1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Pid namespaces
4 *
5 * Authors:
6 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
7 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
8 * Many thanks to Oleg Nesterov for comments and help
9 *
10 */
11
12 #include <linux/pid.h>
13 #include <linux/pid_namespace.h>
14 #include <linux/user_namespace.h>
15 #include <linux/syscalls.h>
16 #include <linux/cred.h>
17 #include <linux/err.h>
18 #include <linux/acct.h>
19 #include <linux/slab.h>
20 #include <linux/proc_ns.h>
21 #include <linux/reboot.h>
22 #include <linux/export.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/signal.h>
25 #include <linux/idr.h>
26 #include <linux/nstree.h>
27 #include <uapi/linux/wait.h>
28 #include "pid_sysctl.h"
29
30 static DEFINE_MUTEX(pid_caches_mutex);
31 static struct kmem_cache *pid_ns_cachep;
32 /* Write once array, filled from the beginning. */
33 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
34
35 /*
36 * creates the kmem cache to allocate pids from.
37 * @level: pid namespace level
38 */
39
create_pid_cachep(unsigned int level)40 static struct kmem_cache *create_pid_cachep(unsigned int level)
41 {
42 /* Level 0 is init_pid_ns.pid_cachep */
43 struct kmem_cache **pkc = &pid_cache[level - 1];
44 struct kmem_cache *kc;
45 char name[4 + 10 + 1];
46 unsigned int len;
47
48 kc = READ_ONCE(*pkc);
49 if (kc)
50 return kc;
51
52 snprintf(name, sizeof(name), "pid_%u", level + 1);
53 len = struct_size_t(struct pid, numbers, level + 1);
54 mutex_lock(&pid_caches_mutex);
55 /* Name collision forces to do allocation under mutex. */
56 if (!*pkc)
57 *pkc = kmem_cache_create(name, len, 0,
58 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL);
59 mutex_unlock(&pid_caches_mutex);
60 /* current can fail, but someone else can succeed. */
61 return READ_ONCE(*pkc);
62 }
63
inc_pid_namespaces(struct user_namespace * ns)64 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
65 {
66 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
67 }
68
dec_pid_namespaces(struct ucounts * ucounts)69 static void dec_pid_namespaces(struct ucounts *ucounts)
70 {
71 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
72 }
73
74 static void destroy_pid_namespace_work(struct work_struct *work);
75
create_pid_namespace(struct user_namespace * user_ns,struct pid_namespace * parent_pid_ns)76 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
77 struct pid_namespace *parent_pid_ns)
78 {
79 struct pid_namespace *ns;
80 unsigned int level = parent_pid_ns->level + 1;
81 struct ucounts *ucounts;
82 int err;
83
84 err = -EINVAL;
85 if (!in_userns(parent_pid_ns->user_ns, user_ns))
86 goto out;
87
88 err = -ENOSPC;
89 if (level > MAX_PID_NS_LEVEL)
90 goto out;
91 ucounts = inc_pid_namespaces(user_ns);
92 if (!ucounts)
93 goto out;
94
95 err = -ENOMEM;
96 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
97 if (ns == NULL)
98 goto out_dec;
99
100 idr_init(&ns->idr);
101
102 ns->pid_cachep = create_pid_cachep(level);
103 if (ns->pid_cachep == NULL)
104 goto out_free_idr;
105
106 err = ns_common_init(ns);
107 if (err)
108 goto out_free_idr;
109
110 ns->pid_max = PID_MAX_LIMIT;
111 err = register_pidns_sysctls(ns);
112 if (err)
113 goto out_free_inum;
114
115 ns->level = level;
116 ns->parent = get_pid_ns(parent_pid_ns);
117 ns->user_ns = get_user_ns(user_ns);
118 ns->ucounts = ucounts;
119 ns->pid_allocated = PIDNS_ADDING;
120 INIT_WORK(&ns->work, destroy_pid_namespace_work);
121
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE)
123 ns->memfd_noexec_scope = pidns_memfd_noexec_scope(parent_pid_ns);
124 #endif
125
126 ns_tree_add(ns);
127 return ns;
128
129 out_free_inum:
130 ns_common_free(ns);
131 out_free_idr:
132 idr_destroy(&ns->idr);
133 kmem_cache_free(pid_ns_cachep, ns);
134 out_dec:
135 dec_pid_namespaces(ucounts);
136 out:
137 return ERR_PTR(err);
138 }
139
delayed_free_pidns(struct rcu_head * p)140 static void delayed_free_pidns(struct rcu_head *p)
141 {
142 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
143
144 dec_pid_namespaces(ns->ucounts);
145 put_user_ns(ns->user_ns);
146
147 kmem_cache_free(pid_ns_cachep, ns);
148 }
149
destroy_pid_namespace(struct pid_namespace * ns)150 static void destroy_pid_namespace(struct pid_namespace *ns)
151 {
152 ns_tree_remove(ns);
153 unregister_pidns_sysctls(ns);
154
155 ns_common_free(ns);
156
157 idr_destroy(&ns->idr);
158 call_rcu(&ns->rcu, delayed_free_pidns);
159 }
160
destroy_pid_namespace_work(struct work_struct * work)161 static void destroy_pid_namespace_work(struct work_struct *work)
162 {
163 struct pid_namespace *ns =
164 container_of(work, struct pid_namespace, work);
165
166 do {
167 struct pid_namespace *parent;
168
169 parent = ns->parent;
170 destroy_pid_namespace(ns);
171 ns = parent;
172 } while (ns != &init_pid_ns && ns_ref_put(ns));
173 }
174
copy_pid_ns(u64 flags,struct user_namespace * user_ns,struct pid_namespace * old_ns)175 struct pid_namespace *copy_pid_ns(u64 flags,
176 struct user_namespace *user_ns, struct pid_namespace *old_ns)
177 {
178 if (!(flags & CLONE_NEWPID))
179 return get_pid_ns(old_ns);
180 if (task_active_pid_ns(current) != old_ns)
181 return ERR_PTR(-EINVAL);
182 return create_pid_namespace(user_ns, old_ns);
183 }
184
put_pid_ns(struct pid_namespace * ns)185 void put_pid_ns(struct pid_namespace *ns)
186 {
187 if (ns && ns != &init_pid_ns && ns_ref_put(ns))
188 schedule_work(&ns->work);
189 }
190 EXPORT_SYMBOL_GPL(put_pid_ns);
191
zap_pid_ns_processes(struct pid_namespace * pid_ns)192 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
193 {
194 int nr;
195 int rc;
196 struct task_struct *task, *me = current;
197 int init_pids = thread_group_leader(me) ? 1 : 2;
198 struct pid *pid;
199
200 /* Don't allow any more processes into the pid namespace */
201 disable_pid_allocation(pid_ns);
202
203 /*
204 * Ignore SIGCHLD causing any terminated children to autoreap.
205 * This speeds up the namespace shutdown, plus see the comment
206 * below.
207 */
208 spin_lock_irq(&me->sighand->siglock);
209 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
210 spin_unlock_irq(&me->sighand->siglock);
211
212 /*
213 * The last thread in the cgroup-init thread group is terminating.
214 * Find remaining pid_ts in the namespace, signal and wait for them
215 * to exit.
216 *
217 * Note: This signals each threads in the namespace - even those that
218 * belong to the same thread group, To avoid this, we would have
219 * to walk the entire tasklist looking a processes in this
220 * namespace, but that could be unnecessarily expensive if the
221 * pid namespace has just a few processes. Or we need to
222 * maintain a tasklist for each pid namespace.
223 *
224 */
225 rcu_read_lock();
226 read_lock(&tasklist_lock);
227 nr = 2;
228 idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
229 task = pid_task(pid, PIDTYPE_PID);
230 if (task && !__fatal_signal_pending(task))
231 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
232 }
233 read_unlock(&tasklist_lock);
234 rcu_read_unlock();
235
236 /*
237 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
238 * kernel_wait4() will also block until our children traced from the
239 * parent namespace are detached and become EXIT_DEAD.
240 */
241 do {
242 clear_thread_flag(TIF_SIGPENDING);
243 clear_thread_flag(TIF_NOTIFY_SIGNAL);
244 rc = kernel_wait4(-1, NULL, __WALL, NULL);
245 } while (rc != -ECHILD);
246
247 /*
248 * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE
249 * process whose parents processes are outside of the pid
250 * namespace. Such processes are created with setns()+fork().
251 *
252 * If those EXIT_ZOMBIE processes are not reaped by their
253 * parents before their parents exit, they will be reparented
254 * to pid_ns->child_reaper. Thus pidns->child_reaper needs to
255 * stay valid until they all go away.
256 *
257 * The code relies on the pid_ns->child_reaper ignoring
258 * SIGCHILD to cause those EXIT_ZOMBIE processes to be
259 * autoreaped if reparented.
260 *
261 * Semantically it is also desirable to wait for EXIT_ZOMBIE
262 * processes before allowing the child_reaper to be reaped, as
263 * that gives the invariant that when the init process of a
264 * pid namespace is reaped all of the processes in the pid
265 * namespace are gone.
266 *
267 * Once all of the other tasks are gone from the pid_namespace
268 * free_pid() will awaken this task.
269 */
270 for (;;) {
271 set_current_state(TASK_INTERRUPTIBLE);
272 if (pid_ns->pid_allocated == init_pids)
273 break;
274 schedule();
275 }
276 __set_current_state(TASK_RUNNING);
277
278 if (pid_ns->reboot)
279 current->signal->group_exit_code = pid_ns->reboot;
280
281 acct_exit_ns(pid_ns);
282 return;
283 }
284
285 #ifdef CONFIG_CHECKPOINT_RESTORE
pid_ns_ctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)286 static int pid_ns_ctl_handler(const struct ctl_table *table, int write,
287 void *buffer, size_t *lenp, loff_t *ppos)
288 {
289 struct pid_namespace *pid_ns = task_active_pid_ns(current);
290 struct ctl_table tmp = *table;
291 int ret, next;
292
293 if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns))
294 return -EPERM;
295
296 next = idr_get_cursor(&pid_ns->idr) - 1;
297
298 tmp.data = &next;
299 tmp.extra2 = &pid_ns->pid_max;
300 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
301 if (!ret && write)
302 idr_set_cursor(&pid_ns->idr, next + 1);
303
304 return ret;
305 }
306
307 static const struct ctl_table pid_ns_ctl_table[] = {
308 {
309 .procname = "ns_last_pid",
310 .maxlen = sizeof(int),
311 .mode = 0666, /* permissions are checked in the handler */
312 .proc_handler = pid_ns_ctl_handler,
313 .extra1 = SYSCTL_ZERO,
314 .extra2 = &init_pid_ns.pid_max,
315 },
316 };
317 #endif /* CONFIG_CHECKPOINT_RESTORE */
318
reboot_pid_ns(struct pid_namespace * pid_ns,int cmd)319 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
320 {
321 if (pid_ns == &init_pid_ns)
322 return 0;
323
324 switch (cmd) {
325 case LINUX_REBOOT_CMD_RESTART2:
326 case LINUX_REBOOT_CMD_RESTART:
327 pid_ns->reboot = SIGHUP;
328 break;
329
330 case LINUX_REBOOT_CMD_POWER_OFF:
331 case LINUX_REBOOT_CMD_HALT:
332 pid_ns->reboot = SIGINT;
333 break;
334 default:
335 return -EINVAL;
336 }
337
338 read_lock(&tasklist_lock);
339 send_sig(SIGKILL, pid_ns->child_reaper, 1);
340 read_unlock(&tasklist_lock);
341
342 do_exit(0);
343
344 /* Not reached */
345 return 0;
346 }
347
pidns_get(struct task_struct * task)348 static struct ns_common *pidns_get(struct task_struct *task)
349 {
350 struct pid_namespace *ns;
351
352 rcu_read_lock();
353 ns = task_active_pid_ns(task);
354 if (ns)
355 get_pid_ns(ns);
356 rcu_read_unlock();
357
358 return ns ? &ns->ns : NULL;
359 }
360
pidns_for_children_get(struct task_struct * task)361 static struct ns_common *pidns_for_children_get(struct task_struct *task)
362 {
363 struct pid_namespace *ns = NULL;
364
365 task_lock(task);
366 if (task->nsproxy) {
367 ns = task->nsproxy->pid_ns_for_children;
368 get_pid_ns(ns);
369 }
370 task_unlock(task);
371
372 if (ns) {
373 read_lock(&tasklist_lock);
374 if (!ns->child_reaper) {
375 put_pid_ns(ns);
376 ns = NULL;
377 }
378 read_unlock(&tasklist_lock);
379 }
380
381 return ns ? &ns->ns : NULL;
382 }
383
pidns_put(struct ns_common * ns)384 static void pidns_put(struct ns_common *ns)
385 {
386 put_pid_ns(to_pid_ns(ns));
387 }
388
pidns_is_ancestor(struct pid_namespace * child,struct pid_namespace * ancestor)389 bool pidns_is_ancestor(struct pid_namespace *child,
390 struct pid_namespace *ancestor)
391 {
392 struct pid_namespace *ns;
393
394 if (child->level < ancestor->level)
395 return false;
396 for (ns = child; ns->level > ancestor->level; ns = ns->parent)
397 ;
398 return ns == ancestor;
399 }
400
pidns_install(struct nsset * nsset,struct ns_common * ns)401 static int pidns_install(struct nsset *nsset, struct ns_common *ns)
402 {
403 struct nsproxy *nsproxy = nsset->nsproxy;
404 struct pid_namespace *active = task_active_pid_ns(current);
405 struct pid_namespace *new = to_pid_ns(ns);
406
407 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
408 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
409 return -EPERM;
410
411 /*
412 * Only allow entering the current active pid namespace
413 * or a child of the current active pid namespace.
414 *
415 * This is required for fork to return a usable pid value and
416 * this maintains the property that processes and their
417 * children can not escape their current pid namespace.
418 */
419 if (!pidns_is_ancestor(new, active))
420 return -EINVAL;
421
422 put_pid_ns(nsproxy->pid_ns_for_children);
423 nsproxy->pid_ns_for_children = get_pid_ns(new);
424 return 0;
425 }
426
pidns_get_parent(struct ns_common * ns)427 static struct ns_common *pidns_get_parent(struct ns_common *ns)
428 {
429 struct pid_namespace *active = task_active_pid_ns(current);
430 struct pid_namespace *pid_ns, *p;
431
432 /* See if the parent is in the current namespace */
433 pid_ns = p = to_pid_ns(ns)->parent;
434 for (;;) {
435 if (!p)
436 return ERR_PTR(-EPERM);
437 if (p == active)
438 break;
439 p = p->parent;
440 }
441
442 return &get_pid_ns(pid_ns)->ns;
443 }
444
pidns_owner(struct ns_common * ns)445 static struct user_namespace *pidns_owner(struct ns_common *ns)
446 {
447 return to_pid_ns(ns)->user_ns;
448 }
449
450 const struct proc_ns_operations pidns_operations = {
451 .name = "pid",
452 .get = pidns_get,
453 .put = pidns_put,
454 .install = pidns_install,
455 .owner = pidns_owner,
456 .get_parent = pidns_get_parent,
457 };
458
459 const struct proc_ns_operations pidns_for_children_operations = {
460 .name = "pid_for_children",
461 .real_ns_name = "pid",
462 .get = pidns_for_children_get,
463 .put = pidns_put,
464 .install = pidns_install,
465 .owner = pidns_owner,
466 .get_parent = pidns_get_parent,
467 };
468
pid_namespaces_init(void)469 static __init int pid_namespaces_init(void)
470 {
471 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC | SLAB_ACCOUNT);
472
473 #ifdef CONFIG_CHECKPOINT_RESTORE
474 register_sysctl_init("kernel", pid_ns_ctl_table);
475 #endif
476
477 register_pid_ns_sysctl_table_vm();
478 ns_tree_add(&init_pid_ns);
479 return 0;
480 }
481
482 __initcall(pid_namespaces_init);
483