xref: /linux/drivers/infiniband/hw/mlx5/odp.c (revision dd91b5e1d6448794c07378d1be12e3261c8769e7)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem_odp.h>
34 #include <linux/kernel.h>
35 #include <linux/dma-buf.h>
36 #include <linux/dma-resv.h>
37 #include <linux/hmm.h>
38 #include <linux/hmm-dma.h>
39 #include <linux/pci-p2pdma.h>
40 
41 #include "mlx5_ib.h"
42 #include "cmd.h"
43 #include "umr.h"
44 #include "qp.h"
45 
46 #include <linux/mlx5/eq.h>
47 
48 /* Contains the details of a pagefault. */
49 struct mlx5_pagefault {
50 	u32			bytes_committed;
51 	u64			token;
52 	u8			event_subtype;
53 	u8			type;
54 	union {
55 		/* Initiator or send message responder pagefault details. */
56 		struct {
57 			/* Received packet size, only valid for responders. */
58 			u32	packet_size;
59 			/*
60 			 * Number of resource holding WQE, depends on type.
61 			 */
62 			u32	wq_num;
63 			/*
64 			 * WQE index. Refers to either the send queue or
65 			 * receive queue, according to event_subtype.
66 			 */
67 			u16	wqe_index;
68 		} wqe;
69 		/* RDMA responder pagefault details */
70 		struct {
71 			u32	r_key;
72 			/*
73 			 * Received packet size, minimal size page fault
74 			 * resolution required for forward progress.
75 			 */
76 			u32	packet_size;
77 			u32	rdma_op_len;
78 			u64	rdma_va;
79 		} rdma;
80 		struct {
81 			u64	va;
82 			u32	mkey;
83 			u32	fault_byte_count;
84 			u32     prefetch_before_byte_count;
85 			u32     prefetch_after_byte_count;
86 			u8	flags;
87 		} memory;
88 	};
89 
90 	struct mlx5_ib_pf_eq	*eq;
91 	struct work_struct	work;
92 };
93 
94 #define MAX_PREFETCH_LEN (4*1024*1024U)
95 
96 /* Timeout in ms to wait for an active mmu notifier to complete when handling
97  * a pagefault. */
98 #define MMU_NOTIFIER_TIMEOUT 1000
99 
100 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
101 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
102 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
103 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
104 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
105 
106 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
107 
108 static u64 mlx5_imr_ksm_entries;
109 
populate_klm(struct mlx5_klm * pklm,size_t idx,size_t nentries,struct mlx5_ib_mr * imr,int flags)110 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
111 			struct mlx5_ib_mr *imr, int flags)
112 {
113 	struct mlx5_core_dev *dev = mr_to_mdev(imr)->mdev;
114 	struct mlx5_klm *end = pklm + nentries;
115 	int step = MLX5_CAP_ODP(dev, mem_page_fault) ? MLX5_IMR_MTT_SIZE : 0;
116 	__be32 key = MLX5_CAP_ODP(dev, mem_page_fault) ?
117 			     cpu_to_be32(imr->null_mmkey.key) :
118 			     mr_to_mdev(imr)->mkeys.null_mkey;
119 	u64 va =
120 		MLX5_CAP_ODP(dev, mem_page_fault) ? idx * MLX5_IMR_MTT_SIZE : 0;
121 
122 	if (flags & MLX5_IB_UPD_XLT_ZAP) {
123 		for (; pklm != end; pklm++, idx++, va += step) {
124 			pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
125 			pklm->key = key;
126 			pklm->va = cpu_to_be64(va);
127 		}
128 		return;
129 	}
130 
131 	/*
132 	 * The locking here is pretty subtle. Ideally the implicit_children
133 	 * xarray would be protected by the umem_mutex, however that is not
134 	 * possible. Instead this uses a weaker update-then-lock pattern:
135 	 *
136 	 *    xa_store()
137 	 *    mutex_lock(umem_mutex)
138 	 *     mlx5r_umr_update_xlt()
139 	 *    mutex_unlock(umem_mutex)
140 	 *    destroy lkey
141 	 *
142 	 * ie any change the xarray must be followed by the locked update_xlt
143 	 * before destroying.
144 	 *
145 	 * The umem_mutex provides the acquire/release semantic needed to make
146 	 * the xa_store() visible to a racing thread.
147 	 */
148 	lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
149 
150 	for (; pklm != end; pklm++, idx++, va += step) {
151 		struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
152 
153 		pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
154 		if (mtt) {
155 			pklm->key = cpu_to_be32(mtt->ibmr.lkey);
156 			pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
157 		} else {
158 			pklm->key = key;
159 			pklm->va = cpu_to_be64(va);
160 		}
161 	}
162 }
163 
populate_mtt(__be64 * pas,size_t start,size_t nentries,struct mlx5_ib_mr * mr,int flags)164 static int populate_mtt(__be64 *pas, size_t start, size_t nentries,
165 			struct mlx5_ib_mr *mr, int flags)
166 {
167 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
168 	bool downgrade = flags & MLX5_IB_UPD_XLT_DOWNGRADE;
169 	struct pci_p2pdma_map_state p2pdma_state = {};
170 	struct ib_device *dev = odp->umem.ibdev;
171 	size_t i;
172 
173 	if (flags & MLX5_IB_UPD_XLT_ZAP)
174 		return 0;
175 
176 	for (i = 0; i < nentries; i++) {
177 		unsigned long pfn = odp->map.pfn_list[start + i];
178 		dma_addr_t dma_addr;
179 
180 		pfn = odp->map.pfn_list[start + i];
181 		if (!(pfn & HMM_PFN_VALID))
182 			/* ODP initialization */
183 			continue;
184 
185 		dma_addr = hmm_dma_map_pfn(dev->dma_device, &odp->map,
186 					   start + i, &p2pdma_state);
187 		if (ib_dma_mapping_error(dev, dma_addr))
188 			return -EFAULT;
189 
190 		dma_addr |= MLX5_IB_MTT_READ;
191 		if ((pfn & HMM_PFN_WRITE) && !downgrade)
192 			dma_addr |= MLX5_IB_MTT_WRITE;
193 
194 		pas[i] = cpu_to_be64(dma_addr);
195 		odp->npages++;
196 	}
197 	return 0;
198 }
199 
mlx5_odp_populate_xlt(void * xlt,size_t idx,size_t nentries,struct mlx5_ib_mr * mr,int flags)200 int mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
201 			  struct mlx5_ib_mr *mr, int flags)
202 {
203 	if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
204 		populate_klm(xlt, idx, nentries, mr, flags);
205 		return 0;
206 	} else {
207 		return populate_mtt(xlt, idx, nentries, mr, flags);
208 	}
209 }
210 
211 /*
212  * This must be called after the mr has been removed from implicit_children.
213  * NOTE: The MR does not necessarily have to be
214  * empty here, parallel page faults could have raced with the free process and
215  * added pages to it.
216  */
free_implicit_child_mr_work(struct work_struct * work)217 static void free_implicit_child_mr_work(struct work_struct *work)
218 {
219 	struct mlx5_ib_mr *mr =
220 		container_of(work, struct mlx5_ib_mr, odp_destroy.work);
221 	struct mlx5_ib_mr *imr = mr->parent;
222 	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
223 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
224 
225 	mlx5r_deref_wait_odp_mkey(&mr->mmkey);
226 
227 	mutex_lock(&odp_imr->umem_mutex);
228 	mlx5r_umr_update_xlt(mr->parent,
229 			     ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT, 1, 0,
230 			     MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC);
231 	mutex_unlock(&odp_imr->umem_mutex);
232 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
233 
234 	mlx5r_deref_odp_mkey(&imr->mmkey);
235 }
236 
destroy_unused_implicit_child_mr(struct mlx5_ib_mr * mr)237 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
238 {
239 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
240 	unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
241 	struct mlx5_ib_mr *imr = mr->parent;
242 
243 	/*
244 	 * If userspace is racing freeing the parent implicit ODP MR then we can
245 	 * loose the race with parent destruction. In this case
246 	 * mlx5_ib_free_odp_mr() will free everything in the implicit_children
247 	 * xarray so NOP is fine. This child MR cannot be destroyed here because
248 	 * we are under its umem_mutex.
249 	 */
250 	if (!refcount_inc_not_zero(&imr->mmkey.usecount))
251 		return;
252 
253 	xa_lock(&imr->implicit_children);
254 	if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_KERNEL) !=
255 	    mr) {
256 		xa_unlock(&imr->implicit_children);
257 		mlx5r_deref_odp_mkey(&imr->mmkey);
258 		return;
259 	}
260 
261 	if (MLX5_CAP_ODP(mr_to_mdev(mr)->mdev, mem_page_fault))
262 		__xa_erase(&mr_to_mdev(mr)->odp_mkeys,
263 			   mlx5_base_mkey(mr->mmkey.key));
264 	xa_unlock(&imr->implicit_children);
265 
266 	/* Freeing a MR is a sleeping operation, so bounce to a work queue */
267 	INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
268 	queue_work(system_unbound_wq, &mr->odp_destroy.work);
269 }
270 
mlx5_ib_invalidate_range(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)271 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
272 				     const struct mmu_notifier_range *range,
273 				     unsigned long cur_seq)
274 {
275 	struct ib_umem_odp *umem_odp =
276 		container_of(mni, struct ib_umem_odp, notifier);
277 	struct mlx5_ib_mr *mr;
278 	const u64 umr_block_mask = MLX5_UMR_MTT_NUM_ENTRIES_ALIGNMENT - 1;
279 	u64 idx = 0, blk_start_idx = 0;
280 	u64 invalidations = 0;
281 	unsigned long start;
282 	unsigned long end;
283 	int in_block = 0;
284 	u64 addr;
285 
286 	if (!mmu_notifier_range_blockable(range))
287 		return false;
288 
289 	mutex_lock(&umem_odp->umem_mutex);
290 	mmu_interval_set_seq(mni, cur_seq);
291 	/*
292 	 * If npages is zero then umem_odp->private may not be setup yet. This
293 	 * does not complete until after the first page is mapped for DMA.
294 	 */
295 	if (!umem_odp->npages)
296 		goto out;
297 	mr = umem_odp->private;
298 	if (!mr)
299 		goto out;
300 
301 	start = max_t(u64, ib_umem_start(umem_odp), range->start);
302 	end = min_t(u64, ib_umem_end(umem_odp), range->end);
303 
304 	/*
305 	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
306 	 * while we are doing the invalidation, no page fault will attempt to
307 	 * overwrite the same MTTs.  Concurent invalidations might race us,
308 	 * but they will write 0s as well, so no difference in the end result.
309 	 */
310 	for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
311 		idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
312 		/*
313 		 * Strive to write the MTTs in chunks, but avoid overwriting
314 		 * non-existing MTTs. The huristic here can be improved to
315 		 * estimate the cost of another UMR vs. the cost of bigger
316 		 * UMR.
317 		 */
318 		if (umem_odp->map.pfn_list[idx] & HMM_PFN_VALID) {
319 			if (!in_block) {
320 				blk_start_idx = idx;
321 				in_block = 1;
322 			}
323 		} else {
324 			u64 umr_offset = idx & umr_block_mask;
325 
326 			if (in_block && umr_offset == 0) {
327 				mlx5r_umr_update_xlt(mr, blk_start_idx,
328 						     idx - blk_start_idx, 0,
329 						     MLX5_IB_UPD_XLT_ZAP |
330 						     MLX5_IB_UPD_XLT_ATOMIC);
331 				in_block = 0;
332 				/* Count page invalidations */
333 				invalidations += idx - blk_start_idx + 1;
334 			}
335 		}
336 	}
337 	if (in_block) {
338 		mlx5r_umr_update_xlt(mr, blk_start_idx,
339 				     idx - blk_start_idx + 1, 0,
340 				     MLX5_IB_UPD_XLT_ZAP |
341 				     MLX5_IB_UPD_XLT_ATOMIC);
342 		/* Count page invalidations */
343 		invalidations += idx - blk_start_idx + 1;
344 	}
345 
346 	mlx5_update_odp_stats_with_handled(mr, invalidations, invalidations);
347 
348 	/*
349 	 * We are now sure that the device will not access the
350 	 * memory. We can safely unmap it, and mark it as dirty if
351 	 * needed.
352 	 */
353 
354 	ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
355 
356 	if (unlikely(!umem_odp->npages && mr->parent))
357 		destroy_unused_implicit_child_mr(mr);
358 out:
359 	mutex_unlock(&umem_odp->umem_mutex);
360 	return true;
361 }
362 
363 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
364 	.invalidate = mlx5_ib_invalidate_range,
365 };
366 
internal_fill_odp_caps(struct mlx5_ib_dev * dev)367 static void internal_fill_odp_caps(struct mlx5_ib_dev *dev)
368 {
369 	struct ib_odp_caps *caps = &dev->odp_caps;
370 
371 	memset(caps, 0, sizeof(*caps));
372 
373 	if (!MLX5_CAP_GEN(dev->mdev, pg) || !mlx5r_umr_can_load_pas(dev, 0))
374 		return;
375 
376 	caps->general_caps = IB_ODP_SUPPORT;
377 
378 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
379 		dev->odp_max_size = U64_MAX;
380 	else
381 		dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
382 
383 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.send))
384 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
385 
386 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.srq_receive))
387 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
388 
389 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.send))
390 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
391 
392 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.receive))
393 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
394 
395 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.write))
396 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
397 
398 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.read))
399 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
400 
401 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.atomic))
402 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
403 
404 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.srq_receive))
405 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
406 
407 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.send))
408 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
409 
410 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.receive))
411 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
412 
413 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.write))
414 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
415 
416 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.read))
417 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
418 
419 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.atomic))
420 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
421 
422 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.srq_receive))
423 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
424 
425 	if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
426 	    MLX5_CAP_GEN(dev->mdev, null_mkey) &&
427 	    MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
428 	    !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
429 		caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
430 }
431 
mlx5_ib_page_fault_resume(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,int error)432 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
433 				      struct mlx5_pagefault *pfault,
434 				      int error)
435 {
436 	int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
437 		     pfault->wqe.wq_num : pfault->token;
438 	u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
439 	void *info;
440 	int err;
441 
442 	MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
443 
444 	if (pfault->event_subtype == MLX5_PFAULT_SUBTYPE_MEMORY) {
445 		info = MLX5_ADDR_OF(page_fault_resume_in, in,
446 				    page_fault_info.mem_page_fault_info);
447 		MLX5_SET(mem_page_fault_info, info, fault_token_31_0,
448 			 pfault->token & 0xffffffff);
449 		MLX5_SET(mem_page_fault_info, info, fault_token_47_32,
450 			 (pfault->token >> 32) & 0xffff);
451 		MLX5_SET(mem_page_fault_info, info, error, !!error);
452 	} else {
453 		info = MLX5_ADDR_OF(page_fault_resume_in, in,
454 				    page_fault_info.trans_page_fault_info);
455 		MLX5_SET(trans_page_fault_info, info, page_fault_type,
456 			 pfault->type);
457 		MLX5_SET(trans_page_fault_info, info, fault_token,
458 			 pfault->token);
459 		MLX5_SET(trans_page_fault_info, info, wq_number, wq_num);
460 		MLX5_SET(trans_page_fault_info, info, error, !!error);
461 	}
462 
463 	err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
464 	if (err)
465 		mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
466 			    wq_num, err);
467 }
468 
implicit_get_child_mr(struct mlx5_ib_mr * imr,unsigned long idx)469 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
470 						unsigned long idx)
471 {
472 	struct mlx5_ib_dev *dev = mr_to_mdev(imr);
473 	struct ib_umem_odp *odp;
474 	struct mlx5_ib_mr *mr;
475 	struct mlx5_ib_mr *ret;
476 	int err;
477 
478 	odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
479 				      idx * MLX5_IMR_MTT_SIZE,
480 				      MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
481 	if (IS_ERR(odp))
482 		return ERR_CAST(odp);
483 
484 	mr = mlx5_mr_cache_alloc(dev, imr->access_flags,
485 				 MLX5_MKC_ACCESS_MODE_MTT,
486 				 MLX5_IMR_MTT_ENTRIES);
487 	if (IS_ERR(mr)) {
488 		ib_umem_odp_release(odp);
489 		return mr;
490 	}
491 
492 	mr->access_flags = imr->access_flags;
493 	mr->ibmr.pd = imr->ibmr.pd;
494 	mr->ibmr.device = &mr_to_mdev(imr)->ib_dev;
495 	mr->umem = &odp->umem;
496 	mr->ibmr.lkey = mr->mmkey.key;
497 	mr->ibmr.rkey = mr->mmkey.key;
498 	mr->ibmr.iova = idx * MLX5_IMR_MTT_SIZE;
499 	mr->parent = imr;
500 	odp->private = mr;
501 
502 	/*
503 	 * First refcount is owned by the xarray and second refconut
504 	 * is returned to the caller.
505 	 */
506 	refcount_set(&mr->mmkey.usecount, 2);
507 
508 	err = mlx5r_umr_update_xlt(mr, 0,
509 				   MLX5_IMR_MTT_ENTRIES,
510 				   PAGE_SHIFT,
511 				   MLX5_IB_UPD_XLT_ZAP |
512 				   MLX5_IB_UPD_XLT_ENABLE);
513 	if (err) {
514 		ret = ERR_PTR(err);
515 		goto out_mr;
516 	}
517 
518 	xa_lock(&imr->implicit_children);
519 	ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
520 			   GFP_KERNEL);
521 	if (unlikely(ret)) {
522 		if (xa_is_err(ret)) {
523 			ret = ERR_PTR(xa_err(ret));
524 			goto out_lock;
525 		}
526 		/*
527 		 * Another thread beat us to creating the child mr, use
528 		 * theirs.
529 		 */
530 		refcount_inc(&ret->mmkey.usecount);
531 		goto out_lock;
532 	}
533 
534 	if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) {
535 		ret = __xa_store(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key),
536 				 &mr->mmkey, GFP_KERNEL);
537 		if (xa_is_err(ret)) {
538 			ret = ERR_PTR(xa_err(ret));
539 			__xa_erase(&imr->implicit_children, idx);
540 			goto out_lock;
541 		}
542 		mr->mmkey.type = MLX5_MKEY_IMPLICIT_CHILD;
543 	}
544 	xa_unlock(&imr->implicit_children);
545 	mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr);
546 	return mr;
547 
548 out_lock:
549 	xa_unlock(&imr->implicit_children);
550 out_mr:
551 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
552 	return ret;
553 }
554 
555 /*
556  * When using memory scheme ODP, implicit MRs can't use the reserved null mkey
557  * and each implicit MR needs to assign a private null mkey to get the page
558  * faults on.
559  * The null mkey is created with the properties to enable getting the page
560  * fault for every time it is accessed and having all relevant access flags.
561  */
alloc_implicit_mr_null_mkey(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * imr,struct mlx5_ib_pd * pd)562 static int alloc_implicit_mr_null_mkey(struct mlx5_ib_dev *dev,
563 				       struct mlx5_ib_mr *imr,
564 				       struct mlx5_ib_pd *pd)
565 {
566 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in) + 64;
567 	void *mkc;
568 	u32 *in;
569 	int err;
570 
571 	in = kzalloc(inlen, GFP_KERNEL);
572 	if (!in)
573 		return -ENOMEM;
574 
575 	MLX5_SET(create_mkey_in, in, translations_octword_actual_size, 4);
576 	MLX5_SET(create_mkey_in, in, pg_access, 1);
577 
578 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
579 	MLX5_SET(mkc, mkc, a, 1);
580 	MLX5_SET(mkc, mkc, rw, 1);
581 	MLX5_SET(mkc, mkc, rr, 1);
582 	MLX5_SET(mkc, mkc, lw, 1);
583 	MLX5_SET(mkc, mkc, lr, 1);
584 	MLX5_SET(mkc, mkc, free, 0);
585 	MLX5_SET(mkc, mkc, umr_en, 0);
586 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
587 
588 	MLX5_SET(mkc, mkc, translations_octword_size, 4);
589 	MLX5_SET(mkc, mkc, log_page_size, 61);
590 	MLX5_SET(mkc, mkc, length64, 1);
591 	MLX5_SET(mkc, mkc, pd, pd->pdn);
592 	MLX5_SET64(mkc, mkc, start_addr, 0);
593 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
594 
595 	err = mlx5_core_create_mkey(dev->mdev, &imr->null_mmkey.key, in, inlen);
596 	if (err)
597 		goto free_in;
598 
599 	imr->null_mmkey.type = MLX5_MKEY_NULL;
600 
601 free_in:
602 	kfree(in);
603 	return err;
604 }
605 
mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd * pd,int access_flags)606 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
607 					     int access_flags)
608 {
609 	struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
610 	struct ib_umem_odp *umem_odp;
611 	struct mlx5_ib_mr *imr;
612 	int err;
613 
614 	if (!mlx5r_umr_can_load_pas(dev, MLX5_IMR_MTT_ENTRIES * PAGE_SIZE))
615 		return ERR_PTR(-EOPNOTSUPP);
616 
617 	umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
618 	if (IS_ERR(umem_odp))
619 		return ERR_CAST(umem_odp);
620 
621 	imr = mlx5_mr_cache_alloc(dev, access_flags, MLX5_MKC_ACCESS_MODE_KSM,
622 				  mlx5_imr_ksm_entries);
623 	if (IS_ERR(imr)) {
624 		ib_umem_odp_release(umem_odp);
625 		return imr;
626 	}
627 
628 	imr->access_flags = access_flags;
629 	imr->ibmr.pd = &pd->ibpd;
630 	imr->ibmr.iova = 0;
631 	imr->umem = &umem_odp->umem;
632 	imr->ibmr.lkey = imr->mmkey.key;
633 	imr->ibmr.rkey = imr->mmkey.key;
634 	imr->ibmr.device = &dev->ib_dev;
635 	imr->is_odp_implicit = true;
636 	xa_init(&imr->implicit_children);
637 
638 	if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) {
639 		err = alloc_implicit_mr_null_mkey(dev, imr, pd);
640 		if (err)
641 			goto out_mr;
642 
643 		err = mlx5r_store_odp_mkey(dev, &imr->null_mmkey);
644 		if (err)
645 			goto out_mr;
646 	}
647 
648 	err = mlx5r_umr_update_xlt(imr, 0,
649 				   mlx5_imr_ksm_entries,
650 				   MLX5_KSM_PAGE_SHIFT,
651 				   MLX5_IB_UPD_XLT_INDIRECT |
652 				   MLX5_IB_UPD_XLT_ZAP |
653 				   MLX5_IB_UPD_XLT_ENABLE);
654 	if (err)
655 		goto out_mr;
656 
657 	err = mlx5r_store_odp_mkey(dev, &imr->mmkey);
658 	if (err)
659 		goto out_mr;
660 
661 	mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
662 	return imr;
663 out_mr:
664 	mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
665 	mlx5_ib_dereg_mr(&imr->ibmr, NULL);
666 	return ERR_PTR(err);
667 }
668 
mlx5_ib_free_odp_mr(struct mlx5_ib_mr * mr)669 void mlx5_ib_free_odp_mr(struct mlx5_ib_mr *mr)
670 {
671 	struct mlx5_ib_mr *mtt;
672 	unsigned long idx;
673 
674 	/*
675 	 * If this is an implicit MR it is already invalidated so we can just
676 	 * delete the children mkeys.
677 	 */
678 	xa_for_each(&mr->implicit_children, idx, mtt) {
679 		xa_erase(&mr->implicit_children, idx);
680 		mlx5_ib_dereg_mr(&mtt->ibmr, NULL);
681 	}
682 
683 	if (mr->null_mmkey.key) {
684 		xa_erase(&mr_to_mdev(mr)->odp_mkeys,
685 			 mlx5_base_mkey(mr->null_mmkey.key));
686 
687 		mlx5_core_destroy_mkey(mr_to_mdev(mr)->mdev,
688 				       mr->null_mmkey.key);
689 	}
690 }
691 
692 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
693 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2)
694 #define MLX5_PF_FLAGS_ENABLE BIT(3)
pagefault_real_mr(struct mlx5_ib_mr * mr,struct ib_umem_odp * odp,u64 user_va,size_t bcnt,u32 * bytes_mapped,u32 flags)695 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
696 			     u64 user_va, size_t bcnt, u32 *bytes_mapped,
697 			     u32 flags)
698 {
699 	int page_shift, ret, np;
700 	bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
701 	u64 access_mask = 0;
702 	u64 start_idx;
703 	bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT);
704 	u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC;
705 
706 	if (flags & MLX5_PF_FLAGS_ENABLE)
707 		xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
708 
709 	if (flags & MLX5_PF_FLAGS_DOWNGRADE)
710 		xlt_flags |= MLX5_IB_UPD_XLT_DOWNGRADE;
711 
712 	page_shift = odp->page_shift;
713 	start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
714 
715 	if (odp->umem.writable && !downgrade)
716 		access_mask |= HMM_PFN_WRITE;
717 
718 	np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault);
719 	if (np < 0)
720 		return np;
721 
722 	/*
723 	 * No need to check whether the MTTs really belong to this MR, since
724 	 * ib_umem_odp_map_dma_and_lock already checks this.
725 	 */
726 	ret = mlx5r_umr_update_xlt(mr, start_idx, np, page_shift, xlt_flags);
727 	mutex_unlock(&odp->umem_mutex);
728 
729 	if (ret < 0) {
730 		if (ret != -EAGAIN)
731 			mlx5_ib_err(mr_to_mdev(mr),
732 				    "Failed to update mkey page tables\n");
733 		goto out;
734 	}
735 
736 	if (bytes_mapped) {
737 		u32 new_mappings = (np << page_shift) -
738 			(user_va - round_down(user_va, 1 << page_shift));
739 
740 		*bytes_mapped += min_t(u32, new_mappings, bcnt);
741 	}
742 
743 	return np << (page_shift - PAGE_SHIFT);
744 
745 out:
746 	return ret;
747 }
748 
pagefault_implicit_mr(struct mlx5_ib_mr * imr,struct ib_umem_odp * odp_imr,u64 user_va,size_t bcnt,u32 * bytes_mapped,u32 flags)749 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
750 				 struct ib_umem_odp *odp_imr, u64 user_va,
751 				 size_t bcnt, u32 *bytes_mapped, u32 flags)
752 {
753 	unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
754 	unsigned long upd_start_idx = end_idx + 1;
755 	unsigned long upd_len = 0;
756 	unsigned long npages = 0;
757 	int err;
758 	int ret;
759 
760 	if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
761 		     mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
762 		return -EFAULT;
763 
764 	/* Fault each child mr that intersects with our interval. */
765 	while (bcnt) {
766 		unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
767 		struct ib_umem_odp *umem_odp;
768 		struct mlx5_ib_mr *mtt;
769 		u64 len;
770 
771 		xa_lock(&imr->implicit_children);
772 		mtt = xa_load(&imr->implicit_children, idx);
773 		if (unlikely(!mtt)) {
774 			xa_unlock(&imr->implicit_children);
775 			mtt = implicit_get_child_mr(imr, idx);
776 			if (IS_ERR(mtt)) {
777 				ret = PTR_ERR(mtt);
778 				goto out;
779 			}
780 			upd_start_idx = min(upd_start_idx, idx);
781 			upd_len = idx - upd_start_idx + 1;
782 		} else {
783 			refcount_inc(&mtt->mmkey.usecount);
784 			xa_unlock(&imr->implicit_children);
785 		}
786 
787 		umem_odp = to_ib_umem_odp(mtt->umem);
788 		len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
789 		      user_va;
790 
791 		ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
792 					bytes_mapped, flags);
793 
794 		mlx5r_deref_odp_mkey(&mtt->mmkey);
795 
796 		if (ret < 0)
797 			goto out;
798 		user_va += len;
799 		bcnt -= len;
800 		npages += ret;
801 	}
802 
803 	ret = npages;
804 
805 	/*
806 	 * Any time the implicit_children are changed we must perform an
807 	 * update of the xlt before exiting to ensure the HW and the
808 	 * implicit_children remains synchronized.
809 	 */
810 out:
811 	if (likely(!upd_len))
812 		return ret;
813 
814 	/*
815 	 * Notice this is not strictly ordered right, the KSM is updated after
816 	 * the implicit_children is updated, so a parallel page fault could
817 	 * see a MR that is not yet visible in the KSM.  This is similar to a
818 	 * parallel page fault seeing a MR that is being concurrently removed
819 	 * from the KSM. Both of these improbable situations are resolved
820 	 * safely by resuming the HW and then taking another page fault. The
821 	 * next pagefault handler will see the new information.
822 	 */
823 	mutex_lock(&odp_imr->umem_mutex);
824 	err = mlx5r_umr_update_xlt(imr, upd_start_idx, upd_len, 0,
825 				   MLX5_IB_UPD_XLT_INDIRECT |
826 					  MLX5_IB_UPD_XLT_ATOMIC);
827 	mutex_unlock(&odp_imr->umem_mutex);
828 	if (err) {
829 		mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n");
830 		return err;
831 	}
832 	return ret;
833 }
834 
pagefault_dmabuf_mr(struct mlx5_ib_mr * mr,size_t bcnt,u32 * bytes_mapped,u32 flags)835 static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt,
836 			       u32 *bytes_mapped, u32 flags)
837 {
838 	struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
839 	u32 xlt_flags = 0;
840 	int err;
841 	unsigned long page_size;
842 
843 	if (flags & MLX5_PF_FLAGS_ENABLE)
844 		xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
845 
846 	dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL);
847 	err = ib_umem_dmabuf_map_pages(umem_dmabuf);
848 	if (err) {
849 		dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
850 		return err;
851 	}
852 
853 	page_size = mlx5_umem_dmabuf_find_best_pgsz(umem_dmabuf);
854 	if (!page_size) {
855 		ib_umem_dmabuf_unmap_pages(umem_dmabuf);
856 		err = -EINVAL;
857 	} else {
858 		if (mr->data_direct)
859 			err = mlx5r_umr_update_data_direct_ksm_pas(mr, xlt_flags);
860 		else
861 			err = mlx5r_umr_update_mr_pas(mr, xlt_flags);
862 	}
863 	dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
864 
865 	if (err)
866 		return err;
867 
868 	if (bytes_mapped)
869 		*bytes_mapped += bcnt;
870 
871 	return ib_umem_num_pages(mr->umem);
872 }
873 
874 /*
875  * Returns:
876  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
877  *           not accessible, or the MR is no longer valid.
878  *  -EAGAIN/-ENOMEM: The operation should be retried
879  *
880  *  -EINVAL/others: General internal malfunction
881  *  >0: Number of pages mapped
882  */
pagefault_mr(struct mlx5_ib_mr * mr,u64 io_virt,size_t bcnt,u32 * bytes_mapped,u32 flags,bool permissive_fault)883 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
884 			u32 *bytes_mapped, u32 flags, bool permissive_fault)
885 {
886 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
887 
888 	if (unlikely(io_virt < mr->ibmr.iova) && !permissive_fault)
889 		return -EFAULT;
890 
891 	if (mr->umem->is_dmabuf)
892 		return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags);
893 
894 	if (!odp->is_implicit_odp) {
895 		u64 offset = io_virt < mr->ibmr.iova ? 0 : io_virt - mr->ibmr.iova;
896 		u64 user_va;
897 
898 		if (check_add_overflow(offset, (u64)odp->umem.address,
899 				       &user_va))
900 			return -EFAULT;
901 
902 		if (permissive_fault) {
903 			if (user_va < ib_umem_start(odp))
904 				user_va = ib_umem_start(odp);
905 			if ((user_va + bcnt) > ib_umem_end(odp))
906 				bcnt = ib_umem_end(odp) - user_va;
907 		} else if (unlikely(user_va >= ib_umem_end(odp) ||
908 				    ib_umem_end(odp) - user_va < bcnt))
909 			return -EFAULT;
910 		return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
911 					 flags);
912 	}
913 	return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
914 				     flags);
915 }
916 
mlx5_ib_init_odp_mr(struct mlx5_ib_mr * mr)917 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr)
918 {
919 	int ret;
920 
921 	ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address,
922 				mr->umem->length, NULL,
923 				MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE);
924 	return ret >= 0 ? 0 : ret;
925 }
926 
mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr * mr)927 int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr)
928 {
929 	int ret;
930 
931 	ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL,
932 				  MLX5_PF_FLAGS_ENABLE);
933 
934 	return ret >= 0 ? 0 : ret;
935 }
936 
937 struct pf_frame {
938 	struct pf_frame *next;
939 	u32 key;
940 	u64 io_virt;
941 	size_t bcnt;
942 	int depth;
943 };
944 
mkey_is_eq(struct mlx5_ib_mkey * mmkey,u32 key)945 static bool mkey_is_eq(struct mlx5_ib_mkey *mmkey, u32 key)
946 {
947 	if (!mmkey)
948 		return false;
949 	if (mmkey->type == MLX5_MKEY_MW ||
950 	    mmkey->type == MLX5_MKEY_INDIRECT_DEVX)
951 		return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
952 	return mmkey->key == key;
953 }
954 
find_odp_mkey(struct mlx5_ib_dev * dev,u32 key)955 static struct mlx5_ib_mkey *find_odp_mkey(struct mlx5_ib_dev *dev, u32 key)
956 {
957 	struct mlx5_ib_mkey *mmkey;
958 
959 	xa_lock(&dev->odp_mkeys);
960 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
961 	if (!mmkey) {
962 		mmkey = ERR_PTR(-ENOENT);
963 		goto out;
964 	}
965 	if (!mkey_is_eq(mmkey, key)) {
966 		mmkey = ERR_PTR(-EFAULT);
967 		goto out;
968 	}
969 	refcount_inc(&mmkey->usecount);
970 out:
971 	xa_unlock(&dev->odp_mkeys);
972 
973 	return mmkey;
974 }
975 
976 /*
977  * Handle a single data segment in a page-fault WQE or RDMA region.
978  *
979  * Returns zero on success. The caller may continue to the next data segment.
980  * Can return the following error codes:
981  * -EAGAIN to designate a temporary error. The caller will abort handling the
982  *  page fault and resolve it.
983  * -EFAULT when there's an error mapping the requested pages. The caller will
984  *  abort the page fault handling.
985  */
pagefault_single_data_segment(struct mlx5_ib_dev * dev,struct ib_pd * pd,u32 key,u64 io_virt,size_t bcnt,u32 * bytes_committed,u32 * bytes_mapped)986 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
987 					 struct ib_pd *pd, u32 key,
988 					 u64 io_virt, size_t bcnt,
989 					 u32 *bytes_committed,
990 					 u32 *bytes_mapped)
991 {
992 	int ret, i, outlen, cur_outlen = 0, depth = 0, pages_in_range;
993 	struct pf_frame *head = NULL, *frame;
994 	struct mlx5_ib_mkey *mmkey;
995 	struct mlx5_ib_mr *mr;
996 	struct mlx5_klm *pklm;
997 	u32 *out = NULL;
998 	size_t offset;
999 
1000 	io_virt += *bytes_committed;
1001 	bcnt -= *bytes_committed;
1002 next_mr:
1003 	mmkey = find_odp_mkey(dev, key);
1004 	if (IS_ERR(mmkey)) {
1005 		ret = PTR_ERR(mmkey);
1006 		if (ret == -ENOENT) {
1007 			mlx5_ib_dbg(
1008 				dev,
1009 				"skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
1010 				key);
1011 			if (bytes_mapped)
1012 				*bytes_mapped += bcnt;
1013 			/*
1014 			 * The user could specify a SGL with multiple lkeys and
1015 			 * only some of them are ODP. Treat the non-ODP ones as
1016 			 * fully faulted.
1017 			 */
1018 			ret = 0;
1019 		}
1020 		goto end;
1021 	}
1022 
1023 	switch (mmkey->type) {
1024 	case MLX5_MKEY_MR:
1025 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1026 
1027 		pages_in_range = (ALIGN(io_virt + bcnt, PAGE_SIZE) -
1028 				  (io_virt & PAGE_MASK)) >>
1029 				 PAGE_SHIFT;
1030 		ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0, false);
1031 		if (ret < 0)
1032 			goto end;
1033 
1034 		mlx5_update_odp_stats_with_handled(mr, faults, ret);
1035 
1036 		if (ret < pages_in_range) {
1037 			ret = -EFAULT;
1038 			goto end;
1039 		}
1040 
1041 		ret = 0;
1042 		break;
1043 
1044 	case MLX5_MKEY_MW:
1045 	case MLX5_MKEY_INDIRECT_DEVX:
1046 		if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
1047 			mlx5_ib_dbg(dev, "indirection level exceeded\n");
1048 			ret = -EFAULT;
1049 			goto end;
1050 		}
1051 
1052 		outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
1053 			sizeof(*pklm) * (mmkey->ndescs - 2);
1054 
1055 		if (outlen > cur_outlen) {
1056 			kfree(out);
1057 			out = kzalloc(outlen, GFP_KERNEL);
1058 			if (!out) {
1059 				ret = -ENOMEM;
1060 				goto end;
1061 			}
1062 			cur_outlen = outlen;
1063 		}
1064 
1065 		pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
1066 						       bsf0_klm0_pas_mtt0_1);
1067 
1068 		ret = mlx5_core_query_mkey(dev->mdev, mmkey->key, out, outlen);
1069 		if (ret)
1070 			goto end;
1071 
1072 		offset = io_virt - MLX5_GET64(query_mkey_out, out,
1073 					      memory_key_mkey_entry.start_addr);
1074 
1075 		for (i = 0; bcnt && i < mmkey->ndescs; i++, pklm++) {
1076 			if (offset >= be32_to_cpu(pklm->bcount)) {
1077 				offset -= be32_to_cpu(pklm->bcount);
1078 				continue;
1079 			}
1080 
1081 			frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1082 			if (!frame) {
1083 				ret = -ENOMEM;
1084 				goto end;
1085 			}
1086 
1087 			frame->key = be32_to_cpu(pklm->key);
1088 			frame->io_virt = be64_to_cpu(pklm->va) + offset;
1089 			frame->bcnt = min_t(size_t, bcnt,
1090 					    be32_to_cpu(pklm->bcount) - offset);
1091 			frame->depth = depth + 1;
1092 			frame->next = head;
1093 			head = frame;
1094 
1095 			bcnt -= frame->bcnt;
1096 			offset = 0;
1097 		}
1098 		break;
1099 
1100 	default:
1101 		mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
1102 		ret = -EFAULT;
1103 		goto end;
1104 	}
1105 
1106 	if (head) {
1107 		frame = head;
1108 		head = frame->next;
1109 
1110 		key = frame->key;
1111 		io_virt = frame->io_virt;
1112 		bcnt = frame->bcnt;
1113 		depth = frame->depth;
1114 		kfree(frame);
1115 
1116 		mlx5r_deref_odp_mkey(mmkey);
1117 		goto next_mr;
1118 	}
1119 
1120 end:
1121 	if (!IS_ERR(mmkey))
1122 		mlx5r_deref_odp_mkey(mmkey);
1123 	while (head) {
1124 		frame = head;
1125 		head = frame->next;
1126 		kfree(frame);
1127 	}
1128 	kfree(out);
1129 
1130 	*bytes_committed = 0;
1131 	return ret;
1132 }
1133 
1134 /*
1135  * Parse a series of data segments for page fault handling.
1136  *
1137  * @dev:  Pointer to mlx5 IB device
1138  * @pfault: contains page fault information.
1139  * @wqe: points at the first data segment in the WQE.
1140  * @wqe_end: points after the end of the WQE.
1141  * @bytes_mapped: receives the number of bytes that the function was able to
1142  *                map. This allows the caller to decide intelligently whether
1143  *                enough memory was mapped to resolve the page fault
1144  *                successfully (e.g. enough for the next MTU, or the entire
1145  *                WQE).
1146  * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus
1147  *                   the committed bytes).
1148  * @receive_queue: receive WQE end of sg list
1149  *
1150  * Returns zero for success or a negative error code.
1151  */
pagefault_data_segments(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,void * wqe,void * wqe_end,u32 * bytes_mapped,u32 * total_wqe_bytes,bool receive_queue)1152 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
1153 				   struct mlx5_pagefault *pfault,
1154 				   void *wqe,
1155 				   void *wqe_end, u32 *bytes_mapped,
1156 				   u32 *total_wqe_bytes, bool receive_queue)
1157 {
1158 	int ret = 0;
1159 	u64 io_virt;
1160 	__be32 key;
1161 	u32 byte_count;
1162 	size_t bcnt;
1163 	int inline_segment;
1164 
1165 	if (bytes_mapped)
1166 		*bytes_mapped = 0;
1167 	if (total_wqe_bytes)
1168 		*total_wqe_bytes = 0;
1169 
1170 	while (wqe < wqe_end) {
1171 		struct mlx5_wqe_data_seg *dseg = wqe;
1172 
1173 		io_virt = be64_to_cpu(dseg->addr);
1174 		key = dseg->lkey;
1175 		byte_count = be32_to_cpu(dseg->byte_count);
1176 		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1177 		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
1178 
1179 		if (inline_segment) {
1180 			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1181 			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1182 				     16);
1183 		} else {
1184 			wqe += sizeof(*dseg);
1185 		}
1186 
1187 		/* receive WQE end of sg list. */
1188 		if (receive_queue && bcnt == 0 &&
1189 		    key == dev->mkeys.terminate_scatter_list_mkey &&
1190 		    io_virt == 0)
1191 			break;
1192 
1193 		if (!inline_segment && total_wqe_bytes) {
1194 			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1195 					pfault->bytes_committed);
1196 		}
1197 
1198 		/* A zero length data segment designates a length of 2GB. */
1199 		if (bcnt == 0)
1200 			bcnt = 1U << 31;
1201 
1202 		if (inline_segment || bcnt <= pfault->bytes_committed) {
1203 			pfault->bytes_committed -=
1204 				min_t(size_t, bcnt,
1205 				      pfault->bytes_committed);
1206 			continue;
1207 		}
1208 
1209 		ret = pagefault_single_data_segment(dev, NULL, be32_to_cpu(key),
1210 						    io_virt, bcnt,
1211 						    &pfault->bytes_committed,
1212 						    bytes_mapped);
1213 		if (ret < 0)
1214 			break;
1215 	}
1216 
1217 	return ret;
1218 }
1219 
1220 /*
1221  * Parse initiator WQE. Advances the wqe pointer to point at the
1222  * scatter-gather list, and set wqe_end to the end of the WQE.
1223  */
mlx5_ib_mr_initiator_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,struct mlx5_ib_qp * qp,void ** wqe,void ** wqe_end,int wqe_length)1224 static int mlx5_ib_mr_initiator_pfault_handler(
1225 	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1226 	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1227 {
1228 	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1229 	u16 wqe_index = pfault->wqe.wqe_index;
1230 	struct mlx5_base_av *av;
1231 	unsigned ds, opcode;
1232 	u32 qpn = qp->trans_qp.base.mqp.qpn;
1233 
1234 	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1235 	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1236 		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1237 			    ds, wqe_length);
1238 		return -EFAULT;
1239 	}
1240 
1241 	if (ds == 0) {
1242 		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1243 			    wqe_index, qpn);
1244 		return -EFAULT;
1245 	}
1246 
1247 	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1248 	*wqe += sizeof(*ctrl);
1249 
1250 	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1251 		 MLX5_WQE_CTRL_OPCODE_MASK;
1252 
1253 	if (qp->type == IB_QPT_XRC_INI)
1254 		*wqe += sizeof(struct mlx5_wqe_xrc_seg);
1255 
1256 	if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1257 		av = *wqe;
1258 		if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1259 			*wqe += sizeof(struct mlx5_av);
1260 		else
1261 			*wqe += sizeof(struct mlx5_base_av);
1262 	}
1263 
1264 	switch (opcode) {
1265 	case MLX5_OPCODE_RDMA_WRITE:
1266 	case MLX5_OPCODE_RDMA_WRITE_IMM:
1267 	case MLX5_OPCODE_RDMA_READ:
1268 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1269 		break;
1270 	case MLX5_OPCODE_ATOMIC_CS:
1271 	case MLX5_OPCODE_ATOMIC_FA:
1272 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1273 		*wqe += sizeof(struct mlx5_wqe_atomic_seg);
1274 		break;
1275 	}
1276 
1277 	return 0;
1278 }
1279 
1280 /*
1281  * Parse responder WQE and set wqe_end to the end of the WQE.
1282  */
mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev * dev,struct mlx5_ib_srq * srq,void ** wqe,void ** wqe_end,int wqe_length)1283 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1284 						   struct mlx5_ib_srq *srq,
1285 						   void **wqe, void **wqe_end,
1286 						   int wqe_length)
1287 {
1288 	int wqe_size = 1 << srq->msrq.wqe_shift;
1289 
1290 	if (wqe_size > wqe_length) {
1291 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1292 		return -EFAULT;
1293 	}
1294 
1295 	*wqe_end = *wqe + wqe_size;
1296 	*wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1297 
1298 	return 0;
1299 }
1300 
mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev * dev,struct mlx5_ib_qp * qp,void * wqe,void ** wqe_end,int wqe_length)1301 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1302 						  struct mlx5_ib_qp *qp,
1303 						  void *wqe, void **wqe_end,
1304 						  int wqe_length)
1305 {
1306 	struct mlx5_ib_wq *wq = &qp->rq;
1307 	int wqe_size = 1 << wq->wqe_shift;
1308 
1309 	if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1310 		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1311 		return -EFAULT;
1312 	}
1313 
1314 	if (wqe_size > wqe_length) {
1315 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1316 		return -EFAULT;
1317 	}
1318 
1319 	*wqe_end = wqe + wqe_size;
1320 
1321 	return 0;
1322 }
1323 
odp_get_rsc(struct mlx5_ib_dev * dev,u32 wq_num,int pf_type)1324 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1325 						       u32 wq_num, int pf_type)
1326 {
1327 	struct mlx5_core_rsc_common *common = NULL;
1328 	struct mlx5_core_srq *srq;
1329 
1330 	switch (pf_type) {
1331 	case MLX5_WQE_PF_TYPE_RMP:
1332 		srq = mlx5_cmd_get_srq(dev, wq_num);
1333 		if (srq)
1334 			common = &srq->common;
1335 		break;
1336 	case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1337 	case MLX5_WQE_PF_TYPE_RESP:
1338 	case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1339 		common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1340 		break;
1341 	default:
1342 		break;
1343 	}
1344 
1345 	return common;
1346 }
1347 
res_to_qp(struct mlx5_core_rsc_common * res)1348 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1349 {
1350 	struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1351 
1352 	return to_mibqp(mqp);
1353 }
1354 
res_to_srq(struct mlx5_core_rsc_common * res)1355 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1356 {
1357 	struct mlx5_core_srq *msrq =
1358 		container_of(res, struct mlx5_core_srq, common);
1359 
1360 	return to_mibsrq(msrq);
1361 }
1362 
mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1363 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1364 					  struct mlx5_pagefault *pfault)
1365 {
1366 	bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1367 	u16 wqe_index = pfault->wqe.wqe_index;
1368 	void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1369 	u32 bytes_mapped, total_wqe_bytes;
1370 	struct mlx5_core_rsc_common *res;
1371 	int resume_with_error = 1;
1372 	struct mlx5_ib_qp *qp;
1373 	size_t bytes_copied;
1374 	int ret = 0;
1375 
1376 	res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1377 	if (!res) {
1378 		mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1379 		return;
1380 	}
1381 
1382 	if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1383 	    res->res != MLX5_RES_XSRQ) {
1384 		mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1385 			    pfault->type);
1386 		goto resolve_page_fault;
1387 	}
1388 
1389 	wqe_start = (void *)__get_free_page(GFP_KERNEL);
1390 	if (!wqe_start) {
1391 		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1392 		goto resolve_page_fault;
1393 	}
1394 
1395 	wqe = wqe_start;
1396 	qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1397 	if (qp && sq) {
1398 		ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1399 					  &bytes_copied);
1400 		if (ret)
1401 			goto read_user;
1402 		ret = mlx5_ib_mr_initiator_pfault_handler(
1403 			dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1404 	} else if (qp && !sq) {
1405 		ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1406 					  &bytes_copied);
1407 		if (ret)
1408 			goto read_user;
1409 		ret = mlx5_ib_mr_responder_pfault_handler_rq(
1410 			dev, qp, wqe, &wqe_end, bytes_copied);
1411 	} else if (!qp) {
1412 		struct mlx5_ib_srq *srq = res_to_srq(res);
1413 
1414 		ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1415 					   &bytes_copied);
1416 		if (ret)
1417 			goto read_user;
1418 		ret = mlx5_ib_mr_responder_pfault_handler_srq(
1419 			dev, srq, &wqe, &wqe_end, bytes_copied);
1420 	}
1421 
1422 	if (ret < 0 || wqe >= wqe_end)
1423 		goto resolve_page_fault;
1424 
1425 	ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1426 				      &total_wqe_bytes, !sq);
1427 	if (ret == -EAGAIN)
1428 		goto out;
1429 
1430 	if (ret < 0 || total_wqe_bytes > bytes_mapped)
1431 		goto resolve_page_fault;
1432 
1433 out:
1434 	ret = 0;
1435 	resume_with_error = 0;
1436 
1437 read_user:
1438 	if (ret)
1439 		mlx5_ib_err(
1440 			dev,
1441 			"Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %llx\n",
1442 			ret, wqe_index, pfault->token);
1443 
1444 resolve_page_fault:
1445 	mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1446 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1447 		    pfault->wqe.wq_num, resume_with_error,
1448 		    pfault->type);
1449 	mlx5_core_res_put(res);
1450 	free_page((unsigned long)wqe_start);
1451 }
1452 
mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1453 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1454 					   struct mlx5_pagefault *pfault)
1455 {
1456 	u64 address;
1457 	u32 length;
1458 	u32 prefetch_len = pfault->bytes_committed;
1459 	int prefetch_activated = 0;
1460 	u32 rkey = pfault->rdma.r_key;
1461 	int ret;
1462 
1463 	/* The RDMA responder handler handles the page fault in two parts.
1464 	 * First it brings the necessary pages for the current packet
1465 	 * (and uses the pfault context), and then (after resuming the QP)
1466 	 * prefetches more pages. The second operation cannot use the pfault
1467 	 * context and therefore uses the dummy_pfault context allocated on
1468 	 * the stack */
1469 	pfault->rdma.rdma_va += pfault->bytes_committed;
1470 	pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1471 					 pfault->rdma.rdma_op_len);
1472 	pfault->bytes_committed = 0;
1473 
1474 	address = pfault->rdma.rdma_va;
1475 	length  = pfault->rdma.rdma_op_len;
1476 
1477 	/* For some operations, the hardware cannot tell the exact message
1478 	 * length, and in those cases it reports zero. Use prefetch
1479 	 * logic. */
1480 	if (length == 0) {
1481 		prefetch_activated = 1;
1482 		length = pfault->rdma.packet_size;
1483 		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1484 	}
1485 
1486 	ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1487 					    &pfault->bytes_committed, NULL);
1488 	if (ret == -EAGAIN) {
1489 		/* We're racing with an invalidation, don't prefetch */
1490 		prefetch_activated = 0;
1491 	} else if (ret < 0) {
1492 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1493 		if (ret != -ENOENT)
1494 			mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%llx, type: 0x%x\n",
1495 				    ret, pfault->token, pfault->type);
1496 		return;
1497 	}
1498 
1499 	mlx5_ib_page_fault_resume(dev, pfault, 0);
1500 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%llx, type: 0x%x, prefetch_activated: %d\n",
1501 		    pfault->token, pfault->type,
1502 		    prefetch_activated);
1503 
1504 	/* At this point, there might be a new pagefault already arriving in
1505 	 * the eq, switch to the dummy pagefault for the rest of the
1506 	 * processing. We're still OK with the objects being alive as the
1507 	 * work-queue is being fenced. */
1508 
1509 	if (prefetch_activated) {
1510 		u32 bytes_committed = 0;
1511 
1512 		ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1513 						    prefetch_len,
1514 						    &bytes_committed, NULL);
1515 		if (ret < 0 && ret != -EAGAIN) {
1516 			mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%llx, address: 0x%.16llx, length = 0x%.16x\n",
1517 				    ret, pfault->token, address, prefetch_len);
1518 		}
1519 	}
1520 }
1521 
1522 #define MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST BIT(7)
mlx5_ib_mr_memory_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1523 static void mlx5_ib_mr_memory_pfault_handler(struct mlx5_ib_dev *dev,
1524 					     struct mlx5_pagefault *pfault)
1525 {
1526 	u64 prefetch_va =
1527 		pfault->memory.va - pfault->memory.prefetch_before_byte_count;
1528 	size_t prefetch_size = pfault->memory.prefetch_before_byte_count +
1529 			       pfault->memory.fault_byte_count +
1530 			       pfault->memory.prefetch_after_byte_count;
1531 	struct mlx5_ib_mkey *mmkey;
1532 	struct mlx5_ib_mr *mr, *child_mr;
1533 	int ret = 0;
1534 
1535 	mmkey = find_odp_mkey(dev, pfault->memory.mkey);
1536 	if (IS_ERR(mmkey))
1537 		goto err;
1538 
1539 	switch (mmkey->type) {
1540 	case MLX5_MKEY_IMPLICIT_CHILD:
1541 		child_mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1542 		mr = child_mr->parent;
1543 		break;
1544 	case MLX5_MKEY_NULL:
1545 		mr = container_of(mmkey, struct mlx5_ib_mr, null_mmkey);
1546 		break;
1547 	default:
1548 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1549 		break;
1550 	}
1551 
1552 	/* If prefetch fails, handle only demanded page fault */
1553 	ret = pagefault_mr(mr, prefetch_va, prefetch_size, NULL, 0, true);
1554 	if (ret < 0) {
1555 		ret = pagefault_mr(mr, pfault->memory.va,
1556 				   pfault->memory.fault_byte_count, NULL, 0,
1557 				   true);
1558 		if (ret < 0)
1559 			goto err;
1560 	}
1561 
1562 	mlx5_update_odp_stats_with_handled(mr, faults, ret);
1563 	mlx5r_deref_odp_mkey(mmkey);
1564 
1565 	if (pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST)
1566 		mlx5_ib_page_fault_resume(dev, pfault, 0);
1567 
1568 	mlx5_ib_dbg(
1569 		dev,
1570 		"PAGE FAULT completed %s. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x\n",
1571 		pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST ?
1572 			"" :
1573 			"without resume cmd",
1574 		pfault->token, pfault->memory.mkey, pfault->memory.va,
1575 		pfault->memory.fault_byte_count);
1576 
1577 	return;
1578 
1579 err:
1580 	if (!IS_ERR(mmkey))
1581 		mlx5r_deref_odp_mkey(mmkey);
1582 	mlx5_ib_page_fault_resume(dev, pfault, 1);
1583 	mlx5_ib_dbg(
1584 		dev,
1585 		"PAGE FAULT error. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x, err: %d\n",
1586 		pfault->token, pfault->memory.mkey, pfault->memory.va,
1587 		pfault->memory.fault_byte_count, ret);
1588 }
1589 
mlx5_ib_pfault(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1590 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1591 {
1592 	u8 event_subtype = pfault->event_subtype;
1593 
1594 	switch (event_subtype) {
1595 	case MLX5_PFAULT_SUBTYPE_WQE:
1596 		mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1597 		break;
1598 	case MLX5_PFAULT_SUBTYPE_RDMA:
1599 		mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1600 		break;
1601 	case MLX5_PFAULT_SUBTYPE_MEMORY:
1602 		mlx5_ib_mr_memory_pfault_handler(dev, pfault);
1603 		break;
1604 	default:
1605 		mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1606 			    event_subtype);
1607 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1608 	}
1609 }
1610 
mlx5_ib_eqe_pf_action(struct work_struct * work)1611 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1612 {
1613 	struct mlx5_pagefault *pfault = container_of(work,
1614 						     struct mlx5_pagefault,
1615 						     work);
1616 	struct mlx5_ib_pf_eq *eq = pfault->eq;
1617 
1618 	mlx5_ib_pfault(eq->dev, pfault);
1619 	mempool_free(pfault, eq->pool);
1620 }
1621 
1622 #define MEMORY_SCHEME_PAGE_FAULT_GRANULARITY 4096
mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq * eq)1623 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1624 {
1625 	struct mlx5_eqe_page_fault *pf_eqe;
1626 	struct mlx5_pagefault *pfault;
1627 	struct mlx5_eqe *eqe;
1628 	int cc = 0;
1629 
1630 	while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1631 		pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1632 		if (!pfault) {
1633 			schedule_work(&eq->work);
1634 			break;
1635 		}
1636 
1637 		pf_eqe = &eqe->data.page_fault;
1638 		pfault->event_subtype = eqe->sub_type;
1639 
1640 		switch (eqe->sub_type) {
1641 		case MLX5_PFAULT_SUBTYPE_RDMA:
1642 			/* RDMA based event */
1643 			pfault->bytes_committed =
1644 				be32_to_cpu(pf_eqe->rdma.bytes_committed);
1645 			pfault->type =
1646 				be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1647 			pfault->token =
1648 				be32_to_cpu(pf_eqe->rdma.pftype_token) &
1649 				MLX5_24BIT_MASK;
1650 			pfault->rdma.r_key =
1651 				be32_to_cpu(pf_eqe->rdma.r_key);
1652 			pfault->rdma.packet_size =
1653 				be16_to_cpu(pf_eqe->rdma.packet_length);
1654 			pfault->rdma.rdma_op_len =
1655 				be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1656 			pfault->rdma.rdma_va =
1657 				be64_to_cpu(pf_eqe->rdma.rdma_va);
1658 			mlx5_ib_dbg(
1659 				eq->dev,
1660 				"PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, r_key: 0x%08x\n",
1661 				eqe->sub_type, pfault->bytes_committed,
1662 				pfault->type, pfault->token,
1663 				pfault->rdma.r_key);
1664 			mlx5_ib_dbg(eq->dev,
1665 				    "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1666 				    pfault->rdma.rdma_op_len,
1667 				    pfault->rdma.rdma_va);
1668 			break;
1669 
1670 		case MLX5_PFAULT_SUBTYPE_WQE:
1671 			/* WQE based event */
1672 			pfault->bytes_committed =
1673 				be32_to_cpu(pf_eqe->wqe.bytes_committed);
1674 			pfault->type =
1675 				(be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1676 			pfault->token =
1677 				be32_to_cpu(pf_eqe->wqe.token);
1678 			pfault->wqe.wq_num =
1679 				be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1680 				MLX5_24BIT_MASK;
1681 			pfault->wqe.wqe_index =
1682 				be16_to_cpu(pf_eqe->wqe.wqe_index);
1683 			pfault->wqe.packet_size =
1684 				be16_to_cpu(pf_eqe->wqe.packet_length);
1685 			mlx5_ib_dbg(
1686 				eq->dev,
1687 				"PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1688 				eqe->sub_type, pfault->bytes_committed,
1689 				pfault->type, pfault->token, pfault->wqe.wq_num,
1690 				pfault->wqe.wqe_index);
1691 			break;
1692 
1693 		case MLX5_PFAULT_SUBTYPE_MEMORY:
1694 			/* Memory based event */
1695 			pfault->bytes_committed = 0;
1696 			pfault->token =
1697 				be32_to_cpu(pf_eqe->memory.token31_0) |
1698 				((u64)be16_to_cpu(pf_eqe->memory.token47_32)
1699 				 << 32);
1700 			pfault->memory.va = be64_to_cpu(pf_eqe->memory.va);
1701 			pfault->memory.mkey = be32_to_cpu(pf_eqe->memory.mkey);
1702 			pfault->memory.fault_byte_count = (be32_to_cpu(
1703 				pf_eqe->memory.demand_fault_pages) >> 12) *
1704 				MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1705 			pfault->memory.prefetch_before_byte_count =
1706 				be16_to_cpu(
1707 					pf_eqe->memory.pre_demand_fault_pages) *
1708 				MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1709 			pfault->memory.prefetch_after_byte_count =
1710 				be16_to_cpu(
1711 					pf_eqe->memory.post_demand_fault_pages) *
1712 				MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1713 			pfault->memory.flags = pf_eqe->memory.flags;
1714 			mlx5_ib_dbg(
1715 				eq->dev,
1716 				"PAGE_FAULT: subtype: 0x%02x, token: 0x%06llx, mkey: 0x%06x, fault_byte_count: 0x%06x, va: 0x%016llx, flags: 0x%02x\n",
1717 				eqe->sub_type, pfault->token,
1718 				pfault->memory.mkey,
1719 				pfault->memory.fault_byte_count,
1720 				pfault->memory.va, pfault->memory.flags);
1721 			mlx5_ib_dbg(
1722 				eq->dev,
1723 				"PAGE_FAULT: prefetch size: before: 0x%06x, after 0x%06x\n",
1724 				pfault->memory.prefetch_before_byte_count,
1725 				pfault->memory.prefetch_after_byte_count);
1726 			break;
1727 
1728 		default:
1729 			mlx5_ib_warn(eq->dev,
1730 				     "Unsupported page fault event sub-type: 0x%02hhx\n",
1731 				     eqe->sub_type);
1732 			/* Unsupported page faults should still be
1733 			 * resolved by the page fault handler
1734 			 */
1735 		}
1736 
1737 		pfault->eq = eq;
1738 		INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1739 		queue_work(eq->wq, &pfault->work);
1740 
1741 		cc = mlx5_eq_update_cc(eq->core, ++cc);
1742 	}
1743 
1744 	mlx5_eq_update_ci(eq->core, cc, 1);
1745 }
1746 
mlx5_ib_eq_pf_int(struct notifier_block * nb,unsigned long type,void * data)1747 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1748 			     void *data)
1749 {
1750 	struct mlx5_ib_pf_eq *eq =
1751 		container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1752 	unsigned long flags;
1753 
1754 	if (spin_trylock_irqsave(&eq->lock, flags)) {
1755 		mlx5_ib_eq_pf_process(eq);
1756 		spin_unlock_irqrestore(&eq->lock, flags);
1757 	} else {
1758 		schedule_work(&eq->work);
1759 	}
1760 
1761 	return IRQ_HANDLED;
1762 }
1763 
1764 /* mempool_refill() was proposed but unfortunately wasn't accepted
1765  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1766  * Cheap workaround.
1767  */
mempool_refill(mempool_t * pool)1768 static void mempool_refill(mempool_t *pool)
1769 {
1770 	while (pool->curr_nr < pool->min_nr)
1771 		mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1772 }
1773 
mlx5_ib_eq_pf_action(struct work_struct * work)1774 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1775 {
1776 	struct mlx5_ib_pf_eq *eq =
1777 		container_of(work, struct mlx5_ib_pf_eq, work);
1778 
1779 	mempool_refill(eq->pool);
1780 
1781 	spin_lock_irq(&eq->lock);
1782 	mlx5_ib_eq_pf_process(eq);
1783 	spin_unlock_irq(&eq->lock);
1784 }
1785 
1786 enum {
1787 	MLX5_IB_NUM_PF_EQE	= 0x1000,
1788 	MLX5_IB_NUM_PF_DRAIN	= 64,
1789 };
1790 
mlx5r_odp_create_eq(struct mlx5_ib_dev * dev,struct mlx5_ib_pf_eq * eq)1791 int mlx5r_odp_create_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1792 {
1793 	struct mlx5_eq_param param = {};
1794 	int err = 0;
1795 
1796 	mutex_lock(&dev->odp_eq_mutex);
1797 	if (eq->core)
1798 		goto unlock;
1799 	INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1800 	spin_lock_init(&eq->lock);
1801 	eq->dev = dev;
1802 
1803 	eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1804 					       sizeof(struct mlx5_pagefault));
1805 	if (!eq->pool) {
1806 		err = -ENOMEM;
1807 		goto unlock;
1808 	}
1809 
1810 	eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1811 				 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1812 				 MLX5_NUM_CMD_EQE);
1813 	if (!eq->wq) {
1814 		err = -ENOMEM;
1815 		goto err_mempool;
1816 	}
1817 
1818 	eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1819 	param = (struct mlx5_eq_param) {
1820 		.nent = MLX5_IB_NUM_PF_EQE,
1821 	};
1822 	param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1823 	eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1824 	if (IS_ERR(eq->core)) {
1825 		err = PTR_ERR(eq->core);
1826 		goto err_wq;
1827 	}
1828 	err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1829 	if (err) {
1830 		mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1831 		goto err_eq;
1832 	}
1833 
1834 	mutex_unlock(&dev->odp_eq_mutex);
1835 	return 0;
1836 err_eq:
1837 	mlx5_eq_destroy_generic(dev->mdev, eq->core);
1838 err_wq:
1839 	eq->core = NULL;
1840 	destroy_workqueue(eq->wq);
1841 err_mempool:
1842 	mempool_destroy(eq->pool);
1843 unlock:
1844 	mutex_unlock(&dev->odp_eq_mutex);
1845 	return err;
1846 }
1847 
1848 static int
mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev * dev,struct mlx5_ib_pf_eq * eq)1849 mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1850 {
1851 	int err;
1852 
1853 	if (!eq->core)
1854 		return 0;
1855 	mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1856 	err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1857 	cancel_work_sync(&eq->work);
1858 	destroy_workqueue(eq->wq);
1859 	mempool_destroy(eq->pool);
1860 
1861 	return err;
1862 }
1863 
mlx5_odp_init_mkey_cache(struct mlx5_ib_dev * dev)1864 int mlx5_odp_init_mkey_cache(struct mlx5_ib_dev *dev)
1865 {
1866 	struct mlx5r_cache_rb_key rb_key = {
1867 		.access_mode = MLX5_MKC_ACCESS_MODE_KSM,
1868 		.ndescs = mlx5_imr_ksm_entries,
1869 	};
1870 	struct mlx5_cache_ent *ent;
1871 
1872 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1873 		return 0;
1874 
1875 	ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
1876 	if (IS_ERR(ent))
1877 		return PTR_ERR(ent);
1878 
1879 	return 0;
1880 }
1881 
1882 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1883 	.advise_mr = mlx5_ib_advise_mr,
1884 };
1885 
mlx5_ib_odp_init_one(struct mlx5_ib_dev * dev)1886 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1887 {
1888 	internal_fill_odp_caps(dev);
1889 
1890 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1891 		return 0;
1892 
1893 	ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1894 
1895 	mutex_init(&dev->odp_eq_mutex);
1896 	return 0;
1897 }
1898 
mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev * dev)1899 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1900 {
1901 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1902 		return;
1903 
1904 	mlx5_ib_odp_destroy_eq(dev, &dev->odp_pf_eq);
1905 }
1906 
mlx5_ib_odp_init(void)1907 int mlx5_ib_odp_init(void)
1908 {
1909 	mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1910 				       MLX5_IMR_MTT_BITS);
1911 
1912 	return 0;
1913 }
1914 
1915 struct prefetch_mr_work {
1916 	struct work_struct work;
1917 	u32 pf_flags;
1918 	u32 num_sge;
1919 	struct {
1920 		u64 io_virt;
1921 		struct mlx5_ib_mr *mr;
1922 		size_t length;
1923 	} frags[];
1924 };
1925 
destroy_prefetch_work(struct prefetch_mr_work * work)1926 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1927 {
1928 	u32 i;
1929 
1930 	for (i = 0; i < work->num_sge; ++i)
1931 		mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey);
1932 
1933 	kvfree(work);
1934 }
1935 
1936 static struct mlx5_ib_mr *
get_prefetchable_mr(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 lkey)1937 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1938 		    u32 lkey)
1939 {
1940 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1941 	struct mlx5_ib_mr *mr = NULL;
1942 	struct mlx5_ib_mkey *mmkey;
1943 
1944 	xa_lock(&dev->odp_mkeys);
1945 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1946 	if (!mmkey || mmkey->key != lkey) {
1947 		mr = ERR_PTR(-ENOENT);
1948 		goto end;
1949 	}
1950 	if (mmkey->type != MLX5_MKEY_MR) {
1951 		mr = ERR_PTR(-EINVAL);
1952 		goto end;
1953 	}
1954 
1955 	mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1956 
1957 	if (mr->ibmr.pd != pd) {
1958 		mr = ERR_PTR(-EPERM);
1959 		goto end;
1960 	}
1961 
1962 	/* prefetch with write-access must be supported by the MR */
1963 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1964 	    !mr->umem->writable) {
1965 		mr = ERR_PTR(-EPERM);
1966 		goto end;
1967 	}
1968 
1969 	refcount_inc(&mmkey->usecount);
1970 end:
1971 	xa_unlock(&dev->odp_mkeys);
1972 	return mr;
1973 }
1974 
mlx5_ib_prefetch_mr_work(struct work_struct * w)1975 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1976 {
1977 	struct prefetch_mr_work *work =
1978 		container_of(w, struct prefetch_mr_work, work);
1979 	u32 bytes_mapped = 0;
1980 	int ret;
1981 	u32 i;
1982 
1983 	/* We rely on IB/core that work is executed if we have num_sge != 0 only. */
1984 	WARN_ON(!work->num_sge);
1985 	for (i = 0; i < work->num_sge; ++i) {
1986 		ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1987 				   work->frags[i].length, &bytes_mapped,
1988 				   work->pf_flags, false);
1989 		if (ret <= 0)
1990 			continue;
1991 		mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
1992 	}
1993 
1994 	destroy_prefetch_work(work);
1995 }
1996 
init_prefetch_work(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 pf_flags,struct prefetch_mr_work * work,struct ib_sge * sg_list,u32 num_sge)1997 static int init_prefetch_work(struct ib_pd *pd,
1998 			       enum ib_uverbs_advise_mr_advice advice,
1999 			       u32 pf_flags, struct prefetch_mr_work *work,
2000 			       struct ib_sge *sg_list, u32 num_sge)
2001 {
2002 	u32 i;
2003 
2004 	INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
2005 	work->pf_flags = pf_flags;
2006 
2007 	for (i = 0; i < num_sge; ++i) {
2008 		struct mlx5_ib_mr *mr;
2009 
2010 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
2011 		if (IS_ERR(mr)) {
2012 			work->num_sge = i;
2013 			return PTR_ERR(mr);
2014 		}
2015 		work->frags[i].io_virt = sg_list[i].addr;
2016 		work->frags[i].length = sg_list[i].length;
2017 		work->frags[i].mr = mr;
2018 	}
2019 	work->num_sge = num_sge;
2020 	return 0;
2021 }
2022 
mlx5_ib_prefetch_sg_list(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 pf_flags,struct ib_sge * sg_list,u32 num_sge)2023 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
2024 				    enum ib_uverbs_advise_mr_advice advice,
2025 				    u32 pf_flags, struct ib_sge *sg_list,
2026 				    u32 num_sge)
2027 {
2028 	u32 bytes_mapped = 0;
2029 	int ret = 0;
2030 	u32 i;
2031 
2032 	for (i = 0; i < num_sge; ++i) {
2033 		struct mlx5_ib_mr *mr;
2034 
2035 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
2036 		if (IS_ERR(mr))
2037 			return PTR_ERR(mr);
2038 		ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
2039 				   &bytes_mapped, pf_flags, false);
2040 		if (ret < 0) {
2041 			mlx5r_deref_odp_mkey(&mr->mmkey);
2042 			return ret;
2043 		}
2044 		mlx5_update_odp_stats(mr, prefetch, ret);
2045 		mlx5r_deref_odp_mkey(&mr->mmkey);
2046 	}
2047 
2048 	return 0;
2049 }
2050 
mlx5_ib_advise_mr_prefetch(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 flags,struct ib_sge * sg_list,u32 num_sge)2051 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
2052 			       enum ib_uverbs_advise_mr_advice advice,
2053 			       u32 flags, struct ib_sge *sg_list, u32 num_sge)
2054 {
2055 	u32 pf_flags = 0;
2056 	struct prefetch_mr_work *work;
2057 	int rc;
2058 
2059 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
2060 		pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
2061 
2062 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
2063 		pf_flags |= MLX5_PF_FLAGS_SNAPSHOT;
2064 
2065 	if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
2066 		return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
2067 						num_sge);
2068 
2069 	work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
2070 	if (!work)
2071 		return -ENOMEM;
2072 
2073 	rc = init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge);
2074 	if (rc) {
2075 		destroy_prefetch_work(work);
2076 		return rc;
2077 	}
2078 	queue_work(system_unbound_wq, &work->work);
2079 	return 0;
2080 }
2081