xref: /linux/net/ceph/osdmap.c (revision 0dfb36b2dcb666f116ba314e631bd3bc632c44d1)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/ceph/ceph_debug.h>
4 
5 #include <linux/module.h>
6 #include <linux/slab.h>
7 
8 #include <linux/ceph/libceph.h>
9 #include <linux/ceph/osdmap.h>
10 #include <linux/ceph/decode.h>
11 #include <linux/crush/hash.h>
12 #include <linux/crush/mapper.h>
13 
14 static __printf(2, 3)
15 void osdmap_info(const struct ceph_osdmap *map, const char *fmt, ...)
16 {
17 	struct va_format vaf;
18 	va_list args;
19 
20 	va_start(args, fmt);
21 	vaf.fmt = fmt;
22 	vaf.va = &args;
23 
24 	printk(KERN_INFO "%s (%pU e%u): %pV", KBUILD_MODNAME, &map->fsid,
25 	       map->epoch, &vaf);
26 
27 	va_end(args);
28 }
29 
30 char *ceph_osdmap_state_str(char *str, int len, u32 state)
31 {
32 	if (!len)
33 		return str;
34 
35 	if ((state & CEPH_OSD_EXISTS) && (state & CEPH_OSD_UP))
36 		snprintf(str, len, "exists, up");
37 	else if (state & CEPH_OSD_EXISTS)
38 		snprintf(str, len, "exists");
39 	else if (state & CEPH_OSD_UP)
40 		snprintf(str, len, "up");
41 	else
42 		snprintf(str, len, "doesn't exist");
43 
44 	return str;
45 }
46 
47 /* maps */
48 
49 static int calc_bits_of(unsigned int t)
50 {
51 	int b = 0;
52 	while (t) {
53 		t = t >> 1;
54 		b++;
55 	}
56 	return b;
57 }
58 
59 /*
60  * the foo_mask is the smallest value 2^n-1 that is >= foo.
61  */
62 static void calc_pg_masks(struct ceph_pg_pool_info *pi)
63 {
64 	pi->pg_num_mask = (1 << calc_bits_of(pi->pg_num-1)) - 1;
65 	pi->pgp_num_mask = (1 << calc_bits_of(pi->pgp_num-1)) - 1;
66 }
67 
68 /*
69  * decode crush map
70  */
71 static int crush_decode_uniform_bucket(void **p, void *end,
72 				       struct crush_bucket_uniform *b)
73 {
74 	dout("crush_decode_uniform_bucket %p to %p\n", *p, end);
75 	ceph_decode_need(p, end, (1+b->h.size) * sizeof(u32), bad);
76 	b->item_weight = ceph_decode_32(p);
77 	return 0;
78 bad:
79 	return -EINVAL;
80 }
81 
82 static int crush_decode_list_bucket(void **p, void *end,
83 				    struct crush_bucket_list *b)
84 {
85 	int j;
86 	dout("crush_decode_list_bucket %p to %p\n", *p, end);
87 	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
88 	if (b->item_weights == NULL)
89 		return -ENOMEM;
90 	b->sum_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
91 	if (b->sum_weights == NULL)
92 		return -ENOMEM;
93 	ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
94 	for (j = 0; j < b->h.size; j++) {
95 		b->item_weights[j] = ceph_decode_32(p);
96 		b->sum_weights[j] = ceph_decode_32(p);
97 	}
98 	return 0;
99 bad:
100 	return -EINVAL;
101 }
102 
103 static int crush_decode_tree_bucket(void **p, void *end,
104 				    struct crush_bucket_tree *b)
105 {
106 	int j;
107 	dout("crush_decode_tree_bucket %p to %p\n", *p, end);
108 	ceph_decode_8_safe(p, end, b->num_nodes, bad);
109 	b->node_weights = kcalloc(b->num_nodes, sizeof(u32), GFP_NOFS);
110 	if (b->node_weights == NULL)
111 		return -ENOMEM;
112 	ceph_decode_need(p, end, b->num_nodes * sizeof(u32), bad);
113 	for (j = 0; j < b->num_nodes; j++)
114 		b->node_weights[j] = ceph_decode_32(p);
115 	return 0;
116 bad:
117 	return -EINVAL;
118 }
119 
120 static int crush_decode_straw_bucket(void **p, void *end,
121 				     struct crush_bucket_straw *b)
122 {
123 	int j;
124 	dout("crush_decode_straw_bucket %p to %p\n", *p, end);
125 	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
126 	if (b->item_weights == NULL)
127 		return -ENOMEM;
128 	b->straws = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
129 	if (b->straws == NULL)
130 		return -ENOMEM;
131 	ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
132 	for (j = 0; j < b->h.size; j++) {
133 		b->item_weights[j] = ceph_decode_32(p);
134 		b->straws[j] = ceph_decode_32(p);
135 	}
136 	return 0;
137 bad:
138 	return -EINVAL;
139 }
140 
141 static int crush_decode_straw2_bucket(void **p, void *end,
142 				      struct crush_bucket_straw2 *b)
143 {
144 	int j;
145 	dout("crush_decode_straw2_bucket %p to %p\n", *p, end);
146 	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
147 	if (b->item_weights == NULL)
148 		return -ENOMEM;
149 	ceph_decode_need(p, end, b->h.size * sizeof(u32), bad);
150 	for (j = 0; j < b->h.size; j++)
151 		b->item_weights[j] = ceph_decode_32(p);
152 	return 0;
153 bad:
154 	return -EINVAL;
155 }
156 
157 struct crush_name_node {
158 	struct rb_node cn_node;
159 	int cn_id;
160 	char cn_name[];
161 };
162 
163 static struct crush_name_node *alloc_crush_name(size_t name_len)
164 {
165 	struct crush_name_node *cn;
166 
167 	cn = kmalloc(sizeof(*cn) + name_len + 1, GFP_NOIO);
168 	if (!cn)
169 		return NULL;
170 
171 	RB_CLEAR_NODE(&cn->cn_node);
172 	return cn;
173 }
174 
175 static void free_crush_name(struct crush_name_node *cn)
176 {
177 	WARN_ON(!RB_EMPTY_NODE(&cn->cn_node));
178 
179 	kfree(cn);
180 }
181 
182 DEFINE_RB_FUNCS(crush_name, struct crush_name_node, cn_id, cn_node)
183 
184 static int decode_crush_names(void **p, void *end, struct rb_root *root)
185 {
186 	u32 n;
187 
188 	ceph_decode_32_safe(p, end, n, e_inval);
189 	while (n--) {
190 		struct crush_name_node *cn;
191 		int id;
192 		u32 name_len;
193 
194 		ceph_decode_32_safe(p, end, id, e_inval);
195 		ceph_decode_32_safe(p, end, name_len, e_inval);
196 		ceph_decode_need(p, end, name_len, e_inval);
197 
198 		cn = alloc_crush_name(name_len);
199 		if (!cn)
200 			return -ENOMEM;
201 
202 		cn->cn_id = id;
203 		memcpy(cn->cn_name, *p, name_len);
204 		cn->cn_name[name_len] = '\0';
205 		*p += name_len;
206 
207 		if (!__insert_crush_name(root, cn)) {
208 			free_crush_name(cn);
209 			return -EEXIST;
210 		}
211 	}
212 
213 	return 0;
214 
215 e_inval:
216 	return -EINVAL;
217 }
218 
219 void clear_crush_names(struct rb_root *root)
220 {
221 	while (!RB_EMPTY_ROOT(root)) {
222 		struct crush_name_node *cn =
223 		    rb_entry(rb_first(root), struct crush_name_node, cn_node);
224 
225 		erase_crush_name(root, cn);
226 		free_crush_name(cn);
227 	}
228 }
229 
230 static struct crush_choose_arg_map *alloc_choose_arg_map(void)
231 {
232 	struct crush_choose_arg_map *arg_map;
233 
234 	arg_map = kzalloc(sizeof(*arg_map), GFP_NOIO);
235 	if (!arg_map)
236 		return NULL;
237 
238 	RB_CLEAR_NODE(&arg_map->node);
239 	return arg_map;
240 }
241 
242 static void free_choose_arg_map(struct crush_choose_arg_map *arg_map)
243 {
244 	if (arg_map) {
245 		int i, j;
246 
247 		WARN_ON(!RB_EMPTY_NODE(&arg_map->node));
248 
249 		for (i = 0; i < arg_map->size; i++) {
250 			struct crush_choose_arg *arg = &arg_map->args[i];
251 
252 			for (j = 0; j < arg->weight_set_size; j++)
253 				kfree(arg->weight_set[j].weights);
254 			kfree(arg->weight_set);
255 			kfree(arg->ids);
256 		}
257 		kfree(arg_map->args);
258 		kfree(arg_map);
259 	}
260 }
261 
262 DEFINE_RB_FUNCS(choose_arg_map, struct crush_choose_arg_map, choose_args_index,
263 		node);
264 
265 void clear_choose_args(struct crush_map *c)
266 {
267 	while (!RB_EMPTY_ROOT(&c->choose_args)) {
268 		struct crush_choose_arg_map *arg_map =
269 		    rb_entry(rb_first(&c->choose_args),
270 			     struct crush_choose_arg_map, node);
271 
272 		erase_choose_arg_map(&c->choose_args, arg_map);
273 		free_choose_arg_map(arg_map);
274 	}
275 }
276 
277 static u32 *decode_array_32_alloc(void **p, void *end, u32 *plen)
278 {
279 	u32 *a = NULL;
280 	u32 len;
281 	int ret;
282 
283 	ceph_decode_32_safe(p, end, len, e_inval);
284 	if (len) {
285 		u32 i;
286 
287 		a = kmalloc_array(len, sizeof(u32), GFP_NOIO);
288 		if (!a) {
289 			ret = -ENOMEM;
290 			goto fail;
291 		}
292 
293 		ceph_decode_need(p, end, len * sizeof(u32), e_inval);
294 		for (i = 0; i < len; i++)
295 			a[i] = ceph_decode_32(p);
296 	}
297 
298 	*plen = len;
299 	return a;
300 
301 e_inval:
302 	ret = -EINVAL;
303 fail:
304 	kfree(a);
305 	return ERR_PTR(ret);
306 }
307 
308 /*
309  * Assumes @arg is zero-initialized.
310  */
311 static int decode_choose_arg(void **p, void *end, struct crush_choose_arg *arg)
312 {
313 	int ret;
314 
315 	ceph_decode_32_safe(p, end, arg->weight_set_size, e_inval);
316 	if (arg->weight_set_size) {
317 		u32 i;
318 
319 		arg->weight_set = kmalloc_array(arg->weight_set_size,
320 						sizeof(*arg->weight_set),
321 						GFP_NOIO);
322 		if (!arg->weight_set)
323 			return -ENOMEM;
324 
325 		for (i = 0; i < arg->weight_set_size; i++) {
326 			struct crush_weight_set *w = &arg->weight_set[i];
327 
328 			w->weights = decode_array_32_alloc(p, end, &w->size);
329 			if (IS_ERR(w->weights)) {
330 				ret = PTR_ERR(w->weights);
331 				w->weights = NULL;
332 				return ret;
333 			}
334 		}
335 	}
336 
337 	arg->ids = decode_array_32_alloc(p, end, &arg->ids_size);
338 	if (IS_ERR(arg->ids)) {
339 		ret = PTR_ERR(arg->ids);
340 		arg->ids = NULL;
341 		return ret;
342 	}
343 
344 	return 0;
345 
346 e_inval:
347 	return -EINVAL;
348 }
349 
350 static int decode_choose_args(void **p, void *end, struct crush_map *c)
351 {
352 	struct crush_choose_arg_map *arg_map = NULL;
353 	u32 num_choose_arg_maps, num_buckets;
354 	int ret;
355 
356 	ceph_decode_32_safe(p, end, num_choose_arg_maps, e_inval);
357 	while (num_choose_arg_maps--) {
358 		arg_map = alloc_choose_arg_map();
359 		if (!arg_map) {
360 			ret = -ENOMEM;
361 			goto fail;
362 		}
363 
364 		ceph_decode_64_safe(p, end, arg_map->choose_args_index,
365 				    e_inval);
366 		arg_map->size = c->max_buckets;
367 		arg_map->args = kcalloc(arg_map->size, sizeof(*arg_map->args),
368 					GFP_NOIO);
369 		if (!arg_map->args) {
370 			ret = -ENOMEM;
371 			goto fail;
372 		}
373 
374 		ceph_decode_32_safe(p, end, num_buckets, e_inval);
375 		while (num_buckets--) {
376 			struct crush_choose_arg *arg;
377 			u32 bucket_index;
378 
379 			ceph_decode_32_safe(p, end, bucket_index, e_inval);
380 			if (bucket_index >= arg_map->size)
381 				goto e_inval;
382 
383 			arg = &arg_map->args[bucket_index];
384 			ret = decode_choose_arg(p, end, arg);
385 			if (ret)
386 				goto fail;
387 
388 			if (arg->ids_size &&
389 			    arg->ids_size != c->buckets[bucket_index]->size)
390 				goto e_inval;
391 		}
392 
393 		insert_choose_arg_map(&c->choose_args, arg_map);
394 	}
395 
396 	return 0;
397 
398 e_inval:
399 	ret = -EINVAL;
400 fail:
401 	free_choose_arg_map(arg_map);
402 	return ret;
403 }
404 
405 static void crush_finalize(struct crush_map *c)
406 {
407 	__s32 b;
408 
409 	/* Space for the array of pointers to per-bucket workspace */
410 	c->working_size = sizeof(struct crush_work) +
411 	    c->max_buckets * sizeof(struct crush_work_bucket *);
412 
413 	for (b = 0; b < c->max_buckets; b++) {
414 		if (!c->buckets[b])
415 			continue;
416 
417 		switch (c->buckets[b]->alg) {
418 		default:
419 			/*
420 			 * The base case, permutation variables and
421 			 * the pointer to the permutation array.
422 			 */
423 			c->working_size += sizeof(struct crush_work_bucket);
424 			break;
425 		}
426 		/* Every bucket has a permutation array. */
427 		c->working_size += c->buckets[b]->size * sizeof(__u32);
428 	}
429 }
430 
431 static struct crush_map *crush_decode(void *pbyval, void *end)
432 {
433 	struct crush_map *c;
434 	int err;
435 	int i, j;
436 	void **p = &pbyval;
437 	void *start = pbyval;
438 	u32 magic;
439 
440 	dout("crush_decode %p to %p len %d\n", *p, end, (int)(end - *p));
441 
442 	c = kzalloc(sizeof(*c), GFP_NOFS);
443 	if (c == NULL)
444 		return ERR_PTR(-ENOMEM);
445 
446 	c->type_names = RB_ROOT;
447 	c->names = RB_ROOT;
448 	c->choose_args = RB_ROOT;
449 
450         /* set tunables to default values */
451         c->choose_local_tries = 2;
452         c->choose_local_fallback_tries = 5;
453         c->choose_total_tries = 19;
454 	c->chooseleaf_descend_once = 0;
455 
456 	ceph_decode_need(p, end, 4*sizeof(u32), bad);
457 	magic = ceph_decode_32(p);
458 	if (magic != CRUSH_MAGIC) {
459 		pr_err("crush_decode magic %x != current %x\n",
460 		       (unsigned int)magic, (unsigned int)CRUSH_MAGIC);
461 		goto bad;
462 	}
463 	c->max_buckets = ceph_decode_32(p);
464 	c->max_rules = ceph_decode_32(p);
465 	c->max_devices = ceph_decode_32(p);
466 
467 	c->buckets = kcalloc(c->max_buckets, sizeof(*c->buckets), GFP_NOFS);
468 	if (c->buckets == NULL)
469 		goto badmem;
470 	c->rules = kcalloc(c->max_rules, sizeof(*c->rules), GFP_NOFS);
471 	if (c->rules == NULL)
472 		goto badmem;
473 
474 	/* buckets */
475 	for (i = 0; i < c->max_buckets; i++) {
476 		int size = 0;
477 		u32 alg;
478 		struct crush_bucket *b;
479 
480 		ceph_decode_32_safe(p, end, alg, bad);
481 		if (alg == 0) {
482 			c->buckets[i] = NULL;
483 			continue;
484 		}
485 		dout("crush_decode bucket %d off %x %p to %p\n",
486 		     i, (int)(*p-start), *p, end);
487 
488 		switch (alg) {
489 		case CRUSH_BUCKET_UNIFORM:
490 			size = sizeof(struct crush_bucket_uniform);
491 			break;
492 		case CRUSH_BUCKET_LIST:
493 			size = sizeof(struct crush_bucket_list);
494 			break;
495 		case CRUSH_BUCKET_TREE:
496 			size = sizeof(struct crush_bucket_tree);
497 			break;
498 		case CRUSH_BUCKET_STRAW:
499 			size = sizeof(struct crush_bucket_straw);
500 			break;
501 		case CRUSH_BUCKET_STRAW2:
502 			size = sizeof(struct crush_bucket_straw2);
503 			break;
504 		default:
505 			goto bad;
506 		}
507 		BUG_ON(size == 0);
508 		b = c->buckets[i] = kzalloc(size, GFP_NOFS);
509 		if (b == NULL)
510 			goto badmem;
511 
512 		ceph_decode_need(p, end, 4*sizeof(u32), bad);
513 		b->id = ceph_decode_32(p);
514 		b->type = ceph_decode_16(p);
515 		b->alg = ceph_decode_8(p);
516 		b->hash = ceph_decode_8(p);
517 		b->weight = ceph_decode_32(p);
518 		b->size = ceph_decode_32(p);
519 
520 		dout("crush_decode bucket size %d off %x %p to %p\n",
521 		     b->size, (int)(*p-start), *p, end);
522 
523 		b->items = kcalloc(b->size, sizeof(__s32), GFP_NOFS);
524 		if (b->items == NULL)
525 			goto badmem;
526 
527 		ceph_decode_need(p, end, b->size*sizeof(u32), bad);
528 		for (j = 0; j < b->size; j++)
529 			b->items[j] = ceph_decode_32(p);
530 
531 		switch (b->alg) {
532 		case CRUSH_BUCKET_UNIFORM:
533 			err = crush_decode_uniform_bucket(p, end,
534 				  (struct crush_bucket_uniform *)b);
535 			if (err < 0)
536 				goto fail;
537 			break;
538 		case CRUSH_BUCKET_LIST:
539 			err = crush_decode_list_bucket(p, end,
540 			       (struct crush_bucket_list *)b);
541 			if (err < 0)
542 				goto fail;
543 			break;
544 		case CRUSH_BUCKET_TREE:
545 			err = crush_decode_tree_bucket(p, end,
546 				(struct crush_bucket_tree *)b);
547 			if (err < 0)
548 				goto fail;
549 			break;
550 		case CRUSH_BUCKET_STRAW:
551 			err = crush_decode_straw_bucket(p, end,
552 				(struct crush_bucket_straw *)b);
553 			if (err < 0)
554 				goto fail;
555 			break;
556 		case CRUSH_BUCKET_STRAW2:
557 			err = crush_decode_straw2_bucket(p, end,
558 				(struct crush_bucket_straw2 *)b);
559 			if (err < 0)
560 				goto fail;
561 			break;
562 		}
563 	}
564 
565 	/* rules */
566 	dout("rule vec is %p\n", c->rules);
567 	for (i = 0; i < c->max_rules; i++) {
568 		u32 yes;
569 		struct crush_rule *r;
570 
571 		ceph_decode_32_safe(p, end, yes, bad);
572 		if (!yes) {
573 			dout("crush_decode NO rule %d off %x %p to %p\n",
574 			     i, (int)(*p-start), *p, end);
575 			c->rules[i] = NULL;
576 			continue;
577 		}
578 
579 		dout("crush_decode rule %d off %x %p to %p\n",
580 		     i, (int)(*p-start), *p, end);
581 
582 		/* len */
583 		ceph_decode_32_safe(p, end, yes, bad);
584 #if BITS_PER_LONG == 32
585 		if (yes > (ULONG_MAX - sizeof(*r))
586 			  / sizeof(struct crush_rule_step))
587 			goto bad;
588 #endif
589 		r = kmalloc(struct_size(r, steps, yes), GFP_NOFS);
590 		if (r == NULL)
591 			goto badmem;
592 		dout(" rule %d is at %p\n", i, r);
593 		c->rules[i] = r;
594 		r->len = yes;
595 		ceph_decode_copy_safe(p, end, &r->mask, 4, bad); /* 4 u8's */
596 		ceph_decode_need(p, end, r->len*3*sizeof(u32), bad);
597 		for (j = 0; j < r->len; j++) {
598 			r->steps[j].op = ceph_decode_32(p);
599 			r->steps[j].arg1 = ceph_decode_32(p);
600 			r->steps[j].arg2 = ceph_decode_32(p);
601 		}
602 	}
603 
604 	err = decode_crush_names(p, end, &c->type_names);
605 	if (err)
606 		goto fail;
607 
608 	err = decode_crush_names(p, end, &c->names);
609 	if (err)
610 		goto fail;
611 
612 	ceph_decode_skip_map(p, end, 32, string, bad); /* rule_name_map */
613 
614         /* tunables */
615         ceph_decode_need(p, end, 3*sizeof(u32), done);
616         c->choose_local_tries = ceph_decode_32(p);
617         c->choose_local_fallback_tries =  ceph_decode_32(p);
618         c->choose_total_tries = ceph_decode_32(p);
619         dout("crush decode tunable choose_local_tries = %d\n",
620              c->choose_local_tries);
621         dout("crush decode tunable choose_local_fallback_tries = %d\n",
622              c->choose_local_fallback_tries);
623         dout("crush decode tunable choose_total_tries = %d\n",
624              c->choose_total_tries);
625 
626 	ceph_decode_need(p, end, sizeof(u32), done);
627 	c->chooseleaf_descend_once = ceph_decode_32(p);
628 	dout("crush decode tunable chooseleaf_descend_once = %d\n",
629 	     c->chooseleaf_descend_once);
630 
631 	ceph_decode_need(p, end, sizeof(u8), done);
632 	c->chooseleaf_vary_r = ceph_decode_8(p);
633 	dout("crush decode tunable chooseleaf_vary_r = %d\n",
634 	     c->chooseleaf_vary_r);
635 
636 	/* skip straw_calc_version, allowed_bucket_algs */
637 	ceph_decode_need(p, end, sizeof(u8) + sizeof(u32), done);
638 	*p += sizeof(u8) + sizeof(u32);
639 
640 	ceph_decode_need(p, end, sizeof(u8), done);
641 	c->chooseleaf_stable = ceph_decode_8(p);
642 	dout("crush decode tunable chooseleaf_stable = %d\n",
643 	     c->chooseleaf_stable);
644 
645 	if (*p != end) {
646 		/* class_map */
647 		ceph_decode_skip_map(p, end, 32, 32, bad);
648 		/* class_name */
649 		ceph_decode_skip_map(p, end, 32, string, bad);
650 		/* class_bucket */
651 		ceph_decode_skip_map_of_map(p, end, 32, 32, 32, bad);
652 	}
653 
654 	if (*p != end) {
655 		err = decode_choose_args(p, end, c);
656 		if (err)
657 			goto fail;
658 	}
659 
660 done:
661 	crush_finalize(c);
662 	dout("crush_decode success\n");
663 	return c;
664 
665 badmem:
666 	err = -ENOMEM;
667 fail:
668 	dout("crush_decode fail %d\n", err);
669 	crush_destroy(c);
670 	return ERR_PTR(err);
671 
672 bad:
673 	err = -EINVAL;
674 	goto fail;
675 }
676 
677 int ceph_pg_compare(const struct ceph_pg *lhs, const struct ceph_pg *rhs)
678 {
679 	if (lhs->pool < rhs->pool)
680 		return -1;
681 	if (lhs->pool > rhs->pool)
682 		return 1;
683 	if (lhs->seed < rhs->seed)
684 		return -1;
685 	if (lhs->seed > rhs->seed)
686 		return 1;
687 
688 	return 0;
689 }
690 
691 int ceph_spg_compare(const struct ceph_spg *lhs, const struct ceph_spg *rhs)
692 {
693 	int ret;
694 
695 	ret = ceph_pg_compare(&lhs->pgid, &rhs->pgid);
696 	if (ret)
697 		return ret;
698 
699 	if (lhs->shard < rhs->shard)
700 		return -1;
701 	if (lhs->shard > rhs->shard)
702 		return 1;
703 
704 	return 0;
705 }
706 
707 static struct ceph_pg_mapping *alloc_pg_mapping(size_t payload_len)
708 {
709 	struct ceph_pg_mapping *pg;
710 
711 	pg = kmalloc(sizeof(*pg) + payload_len, GFP_NOIO);
712 	if (!pg)
713 		return NULL;
714 
715 	RB_CLEAR_NODE(&pg->node);
716 	return pg;
717 }
718 
719 static void free_pg_mapping(struct ceph_pg_mapping *pg)
720 {
721 	WARN_ON(!RB_EMPTY_NODE(&pg->node));
722 
723 	kfree(pg);
724 }
725 
726 /*
727  * rbtree of pg_mapping for handling pg_temp (explicit mapping of pgid
728  * to a set of osds) and primary_temp (explicit primary setting)
729  */
730 DEFINE_RB_FUNCS2(pg_mapping, struct ceph_pg_mapping, pgid, ceph_pg_compare,
731 		 RB_BYPTR, const struct ceph_pg *, node)
732 
733 /*
734  * rbtree of pg pool info
735  */
736 DEFINE_RB_FUNCS(pg_pool, struct ceph_pg_pool_info, id, node)
737 
738 struct ceph_pg_pool_info *ceph_pg_pool_by_id(struct ceph_osdmap *map, u64 id)
739 {
740 	return lookup_pg_pool(&map->pg_pools, id);
741 }
742 
743 const char *ceph_pg_pool_name_by_id(struct ceph_osdmap *map, u64 id)
744 {
745 	struct ceph_pg_pool_info *pi;
746 
747 	if (id == CEPH_NOPOOL)
748 		return NULL;
749 
750 	if (WARN_ON_ONCE(id > (u64) INT_MAX))
751 		return NULL;
752 
753 	pi = lookup_pg_pool(&map->pg_pools, id);
754 	return pi ? pi->name : NULL;
755 }
756 EXPORT_SYMBOL(ceph_pg_pool_name_by_id);
757 
758 int ceph_pg_poolid_by_name(struct ceph_osdmap *map, const char *name)
759 {
760 	struct rb_node *rbp;
761 
762 	for (rbp = rb_first(&map->pg_pools); rbp; rbp = rb_next(rbp)) {
763 		struct ceph_pg_pool_info *pi =
764 			rb_entry(rbp, struct ceph_pg_pool_info, node);
765 		if (pi->name && strcmp(pi->name, name) == 0)
766 			return pi->id;
767 	}
768 	return -ENOENT;
769 }
770 EXPORT_SYMBOL(ceph_pg_poolid_by_name);
771 
772 u64 ceph_pg_pool_flags(struct ceph_osdmap *map, u64 id)
773 {
774 	struct ceph_pg_pool_info *pi;
775 
776 	pi = lookup_pg_pool(&map->pg_pools, id);
777 	return pi ? pi->flags : 0;
778 }
779 EXPORT_SYMBOL(ceph_pg_pool_flags);
780 
781 static void __remove_pg_pool(struct rb_root *root, struct ceph_pg_pool_info *pi)
782 {
783 	erase_pg_pool(root, pi);
784 	kfree(pi->name);
785 	kfree(pi);
786 }
787 
788 static int decode_pool(void **p, void *end, struct ceph_pg_pool_info *pi)
789 {
790 	u8 ev, cv;
791 	unsigned len, num;
792 	void *pool_end;
793 
794 	ceph_decode_need(p, end, 2 + 4, bad);
795 	ev = ceph_decode_8(p);  /* encoding version */
796 	cv = ceph_decode_8(p); /* compat version */
797 	if (ev < 5) {
798 		pr_warn("got v %d < 5 cv %d of ceph_pg_pool\n", ev, cv);
799 		return -EINVAL;
800 	}
801 	if (cv > 9) {
802 		pr_warn("got v %d cv %d > 9 of ceph_pg_pool\n", ev, cv);
803 		return -EINVAL;
804 	}
805 	len = ceph_decode_32(p);
806 	ceph_decode_need(p, end, len, bad);
807 	pool_end = *p + len;
808 
809 	ceph_decode_need(p, end, 4 + 4 + 4, bad);
810 	pi->type = ceph_decode_8(p);
811 	pi->size = ceph_decode_8(p);
812 	pi->crush_ruleset = ceph_decode_8(p);
813 	pi->object_hash = ceph_decode_8(p);
814 	pi->pg_num = ceph_decode_32(p);
815 	pi->pgp_num = ceph_decode_32(p);
816 
817 	/* lpg*, last_change, snap_seq, snap_epoch */
818 	ceph_decode_skip_n(p, end, 8 + 4 + 8 + 4, bad);
819 
820 	/* skip snaps */
821 	ceph_decode_32_safe(p, end, num, bad);
822 	while (num--) {
823 		/* snapid key, pool snap (with versions) */
824 		ceph_decode_skip_n(p, end, 8 + 2, bad);
825 		ceph_decode_skip_string(p, end, bad);
826 	}
827 
828 	/* removed_snaps */
829 	ceph_decode_skip_map(p, end, 64, 64, bad);
830 
831 	ceph_decode_need(p, end, 8 + 8 + 4, bad);
832 	*p += 8;  /* skip auid */
833 	pi->flags = ceph_decode_64(p);
834 	*p += 4;  /* skip crash_replay_interval */
835 
836 	if (ev >= 7)
837 		ceph_decode_8_safe(p, end, pi->min_size, bad);
838 	else
839 		pi->min_size = pi->size - pi->size / 2;
840 
841 	if (ev >= 8)
842 		/* quota_max_* */
843 		ceph_decode_skip_n(p, end, 8 + 8, bad);
844 
845 	if (ev >= 9) {
846 		/* tiers */
847 		ceph_decode_skip_set(p, end, 64, bad);
848 
849 		ceph_decode_need(p, end, 8 + 1 + 8 + 8, bad);
850 		*p += 8;  /* skip tier_of */
851 		*p += 1;  /* skip cache_mode */
852 		pi->read_tier = ceph_decode_64(p);
853 		pi->write_tier = ceph_decode_64(p);
854 	} else {
855 		pi->read_tier = -1;
856 		pi->write_tier = -1;
857 	}
858 
859 	if (ev >= 10)
860 		/* properties */
861 		ceph_decode_skip_map(p, end, string, string, bad);
862 
863 	if (ev >= 11) {
864 		/* hit_set_params (with versions) */
865 		ceph_decode_skip_n(p, end, 2, bad);
866 		ceph_decode_skip_string(p, end, bad);
867 
868 		/* hit_set_period, hit_set_count */
869 		ceph_decode_skip_n(p, end, 4 + 4, bad);
870 	}
871 
872 	if (ev >= 12)
873 		/* stripe_width */
874 		ceph_decode_skip_32(p, end, bad);
875 
876 	if (ev >= 13)
877 		/* target_max_*, cache_target_*, cache_min_* */
878 		ceph_decode_skip_n(p, end, 16 + 8 + 8, bad);
879 
880 	if (ev >= 14)
881 		/* erasure_code_profile */
882 		ceph_decode_skip_string(p, end, bad);
883 
884 	/*
885 	 * last_force_op_resend_preluminous, will be overridden if the
886 	 * map was encoded with RESEND_ON_SPLIT
887 	 */
888 	if (ev >= 15)
889 		ceph_decode_32_safe(p, end, pi->last_force_request_resend, bad);
890 	else
891 		pi->last_force_request_resend = 0;
892 
893 	if (ev >= 16)
894 		/* min_read_recency_for_promote */
895 		ceph_decode_skip_32(p, end, bad);
896 
897 	if (ev >= 17)
898 		/* expected_num_objects */
899 		ceph_decode_skip_64(p, end, bad);
900 
901 	if (ev >= 19)
902 		/* cache_target_dirty_high_ratio_micro */
903 		ceph_decode_skip_32(p, end, bad);
904 
905 	if (ev >= 20)
906 		/* min_write_recency_for_promote */
907 		ceph_decode_skip_32(p, end, bad);
908 
909 	if (ev >= 21)
910 		/* use_gmt_hitset */
911 		ceph_decode_skip_8(p, end, bad);
912 
913 	if (ev >= 22)
914 		/* fast_read */
915 		ceph_decode_skip_8(p, end, bad);
916 
917 	if (ev >= 23)
918 		/* hit_set_grade_decay_rate, hit_set_search_last_n */
919 		ceph_decode_skip_n(p, end, 4 + 4, bad);
920 
921 	if (ev >= 24) {
922 		/* opts (with versions) */
923 		ceph_decode_skip_n(p, end, 2, bad);
924 		ceph_decode_skip_string(p, end, bad);
925 	}
926 
927 	if (ev >= 25)
928 		ceph_decode_32_safe(p, end, pi->last_force_request_resend, bad);
929 
930 	/* ignore the rest */
931 
932 	*p = pool_end;
933 	calc_pg_masks(pi);
934 	return 0;
935 
936 bad:
937 	return -EINVAL;
938 }
939 
940 static int decode_pool_names(void **p, void *end, struct ceph_osdmap *map)
941 {
942 	struct ceph_pg_pool_info *pi;
943 	u32 num, len;
944 	u64 pool;
945 
946 	ceph_decode_32_safe(p, end, num, bad);
947 	dout(" %d pool names\n", num);
948 	while (num--) {
949 		ceph_decode_64_safe(p, end, pool, bad);
950 		ceph_decode_32_safe(p, end, len, bad);
951 		dout("  pool %llu len %d\n", pool, len);
952 		ceph_decode_need(p, end, len, bad);
953 		pi = lookup_pg_pool(&map->pg_pools, pool);
954 		if (pi) {
955 			char *name = kstrndup(*p, len, GFP_NOFS);
956 
957 			if (!name)
958 				return -ENOMEM;
959 			kfree(pi->name);
960 			pi->name = name;
961 			dout("  name is %s\n", pi->name);
962 		}
963 		*p += len;
964 	}
965 	return 0;
966 
967 bad:
968 	return -EINVAL;
969 }
970 
971 /*
972  * CRUSH workspaces
973  *
974  * workspace_manager framework borrowed from fs/btrfs/compression.c.
975  * Two simplifications: there is only one type of workspace and there
976  * is always at least one workspace.
977  */
978 static struct crush_work *alloc_workspace(const struct crush_map *c)
979 {
980 	struct crush_work *work;
981 	size_t work_size;
982 
983 	WARN_ON(!c->working_size);
984 	work_size = crush_work_size(c, CEPH_PG_MAX_SIZE);
985 	dout("%s work_size %zu bytes\n", __func__, work_size);
986 
987 	work = kvmalloc(work_size, GFP_NOIO);
988 	if (!work)
989 		return NULL;
990 
991 	INIT_LIST_HEAD(&work->item);
992 	crush_init_workspace(c, work);
993 	return work;
994 }
995 
996 static void free_workspace(struct crush_work *work)
997 {
998 	WARN_ON(!list_empty(&work->item));
999 	kvfree(work);
1000 }
1001 
1002 static void init_workspace_manager(struct workspace_manager *wsm)
1003 {
1004 	INIT_LIST_HEAD(&wsm->idle_ws);
1005 	spin_lock_init(&wsm->ws_lock);
1006 	atomic_set(&wsm->total_ws, 0);
1007 	wsm->free_ws = 0;
1008 	init_waitqueue_head(&wsm->ws_wait);
1009 }
1010 
1011 static void add_initial_workspace(struct workspace_manager *wsm,
1012 				  struct crush_work *work)
1013 {
1014 	WARN_ON(!list_empty(&wsm->idle_ws));
1015 
1016 	list_add(&work->item, &wsm->idle_ws);
1017 	atomic_set(&wsm->total_ws, 1);
1018 	wsm->free_ws = 1;
1019 }
1020 
1021 static void cleanup_workspace_manager(struct workspace_manager *wsm)
1022 {
1023 	struct crush_work *work;
1024 
1025 	while (!list_empty(&wsm->idle_ws)) {
1026 		work = list_first_entry(&wsm->idle_ws, struct crush_work,
1027 					item);
1028 		list_del_init(&work->item);
1029 		free_workspace(work);
1030 	}
1031 	atomic_set(&wsm->total_ws, 0);
1032 	wsm->free_ws = 0;
1033 }
1034 
1035 /*
1036  * Finds an available workspace or allocates a new one.  If it's not
1037  * possible to allocate a new one, waits until there is one.
1038  */
1039 static struct crush_work *get_workspace(struct workspace_manager *wsm,
1040 					const struct crush_map *c)
1041 {
1042 	struct crush_work *work;
1043 	int cpus = num_online_cpus();
1044 
1045 again:
1046 	spin_lock(&wsm->ws_lock);
1047 	if (!list_empty(&wsm->idle_ws)) {
1048 		work = list_first_entry(&wsm->idle_ws, struct crush_work,
1049 					item);
1050 		list_del_init(&work->item);
1051 		wsm->free_ws--;
1052 		spin_unlock(&wsm->ws_lock);
1053 		return work;
1054 
1055 	}
1056 	if (atomic_read(&wsm->total_ws) > cpus) {
1057 		DEFINE_WAIT(wait);
1058 
1059 		spin_unlock(&wsm->ws_lock);
1060 		prepare_to_wait(&wsm->ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1061 		if (atomic_read(&wsm->total_ws) > cpus && !wsm->free_ws)
1062 			schedule();
1063 		finish_wait(&wsm->ws_wait, &wait);
1064 		goto again;
1065 	}
1066 	atomic_inc(&wsm->total_ws);
1067 	spin_unlock(&wsm->ws_lock);
1068 
1069 	work = alloc_workspace(c);
1070 	if (!work) {
1071 		atomic_dec(&wsm->total_ws);
1072 		wake_up(&wsm->ws_wait);
1073 
1074 		/*
1075 		 * Do not return the error but go back to waiting.  We
1076 		 * have the initial workspace and the CRUSH computation
1077 		 * time is bounded so we will get it eventually.
1078 		 */
1079 		WARN_ON(atomic_read(&wsm->total_ws) < 1);
1080 		goto again;
1081 	}
1082 	return work;
1083 }
1084 
1085 /*
1086  * Puts a workspace back on the list or frees it if we have enough
1087  * idle ones sitting around.
1088  */
1089 static void put_workspace(struct workspace_manager *wsm,
1090 			  struct crush_work *work)
1091 {
1092 	spin_lock(&wsm->ws_lock);
1093 	if (wsm->free_ws <= num_online_cpus()) {
1094 		list_add(&work->item, &wsm->idle_ws);
1095 		wsm->free_ws++;
1096 		spin_unlock(&wsm->ws_lock);
1097 		goto wake;
1098 	}
1099 	spin_unlock(&wsm->ws_lock);
1100 
1101 	free_workspace(work);
1102 	atomic_dec(&wsm->total_ws);
1103 wake:
1104 	if (wq_has_sleeper(&wsm->ws_wait))
1105 		wake_up(&wsm->ws_wait);
1106 }
1107 
1108 /*
1109  * osd map
1110  */
1111 struct ceph_osdmap *ceph_osdmap_alloc(void)
1112 {
1113 	struct ceph_osdmap *map;
1114 
1115 	map = kzalloc(sizeof(*map), GFP_NOIO);
1116 	if (!map)
1117 		return NULL;
1118 
1119 	map->pg_pools = RB_ROOT;
1120 	map->pool_max = -1;
1121 	map->pg_temp = RB_ROOT;
1122 	map->primary_temp = RB_ROOT;
1123 	map->pg_upmap = RB_ROOT;
1124 	map->pg_upmap_items = RB_ROOT;
1125 
1126 	init_workspace_manager(&map->crush_wsm);
1127 
1128 	return map;
1129 }
1130 
1131 void ceph_osdmap_destroy(struct ceph_osdmap *map)
1132 {
1133 	dout("osdmap_destroy %p\n", map);
1134 
1135 	if (map->crush)
1136 		crush_destroy(map->crush);
1137 	cleanup_workspace_manager(&map->crush_wsm);
1138 
1139 	while (!RB_EMPTY_ROOT(&map->pg_temp)) {
1140 		struct ceph_pg_mapping *pg =
1141 			rb_entry(rb_first(&map->pg_temp),
1142 				 struct ceph_pg_mapping, node);
1143 		erase_pg_mapping(&map->pg_temp, pg);
1144 		free_pg_mapping(pg);
1145 	}
1146 	while (!RB_EMPTY_ROOT(&map->primary_temp)) {
1147 		struct ceph_pg_mapping *pg =
1148 			rb_entry(rb_first(&map->primary_temp),
1149 				 struct ceph_pg_mapping, node);
1150 		erase_pg_mapping(&map->primary_temp, pg);
1151 		free_pg_mapping(pg);
1152 	}
1153 	while (!RB_EMPTY_ROOT(&map->pg_upmap)) {
1154 		struct ceph_pg_mapping *pg =
1155 			rb_entry(rb_first(&map->pg_upmap),
1156 				 struct ceph_pg_mapping, node);
1157 		rb_erase(&pg->node, &map->pg_upmap);
1158 		kfree(pg);
1159 	}
1160 	while (!RB_EMPTY_ROOT(&map->pg_upmap_items)) {
1161 		struct ceph_pg_mapping *pg =
1162 			rb_entry(rb_first(&map->pg_upmap_items),
1163 				 struct ceph_pg_mapping, node);
1164 		rb_erase(&pg->node, &map->pg_upmap_items);
1165 		kfree(pg);
1166 	}
1167 	while (!RB_EMPTY_ROOT(&map->pg_pools)) {
1168 		struct ceph_pg_pool_info *pi =
1169 			rb_entry(rb_first(&map->pg_pools),
1170 				 struct ceph_pg_pool_info, node);
1171 		__remove_pg_pool(&map->pg_pools, pi);
1172 	}
1173 	kvfree(map->osd_state);
1174 	kvfree(map->osd_weight);
1175 	kvfree(map->osd_addr);
1176 	kvfree(map->osd_primary_affinity);
1177 	kfree(map);
1178 }
1179 
1180 /*
1181  * Adjust max_osd value, (re)allocate arrays.
1182  *
1183  * The new elements are properly initialized.
1184  */
1185 static int osdmap_set_max_osd(struct ceph_osdmap *map, u32 max)
1186 {
1187 	u32 *state;
1188 	u32 *weight;
1189 	struct ceph_entity_addr *addr;
1190 	u32 to_copy;
1191 	int i;
1192 
1193 	dout("%s old %u new %u\n", __func__, map->max_osd, max);
1194 	if (max == map->max_osd)
1195 		return 0;
1196 
1197 	state = kvmalloc(array_size(max, sizeof(*state)), GFP_NOFS);
1198 	weight = kvmalloc(array_size(max, sizeof(*weight)), GFP_NOFS);
1199 	addr = kvmalloc(array_size(max, sizeof(*addr)), GFP_NOFS);
1200 	if (!state || !weight || !addr) {
1201 		kvfree(state);
1202 		kvfree(weight);
1203 		kvfree(addr);
1204 		return -ENOMEM;
1205 	}
1206 
1207 	to_copy = min(map->max_osd, max);
1208 	if (map->osd_state) {
1209 		memcpy(state, map->osd_state, to_copy * sizeof(*state));
1210 		memcpy(weight, map->osd_weight, to_copy * sizeof(*weight));
1211 		memcpy(addr, map->osd_addr, to_copy * sizeof(*addr));
1212 		kvfree(map->osd_state);
1213 		kvfree(map->osd_weight);
1214 		kvfree(map->osd_addr);
1215 	}
1216 
1217 	map->osd_state = state;
1218 	map->osd_weight = weight;
1219 	map->osd_addr = addr;
1220 	for (i = map->max_osd; i < max; i++) {
1221 		map->osd_state[i] = 0;
1222 		map->osd_weight[i] = CEPH_OSD_OUT;
1223 		memset(map->osd_addr + i, 0, sizeof(*map->osd_addr));
1224 	}
1225 
1226 	if (map->osd_primary_affinity) {
1227 		u32 *affinity;
1228 
1229 		affinity = kvmalloc(array_size(max, sizeof(*affinity)),
1230 					 GFP_NOFS);
1231 		if (!affinity)
1232 			return -ENOMEM;
1233 
1234 		memcpy(affinity, map->osd_primary_affinity,
1235 		       to_copy * sizeof(*affinity));
1236 		kvfree(map->osd_primary_affinity);
1237 
1238 		map->osd_primary_affinity = affinity;
1239 		for (i = map->max_osd; i < max; i++)
1240 			map->osd_primary_affinity[i] =
1241 			    CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1242 	}
1243 
1244 	map->max_osd = max;
1245 
1246 	return 0;
1247 }
1248 
1249 static int osdmap_set_crush(struct ceph_osdmap *map, struct crush_map *crush)
1250 {
1251 	struct crush_work *work;
1252 
1253 	if (IS_ERR(crush))
1254 		return PTR_ERR(crush);
1255 
1256 	work = alloc_workspace(crush);
1257 	if (!work) {
1258 		crush_destroy(crush);
1259 		return -ENOMEM;
1260 	}
1261 
1262 	if (map->crush)
1263 		crush_destroy(map->crush);
1264 	cleanup_workspace_manager(&map->crush_wsm);
1265 	map->crush = crush;
1266 	add_initial_workspace(&map->crush_wsm, work);
1267 	return 0;
1268 }
1269 
1270 #define OSDMAP_WRAPPER_COMPAT_VER	7
1271 #define OSDMAP_CLIENT_DATA_COMPAT_VER	1
1272 
1273 /*
1274  * Return 0 or error.  On success, *v is set to 0 for old (v6) osdmaps,
1275  * to struct_v of the client_data section for new (v7 and above)
1276  * osdmaps.
1277  */
1278 static int get_osdmap_client_data_v(void **p, void *end,
1279 				    const char *prefix, u8 *v)
1280 {
1281 	u8 struct_v;
1282 
1283 	ceph_decode_8_safe(p, end, struct_v, e_inval);
1284 	if (struct_v >= 7) {
1285 		u8 struct_compat;
1286 
1287 		ceph_decode_8_safe(p, end, struct_compat, e_inval);
1288 		if (struct_compat > OSDMAP_WRAPPER_COMPAT_VER) {
1289 			pr_warn("got v %d cv %d > %d of %s ceph_osdmap\n",
1290 				struct_v, struct_compat,
1291 				OSDMAP_WRAPPER_COMPAT_VER, prefix);
1292 			return -EINVAL;
1293 		}
1294 		*p += 4; /* ignore wrapper struct_len */
1295 
1296 		ceph_decode_8_safe(p, end, struct_v, e_inval);
1297 		ceph_decode_8_safe(p, end, struct_compat, e_inval);
1298 		if (struct_compat > OSDMAP_CLIENT_DATA_COMPAT_VER) {
1299 			pr_warn("got v %d cv %d > %d of %s ceph_osdmap client data\n",
1300 				struct_v, struct_compat,
1301 				OSDMAP_CLIENT_DATA_COMPAT_VER, prefix);
1302 			return -EINVAL;
1303 		}
1304 		*p += 4; /* ignore client data struct_len */
1305 	} else {
1306 		u16 version;
1307 
1308 		*p -= 1;
1309 		ceph_decode_16_safe(p, end, version, e_inval);
1310 		if (version < 6) {
1311 			pr_warn("got v %d < 6 of %s ceph_osdmap\n",
1312 				version, prefix);
1313 			return -EINVAL;
1314 		}
1315 
1316 		/* old osdmap encoding */
1317 		struct_v = 0;
1318 	}
1319 
1320 	*v = struct_v;
1321 	return 0;
1322 
1323 e_inval:
1324 	return -EINVAL;
1325 }
1326 
1327 static int __decode_pools(void **p, void *end, struct ceph_osdmap *map,
1328 			  bool incremental)
1329 {
1330 	u32 n;
1331 
1332 	ceph_decode_32_safe(p, end, n, e_inval);
1333 	while (n--) {
1334 		struct ceph_pg_pool_info *pi;
1335 		u64 pool;
1336 		int ret;
1337 
1338 		ceph_decode_64_safe(p, end, pool, e_inval);
1339 
1340 		pi = lookup_pg_pool(&map->pg_pools, pool);
1341 		if (!incremental || !pi) {
1342 			pi = kzalloc(sizeof(*pi), GFP_NOFS);
1343 			if (!pi)
1344 				return -ENOMEM;
1345 
1346 			RB_CLEAR_NODE(&pi->node);
1347 			pi->id = pool;
1348 
1349 			if (!__insert_pg_pool(&map->pg_pools, pi)) {
1350 				kfree(pi);
1351 				return -EEXIST;
1352 			}
1353 		}
1354 
1355 		ret = decode_pool(p, end, pi);
1356 		if (ret)
1357 			return ret;
1358 	}
1359 
1360 	return 0;
1361 
1362 e_inval:
1363 	return -EINVAL;
1364 }
1365 
1366 static int decode_pools(void **p, void *end, struct ceph_osdmap *map)
1367 {
1368 	return __decode_pools(p, end, map, false);
1369 }
1370 
1371 static int decode_new_pools(void **p, void *end, struct ceph_osdmap *map)
1372 {
1373 	return __decode_pools(p, end, map, true);
1374 }
1375 
1376 typedef struct ceph_pg_mapping *(*decode_mapping_fn_t)(void **, void *, bool);
1377 
1378 static int decode_pg_mapping(void **p, void *end, struct rb_root *mapping_root,
1379 			     decode_mapping_fn_t fn, bool incremental)
1380 {
1381 	u32 n;
1382 
1383 	WARN_ON(!incremental && !fn);
1384 
1385 	ceph_decode_32_safe(p, end, n, e_inval);
1386 	while (n--) {
1387 		struct ceph_pg_mapping *pg;
1388 		struct ceph_pg pgid;
1389 		int ret;
1390 
1391 		ret = ceph_decode_pgid(p, end, &pgid);
1392 		if (ret)
1393 			return ret;
1394 
1395 		pg = lookup_pg_mapping(mapping_root, &pgid);
1396 		if (pg) {
1397 			WARN_ON(!incremental);
1398 			erase_pg_mapping(mapping_root, pg);
1399 			free_pg_mapping(pg);
1400 		}
1401 
1402 		if (fn) {
1403 			pg = fn(p, end, incremental);
1404 			if (IS_ERR(pg))
1405 				return PTR_ERR(pg);
1406 
1407 			if (pg) {
1408 				pg->pgid = pgid; /* struct */
1409 				insert_pg_mapping(mapping_root, pg);
1410 			}
1411 		}
1412 	}
1413 
1414 	return 0;
1415 
1416 e_inval:
1417 	return -EINVAL;
1418 }
1419 
1420 static struct ceph_pg_mapping *__decode_pg_temp(void **p, void *end,
1421 						bool incremental)
1422 {
1423 	struct ceph_pg_mapping *pg;
1424 	u32 len, i;
1425 
1426 	ceph_decode_32_safe(p, end, len, e_inval);
1427 	if (len == 0 && incremental)
1428 		return NULL;	/* new_pg_temp: [] to remove */
1429 	if ((size_t)len > (SIZE_MAX - sizeof(*pg)) / sizeof(u32))
1430 		return ERR_PTR(-EINVAL);
1431 
1432 	ceph_decode_need(p, end, len * sizeof(u32), e_inval);
1433 	pg = alloc_pg_mapping(len * sizeof(u32));
1434 	if (!pg)
1435 		return ERR_PTR(-ENOMEM);
1436 
1437 	pg->pg_temp.len = len;
1438 	for (i = 0; i < len; i++)
1439 		pg->pg_temp.osds[i] = ceph_decode_32(p);
1440 
1441 	return pg;
1442 
1443 e_inval:
1444 	return ERR_PTR(-EINVAL);
1445 }
1446 
1447 static int decode_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1448 {
1449 	return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
1450 				 false);
1451 }
1452 
1453 static int decode_new_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1454 {
1455 	return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
1456 				 true);
1457 }
1458 
1459 static struct ceph_pg_mapping *__decode_primary_temp(void **p, void *end,
1460 						     bool incremental)
1461 {
1462 	struct ceph_pg_mapping *pg;
1463 	u32 osd;
1464 
1465 	ceph_decode_32_safe(p, end, osd, e_inval);
1466 	if (osd == (u32)-1 && incremental)
1467 		return NULL;	/* new_primary_temp: -1 to remove */
1468 
1469 	pg = alloc_pg_mapping(0);
1470 	if (!pg)
1471 		return ERR_PTR(-ENOMEM);
1472 
1473 	pg->primary_temp.osd = osd;
1474 	return pg;
1475 
1476 e_inval:
1477 	return ERR_PTR(-EINVAL);
1478 }
1479 
1480 static int decode_primary_temp(void **p, void *end, struct ceph_osdmap *map)
1481 {
1482 	return decode_pg_mapping(p, end, &map->primary_temp,
1483 				 __decode_primary_temp, false);
1484 }
1485 
1486 static int decode_new_primary_temp(void **p, void *end,
1487 				   struct ceph_osdmap *map)
1488 {
1489 	return decode_pg_mapping(p, end, &map->primary_temp,
1490 				 __decode_primary_temp, true);
1491 }
1492 
1493 u32 ceph_get_primary_affinity(struct ceph_osdmap *map, int osd)
1494 {
1495 	if (!map->osd_primary_affinity)
1496 		return CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1497 
1498 	return map->osd_primary_affinity[osd];
1499 }
1500 
1501 static int set_primary_affinity(struct ceph_osdmap *map, int osd, u32 aff)
1502 {
1503 	if (!map->osd_primary_affinity) {
1504 		int i;
1505 
1506 		map->osd_primary_affinity = kvmalloc(
1507 		    array_size(map->max_osd, sizeof(*map->osd_primary_affinity)),
1508 		    GFP_NOFS);
1509 		if (!map->osd_primary_affinity)
1510 			return -ENOMEM;
1511 
1512 		for (i = 0; i < map->max_osd; i++)
1513 			map->osd_primary_affinity[i] =
1514 			    CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1515 	}
1516 
1517 	map->osd_primary_affinity[osd] = aff;
1518 
1519 	return 0;
1520 }
1521 
1522 static int decode_primary_affinity(void **p, void *end,
1523 				   struct ceph_osdmap *map)
1524 {
1525 	u32 len, i;
1526 
1527 	ceph_decode_32_safe(p, end, len, e_inval);
1528 	if (len == 0) {
1529 		kvfree(map->osd_primary_affinity);
1530 		map->osd_primary_affinity = NULL;
1531 		return 0;
1532 	}
1533 	if (len != map->max_osd)
1534 		goto e_inval;
1535 
1536 	ceph_decode_need(p, end, map->max_osd*sizeof(u32), e_inval);
1537 
1538 	for (i = 0; i < map->max_osd; i++) {
1539 		int ret;
1540 
1541 		ret = set_primary_affinity(map, i, ceph_decode_32(p));
1542 		if (ret)
1543 			return ret;
1544 	}
1545 
1546 	return 0;
1547 
1548 e_inval:
1549 	return -EINVAL;
1550 }
1551 
1552 static int decode_new_primary_affinity(void **p, void *end,
1553 				       struct ceph_osdmap *map)
1554 {
1555 	u32 n;
1556 
1557 	ceph_decode_32_safe(p, end, n, e_inval);
1558 	while (n--) {
1559 		u32 osd, aff;
1560 		int ret;
1561 
1562 		ceph_decode_32_safe(p, end, osd, e_inval);
1563 		ceph_decode_32_safe(p, end, aff, e_inval);
1564 		if (osd >= map->max_osd)
1565 			goto e_inval;
1566 
1567 		ret = set_primary_affinity(map, osd, aff);
1568 		if (ret)
1569 			return ret;
1570 
1571 		osdmap_info(map, "osd%d primary-affinity 0x%x\n", osd, aff);
1572 	}
1573 
1574 	return 0;
1575 
1576 e_inval:
1577 	return -EINVAL;
1578 }
1579 
1580 static struct ceph_pg_mapping *__decode_pg_upmap(void **p, void *end,
1581 						 bool __unused)
1582 {
1583 	return __decode_pg_temp(p, end, false);
1584 }
1585 
1586 static int decode_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1587 {
1588 	return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
1589 				 false);
1590 }
1591 
1592 static int decode_new_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1593 {
1594 	return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
1595 				 true);
1596 }
1597 
1598 static int decode_old_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1599 {
1600 	return decode_pg_mapping(p, end, &map->pg_upmap, NULL, true);
1601 }
1602 
1603 static struct ceph_pg_mapping *__decode_pg_upmap_items(void **p, void *end,
1604 						       bool __unused)
1605 {
1606 	struct ceph_pg_mapping *pg;
1607 	u32 len, i;
1608 
1609 	ceph_decode_32_safe(p, end, len, e_inval);
1610 	if ((size_t)len > (SIZE_MAX - sizeof(*pg)) / (2 * sizeof(u32)))
1611 		return ERR_PTR(-EINVAL);
1612 
1613 	ceph_decode_need(p, end, 2 * len * sizeof(u32), e_inval);
1614 	pg = alloc_pg_mapping(2 * len * sizeof(u32));
1615 	if (!pg)
1616 		return ERR_PTR(-ENOMEM);
1617 
1618 	pg->pg_upmap_items.len = len;
1619 	for (i = 0; i < len; i++) {
1620 		pg->pg_upmap_items.from_to[i][0] = ceph_decode_32(p);
1621 		pg->pg_upmap_items.from_to[i][1] = ceph_decode_32(p);
1622 	}
1623 
1624 	return pg;
1625 
1626 e_inval:
1627 	return ERR_PTR(-EINVAL);
1628 }
1629 
1630 static int decode_pg_upmap_items(void **p, void *end, struct ceph_osdmap *map)
1631 {
1632 	return decode_pg_mapping(p, end, &map->pg_upmap_items,
1633 				 __decode_pg_upmap_items, false);
1634 }
1635 
1636 static int decode_new_pg_upmap_items(void **p, void *end,
1637 				     struct ceph_osdmap *map)
1638 {
1639 	return decode_pg_mapping(p, end, &map->pg_upmap_items,
1640 				 __decode_pg_upmap_items, true);
1641 }
1642 
1643 static int decode_old_pg_upmap_items(void **p, void *end,
1644 				     struct ceph_osdmap *map)
1645 {
1646 	return decode_pg_mapping(p, end, &map->pg_upmap_items, NULL, true);
1647 }
1648 
1649 /*
1650  * decode a full map.
1651  */
1652 static int osdmap_decode(void **p, void *end, bool msgr2,
1653 			 struct ceph_osdmap *map)
1654 {
1655 	u8 struct_v;
1656 	u32 epoch = 0;
1657 	void *start = *p;
1658 	u32 max;
1659 	u32 len, i;
1660 	int err;
1661 
1662 	dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1663 
1664 	err = get_osdmap_client_data_v(p, end, "full", &struct_v);
1665 	if (err)
1666 		goto bad;
1667 
1668 	/* fsid, epoch, created, modified */
1669 	ceph_decode_need(p, end, sizeof(map->fsid) + sizeof(u32) +
1670 			 sizeof(map->created) + sizeof(map->modified), e_inval);
1671 	ceph_decode_copy(p, &map->fsid, sizeof(map->fsid));
1672 	epoch = map->epoch = ceph_decode_32(p);
1673 	ceph_decode_copy(p, &map->created, sizeof(map->created));
1674 	ceph_decode_copy(p, &map->modified, sizeof(map->modified));
1675 
1676 	/* pools */
1677 	err = decode_pools(p, end, map);
1678 	if (err)
1679 		goto bad;
1680 
1681 	/* pool_name */
1682 	err = decode_pool_names(p, end, map);
1683 	if (err)
1684 		goto bad;
1685 
1686 	ceph_decode_32_safe(p, end, map->pool_max, e_inval);
1687 
1688 	ceph_decode_32_safe(p, end, map->flags, e_inval);
1689 
1690 	/* max_osd */
1691 	ceph_decode_32_safe(p, end, max, e_inval);
1692 
1693 	/* (re)alloc osd arrays */
1694 	err = osdmap_set_max_osd(map, max);
1695 	if (err)
1696 		goto bad;
1697 
1698 	/* osd_state, osd_weight, osd_addrs->client_addr */
1699 	ceph_decode_need(p, end, 3*sizeof(u32) +
1700 			 map->max_osd*(struct_v >= 5 ? sizeof(u32) :
1701 						       sizeof(u8)) +
1702 				       sizeof(*map->osd_weight), e_inval);
1703 	if (ceph_decode_32(p) != map->max_osd)
1704 		goto e_inval;
1705 
1706 	if (struct_v >= 5) {
1707 		for (i = 0; i < map->max_osd; i++)
1708 			map->osd_state[i] = ceph_decode_32(p);
1709 	} else {
1710 		for (i = 0; i < map->max_osd; i++)
1711 			map->osd_state[i] = ceph_decode_8(p);
1712 	}
1713 
1714 	if (ceph_decode_32(p) != map->max_osd)
1715 		goto e_inval;
1716 
1717 	for (i = 0; i < map->max_osd; i++)
1718 		map->osd_weight[i] = ceph_decode_32(p);
1719 
1720 	if (ceph_decode_32(p) != map->max_osd)
1721 		goto e_inval;
1722 
1723 	for (i = 0; i < map->max_osd; i++) {
1724 		struct ceph_entity_addr *addr = &map->osd_addr[i];
1725 
1726 		if (struct_v >= 8)
1727 			err = ceph_decode_entity_addrvec(p, end, msgr2, addr);
1728 		else
1729 			err = ceph_decode_entity_addr(p, end, addr);
1730 		if (err)
1731 			goto bad;
1732 
1733 		dout("%s osd%d addr %s\n", __func__, i, ceph_pr_addr(addr));
1734 	}
1735 
1736 	/* pg_temp */
1737 	err = decode_pg_temp(p, end, map);
1738 	if (err)
1739 		goto bad;
1740 
1741 	/* primary_temp */
1742 	if (struct_v >= 1) {
1743 		err = decode_primary_temp(p, end, map);
1744 		if (err)
1745 			goto bad;
1746 	}
1747 
1748 	/* primary_affinity */
1749 	if (struct_v >= 2) {
1750 		err = decode_primary_affinity(p, end, map);
1751 		if (err)
1752 			goto bad;
1753 	} else {
1754 		WARN_ON(map->osd_primary_affinity);
1755 	}
1756 
1757 	/* crush */
1758 	ceph_decode_32_safe(p, end, len, e_inval);
1759 	err = osdmap_set_crush(map, crush_decode(*p, min(*p + len, end)));
1760 	if (err)
1761 		goto bad;
1762 
1763 	*p += len;
1764 	if (struct_v >= 3) {
1765 		/* erasure_code_profiles */
1766 		ceph_decode_skip_map_of_map(p, end, string, string, string,
1767 					    e_inval);
1768 	}
1769 
1770 	if (struct_v >= 4) {
1771 		err = decode_pg_upmap(p, end, map);
1772 		if (err)
1773 			goto bad;
1774 
1775 		err = decode_pg_upmap_items(p, end, map);
1776 		if (err)
1777 			goto bad;
1778 	} else {
1779 		WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap));
1780 		WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap_items));
1781 	}
1782 
1783 	/* ignore the rest */
1784 	*p = end;
1785 
1786 	dout("full osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
1787 	return 0;
1788 
1789 e_inval:
1790 	err = -EINVAL;
1791 bad:
1792 	pr_err("corrupt full osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
1793 	       err, epoch, (int)(*p - start), *p, start, end);
1794 	print_hex_dump(KERN_DEBUG, "osdmap: ",
1795 		       DUMP_PREFIX_OFFSET, 16, 1,
1796 		       start, end - start, true);
1797 	return err;
1798 }
1799 
1800 /*
1801  * Allocate and decode a full map.
1802  */
1803 struct ceph_osdmap *ceph_osdmap_decode(void **p, void *end, bool msgr2)
1804 {
1805 	struct ceph_osdmap *map;
1806 	int ret;
1807 
1808 	map = ceph_osdmap_alloc();
1809 	if (!map)
1810 		return ERR_PTR(-ENOMEM);
1811 
1812 	ret = osdmap_decode(p, end, msgr2, map);
1813 	if (ret) {
1814 		ceph_osdmap_destroy(map);
1815 		return ERR_PTR(ret);
1816 	}
1817 
1818 	return map;
1819 }
1820 
1821 /*
1822  * Encoding order is (new_up_client, new_state, new_weight).  Need to
1823  * apply in the (new_weight, new_state, new_up_client) order, because
1824  * an incremental map may look like e.g.
1825  *
1826  *     new_up_client: { osd=6, addr=... } # set osd_state and addr
1827  *     new_state: { osd=6, xorstate=EXISTS } # clear osd_state
1828  */
1829 static int decode_new_up_state_weight(void **p, void *end, u8 struct_v,
1830 				      bool msgr2, struct ceph_osdmap *map)
1831 {
1832 	void *new_up_client;
1833 	void *new_state;
1834 	void *new_weight_end;
1835 	u32 len;
1836 	int ret;
1837 	int i;
1838 
1839 	new_up_client = *p;
1840 	ceph_decode_32_safe(p, end, len, e_inval);
1841 	for (i = 0; i < len; ++i) {
1842 		struct ceph_entity_addr addr;
1843 
1844 		ceph_decode_skip_32(p, end, e_inval);
1845 		if (struct_v >= 7)
1846 			ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr);
1847 		else
1848 			ret = ceph_decode_entity_addr(p, end, &addr);
1849 		if (ret)
1850 			return ret;
1851 	}
1852 
1853 	new_state = *p;
1854 	ceph_decode_32_safe(p, end, len, e_inval);
1855 	len *= sizeof(u32) + (struct_v >= 5 ? sizeof(u32) : sizeof(u8));
1856 	ceph_decode_need(p, end, len, e_inval);
1857 	*p += len;
1858 
1859 	/* new_weight */
1860 	ceph_decode_32_safe(p, end, len, e_inval);
1861 	while (len--) {
1862 		s32 osd;
1863 		u32 w;
1864 
1865 		ceph_decode_need(p, end, 2*sizeof(u32), e_inval);
1866 		osd = ceph_decode_32(p);
1867 		w = ceph_decode_32(p);
1868 		if (osd >= map->max_osd)
1869 			goto e_inval;
1870 
1871 		osdmap_info(map, "osd%d weight 0x%x %s\n", osd, w,
1872 			    w == CEPH_OSD_IN ? "(in)" :
1873 			    (w == CEPH_OSD_OUT ? "(out)" : ""));
1874 		map->osd_weight[osd] = w;
1875 
1876 		/*
1877 		 * If we are marking in, set the EXISTS, and clear the
1878 		 * AUTOOUT and NEW bits.
1879 		 */
1880 		if (w) {
1881 			map->osd_state[osd] |= CEPH_OSD_EXISTS;
1882 			map->osd_state[osd] &= ~(CEPH_OSD_AUTOOUT |
1883 						 CEPH_OSD_NEW);
1884 		}
1885 	}
1886 	new_weight_end = *p;
1887 
1888 	/* new_state (up/down) */
1889 	*p = new_state;
1890 	len = ceph_decode_32(p);
1891 	while (len--) {
1892 		s32 osd;
1893 		u32 xorstate;
1894 
1895 		osd = ceph_decode_32(p);
1896 		if (osd >= map->max_osd)
1897 			goto e_inval;
1898 
1899 		if (struct_v >= 5)
1900 			xorstate = ceph_decode_32(p);
1901 		else
1902 			xorstate = ceph_decode_8(p);
1903 		if (xorstate == 0)
1904 			xorstate = CEPH_OSD_UP;
1905 		if ((map->osd_state[osd] & CEPH_OSD_UP) &&
1906 		    (xorstate & CEPH_OSD_UP))
1907 			osdmap_info(map, "osd%d down\n", osd);
1908 		if ((map->osd_state[osd] & CEPH_OSD_EXISTS) &&
1909 		    (xorstate & CEPH_OSD_EXISTS)) {
1910 			osdmap_info(map, "osd%d does not exist\n", osd);
1911 			ret = set_primary_affinity(map, osd,
1912 						   CEPH_OSD_DEFAULT_PRIMARY_AFFINITY);
1913 			if (ret)
1914 				return ret;
1915 			memset(map->osd_addr + osd, 0, sizeof(*map->osd_addr));
1916 			map->osd_state[osd] = 0;
1917 		} else {
1918 			map->osd_state[osd] ^= xorstate;
1919 		}
1920 	}
1921 
1922 	/* new_up_client */
1923 	*p = new_up_client;
1924 	len = ceph_decode_32(p);
1925 	while (len--) {
1926 		s32 osd;
1927 		struct ceph_entity_addr addr;
1928 
1929 		osd = ceph_decode_32(p);
1930 		if (osd >= map->max_osd)
1931 			goto e_inval;
1932 
1933 		if (struct_v >= 7)
1934 			ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr);
1935 		else
1936 			ret = ceph_decode_entity_addr(p, end, &addr);
1937 		if (ret)
1938 			return ret;
1939 
1940 		dout("%s osd%d addr %s\n", __func__, osd, ceph_pr_addr(&addr));
1941 
1942 		osdmap_info(map, "osd%d up\n", osd);
1943 		map->osd_state[osd] |= CEPH_OSD_EXISTS | CEPH_OSD_UP;
1944 		map->osd_addr[osd] = addr;
1945 	}
1946 
1947 	*p = new_weight_end;
1948 	return 0;
1949 
1950 e_inval:
1951 	return -EINVAL;
1952 }
1953 
1954 /*
1955  * decode and apply an incremental map update.
1956  */
1957 struct ceph_osdmap *osdmap_apply_incremental(void **p, void *end, bool msgr2,
1958 					     struct ceph_osdmap *map)
1959 {
1960 	struct ceph_fsid fsid;
1961 	u32 epoch = 0;
1962 	struct ceph_timespec modified;
1963 	s32 len;
1964 	u64 pool;
1965 	__s64 new_pool_max;
1966 	__s32 new_flags, max;
1967 	void *start = *p;
1968 	int err;
1969 	u8 struct_v;
1970 
1971 	dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1972 
1973 	err = get_osdmap_client_data_v(p, end, "inc", &struct_v);
1974 	if (err)
1975 		goto bad;
1976 
1977 	/* fsid, epoch, modified, new_pool_max, new_flags */
1978 	ceph_decode_need(p, end, sizeof(fsid) + sizeof(u32) + sizeof(modified) +
1979 			 sizeof(u64) + sizeof(u32), e_inval);
1980 	ceph_decode_copy(p, &fsid, sizeof(fsid));
1981 	epoch = ceph_decode_32(p);
1982 	BUG_ON(epoch != map->epoch+1);
1983 	ceph_decode_copy(p, &modified, sizeof(modified));
1984 	new_pool_max = ceph_decode_64(p);
1985 	new_flags = ceph_decode_32(p);
1986 
1987 	/* full map? */
1988 	ceph_decode_32_safe(p, end, len, e_inval);
1989 	if (len > 0) {
1990 		dout("apply_incremental full map len %d, %p to %p\n",
1991 		     len, *p, end);
1992 		return ceph_osdmap_decode(p, min(*p+len, end), msgr2);
1993 	}
1994 
1995 	/* new crush? */
1996 	ceph_decode_32_safe(p, end, len, e_inval);
1997 	if (len > 0) {
1998 		err = osdmap_set_crush(map,
1999 				       crush_decode(*p, min(*p + len, end)));
2000 		if (err)
2001 			goto bad;
2002 		*p += len;
2003 	}
2004 
2005 	/* new flags? */
2006 	if (new_flags >= 0)
2007 		map->flags = new_flags;
2008 	if (new_pool_max >= 0)
2009 		map->pool_max = new_pool_max;
2010 
2011 	/* new max? */
2012 	ceph_decode_32_safe(p, end, max, e_inval);
2013 	if (max >= 0) {
2014 		err = osdmap_set_max_osd(map, max);
2015 		if (err)
2016 			goto bad;
2017 	}
2018 
2019 	map->epoch++;
2020 	map->modified = modified;
2021 
2022 	/* new_pools */
2023 	err = decode_new_pools(p, end, map);
2024 	if (err)
2025 		goto bad;
2026 
2027 	/* new_pool_names */
2028 	err = decode_pool_names(p, end, map);
2029 	if (err)
2030 		goto bad;
2031 
2032 	/* old_pool */
2033 	ceph_decode_32_safe(p, end, len, e_inval);
2034 	while (len--) {
2035 		struct ceph_pg_pool_info *pi;
2036 
2037 		ceph_decode_64_safe(p, end, pool, e_inval);
2038 		pi = lookup_pg_pool(&map->pg_pools, pool);
2039 		if (pi)
2040 			__remove_pg_pool(&map->pg_pools, pi);
2041 	}
2042 
2043 	/* new_up_client, new_state, new_weight */
2044 	err = decode_new_up_state_weight(p, end, struct_v, msgr2, map);
2045 	if (err)
2046 		goto bad;
2047 
2048 	/* new_pg_temp */
2049 	err = decode_new_pg_temp(p, end, map);
2050 	if (err)
2051 		goto bad;
2052 
2053 	/* new_primary_temp */
2054 	if (struct_v >= 1) {
2055 		err = decode_new_primary_temp(p, end, map);
2056 		if (err)
2057 			goto bad;
2058 	}
2059 
2060 	/* new_primary_affinity */
2061 	if (struct_v >= 2) {
2062 		err = decode_new_primary_affinity(p, end, map);
2063 		if (err)
2064 			goto bad;
2065 	}
2066 
2067 	if (struct_v >= 3) {
2068 		/* new_erasure_code_profiles */
2069 		ceph_decode_skip_map_of_map(p, end, string, string, string,
2070 					    e_inval);
2071 		/* old_erasure_code_profiles */
2072 		ceph_decode_skip_set(p, end, string, e_inval);
2073 	}
2074 
2075 	if (struct_v >= 4) {
2076 		err = decode_new_pg_upmap(p, end, map);
2077 		if (err)
2078 			goto bad;
2079 
2080 		err = decode_old_pg_upmap(p, end, map);
2081 		if (err)
2082 			goto bad;
2083 
2084 		err = decode_new_pg_upmap_items(p, end, map);
2085 		if (err)
2086 			goto bad;
2087 
2088 		err = decode_old_pg_upmap_items(p, end, map);
2089 		if (err)
2090 			goto bad;
2091 	}
2092 
2093 	/* ignore the rest */
2094 	*p = end;
2095 
2096 	dout("inc osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
2097 	return map;
2098 
2099 e_inval:
2100 	err = -EINVAL;
2101 bad:
2102 	pr_err("corrupt inc osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
2103 	       err, epoch, (int)(*p - start), *p, start, end);
2104 	print_hex_dump(KERN_DEBUG, "osdmap: ",
2105 		       DUMP_PREFIX_OFFSET, 16, 1,
2106 		       start, end - start, true);
2107 	return ERR_PTR(err);
2108 }
2109 
2110 void ceph_oloc_copy(struct ceph_object_locator *dest,
2111 		    const struct ceph_object_locator *src)
2112 {
2113 	ceph_oloc_destroy(dest);
2114 
2115 	dest->pool = src->pool;
2116 	if (src->pool_ns)
2117 		dest->pool_ns = ceph_get_string(src->pool_ns);
2118 	else
2119 		dest->pool_ns = NULL;
2120 }
2121 EXPORT_SYMBOL(ceph_oloc_copy);
2122 
2123 void ceph_oloc_destroy(struct ceph_object_locator *oloc)
2124 {
2125 	ceph_put_string(oloc->pool_ns);
2126 }
2127 EXPORT_SYMBOL(ceph_oloc_destroy);
2128 
2129 void ceph_oid_copy(struct ceph_object_id *dest,
2130 		   const struct ceph_object_id *src)
2131 {
2132 	ceph_oid_destroy(dest);
2133 
2134 	if (src->name != src->inline_name) {
2135 		/* very rare, see ceph_object_id definition */
2136 		dest->name = kmalloc(src->name_len + 1,
2137 				     GFP_NOIO | __GFP_NOFAIL);
2138 	} else {
2139 		dest->name = dest->inline_name;
2140 	}
2141 	memcpy(dest->name, src->name, src->name_len + 1);
2142 	dest->name_len = src->name_len;
2143 }
2144 EXPORT_SYMBOL(ceph_oid_copy);
2145 
2146 static __printf(2, 0)
2147 int oid_printf_vargs(struct ceph_object_id *oid, const char *fmt, va_list ap)
2148 {
2149 	int len;
2150 
2151 	WARN_ON(!ceph_oid_empty(oid));
2152 
2153 	len = vsnprintf(oid->inline_name, sizeof(oid->inline_name), fmt, ap);
2154 	if (len >= sizeof(oid->inline_name))
2155 		return len;
2156 
2157 	oid->name_len = len;
2158 	return 0;
2159 }
2160 
2161 /*
2162  * If oid doesn't fit into inline buffer, BUG.
2163  */
2164 void ceph_oid_printf(struct ceph_object_id *oid, const char *fmt, ...)
2165 {
2166 	va_list ap;
2167 
2168 	va_start(ap, fmt);
2169 	BUG_ON(oid_printf_vargs(oid, fmt, ap));
2170 	va_end(ap);
2171 }
2172 EXPORT_SYMBOL(ceph_oid_printf);
2173 
2174 static __printf(3, 0)
2175 int oid_aprintf_vargs(struct ceph_object_id *oid, gfp_t gfp,
2176 		      const char *fmt, va_list ap)
2177 {
2178 	va_list aq;
2179 	int len;
2180 
2181 	va_copy(aq, ap);
2182 	len = oid_printf_vargs(oid, fmt, aq);
2183 	va_end(aq);
2184 
2185 	if (len) {
2186 		char *external_name;
2187 
2188 		external_name = kmalloc(len + 1, gfp);
2189 		if (!external_name)
2190 			return -ENOMEM;
2191 
2192 		oid->name = external_name;
2193 		WARN_ON(vsnprintf(oid->name, len + 1, fmt, ap) != len);
2194 		oid->name_len = len;
2195 	}
2196 
2197 	return 0;
2198 }
2199 
2200 /*
2201  * If oid doesn't fit into inline buffer, allocate.
2202  */
2203 int ceph_oid_aprintf(struct ceph_object_id *oid, gfp_t gfp,
2204 		     const char *fmt, ...)
2205 {
2206 	va_list ap;
2207 	int ret;
2208 
2209 	va_start(ap, fmt);
2210 	ret = oid_aprintf_vargs(oid, gfp, fmt, ap);
2211 	va_end(ap);
2212 
2213 	return ret;
2214 }
2215 EXPORT_SYMBOL(ceph_oid_aprintf);
2216 
2217 void ceph_oid_destroy(struct ceph_object_id *oid)
2218 {
2219 	if (oid->name != oid->inline_name)
2220 		kfree(oid->name);
2221 }
2222 EXPORT_SYMBOL(ceph_oid_destroy);
2223 
2224 /*
2225  * osds only
2226  */
2227 static bool __osds_equal(const struct ceph_osds *lhs,
2228 			 const struct ceph_osds *rhs)
2229 {
2230 	if (lhs->size == rhs->size &&
2231 	    !memcmp(lhs->osds, rhs->osds, rhs->size * sizeof(rhs->osds[0])))
2232 		return true;
2233 
2234 	return false;
2235 }
2236 
2237 /*
2238  * osds + primary
2239  */
2240 static bool osds_equal(const struct ceph_osds *lhs,
2241 		       const struct ceph_osds *rhs)
2242 {
2243 	if (__osds_equal(lhs, rhs) &&
2244 	    lhs->primary == rhs->primary)
2245 		return true;
2246 
2247 	return false;
2248 }
2249 
2250 static bool osds_valid(const struct ceph_osds *set)
2251 {
2252 	/* non-empty set */
2253 	if (set->size > 0 && set->primary >= 0)
2254 		return true;
2255 
2256 	/* empty can_shift_osds set */
2257 	if (!set->size && set->primary == -1)
2258 		return true;
2259 
2260 	/* empty !can_shift_osds set - all NONE */
2261 	if (set->size > 0 && set->primary == -1) {
2262 		int i;
2263 
2264 		for (i = 0; i < set->size; i++) {
2265 			if (set->osds[i] != CRUSH_ITEM_NONE)
2266 				break;
2267 		}
2268 		if (i == set->size)
2269 			return true;
2270 	}
2271 
2272 	return false;
2273 }
2274 
2275 void ceph_osds_copy(struct ceph_osds *dest, const struct ceph_osds *src)
2276 {
2277 	memcpy(dest->osds, src->osds, src->size * sizeof(src->osds[0]));
2278 	dest->size = src->size;
2279 	dest->primary = src->primary;
2280 }
2281 
2282 bool ceph_pg_is_split(const struct ceph_pg *pgid, u32 old_pg_num,
2283 		      u32 new_pg_num)
2284 {
2285 	int old_bits = calc_bits_of(old_pg_num);
2286 	int old_mask = (1 << old_bits) - 1;
2287 	int n;
2288 
2289 	WARN_ON(pgid->seed >= old_pg_num);
2290 	if (new_pg_num <= old_pg_num)
2291 		return false;
2292 
2293 	for (n = 1; ; n++) {
2294 		int next_bit = n << (old_bits - 1);
2295 		u32 s = next_bit | pgid->seed;
2296 
2297 		if (s < old_pg_num || s == pgid->seed)
2298 			continue;
2299 		if (s >= new_pg_num)
2300 			break;
2301 
2302 		s = ceph_stable_mod(s, old_pg_num, old_mask);
2303 		if (s == pgid->seed)
2304 			return true;
2305 	}
2306 
2307 	return false;
2308 }
2309 
2310 bool ceph_is_new_interval(const struct ceph_osds *old_acting,
2311 			  const struct ceph_osds *new_acting,
2312 			  const struct ceph_osds *old_up,
2313 			  const struct ceph_osds *new_up,
2314 			  int old_size,
2315 			  int new_size,
2316 			  int old_min_size,
2317 			  int new_min_size,
2318 			  u32 old_pg_num,
2319 			  u32 new_pg_num,
2320 			  bool old_sort_bitwise,
2321 			  bool new_sort_bitwise,
2322 			  bool old_recovery_deletes,
2323 			  bool new_recovery_deletes,
2324 			  const struct ceph_pg *pgid)
2325 {
2326 	return !osds_equal(old_acting, new_acting) ||
2327 	       !osds_equal(old_up, new_up) ||
2328 	       old_size != new_size ||
2329 	       old_min_size != new_min_size ||
2330 	       ceph_pg_is_split(pgid, old_pg_num, new_pg_num) ||
2331 	       old_sort_bitwise != new_sort_bitwise ||
2332 	       old_recovery_deletes != new_recovery_deletes;
2333 }
2334 
2335 static int calc_pg_rank(int osd, const struct ceph_osds *acting)
2336 {
2337 	int i;
2338 
2339 	for (i = 0; i < acting->size; i++) {
2340 		if (acting->osds[i] == osd)
2341 			return i;
2342 	}
2343 
2344 	return -1;
2345 }
2346 
2347 static bool primary_changed(const struct ceph_osds *old_acting,
2348 			    const struct ceph_osds *new_acting)
2349 {
2350 	if (!old_acting->size && !new_acting->size)
2351 		return false; /* both still empty */
2352 
2353 	if (!old_acting->size ^ !new_acting->size)
2354 		return true; /* was empty, now not, or vice versa */
2355 
2356 	if (old_acting->primary != new_acting->primary)
2357 		return true; /* primary changed */
2358 
2359 	if (calc_pg_rank(old_acting->primary, old_acting) !=
2360 	    calc_pg_rank(new_acting->primary, new_acting))
2361 		return true;
2362 
2363 	return false; /* same primary (tho replicas may have changed) */
2364 }
2365 
2366 bool ceph_osds_changed(const struct ceph_osds *old_acting,
2367 		       const struct ceph_osds *new_acting,
2368 		       bool any_change)
2369 {
2370 	if (primary_changed(old_acting, new_acting))
2371 		return true;
2372 
2373 	if (any_change && !__osds_equal(old_acting, new_acting))
2374 		return true;
2375 
2376 	return false;
2377 }
2378 
2379 /*
2380  * Map an object into a PG.
2381  *
2382  * Should only be called with target_oid and target_oloc (as opposed to
2383  * base_oid and base_oloc), since tiering isn't taken into account.
2384  */
2385 void __ceph_object_locator_to_pg(struct ceph_pg_pool_info *pi,
2386 				 const struct ceph_object_id *oid,
2387 				 const struct ceph_object_locator *oloc,
2388 				 struct ceph_pg *raw_pgid)
2389 {
2390 	WARN_ON(pi->id != oloc->pool);
2391 
2392 	if (!oloc->pool_ns) {
2393 		raw_pgid->pool = oloc->pool;
2394 		raw_pgid->seed = ceph_str_hash(pi->object_hash, oid->name,
2395 					     oid->name_len);
2396 		dout("%s %s -> raw_pgid %llu.%x\n", __func__, oid->name,
2397 		     raw_pgid->pool, raw_pgid->seed);
2398 	} else {
2399 		char stack_buf[256];
2400 		char *buf = stack_buf;
2401 		int nsl = oloc->pool_ns->len;
2402 		size_t total = nsl + 1 + oid->name_len;
2403 
2404 		if (total > sizeof(stack_buf))
2405 			buf = kmalloc(total, GFP_NOIO | __GFP_NOFAIL);
2406 		memcpy(buf, oloc->pool_ns->str, nsl);
2407 		buf[nsl] = '\037';
2408 		memcpy(buf + nsl + 1, oid->name, oid->name_len);
2409 		raw_pgid->pool = oloc->pool;
2410 		raw_pgid->seed = ceph_str_hash(pi->object_hash, buf, total);
2411 		if (buf != stack_buf)
2412 			kfree(buf);
2413 		dout("%s %s ns %.*s -> raw_pgid %llu.%x\n", __func__,
2414 		     oid->name, nsl, oloc->pool_ns->str,
2415 		     raw_pgid->pool, raw_pgid->seed);
2416 	}
2417 }
2418 
2419 int ceph_object_locator_to_pg(struct ceph_osdmap *osdmap,
2420 			      const struct ceph_object_id *oid,
2421 			      const struct ceph_object_locator *oloc,
2422 			      struct ceph_pg *raw_pgid)
2423 {
2424 	struct ceph_pg_pool_info *pi;
2425 
2426 	pi = ceph_pg_pool_by_id(osdmap, oloc->pool);
2427 	if (!pi)
2428 		return -ENOENT;
2429 
2430 	__ceph_object_locator_to_pg(pi, oid, oloc, raw_pgid);
2431 	return 0;
2432 }
2433 EXPORT_SYMBOL(ceph_object_locator_to_pg);
2434 
2435 /*
2436  * Map a raw PG (full precision ps) into an actual PG.
2437  */
2438 static void raw_pg_to_pg(struct ceph_pg_pool_info *pi,
2439 			 const struct ceph_pg *raw_pgid,
2440 			 struct ceph_pg *pgid)
2441 {
2442 	pgid->pool = raw_pgid->pool;
2443 	pgid->seed = ceph_stable_mod(raw_pgid->seed, pi->pg_num,
2444 				     pi->pg_num_mask);
2445 }
2446 
2447 /*
2448  * Map a raw PG (full precision ps) into a placement ps (placement
2449  * seed).  Include pool id in that value so that different pools don't
2450  * use the same seeds.
2451  */
2452 static u32 raw_pg_to_pps(struct ceph_pg_pool_info *pi,
2453 			 const struct ceph_pg *raw_pgid)
2454 {
2455 	if (pi->flags & CEPH_POOL_FLAG_HASHPSPOOL) {
2456 		/* hash pool id and seed so that pool PGs do not overlap */
2457 		return crush_hash32_2(CRUSH_HASH_RJENKINS1,
2458 				      ceph_stable_mod(raw_pgid->seed,
2459 						      pi->pgp_num,
2460 						      pi->pgp_num_mask),
2461 				      raw_pgid->pool);
2462 	} else {
2463 		/*
2464 		 * legacy behavior: add ps and pool together.  this is
2465 		 * not a great approach because the PGs from each pool
2466 		 * will overlap on top of each other: 0.5 == 1.4 ==
2467 		 * 2.3 == ...
2468 		 */
2469 		return ceph_stable_mod(raw_pgid->seed, pi->pgp_num,
2470 				       pi->pgp_num_mask) +
2471 		       (unsigned)raw_pgid->pool;
2472 	}
2473 }
2474 
2475 /*
2476  * Magic value used for a "default" fallback choose_args, used if the
2477  * crush_choose_arg_map passed to do_crush() does not exist.  If this
2478  * also doesn't exist, fall back to canonical weights.
2479  */
2480 #define CEPH_DEFAULT_CHOOSE_ARGS	-1
2481 
2482 static int do_crush(struct ceph_osdmap *map, int ruleno, int x,
2483 		    int *result, int result_max,
2484 		    const __u32 *weight, int weight_max,
2485 		    s64 choose_args_index)
2486 {
2487 	struct crush_choose_arg_map *arg_map;
2488 	struct crush_work *work;
2489 	int r;
2490 
2491 	BUG_ON(result_max > CEPH_PG_MAX_SIZE);
2492 
2493 	arg_map = lookup_choose_arg_map(&map->crush->choose_args,
2494 					choose_args_index);
2495 	if (!arg_map)
2496 		arg_map = lookup_choose_arg_map(&map->crush->choose_args,
2497 						CEPH_DEFAULT_CHOOSE_ARGS);
2498 
2499 	work = get_workspace(&map->crush_wsm, map->crush);
2500 	r = crush_do_rule(map->crush, ruleno, x, result, result_max,
2501 			  weight, weight_max, work,
2502 			  arg_map ? arg_map->args : NULL);
2503 	put_workspace(&map->crush_wsm, work);
2504 	return r;
2505 }
2506 
2507 static void remove_nonexistent_osds(struct ceph_osdmap *osdmap,
2508 				    struct ceph_pg_pool_info *pi,
2509 				    struct ceph_osds *set)
2510 {
2511 	int i;
2512 
2513 	if (ceph_can_shift_osds(pi)) {
2514 		int removed = 0;
2515 
2516 		/* shift left */
2517 		for (i = 0; i < set->size; i++) {
2518 			if (!ceph_osd_exists(osdmap, set->osds[i])) {
2519 				removed++;
2520 				continue;
2521 			}
2522 			if (removed)
2523 				set->osds[i - removed] = set->osds[i];
2524 		}
2525 		set->size -= removed;
2526 	} else {
2527 		/* set dne devices to NONE */
2528 		for (i = 0; i < set->size; i++) {
2529 			if (!ceph_osd_exists(osdmap, set->osds[i]))
2530 				set->osds[i] = CRUSH_ITEM_NONE;
2531 		}
2532 	}
2533 }
2534 
2535 /*
2536  * Calculate raw set (CRUSH output) for given PG and filter out
2537  * nonexistent OSDs.  ->primary is undefined for a raw set.
2538  *
2539  * Placement seed (CRUSH input) is returned through @ppps.
2540  */
2541 static void pg_to_raw_osds(struct ceph_osdmap *osdmap,
2542 			   struct ceph_pg_pool_info *pi,
2543 			   const struct ceph_pg *raw_pgid,
2544 			   struct ceph_osds *raw,
2545 			   u32 *ppps)
2546 {
2547 	u32 pps = raw_pg_to_pps(pi, raw_pgid);
2548 	int ruleno;
2549 	int len;
2550 
2551 	ceph_osds_init(raw);
2552 	if (ppps)
2553 		*ppps = pps;
2554 
2555 	ruleno = crush_find_rule(osdmap->crush, pi->crush_ruleset, pi->type,
2556 				 pi->size);
2557 	if (ruleno < 0) {
2558 		pr_err("no crush rule: pool %lld ruleset %d type %d size %d\n",
2559 		       pi->id, pi->crush_ruleset, pi->type, pi->size);
2560 		return;
2561 	}
2562 
2563 	if (pi->size > ARRAY_SIZE(raw->osds)) {
2564 		pr_err_ratelimited("pool %lld ruleset %d type %d too wide: size %d > %zu\n",
2565 		       pi->id, pi->crush_ruleset, pi->type, pi->size,
2566 		       ARRAY_SIZE(raw->osds));
2567 		return;
2568 	}
2569 
2570 	len = do_crush(osdmap, ruleno, pps, raw->osds, pi->size,
2571 		       osdmap->osd_weight, osdmap->max_osd, pi->id);
2572 	if (len < 0) {
2573 		pr_err("error %d from crush rule %d: pool %lld ruleset %d type %d size %d\n",
2574 		       len, ruleno, pi->id, pi->crush_ruleset, pi->type,
2575 		       pi->size);
2576 		return;
2577 	}
2578 
2579 	raw->size = len;
2580 	remove_nonexistent_osds(osdmap, pi, raw);
2581 }
2582 
2583 /* apply pg_upmap[_items] mappings */
2584 static void apply_upmap(struct ceph_osdmap *osdmap,
2585 			const struct ceph_pg *pgid,
2586 			struct ceph_osds *raw)
2587 {
2588 	struct ceph_pg_mapping *pg;
2589 	int i, j;
2590 
2591 	pg = lookup_pg_mapping(&osdmap->pg_upmap, pgid);
2592 	if (pg) {
2593 		/* make sure targets aren't marked out */
2594 		for (i = 0; i < pg->pg_upmap.len; i++) {
2595 			int osd = pg->pg_upmap.osds[i];
2596 
2597 			if (osd != CRUSH_ITEM_NONE &&
2598 			    osd < osdmap->max_osd &&
2599 			    osdmap->osd_weight[osd] == 0) {
2600 				/* reject/ignore explicit mapping */
2601 				return;
2602 			}
2603 		}
2604 		for (i = 0; i < pg->pg_upmap.len; i++)
2605 			raw->osds[i] = pg->pg_upmap.osds[i];
2606 		raw->size = pg->pg_upmap.len;
2607 		/* check and apply pg_upmap_items, if any */
2608 	}
2609 
2610 	pg = lookup_pg_mapping(&osdmap->pg_upmap_items, pgid);
2611 	if (pg) {
2612 		/*
2613 		 * Note: this approach does not allow a bidirectional swap,
2614 		 * e.g., [[1,2],[2,1]] applied to [0,1,2] -> [0,2,1].
2615 		 */
2616 		for (i = 0; i < pg->pg_upmap_items.len; i++) {
2617 			int from = pg->pg_upmap_items.from_to[i][0];
2618 			int to = pg->pg_upmap_items.from_to[i][1];
2619 			int pos = -1;
2620 			bool exists = false;
2621 
2622 			/* make sure replacement doesn't already appear */
2623 			for (j = 0; j < raw->size; j++) {
2624 				int osd = raw->osds[j];
2625 
2626 				if (osd == to) {
2627 					exists = true;
2628 					break;
2629 				}
2630 				/* ignore mapping if target is marked out */
2631 				if (osd == from && pos < 0 &&
2632 				    !(to != CRUSH_ITEM_NONE &&
2633 				      to < osdmap->max_osd &&
2634 				      osdmap->osd_weight[to] == 0)) {
2635 					pos = j;
2636 				}
2637 			}
2638 			if (!exists && pos >= 0)
2639 				raw->osds[pos] = to;
2640 		}
2641 	}
2642 }
2643 
2644 /*
2645  * Given raw set, calculate up set and up primary.  By definition of an
2646  * up set, the result won't contain nonexistent or down OSDs.
2647  *
2648  * This is done in-place - on return @set is the up set.  If it's
2649  * empty, ->primary will remain undefined.
2650  */
2651 static void raw_to_up_osds(struct ceph_osdmap *osdmap,
2652 			   struct ceph_pg_pool_info *pi,
2653 			   struct ceph_osds *set)
2654 {
2655 	int i;
2656 
2657 	/* ->primary is undefined for a raw set */
2658 	BUG_ON(set->primary != -1);
2659 
2660 	if (ceph_can_shift_osds(pi)) {
2661 		int removed = 0;
2662 
2663 		/* shift left */
2664 		for (i = 0; i < set->size; i++) {
2665 			if (ceph_osd_is_down(osdmap, set->osds[i])) {
2666 				removed++;
2667 				continue;
2668 			}
2669 			if (removed)
2670 				set->osds[i - removed] = set->osds[i];
2671 		}
2672 		set->size -= removed;
2673 		if (set->size > 0)
2674 			set->primary = set->osds[0];
2675 	} else {
2676 		/* set down/dne devices to NONE */
2677 		for (i = set->size - 1; i >= 0; i--) {
2678 			if (ceph_osd_is_down(osdmap, set->osds[i]))
2679 				set->osds[i] = CRUSH_ITEM_NONE;
2680 			else
2681 				set->primary = set->osds[i];
2682 		}
2683 	}
2684 }
2685 
2686 static void apply_primary_affinity(struct ceph_osdmap *osdmap,
2687 				   struct ceph_pg_pool_info *pi,
2688 				   u32 pps,
2689 				   struct ceph_osds *up)
2690 {
2691 	int i;
2692 	int pos = -1;
2693 
2694 	/*
2695 	 * Do we have any non-default primary_affinity values for these
2696 	 * osds?
2697 	 */
2698 	if (!osdmap->osd_primary_affinity)
2699 		return;
2700 
2701 	for (i = 0; i < up->size; i++) {
2702 		int osd = up->osds[i];
2703 
2704 		if (osd != CRUSH_ITEM_NONE &&
2705 		    osdmap->osd_primary_affinity[osd] !=
2706 					CEPH_OSD_DEFAULT_PRIMARY_AFFINITY) {
2707 			break;
2708 		}
2709 	}
2710 	if (i == up->size)
2711 		return;
2712 
2713 	/*
2714 	 * Pick the primary.  Feed both the seed (for the pg) and the
2715 	 * osd into the hash/rng so that a proportional fraction of an
2716 	 * osd's pgs get rejected as primary.
2717 	 */
2718 	for (i = 0; i < up->size; i++) {
2719 		int osd = up->osds[i];
2720 		u32 aff;
2721 
2722 		if (osd == CRUSH_ITEM_NONE)
2723 			continue;
2724 
2725 		aff = osdmap->osd_primary_affinity[osd];
2726 		if (aff < CEPH_OSD_MAX_PRIMARY_AFFINITY &&
2727 		    (crush_hash32_2(CRUSH_HASH_RJENKINS1,
2728 				    pps, osd) >> 16) >= aff) {
2729 			/*
2730 			 * We chose not to use this primary.  Note it
2731 			 * anyway as a fallback in case we don't pick
2732 			 * anyone else, but keep looking.
2733 			 */
2734 			if (pos < 0)
2735 				pos = i;
2736 		} else {
2737 			pos = i;
2738 			break;
2739 		}
2740 	}
2741 	if (pos < 0)
2742 		return;
2743 
2744 	up->primary = up->osds[pos];
2745 
2746 	if (ceph_can_shift_osds(pi) && pos > 0) {
2747 		/* move the new primary to the front */
2748 		for (i = pos; i > 0; i--)
2749 			up->osds[i] = up->osds[i - 1];
2750 		up->osds[0] = up->primary;
2751 	}
2752 }
2753 
2754 /*
2755  * Get pg_temp and primary_temp mappings for given PG.
2756  *
2757  * Note that a PG may have none, only pg_temp, only primary_temp or
2758  * both pg_temp and primary_temp mappings.  This means @temp isn't
2759  * always a valid OSD set on return: in the "only primary_temp" case,
2760  * @temp will have its ->primary >= 0 but ->size == 0.
2761  */
2762 static void get_temp_osds(struct ceph_osdmap *osdmap,
2763 			  struct ceph_pg_pool_info *pi,
2764 			  const struct ceph_pg *pgid,
2765 			  struct ceph_osds *temp)
2766 {
2767 	struct ceph_pg_mapping *pg;
2768 	int i;
2769 
2770 	ceph_osds_init(temp);
2771 
2772 	/* pg_temp? */
2773 	pg = lookup_pg_mapping(&osdmap->pg_temp, pgid);
2774 	if (pg) {
2775 		for (i = 0; i < pg->pg_temp.len; i++) {
2776 			if (ceph_osd_is_down(osdmap, pg->pg_temp.osds[i])) {
2777 				if (ceph_can_shift_osds(pi))
2778 					continue;
2779 
2780 				temp->osds[temp->size++] = CRUSH_ITEM_NONE;
2781 			} else {
2782 				temp->osds[temp->size++] = pg->pg_temp.osds[i];
2783 			}
2784 		}
2785 
2786 		/* apply pg_temp's primary */
2787 		for (i = 0; i < temp->size; i++) {
2788 			if (temp->osds[i] != CRUSH_ITEM_NONE) {
2789 				temp->primary = temp->osds[i];
2790 				break;
2791 			}
2792 		}
2793 	}
2794 
2795 	/* primary_temp? */
2796 	pg = lookup_pg_mapping(&osdmap->primary_temp, pgid);
2797 	if (pg)
2798 		temp->primary = pg->primary_temp.osd;
2799 }
2800 
2801 /*
2802  * Map a PG to its acting set as well as its up set.
2803  *
2804  * Acting set is used for data mapping purposes, while up set can be
2805  * recorded for detecting interval changes and deciding whether to
2806  * resend a request.
2807  */
2808 void ceph_pg_to_up_acting_osds(struct ceph_osdmap *osdmap,
2809 			       struct ceph_pg_pool_info *pi,
2810 			       const struct ceph_pg *raw_pgid,
2811 			       struct ceph_osds *up,
2812 			       struct ceph_osds *acting)
2813 {
2814 	struct ceph_pg pgid;
2815 	u32 pps;
2816 
2817 	WARN_ON(pi->id != raw_pgid->pool);
2818 	raw_pg_to_pg(pi, raw_pgid, &pgid);
2819 
2820 	pg_to_raw_osds(osdmap, pi, raw_pgid, up, &pps);
2821 	apply_upmap(osdmap, &pgid, up);
2822 	raw_to_up_osds(osdmap, pi, up);
2823 	apply_primary_affinity(osdmap, pi, pps, up);
2824 	get_temp_osds(osdmap, pi, &pgid, acting);
2825 	if (!acting->size) {
2826 		memcpy(acting->osds, up->osds, up->size * sizeof(up->osds[0]));
2827 		acting->size = up->size;
2828 		if (acting->primary == -1)
2829 			acting->primary = up->primary;
2830 	}
2831 	WARN_ON(!osds_valid(up) || !osds_valid(acting));
2832 }
2833 
2834 bool ceph_pg_to_primary_shard(struct ceph_osdmap *osdmap,
2835 			      struct ceph_pg_pool_info *pi,
2836 			      const struct ceph_pg *raw_pgid,
2837 			      struct ceph_spg *spgid)
2838 {
2839 	struct ceph_pg pgid;
2840 	struct ceph_osds up, acting;
2841 	int i;
2842 
2843 	WARN_ON(pi->id != raw_pgid->pool);
2844 	raw_pg_to_pg(pi, raw_pgid, &pgid);
2845 
2846 	if (ceph_can_shift_osds(pi)) {
2847 		spgid->pgid = pgid; /* struct */
2848 		spgid->shard = CEPH_SPG_NOSHARD;
2849 		return true;
2850 	}
2851 
2852 	ceph_pg_to_up_acting_osds(osdmap, pi, &pgid, &up, &acting);
2853 	for (i = 0; i < acting.size; i++) {
2854 		if (acting.osds[i] == acting.primary) {
2855 			spgid->pgid = pgid; /* struct */
2856 			spgid->shard = i;
2857 			return true;
2858 		}
2859 	}
2860 
2861 	return false;
2862 }
2863 
2864 /*
2865  * Return acting primary for given PG, or -1 if none.
2866  */
2867 int ceph_pg_to_acting_primary(struct ceph_osdmap *osdmap,
2868 			      const struct ceph_pg *raw_pgid)
2869 {
2870 	struct ceph_pg_pool_info *pi;
2871 	struct ceph_osds up, acting;
2872 
2873 	pi = ceph_pg_pool_by_id(osdmap, raw_pgid->pool);
2874 	if (!pi)
2875 		return -1;
2876 
2877 	ceph_pg_to_up_acting_osds(osdmap, pi, raw_pgid, &up, &acting);
2878 	return acting.primary;
2879 }
2880 EXPORT_SYMBOL(ceph_pg_to_acting_primary);
2881 
2882 static struct crush_loc_node *alloc_crush_loc(size_t type_name_len,
2883 					      size_t name_len)
2884 {
2885 	struct crush_loc_node *loc;
2886 
2887 	loc = kmalloc(sizeof(*loc) + type_name_len + name_len + 2, GFP_NOIO);
2888 	if (!loc)
2889 		return NULL;
2890 
2891 	RB_CLEAR_NODE(&loc->cl_node);
2892 	return loc;
2893 }
2894 
2895 static void free_crush_loc(struct crush_loc_node *loc)
2896 {
2897 	WARN_ON(!RB_EMPTY_NODE(&loc->cl_node));
2898 
2899 	kfree(loc);
2900 }
2901 
2902 static int crush_loc_compare(const struct crush_loc *loc1,
2903 			     const struct crush_loc *loc2)
2904 {
2905 	return strcmp(loc1->cl_type_name, loc2->cl_type_name) ?:
2906 	       strcmp(loc1->cl_name, loc2->cl_name);
2907 }
2908 
2909 DEFINE_RB_FUNCS2(crush_loc, struct crush_loc_node, cl_loc, crush_loc_compare,
2910 		 RB_BYPTR, const struct crush_loc *, cl_node)
2911 
2912 /*
2913  * Parses a set of <bucket type name>':'<bucket name> pairs separated
2914  * by '|', e.g. "rack:foo1|rack:foo2|datacenter:bar".
2915  *
2916  * Note that @crush_location is modified by strsep().
2917  */
2918 int ceph_parse_crush_location(char *crush_location, struct rb_root *locs)
2919 {
2920 	struct crush_loc_node *loc;
2921 	const char *type_name, *name, *colon;
2922 	size_t type_name_len, name_len;
2923 
2924 	dout("%s '%s'\n", __func__, crush_location);
2925 	while ((type_name = strsep(&crush_location, "|"))) {
2926 		colon = strchr(type_name, ':');
2927 		if (!colon)
2928 			return -EINVAL;
2929 
2930 		type_name_len = colon - type_name;
2931 		if (type_name_len == 0)
2932 			return -EINVAL;
2933 
2934 		name = colon + 1;
2935 		name_len = strlen(name);
2936 		if (name_len == 0)
2937 			return -EINVAL;
2938 
2939 		loc = alloc_crush_loc(type_name_len, name_len);
2940 		if (!loc)
2941 			return -ENOMEM;
2942 
2943 		loc->cl_loc.cl_type_name = loc->cl_data;
2944 		memcpy(loc->cl_loc.cl_type_name, type_name, type_name_len);
2945 		loc->cl_loc.cl_type_name[type_name_len] = '\0';
2946 
2947 		loc->cl_loc.cl_name = loc->cl_data + type_name_len + 1;
2948 		memcpy(loc->cl_loc.cl_name, name, name_len);
2949 		loc->cl_loc.cl_name[name_len] = '\0';
2950 
2951 		if (!__insert_crush_loc(locs, loc)) {
2952 			free_crush_loc(loc);
2953 			return -EEXIST;
2954 		}
2955 
2956 		dout("%s type_name '%s' name '%s'\n", __func__,
2957 		     loc->cl_loc.cl_type_name, loc->cl_loc.cl_name);
2958 	}
2959 
2960 	return 0;
2961 }
2962 
2963 int ceph_compare_crush_locs(struct rb_root *locs1, struct rb_root *locs2)
2964 {
2965 	struct rb_node *n1 = rb_first(locs1);
2966 	struct rb_node *n2 = rb_first(locs2);
2967 	int ret;
2968 
2969 	for ( ; n1 && n2; n1 = rb_next(n1), n2 = rb_next(n2)) {
2970 		struct crush_loc_node *loc1 =
2971 		    rb_entry(n1, struct crush_loc_node, cl_node);
2972 		struct crush_loc_node *loc2 =
2973 		    rb_entry(n2, struct crush_loc_node, cl_node);
2974 
2975 		ret = crush_loc_compare(&loc1->cl_loc, &loc2->cl_loc);
2976 		if (ret)
2977 			return ret;
2978 	}
2979 
2980 	if (!n1 && n2)
2981 		return -1;
2982 	if (n1 && !n2)
2983 		return 1;
2984 	return 0;
2985 }
2986 
2987 void ceph_clear_crush_locs(struct rb_root *locs)
2988 {
2989 	while (!RB_EMPTY_ROOT(locs)) {
2990 		struct crush_loc_node *loc =
2991 		    rb_entry(rb_first(locs), struct crush_loc_node, cl_node);
2992 
2993 		erase_crush_loc(locs, loc);
2994 		free_crush_loc(loc);
2995 	}
2996 }
2997 
2998 /*
2999  * [a-zA-Z0-9-_.]+
3000  */
3001 static bool is_valid_crush_name(const char *name)
3002 {
3003 	do {
3004 		if (!('a' <= *name && *name <= 'z') &&
3005 		    !('A' <= *name && *name <= 'Z') &&
3006 		    !('0' <= *name && *name <= '9') &&
3007 		    *name != '-' && *name != '_' && *name != '.')
3008 			return false;
3009 	} while (*++name != '\0');
3010 
3011 	return true;
3012 }
3013 
3014 /*
3015  * Gets the parent of an item.  Returns its id (<0 because the
3016  * parent is always a bucket), type id (>0 for the same reason,
3017  * via @parent_type_id) and location (via @parent_loc).  If no
3018  * parent, returns 0.
3019  *
3020  * Does a linear search, as there are no parent pointers of any
3021  * kind.  Note that the result is ambiguous for items that occur
3022  * multiple times in the map.
3023  */
3024 static int get_immediate_parent(struct crush_map *c, int id,
3025 				u16 *parent_type_id,
3026 				struct crush_loc *parent_loc)
3027 {
3028 	struct crush_bucket *b;
3029 	struct crush_name_node *type_cn, *cn;
3030 	int i, j;
3031 
3032 	for (i = 0; i < c->max_buckets; i++) {
3033 		b = c->buckets[i];
3034 		if (!b)
3035 			continue;
3036 
3037 		/* ignore per-class shadow hierarchy */
3038 		cn = lookup_crush_name(&c->names, b->id);
3039 		if (!cn || !is_valid_crush_name(cn->cn_name))
3040 			continue;
3041 
3042 		for (j = 0; j < b->size; j++) {
3043 			if (b->items[j] != id)
3044 				continue;
3045 
3046 			*parent_type_id = b->type;
3047 			type_cn = lookup_crush_name(&c->type_names, b->type);
3048 			parent_loc->cl_type_name = type_cn->cn_name;
3049 			parent_loc->cl_name = cn->cn_name;
3050 			return b->id;
3051 		}
3052 	}
3053 
3054 	return 0;  /* no parent */
3055 }
3056 
3057 /*
3058  * Calculates the locality/distance from an item to a client
3059  * location expressed in terms of CRUSH hierarchy as a set of
3060  * (bucket type name, bucket name) pairs.  Specifically, looks
3061  * for the lowest-valued bucket type for which the location of
3062  * @id matches one of the locations in @locs, so for standard
3063  * bucket types (host = 1, rack = 3, datacenter = 8, zone = 9)
3064  * a matching host is closer than a matching rack and a matching
3065  * data center is closer than a matching zone.
3066  *
3067  * Specifying multiple locations (a "multipath" location) such
3068  * as "rack=foo1 rack=foo2 datacenter=bar" is allowed -- @locs
3069  * is a multimap.  The locality will be:
3070  *
3071  * - 3 for OSDs in racks foo1 and foo2
3072  * - 8 for OSDs in data center bar
3073  * - -1 for all other OSDs
3074  *
3075  * The lowest possible bucket type is 1, so the best locality
3076  * for an OSD is 1 (i.e. a matching host).  Locality 0 would be
3077  * the OSD itself.
3078  */
3079 int ceph_get_crush_locality(struct ceph_osdmap *osdmap, int id,
3080 			    struct rb_root *locs)
3081 {
3082 	struct crush_loc loc;
3083 	u16 type_id;
3084 
3085 	/*
3086 	 * Instead of repeated get_immediate_parent() calls,
3087 	 * the location of @id could be obtained with a single
3088 	 * depth-first traversal.
3089 	 */
3090 	for (;;) {
3091 		id = get_immediate_parent(osdmap->crush, id, &type_id, &loc);
3092 		if (id >= 0)
3093 			return -1;  /* not local */
3094 
3095 		if (lookup_crush_loc(locs, &loc))
3096 			return type_id;
3097 	}
3098 }
3099