After full conversion, we'll add worker->softirq_action, directly use the
3628  * softirq action and obtain the worker pointer from the softirq_action pointer.
3629  */
workqueue_softirq_action(bool highpri)3630 void workqueue_softirq_action(bool highpri)
3631 {
3632 	struct worker_pool *pool =
3633 		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3634 	if (need_more_worker(pool))
3635 		bh_worker(list_first_entry(&pool->workers, struct worker, node));
3636 }
3637 
3638 struct wq_drain_dead_softirq_work {
3639 	struct work_struct	work;
3640 	struct worker_pool	*pool;
3641 	struct completion	done;
3642 };
3643 
drain_dead_softirq_workfn(struct work_struct * work)3644 static void drain_dead_softirq_workfn(struct work_struct *work)
3645 {
3646 	struct wq_drain_dead_softirq_work *dead_work =
3647 		container_of(work, struct wq_drain_dead_softirq_work, work);
3648 	struct worker_pool *pool = dead_work->pool;
3649 	bool repeat;
3650 
3651 	/*
3652 	 * @pool's CPU is dead and we want to execute its still pending work
3653 	 * items from this BH work item which is running on a different CPU. As
3654 	 * its CPU is dead, @pool can't be kicked and, as work execution path
3655 	 * will be nested, a lockdep annotation needs to be suppressed. Mark
3656 	 * @pool with %POOL_BH_DRAINING for the special treatments.
3657 	 */
3658 	raw_spin_lock_irq(&pool->lock);
3659 	pool->flags |= POOL_BH_DRAINING;
3660 	raw_spin_unlock_irq(&pool->lock);
3661 
3662 	bh_worker(list_first_entry(&pool->workers, struct worker, node));
3663 
3664 	raw_spin_lock_irq(&pool->lock);
3665 	pool->flags &= ~POOL_BH_DRAINING;
3666 	repeat = need_more_worker(pool);
3667 	raw_spin_unlock_irq(&pool->lock);
3668 
3669 	/*
3670 	 * bh_worker() might hit consecutive execution limit and bail. If there
3671 	 * still are pending work items, reschedule self and return so that we
3672 	 * don't hog this CPU's BH.
3673 	 */
3674 	if (repeat) {
3675 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3676 			queue_work(system_bh_highpri_wq, work);
3677 		else
3678 			queue_work(system_bh_wq, work);
3679 	} else {
3680 		complete(&dead_work->done);
3681 	}
3682 }
3683 
3684 /*
3685  * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3686  * possible to allocate dead_work per CPU and avoid flushing. However, then we
3687  * have to worry about draining overlapping with CPU coming back online or
3688  * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3689  * on). Let's keep it simple and drain them synchronously. These are BH work
3690  * items which shouldn't be requeued on the same pool. Shouldn't take long.
3691  */
workqueue_softirq_dead(unsigned int cpu)3692 void workqueue_softirq_dead(unsigned int cpu)
3693 {
3694 	int i;
3695 
3696 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3697 		struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3698 		struct wq_drain_dead_softirq_work dead_work;
3699 
3700 		if (!need_more_worker(pool))
3701 			continue;
3702 
3703 		INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
3704 		dead_work.pool = pool;
3705 		init_completion(&dead_work.done);
3706 
3707 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3708 			queue_work(system_bh_highpri_wq, &dead_work.work);
3709 		else
3710 			queue_work(system_bh_wq, &dead_work.work);
3711 
3712 		wait_for_completion(&dead_work.done);
3713 		destroy_work_on_stack(&dead_work.work);
3714 	}
3715 }
3716 
3717 /**
3718  * check_flush_dependency - check for flush dependency sanity
3719  * @target_wq: workqueue being flushed
3720  * @target_work: work item being flushed (NULL for workqueue flushes)
3721  * @from_cancel: are we called from the work cancel path
3722  *
3723  * %current is trying to flush the whole @target_wq or @target_work on it.
3724  * If this is not the cancel path (which implies work being flushed is either
3725  * already running, or will not be at all), check if @target_wq doesn't have
3726  * %WQ_MEM_RECLAIM and verify that %current is not reclaiming memory or running
3727  * on a workqueue which doesn't have %WQ_MEM_RECLAIM as that can break forward-
3728  * progress guarantee leading to a deadlock.
3729  */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work,bool from_cancel)3730 static void check_flush_dependency(struct workqueue_struct *target_wq,
3731 				   struct work_struct *target_work,
3732 				   bool from_cancel)
3733 {
3734 	work_func_t target_func;
3735 	struct worker *worker;
3736 
3737 	if (from_cancel || target_wq->flags & WQ_MEM_RECLAIM)
3738 		return;
3739 
3740 	worker = current_wq_worker();
3741 	target_func = target_work ? target_work->func : NULL;
3742 
3743 	WARN_ONCE(current->flags & PF_MEMALLOC,
3744 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3745 		  current->pid, current->comm, target_wq->name, target_func);
3746 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3747 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3748 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3749 		  worker->current_pwq->wq->name, worker->current_func,
3750 		  target_wq->name, target_func);
3751 }
3752 
3753 struct wq_barrier {
3754 	struct work_struct	work;
3755 	struct completion	done;
3756 	struct task_struct	*task;	/* purely informational */
3757 };
3758 
wq_barrier_func(struct work_struct * work)3759 static void wq_barrier_func(struct work_struct *work)
3760 {
3761 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3762 	complete(&barr->done);
3763 }
3764 
3765 /**
3766  * insert_wq_barrier - insert a barrier work
3767  * @pwq: pwq to insert barrier into
3768  * @barr: wq_barrier to insert
3769  * @target: target work to attach @barr to
3770  * @worker: worker currently executing @target, NULL if @target is not executing
3771  *
3772  * @barr is linked to @target such that @barr is completed only after
3773  * @target finishes execution.  Please note that the ordering
3774  * guarantee is observed only with respect to @target and on the local
3775  * cpu.
3776  *
3777  * Currently, a queued barrier can't be canceled.  This is because
3778  * try_to_grab_pending() can't determine whether the work to be
3779  * grabbed is at the head of the queue and thus can't clear LINKED
3780  * flag of the previous work while there must be a valid next work
3781  * after a work with LINKED flag set.
3782  *
3783  * Note that when @worker is non-NULL, @target may be modified
3784  * underneath us, so we can't reliably determine pwq from @target.
3785  *
3786  * CONTEXT:
3787  * raw_spin_lock_irq(pool->lock).
3788  */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)3789 static void insert_wq_barrier(struct pool_workqueue *pwq,
3790 			      struct wq_barrier *barr,
3791 			      struct work_struct *target, struct worker *worker)
3792 {
3793 	static __maybe_unused struct lock_class_key bh_key, thr_key;
3794 	unsigned int work_flags = 0;
3795 	unsigned int work_color;
3796 	struct list_head *head;
3797 
3798 	/*
3799 	 * debugobject calls are safe here even with pool->lock locked
3800 	 * as we know for sure that this will not trigger any of the
3801 	 * checks and call back into the fixup functions where we
3802 	 * might deadlock.
3803 	 *
3804 	 * BH and threaded workqueues need separate lockdep keys to avoid
3805 	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3806 	 * usage".
3807 	 */
3808 	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3809 			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3810 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3811 
3812 	init_completion_map(&barr->done, &target->lockdep_map);
3813 
3814 	barr->task = current;
3815 
3816 	/* The barrier work item does not participate in nr_active. */
3817 	work_flags |= WORK_STRUCT_INACTIVE;
3818 
3819 	/*
3820 	 * If @target is currently being executed, schedule the
3821 	 * barrier to the worker; otherwise, put it after @target.
3822 	 */
3823 	if (worker) {
3824 		head = worker->scheduled.next;
3825 		work_color = worker->current_color;
3826 	} else {
3827 		unsigned long *bits = work_data_bits(target);
3828 
3829 		head = target->entry.next;
3830 		/* there can already be other linked works, inherit and set */
3831 		work_flags |= *bits & WORK_STRUCT_LINKED;
3832 		work_color = get_work_color(*bits);
3833 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3834 	}
3835 
3836 	pwq->nr_in_flight[work_color]++;
3837 	work_flags |= work_color_to_flags(work_color);
3838 
3839 	insert_work(pwq, &barr->work, head, work_flags);
3840 }
3841 
3842 /**
3843  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3844  * @wq: workqueue being flushed
3845  * @flush_color: new flush color, < 0 for no-op
3846  * @work_color: new work color, < 0 for no-op
3847  *
3848  * Prepare pwqs for workqueue flushing.
3849  *
3850  * If @flush_color is non-negative, flush_color on all pwqs should be
3851  * -1.  If no pwq has in-flight commands at the specified color, all
3852  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3853  * has in flight commands, its pwq->flush_color is set to
3854  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3855  * wakeup logic is armed and %true is returned.
3856  *
3857  * The caller should have initialized @wq->first_flusher prior to
3858  * calling this function with non-negative @flush_color.  If
3859  * @flush_color is negative, no flush color update is done and %false
3860  * is returned.
3861  *
3862  * If @work_color is non-negative, all pwqs should have the same
3863  * work_color which is previous to @work_color and all will be
3864  * advanced to @work_color.
3865  *
3866  * CONTEXT:
3867  * mutex_lock(wq->mutex).
3868  *
3869  * Return:
3870  * %true if @flush_color >= 0 and there's something to flush.  %false
3871  * otherwise.
3872  */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)3873 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3874 				      int flush_color, int work_color)
3875 {
3876 	bool wait = false;
3877 	struct pool_workqueue *pwq;
3878 	struct worker_pool *current_pool = NULL;
3879 
3880 	if (flush_color >= 0) {
3881 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3882 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3883 	}
3884 
3885 	/*
3886 	 * For unbound workqueue, pwqs will map to only a few pools.
3887 	 * Most of the time, pwqs within the same pool will be linked
3888 	 * sequentially to wq->pwqs by cpu index. So in the majority
3889 	 * of pwq iters, the pool is the same, only doing lock/unlock
3890 	 * if the pool has changed. This can largely reduce expensive
3891 	 * lock operations.
3892 	 */
3893 	for_each_pwq(pwq, wq) {
3894 		if (current_pool != pwq->pool) {
3895 			if (likely(current_pool))
3896 				raw_spin_unlock_irq(&current_pool->lock);
3897 			current_pool = pwq->pool;
3898 			raw_spin_lock_irq(&current_pool->lock);
3899 		}
3900 
3901 		if (flush_color >= 0) {
3902 			WARN_ON_ONCE(pwq->flush_color != -1);
3903 
3904 			if (pwq->nr_in_flight[flush_color]) {
3905 				pwq->flush_color = flush_color;
3906 				atomic_inc(&wq->nr_pwqs_to_flush);
3907 				wait = true;
3908 			}
3909 		}
3910 
3911 		if (work_color >= 0) {
3912 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3913 			pwq->work_color = work_color;
3914 		}
3915 
3916 	}
3917 
3918 	if (current_pool)
3919 		raw_spin_unlock_irq(&current_pool->lock);
3920 
3921 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3922 		complete(&wq->first_flusher->done);
3923 
3924 	return wait;
3925 }
3926 
touch_wq_lockdep_map(struct workqueue_struct * wq)3927 static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3928 {
3929 #ifdef CONFIG_LOCKDEP
3930 	if (unlikely(!wq->lockdep_map))
3931 		return;
3932 
3933 	if (wq->flags & WQ_BH)
3934 		local_bh_disable();
3935 
3936 	lock_map_acquire(wq->lockdep_map);
3937 	lock_map_release(wq->lockdep_map);
3938 
3939 	if (wq->flags & WQ_BH)
3940 		local_bh_enable();
3941 #endif
3942 }
3943 
touch_work_lockdep_map(struct work_struct * work,struct workqueue_struct * wq)3944 static void touch_work_lockdep_map(struct work_struct *work,
3945 				   struct workqueue_struct *wq)
3946 {
3947 #ifdef CONFIG_LOCKDEP
3948 	if (wq->flags & WQ_BH)
3949 		local_bh_disable();
3950 
3951 	lock_map_acquire(&work->lockdep_map);
3952 	lock_map_release(&work->lockdep_map);
3953 
3954 	if (wq->flags & WQ_BH)
3955 		local_bh_enable();
3956 #endif
3957 }
3958 
3959 /**
3960  * __flush_workqueue - ensure that any scheduled work has run to completion.
3961  * @wq: workqueue to flush
3962  *
3963  * This function sleeps until all work items which were queued on entry
3964  * have finished execution, but it is not livelocked by new incoming ones.
3965  */
__flush_workqueue(struct workqueue_struct * wq)3966 void __flush_workqueue(struct workqueue_struct *wq)
3967 {
3968 	struct wq_flusher this_flusher = {
3969 		.list = LIST_HEAD_INIT(this_flusher.list),
3970 		.flush_color = -1,
3971 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, (*wq->lockdep_map)),
3972 	};
3973 	int next_color;
3974 
3975 	if (WARN_ON(!wq_online))
3976 		return;
3977 
3978 	touch_wq_lockdep_map(wq);
3979 
3980 	mutex_lock(&wq->mutex);
3981 
3982 	/*
3983 	 * Start-to-wait phase
3984 	 */
3985 	next_color = work_next_color(wq->work_color);
3986 
3987 	if (next_color != wq->flush_color) {
3988 		/*
3989 		 * Color space is not full.  The current work_color
3990 		 * becomes our flush_color and work_color is advanced
3991 		 * by one.
3992 		 */
3993 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3994 		this_flusher.flush_color = wq->work_color;
3995 		wq->work_color = next_color;
3996 
3997 		if (!wq->first_flusher) {
3998 			/* no flush in progress, become the first flusher */
3999 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
4000 
4001 			wq->first_flusher = &this_flusher;
4002 
4003 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
4004 						       wq->work_color)) {
4005 				/* nothing to flush, done */
4006 				wq->flush_color = next_color;
4007 				wq->first_flusher = NULL;
4008 				goto out_unlock;
4009 			}
4010 		} else {
4011 			/* wait in queue */
4012 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
4013 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
4014 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4015 		}
4016 	} else {
4017 		/*
4018 		 * Oops, color space is full, wait on overflow queue.
4019 		 * The next flush completion will assign us
4020 		 * flush_color and transfer to flusher_queue.
4021 		 */
4022 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
4023 	}
4024 
4025 	check_flush_dependency(wq, NULL, false);
4026 
4027 	mutex_unlock(&wq->mutex);
4028 
4029 	wait_for_completion(&this_flusher.done);
4030 
4031 	/*
4032 	 * Wake-up-and-cascade phase
4033 	 *
4034 	 * First flushers are responsible for cascading flushes and
4035 	 * handling overflow.  Non-first flushers can simply return.
4036 	 */
4037 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
4038 		return;
4039 
4040 	mutex_lock(&wq->mutex);
4041 
4042 	/* we might have raced, check again with mutex held */
4043 	if (wq->first_flusher != &this_flusher)
4044 		goto out_unlock;
4045 
4046 	WRITE_ONCE(wq->first_flusher, NULL);
4047 
4048 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
4049 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
4050 
4051 	while (true) {
4052 		struct wq_flusher *next, *tmp;
4053 
4054 		/* complete all the flushers sharing the current flush color */
4055 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
4056 			if (next->flush_color != wq->flush_color)
4057 				break;
4058 			list_del_init(&next->list);
4059 			complete(&next->done);
4060 		}
4061 
4062 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4063 			     wq->flush_color != work_next_color(wq->work_color));
4064 
4065 		/* this flush_color is finished, advance by one */
4066 		wq->flush_color = work_next_color(wq->flush_color);
4067 
4068 		/* one color has been freed, handle overflow queue */
4069 		if (!list_empty(&wq->flusher_overflow)) {
4070 			/*
4071 			 * Assign the same color to all overflowed
4072 			 * flushers, advance work_color and append to
4073 			 * flusher_queue.  This is the start-to-wait
4074 			 * phase for these overflowed flushers.
4075 			 */
4076 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
4077 				tmp->flush_color = wq->work_color;
4078 
4079 			wq->work_color = work_next_color(wq->work_color);
4080 
4081 			list_splice_tail_init(&wq->flusher_overflow,
4082 					      &wq->flusher_queue);
4083 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4084 		}
4085 
4086 		if (list_empty(&wq->flusher_queue)) {
4087 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
4088 			break;
4089 		}
4090 
4091 		/*
4092 		 * Need to flush more colors.  Make the next flusher
4093 		 * the new first flusher and arm pwqs.
4094 		 */
4095 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
4096 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
4097 
4098 		list_del_init(&next->list);
4099 		wq->first_flusher = next;
4100 
4101 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4102 			break;
4103 
4104 		/*
4105 		 * Meh... this color is already done, clear first
4106 		 * flusher and repeat cascading.
4107 		 */
4108 		wq->first_flusher = NULL;
4109 	}
4110 
4111 out_unlock:
4112 	mutex_unlock(&wq->mutex);
4113 }
4114 EXPORT_SYMBOL(__flush_workqueue);
4115 
4116 /**
4117  * drain_workqueue - drain a workqueue
4118  * @wq: workqueue to drain
4119  *
4120  * Wait until the workqueue becomes empty.  While draining is in progress,
4121  * only chain queueing is allowed.  IOW, only currently pending or running
4122  * work items on @wq can queue further work items on it.  @wq is flushed
4123  * repeatedly until it becomes empty.  The number of flushing is determined
4124  * by the depth of chaining and should be relatively short.  Whine if it
4125  * takes too long.
4126  */
drain_workqueue(struct workqueue_struct * wq)4127 void drain_workqueue(struct workqueue_struct *wq)
4128 {
4129 	unsigned int flush_cnt = 0;
4130 	struct pool_workqueue *pwq;
4131 
4132 	/*
4133 	 * __queue_work() needs to test whether there are drainers, is much
4134 	 * hotter than drain_workqueue() and already looks at @wq->flags.
4135 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4136 	 */
4137 	mutex_lock(&wq->mutex);
4138 	if (!wq->nr_drainers++)
4139 		wq->flags |= __WQ_DRAINING;
4140 	mutex_unlock(&wq->mutex);
4141 reflush:
4142 	__flush_workqueue(wq);
4143 
4144 	mutex_lock(&wq->mutex);
4145 
4146 	for_each_pwq(pwq, wq) {
4147 		bool drained;
4148 
4149 		raw_spin_lock_irq(&pwq->pool->lock);
4150 		drained = pwq_is_empty(pwq);
4151 		raw_spin_unlock_irq(&pwq->pool->lock);
4152 
4153 		if (drained)
4154 			continue;
4155 
4156 		if (++flush_cnt == 10 ||
4157 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4158 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4159 				wq->name, __func__, flush_cnt);
4160 
4161 		mutex_unlock(&wq->mutex);
4162 		goto reflush;
4163 	}
4164 
4165 	if (!--wq->nr_drainers)
4166 		wq->flags &= ~__WQ_DRAINING;
4167 	mutex_unlock(&wq->mutex);
4168 }
4169 EXPORT_SYMBOL_GPL(drain_workqueue);
4170 
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)4171 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4172 			     bool from_cancel)
4173 {
4174 	struct worker *worker = NULL;
4175 	struct worker_pool *pool;
4176 	struct pool_workqueue *pwq;
4177 	struct workqueue_struct *wq;
4178 
4179 	rcu_read_lock();
4180 	pool = get_work_pool(work);
4181 	if (!pool) {
4182 		rcu_read_unlock();
4183 		return false;
4184 	}
4185 
4186 	raw_spin_lock_irq(&pool->lock);
4187 	/* see the comment in try_to_grab_pending() with the same code */
4188 	pwq = get_work_pwq(work);
4189 	if (pwq) {
4190 		if (unlikely(pwq->pool != pool))
4191 			goto already_gone;
4192 	} else {
4193 		worker = find_worker_executing_work(pool, work);
4194 		if (!worker)
4195 			goto already_gone;
4196 		pwq = worker->current_pwq;
4197 	}
4198 
4199 	wq = pwq->wq;
4200 	check_flush_dependency(wq, work, from_cancel);
4201 
4202 	insert_wq_barrier(pwq, barr, work, worker);
4203 	raw_spin_unlock_irq(&pool->lock);
4204 
4205 	touch_work_lockdep_map(work, wq);
4206 
4207 	/*
4208 	 * Force a lock recursion deadlock when using flush_work() inside a
4209 	 * single-threaded or rescuer equipped workqueue.
4210 	 *
4211 	 * For single threaded workqueues the deadlock happens when the work
4212 	 * is after the work issuing the flush_work(). For rescuer equipped
4213 	 * workqueues the deadlock happens when the rescuer stalls, blocking
4214 	 * forward progress.
4215 	 */
4216 	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4217 		touch_wq_lockdep_map(wq);
4218 
4219 	rcu_read_unlock();
4220 	return true;
4221 already_gone:
4222 	raw_spin_unlock_irq(&pool->lock);
4223 	rcu_read_unlock();
4224 	return false;
4225 }
4226 
__flush_work(struct work_struct * work,bool from_cancel)4227 static bool __flush_work(struct work_struct *work, bool from_cancel)
4228 {
4229 	struct wq_barrier barr;
4230 
4231 	if (WARN_ON(!wq_online))
4232 		return false;
4233 
4234 	if (WARN_ON(!work->func))
4235 		return false;
4236 
4237 	if (!start_flush_work(work, &barr, from_cancel))
4238 		return false;
4239 
4240 	/*
4241 	 * start_flush_work() returned %true. If @from_cancel is set, we know
4242 	 * that @work must have been executing during start_flush_work() and
4243 	 * can't currently be queued. Its data must contain OFFQ bits. If @work
4244 	 * was queued on a BH workqueue, we also know that it was running in the
4245 	 * BH context and thus can be busy-waited.
4246 	 */
4247 	if (from_cancel) {
4248 		unsigned long data = *work_data_bits(work);
4249 
4250 		if (!WARN_ON_ONCE(data & WORK_STRUCT_PWQ) &&
4251 		    (data & WORK_OFFQ_BH)) {
4252 			/*
4253 			 * On RT, prevent a live lock when %current preempted
4254 			 * soft interrupt processing by blocking on lock which
4255 			 * is owned by the thread invoking the callback.
4256 			 */
4257 			while (!try_wait_for_completion(&barr.done)) {
4258 				if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4259 					struct worker_pool *pool;
4260 
4261 					guard(rcu)();
4262 					pool = get_work_pool(work);
4263 					if (pool)
4264 						workqueue_callback_cancel_wait_running(pool);
4265 				} else {
4266 					cpu_relax();
4267 				}
4268 			}
4269 			goto out_destroy;
4270 		}
4271 	}
4272 
4273 	wait_for_completion(&barr.done);
4274 
4275 out_destroy:
4276 	destroy_work_on_stack(&barr.work);
4277 	return true;
4278 }
4279 
4280 /**
4281  * flush_work - wait for a work to finish executing the last queueing instance
4282  * @work: the work to flush
4283  *
4284  * Wait until @work has finished execution.  @work is guaranteed to be idle
4285  * on return if it hasn't been requeued since flush started.
4286  *
4287  * Return:
4288  * %true if flush_work() waited for the work to finish execution,
4289  * %false if it was already idle.
4290  */
flush_work(struct work_struct * work)4291 bool flush_work(struct work_struct *work)
4292 {
4293 	might_sleep();
4294 	return __flush_work(work, false);
4295 }
4296 EXPORT_SYMBOL_GPL(flush_work);
4297 
4298 /**
4299  * flush_delayed_work - wait for a dwork to finish executing the last queueing
4300  * @dwork: the delayed work to flush
4301  *
4302  * Delayed timer is cancelled and the pending work is queued for
4303  * immediate execution.  Like flush_work(), this function only
4304  * considers the last queueing instance of @dwork.
4305  *
4306  * Return:
4307  * %true if flush_work() waited for the work to finish execution,
4308  * %false if it was already idle.
4309  */
flush_delayed_work(struct delayed_work * dwork)4310 bool flush_delayed_work(struct delayed_work *dwork)
4311 {
4312 	local_irq_disable();
4313 	if (timer_delete_sync(&dwork->timer))
4314 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
4315 	local_irq_enable();
4316 	return flush_work(&dwork->work);
4317 }
4318 EXPORT_SYMBOL(flush_delayed_work);
4319 
4320 /**
4321  * flush_rcu_work - wait for a rwork to finish executing the last queueing
4322  * @rwork: the rcu work to flush
4323  *
4324  * Return:
4325  * %true if flush_rcu_work() waited for the work to finish execution,
4326  * %false if it was already idle.
4327  */
flush_rcu_work(struct rcu_work * rwork)4328 bool flush_rcu_work(struct rcu_work *rwork)
4329 {
4330 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4331 		rcu_barrier();
4332 		flush_work(&rwork->work);
4333 		return true;
4334 	} else {
4335 		return flush_work(&rwork->work);
4336 	}
4337 }
4338 EXPORT_SYMBOL(flush_rcu_work);
4339 
work_offqd_disable(struct work_offq_data * offqd)4340 static void work_offqd_disable(struct work_offq_data *offqd)
4341 {
4342 	const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4343 
4344 	if (likely(offqd->disable < max))
4345 		offqd->disable++;
4346 	else
4347 		WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4348 }
4349 
work_offqd_enable(struct work_offq_data * offqd)4350 static void work_offqd_enable(struct work_offq_data *offqd)
4351 {
4352 	if (likely(offqd->disable > 0))
4353 		offqd->disable--;
4354 	else
4355 		WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4356 }
4357 
__cancel_work(struct work_struct * work,u32 cflags)4358 static bool __cancel_work(struct work_struct *work, u32 cflags)
4359 {
4360 	struct work_offq_data offqd;
4361 	unsigned long irq_flags;
4362 	int ret;
4363 
4364 	ret = work_grab_pending(work, cflags, &irq_flags);
4365 
4366 	work_offqd_unpack(&offqd, *work_data_bits(work));
4367 
4368 	if (cflags & WORK_CANCEL_DISABLE)
4369 		work_offqd_disable(&offqd);
4370 
4371 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4372 					work_offqd_pack_flags(&offqd));
4373 	local_irq_restore(irq_flags);
4374 	return ret;
4375 }
4376 
__cancel_work_sync(struct work_struct * work,u32 cflags)4377 static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4378 {
4379 	bool ret;
4380 
4381 	ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
4382 
4383 	if (*work_data_bits(work) & WORK_OFFQ_BH)
4384 		WARN_ON_ONCE(in_hardirq());
4385 	else
4386 		might_sleep();
4387 
4388 	/*
4389 	 * Skip __flush_work() during early boot when we know that @work isn't
4390 	 * executing. This allows canceling during early boot.
4391 	 */
4392 	if (wq_online)
4393 		__flush_work(work, true);
4394 
4395 	if (!(cflags & WORK_CANCEL_DISABLE))
4396 		enable_work(work);
4397 
4398 	return ret;
4399 }
4400 
4401 /*
4402  * See cancel_delayed_work()
4403  */
cancel_work(struct work_struct * work)4404 bool cancel_work(struct work_struct *work)
4405 {
4406 	return __cancel_work(work, 0);
4407 }
4408 EXPORT_SYMBOL(cancel_work);
4409 
4410 /**
4411  * cancel_work_sync - cancel a work and wait for it to finish
4412  * @work: the work to cancel
4413  *
4414  * Cancel @work and wait for its execution to finish. This function can be used
4415  * even if the work re-queues itself or migrates to another workqueue. On return
4416  * from this function, @work is guaranteed to be not pending or executing on any
4417  * CPU as long as there aren't racing enqueues.
4418  *
4419  * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4420  * Use cancel_delayed_work_sync() instead.
4421  *
4422  * Must be called from a sleepable context if @work was last queued on a non-BH
4423  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4424  * if @work was last queued on a BH workqueue.
4425  *
4426  * Returns %true if @work was pending, %false otherwise.
4427  */
cancel_work_sync(struct work_struct * work)4428 bool cancel_work_sync(struct work_struct *work)
4429 {
4430 	return __cancel_work_sync(work, 0);
4431 }
4432 EXPORT_SYMBOL_GPL(cancel_work_sync);
4433 
4434 /**
4435  * cancel_delayed_work - cancel a delayed work
4436  * @dwork: delayed_work to cancel
4437  *
4438  * Kill off a pending delayed_work.
4439  *
4440  * Return: %true if @dwork was pending and canceled; %false if it wasn't
4441  * pending.
4442  *
4443  * Note:
4444  * The work callback function may still be running on return, unless
4445  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4446  * use cancel_delayed_work_sync() to wait on it.
4447  *
4448  * This function is safe to call from any context including IRQ handler.
4449  */
cancel_delayed_work(struct delayed_work * dwork)4450 bool cancel_delayed_work(struct delayed_work *dwork)
4451 {
4452 	return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4453 }
4454 EXPORT_SYMBOL(cancel_delayed_work);
4455 
4456 /**
4457  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4458  * @dwork: the delayed work cancel
4459  *
4460  * This is cancel_work_sync() for delayed works.
4461  *
4462  * Return:
4463  * %true if @dwork was pending, %false otherwise.
4464  */
cancel_delayed_work_sync(struct delayed_work * dwork)4465 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4466 {
4467 	return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4468 }
4469 EXPORT_SYMBOL(cancel_delayed_work_sync);
4470 
4471 /**
4472  * disable_work - Disable and cancel a work item
4473  * @work: work item to disable
4474  *
4475  * Disable @work by incrementing its disable count and cancel it if currently
4476  * pending. As long as the disable count is non-zero, any attempt to queue @work
4477  * will fail and return %false. The maximum supported disable depth is 2 to the
4478  * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4479  *
4480  * Can be called from any context. Returns %true if @work was pending, %false
4481  * otherwise.
4482  */
disable_work(struct work_struct * work)4483 bool disable_work(struct work_struct *work)
4484 {
4485 	return __cancel_work(work, WORK_CANCEL_DISABLE);
4486 }
4487 EXPORT_SYMBOL_GPL(disable_work);
4488 
4489 /**
4490  * disable_work_sync - Disable, cancel and drain a work item
4491  * @work: work item to disable
4492  *
4493  * Similar to disable_work() but also wait for @work to finish if currently
4494  * executing.
4495  *
4496  * Must be called from a sleepable context if @work was last queued on a non-BH
4497  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4498  * if @work was last queued on a BH workqueue.
4499  *
4500  * Returns %true if @work was pending, %false otherwise.
4501  */
disable_work_sync(struct work_struct * work)4502 bool disable_work_sync(struct work_struct *work)
4503 {
4504 	return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4505 }
4506 EXPORT_SYMBOL_GPL(disable_work_sync);
4507 
4508 /**
4509  * enable_work - Enable a work item
4510  * @work: work item to enable
4511  *
4512  * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4513  * only be queued if its disable count is 0.
4514  *
4515  * Can be called from any context. Returns %true if the disable count reached 0.
4516  * Otherwise, %false.
4517  */
enable_work(struct work_struct * work)4518 bool enable_work(struct work_struct *work)
4519 {
4520 	struct work_offq_data offqd;
4521 	unsigned long irq_flags;
4522 
4523 	work_grab_pending(work, 0, &irq_flags);
4524 
4525 	work_offqd_unpack(&offqd, *work_data_bits(work));
4526 	work_offqd_enable(&offqd);
4527 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4528 					work_offqd_pack_flags(&offqd));
4529 	local_irq_restore(irq_flags);
4530 
4531 	return !offqd.disable;
4532 }
4533 EXPORT_SYMBOL_GPL(enable_work);
4534 
4535 /**
4536  * disable_delayed_work - Disable and cancel a delayed work item
4537  * @dwork: delayed work item to disable
4538  *
4539  * disable_work() for delayed work items.
4540  */
disable_delayed_work(struct delayed_work * dwork)4541 bool disable_delayed_work(struct delayed_work *dwork)
4542 {
4543 	return __cancel_work(&dwork->work,
4544 			     WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4545 }
4546 EXPORT_SYMBOL_GPL(disable_delayed_work);
4547 
4548 /**
4549  * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4550  * @dwork: delayed work item to disable
4551  *
4552  * disable_work_sync() for delayed work items.
4553  */
disable_delayed_work_sync(struct delayed_work * dwork)4554 bool disable_delayed_work_sync(struct delayed_work *dwork)
4555 {
4556 	return __cancel_work_sync(&dwork->work,
4557 				  WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4558 }
4559 EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4560 
4561 /**
4562  * enable_delayed_work - Enable a delayed work item
4563  * @dwork: delayed work item to enable
4564  *
4565  * enable_work() for delayed work items.
4566  */
enable_delayed_work(struct delayed_work * dwork)4567 bool enable_delayed_work(struct delayed_work *dwork)
4568 {
4569 	return enable_work(&dwork->work);
4570 }
4571 EXPORT_SYMBOL_GPL(enable_delayed_work);
4572 
4573 /**
4574  * schedule_on_each_cpu - execute a function synchronously on each online CPU
4575  * @func: the function to call
4576  *
4577  * schedule_on_each_cpu() executes @func on each online CPU using the
4578  * system workqueue and blocks until all CPUs have completed.
4579  * schedule_on_each_cpu() is very slow.
4580  *
4581  * Return:
4582  * 0 on success, -errno on failure.
4583  */
schedule_on_each_cpu(work_func_t func)4584 int schedule_on_each_cpu(work_func_t func)
4585 {
4586 	int cpu;
4587 	struct work_struct __percpu *works;
4588 
4589 	works = alloc_percpu(struct work_struct);
4590 	if (!works)
4591 		return -ENOMEM;
4592 
4593 	cpus_read_lock();
4594 
4595 	for_each_online_cpu(cpu) {
4596 		struct work_struct *work = per_cpu_ptr(works, cpu);
4597 
4598 		INIT_WORK(work, func);
4599 		schedule_work_on(cpu, work);
4600 	}
4601 
4602 	for_each_online_cpu(cpu)
4603 		flush_work(per_cpu_ptr(works, cpu));
4604 
4605 	cpus_read_unlock();
4606 	free_percpu(works);
4607 	return 0;
4608 }
4609 
4610 /**
4611  * execute_in_process_context - reliably execute the routine with user context
4612  * @fn:		the function to execute
4613  * @ew:		guaranteed storage for the execute work structure (must
4614  *		be available when the work executes)
4615  *
4616  * Executes the function immediately if process context is available,
4617  * otherwise schedules the function for delayed execution.
4618  *
4619  * Return:	0 - function was executed
4620  *		1 - function was scheduled for execution
4621  */
execute_in_process_context(work_func_t fn,struct execute_work * ew)4622 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4623 {
4624 	if (!in_interrupt()) {
4625 		fn(&ew->work);
4626 		return 0;
4627 	}
4628 
4629 	INIT_WORK(&ew->work, fn);
4630 	schedule_work(&ew->work);
4631 
4632 	return 1;
4633 }
4634 EXPORT_SYMBOL_GPL(execute_in_process_context);
4635 
4636 /**
4637  * free_workqueue_attrs - free a workqueue_attrs
4638  * @attrs: workqueue_attrs to free
4639  *
4640  * Undo alloc_workqueue_attrs().
4641  */
free_workqueue_attrs(struct workqueue_attrs * attrs)4642 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4643 {
4644 	if (attrs) {
4645 		free_cpumask_var(attrs->cpumask);
4646 		free_cpumask_var(attrs->__pod_cpumask);
4647 		kfree(attrs);
4648 	}
4649 }
4650 
4651 /**
4652  * alloc_workqueue_attrs - allocate a workqueue_attrs
4653  *
4654  * Allocate a new workqueue_attrs, initialize with default settings and
4655  * return it.
4656  *
4657  * Return: The allocated new workqueue_attr on success. %NULL on failure.
4658  */
alloc_workqueue_attrs_noprof(void)4659 struct workqueue_attrs *alloc_workqueue_attrs_noprof(void)
4660 {
4661 	struct workqueue_attrs *attrs;
4662 
4663 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4664 	if (!attrs)
4665 		goto fail;
4666 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4667 		goto fail;
4668 	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4669 		goto fail;
4670 
4671 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4672 	attrs->affn_scope = WQ_AFFN_DFL;
4673 	return attrs;
4674 fail:
4675 	free_workqueue_attrs(attrs);
4676 	return NULL;
4677 }
4678 
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)4679 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4680 				 const struct workqueue_attrs *from)
4681 {
4682 	to->nice = from->nice;
4683 	cpumask_copy(to->cpumask, from->cpumask);
4684 	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4685 	to->affn_strict = from->affn_strict;
4686 
4687 	/*
4688 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4689 	 * fields as copying is used for both pool and wq attrs. Instead,
4690 	 * get_unbound_pool() explicitly clears the fields.
4691 	 */
4692 	to->affn_scope = from->affn_scope;
4693 	to->ordered = from->ordered;
4694 }
4695 
4696 /*
4697  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4698  * comments in 'struct workqueue_attrs' definition.
4699  */
wqattrs_clear_for_pool(struct workqueue_attrs * attrs)4700 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4701 {
4702 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4703 	attrs->ordered = false;
4704 	if (attrs->affn_strict)
4705 		cpumask_copy(attrs->cpumask, cpu_possible_mask);
4706 }
4707 
4708 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)4709 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4710 {
4711 	u32 hash = 0;
4712 
4713 	hash = jhash_1word(attrs->nice, hash);
4714 	hash = jhash_1word(attrs->affn_strict, hash);
4715 	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4716 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4717 	if (!attrs->affn_strict)
4718 		hash = jhash(cpumask_bits(attrs->cpumask),
4719 			     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4720 	return hash;
4721 }
4722 
4723 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)4724 static bool wqattrs_equal(const struct workqueue_attrs *a,
4725 			  const struct workqueue_attrs *b)
4726 {
4727 	if (a->nice != b->nice)
4728 		return false;
4729 	if (a->affn_strict != b->affn_strict)
4730 		return false;
4731 	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4732 		return false;
4733 	if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
4734 		return false;
4735 	return true;
4736 }
4737 
4738 /* Update @attrs with actually available CPUs */
wqattrs_actualize_cpumask(struct workqueue_attrs * attrs,const cpumask_t * unbound_cpumask)4739 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4740 				      const cpumask_t *unbound_cpumask)
4741 {
4742 	/*
4743 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4744 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4745 	 * @unbound_cpumask.
4746 	 */
4747 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4748 	if (unlikely(cpumask_empty(attrs->cpumask)))
4749 		cpumask_copy(attrs->cpumask, unbound_cpumask);
4750 }
4751 
4752 /* find wq_pod_type to use for @attrs */
4753 static const struct wq_pod_type *
wqattrs_pod_type(const struct workqueue_attrs * attrs)4754 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4755 {
4756 	enum wq_affn_scope scope;
4757 	struct wq_pod_type *pt;
4758 
4759 	/* to synchronize access to wq_affn_dfl */
4760 	lockdep_assert_held(&wq_pool_mutex);
4761 
4762 	if (attrs->affn_scope == WQ_AFFN_DFL)
4763 		scope = wq_affn_dfl;
4764 	else
4765 		scope = attrs->affn_scope;
4766 
4767 	pt = &wq_pod_types[scope];
4768 
4769 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4770 	    likely(pt->nr_pods))
4771 		return pt;
4772 
4773 	/*
4774 	 * Before workqueue_init_topology(), only SYSTEM is available which is
4775 	 * initialized in workqueue_init_early().
4776 	 */
4777 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4778 	BUG_ON(!pt->nr_pods);
4779 	return pt;
4780 }
4781 
4782 /**
4783  * init_worker_pool - initialize a newly zalloc'd worker_pool
4784  * @pool: worker_pool to initialize
4785  *
4786  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4787  *
4788  * Return: 0 on success, -errno on failure.  Even on failure, all fields
4789  * inside @pool proper are initialized and put_unbound_pool() can be called
4790  * on @pool safely to release it.
4791  */
init_worker_pool(struct worker_pool * pool)4792 static int init_worker_pool(struct worker_pool *pool)
4793 {
4794 	raw_spin_lock_init(&pool->lock);
4795 	pool->id = -1;
4796 	pool->cpu = -1;
4797 	pool->node = NUMA_NO_NODE;
4798 	pool->flags |= POOL_DISASSOCIATED;
4799 	pool->watchdog_ts = jiffies;
4800 	INIT_LIST_HEAD(&pool->worklist);
4801 	INIT_LIST_HEAD(&pool->idle_list);
4802 	hash_init(pool->busy_hash);
4803 
4804 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4805 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4806 
4807 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4808 
4809 	INIT_LIST_HEAD(&pool->workers);
4810 
4811 	ida_init(&pool->worker_ida);
4812 	INIT_HLIST_NODE(&pool->hash_node);
4813 	pool->refcnt = 1;
4814 #ifdef CONFIG_PREEMPT_RT
4815 	spin_lock_init(&pool->cb_lock);
4816 #endif
4817 
4818 	/* shouldn't fail above this point */
4819 	pool->attrs = alloc_workqueue_attrs();
4820 	if (!pool->attrs)
4821 		return -ENOMEM;
4822 
4823 	wqattrs_clear_for_pool(pool->attrs);
4824 
4825 	return 0;
4826 }
4827 
4828 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)4829 static void wq_init_lockdep(struct workqueue_struct *wq)
4830 {
4831 	char *lock_name;
4832 
4833 	lockdep_register_key(&wq->key);
4834 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4835 	if (!lock_name)
4836 		lock_name = wq->name;
4837 
4838 	wq->lock_name = lock_name;
4839 	wq->lockdep_map = &wq->__lockdep_map;
4840 	lockdep_init_map(wq->lockdep_map, lock_name, &wq->key, 0);
4841 }
4842 
wq_unregister_lockdep(struct workqueue_struct * wq)4843 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4844 {
4845 	if (wq->lockdep_map != &wq->__lockdep_map)
4846 		return;
4847 
4848 	lockdep_unregister_key(&wq->key);
4849 }
4850 
wq_free_lockdep(struct workqueue_struct * wq)4851 static void wq_free_lockdep(struct workqueue_struct *wq)
4852 {
4853 	if (wq->lockdep_map != &wq->__lockdep_map)
4854 		return;
4855 
4856 	if (wq->lock_name != wq->name)
4857 		kfree(wq->lock_name);
4858 }
4859 #else
wq_init_lockdep(struct workqueue_struct * wq)4860 static void wq_init_lockdep(struct workqueue_struct *wq)
4861 {
4862 }
4863 
wq_unregister_lockdep(struct workqueue_struct * wq)4864 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4865 {
4866 }
4867 
wq_free_lockdep(struct workqueue_struct * wq)4868 static void wq_free_lockdep(struct workqueue_struct *wq)
4869 {
4870 }
4871 #endif
4872 
free_node_nr_active(struct wq_node_nr_active ** nna_ar)4873 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4874 {
4875 	int node;
4876 
4877 	for_each_node(node) {
4878 		kfree(nna_ar[node]);
4879 		nna_ar[node] = NULL;
4880 	}
4881 
4882 	kfree(nna_ar[nr_node_ids]);
4883 	nna_ar[nr_node_ids] = NULL;
4884 }
4885 
init_node_nr_active(struct wq_node_nr_active * nna)4886 static void init_node_nr_active(struct wq_node_nr_active *nna)
4887 {
4888 	nna->max = WQ_DFL_MIN_ACTIVE;
4889 	atomic_set(&nna->nr, 0);
4890 	raw_spin_lock_init(&nna->lock);
4891 	INIT_LIST_HEAD(&nna->pending_pwqs);
4892 }
4893 
4894 /*
4895  * Each node's nr_active counter will be accessed mostly from its own node and
4896  * should be allocated in the node.
4897  */
alloc_node_nr_active(struct wq_node_nr_active ** nna_ar)4898 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4899 {
4900 	struct wq_node_nr_active *nna;
4901 	int node;
4902 
4903 	for_each_node(node) {
4904 		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4905 		if (!nna)
4906 			goto err_free;
4907 		init_node_nr_active(nna);
4908 		nna_ar[node] = nna;
4909 	}
4910 
4911 	/* [nr_node_ids] is used as the fallback */
4912 	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4913 	if (!nna)
4914 		goto err_free;
4915 	init_node_nr_active(nna);
4916 	nna_ar[nr_node_ids] = nna;
4917 
4918 	return 0;
4919 
4920 err_free:
4921 	free_node_nr_active(nna_ar);
4922 	return -ENOMEM;
4923 }
4924 
rcu_free_wq(struct rcu_head * rcu)4925 static void rcu_free_wq(struct rcu_head *rcu)
4926 {
4927 	struct workqueue_struct *wq =
4928 		container_of(rcu, struct workqueue_struct, rcu);
4929 
4930 	if (wq->flags & WQ_UNBOUND)
4931 		free_node_nr_active(wq->node_nr_active);
4932 
4933 	wq_free_lockdep(wq);
4934 	free_percpu(wq->cpu_pwq);
4935 	free_workqueue_attrs(wq->unbound_attrs);
4936 	kfree(wq);
4937 }
4938 
rcu_free_pool(struct rcu_head * rcu)4939 static void rcu_free_pool(struct rcu_head *rcu)
4940 {
4941 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4942 
4943 	ida_destroy(&pool->worker_ida);
4944 	free_workqueue_attrs(pool->attrs);
4945 	kfree(pool);
4946 }
4947 
4948 /**
4949  * put_unbound_pool - put a worker_pool
4950  * @pool: worker_pool to put
4951  *
4952  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4953  * safe manner.  get_unbound_pool() calls this function on its failure path
4954  * and this function should be able to release pools which went through,
4955  * successfully or not, init_worker_pool().
4956  *
4957  * Should be called with wq_pool_mutex held.
4958  */
put_unbound_pool(struct worker_pool * pool)4959 static void put_unbound_pool(struct worker_pool *pool)
4960 {
4961 	struct worker *worker;
4962 	LIST_HEAD(cull_list);
4963 
4964 	lockdep_assert_held(&wq_pool_mutex);
4965 
4966 	if (--pool->refcnt)
4967 		return;
4968 
4969 	/* sanity checks */
4970 	if (WARN_ON(!(pool->cpu < 0)) ||
4971 	    WARN_ON(!list_empty(&pool->worklist)))
4972 		return;
4973 
4974 	/* release id and unhash */
4975 	if (pool->id >= 0)
4976 		idr_remove(&worker_pool_idr, pool->id);
4977 	hash_del(&pool->hash_node);
4978 
4979 	/*
4980 	 * Become the manager and destroy all workers.  This prevents
4981 	 * @pool's workers from blocking on attach_mutex.  We're the last
4982 	 * manager and @pool gets freed with the flag set.
4983 	 *
4984 	 * Having a concurrent manager is quite unlikely to happen as we can
4985 	 * only get here with
4986 	 *   pwq->refcnt == pool->refcnt == 0
4987 	 * which implies no work queued to the pool, which implies no worker can
4988 	 * become the manager. However a worker could have taken the role of
4989 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4990 	 * drops pool->lock
4991 	 */
4992 	while (true) {
4993 		rcuwait_wait_event(&manager_wait,
4994 				   !(pool->flags & POOL_MANAGER_ACTIVE),
4995 				   TASK_UNINTERRUPTIBLE);
4996 
4997 		mutex_lock(&wq_pool_attach_mutex);
4998 		raw_spin_lock_irq(&pool->lock);
4999 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
5000 			pool->flags |= POOL_MANAGER_ACTIVE;
5001 			break;
5002 		}
5003 		raw_spin_unlock_irq(&pool->lock);
5004 		mutex_unlock(&wq_pool_attach_mutex);
5005 	}
5006 
5007 	while ((worker = first_idle_worker(pool)))
5008 		set_worker_dying(worker, &cull_list);
5009 	WARN_ON(pool->nr_workers || pool->nr_idle);
5010 	raw_spin_unlock_irq(&pool->lock);
5011 
5012 	detach_dying_workers(&cull_list);
5013 
5014 	mutex_unlock(&wq_pool_attach_mutex);
5015 
5016 	reap_dying_workers(&cull_list);
5017 
5018 	/* shut down the timers */
5019 	timer_delete_sync(&pool->idle_timer);
5020 	cancel_work_sync(&pool->idle_cull_work);
5021 	timer_delete_sync(&pool->mayday_timer);
5022 
5023 	/* RCU protected to allow dereferences from get_work_pool() */
5024 	call_rcu(&pool->rcu, rcu_free_pool);
5025 }
5026 
5027 /**
5028  * get_unbound_pool - get a worker_pool with the specified attributes
5029  * @attrs: the attributes of the worker_pool to get
5030  *
5031  * Obtain a worker_pool which has the same attributes as @attrs, bump the
5032  * reference count and return it.  If there already is a matching
5033  * worker_pool, it will be used; otherwise, this function attempts to
5034  * create a new one.
5035  *
5036  * Should be called with wq_pool_mutex held.
5037  *
5038  * Return: On success, a worker_pool with the same attributes as @attrs.
5039  * On failure, %NULL.
5040  */
get_unbound_pool(const struct workqueue_attrs * attrs)5041 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
5042 {
5043 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
5044 	u32 hash = wqattrs_hash(attrs);
5045 	struct worker_pool *pool;
5046 	int pod, node = NUMA_NO_NODE;
5047 
5048 	lockdep_assert_held(&wq_pool_mutex);
5049 
5050 	/* do we already have a matching pool? */
5051 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
5052 		if (wqattrs_equal(pool->attrs, attrs)) {
5053 			pool->refcnt++;
5054 			return pool;
5055 		}
5056 	}
5057 
5058 	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
5059 	for (pod = 0; pod < pt->nr_pods; pod++) {
5060 		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
5061 			node = pt->pod_node[pod];
5062 			break;
5063 		}
5064 	}
5065 
5066 	/* nope, create a new one */
5067 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
5068 	if (!pool || init_worker_pool(pool) < 0)
5069 		goto fail;
5070 
5071 	pool->node = node;
5072 	copy_workqueue_attrs(pool->attrs, attrs);
5073 	wqattrs_clear_for_pool(pool->attrs);
5074 
5075 	if (worker_pool_assign_id(pool) < 0)
5076 		goto fail;
5077 
5078 	/* create and start the initial worker */
5079 	if (wq_online && !create_worker(pool))
5080 		goto fail;
5081 
5082 	/* install */
5083 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
5084 
5085 	return pool;
5086 fail:
5087 	if (pool)
5088 		put_unbound_pool(pool);
5089 	return NULL;
5090 }
5091 
5092 /*
5093  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5094  * refcnt and needs to be destroyed.
5095  */
pwq_release_workfn(struct kthread_work * work)5096 static void pwq_release_workfn(struct kthread_work *work)
5097 {
5098 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
5099 						  release_work);
5100 	struct workqueue_struct *wq = pwq->wq;
5101 	struct worker_pool *pool = pwq->pool;
5102 	bool is_last = false;
5103 
5104 	/*
5105 	 * When @pwq is not linked, it doesn't hold any reference to the
5106 	 * @wq, and @wq is invalid to access.
5107 	 */
5108 	if (!list_empty(&pwq->pwqs_node)) {
5109 		mutex_lock(&wq->mutex);
5110 		list_del_rcu(&pwq->pwqs_node);
5111 		is_last = list_empty(&wq->pwqs);
5112 
5113 		/*
5114 		 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5115 		 */
5116 		if (!is_last && (wq->flags & __WQ_ORDERED))
5117 			unplug_oldest_pwq(wq);
5118 
5119 		mutex_unlock(&wq->mutex);
5120 	}
5121 
5122 	if (wq->flags & WQ_UNBOUND) {
5123 		mutex_lock(&wq_pool_mutex);
5124 		put_unbound_pool(pool);
5125 		mutex_unlock(&wq_pool_mutex);
5126 	}
5127 
5128 	if (!list_empty(&pwq->pending_node)) {
5129 		struct wq_node_nr_active *nna =
5130 			wq_node_nr_active(pwq->wq, pwq->pool->node);
5131 
5132 		raw_spin_lock_irq(&nna->lock);
5133 		list_del_init(&pwq->pending_node);
5134 		raw_spin_unlock_irq(&nna->lock);
5135 	}
5136 
5137 	kfree_rcu(pwq, rcu);
5138 
5139 	/*
5140 	 * If we're the last pwq going away, @wq is already dead and no one
5141 	 * is gonna access it anymore.  Schedule RCU free.
5142 	 */
5143 	if (is_last) {
5144 		wq_unregister_lockdep(wq);
5145 		call_rcu(&wq->rcu, rcu_free_wq);
5146 	}
5147 }
5148 
5149 /* initialize newly allocated @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)5150 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5151 		     struct worker_pool *pool)
5152 {
5153 	BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
5154 
5155 	memset(pwq, 0, sizeof(*pwq));
5156 
5157 	pwq->pool = pool;
5158 	pwq->wq = wq;
5159 	pwq->flush_color = -1;
5160 	pwq->refcnt = 1;
5161 	INIT_LIST_HEAD(&pwq->inactive_works);
5162 	INIT_LIST_HEAD(&pwq->pending_node);
5163 	INIT_LIST_HEAD(&pwq->pwqs_node);
5164 	INIT_LIST_HEAD(&pwq->mayday_node);
5165 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
5166 }
5167 
5168 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)5169 static void link_pwq(struct pool_workqueue *pwq)
5170 {
5171 	struct workqueue_struct *wq = pwq->wq;
5172 
5173 	lockdep_assert_held(&wq->mutex);
5174 
5175 	/* may be called multiple times, ignore if already linked */
5176 	if (!list_empty(&pwq->pwqs_node))
5177 		return;
5178 
5179 	/* set the matching work_color */
5180 	pwq->work_color = wq->work_color;
5181 
5182 	/* link in @pwq */
5183 	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5184 }
5185 
5186 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5187 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5188 					const struct workqueue_attrs *attrs)
5189 {
5190 	struct worker_pool *pool;
5191 	struct pool_workqueue *pwq;
5192 
5193 	lockdep_assert_held(&wq_pool_mutex);
5194 
5195 	pool = get_unbound_pool(attrs);
5196 	if (!pool)
5197 		return NULL;
5198 
5199 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5200 	if (!pwq) {
5201 		put_unbound_pool(pool);
5202 		return NULL;
5203 	}
5204 
5205 	init_pwq(pwq, wq, pool);
5206 	return pwq;
5207 }
5208 
apply_wqattrs_lock(void)5209 static void apply_wqattrs_lock(void)
5210 {
5211 	mutex_lock(&wq_pool_mutex);
5212 }
5213 
apply_wqattrs_unlock(void)5214 static void apply_wqattrs_unlock(void)
5215 {
5216 	mutex_unlock(&wq_pool_mutex);
5217 }
5218 
5219 /**
5220  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5221  * @attrs: the wq_attrs of the default pwq of the target workqueue
5222  * @cpu: the target CPU
5223  *
5224  * Calculate the cpumask a workqueue with @attrs should use on @pod.
5225  * The result is stored in @attrs->__pod_cpumask.
5226  *
5227  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5228  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5229  * intersection of the possible CPUs of @pod and @attrs->cpumask.
5230  *
5231  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5232  */
wq_calc_pod_cpumask(struct workqueue_attrs * attrs,int cpu)5233 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu)
5234 {
5235 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5236 	int pod = pt->cpu_pod[cpu];
5237 
5238 	/* calculate possible CPUs in @pod that @attrs wants */
5239 	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5240 	/* does @pod have any online CPUs @attrs wants? */
5241 	if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) {
5242 		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5243 		return;
5244 	}
5245 }
5246 
5247 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
install_unbound_pwq(struct workqueue_struct * wq,int cpu,struct pool_workqueue * pwq)5248 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5249 					int cpu, struct pool_workqueue *pwq)
5250 {
5251 	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5252 	struct pool_workqueue *old_pwq;
5253 
5254 	lockdep_assert_held(&wq_pool_mutex);
5255 	lockdep_assert_held(&wq->mutex);
5256 
5257 	/* link_pwq() can handle duplicate calls */
5258 	link_pwq(pwq);
5259 
5260 	old_pwq = rcu_access_pointer(*slot);
5261 	rcu_assign_pointer(*slot, pwq);
5262 	return old_pwq;
5263 }
5264 
5265 /* context to store the prepared attrs & pwqs before applying */
5266 struct apply_wqattrs_ctx {
5267 	struct workqueue_struct	*wq;		/* target workqueue */
5268 	struct workqueue_attrs	*attrs;		/* attrs to apply */
5269 	struct list_head	list;		/* queued for batching commit */
5270 	struct pool_workqueue	*dfl_pwq;
5271 	struct pool_workqueue	*pwq_tbl[];
5272 };
5273 
5274 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)5275 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5276 {
5277 	if (ctx) {
5278 		int cpu;
5279 
5280 		for_each_possible_cpu(cpu)
5281 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5282 		put_pwq_unlocked(ctx->dfl_pwq);
5283 
5284 		free_workqueue_attrs(ctx->attrs);
5285 
5286 		kfree(ctx);
5287 	}
5288 }
5289 
5290 /* allocate the attrs and pwqs for later installation */
5291 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs,const cpumask_var_t unbound_cpumask)5292 apply_wqattrs_prepare(struct workqueue_struct *wq,
5293 		      const struct workqueue_attrs *attrs,
5294 		      const cpumask_var_t unbound_cpumask)
5295 {
5296 	struct apply_wqattrs_ctx *ctx;
5297 	struct workqueue_attrs *new_attrs;
5298 	int cpu;
5299 
5300 	lockdep_assert_held(&wq_pool_mutex);
5301 
5302 	if (WARN_ON(attrs->affn_scope < 0 ||
5303 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5304 		return ERR_PTR(-EINVAL);
5305 
5306 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5307 
5308 	new_attrs = alloc_workqueue_attrs();
5309 	if (!ctx || !new_attrs)
5310 		goto out_free;
5311 
5312 	/*
5313 	 * If something goes wrong during CPU up/down, we'll fall back to
5314 	 * the default pwq covering whole @attrs->cpumask.  Always create
5315 	 * it even if we don't use it immediately.
5316 	 */
5317 	copy_workqueue_attrs(new_attrs, attrs);
5318 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5319 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5320 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5321 	if (!ctx->dfl_pwq)
5322 		goto out_free;
5323 
5324 	for_each_possible_cpu(cpu) {
5325 		if (new_attrs->ordered) {
5326 			ctx->dfl_pwq->refcnt++;
5327 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5328 		} else {
5329 			wq_calc_pod_cpumask(new_attrs, cpu);
5330 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5331 			if (!ctx->pwq_tbl[cpu])
5332 				goto out_free;
5333 		}
5334 	}
5335 
5336 	/* save the user configured attrs and sanitize it. */
5337 	copy_workqueue_attrs(new_attrs, attrs);
5338 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5339 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5340 	ctx->attrs = new_attrs;
5341 
5342 	/*
5343 	 * For initialized ordered workqueues, there should only be one pwq
5344 	 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5345 	 * of newly queued work items until execution of older work items in
5346 	 * the old pwq's have completed.
5347 	 */
5348 	if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5349 		ctx->dfl_pwq->plugged = true;
5350 
5351 	ctx->wq = wq;
5352 	return ctx;
5353 
5354 out_free:
5355 	free_workqueue_attrs(new_attrs);
5356 	apply_wqattrs_cleanup(ctx);
5357 	return ERR_PTR(-ENOMEM);
5358 }
5359 
5360 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)5361 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5362 {
5363 	int cpu;
5364 
5365 	/* all pwqs have been created successfully, let's install'em */
5366 	mutex_lock(&ctx->wq->mutex);
5367 
5368 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5369 
5370 	/* save the previous pwqs and install the new ones */
5371 	for_each_possible_cpu(cpu)
5372 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5373 							ctx->pwq_tbl[cpu]);
5374 	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5375 
5376 	/* update node_nr_active->max */
5377 	wq_update_node_max_active(ctx->wq, -1);
5378 
5379 	/* rescuer needs to respect wq cpumask changes */
5380 	if (ctx->wq->rescuer)
5381 		set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5382 				     unbound_effective_cpumask(ctx->wq));
5383 
5384 	mutex_unlock(&ctx->wq->mutex);
5385 }
5386 
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5387 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5388 					const struct workqueue_attrs *attrs)
5389 {
5390 	struct apply_wqattrs_ctx *ctx;
5391 
5392 	/* only unbound workqueues can change attributes */
5393 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5394 		return -EINVAL;
5395 
5396 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5397 	if (IS_ERR(ctx))
5398 		return PTR_ERR(ctx);
5399 
5400 	/* the ctx has been prepared successfully, let's commit it */
5401 	apply_wqattrs_commit(ctx);
5402 	apply_wqattrs_cleanup(ctx);
5403 
5404 	return 0;
5405 }
5406 
5407 /**
5408  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5409  * @wq: the target workqueue
5410  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5411  *
5412  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5413  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5414  * work items are affine to the pod it was issued on. Older pwqs are released as
5415  * in-flight work items finish. Note that a work item which repeatedly requeues
5416  * itself back-to-back will stay on its current pwq.
5417  *
5418  * Performs GFP_KERNEL allocations.
5419  *
5420  * Return: 0 on success and -errno on failure.
5421  */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5422 int apply_workqueue_attrs(struct workqueue_struct *wq,
5423 			  const struct workqueue_attrs *attrs)
5424 {
5425 	int ret;
5426 
5427 	mutex_lock(&wq_pool_mutex);
5428 	ret = apply_workqueue_attrs_locked(wq, attrs);
5429 	mutex_unlock(&wq_pool_mutex);
5430 
5431 	return ret;
5432 }
5433 
5434 /**
5435  * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug
5436  * @wq: the target workqueue
5437  * @cpu: the CPU to update the pwq slot for
5438  *
5439  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5440  * %CPU_DOWN_FAILED.  @cpu is in the same pod of the CPU being hot[un]plugged.
5441  *
5442  *
5443  * If pod affinity can't be adjusted due to memory allocation failure, it falls
5444  * back to @wq->dfl_pwq which may not be optimal but is always correct.
5445  *
5446  * Note that when the last allowed CPU of a pod goes offline for a workqueue
5447  * with a cpumask spanning multiple pods, the workers which were already
5448  * executing the work items for the workqueue will lose their CPU affinity and
5449  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5450  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5451  * responsibility to flush the work item from CPU_DOWN_PREPARE.
5452  */
unbound_wq_update_pwq(struct workqueue_struct * wq,int cpu)5453 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu)
5454 {
5455 	struct pool_workqueue *old_pwq = NULL, *pwq;
5456 	struct workqueue_attrs *target_attrs;
5457 
5458 	lockdep_assert_held(&wq_pool_mutex);
5459 
5460 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5461 		return;
5462 
5463 	/*
5464 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5465 	 * Let's use a preallocated one.  The following buf is protected by
5466 	 * CPU hotplug exclusion.
5467 	 */
5468 	target_attrs = unbound_wq_update_pwq_attrs_buf;
5469 
5470 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5471 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5472 
5473 	/* nothing to do if the target cpumask matches the current pwq */
5474 	wq_calc_pod_cpumask(target_attrs, cpu);
5475 	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5476 		return;
5477 
5478 	/* create a new pwq */
5479 	pwq = alloc_unbound_pwq(wq, target_attrs);
5480 	if (!pwq) {
5481 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5482 			wq->name);
5483 		goto use_dfl_pwq;
5484 	}
5485 
5486 	/* Install the new pwq. */
5487 	mutex_lock(&wq->mutex);
5488 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5489 	goto out_unlock;
5490 
5491 use_dfl_pwq:
5492 	mutex_lock(&wq->mutex);
5493 	pwq = unbound_pwq(wq, -1);
5494 	raw_spin_lock_irq(&pwq->pool->lock);
5495 	get_pwq(pwq);
5496 	raw_spin_unlock_irq(&pwq->pool->lock);
5497 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5498 out_unlock:
5499 	mutex_unlock(&wq->mutex);
5500 	put_pwq_unlocked(old_pwq);
5501 }
5502 
alloc_and_link_pwqs(struct workqueue_struct * wq)5503 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5504 {
5505 	bool highpri = wq->flags & WQ_HIGHPRI;
5506 	int cpu, ret;
5507 
5508 	lockdep_assert_held(&wq_pool_mutex);
5509 
5510 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5511 	if (!wq->cpu_pwq)
5512 		goto enomem;
5513 
5514 	if (!(wq->flags & WQ_UNBOUND)) {
5515 		struct worker_pool __percpu *pools;
5516 
5517 		if (wq->flags & WQ_BH)
5518 			pools = bh_worker_pools;
5519 		else
5520 			pools = cpu_worker_pools;
5521 
5522 		for_each_possible_cpu(cpu) {
5523 			struct pool_workqueue **pwq_p;
5524 			struct worker_pool *pool;
5525 
5526 			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5527 			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5528 
5529 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5530 						       pool->node);
5531 			if (!*pwq_p)
5532 				goto enomem;
5533 
5534 			init_pwq(*pwq_p, wq, pool);
5535 
5536 			mutex_lock(&wq->mutex);
5537 			link_pwq(*pwq_p);
5538 			mutex_unlock(&wq->mutex);
5539 		}
5540 		return 0;
5541 	}
5542 
5543 	if (wq->flags & __WQ_ORDERED) {
5544 		struct pool_workqueue *dfl_pwq;
5545 
5546 		ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]);
5547 		/* there should only be single pwq for ordering guarantee */
5548 		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5549 		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5550 			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5551 		     "ordering guarantee broken for workqueue %s\n", wq->name);
5552 	} else {
5553 		ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]);
5554 	}
5555 
5556 	return ret;
5557 
5558 enomem:
5559 	if (wq->cpu_pwq) {
5560 		for_each_possible_cpu(cpu) {
5561 			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5562 
5563 			if (pwq)
5564 				kmem_cache_free(pwq_cache, pwq);
5565 		}
5566 		free_percpu(wq->cpu_pwq);
5567 		wq->cpu_pwq = NULL;
5568 	}
5569 	return -ENOMEM;
5570 }
5571 
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)5572 static int wq_clamp_max_active(int max_active, unsigned int flags,
5573 			       const char *name)
5574 {
5575 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5576 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5577 			max_active, name, 1, WQ_MAX_ACTIVE);
5578 
5579 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5580 }
5581 
5582 /*
5583  * Workqueues which may be used during memory reclaim should have a rescuer
5584  * to guarantee forward progress.
5585  */
init_rescuer(struct workqueue_struct * wq)5586 static int init_rescuer(struct workqueue_struct *wq)
5587 {
5588 	struct worker *rescuer;
5589 	char id_buf[WORKER_ID_LEN];
5590 	int ret;
5591 
5592 	lockdep_assert_held(&wq_pool_mutex);
5593 
5594 	if (!(wq->flags & WQ_MEM_RECLAIM))
5595 		return 0;
5596 
5597 	rescuer = alloc_worker(NUMA_NO_NODE);
5598 	if (!rescuer) {
5599 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5600 		       wq->name);
5601 		return -ENOMEM;
5602 	}
5603 
5604 	rescuer->rescue_wq = wq;
5605 	format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL);
5606 
5607 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf);
5608 	if (IS_ERR(rescuer->task)) {
5609 		ret = PTR_ERR(rescuer->task);
5610 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5611 		       wq->name, ERR_PTR(ret));
5612 		kfree(rescuer);
5613 		return ret;
5614 	}
5615 
5616 	wq->rescuer = rescuer;
5617 	if (wq->flags & WQ_UNBOUND)
5618 		kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq));
5619 	else
5620 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
5621 	wake_up_process(rescuer->task);
5622 
5623 	return 0;
5624 }
5625 
5626 /**
5627  * wq_adjust_max_active - update a wq's max_active to the current setting
5628  * @wq: target workqueue
5629  *
5630  * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5631  * activate inactive work items accordingly. If @wq is freezing, clear
5632  * @wq->max_active to zero.
5633  */
wq_adjust_max_active(struct workqueue_struct * wq)5634 static void wq_adjust_max_active(struct workqueue_struct *wq)
5635 {
5636 	bool activated;
5637 	int new_max, new_min;
5638 
5639 	lockdep_assert_held(&wq->mutex);
5640 
5641 	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5642 		new_max = 0;
5643 		new_min = 0;
5644 	} else {
5645 		new_max = wq->saved_max_active;
5646 		new_min = wq->saved_min_active;
5647 	}
5648 
5649 	if (wq->max_active == new_max && wq->min_active == new_min)
5650 		return;
5651 
5652 	/*
5653 	 * Update @wq->max/min_active and then kick inactive work items if more
5654 	 * active work items are allowed. This doesn't break work item ordering
5655 	 * because new work items are always queued behind existing inactive
5656 	 * work items if there are any.
5657 	 */
5658 	WRITE_ONCE(wq->max_active, new_max);
5659 	WRITE_ONCE(wq->min_active, new_min);
5660 
5661 	if (wq->flags & WQ_UNBOUND)
5662 		wq_update_node_max_active(wq, -1);
5663 
5664 	if (new_max == 0)
5665 		return;
5666 
5667 	/*
5668 	 * Round-robin through pwq's activating the first inactive work item
5669 	 * until max_active is filled.
5670 	 */
5671 	do {
5672 		struct pool_workqueue *pwq;
5673 
5674 		activated = false;
5675 		for_each_pwq(pwq, wq) {
5676 			unsigned long irq_flags;
5677 
5678 			/* can be called during early boot w/ irq disabled */
5679 			raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5680 			if (pwq_activate_first_inactive(pwq, true)) {
5681 				activated = true;
5682 				kick_pool(pwq->pool);
5683 			}
5684 			raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5685 		}
5686 	} while (activated);
5687 }
5688 
5689 __printf(1, 0)
__alloc_workqueue(const char * fmt,unsigned int flags,int max_active,va_list args)5690 static struct workqueue_struct *__alloc_workqueue(const char *fmt,
5691 						  unsigned int flags,
5692 						  int max_active, va_list args)
5693 {
5694 	struct workqueue_struct *wq;
5695 	size_t wq_size;
5696 	int name_len;
5697 
5698 	if (flags & WQ_BH) {
5699 		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5700 			return NULL;
5701 		if (WARN_ON_ONCE(max_active))
5702 			return NULL;
5703 	}
5704 
5705 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5706 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5707 		flags |= WQ_UNBOUND;
5708 
5709 	/* allocate wq and format name */
5710 	if (flags & WQ_UNBOUND)
5711 		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5712 	else
5713 		wq_size = sizeof(*wq);
5714 
5715 	wq = kzalloc_noprof(wq_size, GFP_KERNEL);
5716 	if (!wq)
5717 		return NULL;
5718 
5719 	if (flags & WQ_UNBOUND) {
5720 		wq->unbound_attrs = alloc_workqueue_attrs_noprof();
5721 		if (!wq->unbound_attrs)
5722 			goto err_free_wq;
5723 	}
5724 
5725 	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5726 
5727 	if (name_len >= WQ_NAME_LEN)
5728 		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5729 			     wq->name);
5730 
5731 	if (flags & WQ_BH) {
5732 		/*
5733 		 * BH workqueues always share a single execution context per CPU
5734 		 * and don't impose any max_active limit.
5735 		 */
5736 		max_active = INT_MAX;
5737 	} else {
5738 		max_active = max_active ?: WQ_DFL_ACTIVE;
5739 		max_active = wq_clamp_max_active(max_active, flags, wq->name);
5740 	}
5741 
5742 	/* init wq */
5743 	wq->flags = flags;
5744 	wq->max_active = max_active;
5745 	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5746 	wq->saved_max_active = wq->max_active;
5747 	wq->saved_min_active = wq->min_active;
5748 	mutex_init(&wq->mutex);
5749 	atomic_set(&wq->nr_pwqs_to_flush, 0);
5750 	INIT_LIST_HEAD(&wq->pwqs);
5751 	INIT_LIST_HEAD(&wq->flusher_queue);
5752 	INIT_LIST_HEAD(&wq->flusher_overflow);
5753 	INIT_LIST_HEAD(&wq->maydays);
5754 
5755 	INIT_LIST_HEAD(&wq->list);
5756 
5757 	if (flags & WQ_UNBOUND) {
5758 		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5759 			goto err_free_wq;
5760 	}
5761 
5762 	/*
5763 	 * wq_pool_mutex protects the workqueues list, allocations of PWQs,
5764 	 * and the global freeze state.
5765 	 */
5766 	apply_wqattrs_lock();
5767 
5768 	if (alloc_and_link_pwqs(wq) < 0)
5769 		goto err_unlock_free_node_nr_active;
5770 
5771 	mutex_lock(&wq->mutex);
5772 	wq_adjust_max_active(wq);
5773 	mutex_unlock(&wq->mutex);
5774 
5775 	list_add_tail_rcu(&wq->list, &workqueues);
5776 
5777 	if (wq_online && init_rescuer(wq) < 0)
5778 		goto err_unlock_destroy;
5779 
5780 	apply_wqattrs_unlock();
5781 
5782 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5783 		goto err_destroy;
5784 
5785 	return wq;
5786 
5787 err_unlock_free_node_nr_active:
5788 	apply_wqattrs_unlock();
5789 	/*
5790 	 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work,
5791 	 * flushing the pwq_release_worker ensures that the pwq_release_workfn()
5792 	 * completes before calling kfree(wq).
5793 	 */
5794 	if (wq->flags & WQ_UNBOUND) {
5795 		kthread_flush_worker(pwq_release_worker);
5796 		free_node_nr_active(wq->node_nr_active);
5797 	}
5798 err_free_wq:
5799 	free_workqueue_attrs(wq->unbound_attrs);
5800 	kfree(wq);
5801 	return NULL;
5802 err_unlock_destroy:
5803 	apply_wqattrs_unlock();
5804 err_destroy:
5805 	destroy_workqueue(wq);
5806 	return NULL;
5807 }
5808 
5809 __printf(1, 4)
alloc_workqueue_noprof(const char * fmt,unsigned int flags,int max_active,...)5810 struct workqueue_struct *alloc_workqueue_noprof(const char *fmt,
5811 						unsigned int flags,
5812 						int max_active, ...)
5813 {
5814 	struct workqueue_struct *wq;
5815 	va_list args;
5816 
5817 	va_start(args, max_active);
5818 	wq = __alloc_workqueue(fmt, flags, max_active, args);
5819 	va_end(args);
5820 	if (!wq)
5821 		return NULL;
5822 
5823 	wq_init_lockdep(wq);
5824 
5825 	return wq;
5826 }
5827 EXPORT_SYMBOL_GPL(alloc_workqueue_noprof);
5828 
5829 #ifdef CONFIG_LOCKDEP
5830 __printf(1, 5)
5831 struct workqueue_struct *
alloc_workqueue_lockdep_map(const char * fmt,unsigned int flags,int max_active,struct lockdep_map * lockdep_map,...)5832 alloc_workqueue_lockdep_map(const char *fmt, unsigned int flags,
5833 			    int max_active, struct lockdep_map *lockdep_map, ...)
5834 {
5835 	struct workqueue_struct *wq;
5836 	va_list args;
5837 
5838 	va_start(args, lockdep_map);
5839 	wq = __alloc_workqueue(fmt, flags, max_active, args);
5840 	va_end(args);
5841 	if (!wq)
5842 		return NULL;
5843 
5844 	wq->lockdep_map = lockdep_map;
5845 
5846 	return wq;
5847 }
5848 EXPORT_SYMBOL_GPL(alloc_workqueue_lockdep_map);
5849 #endif
5850 
pwq_busy(struct pool_workqueue * pwq)5851 static bool pwq_busy(struct pool_workqueue *pwq)
5852 {
5853 	int i;
5854 
5855 	for (i = 0; i < WORK_NR_COLORS; i++)
5856 		if (pwq->nr_in_flight[i])
5857 			return true;
5858 
5859 	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5860 		return true;
5861 	if (!pwq_is_empty(pwq))
5862 		return true;
5863 
5864 	return false;
5865 }
5866 
5867 /**
5868  * destroy_workqueue - safely terminate a workqueue
5869  * @wq: target workqueue
5870  *
5871  * Safely destroy a workqueue. All work currently pending will be done first.
5872  *
5873  * This function does NOT guarantee that non-pending work that has been
5874  * submitted with queue_delayed_work() and similar functions will be done
5875  * before destroying the workqueue. The fundamental problem is that, currently,
5876  * the workqueue has no way of accessing non-pending delayed_work. delayed_work
5877  * is only linked on the timer-side. All delayed_work must, therefore, be
5878  * canceled before calling this function.
5879  *
5880  * TODO: It would be better if the problem described above wouldn't exist and
5881  * destroy_workqueue() would cleanly cancel all pending and non-pending
5882  * delayed_work.
5883  */
destroy_workqueue(struct workqueue_struct * wq)5884 void destroy_workqueue(struct workqueue_struct *wq)
5885 {
5886 	struct pool_workqueue *pwq;
5887 	int cpu;
5888 
5889 	/*
5890 	 * Remove it from sysfs first so that sanity check failure doesn't
5891 	 * lead to sysfs name conflicts.
5892 	 */
5893 	workqueue_sysfs_unregister(wq);
5894 
5895 	/* mark the workqueue destruction is in progress */
5896 	mutex_lock(&wq->mutex);
5897 	wq->flags |= __WQ_DESTROYING;
5898 	mutex_unlock(&wq->mutex);
5899 
5900 	/* drain it before proceeding with destruction */
5901 	drain_workqueue(wq);
5902 
5903 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5904 	if (wq->rescuer) {
5905 		struct worker *rescuer = wq->rescuer;
5906 
5907 		/* this prevents new queueing */
5908 		raw_spin_lock_irq(&wq_mayday_lock);
5909 		wq->rescuer = NULL;
5910 		raw_spin_unlock_irq(&wq_mayday_lock);
5911 
5912 		/* rescuer will empty maydays list before exiting */
5913 		kthread_stop(rescuer->task);
5914 		kfree(rescuer);
5915 	}
5916 
5917 	/*
5918 	 * Sanity checks - grab all the locks so that we wait for all
5919 	 * in-flight operations which may do put_pwq().
5920 	 */
5921 	mutex_lock(&wq_pool_mutex);
5922 	mutex_lock(&wq->mutex);
5923 	for_each_pwq(pwq, wq) {
5924 		raw_spin_lock_irq(&pwq->pool->lock);
5925 		if (WARN_ON(pwq_busy(pwq))) {
5926 			pr_warn("%s: %s has the following busy pwq\n",
5927 				__func__, wq->name);
5928 			show_pwq(pwq);
5929 			raw_spin_unlock_irq(&pwq->pool->lock);
5930 			mutex_unlock(&wq->mutex);
5931 			mutex_unlock(&wq_pool_mutex);
5932 			show_one_workqueue(wq);
5933 			return;
5934 		}
5935 		raw_spin_unlock_irq(&pwq->pool->lock);
5936 	}
5937 	mutex_unlock(&wq->mutex);
5938 
5939 	/*
5940 	 * wq list is used to freeze wq, remove from list after
5941 	 * flushing is complete in case freeze races us.
5942 	 */
5943 	list_del_rcu(&wq->list);
5944 	mutex_unlock(&wq_pool_mutex);
5945 
5946 	/*
5947 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5948 	 * to put the base refs. @wq will be auto-destroyed from the last
5949 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
5950 	 */
5951 	rcu_read_lock();
5952 
5953 	for_each_possible_cpu(cpu) {
5954 		put_pwq_unlocked(unbound_pwq(wq, cpu));
5955 		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5956 	}
5957 
5958 	put_pwq_unlocked(unbound_pwq(wq, -1));
5959 	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5960 
5961 	rcu_read_unlock();
5962 }
5963 EXPORT_SYMBOL_GPL(destroy_workqueue);
5964 
5965 /**
5966  * workqueue_set_max_active - adjust max_active of a workqueue
5967  * @wq: target workqueue
5968  * @max_active: new max_active value.
5969  *
5970  * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5971  * comment.
5972  *
5973  * CONTEXT:
5974  * Don't call from IRQ context.
5975  */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)5976 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5977 {
5978 	/* max_active doesn't mean anything for BH workqueues */
5979 	if (WARN_ON(wq->flags & WQ_BH))
5980 		return;
5981 	/* disallow meddling with max_active for ordered workqueues */
5982 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5983 		return;
5984 
5985 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5986 
5987 	mutex_lock(&wq->mutex);
5988 
5989 	wq->saved_max_active = max_active;
5990 	if (wq->flags & WQ_UNBOUND)
5991 		wq->saved_min_active = min(wq->saved_min_active, max_active);
5992 
5993 	wq_adjust_max_active(wq);
5994 
5995 	mutex_unlock(&wq->mutex);
5996 }
5997 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5998 
5999 /**
6000  * workqueue_set_min_active - adjust min_active of an unbound workqueue
6001  * @wq: target unbound workqueue
6002  * @min_active: new min_active value
6003  *
6004  * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
6005  * unbound workqueue is not guaranteed to be able to process max_active
6006  * interdependent work items. Instead, an unbound workqueue is guaranteed to be
6007  * able to process min_active number of interdependent work items which is
6008  * %WQ_DFL_MIN_ACTIVE by default.
6009  *
6010  * Use this function to adjust the min_active value between 0 and the current
6011  * max_active.
6012  */
workqueue_set_min_active(struct workqueue_struct * wq,int min_active)6013 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
6014 {
6015 	/* min_active is only meaningful for non-ordered unbound workqueues */
6016 	if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
6017 		    WQ_UNBOUND))
6018 		return;
6019 
6020 	mutex_lock(&wq->mutex);
6021 	wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
6022 	wq_adjust_max_active(wq);
6023 	mutex_unlock(&wq->mutex);
6024 }
6025 
6026 /**
6027  * current_work - retrieve %current task's work struct
6028  *
6029  * Determine if %current task is a workqueue worker and what it's working on.
6030  * Useful to find out the context that the %current task is running in.
6031  *
6032  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
6033  */
current_work(void)6034 struct work_struct *current_work(void)
6035 {
6036 	struct worker *worker = current_wq_worker();
6037 
6038 	return worker ? worker->current_work : NULL;
6039 }
6040 EXPORT_SYMBOL(current_work);
6041 
6042 /**
6043  * current_is_workqueue_rescuer - is %current workqueue rescuer?
6044  *
6045  * Determine whether %current is a workqueue rescuer.  Can be used from
6046  * work functions to determine whether it's being run off the rescuer task.
6047  *
6048  * Return: %true if %current is a workqueue rescuer. %false otherwise.
6049  */
current_is_workqueue_rescuer(void)6050 bool current_is_workqueue_rescuer(void)
6051 {
6052 	struct worker *worker = current_wq_worker();
6053 
6054 	return worker && worker->rescue_wq;
6055 }
6056 
6057 /**
6058  * workqueue_congested - test whether a workqueue is congested
6059  * @cpu: CPU in question
6060  * @wq: target workqueue
6061  *
6062  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
6063  * no synchronization around this function and the test result is
6064  * unreliable and only useful as advisory hints or for debugging.
6065  *
6066  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
6067  *
6068  * With the exception of ordered workqueues, all workqueues have per-cpu
6069  * pool_workqueues, each with its own congested state. A workqueue being
6070  * congested on one CPU doesn't mean that the workqueue is contested on any
6071  * other CPUs.
6072  *
6073  * Return:
6074  * %true if congested, %false otherwise.
6075  */
workqueue_congested(int cpu,struct workqueue_struct * wq)6076 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
6077 {
6078 	struct pool_workqueue *pwq;
6079 	bool ret;
6080 
6081 	preempt_disable();
6082 
6083 	if (cpu == WORK_CPU_UNBOUND)
6084 		cpu = smp_processor_id();
6085 
6086 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
6087 	ret = !list_empty(&pwq->inactive_works);
6088 
6089 	preempt_enable();
6090 
6091 	return ret;
6092 }
6093 EXPORT_SYMBOL_GPL(workqueue_congested);
6094 
6095 /**
6096  * work_busy - test whether a work is currently pending or running
6097  * @work: the work to be tested
6098  *
6099  * Test whether @work is currently pending or running.  There is no
6100  * synchronization around this function and the test result is
6101  * unreliable and only useful as advisory hints or for debugging.
6102  *
6103  * Return:
6104  * OR'd bitmask of WORK_BUSY_* bits.
6105  */
work_busy(struct work_struct * work)6106 unsigned int work_busy(struct work_struct *work)
6107 {
6108 	struct worker_pool *pool;
6109 	unsigned long irq_flags;
6110 	unsigned int ret = 0;
6111 
6112 	if (work_pending(work))
6113 		ret |= WORK_BUSY_PENDING;
6114 
6115 	rcu_read_lock();
6116 	pool = get_work_pool(work);
6117 	if (pool) {
6118 		raw_spin_lock_irqsave(&pool->lock, irq_flags);
6119 		if (find_worker_executing_work(pool, work))
6120 			ret |= WORK_BUSY_RUNNING;
6121 		raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6122 	}
6123 	rcu_read_unlock();
6124 
6125 	return ret;
6126 }
6127 EXPORT_SYMBOL_GPL(work_busy);
6128 
6129 /**
6130  * set_worker_desc - set description for the current work item
6131  * @fmt: printf-style format string
6132  * @...: arguments for the format string
6133  *
6134  * This function can be called by a running work function to describe what
6135  * the work item is about.  If the worker task gets dumped, this
6136  * information will be printed out together to help debugging.  The
6137  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6138  */
set_worker_desc(const char * fmt,...)6139 void set_worker_desc(const char *fmt, ...)
6140 {
6141 	struct worker *worker = current_wq_worker();
6142 	va_list args;
6143 
6144 	if (worker) {
6145 		va_start(args, fmt);
6146 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6147 		va_end(args);
6148 	}
6149 }
6150 EXPORT_SYMBOL_GPL(set_worker_desc);
6151 
6152 /**
6153  * print_worker_info - print out worker information and description
6154  * @log_lvl: the log level to use when printing
6155  * @task: target task
6156  *
6157  * If @task is a worker and currently executing a work item, print out the
6158  * name of the workqueue being serviced and worker description set with
6159  * set_worker_desc() by the currently executing work item.
6160  *
6161  * This function can be safely called on any task as long as the
6162  * task_struct itself is accessible.  While safe, this function isn't
6163  * synchronized and may print out mixups or garbages of limited length.
6164  */
print_worker_info(const char * log_lvl,struct task_struct * task)6165 void print_worker_info(const char *log_lvl, struct task_struct *task)
6166 {
6167 	work_func_t *fn = NULL;
6168 	char name[WQ_NAME_LEN] = { };
6169 	char desc[WORKER_DESC_LEN] = { };
6170 	struct pool_workqueue *pwq = NULL;
6171 	struct workqueue_struct *wq = NULL;
6172 	struct worker *worker;
6173 
6174 	if (!(task->flags & PF_WQ_WORKER))
6175 		return;
6176 
6177 	/*
6178 	 * This function is called without any synchronization and @task
6179 	 * could be in any state.  Be careful with dereferences.
6180 	 */
6181 	worker = kthread_probe_data(task);
6182 
6183 	/*
6184 	 * Carefully copy the associated workqueue's workfn, name and desc.
6185 	 * Keep the original last '\0' in case the original is garbage.
6186 	 */
6187 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6188 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6189 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6190 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6191 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
6192 
6193 	if (fn || name[0] || desc[0]) {
6194 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
6195 		if (strcmp(name, desc))
6196 			pr_cont(" (%s)", desc);
6197 		pr_cont("\n");
6198 	}
6199 }
6200 
pr_cont_pool_info(struct worker_pool * pool)6201 static void pr_cont_pool_info(struct worker_pool *pool)
6202 {
6203 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6204 	if (pool->node != NUMA_NO_NODE)
6205 		pr_cont(" node=%d", pool->node);
6206 	pr_cont(" flags=0x%x", pool->flags);
6207 	if (pool->flags & POOL_BH)
6208 		pr_cont(" bh%s",
6209 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6210 	else
6211 		pr_cont(" nice=%d", pool->attrs->nice);
6212 }
6213 
pr_cont_worker_id(struct worker * worker)6214 static void pr_cont_worker_id(struct worker *worker)
6215 {
6216 	struct worker_pool *pool = worker->pool;
6217 
6218 	if (pool->flags & WQ_BH)
6219 		pr_cont("bh%s",
6220 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6221 	else
6222 		pr_cont("%d%s", task_pid_nr(worker->task),
6223 			worker->rescue_wq ? "(RESCUER)" : "");
6224 }
6225 
6226 struct pr_cont_work_struct {
6227 	bool comma;
6228 	work_func_t func;
6229 	long ctr;
6230 };
6231 
pr_cont_work_flush(bool comma,work_func_t func,struct pr_cont_work_struct * pcwsp)6232 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6233 {
6234 	if (!pcwsp->ctr)
6235 		goto out_record;
6236 	if (func == pcwsp->func) {
6237 		pcwsp->ctr++;
6238 		return;
6239 	}
6240 	if (pcwsp->ctr == 1)
6241 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6242 	else
6243 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6244 	pcwsp->ctr = 0;
6245 out_record:
6246 	if ((long)func == -1L)
6247 		return;
6248 	pcwsp->comma = comma;
6249 	pcwsp->func = func;
6250 	pcwsp->ctr = 1;
6251 }
6252 
pr_cont_work(bool comma,struct work_struct * work,struct pr_cont_work_struct * pcwsp)6253 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6254 {
6255 	if (work->func == wq_barrier_func) {
6256 		struct wq_barrier *barr;
6257 
6258 		barr = container_of(work, struct wq_barrier, work);
6259 
6260 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6261 		pr_cont("%s BAR(%d)", comma ? "," : "",
6262 			task_pid_nr(barr->task));
6263 	} else {
6264 		if (!comma)
6265 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6266 		pr_cont_work_flush(comma, work->func, pcwsp);
6267 	}
6268 }
6269 
show_pwq(struct pool_workqueue * pwq)6270 static void show_pwq(struct pool_workqueue *pwq)
6271 {
6272 	struct pr_cont_work_struct pcws = { .ctr = 0, };
6273 	struct worker_pool *pool = pwq->pool;
6274 	struct work_struct *work;
6275 	struct worker *worker;
6276 	bool has_in_flight = false, has_pending = false;
6277 	int bkt;
6278 
6279 	pr_info("  pwq %d:", pool->id);
6280 	pr_cont_pool_info(pool);
6281 
6282 	pr_cont(" active=%d refcnt=%d%s\n",
6283 		pwq->nr_active, pwq->refcnt,
6284 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6285 
6286 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6287 		if (worker->current_pwq == pwq) {
6288 			has_in_flight = true;
6289 			break;
6290 		}
6291 	}
6292 	if (has_in_flight) {
6293 		bool comma = false;
6294 
6295 		pr_info("    in-flight:");
6296 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6297 			if (worker->current_pwq != pwq)
6298 				continue;
6299 
6300 			pr_cont(" %s", comma ? "," : "");
6301 			pr_cont_worker_id(worker);
6302 			pr_cont(":%ps", worker->current_func);
6303 			list_for_each_entry(work, &worker->scheduled, entry)
6304 				pr_cont_work(false, work, &pcws);
6305 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6306 			comma = true;
6307 		}
6308 		pr_cont("\n");
6309 	}
6310 
6311 	list_for_each_entry(work, &pool->worklist, entry) {
6312 		if (get_work_pwq(work) == pwq) {
6313 			has_pending = true;
6314 			break;
6315 		}
6316 	}
6317 	if (has_pending) {
6318 		bool comma = false;
6319 
6320 		pr_info("    pending:");
6321 		list_for_each_entry(work, &pool->worklist, entry) {
6322 			if (get_work_pwq(work) != pwq)
6323 				continue;
6324 
6325 			pr_cont_work(comma, work, &pcws);
6326 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6327 		}
6328 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6329 		pr_cont("\n");
6330 	}
6331 
6332 	if (!list_empty(&pwq->inactive_works)) {
6333 		bool comma = false;
6334 
6335 		pr_info("    inactive:");
6336 		list_for_each_entry(work, &pwq->inactive_works, entry) {
6337 			pr_cont_work(comma, work, &pcws);
6338 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6339 		}
6340 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6341 		pr_cont("\n");
6342 	}
6343 }
6344 
6345 /**
6346  * show_one_workqueue - dump state of specified workqueue
6347  * @wq: workqueue whose state will be printed
6348  */
show_one_workqueue(struct workqueue_struct * wq)6349 void show_one_workqueue(struct workqueue_struct *wq)
6350 {
6351 	struct pool_workqueue *pwq;
6352 	bool idle = true;
6353 	unsigned long irq_flags;
6354 
6355 	for_each_pwq(pwq, wq) {
6356 		if (!pwq_is_empty(pwq)) {
6357 			idle = false;
6358 			break;
6359 		}
6360 	}
6361 	if (idle) /* Nothing to print for idle workqueue */
6362 		return;
6363 
6364 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6365 
6366 	for_each_pwq(pwq, wq) {
6367 		raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6368 		if (!pwq_is_empty(pwq)) {
6369 			/*
6370 			 * Defer printing to avoid deadlocks in console
6371 			 * drivers that queue work while holding locks
6372 			 * also taken in their write paths.
6373 			 */
6374 			printk_deferred_enter();
6375 			show_pwq(pwq);
6376 			printk_deferred_exit();
6377 		}
6378 		raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6379 		/*
6380 		 * We could be printing a lot from atomic context, e.g.
6381 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
6382 		 * hard lockup.
6383 		 */
6384 		touch_nmi_watchdog();
6385 	}
6386 
6387 }
6388 
6389 /**
6390  * show_one_worker_pool - dump state of specified worker pool
6391  * @pool: worker pool whose state will be printed
6392  */
show_one_worker_pool(struct worker_pool * pool)6393 static void show_one_worker_pool(struct worker_pool *pool)
6394 {
6395 	struct worker *worker;
6396 	bool first = true;
6397 	unsigned long irq_flags;
6398 	unsigned long hung = 0;
6399 
6400 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
6401 	if (pool->nr_workers == pool->nr_idle)
6402 		goto next_pool;
6403 
6404 	/* How long the first pending work is waiting for a worker. */
6405 	if (!list_empty(&pool->worklist))
6406 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6407 
6408 	/*
6409 	 * Defer printing to avoid deadlocks in console drivers that
6410 	 * queue work while holding locks also taken in their write
6411 	 * paths.
6412 	 */
6413 	printk_deferred_enter();
6414 	pr_info("pool %d:", pool->id);
6415 	pr_cont_pool_info(pool);
6416 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6417 	if (pool->manager)
6418 		pr_cont(" manager: %d",
6419 			task_pid_nr(pool->manager->task));
6420 	list_for_each_entry(worker, &pool->idle_list, entry) {
6421 		pr_cont(" %s", first ? "idle: " : "");
6422 		pr_cont_worker_id(worker);
6423 		first = false;
6424 	}
6425 	pr_cont("\n");
6426 	printk_deferred_exit();
6427 next_pool:
6428 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6429 	/*
6430 	 * We could be printing a lot from atomic context, e.g.
6431 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
6432 	 * hard lockup.
6433 	 */
6434 	touch_nmi_watchdog();
6435 
6436 }
6437 
6438 /**
6439  * show_all_workqueues - dump workqueue state
6440  *
6441  * Called from a sysrq handler and prints out all busy workqueues and pools.
6442  */
show_all_workqueues(void)6443 void show_all_workqueues(void)
6444 {
6445 	struct workqueue_struct *wq;
6446 	struct worker_pool *pool;
6447 	int pi;
6448 
6449 	rcu_read_lock();
6450 
6451 	pr_info("Showing busy workqueues and worker pools:\n");
6452 
6453 	list_for_each_entry_rcu(wq, &workqueues, list)
6454 		show_one_workqueue(wq);
6455 
6456 	for_each_pool(pool, pi)
6457 		show_one_worker_pool(pool);
6458 
6459 	rcu_read_unlock();
6460 }
6461 
6462 /**
6463  * show_freezable_workqueues - dump freezable workqueue state
6464  *
6465  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6466  * still busy.
6467  */
show_freezable_workqueues(void)6468 void show_freezable_workqueues(void)
6469 {
6470 	struct workqueue_struct *wq;
6471 
6472 	rcu_read_lock();
6473 
6474 	pr_info("Showing freezable workqueues that are still busy:\n");
6475 
6476 	list_for_each_entry_rcu(wq, &workqueues, list) {
6477 		if (!(wq->flags & WQ_FREEZABLE))
6478 			continue;
6479 		show_one_workqueue(wq);
6480 	}
6481 
6482 	rcu_read_unlock();
6483 }
6484 
6485 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)6486 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6487 {
6488 	/* stabilize PF_WQ_WORKER and worker pool association */
6489 	mutex_lock(&wq_pool_attach_mutex);
6490 
6491 	if (task->flags & PF_WQ_WORKER) {
6492 		struct worker *worker = kthread_data(task);
6493 		struct worker_pool *pool = worker->pool;
6494 		int off;
6495 
6496 		off = format_worker_id(buf, size, worker, pool);
6497 
6498 		if (pool) {
6499 			raw_spin_lock_irq(&pool->lock);
6500 			/*
6501 			 * ->desc tracks information (wq name or
6502 			 * set_worker_desc()) for the latest execution.  If
6503 			 * current, prepend '+', otherwise '-'.
6504 			 */
6505 			if (worker->desc[0] != '\0') {
6506 				if (worker->current_work)
6507 					scnprintf(buf + off, size - off, "+%s",
6508 						  worker->desc);
6509 				else
6510 					scnprintf(buf + off, size - off, "-%s",
6511 						  worker->desc);
6512 			}
6513 			raw_spin_unlock_irq(&pool->lock);
6514 		}
6515 	} else {
6516 		strscpy(buf, task->comm, size);
6517 	}
6518 
6519 	mutex_unlock(&wq_pool_attach_mutex);
6520 }
6521 
6522 #ifdef CONFIG_SMP
6523 
6524 /*
6525  * CPU hotplug.
6526  *
6527  * There are two challenges in supporting CPU hotplug.  Firstly, there
6528  * are a lot of assumptions on strong associations among work, pwq and
6529  * pool which make migrating pending and scheduled works very
6530  * difficult to implement without impacting hot paths.  Secondly,
6531  * worker pools serve mix of short, long and very long running works making
6532  * blocked draining impractical.
6533  *
6534  * This is solved by allowing the pools to be disassociated from the CPU
6535  * running as an unbound one and allowing it to be reattached later if the
6536  * cpu comes back online.
6537  */
6538 
unbind_workers(int cpu)6539 static void unbind_workers(int cpu)
6540 {
6541 	struct worker_pool *pool;
6542 	struct worker *worker;
6543 
6544 	for_each_cpu_worker_pool(pool, cpu) {
6545 		mutex_lock(&wq_pool_attach_mutex);
6546 		raw_spin_lock_irq(&pool->lock);
6547 
6548 		/*
6549 		 * We've blocked all attach/detach operations. Make all workers
6550 		 * unbound and set DISASSOCIATED.  Before this, all workers
6551 		 * must be on the cpu.  After this, they may become diasporas.
6552 		 * And the preemption disabled section in their sched callbacks
6553 		 * are guaranteed to see WORKER_UNBOUND since the code here
6554 		 * is on the same cpu.
6555 		 */
6556 		for_each_pool_worker(worker, pool)
6557 			worker->flags |= WORKER_UNBOUND;
6558 
6559 		pool->flags |= POOL_DISASSOCIATED;
6560 
6561 		/*
6562 		 * The handling of nr_running in sched callbacks are disabled
6563 		 * now.  Zap nr_running.  After this, nr_running stays zero and
6564 		 * need_more_worker() and keep_working() are always true as
6565 		 * long as the worklist is not empty.  This pool now behaves as
6566 		 * an unbound (in terms of concurrency management) pool which
6567 		 * are served by workers tied to the pool.
6568 		 */
6569 		pool->nr_running = 0;
6570 
6571 		/*
6572 		 * With concurrency management just turned off, a busy
6573 		 * worker blocking could lead to lengthy stalls.  Kick off
6574 		 * unbound chain execution of currently pending work items.
6575 		 */
6576 		kick_pool(pool);
6577 
6578 		raw_spin_unlock_irq(&pool->lock);
6579 
6580 		for_each_pool_worker(worker, pool)
6581 			unbind_worker(worker);
6582 
6583 		mutex_unlock(&wq_pool_attach_mutex);
6584 	}
6585 }
6586 
6587 /**
6588  * rebind_workers - rebind all workers of a pool to the associated CPU
6589  * @pool: pool of interest
6590  *
6591  * @pool->cpu is coming online.  Rebind all workers to the CPU.
6592  */
rebind_workers(struct worker_pool * pool)6593 static void rebind_workers(struct worker_pool *pool)
6594 {
6595 	struct worker *worker;
6596 
6597 	lockdep_assert_held(&wq_pool_attach_mutex);
6598 
6599 	/*
6600 	 * Restore CPU affinity of all workers.  As all idle workers should
6601 	 * be on the run-queue of the associated CPU before any local
6602 	 * wake-ups for concurrency management happen, restore CPU affinity
6603 	 * of all workers first and then clear UNBOUND.  As we're called
6604 	 * from CPU_ONLINE, the following shouldn't fail.
6605 	 */
6606 	for_each_pool_worker(worker, pool) {
6607 		kthread_set_per_cpu(worker->task, pool->cpu);
6608 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6609 						  pool_allowed_cpus(pool)) < 0);
6610 	}
6611 
6612 	raw_spin_lock_irq(&pool->lock);
6613 
6614 	pool->flags &= ~POOL_DISASSOCIATED;
6615 
6616 	for_each_pool_worker(worker, pool) {
6617 		unsigned int worker_flags = worker->flags;
6618 
6619 		/*
6620 		 * We want to clear UNBOUND but can't directly call
6621 		 * worker_clr_flags() or adjust nr_running.  Atomically
6622 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6623 		 * @worker will clear REBOUND using worker_clr_flags() when
6624 		 * it initiates the next execution cycle thus restoring
6625 		 * concurrency management.  Note that when or whether
6626 		 * @worker clears REBOUND doesn't affect correctness.
6627 		 *
6628 		 * WRITE_ONCE() is necessary because @worker->flags may be
6629 		 * tested without holding any lock in
6630 		 * wq_worker_running().  Without it, NOT_RUNNING test may
6631 		 * fail incorrectly leading to premature concurrency
6632 		 * management operations.
6633 		 */
6634 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6635 		worker_flags |= WORKER_REBOUND;
6636 		worker_flags &= ~WORKER_UNBOUND;
6637 		WRITE_ONCE(worker->flags, worker_flags);
6638 	}
6639 
6640 	raw_spin_unlock_irq(&pool->lock);
6641 }
6642 
6643 /**
6644  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6645  * @pool: unbound pool of interest
6646  * @cpu: the CPU which is coming up
6647  *
6648  * An unbound pool may end up with a cpumask which doesn't have any online
6649  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6650  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6651  * online CPU before, cpus_allowed of all its workers should be restored.
6652  */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)6653 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6654 {
6655 	static cpumask_t cpumask;
6656 	struct worker *worker;
6657 
6658 	lockdep_assert_held(&wq_pool_attach_mutex);
6659 
6660 	/* is @cpu allowed for @pool? */
6661 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6662 		return;
6663 
6664 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6665 
6666 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6667 	for_each_pool_worker(worker, pool)
6668 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6669 }
6670 
workqueue_prepare_cpu(unsigned int cpu)6671 int workqueue_prepare_cpu(unsigned int cpu)
6672 {
6673 	struct worker_pool *pool;
6674 
6675 	for_each_cpu_worker_pool(pool, cpu) {
6676 		if (pool->nr_workers)
6677 			continue;
6678 		if (!create_worker(pool))
6679 			return -ENOMEM;
6680 	}
6681 	return 0;
6682 }
6683 
workqueue_online_cpu(unsigned int cpu)6684 int workqueue_online_cpu(unsigned int cpu)
6685 {
6686 	struct worker_pool *pool;
6687 	struct workqueue_struct *wq;
6688 	int pi;
6689 
6690 	mutex_lock(&wq_pool_mutex);
6691 
6692 	cpumask_set_cpu(cpu, wq_online_cpumask);
6693 
6694 	for_each_pool(pool, pi) {
6695 		/* BH pools aren't affected by hotplug */
6696 		if (pool->flags & POOL_BH)
6697 			continue;
6698 
6699 		mutex_lock(&wq_pool_attach_mutex);
6700 		if (pool->cpu == cpu)
6701 			rebind_workers(pool);
6702 		else if (pool->cpu < 0)
6703 			restore_unbound_workers_cpumask(pool, cpu);
6704 		mutex_unlock(&wq_pool_attach_mutex);
6705 	}
6706 
6707 	/* update pod affinity of unbound workqueues */
6708 	list_for_each_entry(wq, &workqueues, list) {
6709 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6710 
6711 		if (attrs) {
6712 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6713 			int tcpu;
6714 
6715 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6716 				unbound_wq_update_pwq(wq, tcpu);
6717 
6718 			mutex_lock(&wq->mutex);
6719 			wq_update_node_max_active(wq, -1);
6720 			mutex_unlock(&wq->mutex);
6721 		}
6722 	}
6723 
6724 	mutex_unlock(&wq_pool_mutex);
6725 	return 0;
6726 }
6727 
workqueue_offline_cpu(unsigned int cpu)6728 int workqueue_offline_cpu(unsigned int cpu)
6729 {
6730 	struct workqueue_struct *wq;
6731 
6732 	/* unbinding per-cpu workers should happen on the local CPU */
6733 	if (WARN_ON(cpu != smp_processor_id()))
6734 		return -1;
6735 
6736 	unbind_workers(cpu);
6737 
6738 	/* update pod affinity of unbound workqueues */
6739 	mutex_lock(&wq_pool_mutex);
6740 
6741 	cpumask_clear_cpu(cpu, wq_online_cpumask);
6742 
6743 	list_for_each_entry(wq, &workqueues, list) {
6744 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6745 
6746 		if (attrs) {
6747 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6748 			int tcpu;
6749 
6750 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6751 				unbound_wq_update_pwq(wq, tcpu);
6752 
6753 			mutex_lock(&wq->mutex);
6754 			wq_update_node_max_active(wq, cpu);
6755 			mutex_unlock(&wq->mutex);
6756 		}
6757 	}
6758 	mutex_unlock(&wq_pool_mutex);
6759 
6760 	return 0;
6761 }
6762 
6763 struct work_for_cpu {
6764 	struct work_struct work;
6765 	long (*fn)(void *);
6766 	void *arg;
6767 	long ret;
6768 };
6769 
work_for_cpu_fn(struct work_struct * work)6770 static void work_for_cpu_fn(struct work_struct *work)
6771 {
6772 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6773 
6774 	wfc->ret = wfc->fn(wfc->arg);
6775 }
6776 
6777 /**
6778  * work_on_cpu_key - run a function in thread context on a particular cpu
6779  * @cpu: the cpu to run on
6780  * @fn: the function to run
6781  * @arg: the function arg
6782  * @key: The lock class key for lock debugging purposes
6783  *
6784  * It is up to the caller to ensure that the cpu doesn't go offline.
6785  * The caller must not hold any locks which would prevent @fn from completing.
6786  *
6787  * Return: The value @fn returns.
6788  */
work_on_cpu_key(int cpu,long (* fn)(void *),void * arg,struct lock_class_key * key)6789 long work_on_cpu_key(int cpu, long (*fn)(void *),
6790 		     void *arg, struct lock_class_key *key)
6791 {
6792 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6793 
6794 	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6795 	schedule_work_on(cpu, &wfc.work);
6796 	flush_work(&wfc.work);
6797 	destroy_work_on_stack(&wfc.work);
6798 	return wfc.ret;
6799 }
6800 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6801 #endif /* CONFIG_SMP */
6802 
6803 #ifdef CONFIG_FREEZER
6804 
6805 /**
6806  * freeze_workqueues_begin - begin freezing workqueues
6807  *
6808  * Start freezing workqueues.  After this function returns, all freezable
6809  * workqueues will queue new works to their inactive_works list instead of
6810  * pool->worklist.
6811  *
6812  * CONTEXT:
6813  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6814  */
freeze_workqueues_begin(void)6815 void freeze_workqueues_begin(void)
6816 {
6817 	struct workqueue_struct *wq;
6818 
6819 	mutex_lock(&wq_pool_mutex);
6820 
6821 	WARN_ON_ONCE(workqueue_freezing);
6822 	workqueue_freezing = true;
6823 
6824 	list_for_each_entry(wq, &workqueues, list) {
6825 		mutex_lock(&wq->mutex);
6826 		wq_adjust_max_active(wq);
6827 		mutex_unlock(&wq->mutex);
6828 	}
6829 
6830 	mutex_unlock(&wq_pool_mutex);
6831 }
6832 
6833 /**
6834  * freeze_workqueues_busy - are freezable workqueues still busy?
6835  *
6836  * Check whether freezing is complete.  This function must be called
6837  * between freeze_workqueues_begin() and thaw_workqueues().
6838  *
6839  * CONTEXT:
6840  * Grabs and releases wq_pool_mutex.
6841  *
6842  * Return:
6843  * %true if some freezable workqueues are still busy.  %false if freezing
6844  * is complete.
6845  */
freeze_workqueues_busy(void)6846 bool freeze_workqueues_busy(void)
6847 {
6848 	bool busy = false;
6849 	struct workqueue_struct *wq;
6850 	struct pool_workqueue *pwq;
6851 
6852 	mutex_lock(&wq_pool_mutex);
6853 
6854 	WARN_ON_ONCE(!workqueue_freezing);
6855 
6856 	list_for_each_entry(wq, &workqueues, list) {
6857 		if (!(wq->flags & WQ_FREEZABLE))
6858 			continue;
6859 		/*
6860 		 * nr_active is monotonically decreasing.  It's safe
6861 		 * to peek without lock.
6862 		 */
6863 		rcu_read_lock();
6864 		for_each_pwq(pwq, wq) {
6865 			WARN_ON_ONCE(pwq->nr_active < 0);
6866 			if (pwq->nr_active) {
6867 				busy = true;
6868 				rcu_read_unlock();
6869 				goto out_unlock;
6870 			}
6871 		}
6872 		rcu_read_unlock();
6873 	}
6874 out_unlock:
6875 	mutex_unlock(&wq_pool_mutex);
6876 	return busy;
6877 }
6878 
6879 /**
6880  * thaw_workqueues - thaw workqueues
6881  *
6882  * Thaw workqueues.  Normal queueing is restored and all collected
6883  * frozen works are transferred to their respective pool worklists.
6884  *
6885  * CONTEXT:
6886  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6887  */
thaw_workqueues(void)6888 void thaw_workqueues(void)
6889 {
6890 	struct workqueue_struct *wq;
6891 
6892 	mutex_lock(&wq_pool_mutex);
6893 
6894 	if (!workqueue_freezing)
6895 		goto out_unlock;
6896 
6897 	workqueue_freezing = false;
6898 
6899 	/* restore max_active and repopulate worklist */
6900 	list_for_each_entry(wq, &workqueues, list) {
6901 		mutex_lock(&wq->mutex);
6902 		wq_adjust_max_active(wq);
6903 		mutex_unlock(&wq->mutex);
6904 	}
6905 
6906 out_unlock:
6907 	mutex_unlock(&wq_pool_mutex);
6908 }
6909 #endif /* CONFIG_FREEZER */
6910 
workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)6911 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6912 {
6913 	LIST_HEAD(ctxs);
6914 	int ret = 0;
6915 	struct workqueue_struct *wq;
6916 	struct apply_wqattrs_ctx *ctx, *n;
6917 
6918 	lockdep_assert_held(&wq_pool_mutex);
6919 
6920 	list_for_each_entry(wq, &workqueues, list) {
6921 		if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6922 			continue;
6923 
6924 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6925 		if (IS_ERR(ctx)) {
6926 			ret = PTR_ERR(ctx);
6927 			break;
6928 		}
6929 
6930 		list_add_tail(&ctx->list, &ctxs);
6931 	}
6932 
6933 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6934 		if (!ret)
6935 			apply_wqattrs_commit(ctx);
6936 		apply_wqattrs_cleanup(ctx);
6937 	}
6938 
6939 	if (!ret) {
6940 		mutex_lock(&wq_pool_attach_mutex);
6941 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6942 		mutex_unlock(&wq_pool_attach_mutex);
6943 	}
6944 	return ret;
6945 }
6946 
6947 /**
6948  * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6949  * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6950  *
6951  * This function can be called from cpuset code to provide a set of isolated
6952  * CPUs that should be excluded from wq_unbound_cpumask.
6953  */
workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)6954 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6955 {
6956 	cpumask_var_t cpumask;
6957 	int ret = 0;
6958 
6959 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6960 		return -ENOMEM;
6961 
6962 	mutex_lock(&wq_pool_mutex);
6963 
6964 	/*
6965 	 * If the operation fails, it will fall back to
6966 	 * wq_requested_unbound_cpumask which is initially set to
6967 	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6968 	 * by any subsequent write to workqueue/cpumask sysfs file.
6969 	 */
6970 	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6971 		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6972 	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6973 		ret = workqueue_apply_unbound_cpumask(cpumask);
6974 
6975 	/* Save the current isolated cpumask & export it via sysfs */
6976 	if (!ret)
6977 		cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6978 
6979 	mutex_unlock(&wq_pool_mutex);
6980 	free_cpumask_var(cpumask);
6981 	return ret;
6982 }
6983 
parse_affn_scope(const char * val)6984 static int parse_affn_scope(const char *val)
6985 {
6986 	int i;
6987 
6988 	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6989 		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6990 			return i;
6991 	}
6992 	return -EINVAL;
6993 }
6994 
wq_affn_dfl_set(const char * val,const struct kernel_param * kp)6995 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6996 {
6997 	struct workqueue_struct *wq;
6998 	int affn, cpu;
6999 
7000 	affn = parse_affn_scope(val);
7001 	if (affn < 0)
7002 		return affn;
7003 	if (affn == WQ_AFFN_DFL)
7004 		return -EINVAL;
7005 
7006 	cpus_read_lock();
7007 	mutex_lock(&wq_pool_mutex);
7008 
7009 	wq_affn_dfl = affn;
7010 
7011 	list_for_each_entry(wq, &workqueues, list) {
7012 		for_each_online_cpu(cpu)
7013 			unbound_wq_update_pwq(wq, cpu);
7014 	}
7015 
7016 	mutex_unlock(&wq_pool_mutex);
7017 	cpus_read_unlock();
7018 
7019 	return 0;
7020 }
7021 
wq_affn_dfl_get(char * buffer,const struct kernel_param * kp)7022 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
7023 {
7024 	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
7025 }
7026 
7027 static const struct kernel_param_ops wq_affn_dfl_ops = {
7028 	.set	= wq_affn_dfl_set,
7029 	.get	= wq_affn_dfl_get,
7030 };
7031 
7032 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
7033 
7034 #ifdef CONFIG_SYSFS
7035 /*
7036  * Workqueues with WQ_SYSFS flag set is visible to userland via
7037  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
7038  * following attributes.
7039  *
7040  *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
7041  *  max_active		RW int	: maximum number of in-flight work items
7042  *
7043  * Unbound workqueues have the following extra attributes.
7044  *
7045  *  nice		RW int	: nice value of the workers
7046  *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
7047  *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
7048  *  affinity_strict	RW bool : worker CPU affinity is strict
7049  */
7050 struct wq_device {
7051 	struct workqueue_struct		*wq;
7052 	struct device			dev;
7053 };
7054 
dev_to_wq(struct device * dev)7055 static struct workqueue_struct *dev_to_wq(struct device *dev)
7056 {
7057 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7058 
7059 	return wq_dev->wq;
7060 }
7061 
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)7062 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
7063 			    char *buf)
7064 {
7065 	struct workqueue_struct *wq = dev_to_wq(dev);
7066 
7067 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
7068 }
7069 static DEVICE_ATTR_RO(per_cpu);
7070 
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)7071 static ssize_t max_active_show(struct device *dev,
7072 			       struct device_attribute *attr, char *buf)
7073 {
7074 	struct workqueue_struct *wq = dev_to_wq(dev);
7075 
7076 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
7077 }
7078 
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7079 static ssize_t max_active_store(struct device *dev,
7080 				struct device_attribute *attr, const char *buf,
7081 				size_t count)
7082 {
7083 	struct workqueue_struct *wq = dev_to_wq(dev);
7084 	int val;
7085 
7086 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
7087 		return -EINVAL;
7088 
7089 	workqueue_set_max_active(wq, val);
7090 	return count;
7091 }
7092 static DEVICE_ATTR_RW(max_active);
7093 
7094 static struct attribute *wq_sysfs_attrs[] = {
7095 	&dev_attr_per_cpu.attr,
7096 	&dev_attr_max_active.attr,
7097 	NULL,
7098 };
7099 ATTRIBUTE_GROUPS(wq_sysfs);
7100 
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)7101 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
7102 			    char *buf)
7103 {
7104 	struct workqueue_struct *wq = dev_to_wq(dev);
7105 	int written;
7106 
7107 	mutex_lock(&wq->mutex);
7108 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7109 	mutex_unlock(&wq->mutex);
7110 
7111 	return written;
7112 }
7113 
7114 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)7115 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7116 {
7117 	struct workqueue_attrs *attrs;
7118 
7119 	lockdep_assert_held(&wq_pool_mutex);
7120 
7121 	attrs = alloc_workqueue_attrs();
7122 	if (!attrs)
7123 		return NULL;
7124 
7125 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
7126 	return attrs;
7127 }
7128 
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7129 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7130 			     const char *buf, size_t count)
7131 {
7132 	struct workqueue_struct *wq = dev_to_wq(dev);
7133 	struct workqueue_attrs *attrs;
7134 	int ret = -ENOMEM;
7135 
7136 	apply_wqattrs_lock();
7137 
7138 	attrs = wq_sysfs_prep_attrs(wq);
7139 	if (!attrs)
7140 		goto out_unlock;
7141 
7142 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7143 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
7144 		ret = apply_workqueue_attrs_locked(wq, attrs);
7145 	else
7146 		ret = -EINVAL;
7147 
7148 out_unlock:
7149 	apply_wqattrs_unlock();
7150 	free_workqueue_attrs(attrs);
7151 	return ret ?: count;
7152 }
7153 
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7154 static ssize_t wq_cpumask_show(struct device *dev,
7155 			       struct device_attribute *attr, char *buf)
7156 {
7157 	struct workqueue_struct *wq = dev_to_wq(dev);
7158 	int written;
7159 
7160 	mutex_lock(&wq->mutex);
7161 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7162 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
7163 	mutex_unlock(&wq->mutex);
7164 	return written;
7165 }
7166 
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7167 static ssize_t wq_cpumask_store(struct device *dev,
7168 				struct device_attribute *attr,
7169 				const char *buf, size_t count)
7170 {
7171 	struct workqueue_struct *wq = dev_to_wq(dev);
7172 	struct workqueue_attrs *attrs;
7173 	int ret = -ENOMEM;
7174 
7175 	apply_wqattrs_lock();
7176 
7177 	attrs = wq_sysfs_prep_attrs(wq);
7178 	if (!attrs)
7179 		goto out_unlock;
7180 
7181 	ret = cpumask_parse(buf, attrs->cpumask);
7182 	if (!ret)
7183 		ret = apply_workqueue_attrs_locked(wq, attrs);
7184 
7185 out_unlock:
7186 	apply_wqattrs_unlock();
7187 	free_workqueue_attrs(attrs);
7188 	return ret ?: count;
7189 }
7190 
wq_affn_scope_show(struct device * dev,struct device_attribute * attr,char * buf)7191 static ssize_t wq_affn_scope_show(struct device *dev,
7192 				  struct device_attribute *attr, char *buf)
7193 {
7194 	struct workqueue_struct *wq = dev_to_wq(dev);
7195 	int written;
7196 
7197 	mutex_lock(&wq->mutex);
7198 	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7199 		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7200 				    wq_affn_names[WQ_AFFN_DFL],
7201 				    wq_affn_names[wq_affn_dfl]);
7202 	else
7203 		written = scnprintf(buf, PAGE_SIZE, "%s\n",
7204 				    wq_affn_names[wq->unbound_attrs->affn_scope]);
7205 	mutex_unlock(&wq->mutex);
7206 
7207 	return written;
7208 }
7209 
wq_affn_scope_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7210 static ssize_t wq_affn_scope_store(struct device *dev,
7211 				   struct device_attribute *attr,
7212 				   const char *buf, size_t count)
7213 {
7214 	struct workqueue_struct *wq = dev_to_wq(dev);
7215 	struct workqueue_attrs *attrs;
7216 	int affn, ret = -ENOMEM;
7217 
7218 	affn = parse_affn_scope(buf);
7219 	if (affn < 0)
7220 		return affn;
7221 
7222 	apply_wqattrs_lock();
7223 	attrs = wq_sysfs_prep_attrs(wq);
7224 	if (attrs) {
7225 		attrs->affn_scope = affn;
7226 		ret = apply_workqueue_attrs_locked(wq, attrs);
7227 	}
7228 	apply_wqattrs_unlock();
7229 	free_workqueue_attrs(attrs);
7230 	return ret ?: count;
7231 }
7232 
wq_affinity_strict_show(struct device * dev,struct device_attribute * attr,char * buf)7233 static ssize_t wq_affinity_strict_show(struct device *dev,
7234 				       struct device_attribute *attr, char *buf)
7235 {
7236 	struct workqueue_struct *wq = dev_to_wq(dev);
7237 
7238 	return scnprintf(buf, PAGE_SIZE, "%d\n",
7239 			 wq->unbound_attrs->affn_strict);
7240 }
7241 
wq_affinity_strict_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7242 static ssize_t wq_affinity_strict_store(struct device *dev,
7243 					struct device_attribute *attr,
7244 					const char *buf, size_t count)
7245 {
7246 	struct workqueue_struct *wq = dev_to_wq(dev);
7247 	struct workqueue_attrs *attrs;
7248 	int v, ret = -ENOMEM;
7249 
7250 	if (sscanf(buf, "%d", &v) != 1)
7251 		return -EINVAL;
7252 
7253 	apply_wqattrs_lock();
7254 	attrs = wq_sysfs_prep_attrs(wq);
7255 	if (attrs) {
7256 		attrs->affn_strict = (bool)v;
7257 		ret = apply_workqueue_attrs_locked(wq, attrs);
7258 	}
7259 	apply_wqattrs_unlock();
7260 	free_workqueue_attrs(attrs);
7261 	return ret ?: count;
7262 }
7263 
7264 static struct device_attribute wq_sysfs_unbound_attrs[] = {
7265 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7266 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7267 	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7268 	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7269 	__ATTR_NULL,
7270 };
7271 
7272 static const struct bus_type wq_subsys = {
7273 	.name				= "workqueue",
7274 	.dev_groups			= wq_sysfs_groups,
7275 };
7276 
7277 /**
7278  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7279  *  @cpumask: the cpumask to set
7280  *
7281  *  The low-level workqueues cpumask is a global cpumask that limits
7282  *  the affinity of all unbound workqueues.  This function check the @cpumask
7283  *  and apply it to all unbound workqueues and updates all pwqs of them.
7284  *
7285  *  Return:	0	- Success
7286  *		-EINVAL	- Invalid @cpumask
7287  *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
7288  */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)7289 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7290 {
7291 	int ret = -EINVAL;
7292 
7293 	/*
7294 	 * Not excluding isolated cpus on purpose.
7295 	 * If the user wishes to include them, we allow that.
7296 	 */
7297 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
7298 	if (!cpumask_empty(cpumask)) {
7299 		ret = 0;
7300 		apply_wqattrs_lock();
7301 		if (!cpumask_equal(cpumask, wq_unbound_cpumask))
7302 			ret = workqueue_apply_unbound_cpumask(cpumask);
7303 		if (!ret)
7304 			cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7305 		apply_wqattrs_unlock();
7306 	}
7307 
7308 	return ret;
7309 }
7310 
__wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf,cpumask_var_t mask)7311 static ssize_t __wq_cpumask_show(struct device *dev,
7312 		struct device_attribute *attr, char *buf, cpumask_var_t mask)
7313 {
7314 	int written;
7315 
7316 	mutex_lock(&wq_pool_mutex);
7317 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7318 	mutex_unlock(&wq_pool_mutex);
7319 
7320 	return written;
7321 }
7322 
cpumask_requested_show(struct device * dev,struct device_attribute * attr,char * buf)7323 static ssize_t cpumask_requested_show(struct device *dev,
7324 		struct device_attribute *attr, char *buf)
7325 {
7326 	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7327 }
7328 static DEVICE_ATTR_RO(cpumask_requested);
7329 
cpumask_isolated_show(struct device * dev,struct device_attribute * attr,char * buf)7330 static ssize_t cpumask_isolated_show(struct device *dev,
7331 		struct device_attribute *attr, char *buf)
7332 {
7333 	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7334 }
7335 static DEVICE_ATTR_RO(cpumask_isolated);
7336 
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7337 static ssize_t cpumask_show(struct device *dev,
7338 		struct device_attribute *attr, char *buf)
7339 {
7340 	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7341 }
7342 
cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7343 static ssize_t cpumask_store(struct device *dev,
7344 		struct device_attribute *attr, const char *buf, size_t count)
7345 {
7346 	cpumask_var_t cpumask;
7347 	int ret;
7348 
7349 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7350 		return -ENOMEM;
7351 
7352 	ret = cpumask_parse(buf, cpumask);
7353 	if (!ret)
7354 		ret = workqueue_set_unbound_cpumask(cpumask);
7355 
7356 	free_cpumask_var(cpumask);
7357 	return ret ? ret : count;
7358 }
7359 static DEVICE_ATTR_RW(cpumask);
7360 
7361 static struct attribute *wq_sysfs_cpumask_attrs[] = {
7362 	&dev_attr_cpumask.attr,
7363 	&dev_attr_cpumask_requested.attr,
7364 	&dev_attr_cpumask_isolated.attr,
7365 	NULL,
7366 };
7367 ATTRIBUTE_GROUPS(wq_sysfs_cpumask);
7368 
wq_sysfs_init(void)7369 static int __init wq_sysfs_init(void)
7370 {
7371 	return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups);
7372 }
7373 core_initcall(wq_sysfs_init);
7374 
wq_device_release(struct device * dev)7375 static void wq_device_release(struct device *dev)
7376 {
7377 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7378 
7379 	kfree(wq_dev);
7380 }
7381 
7382 /**
7383  * workqueue_sysfs_register - make a workqueue visible in sysfs
7384  * @wq: the workqueue to register
7385  *
7386  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7387  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7388  * which is the preferred method.
7389  *
7390  * Workqueue user should use this function directly iff it wants to apply
7391  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7392  * apply_workqueue_attrs() may race against userland updating the
7393  * attributes.
7394  *
7395  * Return: 0 on success, -errno on failure.
7396  */
workqueue_sysfs_register(struct workqueue_struct * wq)7397 int workqueue_sysfs_register(struct workqueue_struct *wq)
7398 {
7399 	struct wq_device *wq_dev;
7400 	int ret;
7401 
7402 	/*
7403 	 * Adjusting max_active breaks ordering guarantee.  Disallow exposing
7404 	 * ordered workqueues.
7405 	 */
7406 	if (WARN_ON(wq->flags & __WQ_ORDERED))
7407 		return -EINVAL;
7408 
7409 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7410 	if (!wq_dev)
7411 		return -ENOMEM;
7412 
7413 	wq_dev->wq = wq;
7414 	wq_dev->dev.bus = &wq_subsys;
7415 	wq_dev->dev.release = wq_device_release;
7416 	dev_set_name(&wq_dev->dev, "%s", wq->name);
7417 
7418 	/*
7419 	 * unbound_attrs are created separately.  Suppress uevent until
7420 	 * everything is ready.
7421 	 */
7422 	dev_set_uevent_suppress(&wq_dev->dev, true);
7423 
7424 	ret = device_register(&wq_dev->dev);
7425 	if (ret) {
7426 		put_device(&wq_dev->dev);
7427 		wq->wq_dev = NULL;
7428 		return ret;
7429 	}
7430 
7431 	if (wq->flags & WQ_UNBOUND) {
7432 		struct device_attribute *attr;
7433 
7434 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7435 			ret = device_create_file(&wq_dev->dev, attr);
7436 			if (ret) {
7437 				device_unregister(&wq_dev->dev);
7438 				wq->wq_dev = NULL;
7439 				return ret;
7440 			}
7441 		}
7442 	}
7443 
7444 	dev_set_uevent_suppress(&wq_dev->dev, false);
7445 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7446 	return 0;
7447 }
7448 
7449 /**
7450  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7451  * @wq: the workqueue to unregister
7452  *
7453  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7454  */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7455 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7456 {
7457 	struct wq_device *wq_dev = wq->wq_dev;
7458 
7459 	if (!wq->wq_dev)
7460 		return;
7461 
7462 	wq->wq_dev = NULL;
7463 	device_unregister(&wq_dev->dev);
7464 }
7465 #else	/* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7466 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
7467 #endif	/* CONFIG_SYSFS */
7468 
7469 /*
7470  * Workqueue watchdog.
7471  *
7472  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7473  * flush dependency, a concurrency managed work item which stays RUNNING
7474  * indefinitely.  Workqueue stalls can be very difficult to debug as the
7475  * usual warning mechanisms don't trigger and internal workqueue state is
7476  * largely opaque.
7477  *
7478  * Workqueue watchdog monitors all worker pools periodically and dumps
7479  * state if some pools failed to make forward progress for a while where
7480  * forward progress is defined as the first item on ->worklist changing.
7481  *
7482  * This mechanism is controlled through the kernel parameter
7483  * "workqueue.watchdog_thresh" which can be updated at runtime through the
7484  * corresponding sysfs parameter file.
7485  */
7486 #ifdef CONFIG_WQ_WATCHDOG
7487 
7488 static unsigned long wq_watchdog_thresh = 30;
7489 static struct timer_list wq_watchdog_timer;
7490 
7491 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7492 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7493 
7494 static unsigned int wq_panic_on_stall;
7495 module_param_named(panic_on_stall, wq_panic_on_stall, uint, 0644);
7496 
7497 /*
7498  * Show workers that might prevent the processing of pending work items.
7499  * The only candidates are CPU-bound workers in the running state.
7500  * Pending work items should be handled by another idle worker
7501  * in all other situations.
7502  */
show_cpu_pool_hog(struct worker_pool * pool)7503 static void show_cpu_pool_hog(struct worker_pool *pool)
7504 {
7505 	struct worker *worker;
7506 	unsigned long irq_flags;
7507 	int bkt;
7508 
7509 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
7510 
7511 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7512 		if (task_is_running(worker->task)) {
7513 			/*
7514 			 * Defer printing to avoid deadlocks in console
7515 			 * drivers that queue work while holding locks
7516 			 * also taken in their write paths.
7517 			 */
7518 			printk_deferred_enter();
7519 
7520 			pr_info("pool %d:\n", pool->id);
7521 			sched_show_task(worker->task);
7522 
7523 			printk_deferred_exit();
7524 		}
7525 	}
7526 
7527 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7528 }
7529 
show_cpu_pools_hogs(void)7530 static void show_cpu_pools_hogs(void)
7531 {
7532 	struct worker_pool *pool;
7533 	int pi;
7534 
7535 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7536 
7537 	rcu_read_lock();
7538 
7539 	for_each_pool(pool, pi) {
7540 		if (pool->cpu_stall)
7541 			show_cpu_pool_hog(pool);
7542 
7543 	}
7544 
7545 	rcu_read_unlock();
7546 }
7547 
panic_on_wq_watchdog(void)7548 static void panic_on_wq_watchdog(void)
7549 {
7550 	static unsigned int wq_stall;
7551 
7552 	if (wq_panic_on_stall) {
7553 		wq_stall++;
7554 		BUG_ON(wq_stall >= wq_panic_on_stall);
7555 	}
7556 }
7557 
wq_watchdog_reset_touched(void)7558 static void wq_watchdog_reset_touched(void)
7559 {
7560 	int cpu;
7561 
7562 	wq_watchdog_touched = jiffies;
7563 	for_each_possible_cpu(cpu)
7564 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7565 }
7566 
wq_watchdog_timer_fn(struct timer_list * unused)7567 static void wq_watchdog_timer_fn(struct timer_list *unused)
7568 {
7569 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7570 	bool lockup_detected = false;
7571 	bool cpu_pool_stall = false;
7572 	unsigned long now = jiffies;
7573 	struct worker_pool *pool;
7574 	int pi;
7575 
7576 	if (!thresh)
7577 		return;
7578 
7579 	for_each_pool(pool, pi) {
7580 		unsigned long pool_ts, touched, ts;
7581 
7582 		pool->cpu_stall = false;
7583 		if (list_empty(&pool->worklist))
7584 			continue;
7585 
7586 		/*
7587 		 * If a virtual machine is stopped by the host it can look to
7588 		 * the watchdog like a stall.
7589 		 */
7590 		kvm_check_and_clear_guest_paused();
7591 
7592 		/* get the latest of pool and touched timestamps */
7593 		if (pool->cpu >= 0)
7594 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7595 		else
7596 			touched = READ_ONCE(wq_watchdog_touched);
7597 		pool_ts = READ_ONCE(pool->watchdog_ts);
7598 
7599 		if (time_after(pool_ts, touched))
7600 			ts = pool_ts;
7601 		else
7602 			ts = touched;
7603 
7604 		/* did we stall? */
7605 		if (time_after(now, ts + thresh)) {
7606 			lockup_detected = true;
7607 			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7608 				pool->cpu_stall = true;
7609 				cpu_pool_stall = true;
7610 			}
7611 			pr_emerg("BUG: workqueue lockup - pool");
7612 			pr_cont_pool_info(pool);
7613 			pr_cont(" stuck for %us!\n",
7614 				jiffies_to_msecs(now - pool_ts) / 1000);
7615 		}
7616 
7617 
7618 	}
7619 
7620 	if (lockup_detected)
7621 		show_all_workqueues();
7622 
7623 	if (cpu_pool_stall)
7624 		show_cpu_pools_hogs();
7625 
7626 	if (lockup_detected)
7627 		panic_on_wq_watchdog();
7628 
7629 	wq_watchdog_reset_touched();
7630 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
7631 }
7632 
wq_watchdog_touch(int cpu)7633 notrace void wq_watchdog_touch(int cpu)
7634 {
7635 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7636 	unsigned long touch_ts = READ_ONCE(wq_watchdog_touched);
7637 	unsigned long now = jiffies;
7638 
7639 	if (cpu >= 0)
7640 		per_cpu(wq_watchdog_touched_cpu, cpu) = now;
7641 	else
7642 		WARN_ONCE(1, "%s should be called with valid CPU", __func__);
7643 
7644 	/* Don't unnecessarily store to global cacheline */
7645 	if (time_after(now, touch_ts + thresh / 4))
7646 		WRITE_ONCE(wq_watchdog_touched, jiffies);
7647 }
7648 
wq_watchdog_set_thresh(unsigned long thresh)7649 static void wq_watchdog_set_thresh(unsigned long thresh)
7650 {
7651 	wq_watchdog_thresh = 0;
7652 	timer_delete_sync(&wq_watchdog_timer);
7653 
7654 	if (thresh) {
7655 		wq_watchdog_thresh = thresh;
7656 		wq_watchdog_reset_touched();
7657 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7658 	}
7659 }
7660 
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)7661 static int wq_watchdog_param_set_thresh(const char *val,
7662 					const struct kernel_param *kp)
7663 {
7664 	unsigned long thresh;
7665 	int ret;
7666 
7667 	ret = kstrtoul(val, 0, &thresh);
7668 	if (ret)
7669 		return ret;
7670 
7671 	if (system_percpu_wq)
7672 		wq_watchdog_set_thresh(thresh);
7673 	else
7674 		wq_watchdog_thresh = thresh;
7675 
7676 	return 0;
7677 }
7678 
7679 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7680 	.set	= wq_watchdog_param_set_thresh,
7681 	.get	= param_get_ulong,
7682 };
7683 
7684 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7685 		0644);
7686 
wq_watchdog_init(void)7687 static void wq_watchdog_init(void)
7688 {
7689 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7690 	wq_watchdog_set_thresh(wq_watchdog_thresh);
7691 }
7692 
7693 #else	/* CONFIG_WQ_WATCHDOG */
7694 
wq_watchdog_init(void)7695 static inline void wq_watchdog_init(void) { }
7696 
7697 #endif	/* CONFIG_WQ_WATCHDOG */
7698 
bh_pool_kick_normal(struct irq_work * irq_work)7699 static void bh_pool_kick_normal(struct irq_work *irq_work)
7700 {
7701 	raise_softirq_irqoff(TASKLET_SOFTIRQ);
7702 }
7703 
bh_pool_kick_highpri(struct irq_work * irq_work)7704 static void bh_pool_kick_highpri(struct irq_work *irq_work)
7705 {
7706 	raise_softirq_irqoff(HI_SOFTIRQ);
7707 }
7708 
restrict_unbound_cpumask(const char * name,const struct cpumask * mask)7709 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7710 {
7711 	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7712 		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7713 			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7714 		return;
7715 	}
7716 
7717 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7718 }
7719 
init_cpu_worker_pool(struct worker_pool * pool,int cpu,int nice)7720 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7721 {
7722 	BUG_ON(init_worker_pool(pool));
7723 	pool->cpu = cpu;
7724 	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7725 	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7726 	pool->attrs->nice = nice;
7727 	pool->attrs->affn_strict = true;
7728 	pool->node = cpu_to_node(cpu);
7729 
7730 	/* alloc pool ID */
7731 	mutex_lock(&wq_pool_mutex);
7732 	BUG_ON(worker_pool_assign_id(pool));
7733 	mutex_unlock(&wq_pool_mutex);
7734 }
7735 
7736 /**
7737  * workqueue_init_early - early init for workqueue subsystem
7738  *
7739  * This is the first step of three-staged workqueue subsystem initialization and
7740  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7741  * up. It sets up all the data structures and system workqueues and allows early
7742  * boot code to create workqueues and queue/cancel work items. Actual work item
7743  * execution starts only after kthreads can be created and scheduled right
7744  * before early initcalls.
7745  */
workqueue_init_early(void)7746 void __init workqueue_init_early(void)
7747 {
7748 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7749 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7750 	void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7751 						       bh_pool_kick_highpri };
7752 	int i, cpu;
7753 
7754 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7755 
7756 	BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL));
7757 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7758 	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7759 	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7760 
7761 	cpumask_copy(wq_online_cpumask, cpu_online_mask);
7762 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7763 	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7764 	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7765 	if (!cpumask_empty(&wq_cmdline_cpumask))
7766 		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7767 
7768 	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7769 	cpumask_andnot(wq_isolated_cpumask, cpu_possible_mask,
7770 						housekeeping_cpumask(HK_TYPE_DOMAIN));
7771 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7772 
7773 	unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs();
7774 	BUG_ON(!unbound_wq_update_pwq_attrs_buf);
7775 
7776 	/*
7777 	 * If nohz_full is enabled, set power efficient workqueue as unbound.
7778 	 * This allows workqueue items to be moved to HK CPUs.
7779 	 */
7780 	if (housekeeping_enabled(HK_TYPE_TICK))
7781 		wq_power_efficient = true;
7782 
7783 	/* initialize WQ_AFFN_SYSTEM pods */
7784 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7785 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7786 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7787 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7788 
7789 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7790 
7791 	pt->nr_pods = 1;
7792 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7793 	pt->pod_node[0] = NUMA_NO_NODE;
7794 	pt->cpu_pod[0] = 0;
7795 
7796 	/* initialize BH and CPU pools */
7797 	for_each_possible_cpu(cpu) {
7798 		struct worker_pool *pool;
7799 
7800 		i = 0;
7801 		for_each_bh_worker_pool(pool, cpu) {
7802 			init_cpu_worker_pool(pool, cpu, std_nice[i]);
7803 			pool->flags |= POOL_BH;
7804 			init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7805 			i++;
7806 		}
7807 
7808 		i = 0;
7809 		for_each_cpu_worker_pool(pool, cpu)
7810 			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7811 	}
7812 
7813 	/* create default unbound and ordered wq attrs */
7814 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7815 		struct workqueue_attrs *attrs;
7816 
7817 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7818 		attrs->nice = std_nice[i];
7819 		unbound_std_wq_attrs[i] = attrs;
7820 
7821 		/*
7822 		 * An ordered wq should have only one pwq as ordering is
7823 		 * guaranteed by max_active which is enforced by pwqs.
7824 		 */
7825 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7826 		attrs->nice = std_nice[i];
7827 		attrs->ordered = true;
7828 		ordered_wq_attrs[i] = attrs;
7829 	}
7830 
7831 	system_wq = alloc_workqueue("events", WQ_PERCPU, 0);
7832 	system_percpu_wq = alloc_workqueue("events", WQ_PERCPU, 0);
7833 	system_highpri_wq = alloc_workqueue("events_highpri",
7834 					    WQ_HIGHPRI | WQ_PERCPU, 0);
7835 	system_long_wq = alloc_workqueue("events_long", WQ_PERCPU, 0);
7836 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, WQ_MAX_ACTIVE);
7837 	system_dfl_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, WQ_MAX_ACTIVE);
7838 	system_freezable_wq = alloc_workqueue("events_freezable",
7839 					      WQ_FREEZABLE | WQ_PERCPU, 0);
7840 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7841 					      WQ_POWER_EFFICIENT | WQ_PERCPU, 0);
7842 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7843 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT | WQ_PERCPU, 0);
7844 	system_bh_wq = alloc_workqueue("events_bh", WQ_BH | WQ_PERCPU, 0);
7845 	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7846 					       WQ_BH | WQ_HIGHPRI | WQ_PERCPU, 0);
7847 	BUG_ON(!system_wq || !system_percpu_wq|| !system_highpri_wq || !system_long_wq ||
7848 	       !system_unbound_wq || !system_freezable_wq || !system_dfl_wq ||
7849 	       !system_power_efficient_wq ||
7850 	       !system_freezable_power_efficient_wq ||
7851 	       !system_bh_wq || !system_bh_highpri_wq);
7852 }
7853 
wq_cpu_intensive_thresh_init(void)7854 static void __init wq_cpu_intensive_thresh_init(void)
7855 {
7856 	unsigned long thresh;
7857 	unsigned long bogo;
7858 
7859 	pwq_release_worker = kthread_run_worker(0, "pool_workqueue_release");
7860 	BUG_ON(IS_ERR(pwq_release_worker));
7861 
7862 	/* if the user set it to a specific value, keep it */
7863 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7864 		return;
7865 
7866 	/*
7867 	 * The default of 10ms is derived from the fact that most modern (as of
7868 	 * 2023) processors can do a lot in 10ms and that it's just below what
7869 	 * most consider human-perceivable. However, the kernel also runs on a
7870 	 * lot slower CPUs including microcontrollers where the threshold is way
7871 	 * too low.
7872 	 *
7873 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7874 	 * This is by no means accurate but it doesn't have to be. The mechanism
7875 	 * is still useful even when the threshold is fully scaled up. Also, as
7876 	 * the reports would usually be applicable to everyone, some machines
7877 	 * operating on longer thresholds won't significantly diminish their
7878 	 * usefulness.
7879 	 */
7880 	thresh = 10 * USEC_PER_MSEC;
7881 
7882 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7883 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7884 	if (bogo < 4000)
7885 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7886 
7887 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7888 		 loops_per_jiffy, bogo, thresh);
7889 
7890 	wq_cpu_intensive_thresh_us = thresh;
7891 }
7892 
7893 /**
7894  * workqueue_init - bring workqueue subsystem fully online
7895  *
7896  * This is the second step of three-staged workqueue subsystem initialization
7897  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7898  * been created and work items queued on them, but there are no kworkers
7899  * executing the work items yet. Populate the worker pools with the initial
7900  * workers and enable future kworker creations.
7901  */
workqueue_init(void)7902 void __init workqueue_init(void)
7903 {
7904 	struct workqueue_struct *wq;
7905 	struct worker_pool *pool;
7906 	int cpu, bkt;
7907 
7908 	wq_cpu_intensive_thresh_init();
7909 
7910 	mutex_lock(&wq_pool_mutex);
7911 
7912 	/*
7913 	 * Per-cpu pools created earlier could be missing node hint. Fix them
7914 	 * up. Also, create a rescuer for workqueues that requested it.
7915 	 */
7916 	for_each_possible_cpu(cpu) {
7917 		for_each_bh_worker_pool(pool, cpu)
7918 			pool->node = cpu_to_node(cpu);
7919 		for_each_cpu_worker_pool(pool, cpu)
7920 			pool->node = cpu_to_node(cpu);
7921 	}
7922 
7923 	list_for_each_entry(wq, &workqueues, list) {
7924 		WARN(init_rescuer(wq),
7925 		     "workqueue: failed to create early rescuer for %s",
7926 		     wq->name);
7927 	}
7928 
7929 	mutex_unlock(&wq_pool_mutex);
7930 
7931 	/*
7932 	 * Create the initial workers. A BH pool has one pseudo worker that
7933 	 * represents the shared BH execution context and thus doesn't get
7934 	 * affected by hotplug events. Create the BH pseudo workers for all
7935 	 * possible CPUs here.
7936 	 */
7937 	for_each_possible_cpu(cpu)
7938 		for_each_bh_worker_pool(pool, cpu)
7939 			BUG_ON(!create_worker(pool));
7940 
7941 	for_each_online_cpu(cpu) {
7942 		for_each_cpu_worker_pool(pool, cpu) {
7943 			pool->flags &= ~POOL_DISASSOCIATED;
7944 			BUG_ON(!create_worker(pool));
7945 		}
7946 	}
7947 
7948 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7949 		BUG_ON(!create_worker(pool));
7950 
7951 	wq_online = true;
7952 	wq_watchdog_init();
7953 }
7954 
7955 /*
7956  * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7957  * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7958  * and consecutive pod ID. The rest of @pt is initialized accordingly.
7959  */
init_pod_type(struct wq_pod_type * pt,bool (* cpus_share_pod)(int,int))7960 static void __init init_pod_type(struct wq_pod_type *pt,
7961 				 bool (*cpus_share_pod)(int, int))
7962 {
7963 	int cur, pre, cpu, pod;
7964 
7965 	pt->nr_pods = 0;
7966 
7967 	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
7968 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7969 	BUG_ON(!pt->cpu_pod);
7970 
7971 	for_each_possible_cpu(cur) {
7972 		for_each_possible_cpu(pre) {
7973 			if (pre >= cur) {
7974 				pt->cpu_pod[cur] = pt->nr_pods++;
7975 				break;
7976 			}
7977 			if (cpus_share_pod(cur, pre)) {
7978 				pt->cpu_pod[cur] = pt->cpu_pod[pre];
7979 				break;
7980 			}
7981 		}
7982 	}
7983 
7984 	/* init the rest to match @pt->cpu_pod[] */
7985 	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7986 	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7987 	BUG_ON(!pt->pod_cpus || !pt->pod_node);
7988 
7989 	for (pod = 0; pod < pt->nr_pods; pod++)
7990 		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7991 
7992 	for_each_possible_cpu(cpu) {
7993 		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7994 		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7995 	}
7996 }
7997 
cpus_dont_share(int cpu0,int cpu1)7998 static bool __init cpus_dont_share(int cpu0, int cpu1)
7999 {
8000 	return false;
8001 }
8002 
cpus_share_smt(int cpu0,int cpu1)8003 static bool __init cpus_share_smt(int cpu0, int cpu1)
8004 {
8005 #ifdef CONFIG_SCHED_SMT
8006 	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
8007 #else
8008 	return false;
8009 #endif
8010 }
8011 
cpus_share_numa(int cpu0,int cpu1)8012 static bool __init cpus_share_numa(int cpu0, int cpu1)
8013 {
8014 	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
8015 }
8016 
8017 /**
8018  * workqueue_init_topology - initialize CPU pods for unbound workqueues
8019  *
8020  * This is the third step of three-staged workqueue subsystem initialization and
8021  * invoked after SMP and topology information are fully initialized. It
8022  * initializes the unbound CPU pods accordingly.
8023  */
workqueue_init_topology(void)8024 void __init workqueue_init_topology(void)
8025 {
8026 	struct workqueue_struct *wq;
8027 	int cpu;
8028 
8029 	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
8030 	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
8031 	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
8032 	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
8033 
8034 	wq_topo_initialized = true;
8035 
8036 	mutex_lock(&wq_pool_mutex);
8037 
8038 	/*
8039 	 * Workqueues allocated earlier would have all CPUs sharing the default
8040 	 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue
8041 	 * and CPU combinations to apply per-pod sharing.
8042 	 */
8043 	list_for_each_entry(wq, &workqueues, list) {
8044 		for_each_online_cpu(cpu)
8045 			unbound_wq_update_pwq(wq, cpu);
8046 		if (wq->flags & WQ_UNBOUND) {
8047 			mutex_lock(&wq->mutex);
8048 			wq_update_node_max_active(wq, -1);
8049 			mutex_unlock(&wq->mutex);
8050 		}
8051 	}
8052 
8053 	mutex_unlock(&wq_pool_mutex);
8054 }
8055 
__warn_flushing_systemwide_wq(void)8056 void __warn_flushing_systemwide_wq(void)
8057 {
8058 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
8059 	dump_stack();
8060 }
8061 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
8062 
workqueue_unbound_cpus_setup(char * str)8063 static int __init workqueue_unbound_cpus_setup(char *str)
8064 {
8065 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
8066 		cpumask_clear(&wq_cmdline_cpumask);
8067 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
8068 	}
8069 
8070 	return 1;
8071 }
8072 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
8073