1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2017 - 2019 Cambridge Greys Limited
4 * Copyright (C) 2011 - 2014 Cisco Systems Inc
5 * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6 * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
7 * James Leu (jleu@mindspring.net).
8 * Copyright (C) 2001 by various other people who didn't put their name here.
9 */
10
11 #define pr_fmt(fmt) "uml-vector: " fmt
12
13 #include <linux/memblock.h>
14 #include <linux/etherdevice.h>
15 #include <linux/ethtool.h>
16 #include <linux/inetdevice.h>
17 #include <linux/init.h>
18 #include <linux/list.h>
19 #include <linux/netdevice.h>
20 #include <linux/platform_device.h>
21 #include <linux/rtnetlink.h>
22 #include <linux/skbuff.h>
23 #include <linux/slab.h>
24 #include <linux/interrupt.h>
25 #include <linux/firmware.h>
26 #include <linux/fs.h>
27 #include <asm/atomic.h>
28 #include <uapi/linux/filter.h>
29 #include <init.h>
30 #include <irq_kern.h>
31 #include <irq_user.h>
32 #include <os.h>
33 #include "mconsole_kern.h"
34 #include "vector_user.h"
35 #include "vector_kern.h"
36
37 /*
38 * Adapted from network devices with the following major changes:
39 * All transports are static - simplifies the code significantly
40 * Multiple FDs/IRQs per device
41 * Vector IO optionally used for read/write, falling back to legacy
42 * based on configuration and/or availability
43 * Configuration is no longer positional - L2TPv3 and GRE require up to
44 * 10 parameters, passing this as positional is not fit for purpose.
45 * Only socket transports are supported
46 */
47
48
49 #define DRIVER_NAME "uml-vector"
50 struct vector_cmd_line_arg {
51 struct list_head list;
52 int unit;
53 char *arguments;
54 };
55
56 struct vector_device {
57 struct list_head list;
58 struct net_device *dev;
59 struct platform_device pdev;
60 int unit;
61 int opened;
62 };
63
64 static LIST_HEAD(vec_cmd_line);
65
66 static DEFINE_SPINLOCK(vector_devices_lock);
67 static LIST_HEAD(vector_devices);
68
69 static int driver_registered;
70
71 static void vector_eth_configure(int n, struct arglist *def);
72 static int vector_mmsg_rx(struct vector_private *vp, int budget);
73
74 /* Argument accessors to set variables (and/or set default values)
75 * mtu, buffer sizing, default headroom, etc
76 */
77
78 #define DEFAULT_HEADROOM 2
79 #define SAFETY_MARGIN 32
80 #define DEFAULT_VECTOR_SIZE 64
81 #define TX_SMALL_PACKET 128
82 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
83
84 static const struct {
85 const char string[ETH_GSTRING_LEN];
86 } ethtool_stats_keys[] = {
87 { "rx_queue_max" },
88 { "rx_queue_running_average" },
89 { "tx_queue_max" },
90 { "tx_queue_running_average" },
91 { "rx_encaps_errors" },
92 { "tx_timeout_count" },
93 { "tx_restart_queue" },
94 { "tx_kicks" },
95 { "tx_flow_control_xon" },
96 { "tx_flow_control_xoff" },
97 { "rx_csum_offload_good" },
98 { "rx_csum_offload_errors"},
99 { "sg_ok"},
100 { "sg_linearized"},
101 };
102
103 #define VECTOR_NUM_STATS ARRAY_SIZE(ethtool_stats_keys)
104
vector_reset_stats(struct vector_private * vp)105 static void vector_reset_stats(struct vector_private *vp)
106 {
107 /* We reuse the existing queue locks for stats */
108
109 /* RX stats are modified with RX head_lock held
110 * in vector_poll.
111 */
112
113 spin_lock(&vp->rx_queue->head_lock);
114 vp->estats.rx_queue_max = 0;
115 vp->estats.rx_queue_running_average = 0;
116 vp->estats.rx_encaps_errors = 0;
117 vp->estats.sg_ok = 0;
118 vp->estats.sg_linearized = 0;
119 spin_unlock(&vp->rx_queue->head_lock);
120
121 /* TX stats are modified with TX head_lock held
122 * in vector_send.
123 */
124
125 spin_lock(&vp->tx_queue->head_lock);
126 vp->estats.tx_timeout_count = 0;
127 vp->estats.tx_restart_queue = 0;
128 vp->estats.tx_kicks = 0;
129 vp->estats.tx_flow_control_xon = 0;
130 vp->estats.tx_flow_control_xoff = 0;
131 vp->estats.tx_queue_max = 0;
132 vp->estats.tx_queue_running_average = 0;
133 spin_unlock(&vp->tx_queue->head_lock);
134 }
135
get_mtu(struct arglist * def)136 static int get_mtu(struct arglist *def)
137 {
138 char *mtu = uml_vector_fetch_arg(def, "mtu");
139 long result;
140
141 if (mtu != NULL) {
142 if (kstrtoul(mtu, 10, &result) == 0)
143 if ((result < (1 << 16) - 1) && (result >= 576))
144 return result;
145 }
146 return ETH_MAX_PACKET;
147 }
148
get_bpf_file(struct arglist * def)149 static char *get_bpf_file(struct arglist *def)
150 {
151 return uml_vector_fetch_arg(def, "bpffile");
152 }
153
get_bpf_flash(struct arglist * def)154 static bool get_bpf_flash(struct arglist *def)
155 {
156 char *allow = uml_vector_fetch_arg(def, "bpfflash");
157 long result;
158
159 if (allow != NULL) {
160 if (kstrtoul(allow, 10, &result) == 0)
161 return result > 0;
162 }
163 return false;
164 }
165
get_depth(struct arglist * def)166 static int get_depth(struct arglist *def)
167 {
168 char *mtu = uml_vector_fetch_arg(def, "depth");
169 long result;
170
171 if (mtu != NULL) {
172 if (kstrtoul(mtu, 10, &result) == 0)
173 return result;
174 }
175 return DEFAULT_VECTOR_SIZE;
176 }
177
get_headroom(struct arglist * def)178 static int get_headroom(struct arglist *def)
179 {
180 char *mtu = uml_vector_fetch_arg(def, "headroom");
181 long result;
182
183 if (mtu != NULL) {
184 if (kstrtoul(mtu, 10, &result) == 0)
185 return result;
186 }
187 return DEFAULT_HEADROOM;
188 }
189
get_req_size(struct arglist * def)190 static int get_req_size(struct arglist *def)
191 {
192 char *gro = uml_vector_fetch_arg(def, "gro");
193 long result;
194
195 if (gro != NULL) {
196 if (kstrtoul(gro, 10, &result) == 0) {
197 if (result > 0)
198 return 65536;
199 }
200 }
201 return get_mtu(def) + ETH_HEADER_OTHER +
202 get_headroom(def) + SAFETY_MARGIN;
203 }
204
205
get_transport_options(struct arglist * def)206 static int get_transport_options(struct arglist *def)
207 {
208 char *transport = uml_vector_fetch_arg(def, "transport");
209 char *vector = uml_vector_fetch_arg(def, "vec");
210
211 int vec_rx = VECTOR_RX;
212 int vec_tx = VECTOR_TX;
213 long parsed;
214 int result = 0;
215
216 if (transport == NULL)
217 return -EINVAL;
218
219 if (vector != NULL) {
220 if (kstrtoul(vector, 10, &parsed) == 0) {
221 if (parsed == 0) {
222 vec_rx = 0;
223 vec_tx = 0;
224 }
225 }
226 }
227
228 if (get_bpf_flash(def))
229 result = VECTOR_BPF_FLASH;
230
231 if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
232 return result;
233 if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0)
234 return (result | vec_rx | VECTOR_BPF);
235 if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
236 return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS);
237 return (result | vec_rx | vec_tx);
238 }
239
240
241 /* A mini-buffer for packet drop read
242 * All of our supported transports are datagram oriented and we always
243 * read using recvmsg or recvmmsg. If we pass a buffer which is smaller
244 * than the packet size it still counts as full packet read and will
245 * clean the incoming stream to keep sigio/epoll happy
246 */
247
248 #define DROP_BUFFER_SIZE 32
249
250 static char *drop_buffer;
251
252
253 /*
254 * Advance the mmsg queue head by n = advance. Resets the queue to
255 * maximum enqueue/dequeue-at-once capacity if possible. Called by
256 * dequeuers. Caller must hold the head_lock!
257 */
258
vector_advancehead(struct vector_queue * qi,int advance)259 static int vector_advancehead(struct vector_queue *qi, int advance)
260 {
261 qi->head =
262 (qi->head + advance)
263 % qi->max_depth;
264
265
266 atomic_sub(advance, &qi->queue_depth);
267 return atomic_read(&qi->queue_depth);
268 }
269
270 /* Advance the queue tail by n = advance.
271 * This is called by enqueuers which should hold the
272 * head lock already
273 */
274
vector_advancetail(struct vector_queue * qi,int advance)275 static int vector_advancetail(struct vector_queue *qi, int advance)
276 {
277 qi->tail =
278 (qi->tail + advance)
279 % qi->max_depth;
280 atomic_add(advance, &qi->queue_depth);
281 return atomic_read(&qi->queue_depth);
282 }
283
prep_msg(struct vector_private * vp,struct sk_buff * skb,struct iovec * iov)284 static int prep_msg(struct vector_private *vp,
285 struct sk_buff *skb,
286 struct iovec *iov)
287 {
288 int iov_index = 0;
289 int nr_frags, frag;
290 skb_frag_t *skb_frag;
291
292 nr_frags = skb_shinfo(skb)->nr_frags;
293 if (nr_frags > MAX_IOV_SIZE) {
294 if (skb_linearize(skb) != 0)
295 goto drop;
296 }
297 if (vp->header_size > 0) {
298 iov[iov_index].iov_len = vp->header_size;
299 vp->form_header(iov[iov_index].iov_base, skb, vp);
300 iov_index++;
301 }
302 iov[iov_index].iov_base = skb->data;
303 if (nr_frags > 0) {
304 iov[iov_index].iov_len = skb->len - skb->data_len;
305 vp->estats.sg_ok++;
306 } else
307 iov[iov_index].iov_len = skb->len;
308 iov_index++;
309 for (frag = 0; frag < nr_frags; frag++) {
310 skb_frag = &skb_shinfo(skb)->frags[frag];
311 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
312 iov[iov_index].iov_len = skb_frag_size(skb_frag);
313 iov_index++;
314 }
315 return iov_index;
316 drop:
317 return -1;
318 }
319 /*
320 * Generic vector enqueue with support for forming headers using transport
321 * specific callback. Allows GRE, L2TPv3, RAW and other transports
322 * to use a common enqueue procedure in vector mode
323 */
324
vector_enqueue(struct vector_queue * qi,struct sk_buff * skb)325 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
326 {
327 struct vector_private *vp = netdev_priv(qi->dev);
328 int queue_depth;
329 int packet_len;
330 struct mmsghdr *mmsg_vector = qi->mmsg_vector;
331 int iov_count;
332
333 spin_lock(&qi->tail_lock);
334 queue_depth = atomic_read(&qi->queue_depth);
335
336 if (skb)
337 packet_len = skb->len;
338
339 if (queue_depth < qi->max_depth) {
340
341 *(qi->skbuff_vector + qi->tail) = skb;
342 mmsg_vector += qi->tail;
343 iov_count = prep_msg(
344 vp,
345 skb,
346 mmsg_vector->msg_hdr.msg_iov
347 );
348 if (iov_count < 1)
349 goto drop;
350 mmsg_vector->msg_hdr.msg_iovlen = iov_count;
351 mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
352 mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
353 wmb(); /* Make the packet visible to the NAPI poll thread */
354 queue_depth = vector_advancetail(qi, 1);
355 } else
356 goto drop;
357 spin_unlock(&qi->tail_lock);
358 return queue_depth;
359 drop:
360 qi->dev->stats.tx_dropped++;
361 if (skb != NULL) {
362 packet_len = skb->len;
363 dev_consume_skb_any(skb);
364 netdev_completed_queue(qi->dev, 1, packet_len);
365 }
366 spin_unlock(&qi->tail_lock);
367 return queue_depth;
368 }
369
consume_vector_skbs(struct vector_queue * qi,int count)370 static int consume_vector_skbs(struct vector_queue *qi, int count)
371 {
372 struct sk_buff *skb;
373 int skb_index;
374 int bytes_compl = 0;
375
376 for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
377 skb = *(qi->skbuff_vector + skb_index);
378 /* mark as empty to ensure correct destruction if
379 * needed
380 */
381 bytes_compl += skb->len;
382 *(qi->skbuff_vector + skb_index) = NULL;
383 dev_consume_skb_any(skb);
384 }
385 qi->dev->stats.tx_bytes += bytes_compl;
386 qi->dev->stats.tx_packets += count;
387 netdev_completed_queue(qi->dev, count, bytes_compl);
388 return vector_advancehead(qi, count);
389 }
390
391 /*
392 * Generic vector dequeue via sendmmsg with support for forming headers
393 * using transport specific callback. Allows GRE, L2TPv3, RAW and
394 * other transports to use a common dequeue procedure in vector mode
395 */
396
397
vector_send(struct vector_queue * qi)398 static int vector_send(struct vector_queue *qi)
399 {
400 struct vector_private *vp = netdev_priv(qi->dev);
401 struct mmsghdr *send_from;
402 int result = 0, send_len;
403
404 if (spin_trylock(&qi->head_lock)) {
405 /* update queue_depth to current value */
406 while (atomic_read(&qi->queue_depth) > 0) {
407 /* Calculate the start of the vector */
408 send_len = atomic_read(&qi->queue_depth);
409 send_from = qi->mmsg_vector;
410 send_from += qi->head;
411 /* Adjust vector size if wraparound */
412 if (send_len + qi->head > qi->max_depth)
413 send_len = qi->max_depth - qi->head;
414 /* Try to TX as many packets as possible */
415 if (send_len > 0) {
416 result = uml_vector_sendmmsg(
417 vp->fds->tx_fd,
418 send_from,
419 send_len,
420 0
421 );
422 vp->in_write_poll =
423 (result != send_len);
424 }
425 /* For some of the sendmmsg error scenarios
426 * we may end being unsure in the TX success
427 * for all packets. It is safer to declare
428 * them all TX-ed and blame the network.
429 */
430 if (result < 0) {
431 if (net_ratelimit())
432 netdev_err(vp->dev, "sendmmsg err=%i\n",
433 result);
434 vp->in_error = true;
435 result = send_len;
436 }
437 if (result > 0) {
438 consume_vector_skbs(qi, result);
439 /* This is equivalent to an TX IRQ.
440 * Restart the upper layers to feed us
441 * more packets.
442 */
443 if (result > vp->estats.tx_queue_max)
444 vp->estats.tx_queue_max = result;
445 vp->estats.tx_queue_running_average =
446 (vp->estats.tx_queue_running_average + result) >> 1;
447 }
448 netif_wake_queue(qi->dev);
449 /* if TX is busy, break out of the send loop,
450 * poll write IRQ will reschedule xmit for us.
451 */
452 if (result != send_len) {
453 vp->estats.tx_restart_queue++;
454 break;
455 }
456 }
457 spin_unlock(&qi->head_lock);
458 }
459 return atomic_read(&qi->queue_depth);
460 }
461
462 /* Queue destructor. Deliberately stateless so we can use
463 * it in queue cleanup if initialization fails.
464 */
465
destroy_queue(struct vector_queue * qi)466 static void destroy_queue(struct vector_queue *qi)
467 {
468 int i;
469 struct iovec *iov;
470 struct vector_private *vp = netdev_priv(qi->dev);
471 struct mmsghdr *mmsg_vector;
472
473 if (qi == NULL)
474 return;
475 /* deallocate any skbuffs - we rely on any unused to be
476 * set to NULL.
477 */
478 if (qi->skbuff_vector != NULL) {
479 for (i = 0; i < qi->max_depth; i++) {
480 if (*(qi->skbuff_vector + i) != NULL)
481 dev_kfree_skb_any(*(qi->skbuff_vector + i));
482 }
483 kfree(qi->skbuff_vector);
484 }
485 /* deallocate matching IOV structures including header buffs */
486 if (qi->mmsg_vector != NULL) {
487 mmsg_vector = qi->mmsg_vector;
488 for (i = 0; i < qi->max_depth; i++) {
489 iov = mmsg_vector->msg_hdr.msg_iov;
490 if (iov != NULL) {
491 if ((vp->header_size > 0) &&
492 (iov->iov_base != NULL))
493 kfree(iov->iov_base);
494 kfree(iov);
495 }
496 mmsg_vector++;
497 }
498 kfree(qi->mmsg_vector);
499 }
500 kfree(qi);
501 }
502
503 /*
504 * Queue constructor. Create a queue with a given side.
505 */
create_queue(struct vector_private * vp,int max_size,int header_size,int num_extra_frags)506 static struct vector_queue *create_queue(
507 struct vector_private *vp,
508 int max_size,
509 int header_size,
510 int num_extra_frags)
511 {
512 struct vector_queue *result;
513 int i;
514 struct iovec *iov;
515 struct mmsghdr *mmsg_vector;
516
517 result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL);
518 if (result == NULL)
519 return NULL;
520 result->max_depth = max_size;
521 result->dev = vp->dev;
522 result->mmsg_vector = kmalloc(
523 (sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
524 if (result->mmsg_vector == NULL)
525 goto out_mmsg_fail;
526 result->skbuff_vector = kmalloc(
527 (sizeof(void *) * max_size), GFP_KERNEL);
528 if (result->skbuff_vector == NULL)
529 goto out_skb_fail;
530
531 /* further failures can be handled safely by destroy_queue*/
532
533 mmsg_vector = result->mmsg_vector;
534 for (i = 0; i < max_size; i++) {
535 /* Clear all pointers - we use non-NULL as marking on
536 * what to free on destruction
537 */
538 *(result->skbuff_vector + i) = NULL;
539 mmsg_vector->msg_hdr.msg_iov = NULL;
540 mmsg_vector++;
541 }
542 mmsg_vector = result->mmsg_vector;
543 result->max_iov_frags = num_extra_frags;
544 for (i = 0; i < max_size; i++) {
545 if (vp->header_size > 0)
546 iov = kmalloc_array(3 + num_extra_frags,
547 sizeof(struct iovec),
548 GFP_KERNEL
549 );
550 else
551 iov = kmalloc_array(2 + num_extra_frags,
552 sizeof(struct iovec),
553 GFP_KERNEL
554 );
555 if (iov == NULL)
556 goto out_fail;
557 mmsg_vector->msg_hdr.msg_iov = iov;
558 mmsg_vector->msg_hdr.msg_iovlen = 1;
559 mmsg_vector->msg_hdr.msg_control = NULL;
560 mmsg_vector->msg_hdr.msg_controllen = 0;
561 mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
562 mmsg_vector->msg_hdr.msg_name = NULL;
563 mmsg_vector->msg_hdr.msg_namelen = 0;
564 if (vp->header_size > 0) {
565 iov->iov_base = kmalloc(header_size, GFP_KERNEL);
566 if (iov->iov_base == NULL)
567 goto out_fail;
568 iov->iov_len = header_size;
569 mmsg_vector->msg_hdr.msg_iovlen = 2;
570 iov++;
571 }
572 iov->iov_base = NULL;
573 iov->iov_len = 0;
574 mmsg_vector++;
575 }
576 spin_lock_init(&result->head_lock);
577 spin_lock_init(&result->tail_lock);
578 atomic_set(&result->queue_depth, 0);
579 result->head = 0;
580 result->tail = 0;
581 return result;
582 out_skb_fail:
583 kfree(result->mmsg_vector);
584 out_mmsg_fail:
585 kfree(result);
586 return NULL;
587 out_fail:
588 destroy_queue(result);
589 return NULL;
590 }
591
592 /*
593 * We do not use the RX queue as a proper wraparound queue for now
594 * This is not necessary because the consumption via napi_gro_receive()
595 * happens in-line. While we can try using the return code of
596 * netif_rx() for flow control there are no drivers doing this today.
597 * For this RX specific use we ignore the tail/head locks and
598 * just read into a prepared queue filled with skbuffs.
599 */
600
prep_skb(struct vector_private * vp,struct user_msghdr * msg)601 static struct sk_buff *prep_skb(
602 struct vector_private *vp,
603 struct user_msghdr *msg)
604 {
605 int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
606 struct sk_buff *result;
607 int iov_index = 0, len;
608 struct iovec *iov = msg->msg_iov;
609 int err, nr_frags, frag;
610 skb_frag_t *skb_frag;
611
612 if (vp->req_size <= linear)
613 len = linear;
614 else
615 len = vp->req_size;
616 result = alloc_skb_with_frags(
617 linear,
618 len - vp->max_packet,
619 3,
620 &err,
621 GFP_ATOMIC
622 );
623 if (vp->header_size > 0)
624 iov_index++;
625 if (result == NULL) {
626 iov[iov_index].iov_base = NULL;
627 iov[iov_index].iov_len = 0;
628 goto done;
629 }
630 skb_reserve(result, vp->headroom);
631 result->dev = vp->dev;
632 skb_put(result, vp->max_packet);
633 result->data_len = len - vp->max_packet;
634 result->len += len - vp->max_packet;
635 skb_reset_mac_header(result);
636 result->ip_summed = CHECKSUM_NONE;
637 iov[iov_index].iov_base = result->data;
638 iov[iov_index].iov_len = vp->max_packet;
639 iov_index++;
640
641 nr_frags = skb_shinfo(result)->nr_frags;
642 for (frag = 0; frag < nr_frags; frag++) {
643 skb_frag = &skb_shinfo(result)->frags[frag];
644 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
645 if (iov[iov_index].iov_base != NULL)
646 iov[iov_index].iov_len = skb_frag_size(skb_frag);
647 else
648 iov[iov_index].iov_len = 0;
649 iov_index++;
650 }
651 done:
652 msg->msg_iovlen = iov_index;
653 return result;
654 }
655
656
657 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs */
658
prep_queue_for_rx(struct vector_queue * qi)659 static void prep_queue_for_rx(struct vector_queue *qi)
660 {
661 struct vector_private *vp = netdev_priv(qi->dev);
662 struct mmsghdr *mmsg_vector = qi->mmsg_vector;
663 void **skbuff_vector = qi->skbuff_vector;
664 int i, queue_depth;
665
666 queue_depth = atomic_read(&qi->queue_depth);
667
668 if (queue_depth == 0)
669 return;
670
671 /* RX is always emptied 100% during each cycle, so we do not
672 * have to do the tail wraparound math for it.
673 */
674
675 qi->head = qi->tail = 0;
676
677 for (i = 0; i < queue_depth; i++) {
678 /* it is OK if allocation fails - recvmmsg with NULL data in
679 * iov argument still performs an RX, just drops the packet
680 * This allows us stop faffing around with a "drop buffer"
681 */
682
683 *skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
684 skbuff_vector++;
685 mmsg_vector++;
686 }
687 atomic_set(&qi->queue_depth, 0);
688 }
689
find_device(int n)690 static struct vector_device *find_device(int n)
691 {
692 struct vector_device *device;
693 struct list_head *ele;
694
695 spin_lock(&vector_devices_lock);
696 list_for_each(ele, &vector_devices) {
697 device = list_entry(ele, struct vector_device, list);
698 if (device->unit == n)
699 goto out;
700 }
701 device = NULL;
702 out:
703 spin_unlock(&vector_devices_lock);
704 return device;
705 }
706
vector_parse(char * str,int * index_out,char ** str_out,char ** error_out)707 static int vector_parse(char *str, int *index_out, char **str_out,
708 char **error_out)
709 {
710 int n, err;
711 char *start = str;
712
713 while ((*str != ':') && (strlen(str) > 1))
714 str++;
715 if (*str != ':') {
716 *error_out = "Expected ':' after device number";
717 return -EINVAL;
718 }
719 *str = '\0';
720
721 err = kstrtouint(start, 0, &n);
722 if (err < 0) {
723 *error_out = "Bad device number";
724 return err;
725 }
726
727 str++;
728 if (find_device(n)) {
729 *error_out = "Device already configured";
730 return -EINVAL;
731 }
732
733 *index_out = n;
734 *str_out = str;
735 return 0;
736 }
737
vector_config(char * str,char ** error_out)738 static int vector_config(char *str, char **error_out)
739 {
740 int err, n;
741 char *params;
742 struct arglist *parsed;
743
744 err = vector_parse(str, &n, ¶ms, error_out);
745 if (err != 0)
746 return err;
747
748 /* This string is broken up and the pieces used by the underlying
749 * driver. We should copy it to make sure things do not go wrong
750 * later.
751 */
752
753 params = kstrdup(params, GFP_KERNEL);
754 if (params == NULL) {
755 *error_out = "vector_config failed to strdup string";
756 return -ENOMEM;
757 }
758
759 parsed = uml_parse_vector_ifspec(params);
760
761 if (parsed == NULL) {
762 *error_out = "vector_config failed to parse parameters";
763 kfree(params);
764 return -EINVAL;
765 }
766
767 vector_eth_configure(n, parsed);
768 return 0;
769 }
770
vector_id(char ** str,int * start_out,int * end_out)771 static int vector_id(char **str, int *start_out, int *end_out)
772 {
773 char *end;
774 int n;
775
776 n = simple_strtoul(*str, &end, 0);
777 if ((*end != '\0') || (end == *str))
778 return -1;
779
780 *start_out = n;
781 *end_out = n;
782 *str = end;
783 return n;
784 }
785
vector_remove(int n,char ** error_out)786 static int vector_remove(int n, char **error_out)
787 {
788 struct vector_device *vec_d;
789 struct net_device *dev;
790 struct vector_private *vp;
791
792 vec_d = find_device(n);
793 if (vec_d == NULL)
794 return -ENODEV;
795 dev = vec_d->dev;
796 vp = netdev_priv(dev);
797 if (vp->fds != NULL)
798 return -EBUSY;
799 unregister_netdev(dev);
800 platform_device_unregister(&vec_d->pdev);
801 return 0;
802 }
803
804 /*
805 * There is no shared per-transport initialization code, so
806 * we will just initialize each interface one by one and
807 * add them to a list
808 */
809
810 static struct platform_driver uml_net_driver = {
811 .driver = {
812 .name = DRIVER_NAME,
813 },
814 };
815
816
vector_device_release(struct device * dev)817 static void vector_device_release(struct device *dev)
818 {
819 struct vector_device *device =
820 container_of(dev, struct vector_device, pdev.dev);
821 struct net_device *netdev = device->dev;
822
823 list_del(&device->list);
824 kfree(device);
825 free_netdev(netdev);
826 }
827
828 /* Bog standard recv using recvmsg - not used normally unless the user
829 * explicitly specifies not to use recvmmsg vector RX.
830 */
831
vector_legacy_rx(struct vector_private * vp)832 static int vector_legacy_rx(struct vector_private *vp)
833 {
834 int pkt_len;
835 struct user_msghdr hdr;
836 struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
837 int iovpos = 0;
838 struct sk_buff *skb;
839 int header_check;
840
841 hdr.msg_name = NULL;
842 hdr.msg_namelen = 0;
843 hdr.msg_iov = (struct iovec *) &iov;
844 hdr.msg_control = NULL;
845 hdr.msg_controllen = 0;
846 hdr.msg_flags = 0;
847
848 if (vp->header_size > 0) {
849 iov[0].iov_base = vp->header_rxbuffer;
850 iov[0].iov_len = vp->header_size;
851 }
852
853 skb = prep_skb(vp, &hdr);
854
855 if (skb == NULL) {
856 /* Read a packet into drop_buffer and don't do
857 * anything with it.
858 */
859 iov[iovpos].iov_base = drop_buffer;
860 iov[iovpos].iov_len = DROP_BUFFER_SIZE;
861 hdr.msg_iovlen = 1;
862 vp->dev->stats.rx_dropped++;
863 }
864
865 pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
866 if (pkt_len < 0) {
867 vp->in_error = true;
868 return pkt_len;
869 }
870
871 if (skb != NULL) {
872 if (pkt_len > vp->header_size) {
873 if (vp->header_size > 0) {
874 header_check = vp->verify_header(
875 vp->header_rxbuffer, skb, vp);
876 if (header_check < 0) {
877 dev_kfree_skb_irq(skb);
878 vp->dev->stats.rx_dropped++;
879 vp->estats.rx_encaps_errors++;
880 return 0;
881 }
882 if (header_check > 0) {
883 vp->estats.rx_csum_offload_good++;
884 skb->ip_summed = CHECKSUM_UNNECESSARY;
885 }
886 }
887 pskb_trim(skb, pkt_len - vp->rx_header_size);
888 skb->protocol = eth_type_trans(skb, skb->dev);
889 vp->dev->stats.rx_bytes += skb->len;
890 vp->dev->stats.rx_packets++;
891 napi_gro_receive(&vp->napi, skb);
892 } else {
893 dev_kfree_skb_irq(skb);
894 }
895 }
896 return pkt_len;
897 }
898
899 /*
900 * Packet at a time TX which falls back to vector TX if the
901 * underlying transport is busy.
902 */
903
904
905
writev_tx(struct vector_private * vp,struct sk_buff * skb)906 static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
907 {
908 struct iovec iov[3 + MAX_IOV_SIZE];
909 int iov_count, pkt_len = 0;
910
911 iov[0].iov_base = vp->header_txbuffer;
912 iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
913
914 if (iov_count < 1)
915 goto drop;
916
917 pkt_len = uml_vector_writev(
918 vp->fds->tx_fd,
919 (struct iovec *) &iov,
920 iov_count
921 );
922
923 if (pkt_len < 0)
924 goto drop;
925
926 netif_trans_update(vp->dev);
927 netif_wake_queue(vp->dev);
928
929 if (pkt_len > 0) {
930 vp->dev->stats.tx_bytes += skb->len;
931 vp->dev->stats.tx_packets++;
932 } else {
933 vp->dev->stats.tx_dropped++;
934 }
935 consume_skb(skb);
936 return pkt_len;
937 drop:
938 vp->dev->stats.tx_dropped++;
939 consume_skb(skb);
940 if (pkt_len < 0)
941 vp->in_error = true;
942 return pkt_len;
943 }
944
945 /*
946 * Receive as many messages as we can in one call using the special
947 * mmsg vector matched to an skb vector which we prepared earlier.
948 */
949
vector_mmsg_rx(struct vector_private * vp,int budget)950 static int vector_mmsg_rx(struct vector_private *vp, int budget)
951 {
952 int packet_count, i;
953 struct vector_queue *qi = vp->rx_queue;
954 struct sk_buff *skb;
955 struct mmsghdr *mmsg_vector = qi->mmsg_vector;
956 void **skbuff_vector = qi->skbuff_vector;
957 int header_check;
958
959 /* Refresh the vector and make sure it is with new skbs and the
960 * iovs are updated to point to them.
961 */
962
963 prep_queue_for_rx(qi);
964
965 /* Fire the Lazy Gun - get as many packets as we can in one go. */
966
967 if (budget > qi->max_depth)
968 budget = qi->max_depth;
969
970 packet_count = uml_vector_recvmmsg(
971 vp->fds->rx_fd, qi->mmsg_vector, budget, 0);
972
973 if (packet_count < 0)
974 vp->in_error = true;
975
976 if (packet_count <= 0)
977 return packet_count;
978
979 /* We treat packet processing as enqueue, buffer refresh as dequeue
980 * The queue_depth tells us how many buffers have been used and how
981 * many do we need to prep the next time prep_queue_for_rx() is called.
982 */
983
984 atomic_add(packet_count, &qi->queue_depth);
985
986 for (i = 0; i < packet_count; i++) {
987 skb = (*skbuff_vector);
988 if (mmsg_vector->msg_len > vp->header_size) {
989 if (vp->header_size > 0) {
990 header_check = vp->verify_header(
991 mmsg_vector->msg_hdr.msg_iov->iov_base,
992 skb,
993 vp
994 );
995 if (header_check < 0) {
996 /* Overlay header failed to verify - discard.
997 * We can actually keep this skb and reuse it,
998 * but that will make the prep logic too
999 * complex.
1000 */
1001 dev_kfree_skb_irq(skb);
1002 vp->estats.rx_encaps_errors++;
1003 continue;
1004 }
1005 if (header_check > 0) {
1006 vp->estats.rx_csum_offload_good++;
1007 skb->ip_summed = CHECKSUM_UNNECESSARY;
1008 }
1009 }
1010 pskb_trim(skb,
1011 mmsg_vector->msg_len - vp->rx_header_size);
1012 skb->protocol = eth_type_trans(skb, skb->dev);
1013 /*
1014 * We do not need to lock on updating stats here
1015 * The interrupt loop is non-reentrant.
1016 */
1017 vp->dev->stats.rx_bytes += skb->len;
1018 vp->dev->stats.rx_packets++;
1019 napi_gro_receive(&vp->napi, skb);
1020 } else {
1021 /* Overlay header too short to do anything - discard.
1022 * We can actually keep this skb and reuse it,
1023 * but that will make the prep logic too complex.
1024 */
1025 if (skb != NULL)
1026 dev_kfree_skb_irq(skb);
1027 }
1028 (*skbuff_vector) = NULL;
1029 /* Move to the next buffer element */
1030 mmsg_vector++;
1031 skbuff_vector++;
1032 }
1033 if (packet_count > 0) {
1034 if (vp->estats.rx_queue_max < packet_count)
1035 vp->estats.rx_queue_max = packet_count;
1036 vp->estats.rx_queue_running_average =
1037 (vp->estats.rx_queue_running_average + packet_count) >> 1;
1038 }
1039 return packet_count;
1040 }
1041
vector_net_start_xmit(struct sk_buff * skb,struct net_device * dev)1042 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
1043 {
1044 struct vector_private *vp = netdev_priv(dev);
1045 int queue_depth = 0;
1046
1047 if (vp->in_error) {
1048 deactivate_fd(vp->fds->rx_fd, vp->rx_irq);
1049 if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0))
1050 deactivate_fd(vp->fds->tx_fd, vp->tx_irq);
1051 return NETDEV_TX_BUSY;
1052 }
1053
1054 if ((vp->options & VECTOR_TX) == 0) {
1055 writev_tx(vp, skb);
1056 return NETDEV_TX_OK;
1057 }
1058
1059 /* We do BQL only in the vector path, no point doing it in
1060 * packet at a time mode as there is no device queue
1061 */
1062
1063 netdev_sent_queue(vp->dev, skb->len);
1064 queue_depth = vector_enqueue(vp->tx_queue, skb);
1065
1066 if (queue_depth < vp->tx_queue->max_depth && netdev_xmit_more()) {
1067 mod_timer(&vp->tl, vp->coalesce);
1068 return NETDEV_TX_OK;
1069 } else {
1070 queue_depth = vector_send(vp->tx_queue);
1071 if (queue_depth > 0)
1072 napi_schedule(&vp->napi);
1073 }
1074
1075 return NETDEV_TX_OK;
1076 }
1077
vector_rx_interrupt(int irq,void * dev_id)1078 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
1079 {
1080 struct net_device *dev = dev_id;
1081 struct vector_private *vp = netdev_priv(dev);
1082
1083 if (!netif_running(dev))
1084 return IRQ_NONE;
1085 napi_schedule(&vp->napi);
1086 return IRQ_HANDLED;
1087
1088 }
1089
vector_tx_interrupt(int irq,void * dev_id)1090 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
1091 {
1092 struct net_device *dev = dev_id;
1093 struct vector_private *vp = netdev_priv(dev);
1094
1095 if (!netif_running(dev))
1096 return IRQ_NONE;
1097 /* We need to pay attention to it only if we got
1098 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
1099 * we ignore it. In the future, it may be worth
1100 * it to improve the IRQ controller a bit to make
1101 * tweaking the IRQ mask less costly
1102 */
1103
1104 napi_schedule(&vp->napi);
1105 return IRQ_HANDLED;
1106
1107 }
1108
1109 static int irq_rr;
1110
vector_net_close(struct net_device * dev)1111 static int vector_net_close(struct net_device *dev)
1112 {
1113 struct vector_private *vp = netdev_priv(dev);
1114
1115 netif_stop_queue(dev);
1116 timer_delete(&vp->tl);
1117
1118 vp->opened = false;
1119
1120 if (vp->fds == NULL)
1121 return 0;
1122
1123 /* Disable and free all IRQS */
1124 if (vp->rx_irq > 0) {
1125 um_free_irq(vp->rx_irq, dev);
1126 vp->rx_irq = 0;
1127 }
1128 if (vp->tx_irq > 0) {
1129 um_free_irq(vp->tx_irq, dev);
1130 vp->tx_irq = 0;
1131 }
1132 napi_disable(&vp->napi);
1133 netif_napi_del(&vp->napi);
1134 if (vp->fds->rx_fd > 0) {
1135 if (vp->bpf)
1136 uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1137 os_close_file(vp->fds->rx_fd);
1138 vp->fds->rx_fd = -1;
1139 }
1140 if (vp->fds->tx_fd > 0) {
1141 os_close_file(vp->fds->tx_fd);
1142 vp->fds->tx_fd = -1;
1143 }
1144 if (vp->bpf != NULL)
1145 kfree(vp->bpf->filter);
1146 kfree(vp->bpf);
1147 vp->bpf = NULL;
1148 kfree(vp->fds->remote_addr);
1149 kfree(vp->transport_data);
1150 kfree(vp->header_rxbuffer);
1151 kfree(vp->header_txbuffer);
1152 if (vp->rx_queue != NULL)
1153 destroy_queue(vp->rx_queue);
1154 if (vp->tx_queue != NULL)
1155 destroy_queue(vp->tx_queue);
1156 kfree(vp->fds);
1157 vp->fds = NULL;
1158 vp->in_error = false;
1159 return 0;
1160 }
1161
vector_poll(struct napi_struct * napi,int budget)1162 static int vector_poll(struct napi_struct *napi, int budget)
1163 {
1164 struct vector_private *vp = container_of(napi, struct vector_private, napi);
1165 int work_done = 0;
1166 int err;
1167 bool tx_enqueued = false;
1168
1169 if ((vp->options & VECTOR_TX) != 0)
1170 tx_enqueued = (vector_send(vp->tx_queue) > 0);
1171 spin_lock(&vp->rx_queue->head_lock);
1172 if ((vp->options & VECTOR_RX) > 0)
1173 err = vector_mmsg_rx(vp, budget);
1174 else {
1175 err = vector_legacy_rx(vp);
1176 if (err > 0)
1177 err = 1;
1178 }
1179 spin_unlock(&vp->rx_queue->head_lock);
1180 if (err > 0)
1181 work_done += err;
1182
1183 if (tx_enqueued || err > 0)
1184 napi_schedule(napi);
1185 if (work_done <= budget)
1186 napi_complete_done(napi, work_done);
1187 return work_done;
1188 }
1189
vector_reset_tx(struct work_struct * work)1190 static void vector_reset_tx(struct work_struct *work)
1191 {
1192 struct vector_private *vp =
1193 container_of(work, struct vector_private, reset_tx);
1194 netdev_reset_queue(vp->dev);
1195 netif_start_queue(vp->dev);
1196 netif_wake_queue(vp->dev);
1197 }
1198
vector_net_open(struct net_device * dev)1199 static int vector_net_open(struct net_device *dev)
1200 {
1201 struct vector_private *vp = netdev_priv(dev);
1202 int err = -EINVAL;
1203 struct vector_device *vdevice;
1204
1205 if (vp->opened)
1206 return -ENXIO;
1207 vp->opened = true;
1208
1209 vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed));
1210
1211 vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
1212
1213 if (vp->fds == NULL)
1214 goto out_close;
1215
1216 if (build_transport_data(vp) < 0)
1217 goto out_close;
1218
1219 if ((vp->options & VECTOR_RX) > 0) {
1220 vp->rx_queue = create_queue(
1221 vp,
1222 get_depth(vp->parsed),
1223 vp->rx_header_size,
1224 MAX_IOV_SIZE
1225 );
1226 atomic_set(&vp->rx_queue->queue_depth, get_depth(vp->parsed));
1227 } else {
1228 vp->header_rxbuffer = kmalloc(
1229 vp->rx_header_size,
1230 GFP_KERNEL
1231 );
1232 if (vp->header_rxbuffer == NULL)
1233 goto out_close;
1234 }
1235 if ((vp->options & VECTOR_TX) > 0) {
1236 vp->tx_queue = create_queue(
1237 vp,
1238 get_depth(vp->parsed),
1239 vp->header_size,
1240 MAX_IOV_SIZE
1241 );
1242 } else {
1243 vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
1244 if (vp->header_txbuffer == NULL)
1245 goto out_close;
1246 }
1247
1248 netif_napi_add_weight(vp->dev, &vp->napi, vector_poll,
1249 get_depth(vp->parsed));
1250 napi_enable(&vp->napi);
1251
1252 /* READ IRQ */
1253 err = um_request_irq(
1254 irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
1255 IRQ_READ, vector_rx_interrupt,
1256 IRQF_SHARED, dev->name, dev);
1257 if (err < 0) {
1258 netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
1259 err = -ENETUNREACH;
1260 goto out_close;
1261 }
1262 vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
1263 dev->irq = irq_rr + VECTOR_BASE_IRQ;
1264 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1265
1266 /* WRITE IRQ - we need it only if we have vector TX */
1267 if ((vp->options & VECTOR_TX) > 0) {
1268 err = um_request_irq(
1269 irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
1270 IRQ_WRITE, vector_tx_interrupt,
1271 IRQF_SHARED, dev->name, dev);
1272 if (err < 0) {
1273 netdev_err(dev,
1274 "vector_open: failed to get tx irq(%d)\n", err);
1275 err = -ENETUNREACH;
1276 goto out_close;
1277 }
1278 vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
1279 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1280 }
1281
1282 if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
1283 if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
1284 vp->options |= VECTOR_BPF;
1285 }
1286 if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL))
1287 vp->bpf = uml_vector_default_bpf(dev->dev_addr);
1288
1289 if (vp->bpf != NULL)
1290 uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1291
1292 netif_start_queue(dev);
1293 vector_reset_stats(vp);
1294
1295 /* clear buffer - it can happen that the host side of the interface
1296 * is full when we get here. In this case, new data is never queued,
1297 * SIGIOs never arrive, and the net never works.
1298 */
1299
1300 napi_schedule(&vp->napi);
1301
1302 vdevice = find_device(vp->unit);
1303 vdevice->opened = 1;
1304
1305 if ((vp->options & VECTOR_TX) != 0)
1306 add_timer(&vp->tl);
1307 return 0;
1308 out_close:
1309 vector_net_close(dev);
1310 return err;
1311 }
1312
1313
vector_net_set_multicast_list(struct net_device * dev)1314 static void vector_net_set_multicast_list(struct net_device *dev)
1315 {
1316 /* TODO: - we can do some BPF games here */
1317 return;
1318 }
1319
vector_net_tx_timeout(struct net_device * dev,unsigned int txqueue)1320 static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue)
1321 {
1322 struct vector_private *vp = netdev_priv(dev);
1323
1324 vp->estats.tx_timeout_count++;
1325 netif_trans_update(dev);
1326 schedule_work(&vp->reset_tx);
1327 }
1328
vector_fix_features(struct net_device * dev,netdev_features_t features)1329 static netdev_features_t vector_fix_features(struct net_device *dev,
1330 netdev_features_t features)
1331 {
1332 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
1333 return features;
1334 }
1335
vector_set_features(struct net_device * dev,netdev_features_t features)1336 static int vector_set_features(struct net_device *dev,
1337 netdev_features_t features)
1338 {
1339 struct vector_private *vp = netdev_priv(dev);
1340 /* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
1341 * no way to negotiate it on raw sockets, so we can change
1342 * only our side.
1343 */
1344 if (features & NETIF_F_GRO)
1345 /* All new frame buffers will be GRO-sized */
1346 vp->req_size = 65536;
1347 else
1348 /* All new frame buffers will be normal sized */
1349 vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
1350 return 0;
1351 }
1352
1353 #ifdef CONFIG_NET_POLL_CONTROLLER
vector_net_poll_controller(struct net_device * dev)1354 static void vector_net_poll_controller(struct net_device *dev)
1355 {
1356 disable_irq(dev->irq);
1357 vector_rx_interrupt(dev->irq, dev);
1358 enable_irq(dev->irq);
1359 }
1360 #endif
1361
vector_net_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1362 static void vector_net_get_drvinfo(struct net_device *dev,
1363 struct ethtool_drvinfo *info)
1364 {
1365 strscpy(info->driver, DRIVER_NAME);
1366 }
1367
vector_net_load_bpf_flash(struct net_device * dev,struct ethtool_flash * efl)1368 static int vector_net_load_bpf_flash(struct net_device *dev,
1369 struct ethtool_flash *efl)
1370 {
1371 struct vector_private *vp = netdev_priv(dev);
1372 struct vector_device *vdevice;
1373 const struct firmware *fw;
1374 int result = 0;
1375
1376 if (!(vp->options & VECTOR_BPF_FLASH)) {
1377 netdev_err(dev, "loading firmware not permitted: %s\n", efl->data);
1378 return -1;
1379 }
1380
1381 if (vp->bpf != NULL) {
1382 if (vp->opened)
1383 uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1384 kfree(vp->bpf->filter);
1385 vp->bpf->filter = NULL;
1386 } else {
1387 vp->bpf = kmalloc(sizeof(struct sock_fprog), GFP_ATOMIC);
1388 if (vp->bpf == NULL) {
1389 netdev_err(dev, "failed to allocate memory for firmware\n");
1390 goto flash_fail;
1391 }
1392 }
1393
1394 vdevice = find_device(vp->unit);
1395
1396 if (request_firmware(&fw, efl->data, &vdevice->pdev.dev))
1397 goto flash_fail;
1398
1399 vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_ATOMIC);
1400 if (!vp->bpf->filter)
1401 goto free_buffer;
1402
1403 vp->bpf->len = fw->size / sizeof(struct sock_filter);
1404 release_firmware(fw);
1405
1406 if (vp->opened)
1407 result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1408
1409 return result;
1410
1411 free_buffer:
1412 release_firmware(fw);
1413
1414 flash_fail:
1415 if (vp->bpf != NULL)
1416 kfree(vp->bpf->filter);
1417 kfree(vp->bpf);
1418 vp->bpf = NULL;
1419 return -1;
1420 }
1421
vector_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)1422 static void vector_get_ringparam(struct net_device *netdev,
1423 struct ethtool_ringparam *ring,
1424 struct kernel_ethtool_ringparam *kernel_ring,
1425 struct netlink_ext_ack *extack)
1426 {
1427 struct vector_private *vp = netdev_priv(netdev);
1428
1429 ring->rx_max_pending = vp->rx_queue->max_depth;
1430 ring->tx_max_pending = vp->tx_queue->max_depth;
1431 ring->rx_pending = vp->rx_queue->max_depth;
1432 ring->tx_pending = vp->tx_queue->max_depth;
1433 }
1434
vector_get_strings(struct net_device * dev,u32 stringset,u8 * buf)1435 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
1436 {
1437 switch (stringset) {
1438 case ETH_SS_TEST:
1439 *buf = '\0';
1440 break;
1441 case ETH_SS_STATS:
1442 memcpy(buf, ðtool_stats_keys, sizeof(ethtool_stats_keys));
1443 break;
1444 default:
1445 WARN_ON(1);
1446 break;
1447 }
1448 }
1449
vector_get_sset_count(struct net_device * dev,int sset)1450 static int vector_get_sset_count(struct net_device *dev, int sset)
1451 {
1452 switch (sset) {
1453 case ETH_SS_TEST:
1454 return 0;
1455 case ETH_SS_STATS:
1456 return VECTOR_NUM_STATS;
1457 default:
1458 return -EOPNOTSUPP;
1459 }
1460 }
1461
vector_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * estats,u64 * tmp_stats)1462 static void vector_get_ethtool_stats(struct net_device *dev,
1463 struct ethtool_stats *estats,
1464 u64 *tmp_stats)
1465 {
1466 struct vector_private *vp = netdev_priv(dev);
1467
1468 /* Stats are modified in the dequeue portions of
1469 * rx/tx which are protected by the head locks
1470 * grabbing these locks here ensures they are up
1471 * to date.
1472 */
1473
1474 spin_lock(&vp->tx_queue->head_lock);
1475 spin_lock(&vp->rx_queue->head_lock);
1476 memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
1477 spin_unlock(&vp->rx_queue->head_lock);
1478 spin_unlock(&vp->tx_queue->head_lock);
1479 }
1480
vector_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1481 static int vector_get_coalesce(struct net_device *netdev,
1482 struct ethtool_coalesce *ec,
1483 struct kernel_ethtool_coalesce *kernel_coal,
1484 struct netlink_ext_ack *extack)
1485 {
1486 struct vector_private *vp = netdev_priv(netdev);
1487
1488 ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
1489 return 0;
1490 }
1491
vector_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1492 static int vector_set_coalesce(struct net_device *netdev,
1493 struct ethtool_coalesce *ec,
1494 struct kernel_ethtool_coalesce *kernel_coal,
1495 struct netlink_ext_ack *extack)
1496 {
1497 struct vector_private *vp = netdev_priv(netdev);
1498
1499 vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
1500 if (vp->coalesce == 0)
1501 vp->coalesce = 1;
1502 return 0;
1503 }
1504
1505 static const struct ethtool_ops vector_net_ethtool_ops = {
1506 .supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS,
1507 .get_drvinfo = vector_net_get_drvinfo,
1508 .get_link = ethtool_op_get_link,
1509 .get_ts_info = ethtool_op_get_ts_info,
1510 .get_ringparam = vector_get_ringparam,
1511 .get_strings = vector_get_strings,
1512 .get_sset_count = vector_get_sset_count,
1513 .get_ethtool_stats = vector_get_ethtool_stats,
1514 .get_coalesce = vector_get_coalesce,
1515 .set_coalesce = vector_set_coalesce,
1516 .flash_device = vector_net_load_bpf_flash,
1517 };
1518
1519
1520 static const struct net_device_ops vector_netdev_ops = {
1521 .ndo_open = vector_net_open,
1522 .ndo_stop = vector_net_close,
1523 .ndo_start_xmit = vector_net_start_xmit,
1524 .ndo_set_rx_mode = vector_net_set_multicast_list,
1525 .ndo_tx_timeout = vector_net_tx_timeout,
1526 .ndo_set_mac_address = eth_mac_addr,
1527 .ndo_validate_addr = eth_validate_addr,
1528 .ndo_fix_features = vector_fix_features,
1529 .ndo_set_features = vector_set_features,
1530 #ifdef CONFIG_NET_POLL_CONTROLLER
1531 .ndo_poll_controller = vector_net_poll_controller,
1532 #endif
1533 };
1534
vector_timer_expire(struct timer_list * t)1535 static void vector_timer_expire(struct timer_list *t)
1536 {
1537 struct vector_private *vp = timer_container_of(vp, t, tl);
1538
1539 vp->estats.tx_kicks++;
1540 napi_schedule(&vp->napi);
1541 }
1542
vector_setup_etheraddr(struct net_device * dev,char * str)1543 static void vector_setup_etheraddr(struct net_device *dev, char *str)
1544 {
1545 u8 addr[ETH_ALEN];
1546
1547 if (str == NULL)
1548 goto random;
1549
1550 if (!mac_pton(str, addr)) {
1551 netdev_err(dev,
1552 "Failed to parse '%s' as an ethernet address\n", str);
1553 goto random;
1554 }
1555 if (is_multicast_ether_addr(addr)) {
1556 netdev_err(dev,
1557 "Attempt to assign a multicast ethernet address to a device disallowed\n");
1558 goto random;
1559 }
1560 if (!is_valid_ether_addr(addr)) {
1561 netdev_err(dev,
1562 "Attempt to assign an invalid ethernet address to a device disallowed\n");
1563 goto random;
1564 }
1565 if (!is_local_ether_addr(addr)) {
1566 netdev_warn(dev, "Warning: Assigning a globally valid ethernet address to a device\n");
1567 netdev_warn(dev, "You should set the 2nd rightmost bit in the first byte of the MAC,\n");
1568 netdev_warn(dev, "i.e. %02x:%02x:%02x:%02x:%02x:%02x\n",
1569 addr[0] | 0x02, addr[1], addr[2], addr[3], addr[4], addr[5]);
1570 }
1571 eth_hw_addr_set(dev, addr);
1572 return;
1573
1574 random:
1575 netdev_info(dev, "Choosing a random ethernet address\n");
1576 eth_hw_addr_random(dev);
1577 }
1578
vector_eth_configure(int n,struct arglist * def)1579 static void vector_eth_configure(
1580 int n,
1581 struct arglist *def
1582 )
1583 {
1584 struct vector_device *device;
1585 struct net_device *dev;
1586 struct vector_private *vp;
1587 int err;
1588
1589 device = kzalloc(sizeof(*device), GFP_KERNEL);
1590 if (device == NULL) {
1591 pr_err("Failed to allocate struct vector_device for vec%d\n", n);
1592 return;
1593 }
1594 dev = alloc_etherdev(sizeof(struct vector_private));
1595 if (dev == NULL) {
1596 pr_err("Failed to allocate struct net_device for vec%d\n", n);
1597 goto out_free_device;
1598 }
1599
1600 dev->mtu = get_mtu(def);
1601
1602 INIT_LIST_HEAD(&device->list);
1603 device->unit = n;
1604
1605 /* If this name ends up conflicting with an existing registered
1606 * netdevice, that is OK, register_netdev{,ice}() will notice this
1607 * and fail.
1608 */
1609 snprintf(dev->name, sizeof(dev->name), "vec%d", n);
1610 vector_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
1611 vp = netdev_priv(dev);
1612
1613 /* sysfs register */
1614 if (!driver_registered) {
1615 platform_driver_register(¨_net_driver);
1616 driver_registered = 1;
1617 }
1618 device->pdev.id = n;
1619 device->pdev.name = DRIVER_NAME;
1620 device->pdev.dev.release = vector_device_release;
1621 dev_set_drvdata(&device->pdev.dev, device);
1622 if (platform_device_register(&device->pdev))
1623 goto out_free_netdev;
1624 SET_NETDEV_DEV(dev, &device->pdev.dev);
1625
1626 device->dev = dev;
1627
1628 INIT_LIST_HEAD(&vp->list);
1629 vp->dev = dev;
1630 vp->unit = n;
1631 vp->options = get_transport_options(def);
1632 vp->parsed = def;
1633 vp->max_packet = get_mtu(def) + ETH_HEADER_OTHER;
1634 /*
1635 * TODO - we need to calculate headroom so that ip header
1636 * is 16 byte aligned all the time
1637 */
1638 vp->headroom = get_headroom(def);
1639 vp->coalesce = 2;
1640 vp->req_size = get_req_size(def);
1641
1642 dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
1643 INIT_WORK(&vp->reset_tx, vector_reset_tx);
1644
1645 timer_setup(&vp->tl, vector_timer_expire, 0);
1646
1647 /* FIXME */
1648 dev->netdev_ops = &vector_netdev_ops;
1649 dev->ethtool_ops = &vector_net_ethtool_ops;
1650 dev->watchdog_timeo = (HZ >> 1);
1651 /* primary IRQ - fixme */
1652 dev->irq = 0; /* we will adjust this once opened */
1653
1654 rtnl_lock();
1655 err = register_netdevice(dev);
1656 rtnl_unlock();
1657 if (err)
1658 goto out_undo_user_init;
1659
1660 spin_lock(&vector_devices_lock);
1661 list_add(&device->list, &vector_devices);
1662 spin_unlock(&vector_devices_lock);
1663
1664 return;
1665
1666 out_undo_user_init:
1667 return;
1668 out_free_netdev:
1669 free_netdev(dev);
1670 out_free_device:
1671 kfree(device);
1672 }
1673
1674
1675
1676
1677 /*
1678 * Invoked late in the init
1679 */
1680
vector_init(void)1681 static int __init vector_init(void)
1682 {
1683 struct list_head *ele;
1684 struct vector_cmd_line_arg *def;
1685 struct arglist *parsed;
1686
1687 list_for_each(ele, &vec_cmd_line) {
1688 def = list_entry(ele, struct vector_cmd_line_arg, list);
1689 parsed = uml_parse_vector_ifspec(def->arguments);
1690 if (parsed != NULL)
1691 vector_eth_configure(def->unit, parsed);
1692 }
1693 return 0;
1694 }
1695
1696
1697 /* Invoked at initial argument parsing, only stores
1698 * arguments until a proper vector_init is called
1699 * later
1700 */
1701
vector_setup(char * str)1702 static int __init vector_setup(char *str)
1703 {
1704 char *error;
1705 int n, err;
1706 struct vector_cmd_line_arg *new;
1707
1708 err = vector_parse(str, &n, &str, &error);
1709 if (err) {
1710 pr_err("Couldn't parse '%s': %s\n", str, error);
1711 return 1;
1712 }
1713 new = memblock_alloc_or_panic(sizeof(*new), SMP_CACHE_BYTES);
1714 INIT_LIST_HEAD(&new->list);
1715 new->unit = n;
1716 new->arguments = str;
1717 list_add_tail(&new->list, &vec_cmd_line);
1718 return 1;
1719 }
1720
1721 __setup("vec", vector_setup);
1722 __uml_help(vector_setup,
1723 "vec[0-9]+:<option>=<value>,<option>=<value>\n"
1724 " Configure a vector io network device.\n\n"
1725 );
1726
1727 late_initcall(vector_init);
1728
1729 static struct mc_device vector_mc = {
1730 .list = LIST_HEAD_INIT(vector_mc.list),
1731 .name = "vec",
1732 .config = vector_config,
1733 .get_config = NULL,
1734 .id = vector_id,
1735 .remove = vector_remove,
1736 };
1737
1738 #ifdef CONFIG_INET
vector_inetaddr_event(struct notifier_block * this,unsigned long event,void * ptr)1739 static int vector_inetaddr_event(
1740 struct notifier_block *this,
1741 unsigned long event,
1742 void *ptr)
1743 {
1744 return NOTIFY_DONE;
1745 }
1746
1747 static struct notifier_block vector_inetaddr_notifier = {
1748 .notifier_call = vector_inetaddr_event,
1749 };
1750
inet_register(void)1751 static void inet_register(void)
1752 {
1753 register_inetaddr_notifier(&vector_inetaddr_notifier);
1754 }
1755 #else
inet_register(void)1756 static inline void inet_register(void)
1757 {
1758 }
1759 #endif
1760
vector_net_init(void)1761 static int vector_net_init(void)
1762 {
1763 mconsole_register_dev(&vector_mc);
1764 inet_register();
1765 return 0;
1766 }
1767
1768 __initcall(vector_net_init);
1769
1770
1771
1772