1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/kernfs/dir.c - kernfs directory implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17
18 #include "kernfs-internal.h"
19
20 /*
21 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
22 * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
23 * will perform wakeups when releasing console_sem. Holding rename_lock
24 * will introduce deadlock if the scheduler reads the kernfs_name in the
25 * wakeup path.
26 */
27 static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
28 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */
29
30 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
31
__kernfs_active(struct kernfs_node * kn)32 static bool __kernfs_active(struct kernfs_node *kn)
33 {
34 return atomic_read(&kn->active) >= 0;
35 }
36
kernfs_active(struct kernfs_node * kn)37 static bool kernfs_active(struct kernfs_node *kn)
38 {
39 lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem);
40 return __kernfs_active(kn);
41 }
42
kernfs_lockdep(struct kernfs_node * kn)43 static bool kernfs_lockdep(struct kernfs_node *kn)
44 {
45 #ifdef CONFIG_DEBUG_LOCK_ALLOC
46 return kn->flags & KERNFS_LOCKDEP;
47 #else
48 return false;
49 #endif
50 }
51
52 /* kernfs_node_depth - compute depth from @from to @to */
kernfs_depth(struct kernfs_node * from,struct kernfs_node * to)53 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
54 {
55 size_t depth = 0;
56
57 while (rcu_dereference(to->__parent) && to != from) {
58 depth++;
59 to = rcu_dereference(to->__parent);
60 }
61 return depth;
62 }
63
kernfs_common_ancestor(struct kernfs_node * a,struct kernfs_node * b)64 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
65 struct kernfs_node *b)
66 {
67 size_t da, db;
68 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
69
70 if (ra != rb)
71 return NULL;
72
73 da = kernfs_depth(ra->kn, a);
74 db = kernfs_depth(rb->kn, b);
75
76 while (da > db) {
77 a = rcu_dereference(a->__parent);
78 da--;
79 }
80 while (db > da) {
81 b = rcu_dereference(b->__parent);
82 db--;
83 }
84
85 /* worst case b and a will be the same at root */
86 while (b != a) {
87 b = rcu_dereference(b->__parent);
88 a = rcu_dereference(a->__parent);
89 }
90
91 return a;
92 }
93
94 /**
95 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
96 * where kn_from is treated as root of the path.
97 * @kn_from: kernfs node which should be treated as root for the path
98 * @kn_to: kernfs node to which path is needed
99 * @buf: buffer to copy the path into
100 * @buflen: size of @buf
101 *
102 * We need to handle couple of scenarios here:
103 * [1] when @kn_from is an ancestor of @kn_to at some level
104 * kn_from: /n1/n2/n3
105 * kn_to: /n1/n2/n3/n4/n5
106 * result: /n4/n5
107 *
108 * [2] when @kn_from is on a different hierarchy and we need to find common
109 * ancestor between @kn_from and @kn_to.
110 * kn_from: /n1/n2/n3/n4
111 * kn_to: /n1/n2/n5
112 * result: /../../n5
113 * OR
114 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
115 * kn_to: /n1/n2/n3 [depth=3]
116 * result: /../..
117 *
118 * [3] when @kn_to is %NULL result will be "(null)"
119 *
120 * Return: the length of the constructed path. If the path would have been
121 * greater than @buflen, @buf contains the truncated path with the trailing
122 * '\0'. On error, -errno is returned.
123 */
kernfs_path_from_node_locked(struct kernfs_node * kn_to,struct kernfs_node * kn_from,char * buf,size_t buflen)124 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
125 struct kernfs_node *kn_from,
126 char *buf, size_t buflen)
127 {
128 struct kernfs_node *kn, *common;
129 const char parent_str[] = "/..";
130 size_t depth_from, depth_to, len = 0;
131 ssize_t copied;
132 int i, j;
133
134 if (!kn_to)
135 return strscpy(buf, "(null)", buflen);
136
137 if (!kn_from)
138 kn_from = kernfs_root(kn_to)->kn;
139
140 if (kn_from == kn_to)
141 return strscpy(buf, "/", buflen);
142
143 common = kernfs_common_ancestor(kn_from, kn_to);
144 if (WARN_ON(!common))
145 return -EINVAL;
146
147 depth_to = kernfs_depth(common, kn_to);
148 depth_from = kernfs_depth(common, kn_from);
149
150 buf[0] = '\0';
151
152 for (i = 0; i < depth_from; i++) {
153 copied = strscpy(buf + len, parent_str, buflen - len);
154 if (copied < 0)
155 return copied;
156 len += copied;
157 }
158
159 /* Calculate how many bytes we need for the rest */
160 for (i = depth_to - 1; i >= 0; i--) {
161 const char *name;
162
163 for (kn = kn_to, j = 0; j < i; j++)
164 kn = rcu_dereference(kn->__parent);
165
166 name = rcu_dereference(kn->name);
167 len += scnprintf(buf + len, buflen - len, "/%s", name);
168 }
169
170 return len;
171 }
172
173 /**
174 * kernfs_name - obtain the name of a given node
175 * @kn: kernfs_node of interest
176 * @buf: buffer to copy @kn's name into
177 * @buflen: size of @buf
178 *
179 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
180 * similar to strscpy().
181 *
182 * Fills buffer with "(null)" if @kn is %NULL.
183 *
184 * Return: the resulting length of @buf. If @buf isn't long enough,
185 * it's filled up to @buflen-1 and nul terminated, and returns -E2BIG.
186 *
187 * This function can be called from any context.
188 */
kernfs_name(struct kernfs_node * kn,char * buf,size_t buflen)189 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
190 {
191 struct kernfs_node *kn_parent;
192
193 if (!kn)
194 return strscpy(buf, "(null)", buflen);
195
196 guard(rcu)();
197 /*
198 * KERNFS_ROOT_INVARIANT_PARENT is ignored here. The name is RCU freed and
199 * the parent is either existing or not.
200 */
201 kn_parent = rcu_dereference(kn->__parent);
202 return strscpy(buf, kn_parent ? rcu_dereference(kn->name) : "/", buflen);
203 }
204
205 /**
206 * kernfs_path_from_node - build path of node @to relative to @from.
207 * @from: parent kernfs_node relative to which we need to build the path
208 * @to: kernfs_node of interest
209 * @buf: buffer to copy @to's path into
210 * @buflen: size of @buf
211 *
212 * Builds @to's path relative to @from in @buf. @from and @to must
213 * be on the same kernfs-root. If @from is not parent of @to, then a relative
214 * path (which includes '..'s) as needed to reach from @from to @to is
215 * returned.
216 *
217 * Return: the length of the constructed path. If the path would have been
218 * greater than @buflen, @buf contains the truncated path with the trailing
219 * '\0'. On error, -errno is returned.
220 */
kernfs_path_from_node(struct kernfs_node * to,struct kernfs_node * from,char * buf,size_t buflen)221 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
222 char *buf, size_t buflen)
223 {
224 struct kernfs_root *root;
225
226 guard(rcu)();
227 if (to) {
228 root = kernfs_root(to);
229 if (!(root->flags & KERNFS_ROOT_INVARIANT_PARENT)) {
230 guard(read_lock_irqsave)(&root->kernfs_rename_lock);
231 return kernfs_path_from_node_locked(to, from, buf, buflen);
232 }
233 }
234 return kernfs_path_from_node_locked(to, from, buf, buflen);
235 }
236 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
237
238 /**
239 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
240 * @kn: kernfs_node of interest
241 *
242 * This function can be called from any context.
243 */
pr_cont_kernfs_name(struct kernfs_node * kn)244 void pr_cont_kernfs_name(struct kernfs_node *kn)
245 {
246 unsigned long flags;
247
248 spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
249
250 kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
251 pr_cont("%s", kernfs_pr_cont_buf);
252
253 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
254 }
255
256 /**
257 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
258 * @kn: kernfs_node of interest
259 *
260 * This function can be called from any context.
261 */
pr_cont_kernfs_path(struct kernfs_node * kn)262 void pr_cont_kernfs_path(struct kernfs_node *kn)
263 {
264 unsigned long flags;
265 int sz;
266
267 spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
268
269 sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
270 sizeof(kernfs_pr_cont_buf));
271 if (sz < 0) {
272 if (sz == -E2BIG)
273 pr_cont("(name too long)");
274 else
275 pr_cont("(error)");
276 goto out;
277 }
278
279 pr_cont("%s", kernfs_pr_cont_buf);
280
281 out:
282 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
283 }
284
285 /**
286 * kernfs_get_parent - determine the parent node and pin it
287 * @kn: kernfs_node of interest
288 *
289 * Determines @kn's parent, pins and returns it. This function can be
290 * called from any context.
291 *
292 * Return: parent node of @kn
293 */
kernfs_get_parent(struct kernfs_node * kn)294 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
295 {
296 struct kernfs_node *parent;
297 struct kernfs_root *root;
298 unsigned long flags;
299
300 root = kernfs_root(kn);
301 read_lock_irqsave(&root->kernfs_rename_lock, flags);
302 parent = kernfs_parent(kn);
303 kernfs_get(parent);
304 read_unlock_irqrestore(&root->kernfs_rename_lock, flags);
305
306 return parent;
307 }
308
309 /**
310 * kernfs_name_hash - calculate hash of @ns + @name
311 * @name: Null terminated string to hash
312 * @ns: Namespace tag to hash
313 *
314 * Return: 31-bit hash of ns + name (so it fits in an off_t)
315 */
kernfs_name_hash(const char * name,const void * ns)316 static unsigned int kernfs_name_hash(const char *name, const void *ns)
317 {
318 unsigned long hash = init_name_hash(ns);
319 unsigned int len = strlen(name);
320 while (len--)
321 hash = partial_name_hash(*name++, hash);
322 hash = end_name_hash(hash);
323 hash &= 0x7fffffffU;
324 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
325 if (hash < 2)
326 hash += 2;
327 if (hash >= INT_MAX)
328 hash = INT_MAX - 1;
329 return hash;
330 }
331
kernfs_name_compare(unsigned int hash,const char * name,const void * ns,const struct kernfs_node * kn)332 static int kernfs_name_compare(unsigned int hash, const char *name,
333 const void *ns, const struct kernfs_node *kn)
334 {
335 if (hash < kn->hash)
336 return -1;
337 if (hash > kn->hash)
338 return 1;
339 if (ns < kn->ns)
340 return -1;
341 if (ns > kn->ns)
342 return 1;
343 return strcmp(name, kernfs_rcu_name(kn));
344 }
345
kernfs_sd_compare(const struct kernfs_node * left,const struct kernfs_node * right)346 static int kernfs_sd_compare(const struct kernfs_node *left,
347 const struct kernfs_node *right)
348 {
349 return kernfs_name_compare(left->hash, kernfs_rcu_name(left), left->ns, right);
350 }
351
352 /**
353 * kernfs_link_sibling - link kernfs_node into sibling rbtree
354 * @kn: kernfs_node of interest
355 *
356 * Link @kn into its sibling rbtree which starts from
357 * @kn->parent->dir.children.
358 *
359 * Locking:
360 * kernfs_rwsem held exclusive
361 *
362 * Return:
363 * %0 on success, -EEXIST on failure.
364 */
kernfs_link_sibling(struct kernfs_node * kn)365 static int kernfs_link_sibling(struct kernfs_node *kn)
366 {
367 struct rb_node *parent = NULL;
368 struct kernfs_node *kn_parent;
369 struct rb_node **node;
370
371 kn_parent = kernfs_parent(kn);
372 node = &kn_parent->dir.children.rb_node;
373
374 while (*node) {
375 struct kernfs_node *pos;
376 int result;
377
378 pos = rb_to_kn(*node);
379 parent = *node;
380 result = kernfs_sd_compare(kn, pos);
381 if (result < 0)
382 node = &pos->rb.rb_left;
383 else if (result > 0)
384 node = &pos->rb.rb_right;
385 else
386 return -EEXIST;
387 }
388
389 /* add new node and rebalance the tree */
390 rb_link_node(&kn->rb, parent, node);
391 rb_insert_color(&kn->rb, &kn_parent->dir.children);
392
393 /* successfully added, account subdir number */
394 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
395 if (kernfs_type(kn) == KERNFS_DIR)
396 kn_parent->dir.subdirs++;
397 kernfs_inc_rev(kn_parent);
398 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
399
400 return 0;
401 }
402
403 /**
404 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
405 * @kn: kernfs_node of interest
406 *
407 * Try to unlink @kn from its sibling rbtree which starts from
408 * kn->parent->dir.children.
409 *
410 * Return: %true if @kn was actually removed,
411 * %false if @kn wasn't on the rbtree.
412 *
413 * Locking:
414 * kernfs_rwsem held exclusive
415 */
kernfs_unlink_sibling(struct kernfs_node * kn)416 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
417 {
418 struct kernfs_node *kn_parent;
419
420 if (RB_EMPTY_NODE(&kn->rb))
421 return false;
422
423 kn_parent = kernfs_parent(kn);
424 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
425 if (kernfs_type(kn) == KERNFS_DIR)
426 kn_parent->dir.subdirs--;
427 kernfs_inc_rev(kn_parent);
428 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
429
430 rb_erase(&kn->rb, &kn_parent->dir.children);
431 RB_CLEAR_NODE(&kn->rb);
432 return true;
433 }
434
435 /**
436 * kernfs_get_active - get an active reference to kernfs_node
437 * @kn: kernfs_node to get an active reference to
438 *
439 * Get an active reference of @kn. This function is noop if @kn
440 * is %NULL.
441 *
442 * Return:
443 * Pointer to @kn on success, %NULL on failure.
444 */
kernfs_get_active(struct kernfs_node * kn)445 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
446 {
447 if (unlikely(!kn))
448 return NULL;
449
450 if (!atomic_inc_unless_negative(&kn->active))
451 return NULL;
452
453 if (kernfs_lockdep(kn))
454 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
455 return kn;
456 }
457
458 /**
459 * kernfs_put_active - put an active reference to kernfs_node
460 * @kn: kernfs_node to put an active reference to
461 *
462 * Put an active reference to @kn. This function is noop if @kn
463 * is %NULL.
464 */
kernfs_put_active(struct kernfs_node * kn)465 void kernfs_put_active(struct kernfs_node *kn)
466 {
467 int v;
468
469 if (unlikely(!kn))
470 return;
471
472 if (kernfs_lockdep(kn))
473 rwsem_release(&kn->dep_map, _RET_IP_);
474 v = atomic_dec_return(&kn->active);
475 if (likely(v != KN_DEACTIVATED_BIAS))
476 return;
477
478 wake_up_all(&kernfs_root(kn)->deactivate_waitq);
479 }
480
481 /**
482 * kernfs_drain - drain kernfs_node
483 * @kn: kernfs_node to drain
484 *
485 * Drain existing usages and nuke all existing mmaps of @kn. Multiple
486 * removers may invoke this function concurrently on @kn and all will
487 * return after draining is complete.
488 */
kernfs_drain(struct kernfs_node * kn)489 static void kernfs_drain(struct kernfs_node *kn)
490 __releases(&kernfs_root(kn)->kernfs_rwsem)
491 __acquires(&kernfs_root(kn)->kernfs_rwsem)
492 {
493 struct kernfs_root *root = kernfs_root(kn);
494
495 lockdep_assert_held_write(&root->kernfs_rwsem);
496 WARN_ON_ONCE(kernfs_active(kn));
497
498 /*
499 * Skip draining if already fully drained. This avoids draining and its
500 * lockdep annotations for nodes which have never been activated
501 * allowing embedding kernfs_remove() in create error paths without
502 * worrying about draining.
503 */
504 if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS &&
505 !kernfs_should_drain_open_files(kn))
506 return;
507
508 up_write(&root->kernfs_rwsem);
509
510 if (kernfs_lockdep(kn)) {
511 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
512 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
513 lock_contended(&kn->dep_map, _RET_IP_);
514 }
515
516 wait_event(root->deactivate_waitq,
517 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
518
519 if (kernfs_lockdep(kn)) {
520 lock_acquired(&kn->dep_map, _RET_IP_);
521 rwsem_release(&kn->dep_map, _RET_IP_);
522 }
523
524 if (kernfs_should_drain_open_files(kn))
525 kernfs_drain_open_files(kn);
526
527 down_write(&root->kernfs_rwsem);
528 }
529
530 /**
531 * kernfs_get - get a reference count on a kernfs_node
532 * @kn: the target kernfs_node
533 */
kernfs_get(struct kernfs_node * kn)534 void kernfs_get(struct kernfs_node *kn)
535 {
536 if (kn) {
537 WARN_ON(!atomic_read(&kn->count));
538 atomic_inc(&kn->count);
539 }
540 }
541 EXPORT_SYMBOL_GPL(kernfs_get);
542
kernfs_free_rcu(struct rcu_head * rcu)543 static void kernfs_free_rcu(struct rcu_head *rcu)
544 {
545 struct kernfs_node *kn = container_of(rcu, struct kernfs_node, rcu);
546
547 /* If the whole node goes away, then name can't be used outside */
548 kfree_const(rcu_access_pointer(kn->name));
549
550 if (kn->iattr) {
551 simple_xattrs_free(&kn->iattr->xattrs, NULL);
552 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
553 }
554
555 kmem_cache_free(kernfs_node_cache, kn);
556 }
557
558 /**
559 * kernfs_put - put a reference count on a kernfs_node
560 * @kn: the target kernfs_node
561 *
562 * Put a reference count of @kn and destroy it if it reached zero.
563 */
kernfs_put(struct kernfs_node * kn)564 void kernfs_put(struct kernfs_node *kn)
565 {
566 struct kernfs_node *parent;
567 struct kernfs_root *root;
568
569 if (!kn || !atomic_dec_and_test(&kn->count))
570 return;
571 root = kernfs_root(kn);
572 repeat:
573 /*
574 * Moving/renaming is always done while holding reference.
575 * kn->parent won't change beneath us.
576 */
577 parent = kernfs_parent(kn);
578
579 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
580 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
581 parent ? rcu_dereference(parent->name) : "",
582 rcu_dereference(kn->name), atomic_read(&kn->active));
583
584 if (kernfs_type(kn) == KERNFS_LINK)
585 kernfs_put(kn->symlink.target_kn);
586
587 spin_lock(&root->kernfs_idr_lock);
588 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
589 spin_unlock(&root->kernfs_idr_lock);
590
591 call_rcu(&kn->rcu, kernfs_free_rcu);
592
593 kn = parent;
594 if (kn) {
595 if (atomic_dec_and_test(&kn->count))
596 goto repeat;
597 } else {
598 /* just released the root kn, free @root too */
599 idr_destroy(&root->ino_idr);
600 kfree_rcu(root, rcu);
601 }
602 }
603 EXPORT_SYMBOL_GPL(kernfs_put);
604
605 /**
606 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
607 * @dentry: the dentry in question
608 *
609 * Return: the kernfs_node associated with @dentry. If @dentry is not a
610 * kernfs one, %NULL is returned.
611 *
612 * While the returned kernfs_node will stay accessible as long as @dentry
613 * is accessible, the returned node can be in any state and the caller is
614 * fully responsible for determining what's accessible.
615 */
kernfs_node_from_dentry(struct dentry * dentry)616 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
617 {
618 if (dentry->d_sb->s_op == &kernfs_sops)
619 return kernfs_dentry_node(dentry);
620 return NULL;
621 }
622
__kernfs_new_node(struct kernfs_root * root,struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)623 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
624 struct kernfs_node *parent,
625 const char *name, umode_t mode,
626 kuid_t uid, kgid_t gid,
627 unsigned flags)
628 {
629 struct kernfs_node *kn;
630 u32 id_highbits;
631 int ret;
632
633 name = kstrdup_const(name, GFP_KERNEL);
634 if (!name)
635 return NULL;
636
637 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
638 if (!kn)
639 goto err_out1;
640
641 idr_preload(GFP_KERNEL);
642 spin_lock(&root->kernfs_idr_lock);
643 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
644 if (ret >= 0 && ret < root->last_id_lowbits)
645 root->id_highbits++;
646 id_highbits = root->id_highbits;
647 root->last_id_lowbits = ret;
648 spin_unlock(&root->kernfs_idr_lock);
649 idr_preload_end();
650 if (ret < 0)
651 goto err_out2;
652
653 kn->id = (u64)id_highbits << 32 | ret;
654
655 atomic_set(&kn->count, 1);
656 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
657 RB_CLEAR_NODE(&kn->rb);
658
659 rcu_assign_pointer(kn->name, name);
660 kn->mode = mode;
661 kn->flags = flags;
662
663 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
664 struct iattr iattr = {
665 .ia_valid = ATTR_UID | ATTR_GID,
666 .ia_uid = uid,
667 .ia_gid = gid,
668 };
669
670 ret = __kernfs_setattr(kn, &iattr);
671 if (ret < 0)
672 goto err_out3;
673 }
674
675 if (parent) {
676 ret = security_kernfs_init_security(parent, kn);
677 if (ret)
678 goto err_out4;
679 }
680
681 return kn;
682
683 err_out4:
684 if (kn->iattr) {
685 simple_xattrs_free(&kn->iattr->xattrs, NULL);
686 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
687 }
688 err_out3:
689 spin_lock(&root->kernfs_idr_lock);
690 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
691 spin_unlock(&root->kernfs_idr_lock);
692 err_out2:
693 kmem_cache_free(kernfs_node_cache, kn);
694 err_out1:
695 kfree_const(name);
696 return NULL;
697 }
698
kernfs_new_node(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)699 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
700 const char *name, umode_t mode,
701 kuid_t uid, kgid_t gid,
702 unsigned flags)
703 {
704 struct kernfs_node *kn;
705
706 if (parent->mode & S_ISGID) {
707 /* this code block imitates inode_init_owner() for
708 * kernfs
709 */
710
711 if (parent->iattr)
712 gid = parent->iattr->ia_gid;
713
714 if (flags & KERNFS_DIR)
715 mode |= S_ISGID;
716 }
717
718 kn = __kernfs_new_node(kernfs_root(parent), parent,
719 name, mode, uid, gid, flags);
720 if (kn) {
721 kernfs_get(parent);
722 rcu_assign_pointer(kn->__parent, parent);
723 }
724 return kn;
725 }
726
727 /*
728 * kernfs_find_and_get_node_by_id - get kernfs_node from node id
729 * @root: the kernfs root
730 * @id: the target node id
731 *
732 * @id's lower 32bits encode ino and upper gen. If the gen portion is
733 * zero, all generations are matched.
734 *
735 * Return: %NULL on failure,
736 * otherwise a kernfs node with reference counter incremented.
737 */
kernfs_find_and_get_node_by_id(struct kernfs_root * root,u64 id)738 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
739 u64 id)
740 {
741 struct kernfs_node *kn;
742 ino_t ino = kernfs_id_ino(id);
743 u32 gen = kernfs_id_gen(id);
744
745 rcu_read_lock();
746
747 kn = idr_find(&root->ino_idr, (u32)ino);
748 if (!kn)
749 goto err_unlock;
750
751 if (sizeof(ino_t) >= sizeof(u64)) {
752 /* we looked up with the low 32bits, compare the whole */
753 if (kernfs_ino(kn) != ino)
754 goto err_unlock;
755 } else {
756 /* 0 matches all generations */
757 if (unlikely(gen && kernfs_gen(kn) != gen))
758 goto err_unlock;
759 }
760
761 /*
762 * We should fail if @kn has never been activated and guarantee success
763 * if the caller knows that @kn is active. Both can be achieved by
764 * __kernfs_active() which tests @kn->active without kernfs_rwsem.
765 */
766 if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count)))
767 goto err_unlock;
768
769 rcu_read_unlock();
770 return kn;
771 err_unlock:
772 rcu_read_unlock();
773 return NULL;
774 }
775
776 /**
777 * kernfs_add_one - add kernfs_node to parent without warning
778 * @kn: kernfs_node to be added
779 *
780 * The caller must already have initialized @kn->parent. This
781 * function increments nlink of the parent's inode if @kn is a
782 * directory and link into the children list of the parent.
783 *
784 * Return:
785 * %0 on success, -EEXIST if entry with the given name already
786 * exists.
787 */
kernfs_add_one(struct kernfs_node * kn)788 int kernfs_add_one(struct kernfs_node *kn)
789 {
790 struct kernfs_root *root = kernfs_root(kn);
791 struct kernfs_iattrs *ps_iattr;
792 struct kernfs_node *parent;
793 bool has_ns;
794 int ret;
795
796 down_write(&root->kernfs_rwsem);
797 parent = kernfs_parent(kn);
798
799 ret = -EINVAL;
800 has_ns = kernfs_ns_enabled(parent);
801 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
802 has_ns ? "required" : "invalid",
803 kernfs_rcu_name(parent), kernfs_rcu_name(kn)))
804 goto out_unlock;
805
806 if (kernfs_type(parent) != KERNFS_DIR)
807 goto out_unlock;
808
809 ret = -ENOENT;
810 if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR))
811 goto out_unlock;
812
813 kn->hash = kernfs_name_hash(kernfs_rcu_name(kn), kn->ns);
814
815 ret = kernfs_link_sibling(kn);
816 if (ret)
817 goto out_unlock;
818
819 /* Update timestamps on the parent */
820 down_write(&root->kernfs_iattr_rwsem);
821
822 ps_iattr = parent->iattr;
823 if (ps_iattr) {
824 ktime_get_real_ts64(&ps_iattr->ia_ctime);
825 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
826 }
827
828 up_write(&root->kernfs_iattr_rwsem);
829 up_write(&root->kernfs_rwsem);
830
831 /*
832 * Activate the new node unless CREATE_DEACTIVATED is requested.
833 * If not activated here, the kernfs user is responsible for
834 * activating the node with kernfs_activate(). A node which hasn't
835 * been activated is not visible to userland and its removal won't
836 * trigger deactivation.
837 */
838 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
839 kernfs_activate(kn);
840 return 0;
841
842 out_unlock:
843 up_write(&root->kernfs_rwsem);
844 return ret;
845 }
846
847 /**
848 * kernfs_find_ns - find kernfs_node with the given name
849 * @parent: kernfs_node to search under
850 * @name: name to look for
851 * @ns: the namespace tag to use
852 *
853 * Look for kernfs_node with name @name under @parent.
854 *
855 * Return: pointer to the found kernfs_node on success, %NULL on failure.
856 */
kernfs_find_ns(struct kernfs_node * parent,const unsigned char * name,const void * ns)857 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
858 const unsigned char *name,
859 const void *ns)
860 {
861 struct rb_node *node = parent->dir.children.rb_node;
862 bool has_ns = kernfs_ns_enabled(parent);
863 unsigned int hash;
864
865 lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem);
866
867 if (has_ns != (bool)ns) {
868 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
869 has_ns ? "required" : "invalid", kernfs_rcu_name(parent), name);
870 return NULL;
871 }
872
873 hash = kernfs_name_hash(name, ns);
874 while (node) {
875 struct kernfs_node *kn;
876 int result;
877
878 kn = rb_to_kn(node);
879 result = kernfs_name_compare(hash, name, ns, kn);
880 if (result < 0)
881 node = node->rb_left;
882 else if (result > 0)
883 node = node->rb_right;
884 else
885 return kn;
886 }
887 return NULL;
888 }
889
kernfs_walk_ns(struct kernfs_node * parent,const unsigned char * path,const void * ns)890 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
891 const unsigned char *path,
892 const void *ns)
893 {
894 ssize_t len;
895 char *p, *name;
896
897 lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem);
898
899 spin_lock_irq(&kernfs_pr_cont_lock);
900
901 len = strscpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
902
903 if (len < 0) {
904 spin_unlock_irq(&kernfs_pr_cont_lock);
905 return NULL;
906 }
907
908 p = kernfs_pr_cont_buf;
909
910 while ((name = strsep(&p, "/")) && parent) {
911 if (*name == '\0')
912 continue;
913 parent = kernfs_find_ns(parent, name, ns);
914 }
915
916 spin_unlock_irq(&kernfs_pr_cont_lock);
917
918 return parent;
919 }
920
921 /**
922 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
923 * @parent: kernfs_node to search under
924 * @name: name to look for
925 * @ns: the namespace tag to use
926 *
927 * Look for kernfs_node with name @name under @parent and get a reference
928 * if found. This function may sleep.
929 *
930 * Return: pointer to the found kernfs_node on success, %NULL on failure.
931 */
kernfs_find_and_get_ns(struct kernfs_node * parent,const char * name,const void * ns)932 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
933 const char *name, const void *ns)
934 {
935 struct kernfs_node *kn;
936 struct kernfs_root *root = kernfs_root(parent);
937
938 down_read(&root->kernfs_rwsem);
939 kn = kernfs_find_ns(parent, name, ns);
940 kernfs_get(kn);
941 up_read(&root->kernfs_rwsem);
942
943 return kn;
944 }
945 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
946
947 /**
948 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
949 * @parent: kernfs_node to search under
950 * @path: path to look for
951 * @ns: the namespace tag to use
952 *
953 * Look for kernfs_node with path @path under @parent and get a reference
954 * if found. This function may sleep.
955 *
956 * Return: pointer to the found kernfs_node on success, %NULL on failure.
957 */
kernfs_walk_and_get_ns(struct kernfs_node * parent,const char * path,const void * ns)958 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
959 const char *path, const void *ns)
960 {
961 struct kernfs_node *kn;
962 struct kernfs_root *root = kernfs_root(parent);
963
964 down_read(&root->kernfs_rwsem);
965 kn = kernfs_walk_ns(parent, path, ns);
966 kernfs_get(kn);
967 up_read(&root->kernfs_rwsem);
968
969 return kn;
970 }
971
kernfs_root_flags(struct kernfs_node * kn)972 unsigned int kernfs_root_flags(struct kernfs_node *kn)
973 {
974 return kernfs_root(kn)->flags;
975 }
976
977 /**
978 * kernfs_create_root - create a new kernfs hierarchy
979 * @scops: optional syscall operations for the hierarchy
980 * @flags: KERNFS_ROOT_* flags
981 * @priv: opaque data associated with the new directory
982 *
983 * Return: the root of the new hierarchy on success, ERR_PTR() value on
984 * failure.
985 */
kernfs_create_root(struct kernfs_syscall_ops * scops,unsigned int flags,void * priv)986 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
987 unsigned int flags, void *priv)
988 {
989 struct kernfs_root *root;
990 struct kernfs_node *kn;
991
992 root = kzalloc(sizeof(*root), GFP_KERNEL);
993 if (!root)
994 return ERR_PTR(-ENOMEM);
995
996 idr_init(&root->ino_idr);
997 spin_lock_init(&root->kernfs_idr_lock);
998 init_rwsem(&root->kernfs_rwsem);
999 init_rwsem(&root->kernfs_iattr_rwsem);
1000 init_rwsem(&root->kernfs_supers_rwsem);
1001 INIT_LIST_HEAD(&root->supers);
1002 rwlock_init(&root->kernfs_rename_lock);
1003
1004 /*
1005 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino.
1006 * High bits generation. The starting value for both ino and
1007 * genenration is 1. Initialize upper 32bit allocation
1008 * accordingly.
1009 */
1010 if (sizeof(ino_t) >= sizeof(u64))
1011 root->id_highbits = 0;
1012 else
1013 root->id_highbits = 1;
1014
1015 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
1016 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
1017 KERNFS_DIR);
1018 if (!kn) {
1019 idr_destroy(&root->ino_idr);
1020 kfree(root);
1021 return ERR_PTR(-ENOMEM);
1022 }
1023
1024 kn->priv = priv;
1025 kn->dir.root = root;
1026
1027 root->syscall_ops = scops;
1028 root->flags = flags;
1029 root->kn = kn;
1030 init_waitqueue_head(&root->deactivate_waitq);
1031
1032 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
1033 kernfs_activate(kn);
1034
1035 return root;
1036 }
1037
1038 /**
1039 * kernfs_destroy_root - destroy a kernfs hierarchy
1040 * @root: root of the hierarchy to destroy
1041 *
1042 * Destroy the hierarchy anchored at @root by removing all existing
1043 * directories and destroying @root.
1044 */
kernfs_destroy_root(struct kernfs_root * root)1045 void kernfs_destroy_root(struct kernfs_root *root)
1046 {
1047 /*
1048 * kernfs_remove holds kernfs_rwsem from the root so the root
1049 * shouldn't be freed during the operation.
1050 */
1051 kernfs_get(root->kn);
1052 kernfs_remove(root->kn);
1053 kernfs_put(root->kn); /* will also free @root */
1054 }
1055
1056 /**
1057 * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root
1058 * @root: root to use to lookup
1059 *
1060 * Return: @root's kernfs_node
1061 */
kernfs_root_to_node(struct kernfs_root * root)1062 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root)
1063 {
1064 return root->kn;
1065 }
1066
1067 /**
1068 * kernfs_create_dir_ns - create a directory
1069 * @parent: parent in which to create a new directory
1070 * @name: name of the new directory
1071 * @mode: mode of the new directory
1072 * @uid: uid of the new directory
1073 * @gid: gid of the new directory
1074 * @priv: opaque data associated with the new directory
1075 * @ns: optional namespace tag of the directory
1076 *
1077 * Return: the created node on success, ERR_PTR() value on failure.
1078 */
kernfs_create_dir_ns(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,void * priv,const void * ns)1079 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1080 const char *name, umode_t mode,
1081 kuid_t uid, kgid_t gid,
1082 void *priv, const void *ns)
1083 {
1084 struct kernfs_node *kn;
1085 int rc;
1086
1087 /* allocate */
1088 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1089 uid, gid, KERNFS_DIR);
1090 if (!kn)
1091 return ERR_PTR(-ENOMEM);
1092
1093 kn->dir.root = parent->dir.root;
1094 kn->ns = ns;
1095 kn->priv = priv;
1096
1097 /* link in */
1098 rc = kernfs_add_one(kn);
1099 if (!rc)
1100 return kn;
1101
1102 kernfs_put(kn);
1103 return ERR_PTR(rc);
1104 }
1105
1106 /**
1107 * kernfs_create_empty_dir - create an always empty directory
1108 * @parent: parent in which to create a new directory
1109 * @name: name of the new directory
1110 *
1111 * Return: the created node on success, ERR_PTR() value on failure.
1112 */
kernfs_create_empty_dir(struct kernfs_node * parent,const char * name)1113 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1114 const char *name)
1115 {
1116 struct kernfs_node *kn;
1117 int rc;
1118
1119 /* allocate */
1120 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1121 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1122 if (!kn)
1123 return ERR_PTR(-ENOMEM);
1124
1125 kn->flags |= KERNFS_EMPTY_DIR;
1126 kn->dir.root = parent->dir.root;
1127 kn->ns = NULL;
1128 kn->priv = NULL;
1129
1130 /* link in */
1131 rc = kernfs_add_one(kn);
1132 if (!rc)
1133 return kn;
1134
1135 kernfs_put(kn);
1136 return ERR_PTR(rc);
1137 }
1138
kernfs_dop_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)1139 static int kernfs_dop_revalidate(struct inode *dir, const struct qstr *name,
1140 struct dentry *dentry, unsigned int flags)
1141 {
1142 struct kernfs_node *kn, *parent;
1143 struct kernfs_root *root;
1144
1145 if (flags & LOOKUP_RCU)
1146 return -ECHILD;
1147
1148 /* Negative hashed dentry? */
1149 if (d_really_is_negative(dentry)) {
1150 /* If the kernfs parent node has changed discard and
1151 * proceed to ->lookup.
1152 *
1153 * There's nothing special needed here when getting the
1154 * dentry parent, even if a concurrent rename is in
1155 * progress. That's because the dentry is negative so
1156 * it can only be the target of the rename and it will
1157 * be doing a d_move() not a replace. Consequently the
1158 * dentry d_parent won't change over the d_move().
1159 *
1160 * Also kernfs negative dentries transitioning from
1161 * negative to positive during revalidate won't happen
1162 * because they are invalidated on containing directory
1163 * changes and the lookup re-done so that a new positive
1164 * dentry can be properly created.
1165 */
1166 root = kernfs_root_from_sb(dentry->d_sb);
1167 down_read(&root->kernfs_rwsem);
1168 parent = kernfs_dentry_node(dentry->d_parent);
1169 if (parent) {
1170 if (kernfs_dir_changed(parent, dentry)) {
1171 up_read(&root->kernfs_rwsem);
1172 return 0;
1173 }
1174 }
1175 up_read(&root->kernfs_rwsem);
1176
1177 /* The kernfs parent node hasn't changed, leave the
1178 * dentry negative and return success.
1179 */
1180 return 1;
1181 }
1182
1183 kn = kernfs_dentry_node(dentry);
1184 root = kernfs_root(kn);
1185 down_read(&root->kernfs_rwsem);
1186
1187 /* The kernfs node has been deactivated */
1188 if (!kernfs_active(kn))
1189 goto out_bad;
1190
1191 parent = kernfs_parent(kn);
1192 /* The kernfs node has been moved? */
1193 if (kernfs_dentry_node(dentry->d_parent) != parent)
1194 goto out_bad;
1195
1196 /* The kernfs node has been renamed */
1197 if (strcmp(dentry->d_name.name, kernfs_rcu_name(kn)) != 0)
1198 goto out_bad;
1199
1200 /* The kernfs node has been moved to a different namespace */
1201 if (parent && kernfs_ns_enabled(parent) &&
1202 kernfs_info(dentry->d_sb)->ns != kn->ns)
1203 goto out_bad;
1204
1205 up_read(&root->kernfs_rwsem);
1206 return 1;
1207 out_bad:
1208 up_read(&root->kernfs_rwsem);
1209 return 0;
1210 }
1211
1212 const struct dentry_operations kernfs_dops = {
1213 .d_revalidate = kernfs_dop_revalidate,
1214 };
1215
kernfs_iop_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1216 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1217 struct dentry *dentry,
1218 unsigned int flags)
1219 {
1220 struct kernfs_node *parent = dir->i_private;
1221 struct kernfs_node *kn;
1222 struct kernfs_root *root;
1223 struct inode *inode = NULL;
1224 const void *ns = NULL;
1225
1226 root = kernfs_root(parent);
1227 down_read(&root->kernfs_rwsem);
1228 if (kernfs_ns_enabled(parent))
1229 ns = kernfs_info(dir->i_sb)->ns;
1230
1231 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1232 /* attach dentry and inode */
1233 if (kn) {
1234 /* Inactive nodes are invisible to the VFS so don't
1235 * create a negative.
1236 */
1237 if (!kernfs_active(kn)) {
1238 up_read(&root->kernfs_rwsem);
1239 return NULL;
1240 }
1241 inode = kernfs_get_inode(dir->i_sb, kn);
1242 if (!inode)
1243 inode = ERR_PTR(-ENOMEM);
1244 }
1245 /*
1246 * Needed for negative dentry validation.
1247 * The negative dentry can be created in kernfs_iop_lookup()
1248 * or transforms from positive dentry in dentry_unlink_inode()
1249 * called from vfs_rmdir().
1250 */
1251 if (!IS_ERR(inode))
1252 kernfs_set_rev(parent, dentry);
1253 up_read(&root->kernfs_rwsem);
1254
1255 /* instantiate and hash (possibly negative) dentry */
1256 return d_splice_alias(inode, dentry);
1257 }
1258
kernfs_iop_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)1259 static struct dentry *kernfs_iop_mkdir(struct mnt_idmap *idmap,
1260 struct inode *dir, struct dentry *dentry,
1261 umode_t mode)
1262 {
1263 struct kernfs_node *parent = dir->i_private;
1264 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1265 int ret;
1266
1267 if (!scops || !scops->mkdir)
1268 return ERR_PTR(-EPERM);
1269
1270 if (!kernfs_get_active(parent))
1271 return ERR_PTR(-ENODEV);
1272
1273 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1274
1275 kernfs_put_active(parent);
1276 return ERR_PTR(ret);
1277 }
1278
kernfs_iop_rmdir(struct inode * dir,struct dentry * dentry)1279 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1280 {
1281 struct kernfs_node *kn = kernfs_dentry_node(dentry);
1282 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1283 int ret;
1284
1285 if (!scops || !scops->rmdir)
1286 return -EPERM;
1287
1288 if (!kernfs_get_active(kn))
1289 return -ENODEV;
1290
1291 ret = scops->rmdir(kn);
1292
1293 kernfs_put_active(kn);
1294 return ret;
1295 }
1296
kernfs_iop_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1297 static int kernfs_iop_rename(struct mnt_idmap *idmap,
1298 struct inode *old_dir, struct dentry *old_dentry,
1299 struct inode *new_dir, struct dentry *new_dentry,
1300 unsigned int flags)
1301 {
1302 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1303 struct kernfs_node *new_parent = new_dir->i_private;
1304 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1305 int ret;
1306
1307 if (flags)
1308 return -EINVAL;
1309
1310 if (!scops || !scops->rename)
1311 return -EPERM;
1312
1313 if (!kernfs_get_active(kn))
1314 return -ENODEV;
1315
1316 if (!kernfs_get_active(new_parent)) {
1317 kernfs_put_active(kn);
1318 return -ENODEV;
1319 }
1320
1321 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1322
1323 kernfs_put_active(new_parent);
1324 kernfs_put_active(kn);
1325 return ret;
1326 }
1327
1328 const struct inode_operations kernfs_dir_iops = {
1329 .lookup = kernfs_iop_lookup,
1330 .permission = kernfs_iop_permission,
1331 .setattr = kernfs_iop_setattr,
1332 .getattr = kernfs_iop_getattr,
1333 .listxattr = kernfs_iop_listxattr,
1334
1335 .mkdir = kernfs_iop_mkdir,
1336 .rmdir = kernfs_iop_rmdir,
1337 .rename = kernfs_iop_rename,
1338 };
1339
kernfs_leftmost_descendant(struct kernfs_node * pos)1340 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1341 {
1342 struct kernfs_node *last;
1343
1344 while (true) {
1345 struct rb_node *rbn;
1346
1347 last = pos;
1348
1349 if (kernfs_type(pos) != KERNFS_DIR)
1350 break;
1351
1352 rbn = rb_first(&pos->dir.children);
1353 if (!rbn)
1354 break;
1355
1356 pos = rb_to_kn(rbn);
1357 }
1358
1359 return last;
1360 }
1361
1362 /**
1363 * kernfs_next_descendant_post - find the next descendant for post-order walk
1364 * @pos: the current position (%NULL to initiate traversal)
1365 * @root: kernfs_node whose descendants to walk
1366 *
1367 * Find the next descendant to visit for post-order traversal of @root's
1368 * descendants. @root is included in the iteration and the last node to be
1369 * visited.
1370 *
1371 * Return: the next descendant to visit or %NULL when done.
1372 */
kernfs_next_descendant_post(struct kernfs_node * pos,struct kernfs_node * root)1373 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1374 struct kernfs_node *root)
1375 {
1376 struct rb_node *rbn;
1377
1378 lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem);
1379
1380 /* if first iteration, visit leftmost descendant which may be root */
1381 if (!pos)
1382 return kernfs_leftmost_descendant(root);
1383
1384 /* if we visited @root, we're done */
1385 if (pos == root)
1386 return NULL;
1387
1388 /* if there's an unvisited sibling, visit its leftmost descendant */
1389 rbn = rb_next(&pos->rb);
1390 if (rbn)
1391 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1392
1393 /* no sibling left, visit parent */
1394 return kernfs_parent(pos);
1395 }
1396
kernfs_activate_one(struct kernfs_node * kn)1397 static void kernfs_activate_one(struct kernfs_node *kn)
1398 {
1399 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1400
1401 kn->flags |= KERNFS_ACTIVATED;
1402
1403 if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING)))
1404 return;
1405
1406 WARN_ON_ONCE(rcu_access_pointer(kn->__parent) && RB_EMPTY_NODE(&kn->rb));
1407 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1408
1409 atomic_sub(KN_DEACTIVATED_BIAS, &kn->active);
1410 }
1411
1412 /**
1413 * kernfs_activate - activate a node which started deactivated
1414 * @kn: kernfs_node whose subtree is to be activated
1415 *
1416 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1417 * needs to be explicitly activated. A node which hasn't been activated
1418 * isn't visible to userland and deactivation is skipped during its
1419 * removal. This is useful to construct atomic init sequences where
1420 * creation of multiple nodes should either succeed or fail atomically.
1421 *
1422 * The caller is responsible for ensuring that this function is not called
1423 * after kernfs_remove*() is invoked on @kn.
1424 */
kernfs_activate(struct kernfs_node * kn)1425 void kernfs_activate(struct kernfs_node *kn)
1426 {
1427 struct kernfs_node *pos;
1428 struct kernfs_root *root = kernfs_root(kn);
1429
1430 down_write(&root->kernfs_rwsem);
1431
1432 pos = NULL;
1433 while ((pos = kernfs_next_descendant_post(pos, kn)))
1434 kernfs_activate_one(pos);
1435
1436 up_write(&root->kernfs_rwsem);
1437 }
1438
1439 /**
1440 * kernfs_show - show or hide a node
1441 * @kn: kernfs_node to show or hide
1442 * @show: whether to show or hide
1443 *
1444 * If @show is %false, @kn is marked hidden and deactivated. A hidden node is
1445 * ignored in future activaitons. If %true, the mark is removed and activation
1446 * state is restored. This function won't implicitly activate a new node in a
1447 * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet.
1448 *
1449 * To avoid recursion complexities, directories aren't supported for now.
1450 */
kernfs_show(struct kernfs_node * kn,bool show)1451 void kernfs_show(struct kernfs_node *kn, bool show)
1452 {
1453 struct kernfs_root *root = kernfs_root(kn);
1454
1455 if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR))
1456 return;
1457
1458 down_write(&root->kernfs_rwsem);
1459
1460 if (show) {
1461 kn->flags &= ~KERNFS_HIDDEN;
1462 if (kn->flags & KERNFS_ACTIVATED)
1463 kernfs_activate_one(kn);
1464 } else {
1465 kn->flags |= KERNFS_HIDDEN;
1466 if (kernfs_active(kn))
1467 atomic_add(KN_DEACTIVATED_BIAS, &kn->active);
1468 kernfs_drain(kn);
1469 }
1470
1471 up_write(&root->kernfs_rwsem);
1472 }
1473
__kernfs_remove(struct kernfs_node * kn)1474 static void __kernfs_remove(struct kernfs_node *kn)
1475 {
1476 struct kernfs_node *pos, *parent;
1477
1478 /* Short-circuit if non-root @kn has already finished removal. */
1479 if (!kn)
1480 return;
1481
1482 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1483
1484 /*
1485 * This is for kernfs_remove_self() which plays with active ref
1486 * after removal.
1487 */
1488 if (kernfs_parent(kn) && RB_EMPTY_NODE(&kn->rb))
1489 return;
1490
1491 pr_debug("kernfs %s: removing\n", kernfs_rcu_name(kn));
1492
1493 /* prevent new usage by marking all nodes removing and deactivating */
1494 pos = NULL;
1495 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1496 pos->flags |= KERNFS_REMOVING;
1497 if (kernfs_active(pos))
1498 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1499 }
1500
1501 /* deactivate and unlink the subtree node-by-node */
1502 do {
1503 pos = kernfs_leftmost_descendant(kn);
1504
1505 /*
1506 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's
1507 * base ref could have been put by someone else by the time
1508 * the function returns. Make sure it doesn't go away
1509 * underneath us.
1510 */
1511 kernfs_get(pos);
1512
1513 kernfs_drain(pos);
1514 parent = kernfs_parent(pos);
1515 /*
1516 * kernfs_unlink_sibling() succeeds once per node. Use it
1517 * to decide who's responsible for cleanups.
1518 */
1519 if (!parent || kernfs_unlink_sibling(pos)) {
1520 struct kernfs_iattrs *ps_iattr =
1521 parent ? parent->iattr : NULL;
1522
1523 /* update timestamps on the parent */
1524 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
1525
1526 if (ps_iattr) {
1527 ktime_get_real_ts64(&ps_iattr->ia_ctime);
1528 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1529 }
1530
1531 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
1532 kernfs_put(pos);
1533 }
1534
1535 kernfs_put(pos);
1536 } while (pos != kn);
1537 }
1538
1539 /**
1540 * kernfs_remove - remove a kernfs_node recursively
1541 * @kn: the kernfs_node to remove
1542 *
1543 * Remove @kn along with all its subdirectories and files.
1544 */
kernfs_remove(struct kernfs_node * kn)1545 void kernfs_remove(struct kernfs_node *kn)
1546 {
1547 struct kernfs_root *root;
1548
1549 if (!kn)
1550 return;
1551
1552 root = kernfs_root(kn);
1553
1554 down_write(&root->kernfs_rwsem);
1555 __kernfs_remove(kn);
1556 up_write(&root->kernfs_rwsem);
1557 }
1558
1559 /**
1560 * kernfs_break_active_protection - break out of active protection
1561 * @kn: the self kernfs_node
1562 *
1563 * The caller must be running off of a kernfs operation which is invoked
1564 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1565 * this function must also be matched with an invocation of
1566 * kernfs_unbreak_active_protection().
1567 *
1568 * This function releases the active reference of @kn the caller is
1569 * holding. Once this function is called, @kn may be removed at any point
1570 * and the caller is solely responsible for ensuring that the objects it
1571 * dereferences are accessible.
1572 */
kernfs_break_active_protection(struct kernfs_node * kn)1573 void kernfs_break_active_protection(struct kernfs_node *kn)
1574 {
1575 /*
1576 * Take out ourself out of the active ref dependency chain. If
1577 * we're called without an active ref, lockdep will complain.
1578 */
1579 kernfs_put_active(kn);
1580 }
1581
1582 /**
1583 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1584 * @kn: the self kernfs_node
1585 *
1586 * If kernfs_break_active_protection() was called, this function must be
1587 * invoked before finishing the kernfs operation. Note that while this
1588 * function restores the active reference, it doesn't and can't actually
1589 * restore the active protection - @kn may already or be in the process of
1590 * being drained and removed. Once kernfs_break_active_protection() is
1591 * invoked, that protection is irreversibly gone for the kernfs operation
1592 * instance.
1593 *
1594 * While this function may be called at any point after
1595 * kernfs_break_active_protection() is invoked, its most useful location
1596 * would be right before the enclosing kernfs operation returns.
1597 */
kernfs_unbreak_active_protection(struct kernfs_node * kn)1598 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1599 {
1600 /*
1601 * @kn->active could be in any state; however, the increment we do
1602 * here will be undone as soon as the enclosing kernfs operation
1603 * finishes and this temporary bump can't break anything. If @kn
1604 * is alive, nothing changes. If @kn is being deactivated, the
1605 * soon-to-follow put will either finish deactivation or restore
1606 * deactivated state. If @kn is already removed, the temporary
1607 * bump is guaranteed to be gone before @kn is released.
1608 */
1609 atomic_inc(&kn->active);
1610 if (kernfs_lockdep(kn))
1611 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1612 }
1613
1614 /**
1615 * kernfs_remove_self - remove a kernfs_node from its own method
1616 * @kn: the self kernfs_node to remove
1617 *
1618 * The caller must be running off of a kernfs operation which is invoked
1619 * with an active reference - e.g. one of kernfs_ops. This can be used to
1620 * implement a file operation which deletes itself.
1621 *
1622 * For example, the "delete" file for a sysfs device directory can be
1623 * implemented by invoking kernfs_remove_self() on the "delete" file
1624 * itself. This function breaks the circular dependency of trying to
1625 * deactivate self while holding an active ref itself. It isn't necessary
1626 * to modify the usual removal path to use kernfs_remove_self(). The
1627 * "delete" implementation can simply invoke kernfs_remove_self() on self
1628 * before proceeding with the usual removal path. kernfs will ignore later
1629 * kernfs_remove() on self.
1630 *
1631 * kernfs_remove_self() can be called multiple times concurrently on the
1632 * same kernfs_node. Only the first one actually performs removal and
1633 * returns %true. All others will wait until the kernfs operation which
1634 * won self-removal finishes and return %false. Note that the losers wait
1635 * for the completion of not only the winning kernfs_remove_self() but also
1636 * the whole kernfs_ops which won the arbitration. This can be used to
1637 * guarantee, for example, all concurrent writes to a "delete" file to
1638 * finish only after the whole operation is complete.
1639 *
1640 * Return: %true if @kn is removed by this call, otherwise %false.
1641 */
kernfs_remove_self(struct kernfs_node * kn)1642 bool kernfs_remove_self(struct kernfs_node *kn)
1643 {
1644 bool ret;
1645 struct kernfs_root *root = kernfs_root(kn);
1646
1647 down_write(&root->kernfs_rwsem);
1648 kernfs_break_active_protection(kn);
1649
1650 /*
1651 * SUICIDAL is used to arbitrate among competing invocations. Only
1652 * the first one will actually perform removal. When the removal
1653 * is complete, SUICIDED is set and the active ref is restored
1654 * while kernfs_rwsem for held exclusive. The ones which lost
1655 * arbitration waits for SUICIDED && drained which can happen only
1656 * after the enclosing kernfs operation which executed the winning
1657 * instance of kernfs_remove_self() finished.
1658 */
1659 if (!(kn->flags & KERNFS_SUICIDAL)) {
1660 kn->flags |= KERNFS_SUICIDAL;
1661 __kernfs_remove(kn);
1662 kn->flags |= KERNFS_SUICIDED;
1663 ret = true;
1664 } else {
1665 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1666 DEFINE_WAIT(wait);
1667
1668 while (true) {
1669 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1670
1671 if ((kn->flags & KERNFS_SUICIDED) &&
1672 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1673 break;
1674
1675 up_write(&root->kernfs_rwsem);
1676 schedule();
1677 down_write(&root->kernfs_rwsem);
1678 }
1679 finish_wait(waitq, &wait);
1680 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1681 ret = false;
1682 }
1683
1684 /*
1685 * This must be done while kernfs_rwsem held exclusive; otherwise,
1686 * waiting for SUICIDED && deactivated could finish prematurely.
1687 */
1688 kernfs_unbreak_active_protection(kn);
1689
1690 up_write(&root->kernfs_rwsem);
1691 return ret;
1692 }
1693
1694 /**
1695 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1696 * @parent: parent of the target
1697 * @name: name of the kernfs_node to remove
1698 * @ns: namespace tag of the kernfs_node to remove
1699 *
1700 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1701 *
1702 * Return: %0 on success, -ENOENT if such entry doesn't exist.
1703 */
kernfs_remove_by_name_ns(struct kernfs_node * parent,const char * name,const void * ns)1704 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1705 const void *ns)
1706 {
1707 struct kernfs_node *kn;
1708 struct kernfs_root *root;
1709
1710 if (!parent) {
1711 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1712 name);
1713 return -ENOENT;
1714 }
1715
1716 root = kernfs_root(parent);
1717 down_write(&root->kernfs_rwsem);
1718
1719 kn = kernfs_find_ns(parent, name, ns);
1720 if (kn) {
1721 kernfs_get(kn);
1722 __kernfs_remove(kn);
1723 kernfs_put(kn);
1724 }
1725
1726 up_write(&root->kernfs_rwsem);
1727
1728 if (kn)
1729 return 0;
1730 else
1731 return -ENOENT;
1732 }
1733
1734 /**
1735 * kernfs_rename_ns - move and rename a kernfs_node
1736 * @kn: target node
1737 * @new_parent: new parent to put @sd under
1738 * @new_name: new name
1739 * @new_ns: new namespace tag
1740 *
1741 * Return: %0 on success, -errno on failure.
1742 */
kernfs_rename_ns(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name,const void * new_ns)1743 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1744 const char *new_name, const void *new_ns)
1745 {
1746 struct kernfs_node *old_parent;
1747 struct kernfs_root *root;
1748 const char *old_name;
1749 int error;
1750
1751 /* can't move or rename root */
1752 if (!rcu_access_pointer(kn->__parent))
1753 return -EINVAL;
1754
1755 root = kernfs_root(kn);
1756 down_write(&root->kernfs_rwsem);
1757
1758 error = -ENOENT;
1759 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1760 (new_parent->flags & KERNFS_EMPTY_DIR))
1761 goto out;
1762
1763 old_parent = kernfs_parent(kn);
1764 if (root->flags & KERNFS_ROOT_INVARIANT_PARENT) {
1765 error = -EINVAL;
1766 if (WARN_ON_ONCE(old_parent != new_parent))
1767 goto out;
1768 }
1769
1770 error = 0;
1771 old_name = kernfs_rcu_name(kn);
1772 if (!new_name)
1773 new_name = old_name;
1774 if ((old_parent == new_parent) && (kn->ns == new_ns) &&
1775 (strcmp(old_name, new_name) == 0))
1776 goto out; /* nothing to rename */
1777
1778 error = -EEXIST;
1779 if (kernfs_find_ns(new_parent, new_name, new_ns))
1780 goto out;
1781
1782 /* rename kernfs_node */
1783 if (strcmp(old_name, new_name) != 0) {
1784 error = -ENOMEM;
1785 new_name = kstrdup_const(new_name, GFP_KERNEL);
1786 if (!new_name)
1787 goto out;
1788 } else {
1789 new_name = NULL;
1790 }
1791
1792 /*
1793 * Move to the appropriate place in the appropriate directories rbtree.
1794 */
1795 kernfs_unlink_sibling(kn);
1796
1797 /* rename_lock protects ->parent accessors */
1798 if (old_parent != new_parent) {
1799 kernfs_get(new_parent);
1800 write_lock_irq(&root->kernfs_rename_lock);
1801
1802 rcu_assign_pointer(kn->__parent, new_parent);
1803
1804 kn->ns = new_ns;
1805 if (new_name)
1806 rcu_assign_pointer(kn->name, new_name);
1807
1808 write_unlock_irq(&root->kernfs_rename_lock);
1809 kernfs_put(old_parent);
1810 } else {
1811 /* name assignment is RCU protected, parent is the same */
1812 kn->ns = new_ns;
1813 if (new_name)
1814 rcu_assign_pointer(kn->name, new_name);
1815 }
1816
1817 kn->hash = kernfs_name_hash(new_name ?: old_name, kn->ns);
1818 kernfs_link_sibling(kn);
1819
1820 if (new_name && !is_kernel_rodata((unsigned long)old_name))
1821 kfree_rcu_mightsleep(old_name);
1822
1823 error = 0;
1824 out:
1825 up_write(&root->kernfs_rwsem);
1826 return error;
1827 }
1828
kernfs_dir_fop_release(struct inode * inode,struct file * filp)1829 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1830 {
1831 kernfs_put(filp->private_data);
1832 return 0;
1833 }
1834
kernfs_dir_pos(const void * ns,struct kernfs_node * parent,loff_t hash,struct kernfs_node * pos)1835 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1836 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1837 {
1838 if (pos) {
1839 int valid = kernfs_active(pos) &&
1840 rcu_access_pointer(pos->__parent) == parent &&
1841 hash == pos->hash;
1842 kernfs_put(pos);
1843 if (!valid)
1844 pos = NULL;
1845 }
1846 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1847 struct rb_node *node = parent->dir.children.rb_node;
1848 while (node) {
1849 pos = rb_to_kn(node);
1850
1851 if (hash < pos->hash)
1852 node = node->rb_left;
1853 else if (hash > pos->hash)
1854 node = node->rb_right;
1855 else
1856 break;
1857 }
1858 }
1859 /* Skip over entries which are dying/dead or in the wrong namespace */
1860 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1861 struct rb_node *node = rb_next(&pos->rb);
1862 if (!node)
1863 pos = NULL;
1864 else
1865 pos = rb_to_kn(node);
1866 }
1867 return pos;
1868 }
1869
kernfs_dir_next_pos(const void * ns,struct kernfs_node * parent,ino_t ino,struct kernfs_node * pos)1870 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1871 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1872 {
1873 pos = kernfs_dir_pos(ns, parent, ino, pos);
1874 if (pos) {
1875 do {
1876 struct rb_node *node = rb_next(&pos->rb);
1877 if (!node)
1878 pos = NULL;
1879 else
1880 pos = rb_to_kn(node);
1881 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1882 }
1883 return pos;
1884 }
1885
kernfs_fop_readdir(struct file * file,struct dir_context * ctx)1886 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1887 {
1888 struct dentry *dentry = file->f_path.dentry;
1889 struct kernfs_node *parent = kernfs_dentry_node(dentry);
1890 struct kernfs_node *pos = file->private_data;
1891 struct kernfs_root *root;
1892 const void *ns = NULL;
1893
1894 if (!dir_emit_dots(file, ctx))
1895 return 0;
1896
1897 root = kernfs_root(parent);
1898 down_read(&root->kernfs_rwsem);
1899
1900 if (kernfs_ns_enabled(parent))
1901 ns = kernfs_info(dentry->d_sb)->ns;
1902
1903 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1904 pos;
1905 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1906 const char *name = kernfs_rcu_name(pos);
1907 unsigned int type = fs_umode_to_dtype(pos->mode);
1908 int len = strlen(name);
1909 ino_t ino = kernfs_ino(pos);
1910
1911 ctx->pos = pos->hash;
1912 file->private_data = pos;
1913 kernfs_get(pos);
1914
1915 if (!dir_emit(ctx, name, len, ino, type)) {
1916 up_read(&root->kernfs_rwsem);
1917 return 0;
1918 }
1919 }
1920 up_read(&root->kernfs_rwsem);
1921 file->private_data = NULL;
1922 ctx->pos = INT_MAX;
1923 return 0;
1924 }
1925
1926 const struct file_operations kernfs_dir_fops = {
1927 .read = generic_read_dir,
1928 .iterate_shared = kernfs_fop_readdir,
1929 .release = kernfs_dir_fop_release,
1930 .llseek = generic_file_llseek,
1931 };
1932