1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8
9 #include "linux/cleanup.h"
10 #include <linux/pagemap.h>
11 #include <linux/spinlock.h>
12 #include <linux/rbtree.h>
13 #include <linux/mutex.h>
14 #include <linux/wait.h>
15 #include <linux/list.h>
16 #include <linux/atomic.h>
17 #include <linux/xarray.h>
18 #include <linux/refcount.h>
19 #include <uapi/linux/btrfs_tree.h>
20 #include "locking.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-io-tree.h"
24
25 struct extent_buffer;
26 struct btrfs_block_rsv;
27 struct btrfs_trans_handle;
28 struct btrfs_block_group;
29
30 /* Read ahead values for struct btrfs_path.reada */
31 enum {
32 READA_NONE,
33 READA_BACK,
34 READA_FORWARD,
35 /*
36 * Similar to READA_FORWARD but unlike it:
37 *
38 * 1) It will trigger readahead even for leaves that are not close to
39 * each other on disk;
40 * 2) It also triggers readahead for nodes;
41 * 3) During a search, even when a node or leaf is already in memory, it
42 * will still trigger readahead for other nodes and leaves that follow
43 * it.
44 *
45 * This is meant to be used only when we know we are iterating over the
46 * entire tree or a very large part of it.
47 */
48 READA_FORWARD_ALWAYS,
49 };
50
51 /*
52 * btrfs_paths remember the path taken from the root down to the leaf.
53 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
54 * to any other levels that are present.
55 *
56 * The slots array records the index of the item or block pointer
57 * used while walking the tree.
58 */
59 struct btrfs_path {
60 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
61 int slots[BTRFS_MAX_LEVEL];
62 /* if there is real range locking, this locks field will change */
63 u8 locks[BTRFS_MAX_LEVEL];
64 u8 reada;
65 /* keep some upper locks as we walk down */
66 u8 lowest_level;
67
68 /*
69 * set by btrfs_split_item, tells search_slot to keep all locks
70 * and to force calls to keep space in the nodes
71 */
72 unsigned int search_for_split:1;
73 unsigned int keep_locks:1;
74 unsigned int skip_locking:1;
75 unsigned int search_commit_root:1;
76 unsigned int need_commit_sem:1;
77 unsigned int skip_release_on_error:1;
78 /*
79 * Indicate that new item (btrfs_search_slot) is extending already
80 * existing item and ins_len contains only the data size and not item
81 * header (ie. sizeof(struct btrfs_item) is not included).
82 */
83 unsigned int search_for_extension:1;
84 /* Stop search if any locks need to be taken (for read) */
85 unsigned int nowait:1;
86 };
87
88 #define BTRFS_PATH_AUTO_FREE(path_name) \
89 struct btrfs_path *path_name __free(btrfs_free_path) = NULL
90
91 /*
92 * The state of btrfs root
93 */
94 enum {
95 /*
96 * btrfs_record_root_in_trans is a multi-step process, and it can race
97 * with the balancing code. But the race is very small, and only the
98 * first time the root is added to each transaction. So IN_TRANS_SETUP
99 * is used to tell us when more checks are required
100 */
101 BTRFS_ROOT_IN_TRANS_SETUP,
102
103 /*
104 * Set if tree blocks of this root can be shared by other roots.
105 * Only subvolume trees and their reloc trees have this bit set.
106 * Conflicts with TRACK_DIRTY bit.
107 *
108 * This affects two things:
109 *
110 * - How balance works
111 * For shareable roots, we need to use reloc tree and do path
112 * replacement for balance, and need various pre/post hooks for
113 * snapshot creation to handle them.
114 *
115 * While for non-shareable trees, we just simply do a tree search
116 * with COW.
117 *
118 * - How dirty roots are tracked
119 * For shareable roots, btrfs_record_root_in_trans() is needed to
120 * track them, while non-subvolume roots have TRACK_DIRTY bit, they
121 * don't need to set this manually.
122 */
123 BTRFS_ROOT_SHAREABLE,
124 BTRFS_ROOT_TRACK_DIRTY,
125 BTRFS_ROOT_IN_RADIX,
126 BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
127 BTRFS_ROOT_DEFRAG_RUNNING,
128 BTRFS_ROOT_FORCE_COW,
129 BTRFS_ROOT_MULTI_LOG_TASKS,
130 BTRFS_ROOT_DIRTY,
131 BTRFS_ROOT_DELETING,
132
133 /*
134 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
135 *
136 * Set for the subvolume tree owning the reloc tree.
137 */
138 BTRFS_ROOT_DEAD_RELOC_TREE,
139 /* Mark dead root stored on device whose cleanup needs to be resumed */
140 BTRFS_ROOT_DEAD_TREE,
141 /* The root has a log tree. Used for subvolume roots and the tree root. */
142 BTRFS_ROOT_HAS_LOG_TREE,
143 /* Qgroup flushing is in progress */
144 BTRFS_ROOT_QGROUP_FLUSHING,
145 /* We started the orphan cleanup for this root. */
146 BTRFS_ROOT_ORPHAN_CLEANUP,
147 /* This root has a drop operation that was started previously. */
148 BTRFS_ROOT_UNFINISHED_DROP,
149 /* This reloc root needs to have its buffers lockdep class reset. */
150 BTRFS_ROOT_RESET_LOCKDEP_CLASS,
151 };
152
153 /*
154 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
155 * code. For detail check comment in fs/btrfs/qgroup.c.
156 */
157 struct btrfs_qgroup_swapped_blocks {
158 spinlock_t lock;
159 /* RM_EMPTY_ROOT() of above blocks[] */
160 bool swapped;
161 struct rb_root blocks[BTRFS_MAX_LEVEL];
162 };
163
164 /*
165 * in ram representation of the tree. extent_root is used for all allocations
166 * and for the extent tree extent_root root.
167 */
168 struct btrfs_root {
169 struct rb_node rb_node;
170
171 struct extent_buffer *node;
172
173 struct extent_buffer *commit_root;
174 struct btrfs_root *log_root;
175 struct btrfs_root *reloc_root;
176
177 unsigned long state;
178 struct btrfs_root_item root_item;
179 struct btrfs_key root_key;
180 struct btrfs_fs_info *fs_info;
181 struct extent_io_tree dirty_log_pages;
182
183 struct mutex objectid_mutex;
184
185 spinlock_t accounting_lock;
186 struct btrfs_block_rsv *block_rsv;
187
188 struct mutex log_mutex;
189 wait_queue_head_t log_writer_wait;
190 wait_queue_head_t log_commit_wait[2];
191 struct list_head log_ctxs[2];
192 /* Used only for log trees of subvolumes, not for the log root tree */
193 atomic_t log_writers;
194 atomic_t log_commit[2];
195 /* Used only for log trees of subvolumes, not for the log root tree */
196 atomic_t log_batch;
197 /*
198 * Protected by the 'log_mutex' lock but can be read without holding
199 * that lock to avoid unnecessary lock contention, in which case it
200 * should be read using btrfs_get_root_log_transid() except if it's a
201 * log tree in which case it can be directly accessed. Updates to this
202 * field should always use btrfs_set_root_log_transid(), except for log
203 * trees where the field can be updated directly.
204 */
205 int log_transid;
206 /* No matter the commit succeeds or not*/
207 int log_transid_committed;
208 /*
209 * Just be updated when the commit succeeds. Use
210 * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit()
211 * to access this field.
212 */
213 int last_log_commit;
214 pid_t log_start_pid;
215
216 u64 last_trans;
217
218 u64 free_objectid;
219
220 struct btrfs_key defrag_progress;
221 struct btrfs_key defrag_max;
222
223 /* The dirty list is only used by non-shareable roots */
224 struct list_head dirty_list;
225
226 struct list_head root_list;
227
228 /*
229 * Xarray that keeps track of in-memory inodes, protected by the lock
230 * @inode_lock.
231 */
232 struct xarray inodes;
233
234 /*
235 * Xarray that keeps track of delayed nodes of every inode, protected
236 * by @inode_lock.
237 */
238 struct xarray delayed_nodes;
239 /*
240 * right now this just gets used so that a root has its own devid
241 * for stat. It may be used for more later
242 */
243 dev_t anon_dev;
244
245 spinlock_t root_item_lock;
246 refcount_t refs;
247
248 struct mutex delalloc_mutex;
249 spinlock_t delalloc_lock;
250 /*
251 * all of the inodes that have delalloc bytes. It is possible for
252 * this list to be empty even when there is still dirty data=ordered
253 * extents waiting to finish IO.
254 */
255 struct list_head delalloc_inodes;
256 struct list_head delalloc_root;
257 u64 nr_delalloc_inodes;
258
259 struct mutex ordered_extent_mutex;
260 /*
261 * this is used by the balancing code to wait for all the pending
262 * ordered extents
263 */
264 spinlock_t ordered_extent_lock;
265
266 /*
267 * all of the data=ordered extents pending writeback
268 * these can span multiple transactions and basically include
269 * every dirty data page that isn't from nodatacow
270 */
271 struct list_head ordered_extents;
272 struct list_head ordered_root;
273 u64 nr_ordered_extents;
274
275 /*
276 * Not empty if this subvolume root has gone through tree block swap
277 * (relocation)
278 *
279 * Will be used by reloc_control::dirty_subvol_roots.
280 */
281 struct list_head reloc_dirty_list;
282
283 /*
284 * Number of currently running SEND ioctls to prevent
285 * manipulation with the read-only status via SUBVOL_SETFLAGS
286 */
287 int send_in_progress;
288 /*
289 * Number of currently running deduplication operations that have a
290 * destination inode belonging to this root. Protected by the lock
291 * root_item_lock.
292 */
293 int dedupe_in_progress;
294 /* For exclusion of snapshot creation and nocow writes */
295 struct btrfs_drew_lock snapshot_lock;
296
297 atomic_t snapshot_force_cow;
298
299 /* For qgroup metadata reserved space */
300 spinlock_t qgroup_meta_rsv_lock;
301 u64 qgroup_meta_rsv_pertrans;
302 u64 qgroup_meta_rsv_prealloc;
303 wait_queue_head_t qgroup_flush_wait;
304
305 /* Number of active swapfiles */
306 atomic_t nr_swapfiles;
307
308 /* Record pairs of swapped blocks for qgroup */
309 struct btrfs_qgroup_swapped_blocks swapped_blocks;
310
311 /* Used only by log trees, when logging csum items */
312 struct extent_io_tree log_csum_range;
313
314 /* Used in simple quotas, track root during relocation. */
315 u64 relocation_src_root;
316
317 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
318 u64 alloc_bytenr;
319 #endif
320
321 #ifdef CONFIG_BTRFS_DEBUG
322 struct list_head leak_list;
323 #endif
324 };
325
btrfs_root_readonly(const struct btrfs_root * root)326 static inline bool btrfs_root_readonly(const struct btrfs_root *root)
327 {
328 /* Byte-swap the constant at compile time, root_item::flags is LE */
329 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
330 }
331
btrfs_root_dead(const struct btrfs_root * root)332 static inline bool btrfs_root_dead(const struct btrfs_root *root)
333 {
334 /* Byte-swap the constant at compile time, root_item::flags is LE */
335 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
336 }
337
btrfs_root_id(const struct btrfs_root * root)338 static inline u64 btrfs_root_id(const struct btrfs_root *root)
339 {
340 return root->root_key.objectid;
341 }
342
btrfs_get_root_log_transid(const struct btrfs_root * root)343 static inline int btrfs_get_root_log_transid(const struct btrfs_root *root)
344 {
345 return READ_ONCE(root->log_transid);
346 }
347
btrfs_set_root_log_transid(struct btrfs_root * root,int log_transid)348 static inline void btrfs_set_root_log_transid(struct btrfs_root *root, int log_transid)
349 {
350 WRITE_ONCE(root->log_transid, log_transid);
351 }
352
btrfs_get_root_last_log_commit(const struct btrfs_root * root)353 static inline int btrfs_get_root_last_log_commit(const struct btrfs_root *root)
354 {
355 return READ_ONCE(root->last_log_commit);
356 }
357
btrfs_set_root_last_log_commit(struct btrfs_root * root,int commit_id)358 static inline void btrfs_set_root_last_log_commit(struct btrfs_root *root, int commit_id)
359 {
360 WRITE_ONCE(root->last_log_commit, commit_id);
361 }
362
btrfs_get_root_last_trans(const struct btrfs_root * root)363 static inline u64 btrfs_get_root_last_trans(const struct btrfs_root *root)
364 {
365 return READ_ONCE(root->last_trans);
366 }
367
btrfs_set_root_last_trans(struct btrfs_root * root,u64 transid)368 static inline void btrfs_set_root_last_trans(struct btrfs_root *root, u64 transid)
369 {
370 WRITE_ONCE(root->last_trans, transid);
371 }
372
373 /*
374 * Return the generation this root started with.
375 *
376 * Every normal root that is created with root->root_key.offset set to it's
377 * originating generation. If it is a snapshot it is the generation when the
378 * snapshot was created.
379 *
380 * However for TREE_RELOC roots root_key.offset is the objectid of the owning
381 * tree root. Thankfully we copy the root item of the owning tree root, which
382 * has it's last_snapshot set to what we would have root_key.offset set to, so
383 * return that if this is a TREE_RELOC root.
384 */
btrfs_root_origin_generation(const struct btrfs_root * root)385 static inline u64 btrfs_root_origin_generation(const struct btrfs_root *root)
386 {
387 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
388 return btrfs_root_last_snapshot(&root->root_item);
389 return root->root_key.offset;
390 }
391
392 /*
393 * Structure that conveys information about an extent that is going to replace
394 * all the extents in a file range.
395 */
396 struct btrfs_replace_extent_info {
397 u64 disk_offset;
398 u64 disk_len;
399 u64 data_offset;
400 u64 data_len;
401 u64 file_offset;
402 /* Pointer to a file extent item of type regular or prealloc. */
403 char *extent_buf;
404 /*
405 * Set to true when attempting to replace a file range with a new extent
406 * described by this structure, set to false when attempting to clone an
407 * existing extent into a file range.
408 */
409 bool is_new_extent;
410 /* Indicate if we should update the inode's mtime and ctime. */
411 bool update_times;
412 /* Meaningful only if is_new_extent is true. */
413 int qgroup_reserved;
414 /*
415 * Meaningful only if is_new_extent is true.
416 * Used to track how many extent items we have already inserted in a
417 * subvolume tree that refer to the extent described by this structure,
418 * so that we know when to create a new delayed ref or update an existing
419 * one.
420 */
421 int insertions;
422 };
423
424 /* Arguments for btrfs_drop_extents() */
425 struct btrfs_drop_extents_args {
426 /* Input parameters */
427
428 /*
429 * If NULL, btrfs_drop_extents() will allocate and free its own path.
430 * If 'replace_extent' is true, this must not be NULL. Also the path
431 * is always released except if 'replace_extent' is true and
432 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
433 * the path is kept locked.
434 */
435 struct btrfs_path *path;
436 /* Start offset of the range to drop extents from */
437 u64 start;
438 /* End (exclusive, last byte + 1) of the range to drop extents from */
439 u64 end;
440 /* If true drop all the extent maps in the range */
441 bool drop_cache;
442 /*
443 * If true it means we want to insert a new extent after dropping all
444 * the extents in the range. If this is true, the 'extent_item_size'
445 * parameter must be set as well and the 'extent_inserted' field will
446 * be set to true by btrfs_drop_extents() if it could insert the new
447 * extent.
448 * Note: when this is set to true the path must not be NULL.
449 */
450 bool replace_extent;
451 /*
452 * Used if 'replace_extent' is true. Size of the file extent item to
453 * insert after dropping all existing extents in the range
454 */
455 u32 extent_item_size;
456
457 /* Output parameters */
458
459 /*
460 * Set to the minimum between the input parameter 'end' and the end
461 * (exclusive, last byte + 1) of the last dropped extent. This is always
462 * set even if btrfs_drop_extents() returns an error.
463 */
464 u64 drop_end;
465 /*
466 * The number of allocated bytes found in the range. This can be smaller
467 * than the range's length when there are holes in the range.
468 */
469 u64 bytes_found;
470 /*
471 * Only set if 'replace_extent' is true. Set to true if we were able
472 * to insert a replacement extent after dropping all extents in the
473 * range, otherwise set to false by btrfs_drop_extents().
474 * Also, if btrfs_drop_extents() has set this to true it means it
475 * returned with the path locked, otherwise if it has set this to
476 * false it has returned with the path released.
477 */
478 bool extent_inserted;
479 };
480
481 struct btrfs_file_private {
482 void *filldir_buf;
483 u64 last_index;
484 struct extent_state *llseek_cached_state;
485 /* Task that allocated this structure. */
486 struct task_struct *owner_task;
487 };
488
BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info * info)489 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
490 {
491 return info->nodesize - sizeof(struct btrfs_header);
492 }
493
BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info * info)494 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
495 {
496 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
497 }
498
BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info * info)499 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
500 {
501 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
502 }
503
BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info * info)504 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
505 {
506 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
507 }
508
509 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
510 ((bytes) >> (fs_info)->sectorsize_bits)
511
btrfs_alloc_write_mask(struct address_space * mapping)512 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
513 {
514 return mapping_gfp_constraint(mapping, ~__GFP_FS);
515 }
516
517 void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end);
518 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
519 u64 num_bytes, u64 *actual_bytes);
520 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
521
522 /* ctree.c */
523 int __init btrfs_ctree_init(void);
524 void __cold btrfs_ctree_exit(void);
525
526 int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
527 const struct btrfs_key *key, int *slot);
528
529 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
530
531 #ifdef __LITTLE_ENDIAN
532
533 /*
534 * Compare two keys, on little-endian the disk order is same as CPU order and
535 * we can avoid the conversion.
536 */
btrfs_comp_keys(const struct btrfs_disk_key * disk_key,const struct btrfs_key * k2)537 static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk_key,
538 const struct btrfs_key *k2)
539 {
540 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
541
542 return btrfs_comp_cpu_keys(k1, k2);
543 }
544
545 #else
546
547 /* Compare two keys in a memcmp fashion. */
btrfs_comp_keys(const struct btrfs_disk_key * disk,const struct btrfs_key * k2)548 static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk,
549 const struct btrfs_key *k2)
550 {
551 struct btrfs_key k1;
552
553 btrfs_disk_key_to_cpu(&k1, disk);
554
555 return btrfs_comp_cpu_keys(&k1, k2);
556 }
557
558 #endif
559
560 int btrfs_previous_item(struct btrfs_root *root,
561 struct btrfs_path *path, u64 min_objectid,
562 int type);
563 int btrfs_previous_extent_item(struct btrfs_root *root,
564 struct btrfs_path *path, u64 min_objectid);
565 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
566 const struct btrfs_path *path,
567 const struct btrfs_key *new_key);
568 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
569 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
570 struct btrfs_key *key, int lowest_level,
571 u64 min_trans);
572 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
573 struct btrfs_path *path,
574 u64 min_trans);
575 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
576 int slot);
577
578 int btrfs_cow_block(struct btrfs_trans_handle *trans,
579 struct btrfs_root *root, struct extent_buffer *buf,
580 struct extent_buffer *parent, int parent_slot,
581 struct extent_buffer **cow_ret,
582 enum btrfs_lock_nesting nest);
583 int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
584 struct btrfs_root *root,
585 struct extent_buffer *buf,
586 struct extent_buffer *parent, int parent_slot,
587 struct extent_buffer **cow_ret,
588 u64 search_start, u64 empty_size,
589 enum btrfs_lock_nesting nest);
590 int btrfs_copy_root(struct btrfs_trans_handle *trans,
591 struct btrfs_root *root,
592 struct extent_buffer *buf,
593 struct extent_buffer **cow_ret, u64 new_root_objectid);
594 bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
595 struct btrfs_root *root,
596 struct extent_buffer *buf);
597 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
598 struct btrfs_path *path, int level, int slot);
599 void btrfs_extend_item(struct btrfs_trans_handle *trans,
600 const struct btrfs_path *path, u32 data_size);
601 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
602 const struct btrfs_path *path, u32 new_size, int from_end);
603 int btrfs_split_item(struct btrfs_trans_handle *trans,
604 struct btrfs_root *root,
605 struct btrfs_path *path,
606 const struct btrfs_key *new_key,
607 unsigned long split_offset);
608 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
609 struct btrfs_root *root,
610 struct btrfs_path *path,
611 const struct btrfs_key *new_key);
612 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
613 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
614 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
615 const struct btrfs_key *key, struct btrfs_path *p,
616 int ins_len, int cow);
617 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
618 struct btrfs_path *p, u64 time_seq);
619 int btrfs_search_slot_for_read(struct btrfs_root *root,
620 const struct btrfs_key *key,
621 struct btrfs_path *p, int find_higher,
622 int return_any);
623 void btrfs_release_path(struct btrfs_path *p);
624 struct btrfs_path *btrfs_alloc_path(void);
625 void btrfs_free_path(struct btrfs_path *p);
626 DEFINE_FREE(btrfs_free_path, struct btrfs_path *, btrfs_free_path(_T))
627
628 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
629 struct btrfs_path *path, int slot, int nr);
btrfs_del_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)630 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
631 struct btrfs_root *root,
632 struct btrfs_path *path)
633 {
634 return btrfs_del_items(trans, root, path, path->slots[0], 1);
635 }
636
637 /*
638 * Describes a batch of items to insert in a btree. This is used by
639 * btrfs_insert_empty_items().
640 */
641 struct btrfs_item_batch {
642 /*
643 * Pointer to an array containing the keys of the items to insert (in
644 * sorted order).
645 */
646 const struct btrfs_key *keys;
647 /* Pointer to an array containing the data size for each item to insert. */
648 const u32 *data_sizes;
649 /*
650 * The sum of data sizes for all items. The caller can compute this while
651 * setting up the data_sizes array, so it ends up being more efficient
652 * than having btrfs_insert_empty_items() or setup_item_for_insert()
653 * doing it, as it would avoid an extra loop over a potentially large
654 * array, and in the case of setup_item_for_insert(), we would be doing
655 * it while holding a write lock on a leaf and often on upper level nodes
656 * too, unnecessarily increasing the size of a critical section.
657 */
658 u32 total_data_size;
659 /* Size of the keys and data_sizes arrays (number of items in the batch). */
660 int nr;
661 };
662
663 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
664 struct btrfs_root *root,
665 struct btrfs_path *path,
666 const struct btrfs_key *key,
667 u32 data_size);
668 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
669 const struct btrfs_key *key, void *data, u32 data_size);
670 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
671 struct btrfs_root *root,
672 struct btrfs_path *path,
673 const struct btrfs_item_batch *batch);
674
btrfs_insert_empty_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key,u32 data_size)675 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
676 struct btrfs_root *root,
677 struct btrfs_path *path,
678 const struct btrfs_key *key,
679 u32 data_size)
680 {
681 struct btrfs_item_batch batch;
682
683 batch.keys = key;
684 batch.data_sizes = &data_size;
685 batch.total_data_size = data_size;
686 batch.nr = 1;
687
688 return btrfs_insert_empty_items(trans, root, path, &batch);
689 }
690
691 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
692 u64 time_seq);
693
694 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
695 struct btrfs_path *path);
696
697 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
698 struct btrfs_path *path);
699
700 /*
701 * Search in @root for a given @key, and store the slot found in @found_key.
702 *
703 * @root: The root node of the tree.
704 * @key: The key we are looking for.
705 * @found_key: Will hold the found item.
706 * @path: Holds the current slot/leaf.
707 * @iter_ret: Contains the value returned from btrfs_search_slot or
708 * btrfs_get_next_valid_item, whichever was executed last.
709 *
710 * The @iter_ret is an output variable that will contain the return value of
711 * btrfs_search_slot, if it encountered an error, or the value returned from
712 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
713 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
714 *
715 * It's recommended to use a separate variable for iter_ret and then use it to
716 * set the function return value so there's no confusion of the 0/1/errno
717 * values stemming from btrfs_search_slot.
718 */
719 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \
720 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \
721 (iter_ret) >= 0 && \
722 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
723 (path)->slots[0]++ \
724 )
725
726 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
727
728 /*
729 * Search the tree again to find a leaf with greater keys.
730 *
731 * Returns 0 if it found something or 1 if there are no greater leaves.
732 * Returns < 0 on error.
733 */
btrfs_next_leaf(struct btrfs_root * root,struct btrfs_path * path)734 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
735 {
736 return btrfs_next_old_leaf(root, path, 0);
737 }
738
btrfs_next_item(struct btrfs_root * root,struct btrfs_path * p)739 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
740 {
741 return btrfs_next_old_item(root, p, 0);
742 }
743 int btrfs_leaf_free_space(const struct extent_buffer *leaf);
744
is_fstree(u64 rootid)745 static inline int is_fstree(u64 rootid)
746 {
747 if (rootid == BTRFS_FS_TREE_OBJECTID ||
748 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
749 !btrfs_qgroup_level(rootid)))
750 return 1;
751 return 0;
752 }
753
btrfs_is_data_reloc_root(const struct btrfs_root * root)754 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
755 {
756 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
757 }
758
759 u16 btrfs_csum_type_size(u16 type);
760 int btrfs_super_csum_size(const struct btrfs_super_block *s);
761 const char *btrfs_super_csum_name(u16 csum_type);
762 const char *btrfs_super_csum_driver(u16 csum_type);
763 size_t __attribute_const__ btrfs_get_num_csums(void);
764
765 /*
766 * We use folio flag owner_2 to indicate there is an ordered extent with
767 * unfinished IO.
768 */
769 #define folio_test_ordered(folio) folio_test_owner_2(folio)
770 #define folio_set_ordered(folio) folio_set_owner_2(folio)
771 #define folio_clear_ordered(folio) folio_clear_owner_2(folio)
772
773 #endif
774