1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24 #include "cpuset-internal.h"
25
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/kernel.h>
29 #include <linux/mempolicy.h>
30 #include <linux/mm.h>
31 #include <linux/memory.h>
32 #include <linux/export.h>
33 #include <linux/rcupdate.h>
34 #include <linux/sched.h>
35 #include <linux/sched/deadline.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/task.h>
38 #include <linux/security.h>
39 #include <linux/oom.h>
40 #include <linux/sched/isolation.h>
41 #include <linux/wait.h>
42 #include <linux/workqueue.h>
43 #include <linux/task_work.h>
44
45 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
46 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
47
48 /*
49 * There could be abnormal cpuset configurations for cpu or memory
50 * node binding, add this key to provide a quick low-cost judgment
51 * of the situation.
52 */
53 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
54
55 static const char * const perr_strings[] = {
56 [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus.exclusive",
57 [PERR_INVPARENT] = "Parent is an invalid partition root",
58 [PERR_NOTPART] = "Parent is not a partition root",
59 [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive",
60 [PERR_NOCPUS] = "Parent unable to distribute cpu downstream",
61 [PERR_HOTPLUG] = "No cpu available due to hotplug",
62 [PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty",
63 [PERR_HKEEPING] = "partition config conflicts with housekeeping setup",
64 [PERR_ACCESS] = "Enable partition not permitted",
65 [PERR_REMOTE] = "Have remote partition underneath",
66 };
67
68 /*
69 * For local partitions, update to subpartitions_cpus & isolated_cpus is done
70 * in update_parent_effective_cpumask(). For remote partitions, it is done in
71 * the remote_partition_*() and remote_cpus_update() helpers.
72 */
73 /*
74 * Exclusive CPUs distributed out to local or remote sub-partitions of
75 * top_cpuset
76 */
77 static cpumask_var_t subpartitions_cpus;
78
79 /*
80 * Exclusive CPUs in isolated partitions
81 */
82 static cpumask_var_t isolated_cpus;
83
84 /*
85 * isolated_cpus updating flag (protected by cpuset_mutex)
86 * Set if isolated_cpus is going to be updated in the current
87 * cpuset_mutex crtical section.
88 */
89 static bool isolated_cpus_updating;
90
91 /*
92 * Housekeeping (HK_TYPE_DOMAIN) CPUs at boot
93 */
94 static cpumask_var_t boot_hk_cpus;
95 static bool have_boot_isolcpus;
96
97 /*
98 * A flag to force sched domain rebuild at the end of an operation.
99 * It can be set in
100 * - update_partition_sd_lb()
101 * - update_cpumasks_hier()
102 * - cpuset_update_flag()
103 * - cpuset_hotplug_update_tasks()
104 * - cpuset_handle_hotplug()
105 *
106 * Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock.
107 *
108 * Note that update_relax_domain_level() in cpuset-v1.c can still call
109 * rebuild_sched_domains_locked() directly without using this flag.
110 */
111 static bool force_sd_rebuild;
112
113 /*
114 * Partition root states:
115 *
116 * 0 - member (not a partition root)
117 * 1 - partition root
118 * 2 - partition root without load balancing (isolated)
119 * -1 - invalid partition root
120 * -2 - invalid isolated partition root
121 *
122 * There are 2 types of partitions - local or remote. Local partitions are
123 * those whose parents are partition root themselves. Setting of
124 * cpuset.cpus.exclusive are optional in setting up local partitions.
125 * Remote partitions are those whose parents are not partition roots. Passing
126 * down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor
127 * nodes are mandatory in creating a remote partition.
128 *
129 * For simplicity, a local partition can be created under a local or remote
130 * partition but a remote partition cannot have any partition root in its
131 * ancestor chain except the cgroup root.
132 */
133 #define PRS_MEMBER 0
134 #define PRS_ROOT 1
135 #define PRS_ISOLATED 2
136 #define PRS_INVALID_ROOT -1
137 #define PRS_INVALID_ISOLATED -2
138
139 /*
140 * Temporary cpumasks for working with partitions that are passed among
141 * functions to avoid memory allocation in inner functions.
142 */
143 struct tmpmasks {
144 cpumask_var_t addmask, delmask; /* For partition root */
145 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
146 };
147
inc_dl_tasks_cs(struct task_struct * p)148 void inc_dl_tasks_cs(struct task_struct *p)
149 {
150 struct cpuset *cs = task_cs(p);
151
152 cs->nr_deadline_tasks++;
153 }
154
dec_dl_tasks_cs(struct task_struct * p)155 void dec_dl_tasks_cs(struct task_struct *p)
156 {
157 struct cpuset *cs = task_cs(p);
158
159 cs->nr_deadline_tasks--;
160 }
161
is_partition_valid(const struct cpuset * cs)162 static inline bool is_partition_valid(const struct cpuset *cs)
163 {
164 return cs->partition_root_state > 0;
165 }
166
is_partition_invalid(const struct cpuset * cs)167 static inline bool is_partition_invalid(const struct cpuset *cs)
168 {
169 return cs->partition_root_state < 0;
170 }
171
cs_is_member(const struct cpuset * cs)172 static inline bool cs_is_member(const struct cpuset *cs)
173 {
174 return cs->partition_root_state == PRS_MEMBER;
175 }
176
177 /*
178 * Callers should hold callback_lock to modify partition_root_state.
179 */
make_partition_invalid(struct cpuset * cs)180 static inline void make_partition_invalid(struct cpuset *cs)
181 {
182 if (cs->partition_root_state > 0)
183 cs->partition_root_state = -cs->partition_root_state;
184 }
185
186 /*
187 * Send notification event of whenever partition_root_state changes.
188 */
notify_partition_change(struct cpuset * cs,int old_prs)189 static inline void notify_partition_change(struct cpuset *cs, int old_prs)
190 {
191 if (old_prs == cs->partition_root_state)
192 return;
193 cgroup_file_notify(&cs->partition_file);
194
195 /* Reset prs_err if not invalid */
196 if (is_partition_valid(cs))
197 WRITE_ONCE(cs->prs_err, PERR_NONE);
198 }
199
200 /*
201 * The top_cpuset is always synchronized to cpu_active_mask and we should avoid
202 * using cpu_online_mask as much as possible. An active CPU is always an online
203 * CPU, but not vice versa. cpu_active_mask and cpu_online_mask can differ
204 * during hotplug operations. A CPU is marked active at the last stage of CPU
205 * bringup (CPUHP_AP_ACTIVE). It is also the stage where cpuset hotplug code
206 * will be called to update the sched domains so that the scheduler can move
207 * a normal task to a newly active CPU or remove tasks away from a newly
208 * inactivated CPU. The online bit is set much earlier in the CPU bringup
209 * process and cleared much later in CPU teardown.
210 *
211 * If cpu_online_mask is used while a hotunplug operation is happening in
212 * parallel, we may leave an offline CPU in cpu_allowed or some other masks.
213 */
214 static struct cpuset top_cpuset = {
215 .flags = BIT(CS_CPU_EXCLUSIVE) |
216 BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE),
217 .partition_root_state = PRS_ROOT,
218 .relax_domain_level = -1,
219 .remote_partition = false,
220 };
221
222 /*
223 * There are two global locks guarding cpuset structures - cpuset_mutex and
224 * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel
225 * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
226 * structures. Note that cpuset_mutex needs to be a mutex as it is used in
227 * paths that rely on priority inheritance (e.g. scheduler - on RT) for
228 * correctness.
229 *
230 * A task must hold both locks to modify cpusets. If a task holds
231 * cpuset_mutex, it blocks others, ensuring that it is the only task able to
232 * also acquire callback_lock and be able to modify cpusets. It can perform
233 * various checks on the cpuset structure first, knowing nothing will change.
234 * It can also allocate memory while just holding cpuset_mutex. While it is
235 * performing these checks, various callback routines can briefly acquire
236 * callback_lock to query cpusets. Once it is ready to make the changes, it
237 * takes callback_lock, blocking everyone else.
238 *
239 * Calls to the kernel memory allocator can not be made while holding
240 * callback_lock, as that would risk double tripping on callback_lock
241 * from one of the callbacks into the cpuset code from within
242 * __alloc_pages().
243 *
244 * If a task is only holding callback_lock, then it has read-only
245 * access to cpusets.
246 *
247 * Now, the task_struct fields mems_allowed and mempolicy may be changed
248 * by other task, we use alloc_lock in the task_struct fields to protect
249 * them.
250 *
251 * The cpuset_common_seq_show() handlers only hold callback_lock across
252 * small pieces of code, such as when reading out possibly multi-word
253 * cpumasks and nodemasks.
254 */
255
256 static DEFINE_MUTEX(cpuset_mutex);
257
258 /**
259 * cpuset_lock - Acquire the global cpuset mutex
260 *
261 * This locks the global cpuset mutex to prevent modifications to cpuset
262 * hierarchy and configurations. This helper is not enough to make modification.
263 */
cpuset_lock(void)264 void cpuset_lock(void)
265 {
266 mutex_lock(&cpuset_mutex);
267 }
268
cpuset_unlock(void)269 void cpuset_unlock(void)
270 {
271 mutex_unlock(&cpuset_mutex);
272 }
273
274 /**
275 * cpuset_full_lock - Acquire full protection for cpuset modification
276 *
277 * Takes both CPU hotplug read lock (cpus_read_lock()) and cpuset mutex
278 * to safely modify cpuset data.
279 */
cpuset_full_lock(void)280 void cpuset_full_lock(void)
281 {
282 cpus_read_lock();
283 mutex_lock(&cpuset_mutex);
284 }
285
cpuset_full_unlock(void)286 void cpuset_full_unlock(void)
287 {
288 mutex_unlock(&cpuset_mutex);
289 cpus_read_unlock();
290 }
291
292 static DEFINE_SPINLOCK(callback_lock);
293
cpuset_callback_lock_irq(void)294 void cpuset_callback_lock_irq(void)
295 {
296 spin_lock_irq(&callback_lock);
297 }
298
cpuset_callback_unlock_irq(void)299 void cpuset_callback_unlock_irq(void)
300 {
301 spin_unlock_irq(&callback_lock);
302 }
303
304 static struct workqueue_struct *cpuset_migrate_mm_wq;
305
306 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
307
check_insane_mems_config(nodemask_t * nodes)308 static inline void check_insane_mems_config(nodemask_t *nodes)
309 {
310 if (!cpusets_insane_config() &&
311 movable_only_nodes(nodes)) {
312 static_branch_enable_cpuslocked(&cpusets_insane_config_key);
313 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
314 "Cpuset allocations might fail even with a lot of memory available.\n",
315 nodemask_pr_args(nodes));
316 }
317 }
318
319 /*
320 * decrease cs->attach_in_progress.
321 * wake_up cpuset_attach_wq if cs->attach_in_progress==0.
322 */
dec_attach_in_progress_locked(struct cpuset * cs)323 static inline void dec_attach_in_progress_locked(struct cpuset *cs)
324 {
325 lockdep_assert_held(&cpuset_mutex);
326
327 cs->attach_in_progress--;
328 if (!cs->attach_in_progress)
329 wake_up(&cpuset_attach_wq);
330 }
331
dec_attach_in_progress(struct cpuset * cs)332 static inline void dec_attach_in_progress(struct cpuset *cs)
333 {
334 mutex_lock(&cpuset_mutex);
335 dec_attach_in_progress_locked(cs);
336 mutex_unlock(&cpuset_mutex);
337 }
338
cpuset_v2(void)339 static inline bool cpuset_v2(void)
340 {
341 return !IS_ENABLED(CONFIG_CPUSETS_V1) ||
342 cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
343 }
344
345 /*
346 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
347 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
348 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
349 * With v2 behavior, "cpus" and "mems" are always what the users have
350 * requested and won't be changed by hotplug events. Only the effective
351 * cpus or mems will be affected.
352 */
is_in_v2_mode(void)353 static inline bool is_in_v2_mode(void)
354 {
355 return cpuset_v2() ||
356 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
357 }
358
cpuset_is_populated(struct cpuset * cs)359 static inline bool cpuset_is_populated(struct cpuset *cs)
360 {
361 lockdep_assert_held(&cpuset_mutex);
362
363 /* Cpusets in the process of attaching should be considered as populated */
364 return cgroup_is_populated(cs->css.cgroup) ||
365 cs->attach_in_progress;
366 }
367
368 /**
369 * partition_is_populated - check if partition has tasks
370 * @cs: partition root to be checked
371 * @excluded_child: a child cpuset to be excluded in task checking
372 * Return: true if there are tasks, false otherwise
373 *
374 * @cs should be a valid partition root or going to become a partition root.
375 * @excluded_child should be non-NULL when this cpuset is going to become a
376 * partition itself.
377 *
378 * Note that a remote partition is not allowed underneath a valid local
379 * or remote partition. So if a non-partition root child is populated,
380 * the whole partition is considered populated.
381 */
partition_is_populated(struct cpuset * cs,struct cpuset * excluded_child)382 static inline bool partition_is_populated(struct cpuset *cs,
383 struct cpuset *excluded_child)
384 {
385 struct cpuset *cp;
386 struct cgroup_subsys_state *pos_css;
387
388 /*
389 * We cannot call cs_is_populated(cs) directly, as
390 * nr_populated_domain_children may include populated
391 * csets from descendants that are partitions.
392 */
393 if (cs->css.cgroup->nr_populated_csets ||
394 cs->attach_in_progress)
395 return true;
396
397 rcu_read_lock();
398 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
399 if (cp == cs || cp == excluded_child)
400 continue;
401
402 if (is_partition_valid(cp)) {
403 pos_css = css_rightmost_descendant(pos_css);
404 continue;
405 }
406
407 if (cpuset_is_populated(cp)) {
408 rcu_read_unlock();
409 return true;
410 }
411 }
412 rcu_read_unlock();
413 return false;
414 }
415
416 /*
417 * Return in pmask the portion of a task's cpusets's cpus_allowed that
418 * are online and are capable of running the task. If none are found,
419 * walk up the cpuset hierarchy until we find one that does have some
420 * appropriate cpus.
421 *
422 * One way or another, we guarantee to return some non-empty subset
423 * of cpu_active_mask.
424 *
425 * Call with callback_lock or cpuset_mutex held.
426 */
guarantee_active_cpus(struct task_struct * tsk,struct cpumask * pmask)427 static void guarantee_active_cpus(struct task_struct *tsk,
428 struct cpumask *pmask)
429 {
430 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
431 struct cpuset *cs;
432
433 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_active_mask)))
434 cpumask_copy(pmask, cpu_active_mask);
435
436 rcu_read_lock();
437 cs = task_cs(tsk);
438
439 while (!cpumask_intersects(cs->effective_cpus, pmask))
440 cs = parent_cs(cs);
441
442 cpumask_and(pmask, pmask, cs->effective_cpus);
443 rcu_read_unlock();
444 }
445
446 /*
447 * Return in *pmask the portion of a cpusets's mems_allowed that
448 * are online, with memory. If none are online with memory, walk
449 * up the cpuset hierarchy until we find one that does have some
450 * online mems. The top cpuset always has some mems online.
451 *
452 * One way or another, we guarantee to return some non-empty subset
453 * of node_states[N_MEMORY].
454 *
455 * Call with callback_lock or cpuset_mutex held.
456 */
guarantee_online_mems(struct cpuset * cs,nodemask_t * pmask)457 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
458 {
459 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
460 cs = parent_cs(cs);
461 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
462 }
463
464 /**
465 * alloc_cpumasks - Allocate an array of cpumask variables
466 * @pmasks: Pointer to array of cpumask_var_t pointers
467 * @size: Number of cpumasks to allocate
468 * Return: 0 if successful, -ENOMEM otherwise.
469 *
470 * Allocates @size cpumasks and initializes them to empty. Returns 0 on
471 * success, -ENOMEM on allocation failure. On failure, any previously
472 * allocated cpumasks are freed.
473 */
alloc_cpumasks(cpumask_var_t * pmasks[],u32 size)474 static inline int alloc_cpumasks(cpumask_var_t *pmasks[], u32 size)
475 {
476 int i;
477
478 for (i = 0; i < size; i++) {
479 if (!zalloc_cpumask_var(pmasks[i], GFP_KERNEL)) {
480 while (--i >= 0)
481 free_cpumask_var(*pmasks[i]);
482 return -ENOMEM;
483 }
484 }
485 return 0;
486 }
487
488 /**
489 * alloc_tmpmasks - Allocate temporary cpumasks for cpuset operations.
490 * @tmp: Pointer to tmpmasks structure to populate
491 * Return: 0 on success, -ENOMEM on allocation failure
492 */
alloc_tmpmasks(struct tmpmasks * tmp)493 static inline int alloc_tmpmasks(struct tmpmasks *tmp)
494 {
495 /*
496 * Array of pointers to the three cpumask_var_t fields in tmpmasks.
497 * Note: Array size must match actual number of masks (3)
498 */
499 cpumask_var_t *pmask[3] = {
500 &tmp->new_cpus,
501 &tmp->addmask,
502 &tmp->delmask
503 };
504
505 return alloc_cpumasks(pmask, ARRAY_SIZE(pmask));
506 }
507
508 /**
509 * free_tmpmasks - free cpumasks in a tmpmasks structure
510 * @tmp: the tmpmasks structure pointer
511 */
free_tmpmasks(struct tmpmasks * tmp)512 static inline void free_tmpmasks(struct tmpmasks *tmp)
513 {
514 if (!tmp)
515 return;
516
517 free_cpumask_var(tmp->new_cpus);
518 free_cpumask_var(tmp->addmask);
519 free_cpumask_var(tmp->delmask);
520 }
521
522 /**
523 * dup_or_alloc_cpuset - Duplicate or allocate a new cpuset
524 * @cs: Source cpuset to duplicate (NULL for a fresh allocation)
525 *
526 * Creates a new cpuset by either:
527 * 1. Duplicating an existing cpuset (if @cs is non-NULL), or
528 * 2. Allocating a fresh cpuset with zero-initialized masks (if @cs is NULL)
529 *
530 * Return: Pointer to newly allocated cpuset on success, NULL on failure
531 */
dup_or_alloc_cpuset(struct cpuset * cs)532 static struct cpuset *dup_or_alloc_cpuset(struct cpuset *cs)
533 {
534 struct cpuset *trial;
535
536 /* Allocate base structure */
537 trial = cs ? kmemdup(cs, sizeof(*cs), GFP_KERNEL) :
538 kzalloc(sizeof(*cs), GFP_KERNEL);
539 if (!trial)
540 return NULL;
541
542 /* Setup cpumask pointer array */
543 cpumask_var_t *pmask[4] = {
544 &trial->cpus_allowed,
545 &trial->effective_cpus,
546 &trial->effective_xcpus,
547 &trial->exclusive_cpus
548 };
549
550 if (alloc_cpumasks(pmask, ARRAY_SIZE(pmask))) {
551 kfree(trial);
552 return NULL;
553 }
554
555 /* Copy masks if duplicating */
556 if (cs) {
557 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
558 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
559 cpumask_copy(trial->effective_xcpus, cs->effective_xcpus);
560 cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus);
561 }
562
563 return trial;
564 }
565
566 /**
567 * free_cpuset - free the cpuset
568 * @cs: the cpuset to be freed
569 */
free_cpuset(struct cpuset * cs)570 static inline void free_cpuset(struct cpuset *cs)
571 {
572 free_cpumask_var(cs->cpus_allowed);
573 free_cpumask_var(cs->effective_cpus);
574 free_cpumask_var(cs->effective_xcpus);
575 free_cpumask_var(cs->exclusive_cpus);
576 kfree(cs);
577 }
578
579 /* Return user specified exclusive CPUs */
user_xcpus(struct cpuset * cs)580 static inline struct cpumask *user_xcpus(struct cpuset *cs)
581 {
582 return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed
583 : cs->exclusive_cpus;
584 }
585
xcpus_empty(struct cpuset * cs)586 static inline bool xcpus_empty(struct cpuset *cs)
587 {
588 return cpumask_empty(cs->cpus_allowed) &&
589 cpumask_empty(cs->exclusive_cpus);
590 }
591
592 /*
593 * cpusets_are_exclusive() - check if two cpusets are exclusive
594 *
595 * Return true if exclusive, false if not
596 */
cpusets_are_exclusive(struct cpuset * cs1,struct cpuset * cs2)597 static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2)
598 {
599 struct cpumask *xcpus1 = user_xcpus(cs1);
600 struct cpumask *xcpus2 = user_xcpus(cs2);
601
602 if (cpumask_intersects(xcpus1, xcpus2))
603 return false;
604 return true;
605 }
606
607 /**
608 * cpus_excl_conflict - Check if two cpusets have exclusive CPU conflicts
609 * @cs1: first cpuset to check
610 * @cs2: second cpuset to check
611 *
612 * Returns: true if CPU exclusivity conflict exists, false otherwise
613 *
614 * Conflict detection rules:
615 * 1. If either cpuset is CPU exclusive, they must be mutually exclusive
616 * 2. exclusive_cpus masks cannot intersect between cpusets
617 * 3. The allowed CPUs of one cpuset cannot be a subset of another's exclusive CPUs
618 */
cpus_excl_conflict(struct cpuset * cs1,struct cpuset * cs2)619 static inline bool cpus_excl_conflict(struct cpuset *cs1, struct cpuset *cs2)
620 {
621 /* If either cpuset is exclusive, check if they are mutually exclusive */
622 if (is_cpu_exclusive(cs1) || is_cpu_exclusive(cs2))
623 return !cpusets_are_exclusive(cs1, cs2);
624
625 /* Exclusive_cpus cannot intersect */
626 if (cpumask_intersects(cs1->exclusive_cpus, cs2->exclusive_cpus))
627 return true;
628
629 /* The cpus_allowed of one cpuset cannot be a subset of another cpuset's exclusive_cpus */
630 if (!cpumask_empty(cs1->cpus_allowed) &&
631 cpumask_subset(cs1->cpus_allowed, cs2->exclusive_cpus))
632 return true;
633
634 if (!cpumask_empty(cs2->cpus_allowed) &&
635 cpumask_subset(cs2->cpus_allowed, cs1->exclusive_cpus))
636 return true;
637
638 return false;
639 }
640
mems_excl_conflict(struct cpuset * cs1,struct cpuset * cs2)641 static inline bool mems_excl_conflict(struct cpuset *cs1, struct cpuset *cs2)
642 {
643 if ((is_mem_exclusive(cs1) || is_mem_exclusive(cs2)))
644 return nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
645 return false;
646 }
647
648 /*
649 * validate_change() - Used to validate that any proposed cpuset change
650 * follows the structural rules for cpusets.
651 *
652 * If we replaced the flag and mask values of the current cpuset
653 * (cur) with those values in the trial cpuset (trial), would
654 * our various subset and exclusive rules still be valid? Presumes
655 * cpuset_mutex held.
656 *
657 * 'cur' is the address of an actual, in-use cpuset. Operations
658 * such as list traversal that depend on the actual address of the
659 * cpuset in the list must use cur below, not trial.
660 *
661 * 'trial' is the address of bulk structure copy of cur, with
662 * perhaps one or more of the fields cpus_allowed, mems_allowed,
663 * or flags changed to new, trial values.
664 *
665 * Return 0 if valid, -errno if not.
666 */
667
validate_change(struct cpuset * cur,struct cpuset * trial)668 static int validate_change(struct cpuset *cur, struct cpuset *trial)
669 {
670 struct cgroup_subsys_state *css;
671 struct cpuset *c, *par;
672 int ret = 0;
673
674 rcu_read_lock();
675
676 if (!is_in_v2_mode())
677 ret = cpuset1_validate_change(cur, trial);
678 if (ret)
679 goto out;
680
681 /* Remaining checks don't apply to root cpuset */
682 if (cur == &top_cpuset)
683 goto out;
684
685 par = parent_cs(cur);
686
687 /*
688 * Cpusets with tasks - existing or newly being attached - can't
689 * be changed to have empty cpus_allowed or mems_allowed.
690 */
691 ret = -ENOSPC;
692 if (cpuset_is_populated(cur)) {
693 if (!cpumask_empty(cur->cpus_allowed) &&
694 cpumask_empty(trial->cpus_allowed))
695 goto out;
696 if (!nodes_empty(cur->mems_allowed) &&
697 nodes_empty(trial->mems_allowed))
698 goto out;
699 }
700
701 /*
702 * We can't shrink if we won't have enough room for SCHED_DEADLINE
703 * tasks. This check is not done when scheduling is disabled as the
704 * users should know what they are doing.
705 *
706 * For v1, effective_cpus == cpus_allowed & user_xcpus() returns
707 * cpus_allowed.
708 *
709 * For v2, is_cpu_exclusive() & is_sched_load_balance() are true only
710 * for non-isolated partition root. At this point, the target
711 * effective_cpus isn't computed yet. user_xcpus() is the best
712 * approximation.
713 *
714 * TBD: May need to precompute the real effective_cpus here in case
715 * incorrect scheduling of SCHED_DEADLINE tasks in a partition
716 * becomes an issue.
717 */
718 ret = -EBUSY;
719 if (is_cpu_exclusive(cur) && is_sched_load_balance(cur) &&
720 !cpuset_cpumask_can_shrink(cur->effective_cpus, user_xcpus(trial)))
721 goto out;
722
723 /*
724 * If either I or some sibling (!= me) is exclusive, we can't
725 * overlap. exclusive_cpus cannot overlap with each other if set.
726 */
727 ret = -EINVAL;
728 cpuset_for_each_child(c, css, par) {
729 if (c == cur)
730 continue;
731 if (cpus_excl_conflict(trial, c))
732 goto out;
733 if (mems_excl_conflict(trial, c))
734 goto out;
735 }
736
737 ret = 0;
738 out:
739 rcu_read_unlock();
740 return ret;
741 }
742
743 #ifdef CONFIG_SMP
744 /*
745 * Helper routine for generate_sched_domains().
746 * Do cpusets a, b have overlapping effective cpus_allowed masks?
747 */
cpusets_overlap(struct cpuset * a,struct cpuset * b)748 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
749 {
750 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
751 }
752
753 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)754 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
755 {
756 if (dattr->relax_domain_level < c->relax_domain_level)
757 dattr->relax_domain_level = c->relax_domain_level;
758 return;
759 }
760
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * root_cs)761 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
762 struct cpuset *root_cs)
763 {
764 struct cpuset *cp;
765 struct cgroup_subsys_state *pos_css;
766
767 rcu_read_lock();
768 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
769 /* skip the whole subtree if @cp doesn't have any CPU */
770 if (cpumask_empty(cp->cpus_allowed)) {
771 pos_css = css_rightmost_descendant(pos_css);
772 continue;
773 }
774
775 if (is_sched_load_balance(cp))
776 update_domain_attr(dattr, cp);
777 }
778 rcu_read_unlock();
779 }
780
781 /* Must be called with cpuset_mutex held. */
nr_cpusets(void)782 static inline int nr_cpusets(void)
783 {
784 /* jump label reference count + the top-level cpuset */
785 return static_key_count(&cpusets_enabled_key.key) + 1;
786 }
787
788 /*
789 * generate_sched_domains()
790 *
791 * This function builds a partial partition of the systems CPUs
792 * A 'partial partition' is a set of non-overlapping subsets whose
793 * union is a subset of that set.
794 * The output of this function needs to be passed to kernel/sched/core.c
795 * partition_sched_domains() routine, which will rebuild the scheduler's
796 * load balancing domains (sched domains) as specified by that partial
797 * partition.
798 *
799 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
800 * for a background explanation of this.
801 *
802 * Does not return errors, on the theory that the callers of this
803 * routine would rather not worry about failures to rebuild sched
804 * domains when operating in the severe memory shortage situations
805 * that could cause allocation failures below.
806 *
807 * Must be called with cpuset_mutex held.
808 *
809 * The three key local variables below are:
810 * cp - cpuset pointer, used (together with pos_css) to perform a
811 * top-down scan of all cpusets. For our purposes, rebuilding
812 * the schedulers sched domains, we can ignore !is_sched_load_
813 * balance cpusets.
814 * csa - (for CpuSet Array) Array of pointers to all the cpusets
815 * that need to be load balanced, for convenient iterative
816 * access by the subsequent code that finds the best partition,
817 * i.e the set of domains (subsets) of CPUs such that the
818 * cpus_allowed of every cpuset marked is_sched_load_balance
819 * is a subset of one of these domains, while there are as
820 * many such domains as possible, each as small as possible.
821 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
822 * the kernel/sched/core.c routine partition_sched_domains() in a
823 * convenient format, that can be easily compared to the prior
824 * value to determine what partition elements (sched domains)
825 * were changed (added or removed.)
826 *
827 * Finding the best partition (set of domains):
828 * The double nested loops below over i, j scan over the load
829 * balanced cpusets (using the array of cpuset pointers in csa[])
830 * looking for pairs of cpusets that have overlapping cpus_allowed
831 * and merging them using a union-find algorithm.
832 *
833 * The union of the cpus_allowed masks from the set of all cpusets
834 * having the same root then form the one element of the partition
835 * (one sched domain) to be passed to partition_sched_domains().
836 *
837 */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)838 static int generate_sched_domains(cpumask_var_t **domains,
839 struct sched_domain_attr **attributes)
840 {
841 struct cpuset *cp; /* top-down scan of cpusets */
842 struct cpuset **csa; /* array of all cpuset ptrs */
843 int csn; /* how many cpuset ptrs in csa so far */
844 int i, j; /* indices for partition finding loops */
845 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
846 struct sched_domain_attr *dattr; /* attributes for custom domains */
847 int ndoms = 0; /* number of sched domains in result */
848 int nslot; /* next empty doms[] struct cpumask slot */
849 struct cgroup_subsys_state *pos_css;
850 bool root_load_balance = is_sched_load_balance(&top_cpuset);
851 bool cgrpv2 = cpuset_v2();
852 int nslot_update;
853
854 doms = NULL;
855 dattr = NULL;
856 csa = NULL;
857
858 /* Special case for the 99% of systems with one, full, sched domain */
859 if (root_load_balance && cpumask_empty(subpartitions_cpus)) {
860 single_root_domain:
861 ndoms = 1;
862 doms = alloc_sched_domains(ndoms);
863 if (!doms)
864 goto done;
865
866 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
867 if (dattr) {
868 *dattr = SD_ATTR_INIT;
869 update_domain_attr_tree(dattr, &top_cpuset);
870 }
871 cpumask_and(doms[0], top_cpuset.effective_cpus,
872 housekeeping_cpumask(HK_TYPE_DOMAIN));
873
874 goto done;
875 }
876
877 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
878 if (!csa)
879 goto done;
880 csn = 0;
881
882 rcu_read_lock();
883 if (root_load_balance)
884 csa[csn++] = &top_cpuset;
885 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
886 if (cp == &top_cpuset)
887 continue;
888
889 if (cgrpv2)
890 goto v2;
891
892 /*
893 * v1:
894 * Continue traversing beyond @cp iff @cp has some CPUs and
895 * isn't load balancing. The former is obvious. The
896 * latter: All child cpusets contain a subset of the
897 * parent's cpus, so just skip them, and then we call
898 * update_domain_attr_tree() to calc relax_domain_level of
899 * the corresponding sched domain.
900 */
901 if (!cpumask_empty(cp->cpus_allowed) &&
902 !(is_sched_load_balance(cp) &&
903 cpumask_intersects(cp->cpus_allowed,
904 housekeeping_cpumask(HK_TYPE_DOMAIN))))
905 continue;
906
907 if (is_sched_load_balance(cp) &&
908 !cpumask_empty(cp->effective_cpus))
909 csa[csn++] = cp;
910
911 /* skip @cp's subtree */
912 pos_css = css_rightmost_descendant(pos_css);
913 continue;
914
915 v2:
916 /*
917 * Only valid partition roots that are not isolated and with
918 * non-empty effective_cpus will be saved into csn[].
919 */
920 if ((cp->partition_root_state == PRS_ROOT) &&
921 !cpumask_empty(cp->effective_cpus))
922 csa[csn++] = cp;
923
924 /*
925 * Skip @cp's subtree if not a partition root and has no
926 * exclusive CPUs to be granted to child cpusets.
927 */
928 if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus))
929 pos_css = css_rightmost_descendant(pos_css);
930 }
931 rcu_read_unlock();
932
933 /*
934 * If there are only isolated partitions underneath the cgroup root,
935 * we can optimize out unneeded sched domains scanning.
936 */
937 if (root_load_balance && (csn == 1))
938 goto single_root_domain;
939
940 for (i = 0; i < csn; i++)
941 uf_node_init(&csa[i]->node);
942
943 /* Merge overlapping cpusets */
944 for (i = 0; i < csn; i++) {
945 for (j = i + 1; j < csn; j++) {
946 if (cpusets_overlap(csa[i], csa[j])) {
947 /*
948 * Cgroup v2 shouldn't pass down overlapping
949 * partition root cpusets.
950 */
951 WARN_ON_ONCE(cgrpv2);
952 uf_union(&csa[i]->node, &csa[j]->node);
953 }
954 }
955 }
956
957 /* Count the total number of domains */
958 for (i = 0; i < csn; i++) {
959 if (uf_find(&csa[i]->node) == &csa[i]->node)
960 ndoms++;
961 }
962
963 /*
964 * Now we know how many domains to create.
965 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
966 */
967 doms = alloc_sched_domains(ndoms);
968 if (!doms)
969 goto done;
970
971 /*
972 * The rest of the code, including the scheduler, can deal with
973 * dattr==NULL case. No need to abort if alloc fails.
974 */
975 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
976 GFP_KERNEL);
977
978 /*
979 * Cgroup v2 doesn't support domain attributes, just set all of them
980 * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a
981 * subset of HK_TYPE_DOMAIN housekeeping CPUs.
982 */
983 if (cgrpv2) {
984 for (i = 0; i < ndoms; i++) {
985 /*
986 * The top cpuset may contain some boot time isolated
987 * CPUs that need to be excluded from the sched domain.
988 */
989 if (csa[i] == &top_cpuset)
990 cpumask_and(doms[i], csa[i]->effective_cpus,
991 housekeeping_cpumask(HK_TYPE_DOMAIN));
992 else
993 cpumask_copy(doms[i], csa[i]->effective_cpus);
994 if (dattr)
995 dattr[i] = SD_ATTR_INIT;
996 }
997 goto done;
998 }
999
1000 for (nslot = 0, i = 0; i < csn; i++) {
1001 nslot_update = 0;
1002 for (j = i; j < csn; j++) {
1003 if (uf_find(&csa[j]->node) == &csa[i]->node) {
1004 struct cpumask *dp = doms[nslot];
1005
1006 if (i == j) {
1007 nslot_update = 1;
1008 cpumask_clear(dp);
1009 if (dattr)
1010 *(dattr + nslot) = SD_ATTR_INIT;
1011 }
1012 cpumask_or(dp, dp, csa[j]->effective_cpus);
1013 cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
1014 if (dattr)
1015 update_domain_attr_tree(dattr + nslot, csa[j]);
1016 }
1017 }
1018 if (nslot_update)
1019 nslot++;
1020 }
1021 BUG_ON(nslot != ndoms);
1022
1023 done:
1024 kfree(csa);
1025
1026 /*
1027 * Fallback to the default domain if kmalloc() failed.
1028 * See comments in partition_sched_domains().
1029 */
1030 if (doms == NULL)
1031 ndoms = 1;
1032
1033 *domains = doms;
1034 *attributes = dattr;
1035 return ndoms;
1036 }
1037
dl_update_tasks_root_domain(struct cpuset * cs)1038 static void dl_update_tasks_root_domain(struct cpuset *cs)
1039 {
1040 struct css_task_iter it;
1041 struct task_struct *task;
1042
1043 if (cs->nr_deadline_tasks == 0)
1044 return;
1045
1046 css_task_iter_start(&cs->css, 0, &it);
1047
1048 while ((task = css_task_iter_next(&it)))
1049 dl_add_task_root_domain(task);
1050
1051 css_task_iter_end(&it);
1052 }
1053
dl_rebuild_rd_accounting(void)1054 void dl_rebuild_rd_accounting(void)
1055 {
1056 struct cpuset *cs = NULL;
1057 struct cgroup_subsys_state *pos_css;
1058 int cpu;
1059 u64 cookie = ++dl_cookie;
1060
1061 lockdep_assert_held(&cpuset_mutex);
1062 lockdep_assert_cpus_held();
1063 lockdep_assert_held(&sched_domains_mutex);
1064
1065 rcu_read_lock();
1066
1067 for_each_possible_cpu(cpu) {
1068 if (dl_bw_visited(cpu, cookie))
1069 continue;
1070
1071 dl_clear_root_domain_cpu(cpu);
1072 }
1073
1074 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1075
1076 if (cpumask_empty(cs->effective_cpus)) {
1077 pos_css = css_rightmost_descendant(pos_css);
1078 continue;
1079 }
1080
1081 css_get(&cs->css);
1082
1083 rcu_read_unlock();
1084
1085 dl_update_tasks_root_domain(cs);
1086
1087 rcu_read_lock();
1088 css_put(&cs->css);
1089 }
1090 rcu_read_unlock();
1091 }
1092
1093 /*
1094 * Rebuild scheduler domains.
1095 *
1096 * If the flag 'sched_load_balance' of any cpuset with non-empty
1097 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1098 * which has that flag enabled, or if any cpuset with a non-empty
1099 * 'cpus' is removed, then call this routine to rebuild the
1100 * scheduler's dynamic sched domains.
1101 *
1102 * Call with cpuset_mutex held. Takes cpus_read_lock().
1103 */
rebuild_sched_domains_locked(void)1104 void rebuild_sched_domains_locked(void)
1105 {
1106 struct cgroup_subsys_state *pos_css;
1107 struct sched_domain_attr *attr;
1108 cpumask_var_t *doms;
1109 struct cpuset *cs;
1110 int ndoms;
1111
1112 lockdep_assert_cpus_held();
1113 lockdep_assert_held(&cpuset_mutex);
1114 force_sd_rebuild = false;
1115
1116 /*
1117 * If we have raced with CPU hotplug, return early to avoid
1118 * passing doms with offlined cpu to partition_sched_domains().
1119 * Anyways, cpuset_handle_hotplug() will rebuild sched domains.
1120 *
1121 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1122 * should be the same as the active CPUs, so checking only top_cpuset
1123 * is enough to detect racing CPU offlines.
1124 */
1125 if (cpumask_empty(subpartitions_cpus) &&
1126 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1127 return;
1128
1129 /*
1130 * With subpartition CPUs, however, the effective CPUs of a partition
1131 * root should be only a subset of the active CPUs. Since a CPU in any
1132 * partition root could be offlined, all must be checked.
1133 */
1134 if (!cpumask_empty(subpartitions_cpus)) {
1135 rcu_read_lock();
1136 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1137 if (!is_partition_valid(cs)) {
1138 pos_css = css_rightmost_descendant(pos_css);
1139 continue;
1140 }
1141 if (!cpumask_subset(cs->effective_cpus,
1142 cpu_active_mask)) {
1143 rcu_read_unlock();
1144 return;
1145 }
1146 }
1147 rcu_read_unlock();
1148 }
1149
1150 /* Generate domain masks and attrs */
1151 ndoms = generate_sched_domains(&doms, &attr);
1152
1153 /* Have scheduler rebuild the domains */
1154 partition_sched_domains(ndoms, doms, attr);
1155 }
1156 #else /* !CONFIG_SMP */
rebuild_sched_domains_locked(void)1157 void rebuild_sched_domains_locked(void)
1158 {
1159 }
1160 #endif /* CONFIG_SMP */
1161
rebuild_sched_domains_cpuslocked(void)1162 static void rebuild_sched_domains_cpuslocked(void)
1163 {
1164 mutex_lock(&cpuset_mutex);
1165 rebuild_sched_domains_locked();
1166 mutex_unlock(&cpuset_mutex);
1167 }
1168
rebuild_sched_domains(void)1169 void rebuild_sched_domains(void)
1170 {
1171 cpus_read_lock();
1172 rebuild_sched_domains_cpuslocked();
1173 cpus_read_unlock();
1174 }
1175
cpuset_reset_sched_domains(void)1176 void cpuset_reset_sched_domains(void)
1177 {
1178 mutex_lock(&cpuset_mutex);
1179 partition_sched_domains(1, NULL, NULL);
1180 mutex_unlock(&cpuset_mutex);
1181 }
1182
1183 /**
1184 * cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1185 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1186 * @new_cpus: the temp variable for the new effective_cpus mask
1187 *
1188 * Iterate through each task of @cs updating its cpus_allowed to the
1189 * effective cpuset's. As this function is called with cpuset_mutex held,
1190 * cpuset membership stays stable.
1191 *
1192 * For top_cpuset, task_cpu_possible_mask() is used instead of effective_cpus
1193 * to make sure all offline CPUs are also included as hotplug code won't
1194 * update cpumasks for tasks in top_cpuset.
1195 *
1196 * As task_cpu_possible_mask() can be task dependent in arm64, we have to
1197 * do cpu masking per task instead of doing it once for all.
1198 */
cpuset_update_tasks_cpumask(struct cpuset * cs,struct cpumask * new_cpus)1199 void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1200 {
1201 struct css_task_iter it;
1202 struct task_struct *task;
1203 bool top_cs = cs == &top_cpuset;
1204
1205 css_task_iter_start(&cs->css, 0, &it);
1206 while ((task = css_task_iter_next(&it))) {
1207 const struct cpumask *possible_mask = task_cpu_possible_mask(task);
1208
1209 if (top_cs) {
1210 /*
1211 * PF_NO_SETAFFINITY tasks are ignored.
1212 * All per cpu kthreads should have PF_NO_SETAFFINITY
1213 * flag set, see kthread_set_per_cpu().
1214 */
1215 if (task->flags & PF_NO_SETAFFINITY)
1216 continue;
1217 cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus);
1218 } else {
1219 cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
1220 }
1221 set_cpus_allowed_ptr(task, new_cpus);
1222 }
1223 css_task_iter_end(&it);
1224 }
1225
1226 /**
1227 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1228 * @new_cpus: the temp variable for the new effective_cpus mask
1229 * @cs: the cpuset the need to recompute the new effective_cpus mask
1230 * @parent: the parent cpuset
1231 *
1232 * The result is valid only if the given cpuset isn't a partition root.
1233 */
compute_effective_cpumask(struct cpumask * new_cpus,struct cpuset * cs,struct cpuset * parent)1234 static void compute_effective_cpumask(struct cpumask *new_cpus,
1235 struct cpuset *cs, struct cpuset *parent)
1236 {
1237 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1238 }
1239
1240 /*
1241 * Commands for update_parent_effective_cpumask
1242 */
1243 enum partition_cmd {
1244 partcmd_enable, /* Enable partition root */
1245 partcmd_enablei, /* Enable isolated partition root */
1246 partcmd_disable, /* Disable partition root */
1247 partcmd_update, /* Update parent's effective_cpus */
1248 partcmd_invalidate, /* Make partition invalid */
1249 };
1250
1251 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1252 struct tmpmasks *tmp);
1253
1254 /*
1255 * Update partition exclusive flag
1256 *
1257 * Return: 0 if successful, an error code otherwise
1258 */
update_partition_exclusive_flag(struct cpuset * cs,int new_prs)1259 static int update_partition_exclusive_flag(struct cpuset *cs, int new_prs)
1260 {
1261 bool exclusive = (new_prs > PRS_MEMBER);
1262
1263 if (exclusive && !is_cpu_exclusive(cs)) {
1264 if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1))
1265 return PERR_NOTEXCL;
1266 } else if (!exclusive && is_cpu_exclusive(cs)) {
1267 /* Turning off CS_CPU_EXCLUSIVE will not return error */
1268 cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1269 }
1270 return 0;
1271 }
1272
1273 /*
1274 * Update partition load balance flag and/or rebuild sched domain
1275 *
1276 * Changing load balance flag will automatically call
1277 * rebuild_sched_domains_locked().
1278 * This function is for cgroup v2 only.
1279 */
update_partition_sd_lb(struct cpuset * cs,int old_prs)1280 static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
1281 {
1282 int new_prs = cs->partition_root_state;
1283 bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
1284 bool new_lb;
1285
1286 /*
1287 * If cs is not a valid partition root, the load balance state
1288 * will follow its parent.
1289 */
1290 if (new_prs > 0) {
1291 new_lb = (new_prs != PRS_ISOLATED);
1292 } else {
1293 new_lb = is_sched_load_balance(parent_cs(cs));
1294 }
1295 if (new_lb != !!is_sched_load_balance(cs)) {
1296 rebuild_domains = true;
1297 if (new_lb)
1298 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1299 else
1300 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1301 }
1302
1303 if (rebuild_domains)
1304 cpuset_force_rebuild();
1305 }
1306
1307 /*
1308 * tasks_nocpu_error - Return true if tasks will have no effective_cpus
1309 */
tasks_nocpu_error(struct cpuset * parent,struct cpuset * cs,struct cpumask * xcpus)1310 static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs,
1311 struct cpumask *xcpus)
1312 {
1313 /*
1314 * A populated partition (cs or parent) can't have empty effective_cpus
1315 */
1316 return (cpumask_subset(parent->effective_cpus, xcpus) &&
1317 partition_is_populated(parent, cs)) ||
1318 (!cpumask_intersects(xcpus, cpu_active_mask) &&
1319 partition_is_populated(cs, NULL));
1320 }
1321
reset_partition_data(struct cpuset * cs)1322 static void reset_partition_data(struct cpuset *cs)
1323 {
1324 struct cpuset *parent = parent_cs(cs);
1325
1326 if (!cpuset_v2())
1327 return;
1328
1329 lockdep_assert_held(&callback_lock);
1330
1331 if (cpumask_empty(cs->exclusive_cpus)) {
1332 cpumask_clear(cs->effective_xcpus);
1333 if (is_cpu_exclusive(cs))
1334 clear_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1335 }
1336 if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed))
1337 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1338 }
1339
1340 /*
1341 * isolated_cpus_update - Update the isolated_cpus mask
1342 * @old_prs: old partition_root_state
1343 * @new_prs: new partition_root_state
1344 * @xcpus: exclusive CPUs with state change
1345 */
isolated_cpus_update(int old_prs,int new_prs,struct cpumask * xcpus)1346 static void isolated_cpus_update(int old_prs, int new_prs, struct cpumask *xcpus)
1347 {
1348 WARN_ON_ONCE(old_prs == new_prs);
1349 if (new_prs == PRS_ISOLATED)
1350 cpumask_or(isolated_cpus, isolated_cpus, xcpus);
1351 else
1352 cpumask_andnot(isolated_cpus, isolated_cpus, xcpus);
1353
1354 isolated_cpus_updating = true;
1355 }
1356
1357 /*
1358 * partition_xcpus_add - Add new exclusive CPUs to partition
1359 * @new_prs: new partition_root_state
1360 * @parent: parent cpuset
1361 * @xcpus: exclusive CPUs to be added
1362 *
1363 * Remote partition if parent == NULL
1364 */
partition_xcpus_add(int new_prs,struct cpuset * parent,struct cpumask * xcpus)1365 static void partition_xcpus_add(int new_prs, struct cpuset *parent,
1366 struct cpumask *xcpus)
1367 {
1368 WARN_ON_ONCE(new_prs < 0);
1369 lockdep_assert_held(&callback_lock);
1370 if (!parent)
1371 parent = &top_cpuset;
1372
1373
1374 if (parent == &top_cpuset)
1375 cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus);
1376
1377 if (new_prs != parent->partition_root_state)
1378 isolated_cpus_update(parent->partition_root_state, new_prs,
1379 xcpus);
1380
1381 cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus);
1382 }
1383
1384 /*
1385 * partition_xcpus_del - Remove exclusive CPUs from partition
1386 * @old_prs: old partition_root_state
1387 * @parent: parent cpuset
1388 * @xcpus: exclusive CPUs to be removed
1389 *
1390 * Remote partition if parent == NULL
1391 */
partition_xcpus_del(int old_prs,struct cpuset * parent,struct cpumask * xcpus)1392 static void partition_xcpus_del(int old_prs, struct cpuset *parent,
1393 struct cpumask *xcpus)
1394 {
1395 WARN_ON_ONCE(old_prs < 0);
1396 lockdep_assert_held(&callback_lock);
1397 if (!parent)
1398 parent = &top_cpuset;
1399
1400 if (parent == &top_cpuset)
1401 cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus);
1402
1403 if (old_prs != parent->partition_root_state)
1404 isolated_cpus_update(old_prs, parent->partition_root_state,
1405 xcpus);
1406
1407 cpumask_and(xcpus, xcpus, cpu_active_mask);
1408 cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus);
1409 }
1410
1411 /*
1412 * isolated_cpus_can_update - check for isolated & nohz_full conflicts
1413 * @add_cpus: cpu mask for cpus that are going to be isolated
1414 * @del_cpus: cpu mask for cpus that are no longer isolated, can be NULL
1415 * Return: false if there is conflict, true otherwise
1416 *
1417 * If nohz_full is enabled and we have isolated CPUs, their combination must
1418 * still leave housekeeping CPUs.
1419 *
1420 * TBD: Should consider merging this function into
1421 * prstate_housekeeping_conflict().
1422 */
isolated_cpus_can_update(struct cpumask * add_cpus,struct cpumask * del_cpus)1423 static bool isolated_cpus_can_update(struct cpumask *add_cpus,
1424 struct cpumask *del_cpus)
1425 {
1426 cpumask_var_t full_hk_cpus;
1427 int res = true;
1428
1429 if (!housekeeping_enabled(HK_TYPE_KERNEL_NOISE))
1430 return true;
1431
1432 if (del_cpus && cpumask_weight_and(del_cpus,
1433 housekeeping_cpumask(HK_TYPE_KERNEL_NOISE)))
1434 return true;
1435
1436 if (!alloc_cpumask_var(&full_hk_cpus, GFP_KERNEL))
1437 return false;
1438
1439 cpumask_and(full_hk_cpus, housekeeping_cpumask(HK_TYPE_KERNEL_NOISE),
1440 housekeeping_cpumask(HK_TYPE_DOMAIN));
1441 cpumask_andnot(full_hk_cpus, full_hk_cpus, isolated_cpus);
1442 cpumask_and(full_hk_cpus, full_hk_cpus, cpu_active_mask);
1443 if (!cpumask_weight_andnot(full_hk_cpus, add_cpus))
1444 res = false;
1445
1446 free_cpumask_var(full_hk_cpus);
1447 return res;
1448 }
1449
1450 /*
1451 * prstate_housekeeping_conflict - check for partition & housekeeping conflicts
1452 * @prstate: partition root state to be checked
1453 * @new_cpus: cpu mask
1454 * Return: true if there is conflict, false otherwise
1455 *
1456 * CPUs outside of boot_hk_cpus, if defined, can only be used in an
1457 * isolated partition.
1458 */
prstate_housekeeping_conflict(int prstate,struct cpumask * new_cpus)1459 static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
1460 {
1461 if (!have_boot_isolcpus)
1462 return false;
1463
1464 if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus))
1465 return true;
1466
1467 return false;
1468 }
1469
1470 /*
1471 * update_isolation_cpumasks - Update external isolation related CPU masks
1472 *
1473 * The following external CPU masks will be updated if necessary:
1474 * - workqueue unbound cpumask
1475 */
update_isolation_cpumasks(void)1476 static void update_isolation_cpumasks(void)
1477 {
1478 int ret;
1479
1480 if (!isolated_cpus_updating)
1481 return;
1482
1483 lockdep_assert_cpus_held();
1484
1485 ret = workqueue_unbound_exclude_cpumask(isolated_cpus);
1486 WARN_ON_ONCE(ret < 0);
1487
1488 ret = tmigr_isolated_exclude_cpumask(isolated_cpus);
1489 WARN_ON_ONCE(ret < 0);
1490
1491 isolated_cpus_updating = false;
1492 }
1493
1494 /**
1495 * cpuset_cpu_is_isolated - Check if the given CPU is isolated
1496 * @cpu: the CPU number to be checked
1497 * Return: true if CPU is used in an isolated partition, false otherwise
1498 */
cpuset_cpu_is_isolated(int cpu)1499 bool cpuset_cpu_is_isolated(int cpu)
1500 {
1501 return cpumask_test_cpu(cpu, isolated_cpus);
1502 }
1503 EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated);
1504
1505 /**
1506 * rm_siblings_excl_cpus - Remove exclusive CPUs that are used by sibling cpusets
1507 * @parent: Parent cpuset containing all siblings
1508 * @cs: Current cpuset (will be skipped)
1509 * @excpus: exclusive effective CPU mask to modify
1510 *
1511 * This function ensures the given @excpus mask doesn't include any CPUs that
1512 * are exclusively allocated to sibling cpusets. It walks through all siblings
1513 * of @cs under @parent and removes their exclusive CPUs from @excpus.
1514 */
rm_siblings_excl_cpus(struct cpuset * parent,struct cpuset * cs,struct cpumask * excpus)1515 static int rm_siblings_excl_cpus(struct cpuset *parent, struct cpuset *cs,
1516 struct cpumask *excpus)
1517 {
1518 struct cgroup_subsys_state *css;
1519 struct cpuset *sibling;
1520 int retval = 0;
1521
1522 if (cpumask_empty(excpus))
1523 return retval;
1524
1525 /*
1526 * Exclude exclusive CPUs from siblings
1527 */
1528 rcu_read_lock();
1529 cpuset_for_each_child(sibling, css, parent) {
1530 if (sibling == cs)
1531 continue;
1532
1533 if (cpumask_intersects(excpus, sibling->exclusive_cpus)) {
1534 cpumask_andnot(excpus, excpus, sibling->exclusive_cpus);
1535 retval++;
1536 continue;
1537 }
1538 if (cpumask_intersects(excpus, sibling->effective_xcpus)) {
1539 cpumask_andnot(excpus, excpus, sibling->effective_xcpus);
1540 retval++;
1541 }
1542 }
1543 rcu_read_unlock();
1544
1545 return retval;
1546 }
1547
1548 /*
1549 * compute_excpus - compute effective exclusive CPUs
1550 * @cs: cpuset
1551 * @xcpus: effective exclusive CPUs value to be set
1552 * Return: 0 if there is no sibling conflict, > 0 otherwise
1553 *
1554 * If exclusive_cpus isn't explicitly set , we have to scan the sibling cpusets
1555 * and exclude their exclusive_cpus or effective_xcpus as well.
1556 */
compute_excpus(struct cpuset * cs,struct cpumask * excpus)1557 static int compute_excpus(struct cpuset *cs, struct cpumask *excpus)
1558 {
1559 struct cpuset *parent = parent_cs(cs);
1560
1561 cpumask_and(excpus, user_xcpus(cs), parent->effective_xcpus);
1562
1563 if (!cpumask_empty(cs->exclusive_cpus))
1564 return 0;
1565
1566 return rm_siblings_excl_cpus(parent, cs, excpus);
1567 }
1568
1569 /*
1570 * compute_trialcs_excpus - Compute effective exclusive CPUs for a trial cpuset
1571 * @trialcs: The trial cpuset containing the proposed new configuration
1572 * @cs: The original cpuset that the trial configuration is based on
1573 * Return: 0 if successful with no sibling conflict, >0 if a conflict is found
1574 *
1575 * Computes the effective_xcpus for a trial configuration. @cs is provided to represent
1576 * the real cs.
1577 */
compute_trialcs_excpus(struct cpuset * trialcs,struct cpuset * cs)1578 static int compute_trialcs_excpus(struct cpuset *trialcs, struct cpuset *cs)
1579 {
1580 struct cpuset *parent = parent_cs(trialcs);
1581 struct cpumask *excpus = trialcs->effective_xcpus;
1582
1583 /* trialcs is member, cpuset.cpus has no impact to excpus */
1584 if (cs_is_member(cs))
1585 cpumask_and(excpus, trialcs->exclusive_cpus,
1586 parent->effective_xcpus);
1587 else
1588 cpumask_and(excpus, user_xcpus(trialcs), parent->effective_xcpus);
1589
1590 return rm_siblings_excl_cpus(parent, cs, excpus);
1591 }
1592
is_remote_partition(struct cpuset * cs)1593 static inline bool is_remote_partition(struct cpuset *cs)
1594 {
1595 return cs->remote_partition;
1596 }
1597
is_local_partition(struct cpuset * cs)1598 static inline bool is_local_partition(struct cpuset *cs)
1599 {
1600 return is_partition_valid(cs) && !is_remote_partition(cs);
1601 }
1602
1603 /*
1604 * remote_partition_enable - Enable current cpuset as a remote partition root
1605 * @cs: the cpuset to update
1606 * @new_prs: new partition_root_state
1607 * @tmp: temporary masks
1608 * Return: 0 if successful, errcode if error
1609 *
1610 * Enable the current cpuset to become a remote partition root taking CPUs
1611 * directly from the top cpuset. cpuset_mutex must be held by the caller.
1612 */
remote_partition_enable(struct cpuset * cs,int new_prs,struct tmpmasks * tmp)1613 static int remote_partition_enable(struct cpuset *cs, int new_prs,
1614 struct tmpmasks *tmp)
1615 {
1616 /*
1617 * The user must have sysadmin privilege.
1618 */
1619 if (!capable(CAP_SYS_ADMIN))
1620 return PERR_ACCESS;
1621
1622 /*
1623 * The requested exclusive_cpus must not be allocated to other
1624 * partitions and it can't use up all the root's effective_cpus.
1625 *
1626 * The effective_xcpus mask can contain offline CPUs, but there must
1627 * be at least one or more online CPUs present before it can be enabled.
1628 *
1629 * Note that creating a remote partition with any local partition root
1630 * above it or remote partition root underneath it is not allowed.
1631 */
1632 compute_excpus(cs, tmp->new_cpus);
1633 WARN_ON_ONCE(cpumask_intersects(tmp->new_cpus, subpartitions_cpus));
1634 if (!cpumask_intersects(tmp->new_cpus, cpu_active_mask) ||
1635 cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus))
1636 return PERR_INVCPUS;
1637 if (((new_prs == PRS_ISOLATED) &&
1638 !isolated_cpus_can_update(tmp->new_cpus, NULL)) ||
1639 prstate_housekeeping_conflict(new_prs, tmp->new_cpus))
1640 return PERR_HKEEPING;
1641
1642 spin_lock_irq(&callback_lock);
1643 partition_xcpus_add(new_prs, NULL, tmp->new_cpus);
1644 cs->remote_partition = true;
1645 cpumask_copy(cs->effective_xcpus, tmp->new_cpus);
1646 spin_unlock_irq(&callback_lock);
1647 update_isolation_cpumasks();
1648 cpuset_force_rebuild();
1649 cs->prs_err = 0;
1650
1651 /*
1652 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1653 */
1654 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1655 update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1656 return 0;
1657 }
1658
1659 /*
1660 * remote_partition_disable - Remove current cpuset from remote partition list
1661 * @cs: the cpuset to update
1662 * @tmp: temporary masks
1663 *
1664 * The effective_cpus is also updated.
1665 *
1666 * cpuset_mutex must be held by the caller.
1667 */
remote_partition_disable(struct cpuset * cs,struct tmpmasks * tmp)1668 static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp)
1669 {
1670 WARN_ON_ONCE(!is_remote_partition(cs));
1671 /*
1672 * When a CPU is offlined, top_cpuset may end up with no available CPUs,
1673 * which should clear subpartitions_cpus. We should not emit a warning for this
1674 * scenario: the hierarchy is updated from top to bottom, so subpartitions_cpus
1675 * may already be cleared when disabling the partition.
1676 */
1677 WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus) &&
1678 !cpumask_empty(subpartitions_cpus));
1679
1680 spin_lock_irq(&callback_lock);
1681 cs->remote_partition = false;
1682 partition_xcpus_del(cs->partition_root_state, NULL, cs->effective_xcpus);
1683 if (cs->prs_err)
1684 cs->partition_root_state = -cs->partition_root_state;
1685 else
1686 cs->partition_root_state = PRS_MEMBER;
1687
1688 /* effective_xcpus may need to be changed */
1689 compute_excpus(cs, cs->effective_xcpus);
1690 reset_partition_data(cs);
1691 spin_unlock_irq(&callback_lock);
1692 update_isolation_cpumasks();
1693 cpuset_force_rebuild();
1694
1695 /*
1696 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1697 */
1698 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1699 update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1700 }
1701
1702 /*
1703 * remote_cpus_update - cpus_exclusive change of remote partition
1704 * @cs: the cpuset to be updated
1705 * @xcpus: the new exclusive_cpus mask, if non-NULL
1706 * @excpus: the new effective_xcpus mask
1707 * @tmp: temporary masks
1708 *
1709 * top_cpuset and subpartitions_cpus will be updated or partition can be
1710 * invalidated.
1711 */
remote_cpus_update(struct cpuset * cs,struct cpumask * xcpus,struct cpumask * excpus,struct tmpmasks * tmp)1712 static void remote_cpus_update(struct cpuset *cs, struct cpumask *xcpus,
1713 struct cpumask *excpus, struct tmpmasks *tmp)
1714 {
1715 bool adding, deleting;
1716 int prs = cs->partition_root_state;
1717
1718 if (WARN_ON_ONCE(!is_remote_partition(cs)))
1719 return;
1720
1721 WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
1722
1723 if (cpumask_empty(excpus)) {
1724 cs->prs_err = PERR_CPUSEMPTY;
1725 goto invalidate;
1726 }
1727
1728 adding = cpumask_andnot(tmp->addmask, excpus, cs->effective_xcpus);
1729 deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, excpus);
1730
1731 /*
1732 * Additions of remote CPUs is only allowed if those CPUs are
1733 * not allocated to other partitions and there are effective_cpus
1734 * left in the top cpuset.
1735 */
1736 if (adding) {
1737 WARN_ON_ONCE(cpumask_intersects(tmp->addmask, subpartitions_cpus));
1738 if (!capable(CAP_SYS_ADMIN))
1739 cs->prs_err = PERR_ACCESS;
1740 else if (cpumask_intersects(tmp->addmask, subpartitions_cpus) ||
1741 cpumask_subset(top_cpuset.effective_cpus, tmp->addmask))
1742 cs->prs_err = PERR_NOCPUS;
1743 else if ((prs == PRS_ISOLATED) &&
1744 !isolated_cpus_can_update(tmp->addmask, tmp->delmask))
1745 cs->prs_err = PERR_HKEEPING;
1746 if (cs->prs_err)
1747 goto invalidate;
1748 }
1749
1750 spin_lock_irq(&callback_lock);
1751 if (adding)
1752 partition_xcpus_add(prs, NULL, tmp->addmask);
1753 if (deleting)
1754 partition_xcpus_del(prs, NULL, tmp->delmask);
1755 /*
1756 * Need to update effective_xcpus and exclusive_cpus now as
1757 * update_sibling_cpumasks() below may iterate back to the same cs.
1758 */
1759 cpumask_copy(cs->effective_xcpus, excpus);
1760 if (xcpus)
1761 cpumask_copy(cs->exclusive_cpus, xcpus);
1762 spin_unlock_irq(&callback_lock);
1763 update_isolation_cpumasks();
1764 if (adding || deleting)
1765 cpuset_force_rebuild();
1766
1767 /*
1768 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1769 */
1770 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1771 update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1772 return;
1773
1774 invalidate:
1775 remote_partition_disable(cs, tmp);
1776 }
1777
1778 /**
1779 * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset
1780 * @cs: The cpuset that requests change in partition root state
1781 * @cmd: Partition root state change command
1782 * @newmask: Optional new cpumask for partcmd_update
1783 * @tmp: Temporary addmask and delmask
1784 * Return: 0 or a partition root state error code
1785 *
1786 * For partcmd_enable*, the cpuset is being transformed from a non-partition
1787 * root to a partition root. The effective_xcpus (cpus_allowed if
1788 * effective_xcpus not set) mask of the given cpuset will be taken away from
1789 * parent's effective_cpus. The function will return 0 if all the CPUs listed
1790 * in effective_xcpus can be granted or an error code will be returned.
1791 *
1792 * For partcmd_disable, the cpuset is being transformed from a partition
1793 * root back to a non-partition root. Any CPUs in effective_xcpus will be
1794 * given back to parent's effective_cpus. 0 will always be returned.
1795 *
1796 * For partcmd_update, if the optional newmask is specified, the cpu list is
1797 * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is
1798 * assumed to remain the same. The cpuset should either be a valid or invalid
1799 * partition root. The partition root state may change from valid to invalid
1800 * or vice versa. An error code will be returned if transitioning from
1801 * invalid to valid violates the exclusivity rule.
1802 *
1803 * For partcmd_invalidate, the current partition will be made invalid.
1804 *
1805 * The partcmd_enable* and partcmd_disable commands are used by
1806 * update_prstate(). An error code may be returned and the caller will check
1807 * for error.
1808 *
1809 * The partcmd_update command is used by update_cpumasks_hier() with newmask
1810 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1811 * by update_cpumask() with NULL newmask. In both cases, the callers won't
1812 * check for error and so partition_root_state and prs_err will be updated
1813 * directly.
1814 */
update_parent_effective_cpumask(struct cpuset * cs,int cmd,struct cpumask * newmask,struct tmpmasks * tmp)1815 static int update_parent_effective_cpumask(struct cpuset *cs, int cmd,
1816 struct cpumask *newmask,
1817 struct tmpmasks *tmp)
1818 {
1819 struct cpuset *parent = parent_cs(cs);
1820 int adding; /* Adding cpus to parent's effective_cpus */
1821 int deleting; /* Deleting cpus from parent's effective_cpus */
1822 int old_prs, new_prs;
1823 int part_error = PERR_NONE; /* Partition error? */
1824 struct cpumask *xcpus = user_xcpus(cs);
1825 int parent_prs = parent->partition_root_state;
1826 bool nocpu;
1827
1828 lockdep_assert_held(&cpuset_mutex);
1829 WARN_ON_ONCE(is_remote_partition(cs)); /* For local partition only */
1830
1831 /*
1832 * new_prs will only be changed for the partcmd_update and
1833 * partcmd_invalidate commands.
1834 */
1835 adding = deleting = false;
1836 old_prs = new_prs = cs->partition_root_state;
1837
1838 if (cmd == partcmd_invalidate) {
1839 if (is_partition_invalid(cs))
1840 return 0;
1841
1842 /*
1843 * Make the current partition invalid.
1844 */
1845 if (is_partition_valid(parent))
1846 adding = cpumask_and(tmp->addmask,
1847 xcpus, parent->effective_xcpus);
1848 if (old_prs > 0)
1849 new_prs = -old_prs;
1850
1851 goto write_error;
1852 }
1853
1854 /*
1855 * The parent must be a partition root.
1856 * The new cpumask, if present, or the current cpus_allowed must
1857 * not be empty.
1858 */
1859 if (!is_partition_valid(parent)) {
1860 return is_partition_invalid(parent)
1861 ? PERR_INVPARENT : PERR_NOTPART;
1862 }
1863 if (!newmask && xcpus_empty(cs))
1864 return PERR_CPUSEMPTY;
1865
1866 nocpu = tasks_nocpu_error(parent, cs, xcpus);
1867
1868 if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) {
1869 /*
1870 * Need to call compute_excpus() in case
1871 * exclusive_cpus not set. Sibling conflict should only happen
1872 * if exclusive_cpus isn't set.
1873 */
1874 xcpus = tmp->delmask;
1875 if (compute_excpus(cs, xcpus))
1876 WARN_ON_ONCE(!cpumask_empty(cs->exclusive_cpus));
1877 new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED;
1878
1879 /*
1880 * Enabling partition root is not allowed if its
1881 * effective_xcpus is empty.
1882 */
1883 if (cpumask_empty(xcpus))
1884 return PERR_INVCPUS;
1885
1886 if (prstate_housekeeping_conflict(new_prs, xcpus))
1887 return PERR_HKEEPING;
1888
1889 if ((new_prs == PRS_ISOLATED) && (new_prs != parent_prs) &&
1890 !isolated_cpus_can_update(xcpus, NULL))
1891 return PERR_HKEEPING;
1892
1893 if (tasks_nocpu_error(parent, cs, xcpus))
1894 return PERR_NOCPUS;
1895
1896 /*
1897 * This function will only be called when all the preliminary
1898 * checks have passed. At this point, the following condition
1899 * should hold.
1900 *
1901 * (cs->effective_xcpus & cpu_active_mask) ⊆ parent->effective_cpus
1902 *
1903 * Warn if it is not the case.
1904 */
1905 cpumask_and(tmp->new_cpus, xcpus, cpu_active_mask);
1906 WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus));
1907
1908 deleting = true;
1909 } else if (cmd == partcmd_disable) {
1910 /*
1911 * May need to add cpus back to parent's effective_cpus
1912 * (and maybe removed from subpartitions_cpus/isolated_cpus)
1913 * for valid partition root. xcpus may contain CPUs that
1914 * shouldn't be removed from the two global cpumasks.
1915 */
1916 if (is_partition_valid(cs)) {
1917 cpumask_copy(tmp->addmask, cs->effective_xcpus);
1918 adding = true;
1919 }
1920 new_prs = PRS_MEMBER;
1921 } else if (newmask) {
1922 /*
1923 * Empty cpumask is not allowed
1924 */
1925 if (cpumask_empty(newmask)) {
1926 part_error = PERR_CPUSEMPTY;
1927 goto write_error;
1928 }
1929
1930 /* Check newmask again, whether cpus are available for parent/cs */
1931 nocpu |= tasks_nocpu_error(parent, cs, newmask);
1932
1933 /*
1934 * partcmd_update with newmask:
1935 *
1936 * Compute add/delete mask to/from effective_cpus
1937 *
1938 * For valid partition:
1939 * addmask = exclusive_cpus & ~newmask
1940 * & parent->effective_xcpus
1941 * delmask = newmask & ~exclusive_cpus
1942 * & parent->effective_xcpus
1943 *
1944 * For invalid partition:
1945 * delmask = newmask & parent->effective_xcpus
1946 * The partition may become valid soon.
1947 */
1948 if (is_partition_invalid(cs)) {
1949 adding = false;
1950 deleting = cpumask_and(tmp->delmask,
1951 newmask, parent->effective_xcpus);
1952 } else {
1953 cpumask_andnot(tmp->addmask, xcpus, newmask);
1954 adding = cpumask_and(tmp->addmask, tmp->addmask,
1955 parent->effective_xcpus);
1956
1957 cpumask_andnot(tmp->delmask, newmask, xcpus);
1958 deleting = cpumask_and(tmp->delmask, tmp->delmask,
1959 parent->effective_xcpus);
1960 }
1961
1962 /*
1963 * TBD: Invalidate a currently valid child root partition may
1964 * still break isolated_cpus_can_update() rule if parent is an
1965 * isolated partition.
1966 */
1967 if (is_partition_valid(cs) && (old_prs != parent_prs)) {
1968 if ((parent_prs == PRS_ROOT) &&
1969 /* Adding to parent means removing isolated CPUs */
1970 !isolated_cpus_can_update(tmp->delmask, tmp->addmask))
1971 part_error = PERR_HKEEPING;
1972 if ((parent_prs == PRS_ISOLATED) &&
1973 /* Adding to parent means adding isolated CPUs */
1974 !isolated_cpus_can_update(tmp->addmask, tmp->delmask))
1975 part_error = PERR_HKEEPING;
1976 }
1977
1978 /*
1979 * The new CPUs to be removed from parent's effective CPUs
1980 * must be present.
1981 */
1982 if (deleting) {
1983 cpumask_and(tmp->new_cpus, tmp->delmask, cpu_active_mask);
1984 WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus));
1985 }
1986
1987 /*
1988 * Make partition invalid if parent's effective_cpus could
1989 * become empty and there are tasks in the parent.
1990 */
1991 if (nocpu && (!adding ||
1992 !cpumask_intersects(tmp->addmask, cpu_active_mask))) {
1993 part_error = PERR_NOCPUS;
1994 deleting = false;
1995 adding = cpumask_and(tmp->addmask,
1996 xcpus, parent->effective_xcpus);
1997 }
1998 } else {
1999 /*
2000 * partcmd_update w/o newmask
2001 *
2002 * delmask = effective_xcpus & parent->effective_cpus
2003 *
2004 * This can be called from:
2005 * 1) update_cpumasks_hier()
2006 * 2) cpuset_hotplug_update_tasks()
2007 *
2008 * Check to see if it can be transitioned from valid to
2009 * invalid partition or vice versa.
2010 *
2011 * A partition error happens when parent has tasks and all
2012 * its effective CPUs will have to be distributed out.
2013 */
2014 if (nocpu) {
2015 part_error = PERR_NOCPUS;
2016 if (is_partition_valid(cs))
2017 adding = cpumask_and(tmp->addmask,
2018 xcpus, parent->effective_xcpus);
2019 } else if (is_partition_invalid(cs) && !cpumask_empty(xcpus) &&
2020 cpumask_subset(xcpus, parent->effective_xcpus)) {
2021 struct cgroup_subsys_state *css;
2022 struct cpuset *child;
2023 bool exclusive = true;
2024
2025 /*
2026 * Convert invalid partition to valid has to
2027 * pass the cpu exclusivity test.
2028 */
2029 rcu_read_lock();
2030 cpuset_for_each_child(child, css, parent) {
2031 if (child == cs)
2032 continue;
2033 if (!cpusets_are_exclusive(cs, child)) {
2034 exclusive = false;
2035 break;
2036 }
2037 }
2038 rcu_read_unlock();
2039 if (exclusive)
2040 deleting = cpumask_and(tmp->delmask,
2041 xcpus, parent->effective_cpus);
2042 else
2043 part_error = PERR_NOTEXCL;
2044 }
2045 }
2046
2047 write_error:
2048 if (part_error)
2049 WRITE_ONCE(cs->prs_err, part_error);
2050
2051 if (cmd == partcmd_update) {
2052 /*
2053 * Check for possible transition between valid and invalid
2054 * partition root.
2055 */
2056 switch (cs->partition_root_state) {
2057 case PRS_ROOT:
2058 case PRS_ISOLATED:
2059 if (part_error)
2060 new_prs = -old_prs;
2061 break;
2062 case PRS_INVALID_ROOT:
2063 case PRS_INVALID_ISOLATED:
2064 if (!part_error)
2065 new_prs = -old_prs;
2066 break;
2067 }
2068 }
2069
2070 if (!adding && !deleting && (new_prs == old_prs))
2071 return 0;
2072
2073 /*
2074 * Transitioning between invalid to valid or vice versa may require
2075 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update,
2076 * validate_change() has already been successfully called and
2077 * CPU lists in cs haven't been updated yet. So defer it to later.
2078 */
2079 if ((old_prs != new_prs) && (cmd != partcmd_update)) {
2080 int err = update_partition_exclusive_flag(cs, new_prs);
2081
2082 if (err)
2083 return err;
2084 }
2085
2086 /*
2087 * Change the parent's effective_cpus & effective_xcpus (top cpuset
2088 * only).
2089 *
2090 * Newly added CPUs will be removed from effective_cpus and
2091 * newly deleted ones will be added back to effective_cpus.
2092 */
2093 spin_lock_irq(&callback_lock);
2094 if (old_prs != new_prs)
2095 cs->partition_root_state = new_prs;
2096
2097 /*
2098 * Adding to parent's effective_cpus means deletion CPUs from cs
2099 * and vice versa.
2100 */
2101 if (adding)
2102 partition_xcpus_del(old_prs, parent, tmp->addmask);
2103 if (deleting)
2104 partition_xcpus_add(new_prs, parent, tmp->delmask);
2105
2106 spin_unlock_irq(&callback_lock);
2107 update_isolation_cpumasks();
2108
2109 if ((old_prs != new_prs) && (cmd == partcmd_update))
2110 update_partition_exclusive_flag(cs, new_prs);
2111
2112 if (adding || deleting) {
2113 cpuset_update_tasks_cpumask(parent, tmp->addmask);
2114 update_sibling_cpumasks(parent, cs, tmp);
2115 }
2116
2117 /*
2118 * For partcmd_update without newmask, it is being called from
2119 * cpuset_handle_hotplug(). Update the load balance flag and
2120 * scheduling domain accordingly.
2121 */
2122 if ((cmd == partcmd_update) && !newmask)
2123 update_partition_sd_lb(cs, old_prs);
2124
2125 notify_partition_change(cs, old_prs);
2126 return 0;
2127 }
2128
2129 /**
2130 * compute_partition_effective_cpumask - compute effective_cpus for partition
2131 * @cs: partition root cpuset
2132 * @new_ecpus: previously computed effective_cpus to be updated
2133 *
2134 * Compute the effective_cpus of a partition root by scanning effective_xcpus
2135 * of child partition roots and excluding their effective_xcpus.
2136 *
2137 * This has the side effect of invalidating valid child partition roots,
2138 * if necessary. Since it is called from either cpuset_hotplug_update_tasks()
2139 * or update_cpumasks_hier() where parent and children are modified
2140 * successively, we don't need to call update_parent_effective_cpumask()
2141 * and the child's effective_cpus will be updated in later iterations.
2142 *
2143 * Note that rcu_read_lock() is assumed to be held.
2144 */
compute_partition_effective_cpumask(struct cpuset * cs,struct cpumask * new_ecpus)2145 static void compute_partition_effective_cpumask(struct cpuset *cs,
2146 struct cpumask *new_ecpus)
2147 {
2148 struct cgroup_subsys_state *css;
2149 struct cpuset *child;
2150 bool populated = partition_is_populated(cs, NULL);
2151
2152 /*
2153 * Check child partition roots to see if they should be
2154 * invalidated when
2155 * 1) child effective_xcpus not a subset of new
2156 * excluisve_cpus
2157 * 2) All the effective_cpus will be used up and cp
2158 * has tasks
2159 */
2160 compute_excpus(cs, new_ecpus);
2161 cpumask_and(new_ecpus, new_ecpus, cpu_active_mask);
2162
2163 rcu_read_lock();
2164 cpuset_for_each_child(child, css, cs) {
2165 if (!is_partition_valid(child))
2166 continue;
2167
2168 /*
2169 * There shouldn't be a remote partition underneath another
2170 * partition root.
2171 */
2172 WARN_ON_ONCE(is_remote_partition(child));
2173 child->prs_err = 0;
2174 if (!cpumask_subset(child->effective_xcpus,
2175 cs->effective_xcpus))
2176 child->prs_err = PERR_INVCPUS;
2177 else if (populated &&
2178 cpumask_subset(new_ecpus, child->effective_xcpus))
2179 child->prs_err = PERR_NOCPUS;
2180
2181 if (child->prs_err) {
2182 int old_prs = child->partition_root_state;
2183
2184 /*
2185 * Invalidate child partition
2186 */
2187 spin_lock_irq(&callback_lock);
2188 make_partition_invalid(child);
2189 spin_unlock_irq(&callback_lock);
2190 notify_partition_change(child, old_prs);
2191 continue;
2192 }
2193 cpumask_andnot(new_ecpus, new_ecpus,
2194 child->effective_xcpus);
2195 }
2196 rcu_read_unlock();
2197 }
2198
2199 /*
2200 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
2201 * @cs: the cpuset to consider
2202 * @tmp: temp variables for calculating effective_cpus & partition setup
2203 * @force: don't skip any descendant cpusets if set
2204 *
2205 * When configured cpumask is changed, the effective cpumasks of this cpuset
2206 * and all its descendants need to be updated.
2207 *
2208 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
2209 *
2210 * Called with cpuset_mutex held
2211 */
update_cpumasks_hier(struct cpuset * cs,struct tmpmasks * tmp,bool force)2212 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
2213 bool force)
2214 {
2215 struct cpuset *cp;
2216 struct cgroup_subsys_state *pos_css;
2217 int old_prs, new_prs;
2218
2219 rcu_read_lock();
2220 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2221 struct cpuset *parent = parent_cs(cp);
2222 bool remote = is_remote_partition(cp);
2223 bool update_parent = false;
2224
2225 old_prs = new_prs = cp->partition_root_state;
2226
2227 /*
2228 * For child remote partition root (!= cs), we need to call
2229 * remote_cpus_update() if effective_xcpus will be changed.
2230 * Otherwise, we can skip the whole subtree.
2231 *
2232 * remote_cpus_update() will reuse tmp->new_cpus only after
2233 * its value is being processed.
2234 */
2235 if (remote && (cp != cs)) {
2236 compute_excpus(cp, tmp->new_cpus);
2237 if (cpumask_equal(cp->effective_xcpus, tmp->new_cpus)) {
2238 pos_css = css_rightmost_descendant(pos_css);
2239 continue;
2240 }
2241 rcu_read_unlock();
2242 remote_cpus_update(cp, NULL, tmp->new_cpus, tmp);
2243 rcu_read_lock();
2244
2245 /* Remote partition may be invalidated */
2246 new_prs = cp->partition_root_state;
2247 remote = (new_prs == old_prs);
2248 }
2249
2250 if (remote || (is_partition_valid(parent) && is_partition_valid(cp)))
2251 compute_partition_effective_cpumask(cp, tmp->new_cpus);
2252 else
2253 compute_effective_cpumask(tmp->new_cpus, cp, parent);
2254
2255 if (remote)
2256 goto get_css; /* Ready to update cpuset data */
2257
2258 /*
2259 * A partition with no effective_cpus is allowed as long as
2260 * there is no task associated with it. Call
2261 * update_parent_effective_cpumask() to check it.
2262 */
2263 if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) {
2264 update_parent = true;
2265 goto update_parent_effective;
2266 }
2267
2268 /*
2269 * If it becomes empty, inherit the effective mask of the
2270 * parent, which is guaranteed to have some CPUs unless
2271 * it is a partition root that has explicitly distributed
2272 * out all its CPUs.
2273 */
2274 if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus))
2275 cpumask_copy(tmp->new_cpus, parent->effective_cpus);
2276
2277 /*
2278 * Skip the whole subtree if
2279 * 1) the cpumask remains the same,
2280 * 2) has no partition root state,
2281 * 3) force flag not set, and
2282 * 4) for v2 load balance state same as its parent.
2283 */
2284 if (!cp->partition_root_state && !force &&
2285 cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
2286 (!cpuset_v2() ||
2287 (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
2288 pos_css = css_rightmost_descendant(pos_css);
2289 continue;
2290 }
2291
2292 update_parent_effective:
2293 /*
2294 * update_parent_effective_cpumask() should have been called
2295 * for cs already in update_cpumask(). We should also call
2296 * cpuset_update_tasks_cpumask() again for tasks in the parent
2297 * cpuset if the parent's effective_cpus changes.
2298 */
2299 if ((cp != cs) && old_prs) {
2300 switch (parent->partition_root_state) {
2301 case PRS_ROOT:
2302 case PRS_ISOLATED:
2303 update_parent = true;
2304 break;
2305
2306 default:
2307 /*
2308 * When parent is not a partition root or is
2309 * invalid, child partition roots become
2310 * invalid too.
2311 */
2312 if (is_partition_valid(cp))
2313 new_prs = -cp->partition_root_state;
2314 WRITE_ONCE(cp->prs_err,
2315 is_partition_invalid(parent)
2316 ? PERR_INVPARENT : PERR_NOTPART);
2317 break;
2318 }
2319 }
2320 get_css:
2321 if (!css_tryget_online(&cp->css))
2322 continue;
2323 rcu_read_unlock();
2324
2325 if (update_parent) {
2326 update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp);
2327 /*
2328 * The cpuset partition_root_state may become
2329 * invalid. Capture it.
2330 */
2331 new_prs = cp->partition_root_state;
2332 }
2333
2334 spin_lock_irq(&callback_lock);
2335 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
2336 cp->partition_root_state = new_prs;
2337 if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs))
2338 compute_excpus(cp, cp->effective_xcpus);
2339
2340 /*
2341 * Make sure effective_xcpus is properly set for a valid
2342 * partition root.
2343 */
2344 if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus))
2345 cpumask_and(cp->effective_xcpus,
2346 cp->cpus_allowed, parent->effective_xcpus);
2347 else if (new_prs < 0)
2348 reset_partition_data(cp);
2349 spin_unlock_irq(&callback_lock);
2350
2351 notify_partition_change(cp, old_prs);
2352
2353 WARN_ON(!is_in_v2_mode() &&
2354 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
2355
2356 cpuset_update_tasks_cpumask(cp, cp->effective_cpus);
2357
2358 /*
2359 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
2360 * from parent if current cpuset isn't a valid partition root
2361 * and their load balance states differ.
2362 */
2363 if (cpuset_v2() && !is_partition_valid(cp) &&
2364 (is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
2365 if (is_sched_load_balance(parent))
2366 set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2367 else
2368 clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2369 }
2370
2371 /*
2372 * On legacy hierarchy, if the effective cpumask of any non-
2373 * empty cpuset is changed, we need to rebuild sched domains.
2374 * On default hierarchy, the cpuset needs to be a partition
2375 * root as well.
2376 */
2377 if (!cpumask_empty(cp->cpus_allowed) &&
2378 is_sched_load_balance(cp) &&
2379 (!cpuset_v2() || is_partition_valid(cp)))
2380 cpuset_force_rebuild();
2381
2382 rcu_read_lock();
2383 css_put(&cp->css);
2384 }
2385 rcu_read_unlock();
2386 }
2387
2388 /**
2389 * update_sibling_cpumasks - Update siblings cpumasks
2390 * @parent: Parent cpuset
2391 * @cs: Current cpuset
2392 * @tmp: Temp variables
2393 */
update_sibling_cpumasks(struct cpuset * parent,struct cpuset * cs,struct tmpmasks * tmp)2394 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
2395 struct tmpmasks *tmp)
2396 {
2397 struct cpuset *sibling;
2398 struct cgroup_subsys_state *pos_css;
2399
2400 lockdep_assert_held(&cpuset_mutex);
2401
2402 /*
2403 * Check all its siblings and call update_cpumasks_hier()
2404 * if their effective_cpus will need to be changed.
2405 *
2406 * It is possible a change in parent's effective_cpus
2407 * due to a change in a child partition's effective_xcpus will impact
2408 * its siblings even if they do not inherit parent's effective_cpus
2409 * directly.
2410 *
2411 * The update_cpumasks_hier() function may sleep. So we have to
2412 * release the RCU read lock before calling it.
2413 */
2414 rcu_read_lock();
2415 cpuset_for_each_child(sibling, pos_css, parent) {
2416 if (sibling == cs)
2417 continue;
2418 if (!is_partition_valid(sibling)) {
2419 compute_effective_cpumask(tmp->new_cpus, sibling,
2420 parent);
2421 if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus))
2422 continue;
2423 } else if (is_remote_partition(sibling)) {
2424 /*
2425 * Change in a sibling cpuset won't affect a remote
2426 * partition root.
2427 */
2428 continue;
2429 }
2430
2431 if (!css_tryget_online(&sibling->css))
2432 continue;
2433
2434 rcu_read_unlock();
2435 update_cpumasks_hier(sibling, tmp, false);
2436 rcu_read_lock();
2437 css_put(&sibling->css);
2438 }
2439 rcu_read_unlock();
2440 }
2441
parse_cpuset_cpulist(const char * buf,struct cpumask * out_mask)2442 static int parse_cpuset_cpulist(const char *buf, struct cpumask *out_mask)
2443 {
2444 int retval;
2445
2446 retval = cpulist_parse(buf, out_mask);
2447 if (retval < 0)
2448 return retval;
2449 if (!cpumask_subset(out_mask, top_cpuset.cpus_allowed))
2450 return -EINVAL;
2451
2452 return 0;
2453 }
2454
2455 /**
2456 * validate_partition - Validate a cpuset partition configuration
2457 * @cs: The cpuset to validate
2458 * @trialcs: The trial cpuset containing proposed configuration changes
2459 *
2460 * If any validation check fails, the appropriate error code is set in the
2461 * cpuset's prs_err field.
2462 *
2463 * Return: PRS error code (0 if valid, non-zero error code if invalid)
2464 */
validate_partition(struct cpuset * cs,struct cpuset * trialcs)2465 static enum prs_errcode validate_partition(struct cpuset *cs, struct cpuset *trialcs)
2466 {
2467 struct cpuset *parent = parent_cs(cs);
2468
2469 if (cs_is_member(trialcs))
2470 return PERR_NONE;
2471
2472 if (cpumask_empty(trialcs->effective_xcpus))
2473 return PERR_INVCPUS;
2474
2475 if (prstate_housekeeping_conflict(trialcs->partition_root_state,
2476 trialcs->effective_xcpus))
2477 return PERR_HKEEPING;
2478
2479 if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus))
2480 return PERR_NOCPUS;
2481
2482 return PERR_NONE;
2483 }
2484
cpus_allowed_validate_change(struct cpuset * cs,struct cpuset * trialcs,struct tmpmasks * tmp)2485 static int cpus_allowed_validate_change(struct cpuset *cs, struct cpuset *trialcs,
2486 struct tmpmasks *tmp)
2487 {
2488 int retval;
2489 struct cpuset *parent = parent_cs(cs);
2490
2491 retval = validate_change(cs, trialcs);
2492
2493 if ((retval == -EINVAL) && cpuset_v2()) {
2494 struct cgroup_subsys_state *css;
2495 struct cpuset *cp;
2496
2497 /*
2498 * The -EINVAL error code indicates that partition sibling
2499 * CPU exclusivity rule has been violated. We still allow
2500 * the cpumask change to proceed while invalidating the
2501 * partition. However, any conflicting sibling partitions
2502 * have to be marked as invalid too.
2503 */
2504 trialcs->prs_err = PERR_NOTEXCL;
2505 rcu_read_lock();
2506 cpuset_for_each_child(cp, css, parent) {
2507 struct cpumask *xcpus = user_xcpus(trialcs);
2508
2509 if (is_partition_valid(cp) &&
2510 cpumask_intersects(xcpus, cp->effective_xcpus)) {
2511 rcu_read_unlock();
2512 update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, tmp);
2513 rcu_read_lock();
2514 }
2515 }
2516 rcu_read_unlock();
2517 retval = 0;
2518 }
2519 return retval;
2520 }
2521
2522 /**
2523 * partition_cpus_change - Handle partition state changes due to CPU mask updates
2524 * @cs: The target cpuset being modified
2525 * @trialcs: The trial cpuset containing proposed configuration changes
2526 * @tmp: Temporary masks for intermediate calculations
2527 *
2528 * This function handles partition state transitions triggered by CPU mask changes.
2529 * CPU modifications may cause a partition to be disabled or require state updates.
2530 */
partition_cpus_change(struct cpuset * cs,struct cpuset * trialcs,struct tmpmasks * tmp)2531 static void partition_cpus_change(struct cpuset *cs, struct cpuset *trialcs,
2532 struct tmpmasks *tmp)
2533 {
2534 enum prs_errcode prs_err;
2535
2536 if (cs_is_member(cs))
2537 return;
2538
2539 prs_err = validate_partition(cs, trialcs);
2540 if (prs_err)
2541 trialcs->prs_err = cs->prs_err = prs_err;
2542
2543 if (is_remote_partition(cs)) {
2544 if (trialcs->prs_err)
2545 remote_partition_disable(cs, tmp);
2546 else
2547 remote_cpus_update(cs, trialcs->exclusive_cpus,
2548 trialcs->effective_xcpus, tmp);
2549 } else {
2550 if (trialcs->prs_err)
2551 update_parent_effective_cpumask(cs, partcmd_invalidate,
2552 NULL, tmp);
2553 else
2554 update_parent_effective_cpumask(cs, partcmd_update,
2555 trialcs->effective_xcpus, tmp);
2556 }
2557 }
2558
2559 /**
2560 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
2561 * @cs: the cpuset to consider
2562 * @trialcs: trial cpuset
2563 * @buf: buffer of cpu numbers written to this cpuset
2564 */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)2565 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2566 const char *buf)
2567 {
2568 int retval;
2569 struct tmpmasks tmp;
2570 bool force = false;
2571 int old_prs = cs->partition_root_state;
2572
2573 retval = parse_cpuset_cpulist(buf, trialcs->cpus_allowed);
2574 if (retval < 0)
2575 return retval;
2576
2577 /* Nothing to do if the cpus didn't change */
2578 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
2579 return 0;
2580
2581 if (alloc_tmpmasks(&tmp))
2582 return -ENOMEM;
2583
2584 compute_trialcs_excpus(trialcs, cs);
2585 trialcs->prs_err = PERR_NONE;
2586
2587 retval = cpus_allowed_validate_change(cs, trialcs, &tmp);
2588 if (retval < 0)
2589 goto out_free;
2590
2591 /*
2592 * Check all the descendants in update_cpumasks_hier() if
2593 * effective_xcpus is to be changed.
2594 */
2595 force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
2596
2597 partition_cpus_change(cs, trialcs, &tmp);
2598
2599 spin_lock_irq(&callback_lock);
2600 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
2601 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2602 if ((old_prs > 0) && !is_partition_valid(cs))
2603 reset_partition_data(cs);
2604 spin_unlock_irq(&callback_lock);
2605
2606 /* effective_cpus/effective_xcpus will be updated here */
2607 update_cpumasks_hier(cs, &tmp, force);
2608
2609 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2610 if (cs->partition_root_state)
2611 update_partition_sd_lb(cs, old_prs);
2612 out_free:
2613 free_tmpmasks(&tmp);
2614 return retval;
2615 }
2616
2617 /**
2618 * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset
2619 * @cs: the cpuset to consider
2620 * @trialcs: trial cpuset
2621 * @buf: buffer of cpu numbers written to this cpuset
2622 *
2623 * The tasks' cpumask will be updated if cs is a valid partition root.
2624 */
update_exclusive_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)2625 static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2626 const char *buf)
2627 {
2628 int retval;
2629 struct tmpmasks tmp;
2630 bool force = false;
2631 int old_prs = cs->partition_root_state;
2632
2633 retval = parse_cpuset_cpulist(buf, trialcs->exclusive_cpus);
2634 if (retval < 0)
2635 return retval;
2636
2637 /* Nothing to do if the CPUs didn't change */
2638 if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus))
2639 return 0;
2640
2641 /*
2642 * Reject the change if there is exclusive CPUs conflict with
2643 * the siblings.
2644 */
2645 if (compute_trialcs_excpus(trialcs, cs))
2646 return -EINVAL;
2647
2648 /*
2649 * Check all the descendants in update_cpumasks_hier() if
2650 * effective_xcpus is to be changed.
2651 */
2652 force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
2653
2654 retval = validate_change(cs, trialcs);
2655 if (retval)
2656 return retval;
2657
2658 if (alloc_tmpmasks(&tmp))
2659 return -ENOMEM;
2660
2661 trialcs->prs_err = PERR_NONE;
2662 partition_cpus_change(cs, trialcs, &tmp);
2663
2664 spin_lock_irq(&callback_lock);
2665 cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus);
2666 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2667 if ((old_prs > 0) && !is_partition_valid(cs))
2668 reset_partition_data(cs);
2669 spin_unlock_irq(&callback_lock);
2670
2671 /*
2672 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus
2673 * of the subtree when it is a valid partition root or effective_xcpus
2674 * is updated.
2675 */
2676 if (is_partition_valid(cs) || force)
2677 update_cpumasks_hier(cs, &tmp, force);
2678
2679 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2680 if (cs->partition_root_state)
2681 update_partition_sd_lb(cs, old_prs);
2682
2683 free_tmpmasks(&tmp);
2684 return 0;
2685 }
2686
2687 /*
2688 * Migrate memory region from one set of nodes to another. This is
2689 * performed asynchronously as it can be called from process migration path
2690 * holding locks involved in process management. All mm migrations are
2691 * performed in the queued order and can be waited for by flushing
2692 * cpuset_migrate_mm_wq.
2693 */
2694
2695 struct cpuset_migrate_mm_work {
2696 struct work_struct work;
2697 struct mm_struct *mm;
2698 nodemask_t from;
2699 nodemask_t to;
2700 };
2701
cpuset_migrate_mm_workfn(struct work_struct * work)2702 static void cpuset_migrate_mm_workfn(struct work_struct *work)
2703 {
2704 struct cpuset_migrate_mm_work *mwork =
2705 container_of(work, struct cpuset_migrate_mm_work, work);
2706
2707 /* on a wq worker, no need to worry about %current's mems_allowed */
2708 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
2709 mmput(mwork->mm);
2710 kfree(mwork);
2711 }
2712
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)2713 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
2714 const nodemask_t *to)
2715 {
2716 struct cpuset_migrate_mm_work *mwork;
2717
2718 if (nodes_equal(*from, *to)) {
2719 mmput(mm);
2720 return;
2721 }
2722
2723 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
2724 if (mwork) {
2725 mwork->mm = mm;
2726 mwork->from = *from;
2727 mwork->to = *to;
2728 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
2729 queue_work(cpuset_migrate_mm_wq, &mwork->work);
2730 } else {
2731 mmput(mm);
2732 }
2733 }
2734
flush_migrate_mm_task_workfn(struct callback_head * head)2735 static void flush_migrate_mm_task_workfn(struct callback_head *head)
2736 {
2737 flush_workqueue(cpuset_migrate_mm_wq);
2738 kfree(head);
2739 }
2740
schedule_flush_migrate_mm(void)2741 static void schedule_flush_migrate_mm(void)
2742 {
2743 struct callback_head *flush_cb;
2744
2745 flush_cb = kzalloc(sizeof(struct callback_head), GFP_KERNEL);
2746 if (!flush_cb)
2747 return;
2748
2749 init_task_work(flush_cb, flush_migrate_mm_task_workfn);
2750
2751 if (task_work_add(current, flush_cb, TWA_RESUME))
2752 kfree(flush_cb);
2753 }
2754
2755 /*
2756 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
2757 * @tsk: the task to change
2758 * @newmems: new nodes that the task will be set
2759 *
2760 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
2761 * and rebind an eventual tasks' mempolicy. If the task is allocating in
2762 * parallel, it might temporarily see an empty intersection, which results in
2763 * a seqlock check and retry before OOM or allocation failure.
2764 */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)2765 static void cpuset_change_task_nodemask(struct task_struct *tsk,
2766 nodemask_t *newmems)
2767 {
2768 task_lock(tsk);
2769
2770 local_irq_disable();
2771 write_seqcount_begin(&tsk->mems_allowed_seq);
2772
2773 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
2774 mpol_rebind_task(tsk, newmems);
2775 tsk->mems_allowed = *newmems;
2776
2777 write_seqcount_end(&tsk->mems_allowed_seq);
2778 local_irq_enable();
2779
2780 task_unlock(tsk);
2781 }
2782
2783 static void *cpuset_being_rebound;
2784
2785 /**
2786 * cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
2787 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
2788 *
2789 * Iterate through each task of @cs updating its mems_allowed to the
2790 * effective cpuset's. As this function is called with cpuset_mutex held,
2791 * cpuset membership stays stable.
2792 */
cpuset_update_tasks_nodemask(struct cpuset * cs)2793 void cpuset_update_tasks_nodemask(struct cpuset *cs)
2794 {
2795 static nodemask_t newmems; /* protected by cpuset_mutex */
2796 struct css_task_iter it;
2797 struct task_struct *task;
2798
2799 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
2800
2801 guarantee_online_mems(cs, &newmems);
2802
2803 /*
2804 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
2805 * take while holding tasklist_lock. Forks can happen - the
2806 * mpol_dup() cpuset_being_rebound check will catch such forks,
2807 * and rebind their vma mempolicies too. Because we still hold
2808 * the global cpuset_mutex, we know that no other rebind effort
2809 * will be contending for the global variable cpuset_being_rebound.
2810 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
2811 * is idempotent. Also migrate pages in each mm to new nodes.
2812 */
2813 css_task_iter_start(&cs->css, 0, &it);
2814 while ((task = css_task_iter_next(&it))) {
2815 struct mm_struct *mm;
2816 bool migrate;
2817
2818 cpuset_change_task_nodemask(task, &newmems);
2819
2820 mm = get_task_mm(task);
2821 if (!mm)
2822 continue;
2823
2824 migrate = is_memory_migrate(cs);
2825
2826 mpol_rebind_mm(mm, &cs->mems_allowed);
2827 if (migrate)
2828 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
2829 else
2830 mmput(mm);
2831 }
2832 css_task_iter_end(&it);
2833
2834 /*
2835 * All the tasks' nodemasks have been updated, update
2836 * cs->old_mems_allowed.
2837 */
2838 cs->old_mems_allowed = newmems;
2839
2840 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
2841 cpuset_being_rebound = NULL;
2842 }
2843
2844 /*
2845 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2846 * @cs: the cpuset to consider
2847 * @new_mems: a temp variable for calculating new effective_mems
2848 *
2849 * When configured nodemask is changed, the effective nodemasks of this cpuset
2850 * and all its descendants need to be updated.
2851 *
2852 * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2853 *
2854 * Called with cpuset_mutex held
2855 */
update_nodemasks_hier(struct cpuset * cs,nodemask_t * new_mems)2856 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2857 {
2858 struct cpuset *cp;
2859 struct cgroup_subsys_state *pos_css;
2860
2861 rcu_read_lock();
2862 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2863 struct cpuset *parent = parent_cs(cp);
2864
2865 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2866
2867 /*
2868 * If it becomes empty, inherit the effective mask of the
2869 * parent, which is guaranteed to have some MEMs.
2870 */
2871 if (is_in_v2_mode() && nodes_empty(*new_mems))
2872 *new_mems = parent->effective_mems;
2873
2874 /* Skip the whole subtree if the nodemask remains the same. */
2875 if (nodes_equal(*new_mems, cp->effective_mems)) {
2876 pos_css = css_rightmost_descendant(pos_css);
2877 continue;
2878 }
2879
2880 if (!css_tryget_online(&cp->css))
2881 continue;
2882 rcu_read_unlock();
2883
2884 spin_lock_irq(&callback_lock);
2885 cp->effective_mems = *new_mems;
2886 spin_unlock_irq(&callback_lock);
2887
2888 WARN_ON(!is_in_v2_mode() &&
2889 !nodes_equal(cp->mems_allowed, cp->effective_mems));
2890
2891 cpuset_update_tasks_nodemask(cp);
2892
2893 rcu_read_lock();
2894 css_put(&cp->css);
2895 }
2896 rcu_read_unlock();
2897 }
2898
2899 /*
2900 * Handle user request to change the 'mems' memory placement
2901 * of a cpuset. Needs to validate the request, update the
2902 * cpusets mems_allowed, and for each task in the cpuset,
2903 * update mems_allowed and rebind task's mempolicy and any vma
2904 * mempolicies and if the cpuset is marked 'memory_migrate',
2905 * migrate the tasks pages to the new memory.
2906 *
2907 * Call with cpuset_mutex held. May take callback_lock during call.
2908 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2909 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2910 * their mempolicies to the cpusets new mems_allowed.
2911 */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)2912 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2913 const char *buf)
2914 {
2915 int retval;
2916
2917 /*
2918 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2919 * The validate_change() call ensures that cpusets with tasks have memory.
2920 */
2921 retval = nodelist_parse(buf, trialcs->mems_allowed);
2922 if (retval < 0)
2923 return retval;
2924
2925 if (!nodes_subset(trialcs->mems_allowed,
2926 top_cpuset.mems_allowed))
2927 return -EINVAL;
2928
2929 /* No change? nothing to do */
2930 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed))
2931 return 0;
2932
2933 retval = validate_change(cs, trialcs);
2934 if (retval < 0)
2935 return retval;
2936
2937 check_insane_mems_config(&trialcs->mems_allowed);
2938
2939 spin_lock_irq(&callback_lock);
2940 cs->mems_allowed = trialcs->mems_allowed;
2941 spin_unlock_irq(&callback_lock);
2942
2943 /* use trialcs->mems_allowed as a temp variable */
2944 update_nodemasks_hier(cs, &trialcs->mems_allowed);
2945 return 0;
2946 }
2947
current_cpuset_is_being_rebound(void)2948 bool current_cpuset_is_being_rebound(void)
2949 {
2950 bool ret;
2951
2952 rcu_read_lock();
2953 ret = task_cs(current) == cpuset_being_rebound;
2954 rcu_read_unlock();
2955
2956 return ret;
2957 }
2958
2959 /*
2960 * cpuset_update_flag - read a 0 or a 1 in a file and update associated flag
2961 * bit: the bit to update (see cpuset_flagbits_t)
2962 * cs: the cpuset to update
2963 * turning_on: whether the flag is being set or cleared
2964 *
2965 * Call with cpuset_mutex held.
2966 */
2967
cpuset_update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)2968 int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2969 int turning_on)
2970 {
2971 struct cpuset *trialcs;
2972 int balance_flag_changed;
2973 int spread_flag_changed;
2974 int err;
2975
2976 trialcs = dup_or_alloc_cpuset(cs);
2977 if (!trialcs)
2978 return -ENOMEM;
2979
2980 if (turning_on)
2981 set_bit(bit, &trialcs->flags);
2982 else
2983 clear_bit(bit, &trialcs->flags);
2984
2985 err = validate_change(cs, trialcs);
2986 if (err < 0)
2987 goto out;
2988
2989 balance_flag_changed = (is_sched_load_balance(cs) !=
2990 is_sched_load_balance(trialcs));
2991
2992 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2993 || (is_spread_page(cs) != is_spread_page(trialcs)));
2994
2995 spin_lock_irq(&callback_lock);
2996 cs->flags = trialcs->flags;
2997 spin_unlock_irq(&callback_lock);
2998
2999 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) {
3000 if (cpuset_v2())
3001 cpuset_force_rebuild();
3002 else
3003 rebuild_sched_domains_locked();
3004 }
3005
3006 if (spread_flag_changed)
3007 cpuset1_update_tasks_flags(cs);
3008 out:
3009 free_cpuset(trialcs);
3010 return err;
3011 }
3012
3013 /**
3014 * update_prstate - update partition_root_state
3015 * @cs: the cpuset to update
3016 * @new_prs: new partition root state
3017 * Return: 0 if successful, != 0 if error
3018 *
3019 * Call with cpuset_mutex held.
3020 */
update_prstate(struct cpuset * cs,int new_prs)3021 static int update_prstate(struct cpuset *cs, int new_prs)
3022 {
3023 int err = PERR_NONE, old_prs = cs->partition_root_state;
3024 struct cpuset *parent = parent_cs(cs);
3025 struct tmpmasks tmpmask;
3026 bool isolcpus_updated = false;
3027
3028 if (old_prs == new_prs)
3029 return 0;
3030
3031 /*
3032 * Treat a previously invalid partition root as if it is a "member".
3033 */
3034 if (new_prs && is_partition_invalid(cs))
3035 old_prs = PRS_MEMBER;
3036
3037 if (alloc_tmpmasks(&tmpmask))
3038 return -ENOMEM;
3039
3040 err = update_partition_exclusive_flag(cs, new_prs);
3041 if (err)
3042 goto out;
3043
3044 if (!old_prs) {
3045 /*
3046 * cpus_allowed and exclusive_cpus cannot be both empty.
3047 */
3048 if (xcpus_empty(cs)) {
3049 err = PERR_CPUSEMPTY;
3050 goto out;
3051 }
3052
3053 /*
3054 * We don't support the creation of a new local partition with
3055 * a remote partition underneath it. This unsupported
3056 * setting can happen only if parent is the top_cpuset because
3057 * a remote partition cannot be created underneath an existing
3058 * local or remote partition.
3059 */
3060 if ((parent == &top_cpuset) &&
3061 cpumask_intersects(cs->exclusive_cpus, subpartitions_cpus)) {
3062 err = PERR_REMOTE;
3063 goto out;
3064 }
3065
3066 /*
3067 * If parent is valid partition, enable local partiion.
3068 * Otherwise, enable a remote partition.
3069 */
3070 if (is_partition_valid(parent)) {
3071 enum partition_cmd cmd = (new_prs == PRS_ROOT)
3072 ? partcmd_enable : partcmd_enablei;
3073
3074 err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask);
3075 } else {
3076 err = remote_partition_enable(cs, new_prs, &tmpmask);
3077 }
3078 } else if (old_prs && new_prs) {
3079 /*
3080 * A change in load balance state only, no change in cpumasks.
3081 * Need to update isolated_cpus.
3082 */
3083 if (((new_prs == PRS_ISOLATED) &&
3084 !isolated_cpus_can_update(cs->effective_xcpus, NULL)) ||
3085 prstate_housekeeping_conflict(new_prs, cs->effective_xcpus))
3086 err = PERR_HKEEPING;
3087 else
3088 isolcpus_updated = true;
3089 } else {
3090 /*
3091 * Switching back to member is always allowed even if it
3092 * disables child partitions.
3093 */
3094 if (is_remote_partition(cs))
3095 remote_partition_disable(cs, &tmpmask);
3096 else
3097 update_parent_effective_cpumask(cs, partcmd_disable,
3098 NULL, &tmpmask);
3099
3100 /*
3101 * Invalidation of child partitions will be done in
3102 * update_cpumasks_hier().
3103 */
3104 }
3105 out:
3106 /*
3107 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
3108 * happens.
3109 */
3110 if (err) {
3111 new_prs = -new_prs;
3112 update_partition_exclusive_flag(cs, new_prs);
3113 }
3114
3115 spin_lock_irq(&callback_lock);
3116 cs->partition_root_state = new_prs;
3117 WRITE_ONCE(cs->prs_err, err);
3118 if (!is_partition_valid(cs))
3119 reset_partition_data(cs);
3120 else if (isolcpus_updated)
3121 isolated_cpus_update(old_prs, new_prs, cs->effective_xcpus);
3122 spin_unlock_irq(&callback_lock);
3123 update_isolation_cpumasks();
3124
3125 /* Force update if switching back to member & update effective_xcpus */
3126 update_cpumasks_hier(cs, &tmpmask, !new_prs);
3127
3128 /* A newly created partition must have effective_xcpus set */
3129 WARN_ON_ONCE(!old_prs && (new_prs > 0)
3130 && cpumask_empty(cs->effective_xcpus));
3131
3132 /* Update sched domains and load balance flag */
3133 update_partition_sd_lb(cs, old_prs);
3134
3135 notify_partition_change(cs, old_prs);
3136 if (force_sd_rebuild)
3137 rebuild_sched_domains_locked();
3138 free_tmpmasks(&tmpmask);
3139 return 0;
3140 }
3141
3142 static struct cpuset *cpuset_attach_old_cs;
3143
3144 /*
3145 * Check to see if a cpuset can accept a new task
3146 * For v1, cpus_allowed and mems_allowed can't be empty.
3147 * For v2, effective_cpus can't be empty.
3148 * Note that in v1, effective_cpus = cpus_allowed.
3149 */
cpuset_can_attach_check(struct cpuset * cs)3150 static int cpuset_can_attach_check(struct cpuset *cs)
3151 {
3152 if (cpumask_empty(cs->effective_cpus) ||
3153 (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
3154 return -ENOSPC;
3155 return 0;
3156 }
3157
reset_migrate_dl_data(struct cpuset * cs)3158 static void reset_migrate_dl_data(struct cpuset *cs)
3159 {
3160 cs->nr_migrate_dl_tasks = 0;
3161 cs->sum_migrate_dl_bw = 0;
3162 }
3163
3164 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
cpuset_can_attach(struct cgroup_taskset * tset)3165 static int cpuset_can_attach(struct cgroup_taskset *tset)
3166 {
3167 struct cgroup_subsys_state *css;
3168 struct cpuset *cs, *oldcs;
3169 struct task_struct *task;
3170 bool cpus_updated, mems_updated;
3171 int ret;
3172
3173 /* used later by cpuset_attach() */
3174 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
3175 oldcs = cpuset_attach_old_cs;
3176 cs = css_cs(css);
3177
3178 mutex_lock(&cpuset_mutex);
3179
3180 /* Check to see if task is allowed in the cpuset */
3181 ret = cpuset_can_attach_check(cs);
3182 if (ret)
3183 goto out_unlock;
3184
3185 cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
3186 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3187
3188 cgroup_taskset_for_each(task, css, tset) {
3189 ret = task_can_attach(task);
3190 if (ret)
3191 goto out_unlock;
3192
3193 /*
3194 * Skip rights over task check in v2 when nothing changes,
3195 * migration permission derives from hierarchy ownership in
3196 * cgroup_procs_write_permission()).
3197 */
3198 if (!cpuset_v2() || (cpus_updated || mems_updated)) {
3199 ret = security_task_setscheduler(task);
3200 if (ret)
3201 goto out_unlock;
3202 }
3203
3204 if (dl_task(task)) {
3205 cs->nr_migrate_dl_tasks++;
3206 cs->sum_migrate_dl_bw += task->dl.dl_bw;
3207 }
3208 }
3209
3210 if (!cs->nr_migrate_dl_tasks)
3211 goto out_success;
3212
3213 if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
3214 int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
3215
3216 if (unlikely(cpu >= nr_cpu_ids)) {
3217 reset_migrate_dl_data(cs);
3218 ret = -EINVAL;
3219 goto out_unlock;
3220 }
3221
3222 ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
3223 if (ret) {
3224 reset_migrate_dl_data(cs);
3225 goto out_unlock;
3226 }
3227 }
3228
3229 out_success:
3230 /*
3231 * Mark attach is in progress. This makes validate_change() fail
3232 * changes which zero cpus/mems_allowed.
3233 */
3234 cs->attach_in_progress++;
3235 out_unlock:
3236 mutex_unlock(&cpuset_mutex);
3237 return ret;
3238 }
3239
cpuset_cancel_attach(struct cgroup_taskset * tset)3240 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
3241 {
3242 struct cgroup_subsys_state *css;
3243 struct cpuset *cs;
3244
3245 cgroup_taskset_first(tset, &css);
3246 cs = css_cs(css);
3247
3248 mutex_lock(&cpuset_mutex);
3249 dec_attach_in_progress_locked(cs);
3250
3251 if (cs->nr_migrate_dl_tasks) {
3252 int cpu = cpumask_any(cs->effective_cpus);
3253
3254 dl_bw_free(cpu, cs->sum_migrate_dl_bw);
3255 reset_migrate_dl_data(cs);
3256 }
3257
3258 mutex_unlock(&cpuset_mutex);
3259 }
3260
3261 /*
3262 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
3263 * but we can't allocate it dynamically there. Define it global and
3264 * allocate from cpuset_init().
3265 */
3266 static cpumask_var_t cpus_attach;
3267 static nodemask_t cpuset_attach_nodemask_to;
3268
cpuset_attach_task(struct cpuset * cs,struct task_struct * task)3269 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
3270 {
3271 lockdep_assert_held(&cpuset_mutex);
3272
3273 if (cs != &top_cpuset)
3274 guarantee_active_cpus(task, cpus_attach);
3275 else
3276 cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
3277 subpartitions_cpus);
3278 /*
3279 * can_attach beforehand should guarantee that this doesn't
3280 * fail. TODO: have a better way to handle failure here
3281 */
3282 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
3283
3284 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
3285 cpuset1_update_task_spread_flags(cs, task);
3286 }
3287
cpuset_attach(struct cgroup_taskset * tset)3288 static void cpuset_attach(struct cgroup_taskset *tset)
3289 {
3290 struct task_struct *task;
3291 struct task_struct *leader;
3292 struct cgroup_subsys_state *css;
3293 struct cpuset *cs;
3294 struct cpuset *oldcs = cpuset_attach_old_cs;
3295 bool cpus_updated, mems_updated;
3296 bool queue_task_work = false;
3297
3298 cgroup_taskset_first(tset, &css);
3299 cs = css_cs(css);
3300
3301 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */
3302 mutex_lock(&cpuset_mutex);
3303 cpus_updated = !cpumask_equal(cs->effective_cpus,
3304 oldcs->effective_cpus);
3305 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3306
3307 /*
3308 * In the default hierarchy, enabling cpuset in the child cgroups
3309 * will trigger a number of cpuset_attach() calls with no change
3310 * in effective cpus and mems. In that case, we can optimize out
3311 * by skipping the task iteration and update.
3312 */
3313 if (cpuset_v2() && !cpus_updated && !mems_updated) {
3314 cpuset_attach_nodemask_to = cs->effective_mems;
3315 goto out;
3316 }
3317
3318 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3319
3320 cgroup_taskset_for_each(task, css, tset)
3321 cpuset_attach_task(cs, task);
3322
3323 /*
3324 * Change mm for all threadgroup leaders. This is expensive and may
3325 * sleep and should be moved outside migration path proper. Skip it
3326 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
3327 * not set.
3328 */
3329 cpuset_attach_nodemask_to = cs->effective_mems;
3330 if (!is_memory_migrate(cs) && !mems_updated)
3331 goto out;
3332
3333 cgroup_taskset_for_each_leader(leader, css, tset) {
3334 struct mm_struct *mm = get_task_mm(leader);
3335
3336 if (mm) {
3337 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
3338
3339 /*
3340 * old_mems_allowed is the same with mems_allowed
3341 * here, except if this task is being moved
3342 * automatically due to hotplug. In that case
3343 * @mems_allowed has been updated and is empty, so
3344 * @old_mems_allowed is the right nodesets that we
3345 * migrate mm from.
3346 */
3347 if (is_memory_migrate(cs)) {
3348 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
3349 &cpuset_attach_nodemask_to);
3350 queue_task_work = true;
3351 } else
3352 mmput(mm);
3353 }
3354 }
3355
3356 out:
3357 if (queue_task_work)
3358 schedule_flush_migrate_mm();
3359 cs->old_mems_allowed = cpuset_attach_nodemask_to;
3360
3361 if (cs->nr_migrate_dl_tasks) {
3362 cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
3363 oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
3364 reset_migrate_dl_data(cs);
3365 }
3366
3367 dec_attach_in_progress_locked(cs);
3368
3369 mutex_unlock(&cpuset_mutex);
3370 }
3371
3372 /*
3373 * Common handling for a write to a "cpus" or "mems" file.
3374 */
cpuset_write_resmask(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3375 ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
3376 char *buf, size_t nbytes, loff_t off)
3377 {
3378 struct cpuset *cs = css_cs(of_css(of));
3379 struct cpuset *trialcs;
3380 int retval = -ENODEV;
3381
3382 /* root is read-only */
3383 if (cs == &top_cpuset)
3384 return -EACCES;
3385
3386 buf = strstrip(buf);
3387 cpuset_full_lock();
3388 if (!is_cpuset_online(cs))
3389 goto out_unlock;
3390
3391 trialcs = dup_or_alloc_cpuset(cs);
3392 if (!trialcs) {
3393 retval = -ENOMEM;
3394 goto out_unlock;
3395 }
3396
3397 switch (of_cft(of)->private) {
3398 case FILE_CPULIST:
3399 retval = update_cpumask(cs, trialcs, buf);
3400 break;
3401 case FILE_EXCLUSIVE_CPULIST:
3402 retval = update_exclusive_cpumask(cs, trialcs, buf);
3403 break;
3404 case FILE_MEMLIST:
3405 retval = update_nodemask(cs, trialcs, buf);
3406 break;
3407 default:
3408 retval = -EINVAL;
3409 break;
3410 }
3411
3412 free_cpuset(trialcs);
3413 if (force_sd_rebuild)
3414 rebuild_sched_domains_locked();
3415 out_unlock:
3416 cpuset_full_unlock();
3417 if (of_cft(of)->private == FILE_MEMLIST)
3418 schedule_flush_migrate_mm();
3419 return retval ?: nbytes;
3420 }
3421
3422 /*
3423 * These ascii lists should be read in a single call, by using a user
3424 * buffer large enough to hold the entire map. If read in smaller
3425 * chunks, there is no guarantee of atomicity. Since the display format
3426 * used, list of ranges of sequential numbers, is variable length,
3427 * and since these maps can change value dynamically, one could read
3428 * gibberish by doing partial reads while a list was changing.
3429 */
cpuset_common_seq_show(struct seq_file * sf,void * v)3430 int cpuset_common_seq_show(struct seq_file *sf, void *v)
3431 {
3432 struct cpuset *cs = css_cs(seq_css(sf));
3433 cpuset_filetype_t type = seq_cft(sf)->private;
3434 int ret = 0;
3435
3436 spin_lock_irq(&callback_lock);
3437
3438 switch (type) {
3439 case FILE_CPULIST:
3440 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
3441 break;
3442 case FILE_MEMLIST:
3443 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
3444 break;
3445 case FILE_EFFECTIVE_CPULIST:
3446 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
3447 break;
3448 case FILE_EFFECTIVE_MEMLIST:
3449 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
3450 break;
3451 case FILE_EXCLUSIVE_CPULIST:
3452 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus));
3453 break;
3454 case FILE_EFFECTIVE_XCPULIST:
3455 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus));
3456 break;
3457 case FILE_SUBPARTS_CPULIST:
3458 seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus));
3459 break;
3460 case FILE_ISOLATED_CPULIST:
3461 seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus));
3462 break;
3463 default:
3464 ret = -EINVAL;
3465 }
3466
3467 spin_unlock_irq(&callback_lock);
3468 return ret;
3469 }
3470
cpuset_partition_show(struct seq_file * seq,void * v)3471 static int cpuset_partition_show(struct seq_file *seq, void *v)
3472 {
3473 struct cpuset *cs = css_cs(seq_css(seq));
3474 const char *err, *type = NULL;
3475
3476 switch (cs->partition_root_state) {
3477 case PRS_ROOT:
3478 seq_puts(seq, "root\n");
3479 break;
3480 case PRS_ISOLATED:
3481 seq_puts(seq, "isolated\n");
3482 break;
3483 case PRS_MEMBER:
3484 seq_puts(seq, "member\n");
3485 break;
3486 case PRS_INVALID_ROOT:
3487 type = "root";
3488 fallthrough;
3489 case PRS_INVALID_ISOLATED:
3490 if (!type)
3491 type = "isolated";
3492 err = perr_strings[READ_ONCE(cs->prs_err)];
3493 if (err)
3494 seq_printf(seq, "%s invalid (%s)\n", type, err);
3495 else
3496 seq_printf(seq, "%s invalid\n", type);
3497 break;
3498 }
3499 return 0;
3500 }
3501
cpuset_partition_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3502 static ssize_t cpuset_partition_write(struct kernfs_open_file *of, char *buf,
3503 size_t nbytes, loff_t off)
3504 {
3505 struct cpuset *cs = css_cs(of_css(of));
3506 int val;
3507 int retval = -ENODEV;
3508
3509 buf = strstrip(buf);
3510
3511 if (!strcmp(buf, "root"))
3512 val = PRS_ROOT;
3513 else if (!strcmp(buf, "member"))
3514 val = PRS_MEMBER;
3515 else if (!strcmp(buf, "isolated"))
3516 val = PRS_ISOLATED;
3517 else
3518 return -EINVAL;
3519
3520 cpuset_full_lock();
3521 if (is_cpuset_online(cs))
3522 retval = update_prstate(cs, val);
3523 cpuset_full_unlock();
3524 return retval ?: nbytes;
3525 }
3526
3527 /*
3528 * This is currently a minimal set for the default hierarchy. It can be
3529 * expanded later on by migrating more features and control files from v1.
3530 */
3531 static struct cftype dfl_files[] = {
3532 {
3533 .name = "cpus",
3534 .seq_show = cpuset_common_seq_show,
3535 .write = cpuset_write_resmask,
3536 .max_write_len = (100U + 6 * NR_CPUS),
3537 .private = FILE_CPULIST,
3538 .flags = CFTYPE_NOT_ON_ROOT,
3539 },
3540
3541 {
3542 .name = "mems",
3543 .seq_show = cpuset_common_seq_show,
3544 .write = cpuset_write_resmask,
3545 .max_write_len = (100U + 6 * MAX_NUMNODES),
3546 .private = FILE_MEMLIST,
3547 .flags = CFTYPE_NOT_ON_ROOT,
3548 },
3549
3550 {
3551 .name = "cpus.effective",
3552 .seq_show = cpuset_common_seq_show,
3553 .private = FILE_EFFECTIVE_CPULIST,
3554 },
3555
3556 {
3557 .name = "mems.effective",
3558 .seq_show = cpuset_common_seq_show,
3559 .private = FILE_EFFECTIVE_MEMLIST,
3560 },
3561
3562 {
3563 .name = "cpus.partition",
3564 .seq_show = cpuset_partition_show,
3565 .write = cpuset_partition_write,
3566 .private = FILE_PARTITION_ROOT,
3567 .flags = CFTYPE_NOT_ON_ROOT,
3568 .file_offset = offsetof(struct cpuset, partition_file),
3569 },
3570
3571 {
3572 .name = "cpus.exclusive",
3573 .seq_show = cpuset_common_seq_show,
3574 .write = cpuset_write_resmask,
3575 .max_write_len = (100U + 6 * NR_CPUS),
3576 .private = FILE_EXCLUSIVE_CPULIST,
3577 .flags = CFTYPE_NOT_ON_ROOT,
3578 },
3579
3580 {
3581 .name = "cpus.exclusive.effective",
3582 .seq_show = cpuset_common_seq_show,
3583 .private = FILE_EFFECTIVE_XCPULIST,
3584 .flags = CFTYPE_NOT_ON_ROOT,
3585 },
3586
3587 {
3588 .name = "cpus.subpartitions",
3589 .seq_show = cpuset_common_seq_show,
3590 .private = FILE_SUBPARTS_CPULIST,
3591 .flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG,
3592 },
3593
3594 {
3595 .name = "cpus.isolated",
3596 .seq_show = cpuset_common_seq_show,
3597 .private = FILE_ISOLATED_CPULIST,
3598 .flags = CFTYPE_ONLY_ON_ROOT,
3599 },
3600
3601 { } /* terminate */
3602 };
3603
3604
3605 /**
3606 * cpuset_css_alloc - Allocate a cpuset css
3607 * @parent_css: Parent css of the control group that the new cpuset will be
3608 * part of
3609 * Return: cpuset css on success, -ENOMEM on failure.
3610 *
3611 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
3612 * top cpuset css otherwise.
3613 */
3614 static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state * parent_css)3615 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
3616 {
3617 struct cpuset *cs;
3618
3619 if (!parent_css)
3620 return &top_cpuset.css;
3621
3622 cs = dup_or_alloc_cpuset(NULL);
3623 if (!cs)
3624 return ERR_PTR(-ENOMEM);
3625
3626 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3627 fmeter_init(&cs->fmeter);
3628 cs->relax_domain_level = -1;
3629
3630 /* Set CS_MEMORY_MIGRATE for default hierarchy */
3631 if (cpuset_v2())
3632 __set_bit(CS_MEMORY_MIGRATE, &cs->flags);
3633
3634 return &cs->css;
3635 }
3636
cpuset_css_online(struct cgroup_subsys_state * css)3637 static int cpuset_css_online(struct cgroup_subsys_state *css)
3638 {
3639 struct cpuset *cs = css_cs(css);
3640 struct cpuset *parent = parent_cs(cs);
3641 struct cpuset *tmp_cs;
3642 struct cgroup_subsys_state *pos_css;
3643
3644 if (!parent)
3645 return 0;
3646
3647 cpuset_full_lock();
3648 if (is_spread_page(parent))
3649 set_bit(CS_SPREAD_PAGE, &cs->flags);
3650 if (is_spread_slab(parent))
3651 set_bit(CS_SPREAD_SLAB, &cs->flags);
3652 /*
3653 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
3654 */
3655 if (cpuset_v2() && !is_sched_load_balance(parent))
3656 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3657
3658 cpuset_inc();
3659
3660 spin_lock_irq(&callback_lock);
3661 if (is_in_v2_mode()) {
3662 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
3663 cs->effective_mems = parent->effective_mems;
3664 }
3665 spin_unlock_irq(&callback_lock);
3666
3667 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
3668 goto out_unlock;
3669
3670 /*
3671 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
3672 * set. This flag handling is implemented in cgroup core for
3673 * historical reasons - the flag may be specified during mount.
3674 *
3675 * Currently, if any sibling cpusets have exclusive cpus or mem, we
3676 * refuse to clone the configuration - thereby refusing the task to
3677 * be entered, and as a result refusing the sys_unshare() or
3678 * clone() which initiated it. If this becomes a problem for some
3679 * users who wish to allow that scenario, then this could be
3680 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
3681 * (and likewise for mems) to the new cgroup.
3682 */
3683 rcu_read_lock();
3684 cpuset_for_each_child(tmp_cs, pos_css, parent) {
3685 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
3686 rcu_read_unlock();
3687 goto out_unlock;
3688 }
3689 }
3690 rcu_read_unlock();
3691
3692 spin_lock_irq(&callback_lock);
3693 cs->mems_allowed = parent->mems_allowed;
3694 cs->effective_mems = parent->mems_allowed;
3695 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
3696 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
3697 spin_unlock_irq(&callback_lock);
3698 out_unlock:
3699 cpuset_full_unlock();
3700 return 0;
3701 }
3702
3703 /*
3704 * If the cpuset being removed has its flag 'sched_load_balance'
3705 * enabled, then simulate turning sched_load_balance off, which
3706 * will call rebuild_sched_domains_locked(). That is not needed
3707 * in the default hierarchy where only changes in partition
3708 * will cause repartitioning.
3709 */
cpuset_css_offline(struct cgroup_subsys_state * css)3710 static void cpuset_css_offline(struct cgroup_subsys_state *css)
3711 {
3712 struct cpuset *cs = css_cs(css);
3713
3714 cpuset_full_lock();
3715 if (!cpuset_v2() && is_sched_load_balance(cs))
3716 cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
3717
3718 cpuset_dec();
3719 cpuset_full_unlock();
3720 }
3721
3722 /*
3723 * If a dying cpuset has the 'cpus.partition' enabled, turn it off by
3724 * changing it back to member to free its exclusive CPUs back to the pool to
3725 * be used by other online cpusets.
3726 */
cpuset_css_killed(struct cgroup_subsys_state * css)3727 static void cpuset_css_killed(struct cgroup_subsys_state *css)
3728 {
3729 struct cpuset *cs = css_cs(css);
3730
3731 cpuset_full_lock();
3732 /* Reset valid partition back to member */
3733 if (is_partition_valid(cs))
3734 update_prstate(cs, PRS_MEMBER);
3735 cpuset_full_unlock();
3736 }
3737
cpuset_css_free(struct cgroup_subsys_state * css)3738 static void cpuset_css_free(struct cgroup_subsys_state *css)
3739 {
3740 struct cpuset *cs = css_cs(css);
3741
3742 free_cpuset(cs);
3743 }
3744
cpuset_bind(struct cgroup_subsys_state * root_css)3745 static void cpuset_bind(struct cgroup_subsys_state *root_css)
3746 {
3747 mutex_lock(&cpuset_mutex);
3748 spin_lock_irq(&callback_lock);
3749
3750 if (is_in_v2_mode()) {
3751 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3752 cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask);
3753 top_cpuset.mems_allowed = node_possible_map;
3754 } else {
3755 cpumask_copy(top_cpuset.cpus_allowed,
3756 top_cpuset.effective_cpus);
3757 top_cpuset.mems_allowed = top_cpuset.effective_mems;
3758 }
3759
3760 spin_unlock_irq(&callback_lock);
3761 mutex_unlock(&cpuset_mutex);
3762 }
3763
3764 /*
3765 * In case the child is cloned into a cpuset different from its parent,
3766 * additional checks are done to see if the move is allowed.
3767 */
cpuset_can_fork(struct task_struct * task,struct css_set * cset)3768 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
3769 {
3770 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3771 bool same_cs;
3772 int ret;
3773
3774 rcu_read_lock();
3775 same_cs = (cs == task_cs(current));
3776 rcu_read_unlock();
3777
3778 if (same_cs)
3779 return 0;
3780
3781 lockdep_assert_held(&cgroup_mutex);
3782 mutex_lock(&cpuset_mutex);
3783
3784 /* Check to see if task is allowed in the cpuset */
3785 ret = cpuset_can_attach_check(cs);
3786 if (ret)
3787 goto out_unlock;
3788
3789 ret = task_can_attach(task);
3790 if (ret)
3791 goto out_unlock;
3792
3793 ret = security_task_setscheduler(task);
3794 if (ret)
3795 goto out_unlock;
3796
3797 /*
3798 * Mark attach is in progress. This makes validate_change() fail
3799 * changes which zero cpus/mems_allowed.
3800 */
3801 cs->attach_in_progress++;
3802 out_unlock:
3803 mutex_unlock(&cpuset_mutex);
3804 return ret;
3805 }
3806
cpuset_cancel_fork(struct task_struct * task,struct css_set * cset)3807 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
3808 {
3809 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3810 bool same_cs;
3811
3812 rcu_read_lock();
3813 same_cs = (cs == task_cs(current));
3814 rcu_read_unlock();
3815
3816 if (same_cs)
3817 return;
3818
3819 dec_attach_in_progress(cs);
3820 }
3821
3822 /*
3823 * Make sure the new task conform to the current state of its parent,
3824 * which could have been changed by cpuset just after it inherits the
3825 * state from the parent and before it sits on the cgroup's task list.
3826 */
cpuset_fork(struct task_struct * task)3827 static void cpuset_fork(struct task_struct *task)
3828 {
3829 struct cpuset *cs;
3830 bool same_cs;
3831
3832 rcu_read_lock();
3833 cs = task_cs(task);
3834 same_cs = (cs == task_cs(current));
3835 rcu_read_unlock();
3836
3837 if (same_cs) {
3838 if (cs == &top_cpuset)
3839 return;
3840
3841 set_cpus_allowed_ptr(task, current->cpus_ptr);
3842 task->mems_allowed = current->mems_allowed;
3843 return;
3844 }
3845
3846 /* CLONE_INTO_CGROUP */
3847 mutex_lock(&cpuset_mutex);
3848 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3849 cpuset_attach_task(cs, task);
3850
3851 dec_attach_in_progress_locked(cs);
3852 mutex_unlock(&cpuset_mutex);
3853 }
3854
3855 struct cgroup_subsys cpuset_cgrp_subsys = {
3856 .css_alloc = cpuset_css_alloc,
3857 .css_online = cpuset_css_online,
3858 .css_offline = cpuset_css_offline,
3859 .css_killed = cpuset_css_killed,
3860 .css_free = cpuset_css_free,
3861 .can_attach = cpuset_can_attach,
3862 .cancel_attach = cpuset_cancel_attach,
3863 .attach = cpuset_attach,
3864 .bind = cpuset_bind,
3865 .can_fork = cpuset_can_fork,
3866 .cancel_fork = cpuset_cancel_fork,
3867 .fork = cpuset_fork,
3868 #ifdef CONFIG_CPUSETS_V1
3869 .legacy_cftypes = cpuset1_files,
3870 #endif
3871 .dfl_cftypes = dfl_files,
3872 .early_init = true,
3873 .threaded = true,
3874 };
3875
3876 /**
3877 * cpuset_init - initialize cpusets at system boot
3878 *
3879 * Description: Initialize top_cpuset
3880 **/
3881
cpuset_init(void)3882 int __init cpuset_init(void)
3883 {
3884 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3885 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3886 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL));
3887 BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL));
3888 BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL));
3889 BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL));
3890
3891 cpumask_setall(top_cpuset.cpus_allowed);
3892 nodes_setall(top_cpuset.mems_allowed);
3893 cpumask_setall(top_cpuset.effective_cpus);
3894 cpumask_setall(top_cpuset.effective_xcpus);
3895 cpumask_setall(top_cpuset.exclusive_cpus);
3896 nodes_setall(top_cpuset.effective_mems);
3897
3898 fmeter_init(&top_cpuset.fmeter);
3899
3900 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3901
3902 have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN);
3903 if (have_boot_isolcpus) {
3904 BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL));
3905 cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN));
3906 cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus);
3907 }
3908
3909 return 0;
3910 }
3911
3912 static void
hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3913 hotplug_update_tasks(struct cpuset *cs,
3914 struct cpumask *new_cpus, nodemask_t *new_mems,
3915 bool cpus_updated, bool mems_updated)
3916 {
3917 /* A partition root is allowed to have empty effective cpus */
3918 if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
3919 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3920 if (nodes_empty(*new_mems))
3921 *new_mems = parent_cs(cs)->effective_mems;
3922
3923 spin_lock_irq(&callback_lock);
3924 cpumask_copy(cs->effective_cpus, new_cpus);
3925 cs->effective_mems = *new_mems;
3926 spin_unlock_irq(&callback_lock);
3927
3928 if (cpus_updated)
3929 cpuset_update_tasks_cpumask(cs, new_cpus);
3930 if (mems_updated)
3931 cpuset_update_tasks_nodemask(cs);
3932 }
3933
cpuset_force_rebuild(void)3934 void cpuset_force_rebuild(void)
3935 {
3936 force_sd_rebuild = true;
3937 }
3938
3939 /**
3940 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3941 * @cs: cpuset in interest
3942 * @tmp: the tmpmasks structure pointer
3943 *
3944 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3945 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
3946 * all its tasks are moved to the nearest ancestor with both resources.
3947 */
cpuset_hotplug_update_tasks(struct cpuset * cs,struct tmpmasks * tmp)3948 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3949 {
3950 static cpumask_t new_cpus;
3951 static nodemask_t new_mems;
3952 bool cpus_updated;
3953 bool mems_updated;
3954 bool remote;
3955 int partcmd = -1;
3956 struct cpuset *parent;
3957 retry:
3958 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3959
3960 mutex_lock(&cpuset_mutex);
3961
3962 /*
3963 * We have raced with task attaching. We wait until attaching
3964 * is finished, so we won't attach a task to an empty cpuset.
3965 */
3966 if (cs->attach_in_progress) {
3967 mutex_unlock(&cpuset_mutex);
3968 goto retry;
3969 }
3970
3971 parent = parent_cs(cs);
3972 compute_effective_cpumask(&new_cpus, cs, parent);
3973 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3974
3975 if (!tmp || !cs->partition_root_state)
3976 goto update_tasks;
3977
3978 /*
3979 * Compute effective_cpus for valid partition root, may invalidate
3980 * child partition roots if necessary.
3981 */
3982 remote = is_remote_partition(cs);
3983 if (remote || (is_partition_valid(cs) && is_partition_valid(parent)))
3984 compute_partition_effective_cpumask(cs, &new_cpus);
3985
3986 if (remote && (cpumask_empty(subpartitions_cpus) ||
3987 (cpumask_empty(&new_cpus) &&
3988 partition_is_populated(cs, NULL)))) {
3989 cs->prs_err = PERR_HOTPLUG;
3990 remote_partition_disable(cs, tmp);
3991 compute_effective_cpumask(&new_cpus, cs, parent);
3992 remote = false;
3993 }
3994
3995 /*
3996 * Force the partition to become invalid if either one of
3997 * the following conditions hold:
3998 * 1) empty effective cpus but not valid empty partition.
3999 * 2) parent is invalid or doesn't grant any cpus to child
4000 * partitions.
4001 * 3) subpartitions_cpus is empty.
4002 */
4003 if (is_local_partition(cs) &&
4004 (!is_partition_valid(parent) ||
4005 tasks_nocpu_error(parent, cs, &new_cpus) ||
4006 cpumask_empty(subpartitions_cpus)))
4007 partcmd = partcmd_invalidate;
4008 /*
4009 * On the other hand, an invalid partition root may be transitioned
4010 * back to a regular one with a non-empty effective xcpus.
4011 */
4012 else if (is_partition_valid(parent) && is_partition_invalid(cs) &&
4013 !cpumask_empty(cs->effective_xcpus))
4014 partcmd = partcmd_update;
4015
4016 if (partcmd >= 0) {
4017 update_parent_effective_cpumask(cs, partcmd, NULL, tmp);
4018 if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) {
4019 compute_partition_effective_cpumask(cs, &new_cpus);
4020 cpuset_force_rebuild();
4021 }
4022 }
4023
4024 update_tasks:
4025 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
4026 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
4027 if (!cpus_updated && !mems_updated)
4028 goto unlock; /* Hotplug doesn't affect this cpuset */
4029
4030 if (mems_updated)
4031 check_insane_mems_config(&new_mems);
4032
4033 if (is_in_v2_mode())
4034 hotplug_update_tasks(cs, &new_cpus, &new_mems,
4035 cpus_updated, mems_updated);
4036 else
4037 cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems,
4038 cpus_updated, mems_updated);
4039
4040 unlock:
4041 mutex_unlock(&cpuset_mutex);
4042 }
4043
4044 /**
4045 * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset
4046 *
4047 * This function is called after either CPU or memory configuration has
4048 * changed and updates cpuset accordingly. The top_cpuset is always
4049 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
4050 * order to make cpusets transparent (of no affect) on systems that are
4051 * actively using CPU hotplug but making no active use of cpusets.
4052 *
4053 * Non-root cpusets are only affected by offlining. If any CPUs or memory
4054 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
4055 * all descendants.
4056 *
4057 * Note that CPU offlining during suspend is ignored. We don't modify
4058 * cpusets across suspend/resume cycles at all.
4059 *
4060 * CPU / memory hotplug is handled synchronously.
4061 */
cpuset_handle_hotplug(void)4062 static void cpuset_handle_hotplug(void)
4063 {
4064 static cpumask_t new_cpus;
4065 static nodemask_t new_mems;
4066 bool cpus_updated, mems_updated;
4067 bool on_dfl = is_in_v2_mode();
4068 struct tmpmasks tmp, *ptmp = NULL;
4069
4070 if (on_dfl && !alloc_tmpmasks(&tmp))
4071 ptmp = &tmp;
4072
4073 lockdep_assert_cpus_held();
4074 mutex_lock(&cpuset_mutex);
4075
4076 /* fetch the available cpus/mems and find out which changed how */
4077 cpumask_copy(&new_cpus, cpu_active_mask);
4078 new_mems = node_states[N_MEMORY];
4079
4080 /*
4081 * If subpartitions_cpus is populated, it is likely that the check
4082 * below will produce a false positive on cpus_updated when the cpu
4083 * list isn't changed. It is extra work, but it is better to be safe.
4084 */
4085 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) ||
4086 !cpumask_empty(subpartitions_cpus);
4087 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
4088
4089 /* For v1, synchronize cpus_allowed to cpu_active_mask */
4090 if (cpus_updated) {
4091 cpuset_force_rebuild();
4092 spin_lock_irq(&callback_lock);
4093 if (!on_dfl)
4094 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
4095 /*
4096 * Make sure that CPUs allocated to child partitions
4097 * do not show up in effective_cpus. If no CPU is left,
4098 * we clear the subpartitions_cpus & let the child partitions
4099 * fight for the CPUs again.
4100 */
4101 if (!cpumask_empty(subpartitions_cpus)) {
4102 if (cpumask_subset(&new_cpus, subpartitions_cpus)) {
4103 cpumask_clear(subpartitions_cpus);
4104 } else {
4105 cpumask_andnot(&new_cpus, &new_cpus,
4106 subpartitions_cpus);
4107 }
4108 }
4109 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
4110 spin_unlock_irq(&callback_lock);
4111 /* we don't mess with cpumasks of tasks in top_cpuset */
4112 }
4113
4114 /* synchronize mems_allowed to N_MEMORY */
4115 if (mems_updated) {
4116 spin_lock_irq(&callback_lock);
4117 if (!on_dfl)
4118 top_cpuset.mems_allowed = new_mems;
4119 top_cpuset.effective_mems = new_mems;
4120 spin_unlock_irq(&callback_lock);
4121 cpuset_update_tasks_nodemask(&top_cpuset);
4122 }
4123
4124 mutex_unlock(&cpuset_mutex);
4125
4126 /* if cpus or mems changed, we need to propagate to descendants */
4127 if (cpus_updated || mems_updated) {
4128 struct cpuset *cs;
4129 struct cgroup_subsys_state *pos_css;
4130
4131 rcu_read_lock();
4132 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
4133 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
4134 continue;
4135 rcu_read_unlock();
4136
4137 cpuset_hotplug_update_tasks(cs, ptmp);
4138
4139 rcu_read_lock();
4140 css_put(&cs->css);
4141 }
4142 rcu_read_unlock();
4143 }
4144
4145 /* rebuild sched domains if necessary */
4146 if (force_sd_rebuild)
4147 rebuild_sched_domains_cpuslocked();
4148
4149 free_tmpmasks(ptmp);
4150 }
4151
cpuset_update_active_cpus(void)4152 void cpuset_update_active_cpus(void)
4153 {
4154 /*
4155 * We're inside cpu hotplug critical region which usually nests
4156 * inside cgroup synchronization. Bounce actual hotplug processing
4157 * to a work item to avoid reverse locking order.
4158 */
4159 cpuset_handle_hotplug();
4160 }
4161
4162 /*
4163 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
4164 * Call this routine anytime after node_states[N_MEMORY] changes.
4165 * See cpuset_update_active_cpus() for CPU hotplug handling.
4166 */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)4167 static int cpuset_track_online_nodes(struct notifier_block *self,
4168 unsigned long action, void *arg)
4169 {
4170 cpuset_handle_hotplug();
4171 return NOTIFY_OK;
4172 }
4173
4174 /**
4175 * cpuset_init_smp - initialize cpus_allowed
4176 *
4177 * Description: Finish top cpuset after cpu, node maps are initialized
4178 */
cpuset_init_smp(void)4179 void __init cpuset_init_smp(void)
4180 {
4181 /*
4182 * cpus_allowd/mems_allowed set to v2 values in the initial
4183 * cpuset_bind() call will be reset to v1 values in another
4184 * cpuset_bind() call when v1 cpuset is mounted.
4185 */
4186 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4187
4188 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
4189 top_cpuset.effective_mems = node_states[N_MEMORY];
4190
4191 hotplug_node_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
4192
4193 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
4194 BUG_ON(!cpuset_migrate_mm_wq);
4195 }
4196
4197 /*
4198 * Return cpus_allowed mask from a task's cpuset.
4199 */
__cpuset_cpus_allowed_locked(struct task_struct * tsk,struct cpumask * pmask)4200 static void __cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
4201 {
4202 struct cpuset *cs;
4203
4204 cs = task_cs(tsk);
4205 if (cs != &top_cpuset)
4206 guarantee_active_cpus(tsk, pmask);
4207 /*
4208 * Tasks in the top cpuset won't get update to their cpumasks
4209 * when a hotplug online/offline event happens. So we include all
4210 * offline cpus in the allowed cpu list.
4211 */
4212 if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
4213 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4214
4215 /*
4216 * We first exclude cpus allocated to partitions. If there is no
4217 * allowable online cpu left, we fall back to all possible cpus.
4218 */
4219 cpumask_andnot(pmask, possible_mask, subpartitions_cpus);
4220 if (!cpumask_intersects(pmask, cpu_active_mask))
4221 cpumask_copy(pmask, possible_mask);
4222 }
4223 }
4224
4225 /**
4226 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a task's cpuset.
4227 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
4228 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
4229 *
4230 * Similir to cpuset_cpus_allowed() except that the caller must have acquired
4231 * cpuset_mutex.
4232 */
cpuset_cpus_allowed_locked(struct task_struct * tsk,struct cpumask * pmask)4233 void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
4234 {
4235 lockdep_assert_held(&cpuset_mutex);
4236 __cpuset_cpus_allowed_locked(tsk, pmask);
4237 }
4238
4239 /**
4240 * cpuset_cpus_allowed - return cpus_allowed mask from a task's cpuset.
4241 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
4242 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
4243 *
4244 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
4245 * attached to the specified @tsk. Guaranteed to return some non-empty
4246 * subset of cpu_active_mask, even if this means going outside the
4247 * tasks cpuset, except when the task is in the top cpuset.
4248 **/
4249
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)4250 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
4251 {
4252 unsigned long flags;
4253
4254 spin_lock_irqsave(&callback_lock, flags);
4255 __cpuset_cpus_allowed_locked(tsk, pmask);
4256 spin_unlock_irqrestore(&callback_lock, flags);
4257 }
4258
4259 /**
4260 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
4261 * @tsk: pointer to task_struct with which the scheduler is struggling
4262 *
4263 * Description: In the case that the scheduler cannot find an allowed cpu in
4264 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
4265 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
4266 * which will not contain a sane cpumask during cases such as cpu hotplugging.
4267 * This is the absolute last resort for the scheduler and it is only used if
4268 * _every_ other avenue has been traveled.
4269 *
4270 * Returns true if the affinity of @tsk was changed, false otherwise.
4271 **/
4272
cpuset_cpus_allowed_fallback(struct task_struct * tsk)4273 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
4274 {
4275 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4276 const struct cpumask *cs_mask;
4277 bool changed = false;
4278
4279 rcu_read_lock();
4280 cs_mask = task_cs(tsk)->cpus_allowed;
4281 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
4282 set_cpus_allowed_force(tsk, cs_mask);
4283 changed = true;
4284 }
4285 rcu_read_unlock();
4286
4287 /*
4288 * We own tsk->cpus_allowed, nobody can change it under us.
4289 *
4290 * But we used cs && cs->cpus_allowed lockless and thus can
4291 * race with cgroup_attach_task() or update_cpumask() and get
4292 * the wrong tsk->cpus_allowed. However, both cases imply the
4293 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
4294 * which takes task_rq_lock().
4295 *
4296 * If we are called after it dropped the lock we must see all
4297 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
4298 * set any mask even if it is not right from task_cs() pov,
4299 * the pending set_cpus_allowed_ptr() will fix things.
4300 *
4301 * select_fallback_rq() will fix things ups and set cpu_possible_mask
4302 * if required.
4303 */
4304 return changed;
4305 }
4306
cpuset_init_current_mems_allowed(void)4307 void __init cpuset_init_current_mems_allowed(void)
4308 {
4309 nodes_setall(current->mems_allowed);
4310 }
4311
4312 /**
4313 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
4314 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
4315 *
4316 * Description: Returns the nodemask_t mems_allowed of the cpuset
4317 * attached to the specified @tsk. Guaranteed to return some non-empty
4318 * subset of node_states[N_MEMORY], even if this means going outside the
4319 * tasks cpuset.
4320 **/
4321
cpuset_mems_allowed(struct task_struct * tsk)4322 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
4323 {
4324 nodemask_t mask;
4325 unsigned long flags;
4326
4327 spin_lock_irqsave(&callback_lock, flags);
4328 guarantee_online_mems(task_cs(tsk), &mask);
4329 spin_unlock_irqrestore(&callback_lock, flags);
4330
4331 return mask;
4332 }
4333
4334 /**
4335 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
4336 * @nodemask: the nodemask to be checked
4337 *
4338 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
4339 */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)4340 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
4341 {
4342 return nodes_intersects(*nodemask, current->mems_allowed);
4343 }
4344
4345 /*
4346 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
4347 * mem_hardwall ancestor to the specified cpuset. Call holding
4348 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
4349 * (an unusual configuration), then returns the root cpuset.
4350 */
nearest_hardwall_ancestor(struct cpuset * cs)4351 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
4352 {
4353 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
4354 cs = parent_cs(cs);
4355 return cs;
4356 }
4357
4358 /*
4359 * cpuset_current_node_allowed - Can current task allocate on a memory node?
4360 * @node: is this an allowed node?
4361 * @gfp_mask: memory allocation flags
4362 *
4363 * If we're in interrupt, yes, we can always allocate. If @node is set in
4364 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
4365 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
4366 * yes. If current has access to memory reserves as an oom victim, yes.
4367 * Otherwise, no.
4368 *
4369 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
4370 * and do not allow allocations outside the current tasks cpuset
4371 * unless the task has been OOM killed.
4372 * GFP_KERNEL allocations are not so marked, so can escape to the
4373 * nearest enclosing hardwalled ancestor cpuset.
4374 *
4375 * Scanning up parent cpusets requires callback_lock. The
4376 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
4377 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
4378 * current tasks mems_allowed came up empty on the first pass over
4379 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
4380 * cpuset are short of memory, might require taking the callback_lock.
4381 *
4382 * The first call here from mm/page_alloc:get_page_from_freelist()
4383 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
4384 * so no allocation on a node outside the cpuset is allowed (unless
4385 * in interrupt, of course).
4386 *
4387 * The second pass through get_page_from_freelist() doesn't even call
4388 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
4389 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
4390 * in alloc_flags. That logic and the checks below have the combined
4391 * affect that:
4392 * in_interrupt - any node ok (current task context irrelevant)
4393 * GFP_ATOMIC - any node ok
4394 * tsk_is_oom_victim - any node ok
4395 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
4396 * GFP_USER - only nodes in current tasks mems allowed ok.
4397 */
cpuset_current_node_allowed(int node,gfp_t gfp_mask)4398 bool cpuset_current_node_allowed(int node, gfp_t gfp_mask)
4399 {
4400 struct cpuset *cs; /* current cpuset ancestors */
4401 bool allowed; /* is allocation in zone z allowed? */
4402 unsigned long flags;
4403
4404 if (in_interrupt())
4405 return true;
4406 if (node_isset(node, current->mems_allowed))
4407 return true;
4408 /*
4409 * Allow tasks that have access to memory reserves because they have
4410 * been OOM killed to get memory anywhere.
4411 */
4412 if (unlikely(tsk_is_oom_victim(current)))
4413 return true;
4414 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
4415 return false;
4416
4417 if (current->flags & PF_EXITING) /* Let dying task have memory */
4418 return true;
4419
4420 /* Not hardwall and node outside mems_allowed: scan up cpusets */
4421 spin_lock_irqsave(&callback_lock, flags);
4422
4423 cs = nearest_hardwall_ancestor(task_cs(current));
4424 allowed = node_isset(node, cs->mems_allowed);
4425
4426 spin_unlock_irqrestore(&callback_lock, flags);
4427 return allowed;
4428 }
4429
cpuset_node_allowed(struct cgroup * cgroup,int nid)4430 bool cpuset_node_allowed(struct cgroup *cgroup, int nid)
4431 {
4432 struct cgroup_subsys_state *css;
4433 struct cpuset *cs;
4434 bool allowed;
4435
4436 /*
4437 * In v1, mem_cgroup and cpuset are unlikely in the same hierarchy
4438 * and mems_allowed is likely to be empty even if we could get to it,
4439 * so return true to avoid taking a global lock on the empty check.
4440 */
4441 if (!cpuset_v2())
4442 return true;
4443
4444 css = cgroup_get_e_css(cgroup, &cpuset_cgrp_subsys);
4445 if (!css)
4446 return true;
4447
4448 /*
4449 * Normally, accessing effective_mems would require the cpuset_mutex
4450 * or callback_lock - but node_isset is atomic and the reference
4451 * taken via cgroup_get_e_css is sufficient to protect css.
4452 *
4453 * Since this interface is intended for use by migration paths, we
4454 * relax locking here to avoid taking global locks - while accepting
4455 * there may be rare scenarios where the result may be innaccurate.
4456 *
4457 * Reclaim and migration are subject to these same race conditions, and
4458 * cannot make strong isolation guarantees, so this is acceptable.
4459 */
4460 cs = container_of(css, struct cpuset, css);
4461 allowed = node_isset(nid, cs->effective_mems);
4462 css_put(css);
4463 return allowed;
4464 }
4465
4466 /**
4467 * cpuset_spread_node() - On which node to begin search for a page
4468 * @rotor: round robin rotor
4469 *
4470 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
4471 * tasks in a cpuset with is_spread_page or is_spread_slab set),
4472 * and if the memory allocation used cpuset_mem_spread_node()
4473 * to determine on which node to start looking, as it will for
4474 * certain page cache or slab cache pages such as used for file
4475 * system buffers and inode caches, then instead of starting on the
4476 * local node to look for a free page, rather spread the starting
4477 * node around the tasks mems_allowed nodes.
4478 *
4479 * We don't have to worry about the returned node being offline
4480 * because "it can't happen", and even if it did, it would be ok.
4481 *
4482 * The routines calling guarantee_online_mems() are careful to
4483 * only set nodes in task->mems_allowed that are online. So it
4484 * should not be possible for the following code to return an
4485 * offline node. But if it did, that would be ok, as this routine
4486 * is not returning the node where the allocation must be, only
4487 * the node where the search should start. The zonelist passed to
4488 * __alloc_pages() will include all nodes. If the slab allocator
4489 * is passed an offline node, it will fall back to the local node.
4490 * See kmem_cache_alloc_node().
4491 */
cpuset_spread_node(int * rotor)4492 static int cpuset_spread_node(int *rotor)
4493 {
4494 return *rotor = next_node_in(*rotor, current->mems_allowed);
4495 }
4496
4497 /**
4498 * cpuset_mem_spread_node() - On which node to begin search for a file page
4499 */
cpuset_mem_spread_node(void)4500 int cpuset_mem_spread_node(void)
4501 {
4502 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
4503 current->cpuset_mem_spread_rotor =
4504 node_random(¤t->mems_allowed);
4505
4506 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);
4507 }
4508
4509 /**
4510 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
4511 * @tsk1: pointer to task_struct of some task.
4512 * @tsk2: pointer to task_struct of some other task.
4513 *
4514 * Description: Return true if @tsk1's mems_allowed intersects the
4515 * mems_allowed of @tsk2. Used by the OOM killer to determine if
4516 * one of the task's memory usage might impact the memory available
4517 * to the other.
4518 **/
4519
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)4520 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
4521 const struct task_struct *tsk2)
4522 {
4523 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
4524 }
4525
4526 /**
4527 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
4528 *
4529 * Description: Prints current's name, cpuset name, and cached copy of its
4530 * mems_allowed to the kernel log.
4531 */
cpuset_print_current_mems_allowed(void)4532 void cpuset_print_current_mems_allowed(void)
4533 {
4534 struct cgroup *cgrp;
4535
4536 rcu_read_lock();
4537
4538 cgrp = task_cs(current)->css.cgroup;
4539 pr_cont(",cpuset=");
4540 pr_cont_cgroup_name(cgrp);
4541 pr_cont(",mems_allowed=%*pbl",
4542 nodemask_pr_args(¤t->mems_allowed));
4543
4544 rcu_read_unlock();
4545 }
4546
4547 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)4548 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
4549 {
4550 seq_printf(m, "Mems_allowed:\t%*pb\n",
4551 nodemask_pr_args(&task->mems_allowed));
4552 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
4553 nodemask_pr_args(&task->mems_allowed));
4554 }
4555