xref: /linux/net/tls/tls_sw.c (revision 634ec1fc7982efeeeeed4a7688b0004827b43a21)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37 
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/splice.h>
43 #include <crypto/aead.h>
44 
45 #include <net/strparser.h>
46 #include <net/tls.h>
47 #include <trace/events/sock.h>
48 
49 #include "tls.h"
50 
51 struct tls_decrypt_arg {
52 	struct_group(inargs,
53 	bool zc;
54 	bool async;
55 	bool async_done;
56 	u8 tail;
57 	);
58 
59 	struct sk_buff *skb;
60 };
61 
62 struct tls_decrypt_ctx {
63 	struct sock *sk;
64 	u8 iv[TLS_MAX_IV_SIZE];
65 	u8 aad[TLS_MAX_AAD_SIZE];
66 	u8 tail;
67 	bool free_sgout;
68 	struct scatterlist sg[];
69 };
70 
tls_err_abort(struct sock * sk,int err)71 noinline void tls_err_abort(struct sock *sk, int err)
72 {
73 	WARN_ON_ONCE(err >= 0);
74 	/* sk->sk_err should contain a positive error code. */
75 	WRITE_ONCE(sk->sk_err, -err);
76 	/* Paired with smp_rmb() in tcp_poll() */
77 	smp_wmb();
78 	sk_error_report(sk);
79 }
80 
__skb_nsg(struct sk_buff * skb,int offset,int len,unsigned int recursion_level)81 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
82                      unsigned int recursion_level)
83 {
84         int start = skb_headlen(skb);
85         int i, chunk = start - offset;
86         struct sk_buff *frag_iter;
87         int elt = 0;
88 
89         if (unlikely(recursion_level >= 24))
90                 return -EMSGSIZE;
91 
92         if (chunk > 0) {
93                 if (chunk > len)
94                         chunk = len;
95                 elt++;
96                 len -= chunk;
97                 if (len == 0)
98                         return elt;
99                 offset += chunk;
100         }
101 
102         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
103                 int end;
104 
105                 WARN_ON(start > offset + len);
106 
107                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
108                 chunk = end - offset;
109                 if (chunk > 0) {
110                         if (chunk > len)
111                                 chunk = len;
112                         elt++;
113                         len -= chunk;
114                         if (len == 0)
115                                 return elt;
116                         offset += chunk;
117                 }
118                 start = end;
119         }
120 
121         if (unlikely(skb_has_frag_list(skb))) {
122                 skb_walk_frags(skb, frag_iter) {
123                         int end, ret;
124 
125                         WARN_ON(start > offset + len);
126 
127                         end = start + frag_iter->len;
128                         chunk = end - offset;
129                         if (chunk > 0) {
130                                 if (chunk > len)
131                                         chunk = len;
132                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
133                                                 recursion_level + 1);
134                                 if (unlikely(ret < 0))
135                                         return ret;
136                                 elt += ret;
137                                 len -= chunk;
138                                 if (len == 0)
139                                         return elt;
140                                 offset += chunk;
141                         }
142                         start = end;
143                 }
144         }
145         BUG_ON(len);
146         return elt;
147 }
148 
149 /* Return the number of scatterlist elements required to completely map the
150  * skb, or -EMSGSIZE if the recursion depth is exceeded.
151  */
skb_nsg(struct sk_buff * skb,int offset,int len)152 static int skb_nsg(struct sk_buff *skb, int offset, int len)
153 {
154         return __skb_nsg(skb, offset, len, 0);
155 }
156 
tls_padding_length(struct tls_prot_info * prot,struct sk_buff * skb,struct tls_decrypt_arg * darg)157 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
158 			      struct tls_decrypt_arg *darg)
159 {
160 	struct strp_msg *rxm = strp_msg(skb);
161 	struct tls_msg *tlm = tls_msg(skb);
162 	int sub = 0;
163 
164 	/* Determine zero-padding length */
165 	if (prot->version == TLS_1_3_VERSION) {
166 		int offset = rxm->full_len - TLS_TAG_SIZE - 1;
167 		char content_type = darg->zc ? darg->tail : 0;
168 		int err;
169 
170 		while (content_type == 0) {
171 			if (offset < prot->prepend_size)
172 				return -EBADMSG;
173 			err = skb_copy_bits(skb, rxm->offset + offset,
174 					    &content_type, 1);
175 			if (err)
176 				return err;
177 			if (content_type)
178 				break;
179 			sub++;
180 			offset--;
181 		}
182 		tlm->control = content_type;
183 	}
184 	return sub;
185 }
186 
tls_decrypt_done(void * data,int err)187 static void tls_decrypt_done(void *data, int err)
188 {
189 	struct aead_request *aead_req = data;
190 	struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
191 	struct scatterlist *sgout = aead_req->dst;
192 	struct tls_sw_context_rx *ctx;
193 	struct tls_decrypt_ctx *dctx;
194 	struct tls_context *tls_ctx;
195 	struct scatterlist *sg;
196 	unsigned int pages;
197 	struct sock *sk;
198 	int aead_size;
199 
200 	/* If requests get too backlogged crypto API returns -EBUSY and calls
201 	 * ->complete(-EINPROGRESS) immediately followed by ->complete(0)
202 	 * to make waiting for backlog to flush with crypto_wait_req() easier.
203 	 * First wait converts -EBUSY -> -EINPROGRESS, and the second one
204 	 * -EINPROGRESS -> 0.
205 	 * We have a single struct crypto_async_request per direction, this
206 	 * scheme doesn't help us, so just ignore the first ->complete().
207 	 */
208 	if (err == -EINPROGRESS)
209 		return;
210 
211 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
212 	aead_size = ALIGN(aead_size, __alignof__(*dctx));
213 	dctx = (void *)((u8 *)aead_req + aead_size);
214 
215 	sk = dctx->sk;
216 	tls_ctx = tls_get_ctx(sk);
217 	ctx = tls_sw_ctx_rx(tls_ctx);
218 
219 	/* Propagate if there was an err */
220 	if (err) {
221 		if (err == -EBADMSG)
222 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
223 		ctx->async_wait.err = err;
224 		tls_err_abort(sk, err);
225 	}
226 
227 	/* Free the destination pages if skb was not decrypted inplace */
228 	if (dctx->free_sgout) {
229 		/* Skip the first S/G entry as it points to AAD */
230 		for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
231 			if (!sg)
232 				break;
233 			put_page(sg_page(sg));
234 		}
235 	}
236 
237 	kfree(aead_req);
238 
239 	if (atomic_dec_and_test(&ctx->decrypt_pending))
240 		complete(&ctx->async_wait.completion);
241 }
242 
tls_decrypt_async_wait(struct tls_sw_context_rx * ctx)243 static int tls_decrypt_async_wait(struct tls_sw_context_rx *ctx)
244 {
245 	if (!atomic_dec_and_test(&ctx->decrypt_pending))
246 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
247 	atomic_inc(&ctx->decrypt_pending);
248 
249 	return ctx->async_wait.err;
250 }
251 
tls_do_decryption(struct sock * sk,struct scatterlist * sgin,struct scatterlist * sgout,char * iv_recv,size_t data_len,struct aead_request * aead_req,struct tls_decrypt_arg * darg)252 static int tls_do_decryption(struct sock *sk,
253 			     struct scatterlist *sgin,
254 			     struct scatterlist *sgout,
255 			     char *iv_recv,
256 			     size_t data_len,
257 			     struct aead_request *aead_req,
258 			     struct tls_decrypt_arg *darg)
259 {
260 	struct tls_context *tls_ctx = tls_get_ctx(sk);
261 	struct tls_prot_info *prot = &tls_ctx->prot_info;
262 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
263 	int ret;
264 
265 	aead_request_set_tfm(aead_req, ctx->aead_recv);
266 	aead_request_set_ad(aead_req, prot->aad_size);
267 	aead_request_set_crypt(aead_req, sgin, sgout,
268 			       data_len + prot->tag_size,
269 			       (u8 *)iv_recv);
270 
271 	if (darg->async) {
272 		aead_request_set_callback(aead_req,
273 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
274 					  tls_decrypt_done, aead_req);
275 		DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->decrypt_pending) < 1);
276 		atomic_inc(&ctx->decrypt_pending);
277 	} else {
278 		DECLARE_CRYPTO_WAIT(wait);
279 
280 		aead_request_set_callback(aead_req,
281 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
282 					  crypto_req_done, &wait);
283 		ret = crypto_aead_decrypt(aead_req);
284 		if (ret == -EINPROGRESS || ret == -EBUSY)
285 			ret = crypto_wait_req(ret, &wait);
286 		return ret;
287 	}
288 
289 	ret = crypto_aead_decrypt(aead_req);
290 	if (ret == -EINPROGRESS)
291 		return 0;
292 
293 	if (ret == -EBUSY) {
294 		ret = tls_decrypt_async_wait(ctx);
295 		darg->async_done = true;
296 		/* all completions have run, we're not doing async anymore */
297 		darg->async = false;
298 		return ret;
299 	}
300 
301 	atomic_dec(&ctx->decrypt_pending);
302 	darg->async = false;
303 
304 	return ret;
305 }
306 
tls_trim_both_msgs(struct sock * sk,int target_size)307 static void tls_trim_both_msgs(struct sock *sk, int target_size)
308 {
309 	struct tls_context *tls_ctx = tls_get_ctx(sk);
310 	struct tls_prot_info *prot = &tls_ctx->prot_info;
311 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
312 	struct tls_rec *rec = ctx->open_rec;
313 
314 	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
315 	if (target_size > 0)
316 		target_size += prot->overhead_size;
317 	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
318 }
319 
tls_alloc_encrypted_msg(struct sock * sk,int len)320 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
321 {
322 	struct tls_context *tls_ctx = tls_get_ctx(sk);
323 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
324 	struct tls_rec *rec = ctx->open_rec;
325 	struct sk_msg *msg_en = &rec->msg_encrypted;
326 
327 	return sk_msg_alloc(sk, msg_en, len, 0);
328 }
329 
tls_clone_plaintext_msg(struct sock * sk,int required)330 static int tls_clone_plaintext_msg(struct sock *sk, int required)
331 {
332 	struct tls_context *tls_ctx = tls_get_ctx(sk);
333 	struct tls_prot_info *prot = &tls_ctx->prot_info;
334 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
335 	struct tls_rec *rec = ctx->open_rec;
336 	struct sk_msg *msg_pl = &rec->msg_plaintext;
337 	struct sk_msg *msg_en = &rec->msg_encrypted;
338 	int skip, len;
339 
340 	/* We add page references worth len bytes from encrypted sg
341 	 * at the end of plaintext sg. It is guaranteed that msg_en
342 	 * has enough required room (ensured by caller).
343 	 */
344 	len = required - msg_pl->sg.size;
345 
346 	/* Skip initial bytes in msg_en's data to be able to use
347 	 * same offset of both plain and encrypted data.
348 	 */
349 	skip = prot->prepend_size + msg_pl->sg.size;
350 
351 	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
352 }
353 
tls_get_rec(struct sock * sk)354 static struct tls_rec *tls_get_rec(struct sock *sk)
355 {
356 	struct tls_context *tls_ctx = tls_get_ctx(sk);
357 	struct tls_prot_info *prot = &tls_ctx->prot_info;
358 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
359 	struct sk_msg *msg_pl, *msg_en;
360 	struct tls_rec *rec;
361 	int mem_size;
362 
363 	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
364 
365 	rec = kzalloc(mem_size, sk->sk_allocation);
366 	if (!rec)
367 		return NULL;
368 
369 	msg_pl = &rec->msg_plaintext;
370 	msg_en = &rec->msg_encrypted;
371 
372 	sk_msg_init(msg_pl);
373 	sk_msg_init(msg_en);
374 
375 	sg_init_table(rec->sg_aead_in, 2);
376 	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
377 	sg_unmark_end(&rec->sg_aead_in[1]);
378 
379 	sg_init_table(rec->sg_aead_out, 2);
380 	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
381 	sg_unmark_end(&rec->sg_aead_out[1]);
382 
383 	rec->sk = sk;
384 
385 	return rec;
386 }
387 
tls_free_rec(struct sock * sk,struct tls_rec * rec)388 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
389 {
390 	sk_msg_free(sk, &rec->msg_encrypted);
391 	sk_msg_free(sk, &rec->msg_plaintext);
392 	kfree(rec);
393 }
394 
tls_free_open_rec(struct sock * sk)395 static void tls_free_open_rec(struct sock *sk)
396 {
397 	struct tls_context *tls_ctx = tls_get_ctx(sk);
398 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
399 	struct tls_rec *rec = ctx->open_rec;
400 
401 	if (rec) {
402 		tls_free_rec(sk, rec);
403 		ctx->open_rec = NULL;
404 	}
405 }
406 
tls_tx_records(struct sock * sk,int flags)407 int tls_tx_records(struct sock *sk, int flags)
408 {
409 	struct tls_context *tls_ctx = tls_get_ctx(sk);
410 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
411 	struct tls_rec *rec, *tmp;
412 	struct sk_msg *msg_en;
413 	int tx_flags, rc = 0;
414 
415 	if (tls_is_partially_sent_record(tls_ctx)) {
416 		rec = list_first_entry(&ctx->tx_list,
417 				       struct tls_rec, list);
418 
419 		if (flags == -1)
420 			tx_flags = rec->tx_flags;
421 		else
422 			tx_flags = flags;
423 
424 		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
425 		if (rc)
426 			goto tx_err;
427 
428 		/* Full record has been transmitted.
429 		 * Remove the head of tx_list
430 		 */
431 		list_del(&rec->list);
432 		sk_msg_free(sk, &rec->msg_plaintext);
433 		kfree(rec);
434 	}
435 
436 	/* Tx all ready records */
437 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
438 		if (READ_ONCE(rec->tx_ready)) {
439 			if (flags == -1)
440 				tx_flags = rec->tx_flags;
441 			else
442 				tx_flags = flags;
443 
444 			msg_en = &rec->msg_encrypted;
445 			rc = tls_push_sg(sk, tls_ctx,
446 					 &msg_en->sg.data[msg_en->sg.curr],
447 					 0, tx_flags);
448 			if (rc)
449 				goto tx_err;
450 
451 			list_del(&rec->list);
452 			sk_msg_free(sk, &rec->msg_plaintext);
453 			kfree(rec);
454 		} else {
455 			break;
456 		}
457 	}
458 
459 tx_err:
460 	if (rc < 0 && rc != -EAGAIN)
461 		tls_err_abort(sk, rc);
462 
463 	return rc;
464 }
465 
tls_encrypt_done(void * data,int err)466 static void tls_encrypt_done(void *data, int err)
467 {
468 	struct tls_sw_context_tx *ctx;
469 	struct tls_context *tls_ctx;
470 	struct tls_prot_info *prot;
471 	struct tls_rec *rec = data;
472 	struct scatterlist *sge;
473 	struct sk_msg *msg_en;
474 	struct sock *sk;
475 
476 	if (err == -EINPROGRESS) /* see the comment in tls_decrypt_done() */
477 		return;
478 
479 	msg_en = &rec->msg_encrypted;
480 
481 	sk = rec->sk;
482 	tls_ctx = tls_get_ctx(sk);
483 	prot = &tls_ctx->prot_info;
484 	ctx = tls_sw_ctx_tx(tls_ctx);
485 
486 	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
487 	sge->offset -= prot->prepend_size;
488 	sge->length += prot->prepend_size;
489 
490 	/* Check if error is previously set on socket */
491 	if (err || sk->sk_err) {
492 		rec = NULL;
493 
494 		/* If err is already set on socket, return the same code */
495 		if (sk->sk_err) {
496 			ctx->async_wait.err = -sk->sk_err;
497 		} else {
498 			ctx->async_wait.err = err;
499 			tls_err_abort(sk, err);
500 		}
501 	}
502 
503 	if (rec) {
504 		struct tls_rec *first_rec;
505 
506 		/* Mark the record as ready for transmission */
507 		smp_store_mb(rec->tx_ready, true);
508 
509 		/* If received record is at head of tx_list, schedule tx */
510 		first_rec = list_first_entry(&ctx->tx_list,
511 					     struct tls_rec, list);
512 		if (rec == first_rec) {
513 			/* Schedule the transmission */
514 			if (!test_and_set_bit(BIT_TX_SCHEDULED,
515 					      &ctx->tx_bitmask))
516 				schedule_delayed_work(&ctx->tx_work.work, 1);
517 		}
518 	}
519 
520 	if (atomic_dec_and_test(&ctx->encrypt_pending))
521 		complete(&ctx->async_wait.completion);
522 }
523 
tls_encrypt_async_wait(struct tls_sw_context_tx * ctx)524 static int tls_encrypt_async_wait(struct tls_sw_context_tx *ctx)
525 {
526 	if (!atomic_dec_and_test(&ctx->encrypt_pending))
527 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
528 	atomic_inc(&ctx->encrypt_pending);
529 
530 	return ctx->async_wait.err;
531 }
532 
tls_do_encryption(struct sock * sk,struct tls_context * tls_ctx,struct tls_sw_context_tx * ctx,struct aead_request * aead_req,size_t data_len,u32 start)533 static int tls_do_encryption(struct sock *sk,
534 			     struct tls_context *tls_ctx,
535 			     struct tls_sw_context_tx *ctx,
536 			     struct aead_request *aead_req,
537 			     size_t data_len, u32 start)
538 {
539 	struct tls_prot_info *prot = &tls_ctx->prot_info;
540 	struct tls_rec *rec = ctx->open_rec;
541 	struct sk_msg *msg_en = &rec->msg_encrypted;
542 	struct scatterlist *sge = sk_msg_elem(msg_en, start);
543 	int rc, iv_offset = 0;
544 
545 	/* For CCM based ciphers, first byte of IV is a constant */
546 	switch (prot->cipher_type) {
547 	case TLS_CIPHER_AES_CCM_128:
548 		rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
549 		iv_offset = 1;
550 		break;
551 	case TLS_CIPHER_SM4_CCM:
552 		rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
553 		iv_offset = 1;
554 		break;
555 	}
556 
557 	memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
558 	       prot->iv_size + prot->salt_size);
559 
560 	tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
561 			    tls_ctx->tx.rec_seq);
562 
563 	sge->offset += prot->prepend_size;
564 	sge->length -= prot->prepend_size;
565 
566 	msg_en->sg.curr = start;
567 
568 	aead_request_set_tfm(aead_req, ctx->aead_send);
569 	aead_request_set_ad(aead_req, prot->aad_size);
570 	aead_request_set_crypt(aead_req, rec->sg_aead_in,
571 			       rec->sg_aead_out,
572 			       data_len, rec->iv_data);
573 
574 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
575 				  tls_encrypt_done, rec);
576 
577 	/* Add the record in tx_list */
578 	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
579 	DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->encrypt_pending) < 1);
580 	atomic_inc(&ctx->encrypt_pending);
581 
582 	rc = crypto_aead_encrypt(aead_req);
583 	if (rc == -EBUSY) {
584 		rc = tls_encrypt_async_wait(ctx);
585 		rc = rc ?: -EINPROGRESS;
586 	}
587 	if (!rc || rc != -EINPROGRESS) {
588 		atomic_dec(&ctx->encrypt_pending);
589 		sge->offset -= prot->prepend_size;
590 		sge->length += prot->prepend_size;
591 	}
592 
593 	if (!rc) {
594 		WRITE_ONCE(rec->tx_ready, true);
595 	} else if (rc != -EINPROGRESS) {
596 		list_del(&rec->list);
597 		return rc;
598 	}
599 
600 	/* Unhook the record from context if encryption is not failure */
601 	ctx->open_rec = NULL;
602 	tls_advance_record_sn(sk, prot, &tls_ctx->tx);
603 	return rc;
604 }
605 
tls_split_open_record(struct sock * sk,struct tls_rec * from,struct tls_rec ** to,struct sk_msg * msg_opl,struct sk_msg * msg_oen,u32 split_point,u32 tx_overhead_size,u32 * orig_end)606 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
607 				 struct tls_rec **to, struct sk_msg *msg_opl,
608 				 struct sk_msg *msg_oen, u32 split_point,
609 				 u32 tx_overhead_size, u32 *orig_end)
610 {
611 	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
612 	struct scatterlist *sge, *osge, *nsge;
613 	u32 orig_size = msg_opl->sg.size;
614 	struct scatterlist tmp = { };
615 	struct sk_msg *msg_npl;
616 	struct tls_rec *new;
617 	int ret;
618 
619 	new = tls_get_rec(sk);
620 	if (!new)
621 		return -ENOMEM;
622 	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
623 			   tx_overhead_size, 0);
624 	if (ret < 0) {
625 		tls_free_rec(sk, new);
626 		return ret;
627 	}
628 
629 	*orig_end = msg_opl->sg.end;
630 	i = msg_opl->sg.start;
631 	sge = sk_msg_elem(msg_opl, i);
632 	while (apply && sge->length) {
633 		if (sge->length > apply) {
634 			u32 len = sge->length - apply;
635 
636 			get_page(sg_page(sge));
637 			sg_set_page(&tmp, sg_page(sge), len,
638 				    sge->offset + apply);
639 			sge->length = apply;
640 			bytes += apply;
641 			apply = 0;
642 		} else {
643 			apply -= sge->length;
644 			bytes += sge->length;
645 		}
646 
647 		sk_msg_iter_var_next(i);
648 		if (i == msg_opl->sg.end)
649 			break;
650 		sge = sk_msg_elem(msg_opl, i);
651 	}
652 
653 	msg_opl->sg.end = i;
654 	msg_opl->sg.curr = i;
655 	msg_opl->sg.copybreak = 0;
656 	msg_opl->apply_bytes = 0;
657 	msg_opl->sg.size = bytes;
658 
659 	msg_npl = &new->msg_plaintext;
660 	msg_npl->apply_bytes = apply;
661 	msg_npl->sg.size = orig_size - bytes;
662 
663 	j = msg_npl->sg.start;
664 	nsge = sk_msg_elem(msg_npl, j);
665 	if (tmp.length) {
666 		memcpy(nsge, &tmp, sizeof(*nsge));
667 		sk_msg_iter_var_next(j);
668 		nsge = sk_msg_elem(msg_npl, j);
669 	}
670 
671 	osge = sk_msg_elem(msg_opl, i);
672 	while (osge->length) {
673 		memcpy(nsge, osge, sizeof(*nsge));
674 		sg_unmark_end(nsge);
675 		sk_msg_iter_var_next(i);
676 		sk_msg_iter_var_next(j);
677 		if (i == *orig_end)
678 			break;
679 		osge = sk_msg_elem(msg_opl, i);
680 		nsge = sk_msg_elem(msg_npl, j);
681 	}
682 
683 	msg_npl->sg.end = j;
684 	msg_npl->sg.curr = j;
685 	msg_npl->sg.copybreak = 0;
686 
687 	*to = new;
688 	return 0;
689 }
690 
tls_merge_open_record(struct sock * sk,struct tls_rec * to,struct tls_rec * from,u32 orig_end)691 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
692 				  struct tls_rec *from, u32 orig_end)
693 {
694 	struct sk_msg *msg_npl = &from->msg_plaintext;
695 	struct sk_msg *msg_opl = &to->msg_plaintext;
696 	struct scatterlist *osge, *nsge;
697 	u32 i, j;
698 
699 	i = msg_opl->sg.end;
700 	sk_msg_iter_var_prev(i);
701 	j = msg_npl->sg.start;
702 
703 	osge = sk_msg_elem(msg_opl, i);
704 	nsge = sk_msg_elem(msg_npl, j);
705 
706 	if (sg_page(osge) == sg_page(nsge) &&
707 	    osge->offset + osge->length == nsge->offset) {
708 		osge->length += nsge->length;
709 		put_page(sg_page(nsge));
710 	}
711 
712 	msg_opl->sg.end = orig_end;
713 	msg_opl->sg.curr = orig_end;
714 	msg_opl->sg.copybreak = 0;
715 	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
716 	msg_opl->sg.size += msg_npl->sg.size;
717 
718 	sk_msg_free(sk, &to->msg_encrypted);
719 	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
720 
721 	kfree(from);
722 }
723 
tls_push_record(struct sock * sk,int flags,unsigned char record_type)724 static int tls_push_record(struct sock *sk, int flags,
725 			   unsigned char record_type)
726 {
727 	struct tls_context *tls_ctx = tls_get_ctx(sk);
728 	struct tls_prot_info *prot = &tls_ctx->prot_info;
729 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
730 	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
731 	u32 i, split_point, orig_end;
732 	struct sk_msg *msg_pl, *msg_en;
733 	struct aead_request *req;
734 	bool split;
735 	int rc;
736 
737 	if (!rec)
738 		return 0;
739 
740 	msg_pl = &rec->msg_plaintext;
741 	msg_en = &rec->msg_encrypted;
742 
743 	split_point = msg_pl->apply_bytes;
744 	split = split_point && split_point < msg_pl->sg.size;
745 	if (unlikely((!split &&
746 		      msg_pl->sg.size +
747 		      prot->overhead_size > msg_en->sg.size) ||
748 		     (split &&
749 		      split_point +
750 		      prot->overhead_size > msg_en->sg.size))) {
751 		split = true;
752 		split_point = msg_en->sg.size;
753 	}
754 	if (split) {
755 		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
756 					   split_point, prot->overhead_size,
757 					   &orig_end);
758 		if (rc < 0)
759 			return rc;
760 		/* This can happen if above tls_split_open_record allocates
761 		 * a single large encryption buffer instead of two smaller
762 		 * ones. In this case adjust pointers and continue without
763 		 * split.
764 		 */
765 		if (!msg_pl->sg.size) {
766 			tls_merge_open_record(sk, rec, tmp, orig_end);
767 			msg_pl = &rec->msg_plaintext;
768 			msg_en = &rec->msg_encrypted;
769 			split = false;
770 		}
771 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
772 			    prot->overhead_size);
773 	}
774 
775 	rec->tx_flags = flags;
776 	req = &rec->aead_req;
777 
778 	i = msg_pl->sg.end;
779 	sk_msg_iter_var_prev(i);
780 
781 	rec->content_type = record_type;
782 	if (prot->version == TLS_1_3_VERSION) {
783 		/* Add content type to end of message.  No padding added */
784 		sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
785 		sg_mark_end(&rec->sg_content_type);
786 		sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
787 			 &rec->sg_content_type);
788 	} else {
789 		sg_mark_end(sk_msg_elem(msg_pl, i));
790 	}
791 
792 	if (msg_pl->sg.end < msg_pl->sg.start) {
793 		sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
794 			 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
795 			 msg_pl->sg.data);
796 	}
797 
798 	i = msg_pl->sg.start;
799 	sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
800 
801 	i = msg_en->sg.end;
802 	sk_msg_iter_var_prev(i);
803 	sg_mark_end(sk_msg_elem(msg_en, i));
804 
805 	i = msg_en->sg.start;
806 	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
807 
808 	tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
809 		     tls_ctx->tx.rec_seq, record_type, prot);
810 
811 	tls_fill_prepend(tls_ctx,
812 			 page_address(sg_page(&msg_en->sg.data[i])) +
813 			 msg_en->sg.data[i].offset,
814 			 msg_pl->sg.size + prot->tail_size,
815 			 record_type);
816 
817 	tls_ctx->pending_open_record_frags = false;
818 
819 	rc = tls_do_encryption(sk, tls_ctx, ctx, req,
820 			       msg_pl->sg.size + prot->tail_size, i);
821 	if (rc < 0) {
822 		if (rc != -EINPROGRESS) {
823 			tls_err_abort(sk, -EBADMSG);
824 			if (split) {
825 				tls_ctx->pending_open_record_frags = true;
826 				tls_merge_open_record(sk, rec, tmp, orig_end);
827 			}
828 		}
829 		ctx->async_capable = 1;
830 		return rc;
831 	} else if (split) {
832 		msg_pl = &tmp->msg_plaintext;
833 		msg_en = &tmp->msg_encrypted;
834 		sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
835 		tls_ctx->pending_open_record_frags = true;
836 		ctx->open_rec = tmp;
837 	}
838 
839 	return tls_tx_records(sk, flags);
840 }
841 
bpf_exec_tx_verdict(struct sk_msg * msg,struct sock * sk,bool full_record,u8 record_type,ssize_t * copied,int flags)842 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
843 			       bool full_record, u8 record_type,
844 			       ssize_t *copied, int flags)
845 {
846 	struct tls_context *tls_ctx = tls_get_ctx(sk);
847 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
848 	struct sk_msg msg_redir = { };
849 	struct sk_psock *psock;
850 	struct sock *sk_redir;
851 	struct tls_rec *rec;
852 	bool enospc, policy, redir_ingress;
853 	int err = 0, send;
854 	u32 delta = 0;
855 
856 	policy = !(flags & MSG_SENDPAGE_NOPOLICY);
857 	psock = sk_psock_get(sk);
858 	if (!psock || !policy) {
859 		err = tls_push_record(sk, flags, record_type);
860 		if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
861 			*copied -= sk_msg_free(sk, msg);
862 			tls_free_open_rec(sk);
863 			err = -sk->sk_err;
864 		}
865 		if (psock)
866 			sk_psock_put(sk, psock);
867 		return err;
868 	}
869 more_data:
870 	enospc = sk_msg_full(msg);
871 	if (psock->eval == __SK_NONE) {
872 		delta = msg->sg.size;
873 		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
874 		delta -= msg->sg.size;
875 
876 		if ((s32)delta > 0) {
877 			/* It indicates that we executed bpf_msg_pop_data(),
878 			 * causing the plaintext data size to decrease.
879 			 * Therefore the encrypted data size also needs to
880 			 * correspondingly decrease. We only need to subtract
881 			 * delta to calculate the new ciphertext length since
882 			 * ktls does not support block encryption.
883 			 */
884 			struct sk_msg *enc = &ctx->open_rec->msg_encrypted;
885 
886 			sk_msg_trim(sk, enc, enc->sg.size - delta);
887 		}
888 	}
889 	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
890 	    !enospc && !full_record) {
891 		err = -ENOSPC;
892 		goto out_err;
893 	}
894 	msg->cork_bytes = 0;
895 	send = msg->sg.size;
896 	if (msg->apply_bytes && msg->apply_bytes < send)
897 		send = msg->apply_bytes;
898 
899 	switch (psock->eval) {
900 	case __SK_PASS:
901 		err = tls_push_record(sk, flags, record_type);
902 		if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
903 			*copied -= sk_msg_free(sk, msg);
904 			tls_free_open_rec(sk);
905 			err = -sk->sk_err;
906 			goto out_err;
907 		}
908 		break;
909 	case __SK_REDIRECT:
910 		redir_ingress = psock->redir_ingress;
911 		sk_redir = psock->sk_redir;
912 		memcpy(&msg_redir, msg, sizeof(*msg));
913 		if (msg->apply_bytes < send)
914 			msg->apply_bytes = 0;
915 		else
916 			msg->apply_bytes -= send;
917 		sk_msg_return_zero(sk, msg, send);
918 		msg->sg.size -= send;
919 		release_sock(sk);
920 		err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
921 					    &msg_redir, send, flags);
922 		lock_sock(sk);
923 		if (err < 0) {
924 			/* Regardless of whether the data represented by
925 			 * msg_redir is sent successfully, we have already
926 			 * uncharged it via sk_msg_return_zero(). The
927 			 * msg->sg.size represents the remaining unprocessed
928 			 * data, which needs to be uncharged here.
929 			 */
930 			sk_mem_uncharge(sk, msg->sg.size);
931 			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
932 			msg->sg.size = 0;
933 		}
934 		if (msg->sg.size == 0)
935 			tls_free_open_rec(sk);
936 		break;
937 	case __SK_DROP:
938 	default:
939 		sk_msg_free_partial(sk, msg, send);
940 		if (msg->apply_bytes < send)
941 			msg->apply_bytes = 0;
942 		else
943 			msg->apply_bytes -= send;
944 		if (msg->sg.size == 0)
945 			tls_free_open_rec(sk);
946 		*copied -= (send + delta);
947 		err = -EACCES;
948 	}
949 
950 	if (likely(!err)) {
951 		bool reset_eval = !ctx->open_rec;
952 
953 		rec = ctx->open_rec;
954 		if (rec) {
955 			msg = &rec->msg_plaintext;
956 			if (!msg->apply_bytes)
957 				reset_eval = true;
958 		}
959 		if (reset_eval) {
960 			psock->eval = __SK_NONE;
961 			if (psock->sk_redir) {
962 				sock_put(psock->sk_redir);
963 				psock->sk_redir = NULL;
964 			}
965 		}
966 		if (rec)
967 			goto more_data;
968 	}
969  out_err:
970 	sk_psock_put(sk, psock);
971 	return err;
972 }
973 
tls_sw_push_pending_record(struct sock * sk,int flags)974 static int tls_sw_push_pending_record(struct sock *sk, int flags)
975 {
976 	struct tls_context *tls_ctx = tls_get_ctx(sk);
977 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
978 	struct tls_rec *rec = ctx->open_rec;
979 	struct sk_msg *msg_pl;
980 	size_t copied;
981 
982 	if (!rec)
983 		return 0;
984 
985 	msg_pl = &rec->msg_plaintext;
986 	copied = msg_pl->sg.size;
987 	if (!copied)
988 		return 0;
989 
990 	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
991 				   &copied, flags);
992 }
993 
tls_sw_sendmsg_splice(struct sock * sk,struct msghdr * msg,struct sk_msg * msg_pl,size_t try_to_copy,ssize_t * copied)994 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg,
995 				 struct sk_msg *msg_pl, size_t try_to_copy,
996 				 ssize_t *copied)
997 {
998 	struct page *page = NULL, **pages = &page;
999 
1000 	do {
1001 		ssize_t part;
1002 		size_t off;
1003 
1004 		part = iov_iter_extract_pages(&msg->msg_iter, &pages,
1005 					      try_to_copy, 1, 0, &off);
1006 		if (part <= 0)
1007 			return part ?: -EIO;
1008 
1009 		if (WARN_ON_ONCE(!sendpage_ok(page))) {
1010 			iov_iter_revert(&msg->msg_iter, part);
1011 			return -EIO;
1012 		}
1013 
1014 		sk_msg_page_add(msg_pl, page, part, off);
1015 		msg_pl->sg.copybreak = 0;
1016 		msg_pl->sg.curr = msg_pl->sg.end;
1017 		sk_mem_charge(sk, part);
1018 		*copied += part;
1019 		try_to_copy -= part;
1020 	} while (try_to_copy && !sk_msg_full(msg_pl));
1021 
1022 	return 0;
1023 }
1024 
tls_sw_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1025 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg,
1026 				 size_t size)
1027 {
1028 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1029 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1030 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1031 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1032 	bool async_capable = ctx->async_capable;
1033 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
1034 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1035 	bool eor = !(msg->msg_flags & MSG_MORE);
1036 	size_t try_to_copy;
1037 	ssize_t copied = 0;
1038 	struct sk_msg *msg_pl, *msg_en;
1039 	struct tls_rec *rec;
1040 	int required_size;
1041 	int num_async = 0;
1042 	bool full_record;
1043 	int record_room;
1044 	int num_zc = 0;
1045 	int orig_size;
1046 	int ret = 0;
1047 
1048 	if (!eor && (msg->msg_flags & MSG_EOR))
1049 		return -EINVAL;
1050 
1051 	if (unlikely(msg->msg_controllen)) {
1052 		ret = tls_process_cmsg(sk, msg, &record_type);
1053 		if (ret) {
1054 			if (ret == -EINPROGRESS)
1055 				num_async++;
1056 			else if (ret != -EAGAIN)
1057 				goto end;
1058 		}
1059 	}
1060 
1061 	while (msg_data_left(msg)) {
1062 		if (sk->sk_err) {
1063 			ret = -sk->sk_err;
1064 			goto send_end;
1065 		}
1066 
1067 		if (ctx->open_rec)
1068 			rec = ctx->open_rec;
1069 		else
1070 			rec = ctx->open_rec = tls_get_rec(sk);
1071 		if (!rec) {
1072 			ret = -ENOMEM;
1073 			goto send_end;
1074 		}
1075 
1076 		msg_pl = &rec->msg_plaintext;
1077 		msg_en = &rec->msg_encrypted;
1078 
1079 		orig_size = msg_pl->sg.size;
1080 		full_record = false;
1081 		try_to_copy = msg_data_left(msg);
1082 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1083 		if (try_to_copy >= record_room) {
1084 			try_to_copy = record_room;
1085 			full_record = true;
1086 		}
1087 
1088 		required_size = msg_pl->sg.size + try_to_copy +
1089 				prot->overhead_size;
1090 
1091 		if (!sk_stream_memory_free(sk))
1092 			goto wait_for_sndbuf;
1093 
1094 alloc_encrypted:
1095 		ret = tls_alloc_encrypted_msg(sk, required_size);
1096 		if (ret) {
1097 			if (ret != -ENOSPC)
1098 				goto wait_for_memory;
1099 
1100 			/* Adjust try_to_copy according to the amount that was
1101 			 * actually allocated. The difference is due
1102 			 * to max sg elements limit
1103 			 */
1104 			try_to_copy -= required_size - msg_en->sg.size;
1105 			full_record = true;
1106 		}
1107 
1108 		if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) {
1109 			ret = tls_sw_sendmsg_splice(sk, msg, msg_pl,
1110 						    try_to_copy, &copied);
1111 			if (ret < 0)
1112 				goto send_end;
1113 			tls_ctx->pending_open_record_frags = true;
1114 
1115 			if (sk_msg_full(msg_pl)) {
1116 				full_record = true;
1117 				sk_msg_trim(sk, msg_en,
1118 					    msg_pl->sg.size + prot->overhead_size);
1119 			}
1120 
1121 			if (full_record || eor)
1122 				goto copied;
1123 			continue;
1124 		}
1125 
1126 		if (!is_kvec && (full_record || eor) && !async_capable) {
1127 			u32 first = msg_pl->sg.end;
1128 
1129 			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1130 							msg_pl, try_to_copy);
1131 			if (ret)
1132 				goto fallback_to_reg_send;
1133 
1134 			num_zc++;
1135 			copied += try_to_copy;
1136 
1137 			sk_msg_sg_copy_set(msg_pl, first);
1138 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1139 						  record_type, &copied,
1140 						  msg->msg_flags);
1141 			if (ret) {
1142 				if (ret == -EINPROGRESS)
1143 					num_async++;
1144 				else if (ret == -ENOMEM)
1145 					goto wait_for_memory;
1146 				else if (ctx->open_rec && ret == -ENOSPC) {
1147 					if (msg_pl->cork_bytes) {
1148 						ret = 0;
1149 						goto send_end;
1150 					}
1151 					goto rollback_iter;
1152 				} else if (ret != -EAGAIN)
1153 					goto send_end;
1154 			}
1155 
1156 			/* Transmit if any encryptions have completed */
1157 			if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1158 				cancel_delayed_work(&ctx->tx_work.work);
1159 				tls_tx_records(sk, msg->msg_flags);
1160 			}
1161 
1162 			continue;
1163 rollback_iter:
1164 			copied -= try_to_copy;
1165 			sk_msg_sg_copy_clear(msg_pl, first);
1166 			iov_iter_revert(&msg->msg_iter,
1167 					msg_pl->sg.size - orig_size);
1168 fallback_to_reg_send:
1169 			sk_msg_trim(sk, msg_pl, orig_size);
1170 		}
1171 
1172 		required_size = msg_pl->sg.size + try_to_copy;
1173 
1174 		ret = tls_clone_plaintext_msg(sk, required_size);
1175 		if (ret) {
1176 			if (ret != -ENOSPC)
1177 				goto send_end;
1178 
1179 			/* Adjust try_to_copy according to the amount that was
1180 			 * actually allocated. The difference is due
1181 			 * to max sg elements limit
1182 			 */
1183 			try_to_copy -= required_size - msg_pl->sg.size;
1184 			full_record = true;
1185 			sk_msg_trim(sk, msg_en,
1186 				    msg_pl->sg.size + prot->overhead_size);
1187 		}
1188 
1189 		if (try_to_copy) {
1190 			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1191 						       msg_pl, try_to_copy);
1192 			if (ret < 0)
1193 				goto trim_sgl;
1194 		}
1195 
1196 		/* Open records defined only if successfully copied, otherwise
1197 		 * we would trim the sg but not reset the open record frags.
1198 		 */
1199 		tls_ctx->pending_open_record_frags = true;
1200 		copied += try_to_copy;
1201 copied:
1202 		if (full_record || eor) {
1203 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1204 						  record_type, &copied,
1205 						  msg->msg_flags);
1206 			if (ret) {
1207 				if (ret == -EINPROGRESS)
1208 					num_async++;
1209 				else if (ret == -ENOMEM)
1210 					goto wait_for_memory;
1211 				else if (ret != -EAGAIN) {
1212 					if (ret == -ENOSPC)
1213 						ret = 0;
1214 					goto send_end;
1215 				}
1216 			}
1217 
1218 			/* Transmit if any encryptions have completed */
1219 			if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1220 				cancel_delayed_work(&ctx->tx_work.work);
1221 				tls_tx_records(sk, msg->msg_flags);
1222 			}
1223 		}
1224 
1225 		continue;
1226 
1227 wait_for_sndbuf:
1228 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1229 wait_for_memory:
1230 		ret = sk_stream_wait_memory(sk, &timeo);
1231 		if (ret) {
1232 trim_sgl:
1233 			if (ctx->open_rec)
1234 				tls_trim_both_msgs(sk, orig_size);
1235 			goto send_end;
1236 		}
1237 
1238 		if (ctx->open_rec && msg_en->sg.size < required_size)
1239 			goto alloc_encrypted;
1240 	}
1241 
1242 send_end:
1243 	if (!num_async) {
1244 		goto end;
1245 	} else if (num_zc || eor) {
1246 		int err;
1247 
1248 		/* Wait for pending encryptions to get completed */
1249 		err = tls_encrypt_async_wait(ctx);
1250 		if (err) {
1251 			ret = err;
1252 			copied = 0;
1253 		}
1254 	}
1255 
1256 	/* Transmit if any encryptions have completed */
1257 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1258 		cancel_delayed_work(&ctx->tx_work.work);
1259 		tls_tx_records(sk, msg->msg_flags);
1260 	}
1261 
1262 end:
1263 	ret = sk_stream_error(sk, msg->msg_flags, ret);
1264 	return copied > 0 ? copied : ret;
1265 }
1266 
tls_sw_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1267 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1268 {
1269 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1270 	int ret;
1271 
1272 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1273 			       MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR |
1274 			       MSG_SENDPAGE_NOPOLICY))
1275 		return -EOPNOTSUPP;
1276 
1277 	ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1278 	if (ret)
1279 		return ret;
1280 	lock_sock(sk);
1281 	ret = tls_sw_sendmsg_locked(sk, msg, size);
1282 	release_sock(sk);
1283 	mutex_unlock(&tls_ctx->tx_lock);
1284 	return ret;
1285 }
1286 
1287 /*
1288  * Handle unexpected EOF during splice without SPLICE_F_MORE set.
1289  */
tls_sw_splice_eof(struct socket * sock)1290 void tls_sw_splice_eof(struct socket *sock)
1291 {
1292 	struct sock *sk = sock->sk;
1293 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1294 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1295 	struct tls_rec *rec;
1296 	struct sk_msg *msg_pl;
1297 	ssize_t copied = 0;
1298 	bool retrying = false;
1299 	int ret = 0;
1300 
1301 	if (!ctx->open_rec)
1302 		return;
1303 
1304 	mutex_lock(&tls_ctx->tx_lock);
1305 	lock_sock(sk);
1306 
1307 retry:
1308 	/* same checks as in tls_sw_push_pending_record() */
1309 	rec = ctx->open_rec;
1310 	if (!rec)
1311 		goto unlock;
1312 
1313 	msg_pl = &rec->msg_plaintext;
1314 	if (msg_pl->sg.size == 0)
1315 		goto unlock;
1316 
1317 	/* Check the BPF advisor and perform transmission. */
1318 	ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA,
1319 				  &copied, 0);
1320 	switch (ret) {
1321 	case 0:
1322 	case -EAGAIN:
1323 		if (retrying)
1324 			goto unlock;
1325 		retrying = true;
1326 		goto retry;
1327 	case -EINPROGRESS:
1328 		break;
1329 	default:
1330 		goto unlock;
1331 	}
1332 
1333 	/* Wait for pending encryptions to get completed */
1334 	if (tls_encrypt_async_wait(ctx))
1335 		goto unlock;
1336 
1337 	/* Transmit if any encryptions have completed */
1338 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1339 		cancel_delayed_work(&ctx->tx_work.work);
1340 		tls_tx_records(sk, 0);
1341 	}
1342 
1343 unlock:
1344 	release_sock(sk);
1345 	mutex_unlock(&tls_ctx->tx_lock);
1346 }
1347 
1348 static int
tls_rx_rec_wait(struct sock * sk,struct sk_psock * psock,bool nonblock,bool released)1349 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1350 		bool released)
1351 {
1352 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1353 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1354 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1355 	int ret = 0;
1356 	long timeo;
1357 
1358 	/* a rekey is pending, let userspace deal with it */
1359 	if (unlikely(ctx->key_update_pending))
1360 		return -EKEYEXPIRED;
1361 
1362 	timeo = sock_rcvtimeo(sk, nonblock);
1363 
1364 	while (!tls_strp_msg_ready(ctx)) {
1365 		if (!sk_psock_queue_empty(psock))
1366 			return 0;
1367 
1368 		if (sk->sk_err)
1369 			return sock_error(sk);
1370 
1371 		if (ret < 0)
1372 			return ret;
1373 
1374 		if (!skb_queue_empty(&sk->sk_receive_queue)) {
1375 			tls_strp_check_rcv(&ctx->strp);
1376 			if (tls_strp_msg_ready(ctx))
1377 				break;
1378 		}
1379 
1380 		if (sk->sk_shutdown & RCV_SHUTDOWN)
1381 			return 0;
1382 
1383 		if (sock_flag(sk, SOCK_DONE))
1384 			return 0;
1385 
1386 		if (!timeo)
1387 			return -EAGAIN;
1388 
1389 		released = true;
1390 		add_wait_queue(sk_sleep(sk), &wait);
1391 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1392 		ret = sk_wait_event(sk, &timeo,
1393 				    tls_strp_msg_ready(ctx) ||
1394 				    !sk_psock_queue_empty(psock),
1395 				    &wait);
1396 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1397 		remove_wait_queue(sk_sleep(sk), &wait);
1398 
1399 		/* Handle signals */
1400 		if (signal_pending(current))
1401 			return sock_intr_errno(timeo);
1402 	}
1403 
1404 	if (unlikely(!tls_strp_msg_load(&ctx->strp, released)))
1405 		return tls_rx_rec_wait(sk, psock, nonblock, false);
1406 
1407 	return 1;
1408 }
1409 
tls_setup_from_iter(struct iov_iter * from,int length,int * pages_used,struct scatterlist * to,int to_max_pages)1410 static int tls_setup_from_iter(struct iov_iter *from,
1411 			       int length, int *pages_used,
1412 			       struct scatterlist *to,
1413 			       int to_max_pages)
1414 {
1415 	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1416 	struct page *pages[MAX_SKB_FRAGS];
1417 	unsigned int size = 0;
1418 	ssize_t copied, use;
1419 	size_t offset;
1420 
1421 	while (length > 0) {
1422 		i = 0;
1423 		maxpages = to_max_pages - num_elem;
1424 		if (maxpages == 0) {
1425 			rc = -EFAULT;
1426 			goto out;
1427 		}
1428 		copied = iov_iter_get_pages2(from, pages,
1429 					    length,
1430 					    maxpages, &offset);
1431 		if (copied <= 0) {
1432 			rc = -EFAULT;
1433 			goto out;
1434 		}
1435 
1436 		length -= copied;
1437 		size += copied;
1438 		while (copied) {
1439 			use = min_t(int, copied, PAGE_SIZE - offset);
1440 
1441 			sg_set_page(&to[num_elem],
1442 				    pages[i], use, offset);
1443 			sg_unmark_end(&to[num_elem]);
1444 			/* We do not uncharge memory from this API */
1445 
1446 			offset = 0;
1447 			copied -= use;
1448 
1449 			i++;
1450 			num_elem++;
1451 		}
1452 	}
1453 	/* Mark the end in the last sg entry if newly added */
1454 	if (num_elem > *pages_used)
1455 		sg_mark_end(&to[num_elem - 1]);
1456 out:
1457 	if (rc)
1458 		iov_iter_revert(from, size);
1459 	*pages_used = num_elem;
1460 
1461 	return rc;
1462 }
1463 
1464 static struct sk_buff *
tls_alloc_clrtxt_skb(struct sock * sk,struct sk_buff * skb,unsigned int full_len)1465 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1466 		     unsigned int full_len)
1467 {
1468 	struct strp_msg *clr_rxm;
1469 	struct sk_buff *clr_skb;
1470 	int err;
1471 
1472 	clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1473 				       &err, sk->sk_allocation);
1474 	if (!clr_skb)
1475 		return NULL;
1476 
1477 	skb_copy_header(clr_skb, skb);
1478 	clr_skb->len = full_len;
1479 	clr_skb->data_len = full_len;
1480 
1481 	clr_rxm = strp_msg(clr_skb);
1482 	clr_rxm->offset = 0;
1483 
1484 	return clr_skb;
1485 }
1486 
1487 /* Decrypt handlers
1488  *
1489  * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1490  * They must transform the darg in/out argument are as follows:
1491  *       |          Input            |         Output
1492  * -------------------------------------------------------------------
1493  *    zc | Zero-copy decrypt allowed | Zero-copy performed
1494  * async | Async decrypt allowed     | Async crypto used / in progress
1495  *   skb |            *              | Output skb
1496  *
1497  * If ZC decryption was performed darg.skb will point to the input skb.
1498  */
1499 
1500 /* This function decrypts the input skb into either out_iov or in out_sg
1501  * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1502  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1503  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1504  * NULL, then the decryption happens inside skb buffers itself, i.e.
1505  * zero-copy gets disabled and 'darg->zc' is updated.
1506  */
tls_decrypt_sg(struct sock * sk,struct iov_iter * out_iov,struct scatterlist * out_sg,struct tls_decrypt_arg * darg)1507 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1508 			  struct scatterlist *out_sg,
1509 			  struct tls_decrypt_arg *darg)
1510 {
1511 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1512 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1513 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1514 	int n_sgin, n_sgout, aead_size, err, pages = 0;
1515 	struct sk_buff *skb = tls_strp_msg(ctx);
1516 	const struct strp_msg *rxm = strp_msg(skb);
1517 	const struct tls_msg *tlm = tls_msg(skb);
1518 	struct aead_request *aead_req;
1519 	struct scatterlist *sgin = NULL;
1520 	struct scatterlist *sgout = NULL;
1521 	const int data_len = rxm->full_len - prot->overhead_size;
1522 	int tail_pages = !!prot->tail_size;
1523 	struct tls_decrypt_ctx *dctx;
1524 	struct sk_buff *clear_skb;
1525 	int iv_offset = 0;
1526 	u8 *mem;
1527 
1528 	n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1529 			 rxm->full_len - prot->prepend_size);
1530 	if (n_sgin < 1)
1531 		return n_sgin ?: -EBADMSG;
1532 
1533 	if (darg->zc && (out_iov || out_sg)) {
1534 		clear_skb = NULL;
1535 
1536 		if (out_iov)
1537 			n_sgout = 1 + tail_pages +
1538 				iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1539 		else
1540 			n_sgout = sg_nents(out_sg);
1541 	} else {
1542 		darg->zc = false;
1543 
1544 		clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1545 		if (!clear_skb)
1546 			return -ENOMEM;
1547 
1548 		n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1549 	}
1550 
1551 	/* Increment to accommodate AAD */
1552 	n_sgin = n_sgin + 1;
1553 
1554 	/* Allocate a single block of memory which contains
1555 	 *   aead_req || tls_decrypt_ctx.
1556 	 * Both structs are variable length.
1557 	 */
1558 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1559 	aead_size = ALIGN(aead_size, __alignof__(*dctx));
1560 	mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)),
1561 		      sk->sk_allocation);
1562 	if (!mem) {
1563 		err = -ENOMEM;
1564 		goto exit_free_skb;
1565 	}
1566 
1567 	/* Segment the allocated memory */
1568 	aead_req = (struct aead_request *)mem;
1569 	dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1570 	dctx->sk = sk;
1571 	sgin = &dctx->sg[0];
1572 	sgout = &dctx->sg[n_sgin];
1573 
1574 	/* For CCM based ciphers, first byte of nonce+iv is a constant */
1575 	switch (prot->cipher_type) {
1576 	case TLS_CIPHER_AES_CCM_128:
1577 		dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1578 		iv_offset = 1;
1579 		break;
1580 	case TLS_CIPHER_SM4_CCM:
1581 		dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1582 		iv_offset = 1;
1583 		break;
1584 	}
1585 
1586 	/* Prepare IV */
1587 	if (prot->version == TLS_1_3_VERSION ||
1588 	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1589 		memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1590 		       prot->iv_size + prot->salt_size);
1591 	} else {
1592 		err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1593 				    &dctx->iv[iv_offset] + prot->salt_size,
1594 				    prot->iv_size);
1595 		if (err < 0)
1596 			goto exit_free;
1597 		memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1598 	}
1599 	tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1600 
1601 	/* Prepare AAD */
1602 	tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1603 		     prot->tail_size,
1604 		     tls_ctx->rx.rec_seq, tlm->control, prot);
1605 
1606 	/* Prepare sgin */
1607 	sg_init_table(sgin, n_sgin);
1608 	sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1609 	err = skb_to_sgvec(skb, &sgin[1],
1610 			   rxm->offset + prot->prepend_size,
1611 			   rxm->full_len - prot->prepend_size);
1612 	if (err < 0)
1613 		goto exit_free;
1614 
1615 	if (clear_skb) {
1616 		sg_init_table(sgout, n_sgout);
1617 		sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1618 
1619 		err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1620 				   data_len + prot->tail_size);
1621 		if (err < 0)
1622 			goto exit_free;
1623 	} else if (out_iov) {
1624 		sg_init_table(sgout, n_sgout);
1625 		sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1626 
1627 		err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1628 					  (n_sgout - 1 - tail_pages));
1629 		if (err < 0)
1630 			goto exit_free_pages;
1631 
1632 		if (prot->tail_size) {
1633 			sg_unmark_end(&sgout[pages]);
1634 			sg_set_buf(&sgout[pages + 1], &dctx->tail,
1635 				   prot->tail_size);
1636 			sg_mark_end(&sgout[pages + 1]);
1637 		}
1638 	} else if (out_sg) {
1639 		memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1640 	}
1641 	dctx->free_sgout = !!pages;
1642 
1643 	/* Prepare and submit AEAD request */
1644 	err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1645 				data_len + prot->tail_size, aead_req, darg);
1646 	if (err) {
1647 		if (darg->async_done)
1648 			goto exit_free_skb;
1649 		goto exit_free_pages;
1650 	}
1651 
1652 	darg->skb = clear_skb ?: tls_strp_msg(ctx);
1653 	clear_skb = NULL;
1654 
1655 	if (unlikely(darg->async)) {
1656 		err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1657 		if (err) {
1658 			err = tls_decrypt_async_wait(ctx);
1659 			darg->async = false;
1660 		}
1661 		return err;
1662 	}
1663 
1664 	if (unlikely(darg->async_done))
1665 		return 0;
1666 
1667 	if (prot->tail_size)
1668 		darg->tail = dctx->tail;
1669 
1670 exit_free_pages:
1671 	/* Release the pages in case iov was mapped to pages */
1672 	for (; pages > 0; pages--)
1673 		put_page(sg_page(&sgout[pages]));
1674 exit_free:
1675 	kfree(mem);
1676 exit_free_skb:
1677 	consume_skb(clear_skb);
1678 	return err;
1679 }
1680 
1681 static int
tls_decrypt_sw(struct sock * sk,struct tls_context * tls_ctx,struct msghdr * msg,struct tls_decrypt_arg * darg)1682 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1683 	       struct msghdr *msg, struct tls_decrypt_arg *darg)
1684 {
1685 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1686 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1687 	struct strp_msg *rxm;
1688 	int pad, err;
1689 
1690 	err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1691 	if (err < 0) {
1692 		if (err == -EBADMSG)
1693 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1694 		return err;
1695 	}
1696 	/* keep going even for ->async, the code below is TLS 1.3 */
1697 
1698 	/* If opportunistic TLS 1.3 ZC failed retry without ZC */
1699 	if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1700 		     darg->tail != TLS_RECORD_TYPE_DATA)) {
1701 		darg->zc = false;
1702 		if (!darg->tail)
1703 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1704 		TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1705 		return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1706 	}
1707 
1708 	pad = tls_padding_length(prot, darg->skb, darg);
1709 	if (pad < 0) {
1710 		if (darg->skb != tls_strp_msg(ctx))
1711 			consume_skb(darg->skb);
1712 		return pad;
1713 	}
1714 
1715 	rxm = strp_msg(darg->skb);
1716 	rxm->full_len -= pad;
1717 
1718 	return 0;
1719 }
1720 
1721 static int
tls_decrypt_device(struct sock * sk,struct msghdr * msg,struct tls_context * tls_ctx,struct tls_decrypt_arg * darg)1722 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1723 		   struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1724 {
1725 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1726 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1727 	struct strp_msg *rxm;
1728 	int pad, err;
1729 
1730 	if (tls_ctx->rx_conf != TLS_HW)
1731 		return 0;
1732 
1733 	err = tls_device_decrypted(sk, tls_ctx);
1734 	if (err <= 0)
1735 		return err;
1736 
1737 	pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1738 	if (pad < 0)
1739 		return pad;
1740 
1741 	darg->async = false;
1742 	darg->skb = tls_strp_msg(ctx);
1743 	/* ->zc downgrade check, in case TLS 1.3 gets here */
1744 	darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1745 		      tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1746 
1747 	rxm = strp_msg(darg->skb);
1748 	rxm->full_len -= pad;
1749 
1750 	if (!darg->zc) {
1751 		/* Non-ZC case needs a real skb */
1752 		darg->skb = tls_strp_msg_detach(ctx);
1753 		if (!darg->skb)
1754 			return -ENOMEM;
1755 	} else {
1756 		unsigned int off, len;
1757 
1758 		/* In ZC case nobody cares about the output skb.
1759 		 * Just copy the data here. Note the skb is not fully trimmed.
1760 		 */
1761 		off = rxm->offset + prot->prepend_size;
1762 		len = rxm->full_len - prot->overhead_size;
1763 
1764 		err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1765 		if (err)
1766 			return err;
1767 	}
1768 	return 1;
1769 }
1770 
tls_check_pending_rekey(struct sock * sk,struct tls_context * ctx,struct sk_buff * skb)1771 static int tls_check_pending_rekey(struct sock *sk, struct tls_context *ctx,
1772 				   struct sk_buff *skb)
1773 {
1774 	const struct strp_msg *rxm = strp_msg(skb);
1775 	const struct tls_msg *tlm = tls_msg(skb);
1776 	char hs_type;
1777 	int err;
1778 
1779 	if (likely(tlm->control != TLS_RECORD_TYPE_HANDSHAKE))
1780 		return 0;
1781 
1782 	if (rxm->full_len < 1)
1783 		return 0;
1784 
1785 	err = skb_copy_bits(skb, rxm->offset, &hs_type, 1);
1786 	if (err < 0) {
1787 		DEBUG_NET_WARN_ON_ONCE(1);
1788 		return err;
1789 	}
1790 
1791 	if (hs_type == TLS_HANDSHAKE_KEYUPDATE) {
1792 		struct tls_sw_context_rx *rx_ctx = ctx->priv_ctx_rx;
1793 
1794 		WRITE_ONCE(rx_ctx->key_update_pending, true);
1795 		TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXREKEYRECEIVED);
1796 	}
1797 
1798 	return 0;
1799 }
1800 
tls_rx_one_record(struct sock * sk,struct msghdr * msg,struct tls_decrypt_arg * darg)1801 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1802 			     struct tls_decrypt_arg *darg)
1803 {
1804 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1805 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1806 	struct strp_msg *rxm;
1807 	int err;
1808 
1809 	err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1810 	if (!err)
1811 		err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1812 	if (err < 0)
1813 		return err;
1814 
1815 	rxm = strp_msg(darg->skb);
1816 	rxm->offset += prot->prepend_size;
1817 	rxm->full_len -= prot->overhead_size;
1818 	tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1819 
1820 	return tls_check_pending_rekey(sk, tls_ctx, darg->skb);
1821 }
1822 
decrypt_skb(struct sock * sk,struct scatterlist * sgout)1823 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1824 {
1825 	struct tls_decrypt_arg darg = { .zc = true, };
1826 
1827 	return tls_decrypt_sg(sk, NULL, sgout, &darg);
1828 }
1829 
1830 /* All records returned from a recvmsg() call must have the same type.
1831  * 0 is not a valid content type. Use it as "no type reported, yet".
1832  */
tls_record_content_type(struct msghdr * msg,struct tls_msg * tlm,u8 * control)1833 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1834 				   u8 *control)
1835 {
1836 	int err;
1837 
1838 	if (!*control) {
1839 		*control = tlm->control;
1840 		if (!*control)
1841 			return -EBADMSG;
1842 
1843 		err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1844 			       sizeof(*control), control);
1845 		if (*control != TLS_RECORD_TYPE_DATA) {
1846 			if (err || msg->msg_flags & MSG_CTRUNC)
1847 				return -EIO;
1848 		}
1849 	} else if (*control != tlm->control) {
1850 		return 0;
1851 	}
1852 
1853 	return 1;
1854 }
1855 
tls_rx_rec_done(struct tls_sw_context_rx * ctx)1856 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1857 {
1858 	tls_strp_msg_done(&ctx->strp);
1859 }
1860 
1861 /* This function traverses the rx_list in tls receive context to copies the
1862  * decrypted records into the buffer provided by caller zero copy is not
1863  * true. Further, the records are removed from the rx_list if it is not a peek
1864  * case and the record has been consumed completely.
1865  */
process_rx_list(struct tls_sw_context_rx * ctx,struct msghdr * msg,u8 * control,size_t skip,size_t len,bool is_peek,bool * more)1866 static int process_rx_list(struct tls_sw_context_rx *ctx,
1867 			   struct msghdr *msg,
1868 			   u8 *control,
1869 			   size_t skip,
1870 			   size_t len,
1871 			   bool is_peek,
1872 			   bool *more)
1873 {
1874 	struct sk_buff *skb = skb_peek(&ctx->rx_list);
1875 	struct tls_msg *tlm;
1876 	ssize_t copied = 0;
1877 	int err;
1878 
1879 	while (skip && skb) {
1880 		struct strp_msg *rxm = strp_msg(skb);
1881 		tlm = tls_msg(skb);
1882 
1883 		err = tls_record_content_type(msg, tlm, control);
1884 		if (err <= 0)
1885 			goto more;
1886 
1887 		if (skip < rxm->full_len)
1888 			break;
1889 
1890 		skip = skip - rxm->full_len;
1891 		skb = skb_peek_next(skb, &ctx->rx_list);
1892 	}
1893 
1894 	while (len && skb) {
1895 		struct sk_buff *next_skb;
1896 		struct strp_msg *rxm = strp_msg(skb);
1897 		int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1898 
1899 		tlm = tls_msg(skb);
1900 
1901 		err = tls_record_content_type(msg, tlm, control);
1902 		if (err <= 0)
1903 			goto more;
1904 
1905 		err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1906 					    msg, chunk);
1907 		if (err < 0)
1908 			goto more;
1909 
1910 		len = len - chunk;
1911 		copied = copied + chunk;
1912 
1913 		/* Consume the data from record if it is non-peek case*/
1914 		if (!is_peek) {
1915 			rxm->offset = rxm->offset + chunk;
1916 			rxm->full_len = rxm->full_len - chunk;
1917 
1918 			/* Return if there is unconsumed data in the record */
1919 			if (rxm->full_len - skip)
1920 				break;
1921 		}
1922 
1923 		/* The remaining skip-bytes must lie in 1st record in rx_list.
1924 		 * So from the 2nd record, 'skip' should be 0.
1925 		 */
1926 		skip = 0;
1927 
1928 		if (msg)
1929 			msg->msg_flags |= MSG_EOR;
1930 
1931 		next_skb = skb_peek_next(skb, &ctx->rx_list);
1932 
1933 		if (!is_peek) {
1934 			__skb_unlink(skb, &ctx->rx_list);
1935 			consume_skb(skb);
1936 		}
1937 
1938 		skb = next_skb;
1939 	}
1940 	err = 0;
1941 
1942 out:
1943 	return copied ? : err;
1944 more:
1945 	if (more)
1946 		*more = true;
1947 	goto out;
1948 }
1949 
1950 static bool
tls_read_flush_backlog(struct sock * sk,struct tls_prot_info * prot,size_t len_left,size_t decrypted,ssize_t done,size_t * flushed_at)1951 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1952 		       size_t len_left, size_t decrypted, ssize_t done,
1953 		       size_t *flushed_at)
1954 {
1955 	size_t max_rec;
1956 
1957 	if (len_left <= decrypted)
1958 		return false;
1959 
1960 	max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1961 	if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1962 		return false;
1963 
1964 	*flushed_at = done;
1965 	return sk_flush_backlog(sk);
1966 }
1967 
tls_rx_reader_acquire(struct sock * sk,struct tls_sw_context_rx * ctx,bool nonblock)1968 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx,
1969 				 bool nonblock)
1970 {
1971 	long timeo;
1972 	int ret;
1973 
1974 	timeo = sock_rcvtimeo(sk, nonblock);
1975 
1976 	while (unlikely(ctx->reader_present)) {
1977 		DEFINE_WAIT_FUNC(wait, woken_wake_function);
1978 
1979 		ctx->reader_contended = 1;
1980 
1981 		add_wait_queue(&ctx->wq, &wait);
1982 		ret = sk_wait_event(sk, &timeo,
1983 				    !READ_ONCE(ctx->reader_present), &wait);
1984 		remove_wait_queue(&ctx->wq, &wait);
1985 
1986 		if (timeo <= 0)
1987 			return -EAGAIN;
1988 		if (signal_pending(current))
1989 			return sock_intr_errno(timeo);
1990 		if (ret < 0)
1991 			return ret;
1992 	}
1993 
1994 	WRITE_ONCE(ctx->reader_present, 1);
1995 
1996 	return 0;
1997 }
1998 
tls_rx_reader_lock(struct sock * sk,struct tls_sw_context_rx * ctx,bool nonblock)1999 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
2000 			      bool nonblock)
2001 {
2002 	int err;
2003 
2004 	lock_sock(sk);
2005 	err = tls_rx_reader_acquire(sk, ctx, nonblock);
2006 	if (err)
2007 		release_sock(sk);
2008 	return err;
2009 }
2010 
tls_rx_reader_release(struct sock * sk,struct tls_sw_context_rx * ctx)2011 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx)
2012 {
2013 	if (unlikely(ctx->reader_contended)) {
2014 		if (wq_has_sleeper(&ctx->wq))
2015 			wake_up(&ctx->wq);
2016 		else
2017 			ctx->reader_contended = 0;
2018 
2019 		WARN_ON_ONCE(!ctx->reader_present);
2020 	}
2021 
2022 	WRITE_ONCE(ctx->reader_present, 0);
2023 }
2024 
tls_rx_reader_unlock(struct sock * sk,struct tls_sw_context_rx * ctx)2025 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
2026 {
2027 	tls_rx_reader_release(sk, ctx);
2028 	release_sock(sk);
2029 }
2030 
tls_sw_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2031 int tls_sw_recvmsg(struct sock *sk,
2032 		   struct msghdr *msg,
2033 		   size_t len,
2034 		   int flags,
2035 		   int *addr_len)
2036 {
2037 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2038 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2039 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2040 	ssize_t decrypted = 0, async_copy_bytes = 0;
2041 	struct sk_psock *psock;
2042 	unsigned char control = 0;
2043 	size_t flushed_at = 0;
2044 	struct strp_msg *rxm;
2045 	struct tls_msg *tlm;
2046 	ssize_t copied = 0;
2047 	ssize_t peeked = 0;
2048 	bool async = false;
2049 	int target, err;
2050 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
2051 	bool is_peek = flags & MSG_PEEK;
2052 	bool rx_more = false;
2053 	bool released = true;
2054 	bool bpf_strp_enabled;
2055 	bool zc_capable;
2056 
2057 	if (unlikely(flags & MSG_ERRQUEUE))
2058 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
2059 
2060 	err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
2061 	if (err < 0)
2062 		return err;
2063 	psock = sk_psock_get(sk);
2064 	bpf_strp_enabled = sk_psock_strp_enabled(psock);
2065 
2066 	/* If crypto failed the connection is broken */
2067 	err = ctx->async_wait.err;
2068 	if (err)
2069 		goto end;
2070 
2071 	/* Process pending decrypted records. It must be non-zero-copy */
2072 	err = process_rx_list(ctx, msg, &control, 0, len, is_peek, &rx_more);
2073 	if (err < 0)
2074 		goto end;
2075 
2076 	/* process_rx_list() will set @control if it processed any records */
2077 	copied = err;
2078 	if (len <= copied || rx_more ||
2079 	    (control && control != TLS_RECORD_TYPE_DATA))
2080 		goto end;
2081 
2082 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2083 	len = len - copied;
2084 
2085 	zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
2086 		ctx->zc_capable;
2087 	decrypted = 0;
2088 	while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
2089 		struct tls_decrypt_arg darg;
2090 		int to_decrypt, chunk;
2091 
2092 		err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
2093 				      released);
2094 		if (err <= 0) {
2095 			if (psock) {
2096 				chunk = sk_msg_recvmsg(sk, psock, msg, len,
2097 						       flags);
2098 				if (chunk > 0) {
2099 					decrypted += chunk;
2100 					len -= chunk;
2101 					continue;
2102 				}
2103 			}
2104 			goto recv_end;
2105 		}
2106 
2107 		memset(&darg.inargs, 0, sizeof(darg.inargs));
2108 
2109 		rxm = strp_msg(tls_strp_msg(ctx));
2110 		tlm = tls_msg(tls_strp_msg(ctx));
2111 
2112 		to_decrypt = rxm->full_len - prot->overhead_size;
2113 
2114 		if (zc_capable && to_decrypt <= len &&
2115 		    tlm->control == TLS_RECORD_TYPE_DATA)
2116 			darg.zc = true;
2117 
2118 		/* Do not use async mode if record is non-data */
2119 		if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
2120 			darg.async = ctx->async_capable;
2121 		else
2122 			darg.async = false;
2123 
2124 		err = tls_rx_one_record(sk, msg, &darg);
2125 		if (err < 0) {
2126 			tls_err_abort(sk, -EBADMSG);
2127 			goto recv_end;
2128 		}
2129 
2130 		async |= darg.async;
2131 
2132 		/* If the type of records being processed is not known yet,
2133 		 * set it to record type just dequeued. If it is already known,
2134 		 * but does not match the record type just dequeued, go to end.
2135 		 * We always get record type here since for tls1.2, record type
2136 		 * is known just after record is dequeued from stream parser.
2137 		 * For tls1.3, we disable async.
2138 		 */
2139 		err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2140 		if (err <= 0) {
2141 			DEBUG_NET_WARN_ON_ONCE(darg.zc);
2142 			tls_rx_rec_done(ctx);
2143 put_on_rx_list_err:
2144 			__skb_queue_tail(&ctx->rx_list, darg.skb);
2145 			goto recv_end;
2146 		}
2147 
2148 		/* periodically flush backlog, and feed strparser */
2149 		released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2150 						  decrypted + copied,
2151 						  &flushed_at);
2152 
2153 		/* TLS 1.3 may have updated the length by more than overhead */
2154 		rxm = strp_msg(darg.skb);
2155 		chunk = rxm->full_len;
2156 		tls_rx_rec_done(ctx);
2157 
2158 		if (!darg.zc) {
2159 			bool partially_consumed = chunk > len;
2160 			struct sk_buff *skb = darg.skb;
2161 
2162 			DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2163 
2164 			if (async) {
2165 				/* TLS 1.2-only, to_decrypt must be text len */
2166 				chunk = min_t(int, to_decrypt, len);
2167 				async_copy_bytes += chunk;
2168 put_on_rx_list:
2169 				decrypted += chunk;
2170 				len -= chunk;
2171 				__skb_queue_tail(&ctx->rx_list, skb);
2172 				if (unlikely(control != TLS_RECORD_TYPE_DATA))
2173 					break;
2174 				continue;
2175 			}
2176 
2177 			if (bpf_strp_enabled) {
2178 				released = true;
2179 				err = sk_psock_tls_strp_read(psock, skb);
2180 				if (err != __SK_PASS) {
2181 					rxm->offset = rxm->offset + rxm->full_len;
2182 					rxm->full_len = 0;
2183 					if (err == __SK_DROP)
2184 						consume_skb(skb);
2185 					continue;
2186 				}
2187 			}
2188 
2189 			if (partially_consumed)
2190 				chunk = len;
2191 
2192 			err = skb_copy_datagram_msg(skb, rxm->offset,
2193 						    msg, chunk);
2194 			if (err < 0)
2195 				goto put_on_rx_list_err;
2196 
2197 			if (is_peek) {
2198 				peeked += chunk;
2199 				goto put_on_rx_list;
2200 			}
2201 
2202 			if (partially_consumed) {
2203 				rxm->offset += chunk;
2204 				rxm->full_len -= chunk;
2205 				goto put_on_rx_list;
2206 			}
2207 
2208 			consume_skb(skb);
2209 		}
2210 
2211 		decrypted += chunk;
2212 		len -= chunk;
2213 
2214 		/* Return full control message to userspace before trying
2215 		 * to parse another message type
2216 		 */
2217 		msg->msg_flags |= MSG_EOR;
2218 		if (control != TLS_RECORD_TYPE_DATA)
2219 			break;
2220 	}
2221 
2222 recv_end:
2223 	if (async) {
2224 		int ret;
2225 
2226 		/* Wait for all previously submitted records to be decrypted */
2227 		ret = tls_decrypt_async_wait(ctx);
2228 		__skb_queue_purge(&ctx->async_hold);
2229 
2230 		if (ret) {
2231 			if (err >= 0 || err == -EINPROGRESS)
2232 				err = ret;
2233 			goto end;
2234 		}
2235 
2236 		/* Drain records from the rx_list & copy if required */
2237 		if (is_peek)
2238 			err = process_rx_list(ctx, msg, &control, copied + peeked,
2239 					      decrypted - peeked, is_peek, NULL);
2240 		else
2241 			err = process_rx_list(ctx, msg, &control, 0,
2242 					      async_copy_bytes, is_peek, NULL);
2243 
2244 		/* we could have copied less than we wanted, and possibly nothing */
2245 		decrypted += max(err, 0) - async_copy_bytes;
2246 	}
2247 
2248 	copied += decrypted;
2249 
2250 end:
2251 	tls_rx_reader_unlock(sk, ctx);
2252 	if (psock)
2253 		sk_psock_put(sk, psock);
2254 	return copied ? : err;
2255 }
2256 
tls_sw_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2257 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
2258 			   struct pipe_inode_info *pipe,
2259 			   size_t len, unsigned int flags)
2260 {
2261 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2262 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2263 	struct strp_msg *rxm = NULL;
2264 	struct sock *sk = sock->sk;
2265 	struct tls_msg *tlm;
2266 	struct sk_buff *skb;
2267 	ssize_t copied = 0;
2268 	int chunk;
2269 	int err;
2270 
2271 	err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2272 	if (err < 0)
2273 		return err;
2274 
2275 	if (!skb_queue_empty(&ctx->rx_list)) {
2276 		skb = __skb_dequeue(&ctx->rx_list);
2277 	} else {
2278 		struct tls_decrypt_arg darg;
2279 
2280 		err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2281 				      true);
2282 		if (err <= 0)
2283 			goto splice_read_end;
2284 
2285 		memset(&darg.inargs, 0, sizeof(darg.inargs));
2286 
2287 		err = tls_rx_one_record(sk, NULL, &darg);
2288 		if (err < 0) {
2289 			tls_err_abort(sk, -EBADMSG);
2290 			goto splice_read_end;
2291 		}
2292 
2293 		tls_rx_rec_done(ctx);
2294 		skb = darg.skb;
2295 	}
2296 
2297 	rxm = strp_msg(skb);
2298 	tlm = tls_msg(skb);
2299 
2300 	/* splice does not support reading control messages */
2301 	if (tlm->control != TLS_RECORD_TYPE_DATA) {
2302 		err = -EINVAL;
2303 		goto splice_requeue;
2304 	}
2305 
2306 	chunk = min_t(unsigned int, rxm->full_len, len);
2307 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2308 	if (copied < 0)
2309 		goto splice_requeue;
2310 
2311 	if (chunk < rxm->full_len) {
2312 		rxm->offset += len;
2313 		rxm->full_len -= len;
2314 		goto splice_requeue;
2315 	}
2316 
2317 	consume_skb(skb);
2318 
2319 splice_read_end:
2320 	tls_rx_reader_unlock(sk, ctx);
2321 	return copied ? : err;
2322 
2323 splice_requeue:
2324 	__skb_queue_head(&ctx->rx_list, skb);
2325 	goto splice_read_end;
2326 }
2327 
tls_sw_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t read_actor)2328 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc,
2329 		     sk_read_actor_t read_actor)
2330 {
2331 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2332 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2333 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2334 	struct strp_msg *rxm = NULL;
2335 	struct sk_buff *skb = NULL;
2336 	struct sk_psock *psock;
2337 	size_t flushed_at = 0;
2338 	bool released = true;
2339 	struct tls_msg *tlm;
2340 	ssize_t copied = 0;
2341 	ssize_t decrypted;
2342 	int err, used;
2343 
2344 	psock = sk_psock_get(sk);
2345 	if (psock) {
2346 		sk_psock_put(sk, psock);
2347 		return -EINVAL;
2348 	}
2349 	err = tls_rx_reader_acquire(sk, ctx, true);
2350 	if (err < 0)
2351 		return err;
2352 
2353 	/* If crypto failed the connection is broken */
2354 	err = ctx->async_wait.err;
2355 	if (err)
2356 		goto read_sock_end;
2357 
2358 	decrypted = 0;
2359 	do {
2360 		if (!skb_queue_empty(&ctx->rx_list)) {
2361 			skb = __skb_dequeue(&ctx->rx_list);
2362 			rxm = strp_msg(skb);
2363 			tlm = tls_msg(skb);
2364 		} else {
2365 			struct tls_decrypt_arg darg;
2366 
2367 			err = tls_rx_rec_wait(sk, NULL, true, released);
2368 			if (err <= 0)
2369 				goto read_sock_end;
2370 
2371 			memset(&darg.inargs, 0, sizeof(darg.inargs));
2372 
2373 			err = tls_rx_one_record(sk, NULL, &darg);
2374 			if (err < 0) {
2375 				tls_err_abort(sk, -EBADMSG);
2376 				goto read_sock_end;
2377 			}
2378 
2379 			released = tls_read_flush_backlog(sk, prot, INT_MAX,
2380 							  0, decrypted,
2381 							  &flushed_at);
2382 			skb = darg.skb;
2383 			rxm = strp_msg(skb);
2384 			tlm = tls_msg(skb);
2385 			decrypted += rxm->full_len;
2386 
2387 			tls_rx_rec_done(ctx);
2388 		}
2389 
2390 		/* read_sock does not support reading control messages */
2391 		if (tlm->control != TLS_RECORD_TYPE_DATA) {
2392 			err = -EINVAL;
2393 			goto read_sock_requeue;
2394 		}
2395 
2396 		used = read_actor(desc, skb, rxm->offset, rxm->full_len);
2397 		if (used <= 0) {
2398 			if (!copied)
2399 				err = used;
2400 			goto read_sock_requeue;
2401 		}
2402 		copied += used;
2403 		if (used < rxm->full_len) {
2404 			rxm->offset += used;
2405 			rxm->full_len -= used;
2406 			if (!desc->count)
2407 				goto read_sock_requeue;
2408 		} else {
2409 			consume_skb(skb);
2410 			if (!desc->count)
2411 				skb = NULL;
2412 		}
2413 	} while (skb);
2414 
2415 read_sock_end:
2416 	tls_rx_reader_release(sk, ctx);
2417 	return copied ? : err;
2418 
2419 read_sock_requeue:
2420 	__skb_queue_head(&ctx->rx_list, skb);
2421 	goto read_sock_end;
2422 }
2423 
tls_sw_sock_is_readable(struct sock * sk)2424 bool tls_sw_sock_is_readable(struct sock *sk)
2425 {
2426 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2427 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2428 	bool ingress_empty = true;
2429 	struct sk_psock *psock;
2430 
2431 	rcu_read_lock();
2432 	psock = sk_psock(sk);
2433 	if (psock)
2434 		ingress_empty = list_empty(&psock->ingress_msg);
2435 	rcu_read_unlock();
2436 
2437 	return !ingress_empty || tls_strp_msg_ready(ctx) ||
2438 		!skb_queue_empty(&ctx->rx_list);
2439 }
2440 
tls_rx_msg_size(struct tls_strparser * strp,struct sk_buff * skb)2441 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2442 {
2443 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2444 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2445 	char header[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE];
2446 	size_t cipher_overhead;
2447 	size_t data_len = 0;
2448 	int ret;
2449 
2450 	/* Verify that we have a full TLS header, or wait for more data */
2451 	if (strp->stm.offset + prot->prepend_size > skb->len)
2452 		return 0;
2453 
2454 	/* Sanity-check size of on-stack buffer. */
2455 	if (WARN_ON(prot->prepend_size > sizeof(header))) {
2456 		ret = -EINVAL;
2457 		goto read_failure;
2458 	}
2459 
2460 	/* Linearize header to local buffer */
2461 	ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2462 	if (ret < 0)
2463 		goto read_failure;
2464 
2465 	strp->mark = header[0];
2466 
2467 	data_len = ((header[4] & 0xFF) | (header[3] << 8));
2468 
2469 	cipher_overhead = prot->tag_size;
2470 	if (prot->version != TLS_1_3_VERSION &&
2471 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2472 		cipher_overhead += prot->iv_size;
2473 
2474 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2475 	    prot->tail_size) {
2476 		ret = -EMSGSIZE;
2477 		goto read_failure;
2478 	}
2479 	if (data_len < cipher_overhead) {
2480 		ret = -EBADMSG;
2481 		goto read_failure;
2482 	}
2483 
2484 	/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2485 	if (header[1] != TLS_1_2_VERSION_MINOR ||
2486 	    header[2] != TLS_1_2_VERSION_MAJOR) {
2487 		ret = -EINVAL;
2488 		goto read_failure;
2489 	}
2490 
2491 	tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2492 				     TCP_SKB_CB(skb)->seq + strp->stm.offset);
2493 	return data_len + TLS_HEADER_SIZE;
2494 
2495 read_failure:
2496 	tls_strp_abort_strp(strp, ret);
2497 	return ret;
2498 }
2499 
tls_rx_msg_ready(struct tls_strparser * strp)2500 void tls_rx_msg_ready(struct tls_strparser *strp)
2501 {
2502 	struct tls_sw_context_rx *ctx;
2503 
2504 	ctx = container_of(strp, struct tls_sw_context_rx, strp);
2505 	ctx->saved_data_ready(strp->sk);
2506 }
2507 
tls_data_ready(struct sock * sk)2508 static void tls_data_ready(struct sock *sk)
2509 {
2510 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2511 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2512 	struct sk_psock *psock;
2513 	gfp_t alloc_save;
2514 
2515 	trace_sk_data_ready(sk);
2516 
2517 	alloc_save = sk->sk_allocation;
2518 	sk->sk_allocation = GFP_ATOMIC;
2519 	tls_strp_data_ready(&ctx->strp);
2520 	sk->sk_allocation = alloc_save;
2521 
2522 	psock = sk_psock_get(sk);
2523 	if (psock) {
2524 		if (!list_empty(&psock->ingress_msg))
2525 			ctx->saved_data_ready(sk);
2526 		sk_psock_put(sk, psock);
2527 	}
2528 }
2529 
tls_sw_cancel_work_tx(struct tls_context * tls_ctx)2530 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2531 {
2532 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2533 
2534 	set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2535 	set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2536 	cancel_delayed_work_sync(&ctx->tx_work.work);
2537 }
2538 
tls_sw_release_resources_tx(struct sock * sk)2539 void tls_sw_release_resources_tx(struct sock *sk)
2540 {
2541 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2542 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2543 	struct tls_rec *rec, *tmp;
2544 
2545 	/* Wait for any pending async encryptions to complete */
2546 	tls_encrypt_async_wait(ctx);
2547 
2548 	tls_tx_records(sk, -1);
2549 
2550 	/* Free up un-sent records in tx_list. First, free
2551 	 * the partially sent record if any at head of tx_list.
2552 	 */
2553 	if (tls_ctx->partially_sent_record) {
2554 		tls_free_partial_record(sk, tls_ctx);
2555 		rec = list_first_entry(&ctx->tx_list,
2556 				       struct tls_rec, list);
2557 		list_del(&rec->list);
2558 		sk_msg_free(sk, &rec->msg_plaintext);
2559 		kfree(rec);
2560 	}
2561 
2562 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2563 		list_del(&rec->list);
2564 		sk_msg_free(sk, &rec->msg_encrypted);
2565 		sk_msg_free(sk, &rec->msg_plaintext);
2566 		kfree(rec);
2567 	}
2568 
2569 	crypto_free_aead(ctx->aead_send);
2570 	tls_free_open_rec(sk);
2571 }
2572 
tls_sw_free_ctx_tx(struct tls_context * tls_ctx)2573 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2574 {
2575 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2576 
2577 	kfree(ctx);
2578 }
2579 
tls_sw_release_resources_rx(struct sock * sk)2580 void tls_sw_release_resources_rx(struct sock *sk)
2581 {
2582 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2583 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2584 
2585 	if (ctx->aead_recv) {
2586 		__skb_queue_purge(&ctx->rx_list);
2587 		crypto_free_aead(ctx->aead_recv);
2588 		tls_strp_stop(&ctx->strp);
2589 		/* If tls_sw_strparser_arm() was not called (cleanup paths)
2590 		 * we still want to tls_strp_stop(), but sk->sk_data_ready was
2591 		 * never swapped.
2592 		 */
2593 		if (ctx->saved_data_ready) {
2594 			write_lock_bh(&sk->sk_callback_lock);
2595 			sk->sk_data_ready = ctx->saved_data_ready;
2596 			write_unlock_bh(&sk->sk_callback_lock);
2597 		}
2598 	}
2599 }
2600 
tls_sw_strparser_done(struct tls_context * tls_ctx)2601 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2602 {
2603 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2604 
2605 	tls_strp_done(&ctx->strp);
2606 }
2607 
tls_sw_free_ctx_rx(struct tls_context * tls_ctx)2608 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2609 {
2610 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2611 
2612 	kfree(ctx);
2613 }
2614 
tls_sw_free_resources_rx(struct sock * sk)2615 void tls_sw_free_resources_rx(struct sock *sk)
2616 {
2617 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2618 
2619 	tls_sw_release_resources_rx(sk);
2620 	tls_sw_free_ctx_rx(tls_ctx);
2621 }
2622 
2623 /* The work handler to transmitt the encrypted records in tx_list */
tx_work_handler(struct work_struct * work)2624 static void tx_work_handler(struct work_struct *work)
2625 {
2626 	struct delayed_work *delayed_work = to_delayed_work(work);
2627 	struct tx_work *tx_work = container_of(delayed_work,
2628 					       struct tx_work, work);
2629 	struct sock *sk = tx_work->sk;
2630 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2631 	struct tls_sw_context_tx *ctx;
2632 
2633 	if (unlikely(!tls_ctx))
2634 		return;
2635 
2636 	ctx = tls_sw_ctx_tx(tls_ctx);
2637 	if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2638 		return;
2639 
2640 	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2641 		return;
2642 
2643 	if (mutex_trylock(&tls_ctx->tx_lock)) {
2644 		lock_sock(sk);
2645 		tls_tx_records(sk, -1);
2646 		release_sock(sk);
2647 		mutex_unlock(&tls_ctx->tx_lock);
2648 	} else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2649 		/* Someone is holding the tx_lock, they will likely run Tx
2650 		 * and cancel the work on their way out of the lock section.
2651 		 * Schedule a long delay just in case.
2652 		 */
2653 		schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2654 	}
2655 }
2656 
tls_is_tx_ready(struct tls_sw_context_tx * ctx)2657 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2658 {
2659 	struct tls_rec *rec;
2660 
2661 	rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2662 	if (!rec)
2663 		return false;
2664 
2665 	return READ_ONCE(rec->tx_ready);
2666 }
2667 
tls_sw_write_space(struct sock * sk,struct tls_context * ctx)2668 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2669 {
2670 	struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2671 
2672 	/* Schedule the transmission if tx list is ready */
2673 	if (tls_is_tx_ready(tx_ctx) &&
2674 	    !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2675 		schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2676 }
2677 
tls_sw_strparser_arm(struct sock * sk,struct tls_context * tls_ctx)2678 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2679 {
2680 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2681 
2682 	write_lock_bh(&sk->sk_callback_lock);
2683 	rx_ctx->saved_data_ready = sk->sk_data_ready;
2684 	sk->sk_data_ready = tls_data_ready;
2685 	write_unlock_bh(&sk->sk_callback_lock);
2686 }
2687 
tls_update_rx_zc_capable(struct tls_context * tls_ctx)2688 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2689 {
2690 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2691 
2692 	rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2693 		tls_ctx->prot_info.version != TLS_1_3_VERSION;
2694 }
2695 
init_ctx_tx(struct tls_context * ctx,struct sock * sk)2696 static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk)
2697 {
2698 	struct tls_sw_context_tx *sw_ctx_tx;
2699 
2700 	if (!ctx->priv_ctx_tx) {
2701 		sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2702 		if (!sw_ctx_tx)
2703 			return NULL;
2704 	} else {
2705 		sw_ctx_tx = ctx->priv_ctx_tx;
2706 	}
2707 
2708 	crypto_init_wait(&sw_ctx_tx->async_wait);
2709 	atomic_set(&sw_ctx_tx->encrypt_pending, 1);
2710 	INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2711 	INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2712 	sw_ctx_tx->tx_work.sk = sk;
2713 
2714 	return sw_ctx_tx;
2715 }
2716 
init_ctx_rx(struct tls_context * ctx)2717 static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx)
2718 {
2719 	struct tls_sw_context_rx *sw_ctx_rx;
2720 
2721 	if (!ctx->priv_ctx_rx) {
2722 		sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2723 		if (!sw_ctx_rx)
2724 			return NULL;
2725 	} else {
2726 		sw_ctx_rx = ctx->priv_ctx_rx;
2727 	}
2728 
2729 	crypto_init_wait(&sw_ctx_rx->async_wait);
2730 	atomic_set(&sw_ctx_rx->decrypt_pending, 1);
2731 	init_waitqueue_head(&sw_ctx_rx->wq);
2732 	skb_queue_head_init(&sw_ctx_rx->rx_list);
2733 	skb_queue_head_init(&sw_ctx_rx->async_hold);
2734 
2735 	return sw_ctx_rx;
2736 }
2737 
init_prot_info(struct tls_prot_info * prot,const struct tls_crypto_info * crypto_info,const struct tls_cipher_desc * cipher_desc)2738 int init_prot_info(struct tls_prot_info *prot,
2739 		   const struct tls_crypto_info *crypto_info,
2740 		   const struct tls_cipher_desc *cipher_desc)
2741 {
2742 	u16 nonce_size = cipher_desc->nonce;
2743 
2744 	if (crypto_info->version == TLS_1_3_VERSION) {
2745 		nonce_size = 0;
2746 		prot->aad_size = TLS_HEADER_SIZE;
2747 		prot->tail_size = 1;
2748 	} else {
2749 		prot->aad_size = TLS_AAD_SPACE_SIZE;
2750 		prot->tail_size = 0;
2751 	}
2752 
2753 	/* Sanity-check the sizes for stack allocations. */
2754 	if (nonce_size > TLS_MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE)
2755 		return -EINVAL;
2756 
2757 	prot->version = crypto_info->version;
2758 	prot->cipher_type = crypto_info->cipher_type;
2759 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2760 	prot->tag_size = cipher_desc->tag;
2761 	prot->overhead_size = prot->prepend_size + prot->tag_size + prot->tail_size;
2762 	prot->iv_size = cipher_desc->iv;
2763 	prot->salt_size = cipher_desc->salt;
2764 	prot->rec_seq_size = cipher_desc->rec_seq;
2765 
2766 	return 0;
2767 }
2768 
tls_finish_key_update(struct sock * sk,struct tls_context * tls_ctx)2769 static void tls_finish_key_update(struct sock *sk, struct tls_context *tls_ctx)
2770 {
2771 	struct tls_sw_context_rx *ctx = tls_ctx->priv_ctx_rx;
2772 
2773 	WRITE_ONCE(ctx->key_update_pending, false);
2774 	/* wake-up pre-existing poll() */
2775 	ctx->saved_data_ready(sk);
2776 }
2777 
tls_set_sw_offload(struct sock * sk,int tx,struct tls_crypto_info * new_crypto_info)2778 int tls_set_sw_offload(struct sock *sk, int tx,
2779 		       struct tls_crypto_info *new_crypto_info)
2780 {
2781 	struct tls_crypto_info *crypto_info, *src_crypto_info;
2782 	struct tls_sw_context_tx *sw_ctx_tx = NULL;
2783 	struct tls_sw_context_rx *sw_ctx_rx = NULL;
2784 	const struct tls_cipher_desc *cipher_desc;
2785 	char *iv, *rec_seq, *key, *salt;
2786 	struct cipher_context *cctx;
2787 	struct tls_prot_info *prot;
2788 	struct crypto_aead **aead;
2789 	struct tls_context *ctx;
2790 	struct crypto_tfm *tfm;
2791 	int rc = 0;
2792 
2793 	ctx = tls_get_ctx(sk);
2794 	prot = &ctx->prot_info;
2795 
2796 	/* new_crypto_info != NULL means rekey */
2797 	if (!new_crypto_info) {
2798 		if (tx) {
2799 			ctx->priv_ctx_tx = init_ctx_tx(ctx, sk);
2800 			if (!ctx->priv_ctx_tx)
2801 				return -ENOMEM;
2802 		} else {
2803 			ctx->priv_ctx_rx = init_ctx_rx(ctx);
2804 			if (!ctx->priv_ctx_rx)
2805 				return -ENOMEM;
2806 		}
2807 	}
2808 
2809 	if (tx) {
2810 		sw_ctx_tx = ctx->priv_ctx_tx;
2811 		crypto_info = &ctx->crypto_send.info;
2812 		cctx = &ctx->tx;
2813 		aead = &sw_ctx_tx->aead_send;
2814 	} else {
2815 		sw_ctx_rx = ctx->priv_ctx_rx;
2816 		crypto_info = &ctx->crypto_recv.info;
2817 		cctx = &ctx->rx;
2818 		aead = &sw_ctx_rx->aead_recv;
2819 	}
2820 
2821 	src_crypto_info = new_crypto_info ?: crypto_info;
2822 
2823 	cipher_desc = get_cipher_desc(src_crypto_info->cipher_type);
2824 	if (!cipher_desc) {
2825 		rc = -EINVAL;
2826 		goto free_priv;
2827 	}
2828 
2829 	rc = init_prot_info(prot, src_crypto_info, cipher_desc);
2830 	if (rc)
2831 		goto free_priv;
2832 
2833 	iv = crypto_info_iv(src_crypto_info, cipher_desc);
2834 	key = crypto_info_key(src_crypto_info, cipher_desc);
2835 	salt = crypto_info_salt(src_crypto_info, cipher_desc);
2836 	rec_seq = crypto_info_rec_seq(src_crypto_info, cipher_desc);
2837 
2838 	if (!*aead) {
2839 		*aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0);
2840 		if (IS_ERR(*aead)) {
2841 			rc = PTR_ERR(*aead);
2842 			*aead = NULL;
2843 			goto free_priv;
2844 		}
2845 	}
2846 
2847 	ctx->push_pending_record = tls_sw_push_pending_record;
2848 
2849 	/* setkey is the last operation that could fail during a
2850 	 * rekey. if it succeeds, we can start modifying the
2851 	 * context.
2852 	 */
2853 	rc = crypto_aead_setkey(*aead, key, cipher_desc->key);
2854 	if (rc) {
2855 		if (new_crypto_info)
2856 			goto out;
2857 		else
2858 			goto free_aead;
2859 	}
2860 
2861 	if (!new_crypto_info) {
2862 		rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2863 		if (rc)
2864 			goto free_aead;
2865 	}
2866 
2867 	if (!tx && !new_crypto_info) {
2868 		tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2869 
2870 		tls_update_rx_zc_capable(ctx);
2871 		sw_ctx_rx->async_capable =
2872 			src_crypto_info->version != TLS_1_3_VERSION &&
2873 			!!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2874 
2875 		rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2876 		if (rc)
2877 			goto free_aead;
2878 	}
2879 
2880 	memcpy(cctx->iv, salt, cipher_desc->salt);
2881 	memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv);
2882 	memcpy(cctx->rec_seq, rec_seq, cipher_desc->rec_seq);
2883 
2884 	if (new_crypto_info) {
2885 		unsafe_memcpy(crypto_info, new_crypto_info,
2886 			      cipher_desc->crypto_info,
2887 			      /* size was checked in do_tls_setsockopt_conf */);
2888 		memzero_explicit(new_crypto_info, cipher_desc->crypto_info);
2889 		if (!tx)
2890 			tls_finish_key_update(sk, ctx);
2891 	}
2892 
2893 	goto out;
2894 
2895 free_aead:
2896 	crypto_free_aead(*aead);
2897 	*aead = NULL;
2898 free_priv:
2899 	if (!new_crypto_info) {
2900 		if (tx) {
2901 			kfree(ctx->priv_ctx_tx);
2902 			ctx->priv_ctx_tx = NULL;
2903 		} else {
2904 			kfree(ctx->priv_ctx_rx);
2905 			ctx->priv_ctx_rx = NULL;
2906 		}
2907 	}
2908 out:
2909 	return rc;
2910 }
2911