xref: /linux/fs/btrfs/delayed-inode.c (revision 83f59076a1ae6f5c6845d6f7ed3a1a373d883684)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "ctree.h"
10 #include "fs.h"
11 #include "messages.h"
12 #include "misc.h"
13 #include "delayed-inode.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "qgroup.h"
17 #include "locking.h"
18 #include "inode-item.h"
19 #include "space-info.h"
20 #include "accessors.h"
21 #include "file-item.h"
22 
23 #define BTRFS_DELAYED_WRITEBACK		512
24 #define BTRFS_DELAYED_BACKGROUND	128
25 #define BTRFS_DELAYED_BATCH		16
26 
27 static struct kmem_cache *delayed_node_cache;
28 
29 int __init btrfs_delayed_inode_init(void)
30 {
31 	delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0);
32 	if (!delayed_node_cache)
33 		return -ENOMEM;
34 	return 0;
35 }
36 
37 void __cold btrfs_delayed_inode_exit(void)
38 {
39 	kmem_cache_destroy(delayed_node_cache);
40 }
41 
42 void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root)
43 {
44 	atomic_set(&delayed_root->items, 0);
45 	atomic_set(&delayed_root->items_seq, 0);
46 	delayed_root->nodes = 0;
47 	spin_lock_init(&delayed_root->lock);
48 	init_waitqueue_head(&delayed_root->wait);
49 	INIT_LIST_HEAD(&delayed_root->node_list);
50 	INIT_LIST_HEAD(&delayed_root->prepare_list);
51 }
52 
53 static inline void btrfs_init_delayed_node(
54 				struct btrfs_delayed_node *delayed_node,
55 				struct btrfs_root *root, u64 inode_id)
56 {
57 	delayed_node->root = root;
58 	delayed_node->inode_id = inode_id;
59 	refcount_set(&delayed_node->refs, 0);
60 	btrfs_delayed_node_ref_tracker_dir_init(delayed_node);
61 	delayed_node->ins_root = RB_ROOT_CACHED;
62 	delayed_node->del_root = RB_ROOT_CACHED;
63 	mutex_init(&delayed_node->mutex);
64 	INIT_LIST_HEAD(&delayed_node->n_list);
65 	INIT_LIST_HEAD(&delayed_node->p_list);
66 }
67 
68 static struct btrfs_delayed_node *btrfs_get_delayed_node(
69 		struct btrfs_inode *btrfs_inode,
70 		struct btrfs_ref_tracker *tracker)
71 {
72 	struct btrfs_root *root = btrfs_inode->root;
73 	u64 ino = btrfs_ino(btrfs_inode);
74 	struct btrfs_delayed_node *node;
75 
76 	node = READ_ONCE(btrfs_inode->delayed_node);
77 	if (node) {
78 		refcount_inc(&node->refs);
79 		btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_NOFS);
80 		return node;
81 	}
82 
83 	xa_lock(&root->delayed_nodes);
84 	node = xa_load(&root->delayed_nodes, ino);
85 
86 	if (node) {
87 		if (btrfs_inode->delayed_node) {
88 			refcount_inc(&node->refs);	/* can be accessed */
89 			btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
90 			BUG_ON(btrfs_inode->delayed_node != node);
91 			xa_unlock(&root->delayed_nodes);
92 			return node;
93 		}
94 
95 		/*
96 		 * It's possible that we're racing into the middle of removing
97 		 * this node from the xarray.  In this case, the refcount
98 		 * was zero and it should never go back to one.  Just return
99 		 * NULL like it was never in the xarray at all; our release
100 		 * function is in the process of removing it.
101 		 *
102 		 * Some implementations of refcount_inc refuse to bump the
103 		 * refcount once it has hit zero.  If we don't do this dance
104 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
105 		 * of actually bumping the refcount.
106 		 *
107 		 * If this node is properly in the xarray, we want to bump the
108 		 * refcount twice, once for the inode and once for this get
109 		 * operation.
110 		 */
111 		if (refcount_inc_not_zero(&node->refs)) {
112 			refcount_inc(&node->refs);
113 			btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
114 			btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker,
115 							     GFP_ATOMIC);
116 			btrfs_inode->delayed_node = node;
117 		} else {
118 			node = NULL;
119 		}
120 
121 		xa_unlock(&root->delayed_nodes);
122 		return node;
123 	}
124 	xa_unlock(&root->delayed_nodes);
125 
126 	return NULL;
127 }
128 
129 /*
130  * Look up an existing delayed node associated with @btrfs_inode or create a new
131  * one and insert it to the delayed nodes of the root.
132  *
133  * Return the delayed node, or error pointer on failure.
134  */
135 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
136 		struct btrfs_inode *btrfs_inode,
137 		struct btrfs_ref_tracker *tracker)
138 {
139 	struct btrfs_delayed_node *node;
140 	struct btrfs_root *root = btrfs_inode->root;
141 	u64 ino = btrfs_ino(btrfs_inode);
142 	int ret;
143 	void *ptr;
144 
145 again:
146 	node = btrfs_get_delayed_node(btrfs_inode, tracker);
147 	if (node)
148 		return node;
149 
150 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
151 	if (!node)
152 		return ERR_PTR(-ENOMEM);
153 	btrfs_init_delayed_node(node, root, ino);
154 
155 	/* Cached in the inode and can be accessed. */
156 	refcount_set(&node->refs, 2);
157 	btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_NOFS);
158 	btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker, GFP_NOFS);
159 
160 	/* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
161 	ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
162 	if (ret == -ENOMEM)
163 		goto cleanup;
164 
165 	xa_lock(&root->delayed_nodes);
166 	ptr = xa_load(&root->delayed_nodes, ino);
167 	if (ptr) {
168 		/* Somebody inserted it, go back and read it. */
169 		xa_unlock(&root->delayed_nodes);
170 		goto cleanup;
171 	}
172 	ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
173 	ASSERT(xa_err(ptr) != -EINVAL);
174 	ASSERT(xa_err(ptr) != -ENOMEM);
175 	ASSERT(ptr == NULL);
176 	btrfs_inode->delayed_node = node;
177 	xa_unlock(&root->delayed_nodes);
178 
179 	return node;
180 cleanup:
181 	btrfs_delayed_node_ref_tracker_free(node, tracker);
182 	btrfs_delayed_node_ref_tracker_free(node, &node->inode_cache_tracker);
183 	btrfs_delayed_node_ref_tracker_dir_exit(node);
184 	kmem_cache_free(delayed_node_cache, node);
185 	if (ret)
186 		return ERR_PTR(ret);
187 	goto again;
188 }
189 
190 /*
191  * Call it when holding delayed_node->mutex
192  *
193  * If mod = 1, add this node into the prepared list.
194  */
195 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
196 				     struct btrfs_delayed_node *node,
197 				     int mod)
198 {
199 	spin_lock(&root->lock);
200 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
201 		if (!list_empty(&node->p_list))
202 			list_move_tail(&node->p_list, &root->prepare_list);
203 		else if (mod)
204 			list_add_tail(&node->p_list, &root->prepare_list);
205 	} else {
206 		list_add_tail(&node->n_list, &root->node_list);
207 		list_add_tail(&node->p_list, &root->prepare_list);
208 		refcount_inc(&node->refs);	/* inserted into list */
209 		btrfs_delayed_node_ref_tracker_alloc(node, &node->node_list_tracker,
210 						     GFP_ATOMIC);
211 		root->nodes++;
212 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
213 	}
214 	spin_unlock(&root->lock);
215 }
216 
217 /* Call it when holding delayed_node->mutex */
218 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
219 				       struct btrfs_delayed_node *node)
220 {
221 	spin_lock(&root->lock);
222 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
223 		root->nodes--;
224 		btrfs_delayed_node_ref_tracker_free(node, &node->node_list_tracker);
225 		refcount_dec(&node->refs);	/* not in the list */
226 		list_del_init(&node->n_list);
227 		if (!list_empty(&node->p_list))
228 			list_del_init(&node->p_list);
229 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
230 	}
231 	spin_unlock(&root->lock);
232 }
233 
234 static struct btrfs_delayed_node *btrfs_first_delayed_node(
235 			struct btrfs_delayed_root *delayed_root,
236 			struct btrfs_ref_tracker *tracker)
237 {
238 	struct btrfs_delayed_node *node;
239 
240 	spin_lock(&delayed_root->lock);
241 	node = list_first_entry_or_null(&delayed_root->node_list,
242 					struct btrfs_delayed_node, n_list);
243 	if (node) {
244 		refcount_inc(&node->refs);
245 		btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
246 	}
247 	spin_unlock(&delayed_root->lock);
248 
249 	return node;
250 }
251 
252 static struct btrfs_delayed_node *btrfs_next_delayed_node(
253 						struct btrfs_delayed_node *node,
254 						struct btrfs_ref_tracker *tracker)
255 {
256 	struct btrfs_delayed_root *delayed_root;
257 	struct list_head *p;
258 	struct btrfs_delayed_node *next = NULL;
259 
260 	delayed_root = node->root->fs_info->delayed_root;
261 	spin_lock(&delayed_root->lock);
262 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
263 		/* not in the list */
264 		if (list_empty(&delayed_root->node_list))
265 			goto out;
266 		p = delayed_root->node_list.next;
267 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
268 		goto out;
269 	else
270 		p = node->n_list.next;
271 
272 	next = list_entry(p, struct btrfs_delayed_node, n_list);
273 	refcount_inc(&next->refs);
274 	btrfs_delayed_node_ref_tracker_alloc(next, tracker, GFP_ATOMIC);
275 out:
276 	spin_unlock(&delayed_root->lock);
277 
278 	return next;
279 }
280 
281 static void __btrfs_release_delayed_node(
282 				struct btrfs_delayed_node *delayed_node,
283 				int mod, struct btrfs_ref_tracker *tracker)
284 {
285 	struct btrfs_delayed_root *delayed_root;
286 
287 	if (!delayed_node)
288 		return;
289 
290 	delayed_root = delayed_node->root->fs_info->delayed_root;
291 
292 	mutex_lock(&delayed_node->mutex);
293 	if (delayed_node->count)
294 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
295 	else
296 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
297 	mutex_unlock(&delayed_node->mutex);
298 
299 	btrfs_delayed_node_ref_tracker_free(delayed_node, tracker);
300 	if (refcount_dec_and_test(&delayed_node->refs)) {
301 		struct btrfs_root *root = delayed_node->root;
302 
303 		xa_erase(&root->delayed_nodes, delayed_node->inode_id);
304 		/*
305 		 * Once our refcount goes to zero, nobody is allowed to bump it
306 		 * back up.  We can delete it now.
307 		 */
308 		ASSERT(refcount_read(&delayed_node->refs) == 0);
309 		btrfs_delayed_node_ref_tracker_dir_exit(delayed_node);
310 		kmem_cache_free(delayed_node_cache, delayed_node);
311 	}
312 }
313 
314 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node,
315 					      struct btrfs_ref_tracker *tracker)
316 {
317 	__btrfs_release_delayed_node(node, 0, tracker);
318 }
319 
320 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
321 					struct btrfs_delayed_root *delayed_root,
322 					struct btrfs_ref_tracker *tracker)
323 {
324 	struct btrfs_delayed_node *node;
325 
326 	spin_lock(&delayed_root->lock);
327 	node = list_first_entry_or_null(&delayed_root->prepare_list,
328 					struct btrfs_delayed_node, p_list);
329 	if (node) {
330 		list_del_init(&node->p_list);
331 		refcount_inc(&node->refs);
332 		btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
333 	}
334 	spin_unlock(&delayed_root->lock);
335 
336 	return node;
337 }
338 
339 static inline void btrfs_release_prepared_delayed_node(
340 					struct btrfs_delayed_node *node,
341 					struct btrfs_ref_tracker *tracker)
342 {
343 	__btrfs_release_delayed_node(node, 1, tracker);
344 }
345 
346 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
347 					   struct btrfs_delayed_node *node,
348 					   enum btrfs_delayed_item_type type)
349 {
350 	struct btrfs_delayed_item *item;
351 
352 	item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
353 	if (item) {
354 		item->data_len = data_len;
355 		item->type = type;
356 		item->bytes_reserved = 0;
357 		item->delayed_node = node;
358 		RB_CLEAR_NODE(&item->rb_node);
359 		INIT_LIST_HEAD(&item->log_list);
360 		item->logged = false;
361 		refcount_set(&item->refs, 1);
362 	}
363 	return item;
364 }
365 
366 static int delayed_item_index_cmp(const void *key, const struct rb_node *node)
367 {
368 	const u64 *index = key;
369 	const struct btrfs_delayed_item *delayed_item = rb_entry(node,
370 						 struct btrfs_delayed_item, rb_node);
371 
372 	if (delayed_item->index < *index)
373 		return 1;
374 	else if (delayed_item->index > *index)
375 		return -1;
376 
377 	return 0;
378 }
379 
380 /*
381  * Look up the delayed item by key.
382  *
383  * @delayed_node: pointer to the delayed node
384  * @index:	  the dir index value to lookup (offset of a dir index key)
385  *
386  * Note: if we don't find the right item, we will return the prev item and
387  * the next item.
388  */
389 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
390 				struct rb_root *root,
391 				u64 index)
392 {
393 	struct rb_node *node;
394 
395 	node = rb_find(&index, root, delayed_item_index_cmp);
396 	return rb_entry_safe(node, struct btrfs_delayed_item, rb_node);
397 }
398 
399 static int btrfs_delayed_item_cmp(const struct rb_node *new,
400 				  const struct rb_node *exist)
401 {
402 	const struct btrfs_delayed_item *new_item =
403 		rb_entry(new, struct btrfs_delayed_item, rb_node);
404 
405 	return delayed_item_index_cmp(&new_item->index, exist);
406 }
407 
408 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
409 				    struct btrfs_delayed_item *ins)
410 {
411 	struct rb_root_cached *root;
412 	struct rb_node *exist;
413 
414 	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
415 		root = &delayed_node->ins_root;
416 	else
417 		root = &delayed_node->del_root;
418 
419 	exist = rb_find_add_cached(&ins->rb_node, root, btrfs_delayed_item_cmp);
420 	if (exist)
421 		return -EEXIST;
422 
423 	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
424 	    ins->index >= delayed_node->index_cnt)
425 		delayed_node->index_cnt = ins->index + 1;
426 
427 	delayed_node->count++;
428 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
429 	return 0;
430 }
431 
432 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
433 {
434 	int seq = atomic_inc_return(&delayed_root->items_seq);
435 
436 	/* atomic_dec_return implies a barrier */
437 	if ((atomic_dec_return(&delayed_root->items) <
438 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
439 		cond_wake_up_nomb(&delayed_root->wait);
440 }
441 
442 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
443 {
444 	struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
445 	struct rb_root_cached *root;
446 	struct btrfs_delayed_root *delayed_root;
447 
448 	/* Not inserted, ignore it. */
449 	if (RB_EMPTY_NODE(&delayed_item->rb_node))
450 		return;
451 
452 	/* If it's in a rbtree, then we need to have delayed node locked. */
453 	lockdep_assert_held(&delayed_node->mutex);
454 
455 	delayed_root = delayed_node->root->fs_info->delayed_root;
456 
457 	if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
458 		root = &delayed_node->ins_root;
459 	else
460 		root = &delayed_node->del_root;
461 
462 	rb_erase_cached(&delayed_item->rb_node, root);
463 	RB_CLEAR_NODE(&delayed_item->rb_node);
464 	delayed_node->count--;
465 
466 	finish_one_item(delayed_root);
467 }
468 
469 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
470 {
471 	if (item) {
472 		__btrfs_remove_delayed_item(item);
473 		if (refcount_dec_and_test(&item->refs))
474 			kfree(item);
475 	}
476 }
477 
478 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
479 					struct btrfs_delayed_node *delayed_node)
480 {
481 	struct rb_node *p = rb_first_cached(&delayed_node->ins_root);
482 
483 	return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
484 }
485 
486 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
487 					struct btrfs_delayed_node *delayed_node)
488 {
489 	struct rb_node *p = rb_first_cached(&delayed_node->del_root);
490 
491 	return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
492 }
493 
494 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
495 						struct btrfs_delayed_item *item)
496 {
497 	struct rb_node *p = rb_next(&item->rb_node);
498 
499 	return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
500 }
501 
502 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
503 					       struct btrfs_delayed_item *item)
504 {
505 	struct btrfs_block_rsv *src_rsv;
506 	struct btrfs_block_rsv *dst_rsv;
507 	struct btrfs_fs_info *fs_info = trans->fs_info;
508 	u64 num_bytes;
509 	int ret;
510 
511 	if (!trans->bytes_reserved)
512 		return 0;
513 
514 	src_rsv = trans->block_rsv;
515 	dst_rsv = &fs_info->delayed_block_rsv;
516 
517 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
518 
519 	/*
520 	 * Here we migrate space rsv from transaction rsv, since have already
521 	 * reserved space when starting a transaction.  So no need to reserve
522 	 * qgroup space here.
523 	 */
524 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
525 	if (!ret) {
526 		trace_btrfs_space_reservation(fs_info, "delayed_item",
527 					      item->delayed_node->inode_id,
528 					      num_bytes, 1);
529 		/*
530 		 * For insertions we track reserved metadata space by accounting
531 		 * for the number of leaves that will be used, based on the delayed
532 		 * node's curr_index_batch_size and index_item_leaves fields.
533 		 */
534 		if (item->type == BTRFS_DELAYED_DELETION_ITEM)
535 			item->bytes_reserved = num_bytes;
536 	}
537 
538 	return ret;
539 }
540 
541 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
542 						struct btrfs_delayed_item *item)
543 {
544 	struct btrfs_block_rsv *rsv;
545 	struct btrfs_fs_info *fs_info = root->fs_info;
546 
547 	if (!item->bytes_reserved)
548 		return;
549 
550 	rsv = &fs_info->delayed_block_rsv;
551 	/*
552 	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
553 	 * to release/reserve qgroup space.
554 	 */
555 	trace_btrfs_space_reservation(fs_info, "delayed_item",
556 				      item->delayed_node->inode_id,
557 				      item->bytes_reserved, 0);
558 	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
559 }
560 
561 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
562 					      unsigned int num_leaves)
563 {
564 	struct btrfs_fs_info *fs_info = node->root->fs_info;
565 	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
566 
567 	/* There are no space reservations during log replay, bail out. */
568 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
569 		return;
570 
571 	trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
572 				      bytes, 0);
573 	btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
574 }
575 
576 static int btrfs_delayed_inode_reserve_metadata(
577 					struct btrfs_trans_handle *trans,
578 					struct btrfs_root *root,
579 					struct btrfs_delayed_node *node)
580 {
581 	struct btrfs_fs_info *fs_info = root->fs_info;
582 	struct btrfs_block_rsv *src_rsv;
583 	struct btrfs_block_rsv *dst_rsv;
584 	u64 num_bytes;
585 	int ret;
586 
587 	src_rsv = trans->block_rsv;
588 	dst_rsv = &fs_info->delayed_block_rsv;
589 
590 	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
591 
592 	/*
593 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
594 	 * which doesn't reserve space for speed.  This is a problem since we
595 	 * still need to reserve space for this update, so try to reserve the
596 	 * space.
597 	 *
598 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
599 	 * we always reserve enough to update the inode item.
600 	 */
601 	if (!src_rsv || (!trans->bytes_reserved &&
602 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
603 		ret = btrfs_qgroup_reserve_meta(root, num_bytes,
604 					  BTRFS_QGROUP_RSV_META_PREALLOC, true);
605 		if (ret < 0)
606 			return ret;
607 		ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
608 					  BTRFS_RESERVE_NO_FLUSH);
609 		/* NO_FLUSH could only fail with -ENOSPC */
610 		ASSERT(ret == 0 || ret == -ENOSPC);
611 		if (ret)
612 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
613 	} else {
614 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
615 	}
616 
617 	if (!ret) {
618 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
619 					      node->inode_id, num_bytes, 1);
620 		node->bytes_reserved = num_bytes;
621 	}
622 
623 	return ret;
624 }
625 
626 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
627 						struct btrfs_delayed_node *node,
628 						bool qgroup_free)
629 {
630 	struct btrfs_block_rsv *rsv;
631 
632 	if (!node->bytes_reserved)
633 		return;
634 
635 	rsv = &fs_info->delayed_block_rsv;
636 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
637 				      node->inode_id, node->bytes_reserved, 0);
638 	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
639 	if (qgroup_free)
640 		btrfs_qgroup_free_meta_prealloc(node->root,
641 				node->bytes_reserved);
642 	else
643 		btrfs_qgroup_convert_reserved_meta(node->root,
644 				node->bytes_reserved);
645 	node->bytes_reserved = 0;
646 }
647 
648 /*
649  * Insert a single delayed item or a batch of delayed items, as many as possible
650  * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
651  * in the rbtree, and if there's a gap between two consecutive dir index items,
652  * then it means at some point we had delayed dir indexes to add but they got
653  * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
654  * into the subvolume tree. Dir index keys also have their offsets coming from a
655  * monotonically increasing counter, so we can't get new keys with an offset that
656  * fits within a gap between delayed dir index items.
657  */
658 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
659 				     struct btrfs_root *root,
660 				     struct btrfs_path *path,
661 				     struct btrfs_delayed_item *first_item)
662 {
663 	struct btrfs_fs_info *fs_info = root->fs_info;
664 	struct btrfs_delayed_node *node = first_item->delayed_node;
665 	LIST_HEAD(item_list);
666 	struct btrfs_delayed_item *curr;
667 	struct btrfs_delayed_item *next;
668 	const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
669 	struct btrfs_item_batch batch;
670 	struct btrfs_key first_key;
671 	const u32 first_data_size = first_item->data_len;
672 	int total_size;
673 	char AUTO_KFREE(ins_data);
674 	int ret;
675 	bool continuous_keys_only = false;
676 
677 	lockdep_assert_held(&node->mutex);
678 
679 	/*
680 	 * During normal operation the delayed index offset is continuously
681 	 * increasing, so we can batch insert all items as there will not be any
682 	 * overlapping keys in the tree.
683 	 *
684 	 * The exception to this is log replay, where we may have interleaved
685 	 * offsets in the tree, so our batch needs to be continuous keys only in
686 	 * order to ensure we do not end up with out of order items in our leaf.
687 	 */
688 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
689 		continuous_keys_only = true;
690 
691 	/*
692 	 * For delayed items to insert, we track reserved metadata bytes based
693 	 * on the number of leaves that we will use.
694 	 * See btrfs_insert_delayed_dir_index() and
695 	 * btrfs_delayed_item_reserve_metadata()).
696 	 */
697 	ASSERT(first_item->bytes_reserved == 0);
698 
699 	list_add_tail(&first_item->tree_list, &item_list);
700 	batch.total_data_size = first_data_size;
701 	batch.nr = 1;
702 	total_size = first_data_size + sizeof(struct btrfs_item);
703 	curr = first_item;
704 
705 	while (true) {
706 		int next_size;
707 
708 		next = __btrfs_next_delayed_item(curr);
709 		if (!next)
710 			break;
711 
712 		/*
713 		 * We cannot allow gaps in the key space if we're doing log
714 		 * replay.
715 		 */
716 		if (continuous_keys_only && (next->index != curr->index + 1))
717 			break;
718 
719 		ASSERT(next->bytes_reserved == 0);
720 
721 		next_size = next->data_len + sizeof(struct btrfs_item);
722 		if (total_size + next_size > max_size)
723 			break;
724 
725 		list_add_tail(&next->tree_list, &item_list);
726 		batch.nr++;
727 		total_size += next_size;
728 		batch.total_data_size += next->data_len;
729 		curr = next;
730 	}
731 
732 	if (batch.nr == 1) {
733 		first_key.objectid = node->inode_id;
734 		first_key.type = BTRFS_DIR_INDEX_KEY;
735 		first_key.offset = first_item->index;
736 		batch.keys = &first_key;
737 		batch.data_sizes = &first_data_size;
738 	} else {
739 		struct btrfs_key *ins_keys;
740 		u32 *ins_sizes;
741 		int i = 0;
742 
743 		ins_data = kmalloc_array(batch.nr,
744 					 sizeof(u32) + sizeof(struct btrfs_key), GFP_NOFS);
745 		if (!ins_data)
746 			return -ENOMEM;
747 		ins_sizes = (u32 *)ins_data;
748 		ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
749 		batch.keys = ins_keys;
750 		batch.data_sizes = ins_sizes;
751 		list_for_each_entry(curr, &item_list, tree_list) {
752 			ins_keys[i].objectid = node->inode_id;
753 			ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
754 			ins_keys[i].offset = curr->index;
755 			ins_sizes[i] = curr->data_len;
756 			i++;
757 		}
758 	}
759 
760 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
761 	if (ret)
762 		return ret;
763 
764 	list_for_each_entry(curr, &item_list, tree_list) {
765 		char *data_ptr;
766 
767 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
768 		write_extent_buffer(path->nodes[0], &curr->data,
769 				    (unsigned long)data_ptr, curr->data_len);
770 		path->slots[0]++;
771 	}
772 
773 	/*
774 	 * Now release our path before releasing the delayed items and their
775 	 * metadata reservations, so that we don't block other tasks for more
776 	 * time than needed.
777 	 */
778 	btrfs_release_path(path);
779 
780 	ASSERT(node->index_item_leaves > 0);
781 
782 	/*
783 	 * For normal operations we will batch an entire leaf's worth of delayed
784 	 * items, so if there are more items to process we can decrement
785 	 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
786 	 *
787 	 * However for log replay we may not have inserted an entire leaf's
788 	 * worth of items, we may have not had continuous items, so decrementing
789 	 * here would mess up the index_item_leaves accounting.  For this case
790 	 * only clean up the accounting when there are no items left.
791 	 */
792 	if (next && !continuous_keys_only) {
793 		/*
794 		 * We inserted one batch of items into a leaf a there are more
795 		 * items to flush in a future batch, now release one unit of
796 		 * metadata space from the delayed block reserve, corresponding
797 		 * the leaf we just flushed to.
798 		 */
799 		btrfs_delayed_item_release_leaves(node, 1);
800 		node->index_item_leaves--;
801 	} else if (!next) {
802 		/*
803 		 * There are no more items to insert. We can have a number of
804 		 * reserved leaves > 1 here - this happens when many dir index
805 		 * items are added and then removed before they are flushed (file
806 		 * names with a very short life, never span a transaction). So
807 		 * release all remaining leaves.
808 		 */
809 		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
810 		node->index_item_leaves = 0;
811 	}
812 
813 	list_for_each_entry_safe(curr, next, &item_list, tree_list) {
814 		list_del(&curr->tree_list);
815 		btrfs_release_delayed_item(curr);
816 	}
817 
818 	return 0;
819 }
820 
821 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
822 				      struct btrfs_path *path,
823 				      struct btrfs_root *root,
824 				      struct btrfs_delayed_node *node)
825 {
826 	int ret = 0;
827 
828 	while (ret == 0) {
829 		struct btrfs_delayed_item *curr;
830 
831 		mutex_lock(&node->mutex);
832 		curr = __btrfs_first_delayed_insertion_item(node);
833 		if (!curr) {
834 			mutex_unlock(&node->mutex);
835 			break;
836 		}
837 		ret = btrfs_insert_delayed_item(trans, root, path, curr);
838 		mutex_unlock(&node->mutex);
839 	}
840 
841 	return ret;
842 }
843 
844 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
845 				    struct btrfs_root *root,
846 				    struct btrfs_path *path,
847 				    struct btrfs_delayed_item *item)
848 {
849 	const u64 ino = item->delayed_node->inode_id;
850 	struct btrfs_fs_info *fs_info = root->fs_info;
851 	struct btrfs_delayed_item *curr, *next;
852 	struct extent_buffer *leaf = path->nodes[0];
853 	LIST_HEAD(batch_list);
854 	int nitems, slot, last_slot;
855 	int ret;
856 	u64 total_reserved_size = item->bytes_reserved;
857 
858 	ASSERT(leaf != NULL);
859 
860 	slot = path->slots[0];
861 	last_slot = btrfs_header_nritems(leaf) - 1;
862 	/*
863 	 * Our caller always gives us a path pointing to an existing item, so
864 	 * this can not happen.
865 	 */
866 	ASSERT(slot <= last_slot);
867 	if (WARN_ON(slot > last_slot))
868 		return -ENOENT;
869 
870 	nitems = 1;
871 	curr = item;
872 	list_add_tail(&curr->tree_list, &batch_list);
873 
874 	/*
875 	 * Keep checking if the next delayed item matches the next item in the
876 	 * leaf - if so, we can add it to the batch of items to delete from the
877 	 * leaf.
878 	 */
879 	while (slot < last_slot) {
880 		struct btrfs_key key;
881 
882 		next = __btrfs_next_delayed_item(curr);
883 		if (!next)
884 			break;
885 
886 		slot++;
887 		btrfs_item_key_to_cpu(leaf, &key, slot);
888 		if (key.objectid != ino ||
889 		    key.type != BTRFS_DIR_INDEX_KEY ||
890 		    key.offset != next->index)
891 			break;
892 		nitems++;
893 		curr = next;
894 		list_add_tail(&curr->tree_list, &batch_list);
895 		total_reserved_size += curr->bytes_reserved;
896 	}
897 
898 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
899 	if (ret)
900 		return ret;
901 
902 	/* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
903 	if (total_reserved_size > 0) {
904 		/*
905 		 * Check btrfs_delayed_item_reserve_metadata() to see why we
906 		 * don't need to release/reserve qgroup space.
907 		 */
908 		trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
909 					      total_reserved_size, 0);
910 		btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
911 					total_reserved_size, NULL);
912 	}
913 
914 	list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
915 		list_del(&curr->tree_list);
916 		btrfs_release_delayed_item(curr);
917 	}
918 
919 	return 0;
920 }
921 
922 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
923 				      struct btrfs_path *path,
924 				      struct btrfs_root *root,
925 				      struct btrfs_delayed_node *node)
926 {
927 	struct btrfs_key key;
928 	int ret = 0;
929 
930 	key.objectid = node->inode_id;
931 	key.type = BTRFS_DIR_INDEX_KEY;
932 
933 	while (ret == 0) {
934 		struct btrfs_delayed_item *item;
935 
936 		mutex_lock(&node->mutex);
937 		item = __btrfs_first_delayed_deletion_item(node);
938 		if (!item) {
939 			mutex_unlock(&node->mutex);
940 			break;
941 		}
942 
943 		key.offset = item->index;
944 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
945 		if (ret > 0) {
946 			/*
947 			 * There's no matching item in the leaf. This means we
948 			 * have already deleted this item in a past run of the
949 			 * delayed items. We ignore errors when running delayed
950 			 * items from an async context, through a work queue job
951 			 * running btrfs_async_run_delayed_root(), and don't
952 			 * release delayed items that failed to complete. This
953 			 * is because we will retry later, and at transaction
954 			 * commit time we always run delayed items and will
955 			 * then deal with errors if they fail to run again.
956 			 *
957 			 * So just release delayed items for which we can't find
958 			 * an item in the tree, and move to the next item.
959 			 */
960 			btrfs_release_path(path);
961 			btrfs_release_delayed_item(item);
962 			ret = 0;
963 		} else if (ret == 0) {
964 			ret = btrfs_batch_delete_items(trans, root, path, item);
965 			btrfs_release_path(path);
966 		}
967 
968 		/*
969 		 * We unlock and relock on each iteration, this is to prevent
970 		 * blocking other tasks for too long while we are being run from
971 		 * the async context (work queue job). Those tasks are typically
972 		 * running system calls like creat/mkdir/rename/unlink/etc which
973 		 * need to add delayed items to this delayed node.
974 		 */
975 		mutex_unlock(&node->mutex);
976 	}
977 
978 	return ret;
979 }
980 
981 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
982 {
983 	struct btrfs_delayed_root *delayed_root;
984 
985 	if (delayed_node &&
986 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
987 		ASSERT(delayed_node->root);
988 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
989 		delayed_node->count--;
990 
991 		delayed_root = delayed_node->root->fs_info->delayed_root;
992 		finish_one_item(delayed_root);
993 	}
994 }
995 
996 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
997 {
998 
999 	if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
1000 		struct btrfs_delayed_root *delayed_root;
1001 
1002 		ASSERT(delayed_node->root);
1003 		delayed_node->count--;
1004 
1005 		delayed_root = delayed_node->root->fs_info->delayed_root;
1006 		finish_one_item(delayed_root);
1007 	}
1008 }
1009 
1010 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1011 					struct btrfs_root *root,
1012 					struct btrfs_path *path,
1013 					struct btrfs_delayed_node *node)
1014 {
1015 	struct btrfs_fs_info *fs_info = root->fs_info;
1016 	struct btrfs_key key;
1017 	struct btrfs_inode_item *inode_item;
1018 	struct extent_buffer *leaf;
1019 	int mod;
1020 	int ret;
1021 
1022 	key.objectid = node->inode_id;
1023 	key.type = BTRFS_INODE_ITEM_KEY;
1024 	key.offset = 0;
1025 
1026 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1027 		mod = -1;
1028 	else
1029 		mod = 1;
1030 
1031 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1032 	if (ret > 0)
1033 		ret = -ENOENT;
1034 	if (ret < 0) {
1035 		/*
1036 		 * If we fail to update the delayed inode we need to abort the
1037 		 * transaction, because we could leave the inode with the
1038 		 * improper counts behind.
1039 		 */
1040 		if (unlikely(ret != -ENOENT))
1041 			btrfs_abort_transaction(trans, ret);
1042 		goto out;
1043 	}
1044 
1045 	leaf = path->nodes[0];
1046 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1047 				    struct btrfs_inode_item);
1048 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1049 			    sizeof(struct btrfs_inode_item));
1050 
1051 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1052 		goto out;
1053 
1054 	/*
1055 	 * Now we're going to delete the INODE_REF/EXTREF, which should be the
1056 	 * only one ref left.  Check if the next item is an INODE_REF/EXTREF.
1057 	 *
1058 	 * But if we're the last item already, release and search for the last
1059 	 * INODE_REF/EXTREF.
1060 	 */
1061 	if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1062 		key.objectid = node->inode_id;
1063 		key.type = BTRFS_INODE_EXTREF_KEY;
1064 		key.offset = (u64)-1;
1065 
1066 		btrfs_release_path(path);
1067 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1068 		if (unlikely(ret < 0)) {
1069 			btrfs_abort_transaction(trans, ret);
1070 			goto err_out;
1071 		}
1072 		ASSERT(ret > 0);
1073 		ASSERT(path->slots[0] > 0);
1074 		ret = 0;
1075 		path->slots[0]--;
1076 		leaf = path->nodes[0];
1077 	} else {
1078 		path->slots[0]++;
1079 	}
1080 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1081 	if (key.objectid != node->inode_id)
1082 		goto out;
1083 	if (key.type != BTRFS_INODE_REF_KEY &&
1084 	    key.type != BTRFS_INODE_EXTREF_KEY)
1085 		goto out;
1086 
1087 	/*
1088 	 * Delayed iref deletion is for the inode who has only one link,
1089 	 * so there is only one iref. The case that several irefs are
1090 	 * in the same item doesn't exist.
1091 	 */
1092 	ret = btrfs_del_item(trans, root, path);
1093 	if (ret < 0)
1094 		btrfs_abort_transaction(trans, ret);
1095 out:
1096 	btrfs_release_delayed_iref(node);
1097 	btrfs_release_path(path);
1098 err_out:
1099 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1100 	btrfs_release_delayed_inode(node);
1101 	return ret;
1102 }
1103 
1104 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1105 					     struct btrfs_root *root,
1106 					     struct btrfs_path *path,
1107 					     struct btrfs_delayed_node *node)
1108 {
1109 	int ret;
1110 
1111 	mutex_lock(&node->mutex);
1112 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1113 		mutex_unlock(&node->mutex);
1114 		return 0;
1115 	}
1116 
1117 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1118 	mutex_unlock(&node->mutex);
1119 	return ret;
1120 }
1121 
1122 static inline int
1123 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1124 				   struct btrfs_path *path,
1125 				   struct btrfs_delayed_node *node)
1126 {
1127 	int ret;
1128 
1129 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1130 	if (ret)
1131 		return ret;
1132 
1133 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1134 	if (ret)
1135 		return ret;
1136 
1137 	ret = btrfs_record_root_in_trans(trans, node->root);
1138 	if (ret)
1139 		return ret;
1140 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1141 	return ret;
1142 }
1143 
1144 /*
1145  * Called when committing the transaction.
1146  * Returns 0 on success.
1147  * Returns < 0 on error and returns with an aborted transaction with any
1148  * outstanding delayed items cleaned up.
1149  */
1150 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1151 {
1152 	struct btrfs_fs_info *fs_info = trans->fs_info;
1153 	struct btrfs_delayed_root *delayed_root;
1154 	struct btrfs_delayed_node *curr_node, *prev_node;
1155 	struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker;
1156 	struct btrfs_path *path;
1157 	struct btrfs_block_rsv *block_rsv;
1158 	int ret = 0;
1159 	bool count = (nr > 0);
1160 
1161 	if (TRANS_ABORTED(trans))
1162 		return -EIO;
1163 
1164 	path = btrfs_alloc_path();
1165 	if (!path)
1166 		return -ENOMEM;
1167 
1168 	block_rsv = trans->block_rsv;
1169 	trans->block_rsv = &fs_info->delayed_block_rsv;
1170 
1171 	delayed_root = fs_info->delayed_root;
1172 
1173 	curr_node = btrfs_first_delayed_node(delayed_root, &curr_delayed_node_tracker);
1174 	while (curr_node && (!count || nr--)) {
1175 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1176 							 curr_node);
1177 		if (unlikely(ret)) {
1178 			btrfs_abort_transaction(trans, ret);
1179 			break;
1180 		}
1181 
1182 		prev_node = curr_node;
1183 		prev_delayed_node_tracker = curr_delayed_node_tracker;
1184 		curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker);
1185 		/*
1186 		 * See the comment below about releasing path before releasing
1187 		 * node. If the commit of delayed items was successful the path
1188 		 * should always be released, but in case of an error, it may
1189 		 * point to locked extent buffers (a leaf at the very least).
1190 		 */
1191 		ASSERT(path->nodes[0] == NULL);
1192 		btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker);
1193 	}
1194 
1195 	/*
1196 	 * Release the path to avoid a potential deadlock and lockdep splat when
1197 	 * releasing the delayed node, as that requires taking the delayed node's
1198 	 * mutex. If another task starts running delayed items before we take
1199 	 * the mutex, it will first lock the mutex and then it may try to lock
1200 	 * the same btree path (leaf).
1201 	 */
1202 	btrfs_free_path(path);
1203 
1204 	if (curr_node)
1205 		btrfs_release_delayed_node(curr_node, &curr_delayed_node_tracker);
1206 	trans->block_rsv = block_rsv;
1207 
1208 	return ret;
1209 }
1210 
1211 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1212 {
1213 	return __btrfs_run_delayed_items(trans, -1);
1214 }
1215 
1216 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1217 {
1218 	return __btrfs_run_delayed_items(trans, nr);
1219 }
1220 
1221 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1222 				     struct btrfs_inode *inode)
1223 {
1224 	struct btrfs_ref_tracker delayed_node_tracker;
1225 	struct btrfs_delayed_node *delayed_node =
1226 		btrfs_get_delayed_node(inode, &delayed_node_tracker);
1227 	BTRFS_PATH_AUTO_FREE(path);
1228 	struct btrfs_block_rsv *block_rsv;
1229 	int ret;
1230 
1231 	if (!delayed_node)
1232 		return 0;
1233 
1234 	mutex_lock(&delayed_node->mutex);
1235 	if (!delayed_node->count) {
1236 		mutex_unlock(&delayed_node->mutex);
1237 		btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1238 		return 0;
1239 	}
1240 	mutex_unlock(&delayed_node->mutex);
1241 
1242 	path = btrfs_alloc_path();
1243 	if (!path) {
1244 		btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1245 		return -ENOMEM;
1246 	}
1247 
1248 	block_rsv = trans->block_rsv;
1249 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1250 
1251 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1252 
1253 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1254 	trans->block_rsv = block_rsv;
1255 
1256 	return ret;
1257 }
1258 
1259 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1260 {
1261 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1262 	struct btrfs_trans_handle *trans;
1263 	struct btrfs_ref_tracker delayed_node_tracker;
1264 	struct btrfs_delayed_node *delayed_node;
1265 	struct btrfs_path *path;
1266 	struct btrfs_block_rsv *block_rsv;
1267 	int ret;
1268 
1269 	delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1270 	if (!delayed_node)
1271 		return 0;
1272 
1273 	mutex_lock(&delayed_node->mutex);
1274 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1275 		mutex_unlock(&delayed_node->mutex);
1276 		btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1277 		return 0;
1278 	}
1279 	mutex_unlock(&delayed_node->mutex);
1280 
1281 	trans = btrfs_join_transaction(delayed_node->root);
1282 	if (IS_ERR(trans)) {
1283 		ret = PTR_ERR(trans);
1284 		goto out;
1285 	}
1286 
1287 	path = btrfs_alloc_path();
1288 	if (!path) {
1289 		ret = -ENOMEM;
1290 		goto trans_out;
1291 	}
1292 
1293 	block_rsv = trans->block_rsv;
1294 	trans->block_rsv = &fs_info->delayed_block_rsv;
1295 
1296 	mutex_lock(&delayed_node->mutex);
1297 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1298 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1299 						   path, delayed_node);
1300 	else
1301 		ret = 0;
1302 	mutex_unlock(&delayed_node->mutex);
1303 
1304 	btrfs_free_path(path);
1305 	trans->block_rsv = block_rsv;
1306 trans_out:
1307 	btrfs_end_transaction(trans);
1308 	btrfs_btree_balance_dirty(fs_info);
1309 out:
1310 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1311 
1312 	return ret;
1313 }
1314 
1315 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1316 {
1317 	struct btrfs_delayed_node *delayed_node;
1318 
1319 	delayed_node = READ_ONCE(inode->delayed_node);
1320 	if (!delayed_node)
1321 		return;
1322 
1323 	inode->delayed_node = NULL;
1324 
1325 	btrfs_release_delayed_node(delayed_node, &delayed_node->inode_cache_tracker);
1326 }
1327 
1328 struct btrfs_async_delayed_work {
1329 	struct btrfs_delayed_root *delayed_root;
1330 	int nr;
1331 	struct btrfs_work work;
1332 };
1333 
1334 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1335 {
1336 	struct btrfs_async_delayed_work *async_work;
1337 	struct btrfs_delayed_root *delayed_root;
1338 	struct btrfs_trans_handle *trans;
1339 	struct btrfs_path *path;
1340 	struct btrfs_delayed_node *delayed_node = NULL;
1341 	struct btrfs_ref_tracker delayed_node_tracker;
1342 	struct btrfs_root *root;
1343 	struct btrfs_block_rsv *block_rsv;
1344 	int total_done = 0;
1345 
1346 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1347 	delayed_root = async_work->delayed_root;
1348 
1349 	path = btrfs_alloc_path();
1350 	if (!path)
1351 		goto out;
1352 
1353 	do {
1354 		if (atomic_read(&delayed_root->items) <
1355 		    BTRFS_DELAYED_BACKGROUND / 2)
1356 			break;
1357 
1358 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root,
1359 								 &delayed_node_tracker);
1360 		if (!delayed_node)
1361 			break;
1362 
1363 		root = delayed_node->root;
1364 
1365 		trans = btrfs_join_transaction(root);
1366 		if (IS_ERR(trans)) {
1367 			btrfs_release_path(path);
1368 			btrfs_release_prepared_delayed_node(delayed_node,
1369 							    &delayed_node_tracker);
1370 			total_done++;
1371 			continue;
1372 		}
1373 
1374 		block_rsv = trans->block_rsv;
1375 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1376 
1377 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1378 
1379 		trans->block_rsv = block_rsv;
1380 		btrfs_end_transaction(trans);
1381 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1382 
1383 		btrfs_release_path(path);
1384 		btrfs_release_prepared_delayed_node(delayed_node,
1385 						    &delayed_node_tracker);
1386 		total_done++;
1387 
1388 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1389 		 || total_done < async_work->nr);
1390 
1391 	btrfs_free_path(path);
1392 out:
1393 	wake_up(&delayed_root->wait);
1394 	kfree(async_work);
1395 }
1396 
1397 
1398 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1399 				     struct btrfs_fs_info *fs_info, int nr)
1400 {
1401 	struct btrfs_async_delayed_work *async_work;
1402 
1403 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1404 	if (!async_work)
1405 		return -ENOMEM;
1406 
1407 	async_work->delayed_root = delayed_root;
1408 	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
1409 	async_work->nr = nr;
1410 
1411 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1412 	return 0;
1413 }
1414 
1415 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1416 {
1417 	struct btrfs_ref_tracker delayed_node_tracker;
1418 	struct btrfs_delayed_node *node;
1419 
1420 	node = btrfs_first_delayed_node( fs_info->delayed_root, &delayed_node_tracker);
1421 	if (WARN_ON(node)) {
1422 		btrfs_delayed_node_ref_tracker_free(node,
1423 						    &delayed_node_tracker);
1424 		refcount_dec(&node->refs);
1425 	}
1426 }
1427 
1428 static bool could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1429 {
1430 	int val = atomic_read(&delayed_root->items_seq);
1431 
1432 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1433 		return true;
1434 
1435 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1436 		return true;
1437 
1438 	return false;
1439 }
1440 
1441 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1442 {
1443 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1444 
1445 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1446 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1447 		return;
1448 
1449 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1450 		int seq;
1451 		int ret;
1452 
1453 		seq = atomic_read(&delayed_root->items_seq);
1454 
1455 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1456 		if (ret)
1457 			return;
1458 
1459 		wait_event_interruptible(delayed_root->wait,
1460 					 could_end_wait(delayed_root, seq));
1461 		return;
1462 	}
1463 
1464 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1465 }
1466 
1467 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1468 {
1469 	struct btrfs_fs_info *fs_info = trans->fs_info;
1470 	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1471 
1472 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1473 		return;
1474 
1475 	/*
1476 	 * Adding the new dir index item does not require touching another
1477 	 * leaf, so we can release 1 unit of metadata that was previously
1478 	 * reserved when starting the transaction. This applies only to
1479 	 * the case where we had a transaction start and excludes the
1480 	 * transaction join case (when replaying log trees).
1481 	 */
1482 	trace_btrfs_space_reservation(fs_info, "transaction",
1483 				      trans->transid, bytes, 0);
1484 	btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1485 	ASSERT(trans->bytes_reserved >= bytes);
1486 	trans->bytes_reserved -= bytes;
1487 }
1488 
1489 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
1490 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1491 				   const char *name, int name_len,
1492 				   struct btrfs_inode *dir,
1493 				   const struct btrfs_disk_key *disk_key, u8 flags,
1494 				   u64 index)
1495 {
1496 	struct btrfs_fs_info *fs_info = trans->fs_info;
1497 	const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1498 	struct btrfs_delayed_node *delayed_node;
1499 	struct btrfs_ref_tracker delayed_node_tracker;
1500 	struct btrfs_delayed_item *delayed_item;
1501 	struct btrfs_dir_item *dir_item;
1502 	bool reserve_leaf_space;
1503 	u32 data_len;
1504 	int ret;
1505 
1506 	delayed_node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker);
1507 	if (IS_ERR(delayed_node))
1508 		return PTR_ERR(delayed_node);
1509 
1510 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1511 						delayed_node,
1512 						BTRFS_DELAYED_INSERTION_ITEM);
1513 	if (!delayed_item) {
1514 		ret = -ENOMEM;
1515 		goto release_node;
1516 	}
1517 
1518 	delayed_item->index = index;
1519 
1520 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1521 	dir_item->location = *disk_key;
1522 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1523 	btrfs_set_stack_dir_data_len(dir_item, 0);
1524 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1525 	btrfs_set_stack_dir_flags(dir_item, flags);
1526 	memcpy((char *)(dir_item + 1), name, name_len);
1527 
1528 	data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1529 
1530 	mutex_lock(&delayed_node->mutex);
1531 
1532 	/*
1533 	 * First attempt to insert the delayed item. This is to make the error
1534 	 * handling path simpler in case we fail (-EEXIST). There's no risk of
1535 	 * any other task coming in and running the delayed item before we do
1536 	 * the metadata space reservation below, because we are holding the
1537 	 * delayed node's mutex and that mutex must also be locked before the
1538 	 * node's delayed items can be run.
1539 	 */
1540 	ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1541 	if (unlikely(ret)) {
1542 		btrfs_err(trans->fs_info,
1543 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1544 			  name_len, name, index, btrfs_root_id(delayed_node->root),
1545 			  delayed_node->inode_id, dir->index_cnt,
1546 			  delayed_node->index_cnt, ret);
1547 		btrfs_release_delayed_item(delayed_item);
1548 		btrfs_release_dir_index_item_space(trans);
1549 		mutex_unlock(&delayed_node->mutex);
1550 		goto release_node;
1551 	}
1552 
1553 	if (delayed_node->index_item_leaves == 0 ||
1554 	    delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1555 		delayed_node->curr_index_batch_size = data_len;
1556 		reserve_leaf_space = true;
1557 	} else {
1558 		delayed_node->curr_index_batch_size += data_len;
1559 		reserve_leaf_space = false;
1560 	}
1561 
1562 	if (reserve_leaf_space) {
1563 		ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1564 		/*
1565 		 * Space was reserved for a dir index item insertion when we
1566 		 * started the transaction, so getting a failure here should be
1567 		 * impossible.
1568 		 */
1569 		if (WARN_ON(ret)) {
1570 			btrfs_release_delayed_item(delayed_item);
1571 			mutex_unlock(&delayed_node->mutex);
1572 			goto release_node;
1573 		}
1574 
1575 		delayed_node->index_item_leaves++;
1576 	} else {
1577 		btrfs_release_dir_index_item_space(trans);
1578 	}
1579 	mutex_unlock(&delayed_node->mutex);
1580 
1581 release_node:
1582 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1583 	return ret;
1584 }
1585 
1586 static bool btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node *node,
1587 						u64 index)
1588 {
1589 	struct btrfs_delayed_item *item;
1590 
1591 	mutex_lock(&node->mutex);
1592 	item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1593 	if (!item) {
1594 		mutex_unlock(&node->mutex);
1595 		return false;
1596 	}
1597 
1598 	/*
1599 	 * For delayed items to insert, we track reserved metadata bytes based
1600 	 * on the number of leaves that we will use.
1601 	 * See btrfs_insert_delayed_dir_index() and
1602 	 * btrfs_delayed_item_reserve_metadata()).
1603 	 */
1604 	ASSERT(item->bytes_reserved == 0);
1605 	ASSERT(node->index_item_leaves > 0);
1606 
1607 	/*
1608 	 * If there's only one leaf reserved, we can decrement this item from the
1609 	 * current batch, otherwise we can not because we don't know which leaf
1610 	 * it belongs to. With the current limit on delayed items, we rarely
1611 	 * accumulate enough dir index items to fill more than one leaf (even
1612 	 * when using a leaf size of 4K).
1613 	 */
1614 	if (node->index_item_leaves == 1) {
1615 		const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1616 
1617 		ASSERT(node->curr_index_batch_size >= data_len);
1618 		node->curr_index_batch_size -= data_len;
1619 	}
1620 
1621 	btrfs_release_delayed_item(item);
1622 
1623 	/* If we now have no more dir index items, we can release all leaves. */
1624 	if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1625 		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1626 		node->index_item_leaves = 0;
1627 	}
1628 
1629 	mutex_unlock(&node->mutex);
1630 	return true;
1631 }
1632 
1633 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1634 				   struct btrfs_inode *dir, u64 index)
1635 {
1636 	struct btrfs_delayed_node *node;
1637 	struct btrfs_ref_tracker delayed_node_tracker;
1638 	struct btrfs_delayed_item *item;
1639 	int ret;
1640 
1641 	node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker);
1642 	if (IS_ERR(node))
1643 		return PTR_ERR(node);
1644 
1645 	if (btrfs_delete_delayed_insertion_item(node, index)) {
1646 		ret = 0;
1647 		goto end;
1648 	}
1649 
1650 	item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1651 	if (!item) {
1652 		ret = -ENOMEM;
1653 		goto end;
1654 	}
1655 
1656 	item->index = index;
1657 
1658 	ret = btrfs_delayed_item_reserve_metadata(trans, item);
1659 	/*
1660 	 * we have reserved enough space when we start a new transaction,
1661 	 * so reserving metadata failure is impossible.
1662 	 */
1663 	if (ret < 0) {
1664 		btrfs_err(trans->fs_info,
1665 "metadata reservation failed for delayed dir item deletion, index: %llu, root: %llu, inode: %llu, error: %d",
1666 			  index, btrfs_root_id(node->root), node->inode_id, ret);
1667 		btrfs_release_delayed_item(item);
1668 		goto end;
1669 	}
1670 
1671 	mutex_lock(&node->mutex);
1672 	ret = __btrfs_add_delayed_item(node, item);
1673 	if (unlikely(ret)) {
1674 		btrfs_err(trans->fs_info,
1675 "failed to add delayed dir index item, root: %llu, inode: %llu, index: %llu, error: %d",
1676 			  index, btrfs_root_id(node->root), node->inode_id, ret);
1677 		btrfs_delayed_item_release_metadata(dir->root, item);
1678 		btrfs_release_delayed_item(item);
1679 	}
1680 	mutex_unlock(&node->mutex);
1681 end:
1682 	btrfs_release_delayed_node(node, &delayed_node_tracker);
1683 	return ret;
1684 }
1685 
1686 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1687 {
1688 	struct btrfs_ref_tracker delayed_node_tracker;
1689 	struct btrfs_delayed_node *delayed_node;
1690 
1691 	delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1692 	if (!delayed_node)
1693 		return -ENOENT;
1694 
1695 	/*
1696 	 * Since we have held i_mutex of this directory, it is impossible that
1697 	 * a new directory index is added into the delayed node and index_cnt
1698 	 * is updated now. So we needn't lock the delayed node.
1699 	 */
1700 	if (!delayed_node->index_cnt) {
1701 		btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1702 		return -EINVAL;
1703 	}
1704 
1705 	inode->index_cnt = delayed_node->index_cnt;
1706 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1707 	return 0;
1708 }
1709 
1710 bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode,
1711 				     u64 last_index,
1712 				     struct list_head *ins_list,
1713 				     struct list_head *del_list)
1714 {
1715 	struct btrfs_delayed_node *delayed_node;
1716 	struct btrfs_delayed_item *item;
1717 	struct btrfs_ref_tracker delayed_node_tracker;
1718 
1719 	delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1720 	if (!delayed_node)
1721 		return false;
1722 
1723 	/*
1724 	 * We can only do one readdir with delayed items at a time because of
1725 	 * item->readdir_list.
1726 	 */
1727 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1728 	btrfs_inode_lock(inode, 0);
1729 
1730 	mutex_lock(&delayed_node->mutex);
1731 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1732 	while (item && item->index <= last_index) {
1733 		refcount_inc(&item->refs);
1734 		list_add_tail(&item->readdir_list, ins_list);
1735 		item = __btrfs_next_delayed_item(item);
1736 	}
1737 
1738 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1739 	while (item && item->index <= last_index) {
1740 		refcount_inc(&item->refs);
1741 		list_add_tail(&item->readdir_list, del_list);
1742 		item = __btrfs_next_delayed_item(item);
1743 	}
1744 	mutex_unlock(&delayed_node->mutex);
1745 	/*
1746 	 * This delayed node is still cached in the btrfs inode, so refs
1747 	 * must be > 1 now, and we needn't check it is going to be freed
1748 	 * or not.
1749 	 *
1750 	 * Besides that, this function is used to read dir, we do not
1751 	 * insert/delete delayed items in this period. So we also needn't
1752 	 * requeue or dequeue this delayed node.
1753 	 */
1754 	btrfs_delayed_node_ref_tracker_free(delayed_node, &delayed_node_tracker);
1755 	refcount_dec(&delayed_node->refs);
1756 
1757 	return true;
1758 }
1759 
1760 void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode,
1761 				     struct list_head *ins_list,
1762 				     struct list_head *del_list)
1763 {
1764 	struct btrfs_delayed_item *curr, *next;
1765 
1766 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1767 		list_del(&curr->readdir_list);
1768 		if (refcount_dec_and_test(&curr->refs))
1769 			kfree(curr);
1770 	}
1771 
1772 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1773 		list_del(&curr->readdir_list);
1774 		if (refcount_dec_and_test(&curr->refs))
1775 			kfree(curr);
1776 	}
1777 
1778 	/*
1779 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1780 	 * read lock.
1781 	 */
1782 	downgrade_write(&inode->vfs_inode.i_rwsem);
1783 }
1784 
1785 bool btrfs_should_delete_dir_index(const struct list_head *del_list, u64 index)
1786 {
1787 	struct btrfs_delayed_item *curr;
1788 	bool ret = false;
1789 
1790 	list_for_each_entry(curr, del_list, readdir_list) {
1791 		if (curr->index > index)
1792 			break;
1793 		if (curr->index == index) {
1794 			ret = true;
1795 			break;
1796 		}
1797 	}
1798 	return ret;
1799 }
1800 
1801 /*
1802  * Read dir info stored in the delayed tree.
1803  */
1804 bool btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1805 				     const struct list_head *ins_list)
1806 {
1807 	struct btrfs_dir_item *di;
1808 	struct btrfs_delayed_item *curr, *next;
1809 	struct btrfs_key location;
1810 	char *name;
1811 	int name_len;
1812 	unsigned char d_type;
1813 
1814 	/*
1815 	 * Changing the data of the delayed item is impossible. So
1816 	 * we needn't lock them. And we have held i_mutex of the
1817 	 * directory, nobody can delete any directory indexes now.
1818 	 */
1819 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1820 		bool over;
1821 
1822 		list_del(&curr->readdir_list);
1823 
1824 		if (curr->index < ctx->pos) {
1825 			if (refcount_dec_and_test(&curr->refs))
1826 				kfree(curr);
1827 			continue;
1828 		}
1829 
1830 		ctx->pos = curr->index;
1831 
1832 		di = (struct btrfs_dir_item *)curr->data;
1833 		name = (char *)(di + 1);
1834 		name_len = btrfs_stack_dir_name_len(di);
1835 
1836 		d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1837 		btrfs_disk_key_to_cpu(&location, &di->location);
1838 
1839 		over = !dir_emit(ctx, name, name_len, location.objectid, d_type);
1840 
1841 		if (refcount_dec_and_test(&curr->refs))
1842 			kfree(curr);
1843 
1844 		if (over)
1845 			return true;
1846 		ctx->pos++;
1847 	}
1848 	return false;
1849 }
1850 
1851 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1852 				  struct btrfs_inode_item *inode_item,
1853 				  struct btrfs_inode *inode)
1854 {
1855 	struct inode *vfs_inode = &inode->vfs_inode;
1856 	u64 flags;
1857 
1858 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(vfs_inode));
1859 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(vfs_inode));
1860 	btrfs_set_stack_inode_size(inode_item, inode->disk_i_size);
1861 	btrfs_set_stack_inode_mode(inode_item, vfs_inode->i_mode);
1862 	btrfs_set_stack_inode_nlink(inode_item, vfs_inode->i_nlink);
1863 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(vfs_inode));
1864 	btrfs_set_stack_inode_generation(inode_item, inode->generation);
1865 	btrfs_set_stack_inode_sequence(inode_item,
1866 				       inode_peek_iversion(vfs_inode));
1867 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1868 	btrfs_set_stack_inode_rdev(inode_item, vfs_inode->i_rdev);
1869 	flags = btrfs_inode_combine_flags(inode->flags, inode->ro_flags);
1870 	btrfs_set_stack_inode_flags(inode_item, flags);
1871 	btrfs_set_stack_inode_block_group(inode_item, 0);
1872 
1873 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1874 				     inode_get_atime_sec(vfs_inode));
1875 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1876 				      inode_get_atime_nsec(vfs_inode));
1877 
1878 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1879 				     inode_get_mtime_sec(vfs_inode));
1880 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1881 				      inode_get_mtime_nsec(vfs_inode));
1882 
1883 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1884 				     inode_get_ctime_sec(vfs_inode));
1885 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1886 				      inode_get_ctime_nsec(vfs_inode));
1887 
1888 	btrfs_set_stack_timespec_sec(&inode_item->otime, inode->i_otime_sec);
1889 	btrfs_set_stack_timespec_nsec(&inode_item->otime, inode->i_otime_nsec);
1890 }
1891 
1892 int btrfs_fill_inode(struct btrfs_inode *inode, u32 *rdev)
1893 {
1894 	struct btrfs_delayed_node *delayed_node;
1895 	struct btrfs_ref_tracker delayed_node_tracker;
1896 	struct btrfs_inode_item *inode_item;
1897 	struct inode *vfs_inode = &inode->vfs_inode;
1898 
1899 	delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1900 	if (!delayed_node)
1901 		return -ENOENT;
1902 
1903 	mutex_lock(&delayed_node->mutex);
1904 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1905 		mutex_unlock(&delayed_node->mutex);
1906 		btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1907 		return -ENOENT;
1908 	}
1909 
1910 	inode_item = &delayed_node->inode_item;
1911 
1912 	i_uid_write(vfs_inode, btrfs_stack_inode_uid(inode_item));
1913 	i_gid_write(vfs_inode, btrfs_stack_inode_gid(inode_item));
1914 	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1915 	vfs_inode->i_mode = btrfs_stack_inode_mode(inode_item);
1916 	set_nlink(vfs_inode, btrfs_stack_inode_nlink(inode_item));
1917 	inode_set_bytes(vfs_inode, btrfs_stack_inode_nbytes(inode_item));
1918 	inode->generation = btrfs_stack_inode_generation(inode_item);
1919 	inode->last_trans = btrfs_stack_inode_transid(inode_item);
1920 
1921 	inode_set_iversion_queried(vfs_inode, btrfs_stack_inode_sequence(inode_item));
1922 	vfs_inode->i_rdev = 0;
1923 	*rdev = btrfs_stack_inode_rdev(inode_item);
1924 	btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1925 				&inode->flags, &inode->ro_flags);
1926 
1927 	inode_set_atime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->atime),
1928 			btrfs_stack_timespec_nsec(&inode_item->atime));
1929 
1930 	inode_set_mtime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1931 			btrfs_stack_timespec_nsec(&inode_item->mtime));
1932 
1933 	inode_set_ctime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1934 			btrfs_stack_timespec_nsec(&inode_item->ctime));
1935 
1936 	inode->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1937 	inode->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
1938 
1939 	vfs_inode->i_generation = inode->generation;
1940 	if (S_ISDIR(vfs_inode->i_mode))
1941 		inode->index_cnt = (u64)-1;
1942 
1943 	mutex_unlock(&delayed_node->mutex);
1944 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1945 	return 0;
1946 }
1947 
1948 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1949 			       struct btrfs_inode *inode)
1950 {
1951 	struct btrfs_root *root = inode->root;
1952 	struct btrfs_delayed_node *delayed_node;
1953 	struct btrfs_ref_tracker delayed_node_tracker;
1954 	int ret = 0;
1955 
1956 	delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker);
1957 	if (IS_ERR(delayed_node))
1958 		return PTR_ERR(delayed_node);
1959 
1960 	mutex_lock(&delayed_node->mutex);
1961 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1962 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1963 		goto release_node;
1964 	}
1965 
1966 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1967 	if (ret)
1968 		goto release_node;
1969 
1970 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1971 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1972 	delayed_node->count++;
1973 	atomic_inc(&root->fs_info->delayed_root->items);
1974 release_node:
1975 	mutex_unlock(&delayed_node->mutex);
1976 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1977 	return ret;
1978 }
1979 
1980 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1981 {
1982 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1983 	struct btrfs_delayed_node *delayed_node;
1984 	struct btrfs_ref_tracker delayed_node_tracker;
1985 
1986 	/*
1987 	 * we don't do delayed inode updates during log recovery because it
1988 	 * leads to enospc problems.  This means we also can't do
1989 	 * delayed inode refs
1990 	 */
1991 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1992 		return -EAGAIN;
1993 
1994 	delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker);
1995 	if (IS_ERR(delayed_node))
1996 		return PTR_ERR(delayed_node);
1997 
1998 	/*
1999 	 * We don't reserve space for inode ref deletion is because:
2000 	 * - We ONLY do async inode ref deletion for the inode who has only
2001 	 *   one link(i_nlink == 1), it means there is only one inode ref.
2002 	 *   And in most case, the inode ref and the inode item are in the
2003 	 *   same leaf, and we will deal with them at the same time.
2004 	 *   Since we are sure we will reserve the space for the inode item,
2005 	 *   it is unnecessary to reserve space for inode ref deletion.
2006 	 * - If the inode ref and the inode item are not in the same leaf,
2007 	 *   We also needn't worry about enospc problem, because we reserve
2008 	 *   much more space for the inode update than it needs.
2009 	 * - At the worst, we can steal some space from the global reservation.
2010 	 *   It is very rare.
2011 	 */
2012 	mutex_lock(&delayed_node->mutex);
2013 	if (!test_and_set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
2014 		delayed_node->count++;
2015 		atomic_inc(&fs_info->delayed_root->items);
2016 	}
2017 	mutex_unlock(&delayed_node->mutex);
2018 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
2019 	return 0;
2020 }
2021 
2022 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
2023 {
2024 	struct btrfs_root *root = delayed_node->root;
2025 	struct btrfs_fs_info *fs_info = root->fs_info;
2026 	struct btrfs_delayed_item *curr_item, *prev_item;
2027 
2028 	mutex_lock(&delayed_node->mutex);
2029 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
2030 	while (curr_item) {
2031 		prev_item = curr_item;
2032 		curr_item = __btrfs_next_delayed_item(prev_item);
2033 		btrfs_release_delayed_item(prev_item);
2034 	}
2035 
2036 	if (delayed_node->index_item_leaves > 0) {
2037 		btrfs_delayed_item_release_leaves(delayed_node,
2038 					  delayed_node->index_item_leaves);
2039 		delayed_node->index_item_leaves = 0;
2040 	}
2041 
2042 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2043 	while (curr_item) {
2044 		btrfs_delayed_item_release_metadata(root, curr_item);
2045 		prev_item = curr_item;
2046 		curr_item = __btrfs_next_delayed_item(prev_item);
2047 		btrfs_release_delayed_item(prev_item);
2048 	}
2049 
2050 	btrfs_release_delayed_iref(delayed_node);
2051 
2052 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2053 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2054 		btrfs_release_delayed_inode(delayed_node);
2055 	}
2056 	mutex_unlock(&delayed_node->mutex);
2057 }
2058 
2059 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2060 {
2061 	struct btrfs_delayed_node *delayed_node;
2062 	struct btrfs_ref_tracker delayed_node_tracker;
2063 
2064 	delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2065 	if (!delayed_node)
2066 		return;
2067 
2068 	__btrfs_kill_delayed_node(delayed_node);
2069 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
2070 }
2071 
2072 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2073 {
2074 	unsigned long index = 0;
2075 	struct btrfs_delayed_node *delayed_nodes[8];
2076 	struct btrfs_ref_tracker delayed_node_trackers[8];
2077 
2078 	while (1) {
2079 		struct btrfs_delayed_node *node;
2080 		int count;
2081 
2082 		xa_lock(&root->delayed_nodes);
2083 		if (xa_empty(&root->delayed_nodes)) {
2084 			xa_unlock(&root->delayed_nodes);
2085 			return;
2086 		}
2087 
2088 		count = 0;
2089 		xa_for_each_start(&root->delayed_nodes, index, node, index) {
2090 			/*
2091 			 * Don't increase refs in case the node is dead and
2092 			 * about to be removed from the tree in the loop below
2093 			 */
2094 			if (refcount_inc_not_zero(&node->refs)) {
2095 				btrfs_delayed_node_ref_tracker_alloc(node,
2096 						     &delayed_node_trackers[count],
2097 						     GFP_ATOMIC);
2098 				delayed_nodes[count] = node;
2099 				count++;
2100 			}
2101 			if (count >= ARRAY_SIZE(delayed_nodes))
2102 				break;
2103 		}
2104 		xa_unlock(&root->delayed_nodes);
2105 		index++;
2106 
2107 		for (int i = 0; i < count; i++) {
2108 			__btrfs_kill_delayed_node(delayed_nodes[i]);
2109 			btrfs_delayed_node_ref_tracker_dir_print(delayed_nodes[i]);
2110 			btrfs_release_delayed_node(delayed_nodes[i],
2111 						   &delayed_node_trackers[i]);
2112 		}
2113 	}
2114 }
2115 
2116 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2117 {
2118 	struct btrfs_delayed_node *curr_node, *prev_node;
2119 	struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker;
2120 
2121 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root,
2122 					     &curr_delayed_node_tracker);
2123 	while (curr_node) {
2124 		__btrfs_kill_delayed_node(curr_node);
2125 
2126 		prev_node = curr_node;
2127 		prev_delayed_node_tracker = curr_delayed_node_tracker;
2128 		curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker);
2129 		btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker);
2130 	}
2131 }
2132 
2133 void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2134 				 struct list_head *ins_list,
2135 				 struct list_head *del_list)
2136 {
2137 	struct btrfs_delayed_node *node;
2138 	struct btrfs_delayed_item *item;
2139 	struct btrfs_ref_tracker delayed_node_tracker;
2140 
2141 	node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2142 	if (!node)
2143 		return;
2144 
2145 	mutex_lock(&node->mutex);
2146 	item = __btrfs_first_delayed_insertion_item(node);
2147 	while (item) {
2148 		/*
2149 		 * It's possible that the item is already in a log list. This
2150 		 * can happen in case two tasks are trying to log the same
2151 		 * directory. For example if we have tasks A and task B:
2152 		 *
2153 		 * Task A collected the delayed items into a log list while
2154 		 * under the inode's log_mutex (at btrfs_log_inode()), but it
2155 		 * only releases the items after logging the inodes they point
2156 		 * to (if they are new inodes), which happens after unlocking
2157 		 * the log mutex;
2158 		 *
2159 		 * Task B enters btrfs_log_inode() and acquires the log_mutex
2160 		 * of the same directory inode, before task B releases the
2161 		 * delayed items. This can happen for example when logging some
2162 		 * inode we need to trigger logging of its parent directory, so
2163 		 * logging two files that have the same parent directory can
2164 		 * lead to this.
2165 		 *
2166 		 * If this happens, just ignore delayed items already in a log
2167 		 * list. All the tasks logging the directory are under a log
2168 		 * transaction and whichever finishes first can not sync the log
2169 		 * before the other completes and leaves the log transaction.
2170 		 */
2171 		if (!item->logged && list_empty(&item->log_list)) {
2172 			refcount_inc(&item->refs);
2173 			list_add_tail(&item->log_list, ins_list);
2174 		}
2175 		item = __btrfs_next_delayed_item(item);
2176 	}
2177 
2178 	item = __btrfs_first_delayed_deletion_item(node);
2179 	while (item) {
2180 		/* It may be non-empty, for the same reason mentioned above. */
2181 		if (!item->logged && list_empty(&item->log_list)) {
2182 			refcount_inc(&item->refs);
2183 			list_add_tail(&item->log_list, del_list);
2184 		}
2185 		item = __btrfs_next_delayed_item(item);
2186 	}
2187 	mutex_unlock(&node->mutex);
2188 
2189 	/*
2190 	 * We are called during inode logging, which means the inode is in use
2191 	 * and can not be evicted before we finish logging the inode. So we never
2192 	 * have the last reference on the delayed inode.
2193 	 * Also, we don't use btrfs_release_delayed_node() because that would
2194 	 * requeue the delayed inode (change its order in the list of prepared
2195 	 * nodes) and we don't want to do such change because we don't create or
2196 	 * delete delayed items.
2197 	 */
2198 	ASSERT(refcount_read(&node->refs) > 1);
2199 	btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker);
2200 	refcount_dec(&node->refs);
2201 }
2202 
2203 void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2204 				 struct list_head *ins_list,
2205 				 struct list_head *del_list)
2206 {
2207 	struct btrfs_delayed_node *node;
2208 	struct btrfs_delayed_item *item;
2209 	struct btrfs_delayed_item *next;
2210 	struct btrfs_ref_tracker delayed_node_tracker;
2211 
2212 	node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2213 	if (!node)
2214 		return;
2215 
2216 	mutex_lock(&node->mutex);
2217 
2218 	list_for_each_entry_safe(item, next, ins_list, log_list) {
2219 		item->logged = true;
2220 		list_del_init(&item->log_list);
2221 		if (refcount_dec_and_test(&item->refs))
2222 			kfree(item);
2223 	}
2224 
2225 	list_for_each_entry_safe(item, next, del_list, log_list) {
2226 		item->logged = true;
2227 		list_del_init(&item->log_list);
2228 		if (refcount_dec_and_test(&item->refs))
2229 			kfree(item);
2230 	}
2231 
2232 	mutex_unlock(&node->mutex);
2233 
2234 	/*
2235 	 * We are called during inode logging, which means the inode is in use
2236 	 * and can not be evicted before we finish logging the inode. So we never
2237 	 * have the last reference on the delayed inode.
2238 	 * Also, we don't use btrfs_release_delayed_node() because that would
2239 	 * requeue the delayed inode (change its order in the list of prepared
2240 	 * nodes) and we don't want to do such change because we don't create or
2241 	 * delete delayed items.
2242 	 */
2243 	ASSERT(refcount_read(&node->refs) > 1);
2244 	btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker);
2245 	refcount_dec(&node->refs);
2246 }
2247