xref: /linux/fs/kernfs/dir.c (revision 1e5e062ad84c4b700f1a6d51a548c936784f8951)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/dir.c - kernfs directory implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17 
18 #include "kernfs-internal.h"
19 
20 /*
21  * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
22  * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
23  * will perform wakeups when releasing console_sem. Holding rename_lock
24  * will introduce deadlock if the scheduler reads the kernfs_name in the
25  * wakeup path.
26  */
27 static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
28 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by pr_cont_lock */
29 
30 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
31 
__kernfs_active(struct kernfs_node * kn)32 static bool __kernfs_active(struct kernfs_node *kn)
33 {
34 	return atomic_read(&kn->active) >= 0;
35 }
36 
kernfs_active(struct kernfs_node * kn)37 static bool kernfs_active(struct kernfs_node *kn)
38 {
39 	lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem);
40 	return __kernfs_active(kn);
41 }
42 
kernfs_lockdep(struct kernfs_node * kn)43 static bool kernfs_lockdep(struct kernfs_node *kn)
44 {
45 #ifdef CONFIG_DEBUG_LOCK_ALLOC
46 	return kn->flags & KERNFS_LOCKDEP;
47 #else
48 	return false;
49 #endif
50 }
51 
52 /* kernfs_node_depth - compute depth from @from to @to */
kernfs_depth(struct kernfs_node * from,struct kernfs_node * to)53 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
54 {
55 	size_t depth = 0;
56 
57 	while (rcu_dereference(to->__parent) && to != from) {
58 		depth++;
59 		to = rcu_dereference(to->__parent);
60 	}
61 	return depth;
62 }
63 
kernfs_common_ancestor(struct kernfs_node * a,struct kernfs_node * b)64 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
65 						  struct kernfs_node *b)
66 {
67 	size_t da, db;
68 	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
69 
70 	if (ra != rb)
71 		return NULL;
72 
73 	da = kernfs_depth(ra->kn, a);
74 	db = kernfs_depth(rb->kn, b);
75 
76 	while (da > db) {
77 		a = rcu_dereference(a->__parent);
78 		da--;
79 	}
80 	while (db > da) {
81 		b = rcu_dereference(b->__parent);
82 		db--;
83 	}
84 
85 	/* worst case b and a will be the same at root */
86 	while (b != a) {
87 		b = rcu_dereference(b->__parent);
88 		a = rcu_dereference(a->__parent);
89 	}
90 
91 	return a;
92 }
93 
94 /**
95  * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
96  * where kn_from is treated as root of the path.
97  * @kn_from: kernfs node which should be treated as root for the path
98  * @kn_to: kernfs node to which path is needed
99  * @buf: buffer to copy the path into
100  * @buflen: size of @buf
101  *
102  * We need to handle couple of scenarios here:
103  * [1] when @kn_from is an ancestor of @kn_to at some level
104  * kn_from: /n1/n2/n3
105  * kn_to:   /n1/n2/n3/n4/n5
106  * result:  /n4/n5
107  *
108  * [2] when @kn_from is on a different hierarchy and we need to find common
109  * ancestor between @kn_from and @kn_to.
110  * kn_from: /n1/n2/n3/n4
111  * kn_to:   /n1/n2/n5
112  * result:  /../../n5
113  * OR
114  * kn_from: /n1/n2/n3/n4/n5   [depth=5]
115  * kn_to:   /n1/n2/n3         [depth=3]
116  * result:  /../..
117  *
118  * [3] when @kn_to is %NULL result will be "(null)"
119  *
120  * Return: the length of the constructed path.  If the path would have been
121  * greater than @buflen, @buf contains the truncated path with the trailing
122  * '\0'.  On error, -errno is returned.
123  */
kernfs_path_from_node_locked(struct kernfs_node * kn_to,struct kernfs_node * kn_from,char * buf,size_t buflen)124 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
125 					struct kernfs_node *kn_from,
126 					char *buf, size_t buflen)
127 {
128 	struct kernfs_node *kn, *common;
129 	const char parent_str[] = "/..";
130 	size_t depth_from, depth_to, len = 0;
131 	ssize_t copied;
132 	int i, j;
133 
134 	if (!kn_to)
135 		return strscpy(buf, "(null)", buflen);
136 
137 	if (!kn_from)
138 		kn_from = kernfs_root(kn_to)->kn;
139 
140 	if (kn_from == kn_to)
141 		return strscpy(buf, "/", buflen);
142 
143 	common = kernfs_common_ancestor(kn_from, kn_to);
144 	if (WARN_ON(!common))
145 		return -EINVAL;
146 
147 	depth_to = kernfs_depth(common, kn_to);
148 	depth_from = kernfs_depth(common, kn_from);
149 
150 	buf[0] = '\0';
151 
152 	for (i = 0; i < depth_from; i++) {
153 		copied = strscpy(buf + len, parent_str, buflen - len);
154 		if (copied < 0)
155 			return copied;
156 		len += copied;
157 	}
158 
159 	/* Calculate how many bytes we need for the rest */
160 	for (i = depth_to - 1; i >= 0; i--) {
161 		const char *name;
162 
163 		for (kn = kn_to, j = 0; j < i; j++)
164 			kn = rcu_dereference(kn->__parent);
165 
166 		name = rcu_dereference(kn->name);
167 		len += scnprintf(buf + len, buflen - len, "/%s", name);
168 	}
169 
170 	return len;
171 }
172 
173 /**
174  * kernfs_name - obtain the name of a given node
175  * @kn: kernfs_node of interest
176  * @buf: buffer to copy @kn's name into
177  * @buflen: size of @buf
178  *
179  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
180  * similar to strscpy().
181  *
182  * Fills buffer with "(null)" if @kn is %NULL.
183  *
184  * Return: the resulting length of @buf. If @buf isn't long enough,
185  * it's filled up to @buflen-1 and nul terminated, and returns -E2BIG.
186  *
187  * This function can be called from any context.
188  */
kernfs_name(struct kernfs_node * kn,char * buf,size_t buflen)189 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
190 {
191 	struct kernfs_node *kn_parent;
192 
193 	if (!kn)
194 		return strscpy(buf, "(null)", buflen);
195 
196 	guard(rcu)();
197 	/*
198 	 * KERNFS_ROOT_INVARIANT_PARENT is ignored here. The name is RCU freed and
199 	 * the parent is either existing or not.
200 	 */
201 	kn_parent = rcu_dereference(kn->__parent);
202 	return strscpy(buf, kn_parent ? rcu_dereference(kn->name) : "/", buflen);
203 }
204 
205 /**
206  * kernfs_path_from_node - build path of node @to relative to @from.
207  * @from: parent kernfs_node relative to which we need to build the path
208  * @to: kernfs_node of interest
209  * @buf: buffer to copy @to's path into
210  * @buflen: size of @buf
211  *
212  * Builds @to's path relative to @from in @buf. @from and @to must
213  * be on the same kernfs-root. If @from is not parent of @to, then a relative
214  * path (which includes '..'s) as needed to reach from @from to @to is
215  * returned.
216  *
217  * Return: the length of the constructed path.  If the path would have been
218  * greater than @buflen, @buf contains the truncated path with the trailing
219  * '\0'.  On error, -errno is returned.
220  */
kernfs_path_from_node(struct kernfs_node * to,struct kernfs_node * from,char * buf,size_t buflen)221 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
222 			  char *buf, size_t buflen)
223 {
224 	struct kernfs_root *root;
225 
226 	guard(rcu)();
227 	if (to) {
228 		root = kernfs_root(to);
229 		if (!(root->flags & KERNFS_ROOT_INVARIANT_PARENT)) {
230 			guard(read_lock_irqsave)(&root->kernfs_rename_lock);
231 			return kernfs_path_from_node_locked(to, from, buf, buflen);
232 		}
233 	}
234 	return kernfs_path_from_node_locked(to, from, buf, buflen);
235 }
236 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
237 
238 /**
239  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
240  * @kn: kernfs_node of interest
241  *
242  * This function can be called from any context.
243  */
pr_cont_kernfs_name(struct kernfs_node * kn)244 void pr_cont_kernfs_name(struct kernfs_node *kn)
245 {
246 	unsigned long flags;
247 
248 	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
249 
250 	kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
251 	pr_cont("%s", kernfs_pr_cont_buf);
252 
253 	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
254 }
255 
256 /**
257  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
258  * @kn: kernfs_node of interest
259  *
260  * This function can be called from any context.
261  */
pr_cont_kernfs_path(struct kernfs_node * kn)262 void pr_cont_kernfs_path(struct kernfs_node *kn)
263 {
264 	unsigned long flags;
265 	int sz;
266 
267 	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
268 
269 	sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
270 				   sizeof(kernfs_pr_cont_buf));
271 	if (sz < 0) {
272 		if (sz == -E2BIG)
273 			pr_cont("(name too long)");
274 		else
275 			pr_cont("(error)");
276 		goto out;
277 	}
278 
279 	pr_cont("%s", kernfs_pr_cont_buf);
280 
281 out:
282 	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
283 }
284 
285 /**
286  * kernfs_get_parent - determine the parent node and pin it
287  * @kn: kernfs_node of interest
288  *
289  * Determines @kn's parent, pins and returns it.  This function can be
290  * called from any context.
291  *
292  * Return: parent node of @kn
293  */
kernfs_get_parent(struct kernfs_node * kn)294 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
295 {
296 	struct kernfs_node *parent;
297 	struct kernfs_root *root;
298 	unsigned long flags;
299 
300 	root = kernfs_root(kn);
301 	read_lock_irqsave(&root->kernfs_rename_lock, flags);
302 	parent = kernfs_parent(kn);
303 	kernfs_get(parent);
304 	read_unlock_irqrestore(&root->kernfs_rename_lock, flags);
305 
306 	return parent;
307 }
308 
309 /**
310  *	kernfs_name_hash - calculate hash of @ns + @name
311  *	@name: Null terminated string to hash
312  *	@ns:   Namespace tag to hash
313  *
314  *	Return: 31-bit hash of ns + name (so it fits in an off_t)
315  */
kernfs_name_hash(const char * name,const void * ns)316 static unsigned int kernfs_name_hash(const char *name, const void *ns)
317 {
318 	unsigned long hash = init_name_hash(ns);
319 	unsigned int len = strlen(name);
320 	while (len--)
321 		hash = partial_name_hash(*name++, hash);
322 	hash = end_name_hash(hash);
323 	hash &= 0x7fffffffU;
324 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
325 	if (hash < 2)
326 		hash += 2;
327 	if (hash >= INT_MAX)
328 		hash = INT_MAX - 1;
329 	return hash;
330 }
331 
kernfs_name_compare(unsigned int hash,const char * name,const void * ns,const struct kernfs_node * kn)332 static int kernfs_name_compare(unsigned int hash, const char *name,
333 			       const void *ns, const struct kernfs_node *kn)
334 {
335 	if (hash < kn->hash)
336 		return -1;
337 	if (hash > kn->hash)
338 		return 1;
339 	if (ns < kn->ns)
340 		return -1;
341 	if (ns > kn->ns)
342 		return 1;
343 	return strcmp(name, kernfs_rcu_name(kn));
344 }
345 
kernfs_sd_compare(const struct kernfs_node * left,const struct kernfs_node * right)346 static int kernfs_sd_compare(const struct kernfs_node *left,
347 			     const struct kernfs_node *right)
348 {
349 	return kernfs_name_compare(left->hash, kernfs_rcu_name(left), left->ns, right);
350 }
351 
352 /**
353  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
354  *	@kn: kernfs_node of interest
355  *
356  *	Link @kn into its sibling rbtree which starts from
357  *	@kn->parent->dir.children.
358  *
359  *	Locking:
360  *	kernfs_rwsem held exclusive
361  *
362  *	Return:
363  *	%0 on success, -EEXIST on failure.
364  */
kernfs_link_sibling(struct kernfs_node * kn)365 static int kernfs_link_sibling(struct kernfs_node *kn)
366 {
367 	struct rb_node *parent = NULL;
368 	struct kernfs_node *kn_parent;
369 	struct rb_node **node;
370 
371 	kn_parent = kernfs_parent(kn);
372 	node = &kn_parent->dir.children.rb_node;
373 
374 	while (*node) {
375 		struct kernfs_node *pos;
376 		int result;
377 
378 		pos = rb_to_kn(*node);
379 		parent = *node;
380 		result = kernfs_sd_compare(kn, pos);
381 		if (result < 0)
382 			node = &pos->rb.rb_left;
383 		else if (result > 0)
384 			node = &pos->rb.rb_right;
385 		else
386 			return -EEXIST;
387 	}
388 
389 	/* add new node and rebalance the tree */
390 	rb_link_node(&kn->rb, parent, node);
391 	rb_insert_color(&kn->rb, &kn_parent->dir.children);
392 
393 	/* successfully added, account subdir number */
394 	down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
395 	if (kernfs_type(kn) == KERNFS_DIR)
396 		kn_parent->dir.subdirs++;
397 	kernfs_inc_rev(kn_parent);
398 	up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
399 
400 	return 0;
401 }
402 
403 /**
404  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
405  *	@kn: kernfs_node of interest
406  *
407  *	Try to unlink @kn from its sibling rbtree which starts from
408  *	kn->parent->dir.children.
409  *
410  *	Return: %true if @kn was actually removed,
411  *	%false if @kn wasn't on the rbtree.
412  *
413  *	Locking:
414  *	kernfs_rwsem held exclusive
415  */
kernfs_unlink_sibling(struct kernfs_node * kn)416 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
417 {
418 	struct kernfs_node *kn_parent;
419 
420 	if (RB_EMPTY_NODE(&kn->rb))
421 		return false;
422 
423 	kn_parent = kernfs_parent(kn);
424 	down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
425 	if (kernfs_type(kn) == KERNFS_DIR)
426 		kn_parent->dir.subdirs--;
427 	kernfs_inc_rev(kn_parent);
428 	up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
429 
430 	rb_erase(&kn->rb, &kn_parent->dir.children);
431 	RB_CLEAR_NODE(&kn->rb);
432 	return true;
433 }
434 
435 /**
436  *	kernfs_get_active - get an active reference to kernfs_node
437  *	@kn: kernfs_node to get an active reference to
438  *
439  *	Get an active reference of @kn.  This function is noop if @kn
440  *	is %NULL.
441  *
442  *	Return:
443  *	Pointer to @kn on success, %NULL on failure.
444  */
kernfs_get_active(struct kernfs_node * kn)445 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
446 {
447 	if (unlikely(!kn))
448 		return NULL;
449 
450 	if (!atomic_inc_unless_negative(&kn->active))
451 		return NULL;
452 
453 	if (kernfs_lockdep(kn))
454 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
455 	return kn;
456 }
457 
458 /**
459  *	kernfs_put_active - put an active reference to kernfs_node
460  *	@kn: kernfs_node to put an active reference to
461  *
462  *	Put an active reference to @kn.  This function is noop if @kn
463  *	is %NULL.
464  */
kernfs_put_active(struct kernfs_node * kn)465 void kernfs_put_active(struct kernfs_node *kn)
466 {
467 	int v;
468 
469 	if (unlikely(!kn))
470 		return;
471 
472 	if (kernfs_lockdep(kn))
473 		rwsem_release(&kn->dep_map, _RET_IP_);
474 	v = atomic_dec_return(&kn->active);
475 	if (likely(v != KN_DEACTIVATED_BIAS))
476 		return;
477 
478 	wake_up_all(&kernfs_root(kn)->deactivate_waitq);
479 }
480 
481 /**
482  * kernfs_drain - drain kernfs_node
483  * @kn: kernfs_node to drain
484  *
485  * Drain existing usages and nuke all existing mmaps of @kn.  Multiple
486  * removers may invoke this function concurrently on @kn and all will
487  * return after draining is complete.
488  */
kernfs_drain(struct kernfs_node * kn)489 static void kernfs_drain(struct kernfs_node *kn)
490 	__releases(&kernfs_root(kn)->kernfs_rwsem)
491 	__acquires(&kernfs_root(kn)->kernfs_rwsem)
492 {
493 	struct kernfs_root *root = kernfs_root(kn);
494 
495 	lockdep_assert_held_write(&root->kernfs_rwsem);
496 	WARN_ON_ONCE(kernfs_active(kn));
497 
498 	/*
499 	 * Skip draining if already fully drained. This avoids draining and its
500 	 * lockdep annotations for nodes which have never been activated
501 	 * allowing embedding kernfs_remove() in create error paths without
502 	 * worrying about draining.
503 	 */
504 	if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS &&
505 	    !kernfs_should_drain_open_files(kn))
506 		return;
507 
508 	up_write(&root->kernfs_rwsem);
509 
510 	if (kernfs_lockdep(kn)) {
511 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
512 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
513 			lock_contended(&kn->dep_map, _RET_IP_);
514 	}
515 
516 	wait_event(root->deactivate_waitq,
517 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
518 
519 	if (kernfs_lockdep(kn)) {
520 		lock_acquired(&kn->dep_map, _RET_IP_);
521 		rwsem_release(&kn->dep_map, _RET_IP_);
522 	}
523 
524 	if (kernfs_should_drain_open_files(kn))
525 		kernfs_drain_open_files(kn);
526 
527 	down_write(&root->kernfs_rwsem);
528 }
529 
530 /**
531  * kernfs_get - get a reference count on a kernfs_node
532  * @kn: the target kernfs_node
533  */
kernfs_get(struct kernfs_node * kn)534 void kernfs_get(struct kernfs_node *kn)
535 {
536 	if (kn) {
537 		WARN_ON(!atomic_read(&kn->count));
538 		atomic_inc(&kn->count);
539 	}
540 }
541 EXPORT_SYMBOL_GPL(kernfs_get);
542 
kernfs_free_rcu(struct rcu_head * rcu)543 static void kernfs_free_rcu(struct rcu_head *rcu)
544 {
545 	struct kernfs_node *kn = container_of(rcu, struct kernfs_node, rcu);
546 
547 	/* If the whole node goes away, then name can't be used outside */
548 	kfree_const(rcu_access_pointer(kn->name));
549 
550 	if (kn->iattr) {
551 		simple_xattrs_free(&kn->iattr->xattrs, NULL);
552 		kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
553 	}
554 
555 	kmem_cache_free(kernfs_node_cache, kn);
556 }
557 
558 /**
559  * kernfs_put - put a reference count on a kernfs_node
560  * @kn: the target kernfs_node
561  *
562  * Put a reference count of @kn and destroy it if it reached zero.
563  */
kernfs_put(struct kernfs_node * kn)564 void kernfs_put(struct kernfs_node *kn)
565 {
566 	struct kernfs_node *parent;
567 	struct kernfs_root *root;
568 
569 	if (!kn || !atomic_dec_and_test(&kn->count))
570 		return;
571 	root = kernfs_root(kn);
572  repeat:
573 	/*
574 	 * Moving/renaming is always done while holding reference.
575 	 * kn->parent won't change beneath us.
576 	 */
577 	parent = kernfs_parent(kn);
578 
579 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
580 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
581 		  parent ? rcu_dereference(parent->name) : "",
582 		  rcu_dereference(kn->name), atomic_read(&kn->active));
583 
584 	if (kernfs_type(kn) == KERNFS_LINK)
585 		kernfs_put(kn->symlink.target_kn);
586 
587 	spin_lock(&root->kernfs_idr_lock);
588 	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
589 	spin_unlock(&root->kernfs_idr_lock);
590 
591 	call_rcu(&kn->rcu, kernfs_free_rcu);
592 
593 	kn = parent;
594 	if (kn) {
595 		if (atomic_dec_and_test(&kn->count))
596 			goto repeat;
597 	} else {
598 		/* just released the root kn, free @root too */
599 		idr_destroy(&root->ino_idr);
600 		kfree_rcu(root, rcu);
601 	}
602 }
603 EXPORT_SYMBOL_GPL(kernfs_put);
604 
605 /**
606  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
607  * @dentry: the dentry in question
608  *
609  * Return: the kernfs_node associated with @dentry.  If @dentry is not a
610  * kernfs one, %NULL is returned.
611  *
612  * While the returned kernfs_node will stay accessible as long as @dentry
613  * is accessible, the returned node can be in any state and the caller is
614  * fully responsible for determining what's accessible.
615  */
kernfs_node_from_dentry(struct dentry * dentry)616 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
617 {
618 	if (dentry->d_sb->s_op == &kernfs_sops)
619 		return kernfs_dentry_node(dentry);
620 	return NULL;
621 }
622 
__kernfs_new_node(struct kernfs_root * root,struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)623 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
624 					     struct kernfs_node *parent,
625 					     const char *name, umode_t mode,
626 					     kuid_t uid, kgid_t gid,
627 					     unsigned flags)
628 {
629 	struct kernfs_node *kn;
630 	u32 id_highbits;
631 	int ret;
632 
633 	name = kstrdup_const(name, GFP_KERNEL);
634 	if (!name)
635 		return NULL;
636 
637 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
638 	if (!kn)
639 		goto err_out1;
640 
641 	idr_preload(GFP_KERNEL);
642 	spin_lock(&root->kernfs_idr_lock);
643 	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
644 	if (ret >= 0 && ret < root->last_id_lowbits)
645 		root->id_highbits++;
646 	id_highbits = root->id_highbits;
647 	root->last_id_lowbits = ret;
648 	spin_unlock(&root->kernfs_idr_lock);
649 	idr_preload_end();
650 	if (ret < 0)
651 		goto err_out2;
652 
653 	kn->id = (u64)id_highbits << 32 | ret;
654 
655 	atomic_set(&kn->count, 1);
656 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
657 	RB_CLEAR_NODE(&kn->rb);
658 
659 	rcu_assign_pointer(kn->name, name);
660 	kn->mode = mode;
661 	kn->flags = flags;
662 
663 	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
664 		struct iattr iattr = {
665 			.ia_valid = ATTR_UID | ATTR_GID,
666 			.ia_uid = uid,
667 			.ia_gid = gid,
668 		};
669 
670 		ret = __kernfs_setattr(kn, &iattr);
671 		if (ret < 0)
672 			goto err_out3;
673 	}
674 
675 	if (parent) {
676 		ret = security_kernfs_init_security(parent, kn);
677 		if (ret)
678 			goto err_out4;
679 	}
680 
681 	return kn;
682 
683  err_out4:
684 	if (kn->iattr) {
685 		simple_xattrs_free(&kn->iattr->xattrs, NULL);
686 		kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
687 	}
688  err_out3:
689 	spin_lock(&root->kernfs_idr_lock);
690 	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
691 	spin_unlock(&root->kernfs_idr_lock);
692  err_out2:
693 	kmem_cache_free(kernfs_node_cache, kn);
694  err_out1:
695 	kfree_const(name);
696 	return NULL;
697 }
698 
kernfs_new_node(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)699 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
700 				    const char *name, umode_t mode,
701 				    kuid_t uid, kgid_t gid,
702 				    unsigned flags)
703 {
704 	struct kernfs_node *kn;
705 
706 	if (parent->mode & S_ISGID) {
707 		/* this code block imitates inode_init_owner() for
708 		 * kernfs
709 		 */
710 
711 		if (parent->iattr)
712 			gid = parent->iattr->ia_gid;
713 
714 		if (flags & KERNFS_DIR)
715 			mode |= S_ISGID;
716 	}
717 
718 	kn = __kernfs_new_node(kernfs_root(parent), parent,
719 			       name, mode, uid, gid, flags);
720 	if (kn) {
721 		kernfs_get(parent);
722 		rcu_assign_pointer(kn->__parent, parent);
723 	}
724 	return kn;
725 }
726 
727 /*
728  * kernfs_find_and_get_node_by_id - get kernfs_node from node id
729  * @root: the kernfs root
730  * @id: the target node id
731  *
732  * @id's lower 32bits encode ino and upper gen.  If the gen portion is
733  * zero, all generations are matched.
734  *
735  * Return: %NULL on failure,
736  * otherwise a kernfs node with reference counter incremented.
737  */
kernfs_find_and_get_node_by_id(struct kernfs_root * root,u64 id)738 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
739 						   u64 id)
740 {
741 	struct kernfs_node *kn;
742 	ino_t ino = kernfs_id_ino(id);
743 	u32 gen = kernfs_id_gen(id);
744 
745 	rcu_read_lock();
746 
747 	kn = idr_find(&root->ino_idr, (u32)ino);
748 	if (!kn)
749 		goto err_unlock;
750 
751 	if (sizeof(ino_t) >= sizeof(u64)) {
752 		/* we looked up with the low 32bits, compare the whole */
753 		if (kernfs_ino(kn) != ino)
754 			goto err_unlock;
755 	} else {
756 		/* 0 matches all generations */
757 		if (unlikely(gen && kernfs_gen(kn) != gen))
758 			goto err_unlock;
759 	}
760 
761 	/*
762 	 * We should fail if @kn has never been activated and guarantee success
763 	 * if the caller knows that @kn is active. Both can be achieved by
764 	 * __kernfs_active() which tests @kn->active without kernfs_rwsem.
765 	 */
766 	if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count)))
767 		goto err_unlock;
768 
769 	rcu_read_unlock();
770 	return kn;
771 err_unlock:
772 	rcu_read_unlock();
773 	return NULL;
774 }
775 
776 /**
777  *	kernfs_add_one - add kernfs_node to parent without warning
778  *	@kn: kernfs_node to be added
779  *
780  *	The caller must already have initialized @kn->parent.  This
781  *	function increments nlink of the parent's inode if @kn is a
782  *	directory and link into the children list of the parent.
783  *
784  *	Return:
785  *	%0 on success, -EEXIST if entry with the given name already
786  *	exists.
787  */
kernfs_add_one(struct kernfs_node * kn)788 int kernfs_add_one(struct kernfs_node *kn)
789 {
790 	struct kernfs_root *root = kernfs_root(kn);
791 	struct kernfs_iattrs *ps_iattr;
792 	struct kernfs_node *parent;
793 	bool has_ns;
794 	int ret;
795 
796 	down_write(&root->kernfs_rwsem);
797 	parent = kernfs_parent(kn);
798 
799 	ret = -EINVAL;
800 	has_ns = kernfs_ns_enabled(parent);
801 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
802 		 has_ns ? "required" : "invalid",
803 		 kernfs_rcu_name(parent), kernfs_rcu_name(kn)))
804 		goto out_unlock;
805 
806 	if (kernfs_type(parent) != KERNFS_DIR)
807 		goto out_unlock;
808 
809 	ret = -ENOENT;
810 	if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR))
811 		goto out_unlock;
812 
813 	kn->hash = kernfs_name_hash(kernfs_rcu_name(kn), kn->ns);
814 
815 	ret = kernfs_link_sibling(kn);
816 	if (ret)
817 		goto out_unlock;
818 
819 	/* Update timestamps on the parent */
820 	down_write(&root->kernfs_iattr_rwsem);
821 
822 	ps_iattr = parent->iattr;
823 	if (ps_iattr) {
824 		ktime_get_real_ts64(&ps_iattr->ia_ctime);
825 		ps_iattr->ia_mtime = ps_iattr->ia_ctime;
826 	}
827 
828 	up_write(&root->kernfs_iattr_rwsem);
829 	up_write(&root->kernfs_rwsem);
830 
831 	/*
832 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
833 	 * If not activated here, the kernfs user is responsible for
834 	 * activating the node with kernfs_activate().  A node which hasn't
835 	 * been activated is not visible to userland and its removal won't
836 	 * trigger deactivation.
837 	 */
838 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
839 		kernfs_activate(kn);
840 	return 0;
841 
842 out_unlock:
843 	up_write(&root->kernfs_rwsem);
844 	return ret;
845 }
846 
847 /**
848  * kernfs_find_ns - find kernfs_node with the given name
849  * @parent: kernfs_node to search under
850  * @name: name to look for
851  * @ns: the namespace tag to use
852  *
853  * Look for kernfs_node with name @name under @parent.
854  *
855  * Return: pointer to the found kernfs_node on success, %NULL on failure.
856  */
kernfs_find_ns(struct kernfs_node * parent,const unsigned char * name,const void * ns)857 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
858 					  const unsigned char *name,
859 					  const void *ns)
860 {
861 	struct rb_node *node = parent->dir.children.rb_node;
862 	bool has_ns = kernfs_ns_enabled(parent);
863 	unsigned int hash;
864 
865 	lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem);
866 
867 	if (has_ns != (bool)ns) {
868 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
869 		     has_ns ? "required" : "invalid", kernfs_rcu_name(parent), name);
870 		return NULL;
871 	}
872 
873 	hash = kernfs_name_hash(name, ns);
874 	while (node) {
875 		struct kernfs_node *kn;
876 		int result;
877 
878 		kn = rb_to_kn(node);
879 		result = kernfs_name_compare(hash, name, ns, kn);
880 		if (result < 0)
881 			node = node->rb_left;
882 		else if (result > 0)
883 			node = node->rb_right;
884 		else
885 			return kn;
886 	}
887 	return NULL;
888 }
889 
kernfs_walk_ns(struct kernfs_node * parent,const unsigned char * path,const void * ns)890 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
891 					  const unsigned char *path,
892 					  const void *ns)
893 {
894 	ssize_t len;
895 	char *p, *name;
896 
897 	lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem);
898 
899 	spin_lock_irq(&kernfs_pr_cont_lock);
900 
901 	len = strscpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
902 
903 	if (len < 0) {
904 		spin_unlock_irq(&kernfs_pr_cont_lock);
905 		return NULL;
906 	}
907 
908 	p = kernfs_pr_cont_buf;
909 
910 	while ((name = strsep(&p, "/")) && parent) {
911 		if (*name == '\0')
912 			continue;
913 		parent = kernfs_find_ns(parent, name, ns);
914 	}
915 
916 	spin_unlock_irq(&kernfs_pr_cont_lock);
917 
918 	return parent;
919 }
920 
921 /**
922  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
923  * @parent: kernfs_node to search under
924  * @name: name to look for
925  * @ns: the namespace tag to use
926  *
927  * Look for kernfs_node with name @name under @parent and get a reference
928  * if found.  This function may sleep.
929  *
930  * Return: pointer to the found kernfs_node on success, %NULL on failure.
931  */
kernfs_find_and_get_ns(struct kernfs_node * parent,const char * name,const void * ns)932 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
933 					   const char *name, const void *ns)
934 {
935 	struct kernfs_node *kn;
936 	struct kernfs_root *root = kernfs_root(parent);
937 
938 	down_read(&root->kernfs_rwsem);
939 	kn = kernfs_find_ns(parent, name, ns);
940 	kernfs_get(kn);
941 	up_read(&root->kernfs_rwsem);
942 
943 	return kn;
944 }
945 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
946 
947 /**
948  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
949  * @parent: kernfs_node to search under
950  * @path: path to look for
951  * @ns: the namespace tag to use
952  *
953  * Look for kernfs_node with path @path under @parent and get a reference
954  * if found.  This function may sleep.
955  *
956  * Return: pointer to the found kernfs_node on success, %NULL on failure.
957  */
kernfs_walk_and_get_ns(struct kernfs_node * parent,const char * path,const void * ns)958 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
959 					   const char *path, const void *ns)
960 {
961 	struct kernfs_node *kn;
962 	struct kernfs_root *root = kernfs_root(parent);
963 
964 	down_read(&root->kernfs_rwsem);
965 	kn = kernfs_walk_ns(parent, path, ns);
966 	kernfs_get(kn);
967 	up_read(&root->kernfs_rwsem);
968 
969 	return kn;
970 }
971 
kernfs_root_flags(struct kernfs_node * kn)972 unsigned int kernfs_root_flags(struct kernfs_node *kn)
973 {
974 	return kernfs_root(kn)->flags;
975 }
976 
977 /**
978  * kernfs_create_root - create a new kernfs hierarchy
979  * @scops: optional syscall operations for the hierarchy
980  * @flags: KERNFS_ROOT_* flags
981  * @priv: opaque data associated with the new directory
982  *
983  * Return: the root of the new hierarchy on success, ERR_PTR() value on
984  * failure.
985  */
kernfs_create_root(struct kernfs_syscall_ops * scops,unsigned int flags,void * priv)986 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
987 				       unsigned int flags, void *priv)
988 {
989 	struct kernfs_root *root;
990 	struct kernfs_node *kn;
991 
992 	root = kzalloc(sizeof(*root), GFP_KERNEL);
993 	if (!root)
994 		return ERR_PTR(-ENOMEM);
995 
996 	idr_init(&root->ino_idr);
997 	spin_lock_init(&root->kernfs_idr_lock);
998 	init_rwsem(&root->kernfs_rwsem);
999 	init_rwsem(&root->kernfs_iattr_rwsem);
1000 	init_rwsem(&root->kernfs_supers_rwsem);
1001 	INIT_LIST_HEAD(&root->supers);
1002 	rwlock_init(&root->kernfs_rename_lock);
1003 
1004 	/*
1005 	 * On 64bit ino setups, id is ino.  On 32bit, low 32bits are ino.
1006 	 * High bits generation.  The starting value for both ino and
1007 	 * genenration is 1.  Initialize upper 32bit allocation
1008 	 * accordingly.
1009 	 */
1010 	if (sizeof(ino_t) >= sizeof(u64))
1011 		root->id_highbits = 0;
1012 	else
1013 		root->id_highbits = 1;
1014 
1015 	kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
1016 			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
1017 			       KERNFS_DIR);
1018 	if (!kn) {
1019 		idr_destroy(&root->ino_idr);
1020 		kfree(root);
1021 		return ERR_PTR(-ENOMEM);
1022 	}
1023 
1024 	kn->priv = priv;
1025 	kn->dir.root = root;
1026 
1027 	root->syscall_ops = scops;
1028 	root->flags = flags;
1029 	root->kn = kn;
1030 	init_waitqueue_head(&root->deactivate_waitq);
1031 
1032 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
1033 		kernfs_activate(kn);
1034 
1035 	return root;
1036 }
1037 
1038 /**
1039  * kernfs_destroy_root - destroy a kernfs hierarchy
1040  * @root: root of the hierarchy to destroy
1041  *
1042  * Destroy the hierarchy anchored at @root by removing all existing
1043  * directories and destroying @root.
1044  */
kernfs_destroy_root(struct kernfs_root * root)1045 void kernfs_destroy_root(struct kernfs_root *root)
1046 {
1047 	/*
1048 	 *  kernfs_remove holds kernfs_rwsem from the root so the root
1049 	 *  shouldn't be freed during the operation.
1050 	 */
1051 	kernfs_get(root->kn);
1052 	kernfs_remove(root->kn);
1053 	kernfs_put(root->kn); /* will also free @root */
1054 }
1055 
1056 /**
1057  * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root
1058  * @root: root to use to lookup
1059  *
1060  * Return: @root's kernfs_node
1061  */
kernfs_root_to_node(struct kernfs_root * root)1062 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root)
1063 {
1064 	return root->kn;
1065 }
1066 
1067 /**
1068  * kernfs_create_dir_ns - create a directory
1069  * @parent: parent in which to create a new directory
1070  * @name: name of the new directory
1071  * @mode: mode of the new directory
1072  * @uid: uid of the new directory
1073  * @gid: gid of the new directory
1074  * @priv: opaque data associated with the new directory
1075  * @ns: optional namespace tag of the directory
1076  *
1077  * Return: the created node on success, ERR_PTR() value on failure.
1078  */
kernfs_create_dir_ns(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,void * priv,const void * ns)1079 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1080 					 const char *name, umode_t mode,
1081 					 kuid_t uid, kgid_t gid,
1082 					 void *priv, const void *ns)
1083 {
1084 	struct kernfs_node *kn;
1085 	int rc;
1086 
1087 	/* allocate */
1088 	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1089 			     uid, gid, KERNFS_DIR);
1090 	if (!kn)
1091 		return ERR_PTR(-ENOMEM);
1092 
1093 	kn->dir.root = parent->dir.root;
1094 	kn->ns = ns;
1095 	kn->priv = priv;
1096 
1097 	/* link in */
1098 	rc = kernfs_add_one(kn);
1099 	if (!rc)
1100 		return kn;
1101 
1102 	kernfs_put(kn);
1103 	return ERR_PTR(rc);
1104 }
1105 
1106 /**
1107  * kernfs_create_empty_dir - create an always empty directory
1108  * @parent: parent in which to create a new directory
1109  * @name: name of the new directory
1110  *
1111  * Return: the created node on success, ERR_PTR() value on failure.
1112  */
kernfs_create_empty_dir(struct kernfs_node * parent,const char * name)1113 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1114 					    const char *name)
1115 {
1116 	struct kernfs_node *kn;
1117 	int rc;
1118 
1119 	/* allocate */
1120 	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1121 			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1122 	if (!kn)
1123 		return ERR_PTR(-ENOMEM);
1124 
1125 	kn->flags |= KERNFS_EMPTY_DIR;
1126 	kn->dir.root = parent->dir.root;
1127 	kn->ns = NULL;
1128 	kn->priv = NULL;
1129 
1130 	/* link in */
1131 	rc = kernfs_add_one(kn);
1132 	if (!rc)
1133 		return kn;
1134 
1135 	kernfs_put(kn);
1136 	return ERR_PTR(rc);
1137 }
1138 
kernfs_dop_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)1139 static int kernfs_dop_revalidate(struct inode *dir, const struct qstr *name,
1140 				 struct dentry *dentry, unsigned int flags)
1141 {
1142 	struct kernfs_node *kn, *parent;
1143 	struct kernfs_root *root;
1144 
1145 	if (flags & LOOKUP_RCU)
1146 		return -ECHILD;
1147 
1148 	/* Negative hashed dentry? */
1149 	if (d_really_is_negative(dentry)) {
1150 		/* If the kernfs parent node has changed discard and
1151 		 * proceed to ->lookup.
1152 		 *
1153 		 * There's nothing special needed here when getting the
1154 		 * dentry parent, even if a concurrent rename is in
1155 		 * progress. That's because the dentry is negative so
1156 		 * it can only be the target of the rename and it will
1157 		 * be doing a d_move() not a replace. Consequently the
1158 		 * dentry d_parent won't change over the d_move().
1159 		 *
1160 		 * Also kernfs negative dentries transitioning from
1161 		 * negative to positive during revalidate won't happen
1162 		 * because they are invalidated on containing directory
1163 		 * changes and the lookup re-done so that a new positive
1164 		 * dentry can be properly created.
1165 		 */
1166 		root = kernfs_root_from_sb(dentry->d_sb);
1167 		down_read(&root->kernfs_rwsem);
1168 		parent = kernfs_dentry_node(dentry->d_parent);
1169 		if (parent) {
1170 			if (kernfs_dir_changed(parent, dentry)) {
1171 				up_read(&root->kernfs_rwsem);
1172 				return 0;
1173 			}
1174 		}
1175 		up_read(&root->kernfs_rwsem);
1176 
1177 		/* The kernfs parent node hasn't changed, leave the
1178 		 * dentry negative and return success.
1179 		 */
1180 		return 1;
1181 	}
1182 
1183 	kn = kernfs_dentry_node(dentry);
1184 	root = kernfs_root(kn);
1185 	down_read(&root->kernfs_rwsem);
1186 
1187 	/* The kernfs node has been deactivated */
1188 	if (!kernfs_active(kn))
1189 		goto out_bad;
1190 
1191 	parent = kernfs_parent(kn);
1192 	/* The kernfs node has been moved? */
1193 	if (kernfs_dentry_node(dentry->d_parent) != parent)
1194 		goto out_bad;
1195 
1196 	/* The kernfs node has been renamed */
1197 	if (strcmp(dentry->d_name.name, kernfs_rcu_name(kn)) != 0)
1198 		goto out_bad;
1199 
1200 	/* The kernfs node has been moved to a different namespace */
1201 	if (parent && kernfs_ns_enabled(parent) &&
1202 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
1203 		goto out_bad;
1204 
1205 	up_read(&root->kernfs_rwsem);
1206 	return 1;
1207 out_bad:
1208 	up_read(&root->kernfs_rwsem);
1209 	return 0;
1210 }
1211 
1212 const struct dentry_operations kernfs_dops = {
1213 	.d_revalidate	= kernfs_dop_revalidate,
1214 };
1215 
kernfs_iop_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1216 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1217 					struct dentry *dentry,
1218 					unsigned int flags)
1219 {
1220 	struct kernfs_node *parent = dir->i_private;
1221 	struct kernfs_node *kn;
1222 	struct kernfs_root *root;
1223 	struct inode *inode = NULL;
1224 	const void *ns = NULL;
1225 
1226 	root = kernfs_root(parent);
1227 	down_read(&root->kernfs_rwsem);
1228 	if (kernfs_ns_enabled(parent))
1229 		ns = kernfs_info(dir->i_sb)->ns;
1230 
1231 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1232 	/* attach dentry and inode */
1233 	if (kn) {
1234 		/* Inactive nodes are invisible to the VFS so don't
1235 		 * create a negative.
1236 		 */
1237 		if (!kernfs_active(kn)) {
1238 			up_read(&root->kernfs_rwsem);
1239 			return NULL;
1240 		}
1241 		inode = kernfs_get_inode(dir->i_sb, kn);
1242 		if (!inode)
1243 			inode = ERR_PTR(-ENOMEM);
1244 	}
1245 	/*
1246 	 * Needed for negative dentry validation.
1247 	 * The negative dentry can be created in kernfs_iop_lookup()
1248 	 * or transforms from positive dentry in dentry_unlink_inode()
1249 	 * called from vfs_rmdir().
1250 	 */
1251 	if (!IS_ERR(inode))
1252 		kernfs_set_rev(parent, dentry);
1253 	up_read(&root->kernfs_rwsem);
1254 
1255 	/* instantiate and hash (possibly negative) dentry */
1256 	return d_splice_alias(inode, dentry);
1257 }
1258 
kernfs_iop_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)1259 static struct dentry *kernfs_iop_mkdir(struct mnt_idmap *idmap,
1260 				       struct inode *dir, struct dentry *dentry,
1261 				       umode_t mode)
1262 {
1263 	struct kernfs_node *parent = dir->i_private;
1264 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1265 	int ret;
1266 
1267 	if (!scops || !scops->mkdir)
1268 		return ERR_PTR(-EPERM);
1269 
1270 	if (!kernfs_get_active(parent))
1271 		return ERR_PTR(-ENODEV);
1272 
1273 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1274 
1275 	kernfs_put_active(parent);
1276 	return ERR_PTR(ret);
1277 }
1278 
kernfs_iop_rmdir(struct inode * dir,struct dentry * dentry)1279 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1280 {
1281 	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1282 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1283 	int ret;
1284 
1285 	if (!scops || !scops->rmdir)
1286 		return -EPERM;
1287 
1288 	if (!kernfs_get_active(kn))
1289 		return -ENODEV;
1290 
1291 	ret = scops->rmdir(kn);
1292 
1293 	kernfs_put_active(kn);
1294 	return ret;
1295 }
1296 
kernfs_iop_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1297 static int kernfs_iop_rename(struct mnt_idmap *idmap,
1298 			     struct inode *old_dir, struct dentry *old_dentry,
1299 			     struct inode *new_dir, struct dentry *new_dentry,
1300 			     unsigned int flags)
1301 {
1302 	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1303 	struct kernfs_node *new_parent = new_dir->i_private;
1304 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1305 	int ret;
1306 
1307 	if (flags)
1308 		return -EINVAL;
1309 
1310 	if (!scops || !scops->rename)
1311 		return -EPERM;
1312 
1313 	if (!kernfs_get_active(kn))
1314 		return -ENODEV;
1315 
1316 	if (!kernfs_get_active(new_parent)) {
1317 		kernfs_put_active(kn);
1318 		return -ENODEV;
1319 	}
1320 
1321 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1322 
1323 	kernfs_put_active(new_parent);
1324 	kernfs_put_active(kn);
1325 	return ret;
1326 }
1327 
1328 const struct inode_operations kernfs_dir_iops = {
1329 	.lookup		= kernfs_iop_lookup,
1330 	.permission	= kernfs_iop_permission,
1331 	.setattr	= kernfs_iop_setattr,
1332 	.getattr	= kernfs_iop_getattr,
1333 	.listxattr	= kernfs_iop_listxattr,
1334 
1335 	.mkdir		= kernfs_iop_mkdir,
1336 	.rmdir		= kernfs_iop_rmdir,
1337 	.rename		= kernfs_iop_rename,
1338 };
1339 
kernfs_leftmost_descendant(struct kernfs_node * pos)1340 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1341 {
1342 	struct kernfs_node *last;
1343 
1344 	while (true) {
1345 		struct rb_node *rbn;
1346 
1347 		last = pos;
1348 
1349 		if (kernfs_type(pos) != KERNFS_DIR)
1350 			break;
1351 
1352 		rbn = rb_first(&pos->dir.children);
1353 		if (!rbn)
1354 			break;
1355 
1356 		pos = rb_to_kn(rbn);
1357 	}
1358 
1359 	return last;
1360 }
1361 
1362 /**
1363  * kernfs_next_descendant_post - find the next descendant for post-order walk
1364  * @pos: the current position (%NULL to initiate traversal)
1365  * @root: kernfs_node whose descendants to walk
1366  *
1367  * Find the next descendant to visit for post-order traversal of @root's
1368  * descendants.  @root is included in the iteration and the last node to be
1369  * visited.
1370  *
1371  * Return: the next descendant to visit or %NULL when done.
1372  */
kernfs_next_descendant_post(struct kernfs_node * pos,struct kernfs_node * root)1373 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1374 						       struct kernfs_node *root)
1375 {
1376 	struct rb_node *rbn;
1377 
1378 	lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem);
1379 
1380 	/* if first iteration, visit leftmost descendant which may be root */
1381 	if (!pos)
1382 		return kernfs_leftmost_descendant(root);
1383 
1384 	/* if we visited @root, we're done */
1385 	if (pos == root)
1386 		return NULL;
1387 
1388 	/* if there's an unvisited sibling, visit its leftmost descendant */
1389 	rbn = rb_next(&pos->rb);
1390 	if (rbn)
1391 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1392 
1393 	/* no sibling left, visit parent */
1394 	return kernfs_parent(pos);
1395 }
1396 
kernfs_activate_one(struct kernfs_node * kn)1397 static void kernfs_activate_one(struct kernfs_node *kn)
1398 {
1399 	lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1400 
1401 	kn->flags |= KERNFS_ACTIVATED;
1402 
1403 	if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING)))
1404 		return;
1405 
1406 	WARN_ON_ONCE(rcu_access_pointer(kn->__parent) && RB_EMPTY_NODE(&kn->rb));
1407 	WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1408 
1409 	atomic_sub(KN_DEACTIVATED_BIAS, &kn->active);
1410 }
1411 
1412 /**
1413  * kernfs_activate - activate a node which started deactivated
1414  * @kn: kernfs_node whose subtree is to be activated
1415  *
1416  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1417  * needs to be explicitly activated.  A node which hasn't been activated
1418  * isn't visible to userland and deactivation is skipped during its
1419  * removal.  This is useful to construct atomic init sequences where
1420  * creation of multiple nodes should either succeed or fail atomically.
1421  *
1422  * The caller is responsible for ensuring that this function is not called
1423  * after kernfs_remove*() is invoked on @kn.
1424  */
kernfs_activate(struct kernfs_node * kn)1425 void kernfs_activate(struct kernfs_node *kn)
1426 {
1427 	struct kernfs_node *pos;
1428 	struct kernfs_root *root = kernfs_root(kn);
1429 
1430 	down_write(&root->kernfs_rwsem);
1431 
1432 	pos = NULL;
1433 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1434 		kernfs_activate_one(pos);
1435 
1436 	up_write(&root->kernfs_rwsem);
1437 }
1438 
1439 /**
1440  * kernfs_show - show or hide a node
1441  * @kn: kernfs_node to show or hide
1442  * @show: whether to show or hide
1443  *
1444  * If @show is %false, @kn is marked hidden and deactivated. A hidden node is
1445  * ignored in future activaitons. If %true, the mark is removed and activation
1446  * state is restored. This function won't implicitly activate a new node in a
1447  * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet.
1448  *
1449  * To avoid recursion complexities, directories aren't supported for now.
1450  */
kernfs_show(struct kernfs_node * kn,bool show)1451 void kernfs_show(struct kernfs_node *kn, bool show)
1452 {
1453 	struct kernfs_root *root = kernfs_root(kn);
1454 
1455 	if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR))
1456 		return;
1457 
1458 	down_write(&root->kernfs_rwsem);
1459 
1460 	if (show) {
1461 		kn->flags &= ~KERNFS_HIDDEN;
1462 		if (kn->flags & KERNFS_ACTIVATED)
1463 			kernfs_activate_one(kn);
1464 	} else {
1465 		kn->flags |= KERNFS_HIDDEN;
1466 		if (kernfs_active(kn))
1467 			atomic_add(KN_DEACTIVATED_BIAS, &kn->active);
1468 		kernfs_drain(kn);
1469 	}
1470 
1471 	up_write(&root->kernfs_rwsem);
1472 }
1473 
__kernfs_remove(struct kernfs_node * kn)1474 static void __kernfs_remove(struct kernfs_node *kn)
1475 {
1476 	struct kernfs_node *pos, *parent;
1477 
1478 	/* Short-circuit if non-root @kn has already finished removal. */
1479 	if (!kn)
1480 		return;
1481 
1482 	lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1483 
1484 	/*
1485 	 * This is for kernfs_remove_self() which plays with active ref
1486 	 * after removal.
1487 	 */
1488 	if (kernfs_parent(kn) && RB_EMPTY_NODE(&kn->rb))
1489 		return;
1490 
1491 	pr_debug("kernfs %s: removing\n", kernfs_rcu_name(kn));
1492 
1493 	/* prevent new usage by marking all nodes removing and deactivating */
1494 	pos = NULL;
1495 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1496 		pos->flags |= KERNFS_REMOVING;
1497 		if (kernfs_active(pos))
1498 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1499 	}
1500 
1501 	/* deactivate and unlink the subtree node-by-node */
1502 	do {
1503 		pos = kernfs_leftmost_descendant(kn);
1504 
1505 		/*
1506 		 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's
1507 		 * base ref could have been put by someone else by the time
1508 		 * the function returns.  Make sure it doesn't go away
1509 		 * underneath us.
1510 		 */
1511 		kernfs_get(pos);
1512 
1513 		kernfs_drain(pos);
1514 		parent = kernfs_parent(pos);
1515 		/*
1516 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1517 		 * to decide who's responsible for cleanups.
1518 		 */
1519 		if (!parent || kernfs_unlink_sibling(pos)) {
1520 			struct kernfs_iattrs *ps_iattr =
1521 				parent ? parent->iattr : NULL;
1522 
1523 			/* update timestamps on the parent */
1524 			down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
1525 
1526 			if (ps_iattr) {
1527 				ktime_get_real_ts64(&ps_iattr->ia_ctime);
1528 				ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1529 			}
1530 
1531 			up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
1532 			kernfs_put(pos);
1533 		}
1534 
1535 		kernfs_put(pos);
1536 	} while (pos != kn);
1537 }
1538 
1539 /**
1540  * kernfs_remove - remove a kernfs_node recursively
1541  * @kn: the kernfs_node to remove
1542  *
1543  * Remove @kn along with all its subdirectories and files.
1544  */
kernfs_remove(struct kernfs_node * kn)1545 void kernfs_remove(struct kernfs_node *kn)
1546 {
1547 	struct kernfs_root *root;
1548 
1549 	if (!kn)
1550 		return;
1551 
1552 	root = kernfs_root(kn);
1553 
1554 	down_write(&root->kernfs_rwsem);
1555 	__kernfs_remove(kn);
1556 	up_write(&root->kernfs_rwsem);
1557 }
1558 
1559 /**
1560  * kernfs_break_active_protection - break out of active protection
1561  * @kn: the self kernfs_node
1562  *
1563  * The caller must be running off of a kernfs operation which is invoked
1564  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1565  * this function must also be matched with an invocation of
1566  * kernfs_unbreak_active_protection().
1567  *
1568  * This function releases the active reference of @kn the caller is
1569  * holding.  Once this function is called, @kn may be removed at any point
1570  * and the caller is solely responsible for ensuring that the objects it
1571  * dereferences are accessible.
1572  */
kernfs_break_active_protection(struct kernfs_node * kn)1573 void kernfs_break_active_protection(struct kernfs_node *kn)
1574 {
1575 	/*
1576 	 * Take out ourself out of the active ref dependency chain.  If
1577 	 * we're called without an active ref, lockdep will complain.
1578 	 */
1579 	kernfs_put_active(kn);
1580 }
1581 
1582 /**
1583  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1584  * @kn: the self kernfs_node
1585  *
1586  * If kernfs_break_active_protection() was called, this function must be
1587  * invoked before finishing the kernfs operation.  Note that while this
1588  * function restores the active reference, it doesn't and can't actually
1589  * restore the active protection - @kn may already or be in the process of
1590  * being drained and removed.  Once kernfs_break_active_protection() is
1591  * invoked, that protection is irreversibly gone for the kernfs operation
1592  * instance.
1593  *
1594  * While this function may be called at any point after
1595  * kernfs_break_active_protection() is invoked, its most useful location
1596  * would be right before the enclosing kernfs operation returns.
1597  */
kernfs_unbreak_active_protection(struct kernfs_node * kn)1598 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1599 {
1600 	/*
1601 	 * @kn->active could be in any state; however, the increment we do
1602 	 * here will be undone as soon as the enclosing kernfs operation
1603 	 * finishes and this temporary bump can't break anything.  If @kn
1604 	 * is alive, nothing changes.  If @kn is being deactivated, the
1605 	 * soon-to-follow put will either finish deactivation or restore
1606 	 * deactivated state.  If @kn is already removed, the temporary
1607 	 * bump is guaranteed to be gone before @kn is released.
1608 	 */
1609 	atomic_inc(&kn->active);
1610 	if (kernfs_lockdep(kn))
1611 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1612 }
1613 
1614 /**
1615  * kernfs_remove_self - remove a kernfs_node from its own method
1616  * @kn: the self kernfs_node to remove
1617  *
1618  * The caller must be running off of a kernfs operation which is invoked
1619  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1620  * implement a file operation which deletes itself.
1621  *
1622  * For example, the "delete" file for a sysfs device directory can be
1623  * implemented by invoking kernfs_remove_self() on the "delete" file
1624  * itself.  This function breaks the circular dependency of trying to
1625  * deactivate self while holding an active ref itself.  It isn't necessary
1626  * to modify the usual removal path to use kernfs_remove_self().  The
1627  * "delete" implementation can simply invoke kernfs_remove_self() on self
1628  * before proceeding with the usual removal path.  kernfs will ignore later
1629  * kernfs_remove() on self.
1630  *
1631  * kernfs_remove_self() can be called multiple times concurrently on the
1632  * same kernfs_node.  Only the first one actually performs removal and
1633  * returns %true.  All others will wait until the kernfs operation which
1634  * won self-removal finishes and return %false.  Note that the losers wait
1635  * for the completion of not only the winning kernfs_remove_self() but also
1636  * the whole kernfs_ops which won the arbitration.  This can be used to
1637  * guarantee, for example, all concurrent writes to a "delete" file to
1638  * finish only after the whole operation is complete.
1639  *
1640  * Return: %true if @kn is removed by this call, otherwise %false.
1641  */
kernfs_remove_self(struct kernfs_node * kn)1642 bool kernfs_remove_self(struct kernfs_node *kn)
1643 {
1644 	bool ret;
1645 	struct kernfs_root *root = kernfs_root(kn);
1646 
1647 	down_write(&root->kernfs_rwsem);
1648 	kernfs_break_active_protection(kn);
1649 
1650 	/*
1651 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1652 	 * the first one will actually perform removal.  When the removal
1653 	 * is complete, SUICIDED is set and the active ref is restored
1654 	 * while kernfs_rwsem for held exclusive.  The ones which lost
1655 	 * arbitration waits for SUICIDED && drained which can happen only
1656 	 * after the enclosing kernfs operation which executed the winning
1657 	 * instance of kernfs_remove_self() finished.
1658 	 */
1659 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1660 		kn->flags |= KERNFS_SUICIDAL;
1661 		__kernfs_remove(kn);
1662 		kn->flags |= KERNFS_SUICIDED;
1663 		ret = true;
1664 	} else {
1665 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1666 		DEFINE_WAIT(wait);
1667 
1668 		while (true) {
1669 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1670 
1671 			if ((kn->flags & KERNFS_SUICIDED) &&
1672 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1673 				break;
1674 
1675 			up_write(&root->kernfs_rwsem);
1676 			schedule();
1677 			down_write(&root->kernfs_rwsem);
1678 		}
1679 		finish_wait(waitq, &wait);
1680 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1681 		ret = false;
1682 	}
1683 
1684 	/*
1685 	 * This must be done while kernfs_rwsem held exclusive; otherwise,
1686 	 * waiting for SUICIDED && deactivated could finish prematurely.
1687 	 */
1688 	kernfs_unbreak_active_protection(kn);
1689 
1690 	up_write(&root->kernfs_rwsem);
1691 	return ret;
1692 }
1693 
1694 /**
1695  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1696  * @parent: parent of the target
1697  * @name: name of the kernfs_node to remove
1698  * @ns: namespace tag of the kernfs_node to remove
1699  *
1700  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1701  *
1702  * Return: %0 on success, -ENOENT if such entry doesn't exist.
1703  */
kernfs_remove_by_name_ns(struct kernfs_node * parent,const char * name,const void * ns)1704 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1705 			     const void *ns)
1706 {
1707 	struct kernfs_node *kn;
1708 	struct kernfs_root *root;
1709 
1710 	if (!parent) {
1711 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1712 			name);
1713 		return -ENOENT;
1714 	}
1715 
1716 	root = kernfs_root(parent);
1717 	down_write(&root->kernfs_rwsem);
1718 
1719 	kn = kernfs_find_ns(parent, name, ns);
1720 	if (kn) {
1721 		kernfs_get(kn);
1722 		__kernfs_remove(kn);
1723 		kernfs_put(kn);
1724 	}
1725 
1726 	up_write(&root->kernfs_rwsem);
1727 
1728 	if (kn)
1729 		return 0;
1730 	else
1731 		return -ENOENT;
1732 }
1733 
1734 /**
1735  * kernfs_rename_ns - move and rename a kernfs_node
1736  * @kn: target node
1737  * @new_parent: new parent to put @sd under
1738  * @new_name: new name
1739  * @new_ns: new namespace tag
1740  *
1741  * Return: %0 on success, -errno on failure.
1742  */
kernfs_rename_ns(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name,const void * new_ns)1743 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1744 		     const char *new_name, const void *new_ns)
1745 {
1746 	struct kernfs_node *old_parent;
1747 	struct kernfs_root *root;
1748 	const char *old_name;
1749 	int error;
1750 
1751 	/* can't move or rename root */
1752 	if (!rcu_access_pointer(kn->__parent))
1753 		return -EINVAL;
1754 
1755 	root = kernfs_root(kn);
1756 	down_write(&root->kernfs_rwsem);
1757 
1758 	error = -ENOENT;
1759 	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1760 	    (new_parent->flags & KERNFS_EMPTY_DIR))
1761 		goto out;
1762 
1763 	old_parent = kernfs_parent(kn);
1764 	if (root->flags & KERNFS_ROOT_INVARIANT_PARENT) {
1765 		error = -EINVAL;
1766 		if (WARN_ON_ONCE(old_parent != new_parent))
1767 			goto out;
1768 	}
1769 
1770 	error = 0;
1771 	old_name = kernfs_rcu_name(kn);
1772 	if (!new_name)
1773 		new_name = old_name;
1774 	if ((old_parent == new_parent) && (kn->ns == new_ns) &&
1775 	    (strcmp(old_name, new_name) == 0))
1776 		goto out;	/* nothing to rename */
1777 
1778 	error = -EEXIST;
1779 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1780 		goto out;
1781 
1782 	/* rename kernfs_node */
1783 	if (strcmp(old_name, new_name) != 0) {
1784 		error = -ENOMEM;
1785 		new_name = kstrdup_const(new_name, GFP_KERNEL);
1786 		if (!new_name)
1787 			goto out;
1788 	} else {
1789 		new_name = NULL;
1790 	}
1791 
1792 	/*
1793 	 * Move to the appropriate place in the appropriate directories rbtree.
1794 	 */
1795 	kernfs_unlink_sibling(kn);
1796 
1797 	/* rename_lock protects ->parent accessors */
1798 	if (old_parent != new_parent) {
1799 		kernfs_get(new_parent);
1800 		write_lock_irq(&root->kernfs_rename_lock);
1801 
1802 		rcu_assign_pointer(kn->__parent, new_parent);
1803 
1804 		kn->ns = new_ns;
1805 		if (new_name)
1806 			rcu_assign_pointer(kn->name, new_name);
1807 
1808 		write_unlock_irq(&root->kernfs_rename_lock);
1809 		kernfs_put(old_parent);
1810 	} else {
1811 		/* name assignment is RCU protected, parent is the same */
1812 		kn->ns = new_ns;
1813 		if (new_name)
1814 			rcu_assign_pointer(kn->name, new_name);
1815 	}
1816 
1817 	kn->hash = kernfs_name_hash(new_name ?: old_name, kn->ns);
1818 	kernfs_link_sibling(kn);
1819 
1820 	if (new_name && !is_kernel_rodata((unsigned long)old_name))
1821 		kfree_rcu_mightsleep(old_name);
1822 
1823 	error = 0;
1824  out:
1825 	up_write(&root->kernfs_rwsem);
1826 	return error;
1827 }
1828 
kernfs_dir_fop_release(struct inode * inode,struct file * filp)1829 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1830 {
1831 	kernfs_put(filp->private_data);
1832 	return 0;
1833 }
1834 
kernfs_dir_pos(const void * ns,struct kernfs_node * parent,loff_t hash,struct kernfs_node * pos)1835 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1836 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1837 {
1838 	if (pos) {
1839 		int valid = kernfs_active(pos) &&
1840 			rcu_access_pointer(pos->__parent) == parent &&
1841 			hash == pos->hash;
1842 		kernfs_put(pos);
1843 		if (!valid)
1844 			pos = NULL;
1845 	}
1846 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1847 		struct rb_node *node = parent->dir.children.rb_node;
1848 		while (node) {
1849 			pos = rb_to_kn(node);
1850 
1851 			if (hash < pos->hash)
1852 				node = node->rb_left;
1853 			else if (hash > pos->hash)
1854 				node = node->rb_right;
1855 			else
1856 				break;
1857 		}
1858 	}
1859 	/* Skip over entries which are dying/dead or in the wrong namespace */
1860 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1861 		struct rb_node *node = rb_next(&pos->rb);
1862 		if (!node)
1863 			pos = NULL;
1864 		else
1865 			pos = rb_to_kn(node);
1866 	}
1867 	return pos;
1868 }
1869 
kernfs_dir_next_pos(const void * ns,struct kernfs_node * parent,ino_t ino,struct kernfs_node * pos)1870 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1871 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1872 {
1873 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1874 	if (pos) {
1875 		do {
1876 			struct rb_node *node = rb_next(&pos->rb);
1877 			if (!node)
1878 				pos = NULL;
1879 			else
1880 				pos = rb_to_kn(node);
1881 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1882 	}
1883 	return pos;
1884 }
1885 
kernfs_fop_readdir(struct file * file,struct dir_context * ctx)1886 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1887 {
1888 	struct dentry *dentry = file->f_path.dentry;
1889 	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1890 	struct kernfs_node *pos = file->private_data;
1891 	struct kernfs_root *root;
1892 	const void *ns = NULL;
1893 
1894 	if (!dir_emit_dots(file, ctx))
1895 		return 0;
1896 
1897 	root = kernfs_root(parent);
1898 	down_read(&root->kernfs_rwsem);
1899 
1900 	if (kernfs_ns_enabled(parent))
1901 		ns = kernfs_info(dentry->d_sb)->ns;
1902 
1903 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1904 	     pos;
1905 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1906 		const char *name = kernfs_rcu_name(pos);
1907 		unsigned int type = fs_umode_to_dtype(pos->mode);
1908 		int len = strlen(name);
1909 		ino_t ino = kernfs_ino(pos);
1910 
1911 		ctx->pos = pos->hash;
1912 		file->private_data = pos;
1913 		kernfs_get(pos);
1914 
1915 		if (!dir_emit(ctx, name, len, ino, type)) {
1916 			up_read(&root->kernfs_rwsem);
1917 			return 0;
1918 		}
1919 	}
1920 	up_read(&root->kernfs_rwsem);
1921 	file->private_data = NULL;
1922 	ctx->pos = INT_MAX;
1923 	return 0;
1924 }
1925 
1926 const struct file_operations kernfs_dir_fops = {
1927 	.read		= generic_read_dir,
1928 	.iterate_shared	= kernfs_fop_readdir,
1929 	.release	= kernfs_dir_fop_release,
1930 	.llseek		= generic_file_llseek,
1931 };
1932