1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/power/swap.c 4 * 5 * This file provides functions for reading the suspend image from 6 * and writing it to a swap partition. 7 * 8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz> 9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com> 11 */ 12 13 #define pr_fmt(fmt) "PM: " fmt 14 15 #include <crypto/acompress.h> 16 #include <linux/module.h> 17 #include <linux/file.h> 18 #include <linux/delay.h> 19 #include <linux/bitops.h> 20 #include <linux/device.h> 21 #include <linux/bio.h> 22 #include <linux/blkdev.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/pm.h> 26 #include <linux/slab.h> 27 #include <linux/vmalloc.h> 28 #include <linux/cpumask.h> 29 #include <linux/atomic.h> 30 #include <linux/kthread.h> 31 #include <linux/crc32.h> 32 #include <linux/ktime.h> 33 34 #include "power.h" 35 36 #define HIBERNATE_SIG "S1SUSPEND" 37 38 u32 swsusp_hardware_signature; 39 40 /* 41 * When reading an {un,}compressed image, we may restore pages in place, 42 * in which case some architectures need these pages cleaning before they 43 * can be executed. We don't know which pages these may be, so clean the lot. 44 */ 45 static bool clean_pages_on_read; 46 static bool clean_pages_on_decompress; 47 48 /* 49 * The swap map is a data structure used for keeping track of each page 50 * written to a swap partition. It consists of many swap_map_page 51 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries. 52 * These structures are stored on the swap and linked together with the 53 * help of the .next_swap member. 54 * 55 * The swap map is created during suspend. The swap map pages are 56 * allocated and populated one at a time, so we only need one memory 57 * page to set up the entire structure. 58 * 59 * During resume we pick up all swap_map_page structures into a list. 60 */ 61 62 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1) 63 64 /* 65 * Number of free pages that are not high. 66 */ 67 static inline unsigned long low_free_pages(void) 68 { 69 return nr_free_pages() - nr_free_highpages(); 70 } 71 72 /* 73 * Number of pages required to be kept free while writing the image. Always 74 * half of all available low pages before the writing starts. 75 */ 76 static inline unsigned long reqd_free_pages(void) 77 { 78 return low_free_pages() / 2; 79 } 80 81 struct swap_map_page { 82 sector_t entries[MAP_PAGE_ENTRIES]; 83 sector_t next_swap; 84 }; 85 86 struct swap_map_page_list { 87 struct swap_map_page *map; 88 struct swap_map_page_list *next; 89 }; 90 91 /* 92 * The swap_map_handle structure is used for handling swap in 93 * a file-alike way 94 */ 95 96 struct swap_map_handle { 97 struct swap_map_page *cur; 98 struct swap_map_page_list *maps; 99 sector_t cur_swap; 100 sector_t first_sector; 101 unsigned int k; 102 unsigned long reqd_free_pages; 103 u32 crc32; 104 }; 105 106 struct swsusp_header { 107 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) - 108 sizeof(u32) - sizeof(u32)]; 109 u32 hw_sig; 110 u32 crc32; 111 sector_t image; 112 unsigned int flags; /* Flags to pass to the "boot" kernel */ 113 char orig_sig[10]; 114 char sig[10]; 115 } __packed; 116 117 static struct swsusp_header *swsusp_header; 118 119 /* 120 * The following functions are used for tracing the allocated 121 * swap pages, so that they can be freed in case of an error. 122 */ 123 124 struct swsusp_extent { 125 struct rb_node node; 126 unsigned long start; 127 unsigned long end; 128 }; 129 130 static struct rb_root swsusp_extents = RB_ROOT; 131 132 static int swsusp_extents_insert(unsigned long swap_offset) 133 { 134 struct rb_node **new = &(swsusp_extents.rb_node); 135 struct rb_node *parent = NULL; 136 struct swsusp_extent *ext; 137 138 /* Figure out where to put the new node */ 139 while (*new) { 140 ext = rb_entry(*new, struct swsusp_extent, node); 141 parent = *new; 142 if (swap_offset < ext->start) { 143 /* Try to merge */ 144 if (swap_offset == ext->start - 1) { 145 ext->start--; 146 return 0; 147 } 148 new = &((*new)->rb_left); 149 } else if (swap_offset > ext->end) { 150 /* Try to merge */ 151 if (swap_offset == ext->end + 1) { 152 ext->end++; 153 return 0; 154 } 155 new = &((*new)->rb_right); 156 } else { 157 /* It already is in the tree */ 158 return -EINVAL; 159 } 160 } 161 /* Add the new node and rebalance the tree. */ 162 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL); 163 if (!ext) 164 return -ENOMEM; 165 166 ext->start = swap_offset; 167 ext->end = swap_offset; 168 rb_link_node(&ext->node, parent, new); 169 rb_insert_color(&ext->node, &swsusp_extents); 170 return 0; 171 } 172 173 /* 174 * alloc_swapdev_block - allocate a swap page and register that it has 175 * been allocated, so that it can be freed in case of an error. 176 */ 177 178 sector_t alloc_swapdev_block(int swap) 179 { 180 unsigned long offset; 181 182 offset = swp_offset(get_swap_page_of_type(swap)); 183 if (offset) { 184 if (swsusp_extents_insert(offset)) 185 swap_free(swp_entry(swap, offset)); 186 else 187 return swapdev_block(swap, offset); 188 } 189 return 0; 190 } 191 192 /* 193 * free_all_swap_pages - free swap pages allocated for saving image data. 194 * It also frees the extents used to register which swap entries had been 195 * allocated. 196 */ 197 198 void free_all_swap_pages(int swap) 199 { 200 struct rb_node *node; 201 202 while ((node = swsusp_extents.rb_node)) { 203 struct swsusp_extent *ext; 204 205 ext = rb_entry(node, struct swsusp_extent, node); 206 rb_erase(node, &swsusp_extents); 207 swap_free_nr(swp_entry(swap, ext->start), 208 ext->end - ext->start + 1); 209 210 kfree(ext); 211 } 212 } 213 214 int swsusp_swap_in_use(void) 215 { 216 return (swsusp_extents.rb_node != NULL); 217 } 218 219 /* 220 * General things 221 */ 222 223 static unsigned short root_swap = 0xffff; 224 static struct file *hib_resume_bdev_file; 225 226 struct hib_bio_batch { 227 atomic_t count; 228 wait_queue_head_t wait; 229 blk_status_t error; 230 struct blk_plug plug; 231 }; 232 233 static void hib_init_batch(struct hib_bio_batch *hb) 234 { 235 atomic_set(&hb->count, 0); 236 init_waitqueue_head(&hb->wait); 237 hb->error = BLK_STS_OK; 238 blk_start_plug(&hb->plug); 239 } 240 241 static void hib_finish_batch(struct hib_bio_batch *hb) 242 { 243 blk_finish_plug(&hb->plug); 244 } 245 246 static void hib_end_io(struct bio *bio) 247 { 248 struct hib_bio_batch *hb = bio->bi_private; 249 struct page *page = bio_first_page_all(bio); 250 251 if (bio->bi_status) { 252 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n", 253 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), 254 (unsigned long long)bio->bi_iter.bi_sector); 255 } 256 257 if (bio_data_dir(bio) == WRITE) 258 put_page(page); 259 else if (clean_pages_on_read) 260 flush_icache_range((unsigned long)page_address(page), 261 (unsigned long)page_address(page) + PAGE_SIZE); 262 263 if (bio->bi_status && !hb->error) 264 hb->error = bio->bi_status; 265 if (atomic_dec_and_test(&hb->count)) 266 wake_up(&hb->wait); 267 268 bio_put(bio); 269 } 270 271 static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr, 272 struct hib_bio_batch *hb) 273 { 274 struct page *page = virt_to_page(addr); 275 struct bio *bio; 276 int error = 0; 277 278 bio = bio_alloc(file_bdev(hib_resume_bdev_file), 1, opf, 279 GFP_NOIO | __GFP_HIGH); 280 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9); 281 282 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 283 pr_err("Adding page to bio failed at %llu\n", 284 (unsigned long long)bio->bi_iter.bi_sector); 285 bio_put(bio); 286 return -EFAULT; 287 } 288 289 if (hb) { 290 bio->bi_end_io = hib_end_io; 291 bio->bi_private = hb; 292 atomic_inc(&hb->count); 293 submit_bio(bio); 294 } else { 295 error = submit_bio_wait(bio); 296 bio_put(bio); 297 } 298 299 return error; 300 } 301 302 static int hib_wait_io(struct hib_bio_batch *hb) 303 { 304 /* 305 * We are relying on the behavior of blk_plug that a thread with 306 * a plug will flush the plug list before sleeping. 307 */ 308 wait_event(hb->wait, atomic_read(&hb->count) == 0); 309 return blk_status_to_errno(hb->error); 310 } 311 312 /* 313 * Saving part 314 */ 315 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags) 316 { 317 int error; 318 319 hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL); 320 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) || 321 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) { 322 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10); 323 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10); 324 swsusp_header->image = handle->first_sector; 325 if (swsusp_hardware_signature) { 326 swsusp_header->hw_sig = swsusp_hardware_signature; 327 flags |= SF_HW_SIG; 328 } 329 swsusp_header->flags = flags; 330 if (flags & SF_CRC32_MODE) 331 swsusp_header->crc32 = handle->crc32; 332 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC, 333 swsusp_resume_block, swsusp_header, NULL); 334 } else { 335 pr_err("Swap header not found!\n"); 336 error = -ENODEV; 337 } 338 return error; 339 } 340 341 /* 342 * Hold the swsusp_header flag. This is used in software_resume() in 343 * 'kernel/power/hibernate' to check if the image is compressed and query 344 * for the compression algorithm support(if so). 345 */ 346 unsigned int swsusp_header_flags; 347 348 /** 349 * swsusp_swap_check - check if the resume device is a swap device 350 * and get its index (if so) 351 * 352 * This is called before saving image 353 */ 354 static int swsusp_swap_check(void) 355 { 356 int res; 357 358 if (swsusp_resume_device) 359 res = swap_type_of(swsusp_resume_device, swsusp_resume_block); 360 else 361 res = find_first_swap(&swsusp_resume_device); 362 if (res < 0) 363 return res; 364 root_swap = res; 365 366 hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device, 367 BLK_OPEN_WRITE, NULL, NULL); 368 if (IS_ERR(hib_resume_bdev_file)) 369 return PTR_ERR(hib_resume_bdev_file); 370 371 return 0; 372 } 373 374 /** 375 * write_page - Write one page to given swap location. 376 * @buf: Address we're writing. 377 * @offset: Offset of the swap page we're writing to. 378 * @hb: bio completion batch 379 */ 380 381 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb) 382 { 383 void *src; 384 int ret; 385 386 if (!offset) 387 return -ENOSPC; 388 389 if (hb) { 390 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN | 391 __GFP_NORETRY); 392 if (src) { 393 copy_page(src, buf); 394 } else { 395 ret = hib_wait_io(hb); /* Free pages */ 396 if (ret) 397 return ret; 398 src = (void *)__get_free_page(GFP_NOIO | 399 __GFP_NOWARN | 400 __GFP_NORETRY); 401 if (src) { 402 copy_page(src, buf); 403 } else { 404 WARN_ON_ONCE(1); 405 hb = NULL; /* Go synchronous */ 406 src = buf; 407 } 408 } 409 } else { 410 src = buf; 411 } 412 return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb); 413 } 414 415 static void release_swap_writer(struct swap_map_handle *handle) 416 { 417 if (handle->cur) 418 free_page((unsigned long)handle->cur); 419 handle->cur = NULL; 420 } 421 422 static int get_swap_writer(struct swap_map_handle *handle) 423 { 424 int ret; 425 426 ret = swsusp_swap_check(); 427 if (ret) { 428 if (ret != -ENOSPC) 429 pr_err("Cannot find swap device, try swapon -a\n"); 430 return ret; 431 } 432 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL); 433 if (!handle->cur) { 434 ret = -ENOMEM; 435 goto err_close; 436 } 437 handle->cur_swap = alloc_swapdev_block(root_swap); 438 if (!handle->cur_swap) { 439 ret = -ENOSPC; 440 goto err_rel; 441 } 442 handle->k = 0; 443 handle->reqd_free_pages = reqd_free_pages(); 444 handle->first_sector = handle->cur_swap; 445 return 0; 446 err_rel: 447 release_swap_writer(handle); 448 err_close: 449 swsusp_close(); 450 return ret; 451 } 452 453 static int swap_write_page(struct swap_map_handle *handle, void *buf, 454 struct hib_bio_batch *hb) 455 { 456 int error; 457 sector_t offset; 458 459 if (!handle->cur) 460 return -EINVAL; 461 offset = alloc_swapdev_block(root_swap); 462 error = write_page(buf, offset, hb); 463 if (error) 464 return error; 465 handle->cur->entries[handle->k++] = offset; 466 if (handle->k >= MAP_PAGE_ENTRIES) { 467 offset = alloc_swapdev_block(root_swap); 468 if (!offset) 469 return -ENOSPC; 470 handle->cur->next_swap = offset; 471 error = write_page(handle->cur, handle->cur_swap, hb); 472 if (error) 473 goto out; 474 clear_page(handle->cur); 475 handle->cur_swap = offset; 476 handle->k = 0; 477 478 if (hb && low_free_pages() <= handle->reqd_free_pages) { 479 error = hib_wait_io(hb); 480 if (error) 481 goto out; 482 /* 483 * Recalculate the number of required free pages, to 484 * make sure we never take more than half. 485 */ 486 handle->reqd_free_pages = reqd_free_pages(); 487 } 488 } 489 out: 490 return error; 491 } 492 493 static int flush_swap_writer(struct swap_map_handle *handle) 494 { 495 if (handle->cur && handle->cur_swap) 496 return write_page(handle->cur, handle->cur_swap, NULL); 497 else 498 return -EINVAL; 499 } 500 501 static int swap_writer_finish(struct swap_map_handle *handle, 502 unsigned int flags, int error) 503 { 504 if (!error) { 505 pr_info("S"); 506 error = mark_swapfiles(handle, flags); 507 pr_cont("|\n"); 508 flush_swap_writer(handle); 509 } 510 511 if (error) 512 free_all_swap_pages(root_swap); 513 release_swap_writer(handle); 514 swsusp_close(); 515 516 return error; 517 } 518 519 /* 520 * Bytes we need for compressed data in worst case. We assume(limitation) 521 * this is the worst of all the compression algorithms. 522 */ 523 #define bytes_worst_compress(x) ((x) + ((x) / 16) + 64 + 3 + 2) 524 525 /* We need to remember how much compressed data we need to read. */ 526 #define CMP_HEADER sizeof(size_t) 527 528 /* Number of pages/bytes we'll compress at one time. */ 529 #define UNC_PAGES 32 530 #define UNC_SIZE (UNC_PAGES * PAGE_SIZE) 531 532 /* Number of pages we need for compressed data (worst case). */ 533 #define CMP_PAGES DIV_ROUND_UP(bytes_worst_compress(UNC_SIZE) + \ 534 CMP_HEADER, PAGE_SIZE) 535 #define CMP_SIZE (CMP_PAGES * PAGE_SIZE) 536 537 /* Maximum number of threads for compression/decompression. */ 538 #define CMP_THREADS 3 539 540 /* Minimum/maximum number of pages for read buffering. */ 541 #define CMP_MIN_RD_PAGES 1024 542 #define CMP_MAX_RD_PAGES 8192 543 544 /** 545 * save_image - save the suspend image data 546 */ 547 548 static int save_image(struct swap_map_handle *handle, 549 struct snapshot_handle *snapshot, 550 unsigned int nr_to_write) 551 { 552 unsigned int m; 553 int ret; 554 int nr_pages; 555 int err2; 556 struct hib_bio_batch hb; 557 ktime_t start; 558 ktime_t stop; 559 560 hib_init_batch(&hb); 561 562 pr_info("Saving image data pages (%u pages)...\n", 563 nr_to_write); 564 m = nr_to_write / 10; 565 if (!m) 566 m = 1; 567 nr_pages = 0; 568 start = ktime_get(); 569 while (1) { 570 ret = snapshot_read_next(snapshot); 571 if (ret <= 0) 572 break; 573 ret = swap_write_page(handle, data_of(*snapshot), &hb); 574 if (ret) 575 break; 576 if (!(nr_pages % m)) 577 pr_info("Image saving progress: %3d%%\n", 578 nr_pages / m * 10); 579 nr_pages++; 580 } 581 err2 = hib_wait_io(&hb); 582 hib_finish_batch(&hb); 583 stop = ktime_get(); 584 if (!ret) 585 ret = err2; 586 if (!ret) 587 pr_info("Image saving done\n"); 588 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 589 return ret; 590 } 591 592 /* 593 * Structure used for CRC32. 594 */ 595 struct crc_data { 596 struct task_struct *thr; /* thread */ 597 atomic_t ready; /* ready to start flag */ 598 atomic_t stop; /* ready to stop flag */ 599 unsigned run_threads; /* nr current threads */ 600 wait_queue_head_t go; /* start crc update */ 601 wait_queue_head_t done; /* crc update done */ 602 u32 *crc32; /* points to handle's crc32 */ 603 size_t *unc_len[CMP_THREADS]; /* uncompressed lengths */ 604 unsigned char *unc[CMP_THREADS]; /* uncompressed data */ 605 }; 606 607 /* 608 * CRC32 update function that runs in its own thread. 609 */ 610 static int crc32_threadfn(void *data) 611 { 612 struct crc_data *d = data; 613 unsigned i; 614 615 while (1) { 616 wait_event(d->go, atomic_read_acquire(&d->ready) || 617 kthread_should_stop()); 618 if (kthread_should_stop()) { 619 d->thr = NULL; 620 atomic_set_release(&d->stop, 1); 621 wake_up(&d->done); 622 break; 623 } 624 atomic_set(&d->ready, 0); 625 626 for (i = 0; i < d->run_threads; i++) 627 *d->crc32 = crc32_le(*d->crc32, 628 d->unc[i], *d->unc_len[i]); 629 atomic_set_release(&d->stop, 1); 630 wake_up(&d->done); 631 } 632 return 0; 633 } 634 /* 635 * Structure used for data compression. 636 */ 637 struct cmp_data { 638 struct task_struct *thr; /* thread */ 639 struct crypto_acomp *cc; /* crypto compressor */ 640 struct acomp_req *cr; /* crypto request */ 641 atomic_t ready; /* ready to start flag */ 642 atomic_t stop; /* ready to stop flag */ 643 int ret; /* return code */ 644 wait_queue_head_t go; /* start compression */ 645 wait_queue_head_t done; /* compression done */ 646 size_t unc_len; /* uncompressed length */ 647 size_t cmp_len; /* compressed length */ 648 unsigned char unc[UNC_SIZE]; /* uncompressed buffer */ 649 unsigned char cmp[CMP_SIZE]; /* compressed buffer */ 650 }; 651 652 /* Indicates the image size after compression */ 653 static atomic_t compressed_size = ATOMIC_INIT(0); 654 655 /* 656 * Compression function that runs in its own thread. 657 */ 658 static int compress_threadfn(void *data) 659 { 660 struct cmp_data *d = data; 661 662 while (1) { 663 wait_event(d->go, atomic_read_acquire(&d->ready) || 664 kthread_should_stop()); 665 if (kthread_should_stop()) { 666 d->thr = NULL; 667 d->ret = -1; 668 atomic_set_release(&d->stop, 1); 669 wake_up(&d->done); 670 break; 671 } 672 atomic_set(&d->ready, 0); 673 674 acomp_request_set_callback(d->cr, CRYPTO_TFM_REQ_MAY_SLEEP, 675 NULL, NULL); 676 acomp_request_set_src_nondma(d->cr, d->unc, d->unc_len); 677 acomp_request_set_dst_nondma(d->cr, d->cmp + CMP_HEADER, 678 CMP_SIZE - CMP_HEADER); 679 d->ret = crypto_acomp_compress(d->cr); 680 d->cmp_len = d->cr->dlen; 681 682 atomic_set(&compressed_size, atomic_read(&compressed_size) + d->cmp_len); 683 atomic_set_release(&d->stop, 1); 684 wake_up(&d->done); 685 } 686 return 0; 687 } 688 689 /** 690 * save_compressed_image - Save the suspend image data after compression. 691 * @handle: Swap map handle to use for saving the image. 692 * @snapshot: Image to read data from. 693 * @nr_to_write: Number of pages to save. 694 */ 695 static int save_compressed_image(struct swap_map_handle *handle, 696 struct snapshot_handle *snapshot, 697 unsigned int nr_to_write) 698 { 699 unsigned int m; 700 int ret = 0; 701 int nr_pages; 702 int err2; 703 struct hib_bio_batch hb; 704 ktime_t start; 705 ktime_t stop; 706 size_t off; 707 unsigned thr, run_threads, nr_threads; 708 unsigned char *page = NULL; 709 struct cmp_data *data = NULL; 710 struct crc_data *crc = NULL; 711 712 hib_init_batch(&hb); 713 714 atomic_set(&compressed_size, 0); 715 716 /* 717 * We'll limit the number of threads for compression to limit memory 718 * footprint. 719 */ 720 nr_threads = num_online_cpus() - 1; 721 nr_threads = clamp_val(nr_threads, 1, CMP_THREADS); 722 723 page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH); 724 if (!page) { 725 pr_err("Failed to allocate %s page\n", hib_comp_algo); 726 ret = -ENOMEM; 727 goto out_clean; 728 } 729 730 data = vzalloc(array_size(nr_threads, sizeof(*data))); 731 if (!data) { 732 pr_err("Failed to allocate %s data\n", hib_comp_algo); 733 ret = -ENOMEM; 734 goto out_clean; 735 } 736 737 crc = kzalloc(sizeof(*crc), GFP_KERNEL); 738 if (!crc) { 739 pr_err("Failed to allocate crc\n"); 740 ret = -ENOMEM; 741 goto out_clean; 742 } 743 744 /* 745 * Start the compression threads. 746 */ 747 for (thr = 0; thr < nr_threads; thr++) { 748 init_waitqueue_head(&data[thr].go); 749 init_waitqueue_head(&data[thr].done); 750 751 data[thr].cc = crypto_alloc_acomp(hib_comp_algo, 0, CRYPTO_ALG_ASYNC); 752 if (IS_ERR_OR_NULL(data[thr].cc)) { 753 pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc)); 754 ret = -EFAULT; 755 goto out_clean; 756 } 757 758 data[thr].cr = acomp_request_alloc(data[thr].cc); 759 if (!data[thr].cr) { 760 pr_err("Could not allocate comp request\n"); 761 ret = -ENOMEM; 762 goto out_clean; 763 } 764 765 data[thr].thr = kthread_run(compress_threadfn, 766 &data[thr], 767 "image_compress/%u", thr); 768 if (IS_ERR(data[thr].thr)) { 769 data[thr].thr = NULL; 770 pr_err("Cannot start compression threads\n"); 771 ret = -ENOMEM; 772 goto out_clean; 773 } 774 } 775 776 /* 777 * Start the CRC32 thread. 778 */ 779 init_waitqueue_head(&crc->go); 780 init_waitqueue_head(&crc->done); 781 782 handle->crc32 = 0; 783 crc->crc32 = &handle->crc32; 784 for (thr = 0; thr < nr_threads; thr++) { 785 crc->unc[thr] = data[thr].unc; 786 crc->unc_len[thr] = &data[thr].unc_len; 787 } 788 789 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 790 if (IS_ERR(crc->thr)) { 791 crc->thr = NULL; 792 pr_err("Cannot start CRC32 thread\n"); 793 ret = -ENOMEM; 794 goto out_clean; 795 } 796 797 /* 798 * Adjust the number of required free pages after all allocations have 799 * been done. We don't want to run out of pages when writing. 800 */ 801 handle->reqd_free_pages = reqd_free_pages(); 802 803 pr_info("Using %u thread(s) for %s compression\n", nr_threads, hib_comp_algo); 804 pr_info("Compressing and saving image data (%u pages)...\n", 805 nr_to_write); 806 m = nr_to_write / 10; 807 if (!m) 808 m = 1; 809 nr_pages = 0; 810 start = ktime_get(); 811 for (;;) { 812 for (thr = 0; thr < nr_threads; thr++) { 813 for (off = 0; off < UNC_SIZE; off += PAGE_SIZE) { 814 ret = snapshot_read_next(snapshot); 815 if (ret < 0) 816 goto out_finish; 817 818 if (!ret) 819 break; 820 821 memcpy(data[thr].unc + off, 822 data_of(*snapshot), PAGE_SIZE); 823 824 if (!(nr_pages % m)) 825 pr_info("Image saving progress: %3d%%\n", 826 nr_pages / m * 10); 827 nr_pages++; 828 } 829 if (!off) 830 break; 831 832 data[thr].unc_len = off; 833 834 atomic_set_release(&data[thr].ready, 1); 835 wake_up(&data[thr].go); 836 } 837 838 if (!thr) 839 break; 840 841 crc->run_threads = thr; 842 atomic_set_release(&crc->ready, 1); 843 wake_up(&crc->go); 844 845 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 846 wait_event(data[thr].done, 847 atomic_read_acquire(&data[thr].stop)); 848 atomic_set(&data[thr].stop, 0); 849 850 ret = data[thr].ret; 851 852 if (ret < 0) { 853 pr_err("%s compression failed\n", hib_comp_algo); 854 goto out_finish; 855 } 856 857 if (unlikely(!data[thr].cmp_len || 858 data[thr].cmp_len > 859 bytes_worst_compress(data[thr].unc_len))) { 860 pr_err("Invalid %s compressed length\n", hib_comp_algo); 861 ret = -1; 862 goto out_finish; 863 } 864 865 *(size_t *)data[thr].cmp = data[thr].cmp_len; 866 867 /* 868 * Given we are writing one page at a time to disk, we 869 * copy that much from the buffer, although the last 870 * bit will likely be smaller than full page. This is 871 * OK - we saved the length of the compressed data, so 872 * any garbage at the end will be discarded when we 873 * read it. 874 */ 875 for (off = 0; 876 off < CMP_HEADER + data[thr].cmp_len; 877 off += PAGE_SIZE) { 878 memcpy(page, data[thr].cmp + off, PAGE_SIZE); 879 880 ret = swap_write_page(handle, page, &hb); 881 if (ret) 882 goto out_finish; 883 } 884 } 885 886 wait_event(crc->done, atomic_read_acquire(&crc->stop)); 887 atomic_set(&crc->stop, 0); 888 } 889 890 out_finish: 891 err2 = hib_wait_io(&hb); 892 stop = ktime_get(); 893 if (!ret) 894 ret = err2; 895 if (!ret) 896 pr_info("Image saving done\n"); 897 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 898 pr_info("Image size after compression: %d kbytes\n", 899 (atomic_read(&compressed_size) / 1024)); 900 901 out_clean: 902 hib_finish_batch(&hb); 903 if (crc) { 904 if (crc->thr) 905 kthread_stop(crc->thr); 906 kfree(crc); 907 } 908 if (data) { 909 for (thr = 0; thr < nr_threads; thr++) { 910 if (data[thr].thr) 911 kthread_stop(data[thr].thr); 912 acomp_request_free(data[thr].cr); 913 crypto_free_acomp(data[thr].cc); 914 } 915 vfree(data); 916 } 917 if (page) free_page((unsigned long)page); 918 919 return ret; 920 } 921 922 /** 923 * enough_swap - Make sure we have enough swap to save the image. 924 * 925 * Returns TRUE or FALSE after checking the total amount of swap 926 * space available from the resume partition. 927 */ 928 929 static int enough_swap(unsigned int nr_pages) 930 { 931 unsigned int free_swap = count_swap_pages(root_swap, 1); 932 unsigned int required; 933 934 pr_debug("Free swap pages: %u\n", free_swap); 935 936 required = PAGES_FOR_IO + nr_pages; 937 return free_swap > required; 938 } 939 940 /** 941 * swsusp_write - Write entire image and metadata. 942 * @flags: flags to pass to the "boot" kernel in the image header 943 * 944 * It is important _NOT_ to umount filesystems at this point. We want 945 * them synced (in case something goes wrong) but we DO not want to mark 946 * filesystem clean: it is not. (And it does not matter, if we resume 947 * correctly, we'll mark system clean, anyway.) 948 */ 949 950 int swsusp_write(unsigned int flags) 951 { 952 struct swap_map_handle handle; 953 struct snapshot_handle snapshot; 954 struct swsusp_info *header; 955 unsigned long pages; 956 int error; 957 958 pages = snapshot_get_image_size(); 959 error = get_swap_writer(&handle); 960 if (error) { 961 pr_err("Cannot get swap writer\n"); 962 return error; 963 } 964 if (flags & SF_NOCOMPRESS_MODE) { 965 if (!enough_swap(pages)) { 966 pr_err("Not enough free swap\n"); 967 error = -ENOSPC; 968 goto out_finish; 969 } 970 } 971 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 972 error = snapshot_read_next(&snapshot); 973 if (error < (int)PAGE_SIZE) { 974 if (error >= 0) 975 error = -EFAULT; 976 977 goto out_finish; 978 } 979 header = (struct swsusp_info *)data_of(snapshot); 980 error = swap_write_page(&handle, header, NULL); 981 if (!error) { 982 error = (flags & SF_NOCOMPRESS_MODE) ? 983 save_image(&handle, &snapshot, pages - 1) : 984 save_compressed_image(&handle, &snapshot, pages - 1); 985 } 986 out_finish: 987 error = swap_writer_finish(&handle, flags, error); 988 return error; 989 } 990 991 /* 992 * The following functions allow us to read data using a swap map 993 * in a file-like way. 994 */ 995 996 static void release_swap_reader(struct swap_map_handle *handle) 997 { 998 struct swap_map_page_list *tmp; 999 1000 while (handle->maps) { 1001 if (handle->maps->map) 1002 free_page((unsigned long)handle->maps->map); 1003 tmp = handle->maps; 1004 handle->maps = handle->maps->next; 1005 kfree(tmp); 1006 } 1007 handle->cur = NULL; 1008 } 1009 1010 static int get_swap_reader(struct swap_map_handle *handle, 1011 unsigned int *flags_p) 1012 { 1013 int error; 1014 struct swap_map_page_list *tmp, *last; 1015 sector_t offset; 1016 1017 *flags_p = swsusp_header->flags; 1018 1019 if (!swsusp_header->image) /* how can this happen? */ 1020 return -EINVAL; 1021 1022 handle->cur = NULL; 1023 last = handle->maps = NULL; 1024 offset = swsusp_header->image; 1025 while (offset) { 1026 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL); 1027 if (!tmp) { 1028 release_swap_reader(handle); 1029 return -ENOMEM; 1030 } 1031 if (!handle->maps) 1032 handle->maps = tmp; 1033 if (last) 1034 last->next = tmp; 1035 last = tmp; 1036 1037 tmp->map = (struct swap_map_page *) 1038 __get_free_page(GFP_NOIO | __GFP_HIGH); 1039 if (!tmp->map) { 1040 release_swap_reader(handle); 1041 return -ENOMEM; 1042 } 1043 1044 error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL); 1045 if (error) { 1046 release_swap_reader(handle); 1047 return error; 1048 } 1049 offset = tmp->map->next_swap; 1050 } 1051 handle->k = 0; 1052 handle->cur = handle->maps->map; 1053 return 0; 1054 } 1055 1056 static int swap_read_page(struct swap_map_handle *handle, void *buf, 1057 struct hib_bio_batch *hb) 1058 { 1059 sector_t offset; 1060 int error; 1061 struct swap_map_page_list *tmp; 1062 1063 if (!handle->cur) 1064 return -EINVAL; 1065 offset = handle->cur->entries[handle->k]; 1066 if (!offset) 1067 return -EFAULT; 1068 error = hib_submit_io(REQ_OP_READ, offset, buf, hb); 1069 if (error) 1070 return error; 1071 if (++handle->k >= MAP_PAGE_ENTRIES) { 1072 handle->k = 0; 1073 free_page((unsigned long)handle->maps->map); 1074 tmp = handle->maps; 1075 handle->maps = handle->maps->next; 1076 kfree(tmp); 1077 if (!handle->maps) 1078 release_swap_reader(handle); 1079 else 1080 handle->cur = handle->maps->map; 1081 } 1082 return error; 1083 } 1084 1085 static int swap_reader_finish(struct swap_map_handle *handle) 1086 { 1087 release_swap_reader(handle); 1088 1089 return 0; 1090 } 1091 1092 /** 1093 * load_image - load the image using the swap map handle 1094 * @handle and the snapshot handle @snapshot 1095 * (assume there are @nr_pages pages to load) 1096 */ 1097 1098 static int load_image(struct swap_map_handle *handle, 1099 struct snapshot_handle *snapshot, 1100 unsigned int nr_to_read) 1101 { 1102 unsigned int m; 1103 int ret = 0; 1104 ktime_t start; 1105 ktime_t stop; 1106 struct hib_bio_batch hb; 1107 int err2; 1108 unsigned nr_pages; 1109 1110 hib_init_batch(&hb); 1111 1112 clean_pages_on_read = true; 1113 pr_info("Loading image data pages (%u pages)...\n", nr_to_read); 1114 m = nr_to_read / 10; 1115 if (!m) 1116 m = 1; 1117 nr_pages = 0; 1118 start = ktime_get(); 1119 for ( ; ; ) { 1120 ret = snapshot_write_next(snapshot); 1121 if (ret <= 0) 1122 break; 1123 ret = swap_read_page(handle, data_of(*snapshot), &hb); 1124 if (ret) 1125 break; 1126 if (snapshot->sync_read) 1127 ret = hib_wait_io(&hb); 1128 if (ret) 1129 break; 1130 if (!(nr_pages % m)) 1131 pr_info("Image loading progress: %3d%%\n", 1132 nr_pages / m * 10); 1133 nr_pages++; 1134 } 1135 err2 = hib_wait_io(&hb); 1136 hib_finish_batch(&hb); 1137 stop = ktime_get(); 1138 if (!ret) 1139 ret = err2; 1140 if (!ret) { 1141 pr_info("Image loading done\n"); 1142 ret = snapshot_write_finalize(snapshot); 1143 if (!ret && !snapshot_image_loaded(snapshot)) 1144 ret = -ENODATA; 1145 } 1146 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1147 return ret; 1148 } 1149 1150 /* 1151 * Structure used for data decompression. 1152 */ 1153 struct dec_data { 1154 struct task_struct *thr; /* thread */ 1155 struct crypto_acomp *cc; /* crypto compressor */ 1156 struct acomp_req *cr; /* crypto request */ 1157 atomic_t ready; /* ready to start flag */ 1158 atomic_t stop; /* ready to stop flag */ 1159 int ret; /* return code */ 1160 wait_queue_head_t go; /* start decompression */ 1161 wait_queue_head_t done; /* decompression done */ 1162 size_t unc_len; /* uncompressed length */ 1163 size_t cmp_len; /* compressed length */ 1164 unsigned char unc[UNC_SIZE]; /* uncompressed buffer */ 1165 unsigned char cmp[CMP_SIZE]; /* compressed buffer */ 1166 }; 1167 1168 /* 1169 * Decompression function that runs in its own thread. 1170 */ 1171 static int decompress_threadfn(void *data) 1172 { 1173 struct dec_data *d = data; 1174 1175 while (1) { 1176 wait_event(d->go, atomic_read_acquire(&d->ready) || 1177 kthread_should_stop()); 1178 if (kthread_should_stop()) { 1179 d->thr = NULL; 1180 d->ret = -1; 1181 atomic_set_release(&d->stop, 1); 1182 wake_up(&d->done); 1183 break; 1184 } 1185 atomic_set(&d->ready, 0); 1186 1187 acomp_request_set_callback(d->cr, CRYPTO_TFM_REQ_MAY_SLEEP, 1188 NULL, NULL); 1189 acomp_request_set_src_nondma(d->cr, d->cmp + CMP_HEADER, 1190 d->cmp_len); 1191 acomp_request_set_dst_nondma(d->cr, d->unc, UNC_SIZE); 1192 d->ret = crypto_acomp_decompress(d->cr); 1193 d->unc_len = d->cr->dlen; 1194 1195 if (clean_pages_on_decompress) 1196 flush_icache_range((unsigned long)d->unc, 1197 (unsigned long)d->unc + d->unc_len); 1198 1199 atomic_set_release(&d->stop, 1); 1200 wake_up(&d->done); 1201 } 1202 return 0; 1203 } 1204 1205 /** 1206 * load_compressed_image - Load compressed image data and decompress it. 1207 * @handle: Swap map handle to use for loading data. 1208 * @snapshot: Image to copy uncompressed data into. 1209 * @nr_to_read: Number of pages to load. 1210 */ 1211 static int load_compressed_image(struct swap_map_handle *handle, 1212 struct snapshot_handle *snapshot, 1213 unsigned int nr_to_read) 1214 { 1215 unsigned int m; 1216 int ret = 0; 1217 int eof = 0; 1218 struct hib_bio_batch hb; 1219 ktime_t start; 1220 ktime_t stop; 1221 unsigned nr_pages; 1222 size_t off; 1223 unsigned i, thr, run_threads, nr_threads; 1224 unsigned ring = 0, pg = 0, ring_size = 0, 1225 have = 0, want, need, asked = 0; 1226 unsigned long read_pages = 0; 1227 unsigned char **page = NULL; 1228 struct dec_data *data = NULL; 1229 struct crc_data *crc = NULL; 1230 1231 hib_init_batch(&hb); 1232 1233 /* 1234 * We'll limit the number of threads for decompression to limit memory 1235 * footprint. 1236 */ 1237 nr_threads = num_online_cpus() - 1; 1238 nr_threads = clamp_val(nr_threads, 1, CMP_THREADS); 1239 1240 page = vmalloc(array_size(CMP_MAX_RD_PAGES, sizeof(*page))); 1241 if (!page) { 1242 pr_err("Failed to allocate %s page\n", hib_comp_algo); 1243 ret = -ENOMEM; 1244 goto out_clean; 1245 } 1246 1247 data = vzalloc(array_size(nr_threads, sizeof(*data))); 1248 if (!data) { 1249 pr_err("Failed to allocate %s data\n", hib_comp_algo); 1250 ret = -ENOMEM; 1251 goto out_clean; 1252 } 1253 1254 crc = kzalloc(sizeof(*crc), GFP_KERNEL); 1255 if (!crc) { 1256 pr_err("Failed to allocate crc\n"); 1257 ret = -ENOMEM; 1258 goto out_clean; 1259 } 1260 1261 clean_pages_on_decompress = true; 1262 1263 /* 1264 * Start the decompression threads. 1265 */ 1266 for (thr = 0; thr < nr_threads; thr++) { 1267 init_waitqueue_head(&data[thr].go); 1268 init_waitqueue_head(&data[thr].done); 1269 1270 data[thr].cc = crypto_alloc_acomp(hib_comp_algo, 0, CRYPTO_ALG_ASYNC); 1271 if (IS_ERR_OR_NULL(data[thr].cc)) { 1272 pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc)); 1273 ret = -EFAULT; 1274 goto out_clean; 1275 } 1276 1277 data[thr].cr = acomp_request_alloc(data[thr].cc); 1278 if (!data[thr].cr) { 1279 pr_err("Could not allocate comp request\n"); 1280 ret = -ENOMEM; 1281 goto out_clean; 1282 } 1283 1284 data[thr].thr = kthread_run(decompress_threadfn, 1285 &data[thr], 1286 "image_decompress/%u", thr); 1287 if (IS_ERR(data[thr].thr)) { 1288 data[thr].thr = NULL; 1289 pr_err("Cannot start decompression threads\n"); 1290 ret = -ENOMEM; 1291 goto out_clean; 1292 } 1293 } 1294 1295 /* 1296 * Start the CRC32 thread. 1297 */ 1298 init_waitqueue_head(&crc->go); 1299 init_waitqueue_head(&crc->done); 1300 1301 handle->crc32 = 0; 1302 crc->crc32 = &handle->crc32; 1303 for (thr = 0; thr < nr_threads; thr++) { 1304 crc->unc[thr] = data[thr].unc; 1305 crc->unc_len[thr] = &data[thr].unc_len; 1306 } 1307 1308 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 1309 if (IS_ERR(crc->thr)) { 1310 crc->thr = NULL; 1311 pr_err("Cannot start CRC32 thread\n"); 1312 ret = -ENOMEM; 1313 goto out_clean; 1314 } 1315 1316 /* 1317 * Set the number of pages for read buffering. 1318 * This is complete guesswork, because we'll only know the real 1319 * picture once prepare_image() is called, which is much later on 1320 * during the image load phase. We'll assume the worst case and 1321 * say that none of the image pages are from high memory. 1322 */ 1323 if (low_free_pages() > snapshot_get_image_size()) 1324 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2; 1325 read_pages = clamp_val(read_pages, CMP_MIN_RD_PAGES, CMP_MAX_RD_PAGES); 1326 1327 for (i = 0; i < read_pages; i++) { 1328 page[i] = (void *)__get_free_page(i < CMP_PAGES ? 1329 GFP_NOIO | __GFP_HIGH : 1330 GFP_NOIO | __GFP_NOWARN | 1331 __GFP_NORETRY); 1332 1333 if (!page[i]) { 1334 if (i < CMP_PAGES) { 1335 ring_size = i; 1336 pr_err("Failed to allocate %s pages\n", hib_comp_algo); 1337 ret = -ENOMEM; 1338 goto out_clean; 1339 } else { 1340 break; 1341 } 1342 } 1343 } 1344 want = ring_size = i; 1345 1346 pr_info("Using %u thread(s) for %s decompression\n", nr_threads, hib_comp_algo); 1347 pr_info("Loading and decompressing image data (%u pages)...\n", 1348 nr_to_read); 1349 m = nr_to_read / 10; 1350 if (!m) 1351 m = 1; 1352 nr_pages = 0; 1353 start = ktime_get(); 1354 1355 ret = snapshot_write_next(snapshot); 1356 if (ret <= 0) 1357 goto out_finish; 1358 1359 for(;;) { 1360 for (i = 0; !eof && i < want; i++) { 1361 ret = swap_read_page(handle, page[ring], &hb); 1362 if (ret) { 1363 /* 1364 * On real read error, finish. On end of data, 1365 * set EOF flag and just exit the read loop. 1366 */ 1367 if (handle->cur && 1368 handle->cur->entries[handle->k]) { 1369 goto out_finish; 1370 } else { 1371 eof = 1; 1372 break; 1373 } 1374 } 1375 if (++ring >= ring_size) 1376 ring = 0; 1377 } 1378 asked += i; 1379 want -= i; 1380 1381 /* 1382 * We are out of data, wait for some more. 1383 */ 1384 if (!have) { 1385 if (!asked) 1386 break; 1387 1388 ret = hib_wait_io(&hb); 1389 if (ret) 1390 goto out_finish; 1391 have += asked; 1392 asked = 0; 1393 if (eof) 1394 eof = 2; 1395 } 1396 1397 if (crc->run_threads) { 1398 wait_event(crc->done, atomic_read_acquire(&crc->stop)); 1399 atomic_set(&crc->stop, 0); 1400 crc->run_threads = 0; 1401 } 1402 1403 for (thr = 0; have && thr < nr_threads; thr++) { 1404 data[thr].cmp_len = *(size_t *)page[pg]; 1405 if (unlikely(!data[thr].cmp_len || 1406 data[thr].cmp_len > 1407 bytes_worst_compress(UNC_SIZE))) { 1408 pr_err("Invalid %s compressed length\n", hib_comp_algo); 1409 ret = -1; 1410 goto out_finish; 1411 } 1412 1413 need = DIV_ROUND_UP(data[thr].cmp_len + CMP_HEADER, 1414 PAGE_SIZE); 1415 if (need > have) { 1416 if (eof > 1) { 1417 ret = -1; 1418 goto out_finish; 1419 } 1420 break; 1421 } 1422 1423 for (off = 0; 1424 off < CMP_HEADER + data[thr].cmp_len; 1425 off += PAGE_SIZE) { 1426 memcpy(data[thr].cmp + off, 1427 page[pg], PAGE_SIZE); 1428 have--; 1429 want++; 1430 if (++pg >= ring_size) 1431 pg = 0; 1432 } 1433 1434 atomic_set_release(&data[thr].ready, 1); 1435 wake_up(&data[thr].go); 1436 } 1437 1438 /* 1439 * Wait for more data while we are decompressing. 1440 */ 1441 if (have < CMP_PAGES && asked) { 1442 ret = hib_wait_io(&hb); 1443 if (ret) 1444 goto out_finish; 1445 have += asked; 1446 asked = 0; 1447 if (eof) 1448 eof = 2; 1449 } 1450 1451 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 1452 wait_event(data[thr].done, 1453 atomic_read_acquire(&data[thr].stop)); 1454 atomic_set(&data[thr].stop, 0); 1455 1456 ret = data[thr].ret; 1457 1458 if (ret < 0) { 1459 pr_err("%s decompression failed\n", hib_comp_algo); 1460 goto out_finish; 1461 } 1462 1463 if (unlikely(!data[thr].unc_len || 1464 data[thr].unc_len > UNC_SIZE || 1465 data[thr].unc_len & (PAGE_SIZE - 1))) { 1466 pr_err("Invalid %s uncompressed length\n", hib_comp_algo); 1467 ret = -1; 1468 goto out_finish; 1469 } 1470 1471 for (off = 0; 1472 off < data[thr].unc_len; off += PAGE_SIZE) { 1473 memcpy(data_of(*snapshot), 1474 data[thr].unc + off, PAGE_SIZE); 1475 1476 if (!(nr_pages % m)) 1477 pr_info("Image loading progress: %3d%%\n", 1478 nr_pages / m * 10); 1479 nr_pages++; 1480 1481 ret = snapshot_write_next(snapshot); 1482 if (ret <= 0) { 1483 crc->run_threads = thr + 1; 1484 atomic_set_release(&crc->ready, 1); 1485 wake_up(&crc->go); 1486 goto out_finish; 1487 } 1488 } 1489 } 1490 1491 crc->run_threads = thr; 1492 atomic_set_release(&crc->ready, 1); 1493 wake_up(&crc->go); 1494 } 1495 1496 out_finish: 1497 if (crc->run_threads) { 1498 wait_event(crc->done, atomic_read_acquire(&crc->stop)); 1499 atomic_set(&crc->stop, 0); 1500 } 1501 stop = ktime_get(); 1502 if (!ret) { 1503 pr_info("Image loading done\n"); 1504 ret = snapshot_write_finalize(snapshot); 1505 if (!ret && !snapshot_image_loaded(snapshot)) 1506 ret = -ENODATA; 1507 if (!ret) { 1508 if (swsusp_header->flags & SF_CRC32_MODE) { 1509 if(handle->crc32 != swsusp_header->crc32) { 1510 pr_err("Invalid image CRC32!\n"); 1511 ret = -ENODATA; 1512 } 1513 } 1514 } 1515 } 1516 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1517 out_clean: 1518 hib_finish_batch(&hb); 1519 for (i = 0; i < ring_size; i++) 1520 free_page((unsigned long)page[i]); 1521 if (crc) { 1522 if (crc->thr) 1523 kthread_stop(crc->thr); 1524 kfree(crc); 1525 } 1526 if (data) { 1527 for (thr = 0; thr < nr_threads; thr++) { 1528 if (data[thr].thr) 1529 kthread_stop(data[thr].thr); 1530 acomp_request_free(data[thr].cr); 1531 crypto_free_acomp(data[thr].cc); 1532 } 1533 vfree(data); 1534 } 1535 vfree(page); 1536 1537 return ret; 1538 } 1539 1540 /** 1541 * swsusp_read - read the hibernation image. 1542 * @flags_p: flags passed by the "frozen" kernel in the image header should 1543 * be written into this memory location 1544 */ 1545 1546 int swsusp_read(unsigned int *flags_p) 1547 { 1548 int error; 1549 struct swap_map_handle handle; 1550 struct snapshot_handle snapshot; 1551 struct swsusp_info *header; 1552 1553 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 1554 error = snapshot_write_next(&snapshot); 1555 if (error < (int)PAGE_SIZE) 1556 return error < 0 ? error : -EFAULT; 1557 header = (struct swsusp_info *)data_of(snapshot); 1558 error = get_swap_reader(&handle, flags_p); 1559 if (error) 1560 goto end; 1561 if (!error) 1562 error = swap_read_page(&handle, header, NULL); 1563 if (!error) { 1564 error = (*flags_p & SF_NOCOMPRESS_MODE) ? 1565 load_image(&handle, &snapshot, header->pages - 1) : 1566 load_compressed_image(&handle, &snapshot, header->pages - 1); 1567 } 1568 swap_reader_finish(&handle); 1569 end: 1570 if (!error) 1571 pr_debug("Image successfully loaded\n"); 1572 else 1573 pr_debug("Error %d resuming\n", error); 1574 return error; 1575 } 1576 1577 static void *swsusp_holder; 1578 1579 /** 1580 * swsusp_check - Open the resume device and check for the swsusp signature. 1581 * @exclusive: Open the resume device exclusively. 1582 */ 1583 1584 int swsusp_check(bool exclusive) 1585 { 1586 void *holder = exclusive ? &swsusp_holder : NULL; 1587 int error; 1588 1589 hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device, 1590 BLK_OPEN_READ, holder, NULL); 1591 if (!IS_ERR(hib_resume_bdev_file)) { 1592 clear_page(swsusp_header); 1593 error = hib_submit_io(REQ_OP_READ, swsusp_resume_block, 1594 swsusp_header, NULL); 1595 if (error) 1596 goto put; 1597 1598 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) { 1599 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10); 1600 swsusp_header_flags = swsusp_header->flags; 1601 /* Reset swap signature now */ 1602 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC, 1603 swsusp_resume_block, 1604 swsusp_header, NULL); 1605 } else { 1606 error = -EINVAL; 1607 } 1608 if (!error && swsusp_header->flags & SF_HW_SIG && 1609 swsusp_header->hw_sig != swsusp_hardware_signature) { 1610 pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n", 1611 swsusp_header->hw_sig, swsusp_hardware_signature); 1612 error = -EINVAL; 1613 } 1614 1615 put: 1616 if (error) 1617 bdev_fput(hib_resume_bdev_file); 1618 else 1619 pr_debug("Image signature found, resuming\n"); 1620 } else { 1621 error = PTR_ERR(hib_resume_bdev_file); 1622 } 1623 1624 if (error) 1625 pr_debug("Image not found (code %d)\n", error); 1626 1627 return error; 1628 } 1629 1630 /** 1631 * swsusp_close - close resume device. 1632 */ 1633 1634 void swsusp_close(void) 1635 { 1636 if (IS_ERR(hib_resume_bdev_file)) { 1637 pr_debug("Image device not initialised\n"); 1638 return; 1639 } 1640 1641 fput(hib_resume_bdev_file); 1642 } 1643 1644 /** 1645 * swsusp_unmark - Unmark swsusp signature in the resume device 1646 */ 1647 1648 #ifdef CONFIG_SUSPEND 1649 int swsusp_unmark(void) 1650 { 1651 int error; 1652 1653 hib_submit_io(REQ_OP_READ, swsusp_resume_block, 1654 swsusp_header, NULL); 1655 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) { 1656 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10); 1657 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC, 1658 swsusp_resume_block, 1659 swsusp_header, NULL); 1660 } else { 1661 pr_err("Cannot find swsusp signature!\n"); 1662 error = -ENODEV; 1663 } 1664 1665 /* 1666 * We just returned from suspend, we don't need the image any more. 1667 */ 1668 free_all_swap_pages(root_swap); 1669 1670 return error; 1671 } 1672 #endif 1673 1674 static int __init swsusp_header_init(void) 1675 { 1676 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL); 1677 if (!swsusp_header) 1678 panic("Could not allocate memory for swsusp_header\n"); 1679 return 0; 1680 } 1681 1682 core_initcall(swsusp_header_init); 1683