xref: /linux/drivers/gpu/drm/msm/adreno/a6xx_gmu.h (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2017 The Linux Foundation. All rights reserved. */
3 
4 #ifndef _A6XX_GMU_H_
5 #define _A6XX_GMU_H_
6 
7 #include <linux/completion.h>
8 #include <linux/iopoll.h>
9 #include <linux/interrupt.h>
10 #include <linux/notifier.h>
11 #include <linux/soc/qcom/qcom_aoss.h>
12 #include "msm_drv.h"
13 #include "a6xx_hfi.h"
14 
15 struct a6xx_gmu_bo {
16 	struct drm_gem_object *obj;
17 	void *virt;
18 	size_t size;
19 	u64 iova;
20 };
21 
22 #define GMU_MAX_GX_FREQS	32
23 #define GMU_MAX_CX_FREQS	6
24 #define GMU_MAX_BCMS		3
25 
26 struct a6xx_bcm {
27 	char *name;
28 	unsigned int buswidth;
29 	bool fixed;
30 	unsigned int perfmode;
31 	unsigned int perfmode_bw;
32 };
33 
34 /*
35  * These define the different GMU wake up options - these define how both the
36  * CPU and the GMU bring up the hardware
37  */
38 
39 /* THe GMU has already been booted and the rentention registers are active */
40 #define GMU_WARM_BOOT 0
41 
42 /* the GMU is coming up for the first time or back from a power collapse */
43 #define GMU_COLD_BOOT 1
44 
45 /*
46  * These define the level of control that the GMU has - the higher the number
47  * the more things that the GMU hardware controls on its own.
48  */
49 
50 /* The GMU does not do any idle state management */
51 #define GMU_IDLE_STATE_ACTIVE 0
52 
53 /* Unknown power state. Not exposed by the firmware. For documentation purpose only */
54 #define GMU_IDLE_STATE_RESERVED 1
55 
56 /* The GMU manages SPTP power collapse */
57 #define GMU_IDLE_STATE_SPTP 2
58 
59 /* The GMU does automatic IFPC (intra-frame power collapse) */
60 #define GMU_IDLE_STATE_IFPC 3
61 
62 struct a6xx_gmu {
63 	struct device *dev;
64 
65 	/* For serializing communication with the GMU: */
66 	struct mutex lock;
67 
68 	struct drm_gpuvm *vm;
69 
70 	void __iomem *mmio;
71 	u32 mmio_offset;
72 	void __iomem *rscc;
73 
74 	int hfi_irq;
75 	int gmu_irq;
76 
77 	struct device *gxpd;
78 	struct device *cxpd;
79 
80 	int idle_level;
81 
82 	struct a6xx_gmu_bo hfi;
83 	struct a6xx_gmu_bo debug;
84 	struct a6xx_gmu_bo icache;
85 	struct a6xx_gmu_bo dcache;
86 	struct a6xx_gmu_bo dummy;
87 	struct a6xx_gmu_bo log;
88 
89 	int nr_clocks;
90 	struct clk_bulk_data *clocks;
91 	struct clk *core_clk;
92 	struct clk *hub_clk;
93 
94 	/* current performance index set externally */
95 	int current_perf_index;
96 
97 	int nr_gpu_freqs;
98 	unsigned long gpu_freqs[GMU_MAX_GX_FREQS];
99 	u32 gx_arc_votes[GMU_MAX_GX_FREQS];
100 	u32 dep_arc_votes[GMU_MAX_GX_FREQS];
101 	struct a6xx_hfi_acd_table acd_table;
102 
103 	int nr_gpu_bws;
104 	unsigned long gpu_bw_table[GMU_MAX_GX_FREQS];
105 	u32 gpu_ib_votes[GMU_MAX_GX_FREQS][GMU_MAX_BCMS];
106 
107 	int nr_gmu_freqs;
108 	unsigned long gmu_freqs[GMU_MAX_CX_FREQS];
109 	u32 cx_arc_votes[GMU_MAX_CX_FREQS];
110 
111 	unsigned long freq;
112 
113 	struct a6xx_hfi_queue queues[2];
114 
115 	bool initialized;
116 	bool hung;
117 	bool legacy; /* a618 or a630 */
118 
119 	/* For power domain callback */
120 	struct notifier_block pd_nb;
121 	struct completion pd_gate;
122 
123 	struct qmp *qmp;
124 	struct a6xx_hfi_msg_bw_table *bw_table;
125 
126 /* To check if we can trigger sleep seq at PDC. Cleared in a6xx_rpmh_stop() */
127 #define GMU_STATUS_FW_START	0
128 /* To track if PDC sleep seq was done */
129 #define GMU_STATUS_PDC_SLEEP	1
130 /* To track Perfcounter OOB set status */
131 #define GMU_STATUS_OOB_PERF_SET 2
132 	unsigned long status;
133 };
134 
135 #define GMU_BYTE_OFFSET(gmu, offset) (((offset) << 2) - (gmu)->mmio_offset)
136 
gmu_read(struct a6xx_gmu * gmu,u32 offset)137 static inline u32 gmu_read(struct a6xx_gmu *gmu, u32 offset)
138 {
139 	/* The 'offset' is based on GPU's start address. Adjust it */
140 	return readl(gmu->mmio + GMU_BYTE_OFFSET(gmu, offset));
141 }
142 
gmu_write(struct a6xx_gmu * gmu,u32 offset,u32 value)143 static inline void gmu_write(struct a6xx_gmu *gmu, u32 offset, u32 value)
144 {
145 	writel(value, gmu->mmio + GMU_BYTE_OFFSET(gmu, offset));
146 }
147 
148 static inline void
gmu_write_bulk(struct a6xx_gmu * gmu,u32 offset,const u32 * data,u32 size)149 gmu_write_bulk(struct a6xx_gmu *gmu, u32 offset, const u32 *data, u32 size)
150 {
151 	memcpy_toio(gmu->mmio + GMU_BYTE_OFFSET(gmu, offset), data, size);
152 	wmb();
153 }
154 
gmu_rmw(struct a6xx_gmu * gmu,u32 reg,u32 mask,u32 or)155 static inline void gmu_rmw(struct a6xx_gmu *gmu, u32 reg, u32 mask, u32 or)
156 {
157 	u32 val = gmu_read(gmu, reg);
158 
159 	val &= ~mask;
160 
161 	gmu_write(gmu, reg, val | or);
162 }
163 
gmu_read64(struct a6xx_gmu * gmu,u32 lo,u32 hi)164 static inline u64 gmu_read64(struct a6xx_gmu *gmu, u32 lo, u32 hi)
165 {
166 	u64 val;
167 
168 	val = gmu_read(gmu, lo);
169 	val |= ((u64) gmu_read(gmu, hi) << 32);
170 
171 	return val;
172 }
173 
174 #define gmu_poll_timeout(gmu, addr, val, cond, interval, timeout) \
175 	readl_poll_timeout((gmu)->mmio + (GMU_BYTE_OFFSET(gmu, addr)), val, \
176 		cond, interval, timeout)
177 #define gmu_poll_timeout_atomic(gmu, addr, val, cond, interval, timeout) \
178 	readl_poll_timeout_atomic((gmu)->mmio + (GMU_BYTE_OFFSET(gmu, addr)), val, cond, \
179 		interval, timeout)
180 
gmu_read_rscc(struct a6xx_gmu * gmu,u32 offset)181 static inline u32 gmu_read_rscc(struct a6xx_gmu *gmu, u32 offset)
182 {
183 	return readl(gmu->rscc + (offset << 2));
184 }
185 
gmu_write_rscc(struct a6xx_gmu * gmu,u32 offset,u32 value)186 static inline void gmu_write_rscc(struct a6xx_gmu *gmu, u32 offset, u32 value)
187 {
188 	writel(value, gmu->rscc + (offset << 2));
189 }
190 
191 #define gmu_poll_timeout_rscc(gmu, addr, val, cond, interval, timeout) \
192 	readl_poll_timeout((gmu)->rscc + ((addr) << 2), val, cond, \
193 		interval, timeout)
194 
195 /*
196  * These are the available OOB (out of band requests) to the GMU where "out of
197  * band" means that the CPU talks to the GMU directly and not through HFI.
198  * Normally this works by writing a ITCM/DTCM register and then triggering a
199  * interrupt (the "request" bit) and waiting for an acknowledgment (the "ack"
200  * bit). The state is cleared by writing the "clear' bit to the GMU interrupt.
201  *
202  * These are used to force the GMU/GPU to stay on during a critical sequence or
203  * for hardware workarounds.
204  */
205 
206 enum a6xx_gmu_oob_state {
207 	/*
208 	 * Let the GMU know that a boot or slumber operation has started. The value in
209 	 * REG_A6XX_GMU_BOOT_SLUMBER_OPTION lets the GMU know which operation we are
210 	 * doing
211 	 */
212 	GMU_OOB_BOOT_SLUMBER = 0,
213 	/*
214 	 * Let the GMU know to not turn off any GPU registers while the CPU is in a
215 	 * critical section
216 	 */
217 	GMU_OOB_GPU_SET,
218 	/*
219 	 * Set a new power level for the GPU when the CPU is doing frequency scaling
220 	 */
221 	GMU_OOB_DCVS_SET,
222 	/*
223 	 * Used to keep the GPU on for CPU-side reads of performance counters.
224 	 */
225 	GMU_OOB_PERFCOUNTER_SET,
226 };
227 
228 void a6xx_hfi_init(struct a6xx_gmu *gmu);
229 int a6xx_hfi_start(struct a6xx_gmu *gmu, int boot_state);
230 void a6xx_hfi_stop(struct a6xx_gmu *gmu);
231 int a6xx_hfi_send_prep_slumber(struct a6xx_gmu *gmu);
232 int a6xx_hfi_set_freq(struct a6xx_gmu *gmu, u32 perf_index, u32 bw_index);
233 
234 bool a6xx_gmu_gx_is_on(struct a6xx_gmu *gmu);
235 bool a6xx_gmu_sptprac_is_on(struct a6xx_gmu *gmu);
236 void a6xx_sptprac_disable(struct a6xx_gmu *gmu);
237 int a6xx_sptprac_enable(struct a6xx_gmu *gmu);
238 
239 #endif
240