xref: /linux/drivers/gpu/drm/amd/display/dc/resource/dcn32/dcn32_resource.c (revision de848da12f752170c2ebe114804a985314fd5a6a)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 
27 #include "dm_services.h"
28 #include "dc.h"
29 
30 #include "dcn32/dcn32_init.h"
31 
32 #include "resource.h"
33 #include "include/irq_service_interface.h"
34 #include "dcn32_resource.h"
35 
36 #include "dcn20/dcn20_resource.h"
37 #include "dcn30/dcn30_resource.h"
38 
39 #include "dcn10/dcn10_ipp.h"
40 #include "dcn30/dcn30_hubbub.h"
41 #include "dcn31/dcn31_hubbub.h"
42 #include "dcn32/dcn32_hubbub.h"
43 #include "dcn32/dcn32_mpc.h"
44 #include "dcn32/dcn32_hubp.h"
45 #include "irq/dcn32/irq_service_dcn32.h"
46 #include "dcn32/dcn32_dpp.h"
47 #include "dcn32/dcn32_optc.h"
48 #include "dcn20/dcn20_hwseq.h"
49 #include "dcn30/dcn30_hwseq.h"
50 #include "dce110/dce110_hwseq.h"
51 #include "dcn30/dcn30_opp.h"
52 #include "dcn20/dcn20_dsc.h"
53 #include "dcn30/dcn30_vpg.h"
54 #include "dcn30/dcn30_afmt.h"
55 #include "dcn30/dcn30_dio_stream_encoder.h"
56 #include "dcn32/dcn32_dio_stream_encoder.h"
57 #include "dcn31/dcn31_hpo_dp_stream_encoder.h"
58 #include "dcn31/dcn31_hpo_dp_link_encoder.h"
59 #include "dcn32/dcn32_hpo_dp_link_encoder.h"
60 #include "dcn31/dcn31_apg.h"
61 #include "dcn31/dcn31_dio_link_encoder.h"
62 #include "dcn32/dcn32_dio_link_encoder.h"
63 #include "dce/dce_clock_source.h"
64 #include "dce/dce_audio.h"
65 #include "dce/dce_hwseq.h"
66 #include "clk_mgr.h"
67 #include "virtual/virtual_stream_encoder.h"
68 #include "dml/display_mode_vba.h"
69 #include "dcn32/dcn32_dccg.h"
70 #include "dcn10/dcn10_resource.h"
71 #include "link.h"
72 #include "dcn31/dcn31_panel_cntl.h"
73 
74 #include "dcn30/dcn30_dwb.h"
75 #include "dcn32/dcn32_mmhubbub.h"
76 
77 #include "dcn/dcn_3_2_0_offset.h"
78 #include "dcn/dcn_3_2_0_sh_mask.h"
79 #include "nbio/nbio_4_3_0_offset.h"
80 
81 #include "reg_helper.h"
82 #include "dce/dmub_abm.h"
83 #include "dce/dmub_psr.h"
84 #include "dce/dce_aux.h"
85 #include "dce/dce_i2c.h"
86 
87 #include "dml/dcn30/display_mode_vba_30.h"
88 #include "vm_helper.h"
89 #include "dcn20/dcn20_vmid.h"
90 #include "dml/dcn32/dcn32_fpu.h"
91 
92 #include "dc_state_priv.h"
93 
94 #include "dml2/dml2_wrapper.h"
95 
96 #define DC_LOGGER_INIT(logger)
97 
98 enum dcn32_clk_src_array_id {
99 	DCN32_CLK_SRC_PLL0,
100 	DCN32_CLK_SRC_PLL1,
101 	DCN32_CLK_SRC_PLL2,
102 	DCN32_CLK_SRC_PLL3,
103 	DCN32_CLK_SRC_PLL4,
104 	DCN32_CLK_SRC_TOTAL
105 };
106 
107 /* begin *********************
108  * macros to expend register list macro defined in HW object header file
109  */
110 
111 /* DCN */
112 #define BASE_INNER(seg) ctx->dcn_reg_offsets[seg]
113 
114 #define BASE(seg) BASE_INNER(seg)
115 
116 #define SR(reg_name)\
117 		REG_STRUCT.reg_name = BASE(reg ## reg_name ## _BASE_IDX) +  \
118 					reg ## reg_name
119 #define SR_ARR(reg_name, id) \
120 	REG_STRUCT[id].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
121 
122 #define SR_ARR_INIT(reg_name, id, value) \
123 	REG_STRUCT[id].reg_name = value
124 
125 #define SRI(reg_name, block, id)\
126 	REG_STRUCT.reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
127 		reg ## block ## id ## _ ## reg_name
128 
129 #define SRI_ARR(reg_name, block, id)\
130 	REG_STRUCT[id].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
131 		reg ## block ## id ## _ ## reg_name
132 
133 #define SR_ARR_I2C(reg_name, id) \
134 	REG_STRUCT[id-1].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
135 
136 #define SRI_ARR_I2C(reg_name, block, id)\
137 	REG_STRUCT[id-1].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
138 		reg ## block ## id ## _ ## reg_name
139 
140 #define SRI_ARR_ALPHABET(reg_name, block, index, id)\
141 	REG_STRUCT[index].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
142 		reg ## block ## id ## _ ## reg_name
143 
144 #define SRI2(reg_name, block, id)\
145 	.reg_name = BASE(reg ## reg_name ## _BASE_IDX) +	\
146 		reg ## reg_name
147 #define SRI2_ARR(reg_name, block, id)\
148 	REG_STRUCT[id].reg_name = BASE(reg ## reg_name ## _BASE_IDX) +	\
149 		reg ## reg_name
150 
151 #define SRIR(var_name, reg_name, block, id)\
152 	.var_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
153 		reg ## block ## id ## _ ## reg_name
154 
155 #define SRII(reg_name, block, id)\
156 	REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
157 					reg ## block ## id ## _ ## reg_name
158 
159 #define SRII_ARR_2(reg_name, block, id, inst)\
160 	REG_STRUCT[inst].reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
161 		reg ## block ## id ## _ ## reg_name
162 
163 #define SRII_MPC_RMU(reg_name, block, id)\
164 	.RMU##_##reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
165 		reg ## block ## id ## _ ## reg_name
166 
167 #define SRII_DWB(reg_name, temp_name, block, id)\
168 	REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
169 		reg ## block ## id ## _ ## temp_name
170 
171 #define SF_DWB2(reg_name, block, id, field_name, post_fix)	\
172 	.field_name = reg_name ## __ ## field_name ## post_fix
173 
174 #define DCCG_SRII(reg_name, block, id)\
175 	REG_STRUCT.block ## _ ## reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
176 		reg ## block ## id ## _ ## reg_name
177 
178 #define VUPDATE_SRII(reg_name, block, id)\
179 	REG_STRUCT.reg_name[id] = BASE(reg ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
180 		reg ## reg_name ## _ ## block ## id
181 
182 /* NBIO */
183 #define NBIO_BASE_INNER(seg) ctx->nbio_reg_offsets[seg]
184 
185 #define NBIO_BASE(seg) \
186 	NBIO_BASE_INNER(seg)
187 
188 #define NBIO_SR(reg_name)\
189 	REG_STRUCT.reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
190 			regBIF_BX0_ ## reg_name
191 #define NBIO_SR_ARR(reg_name, id)\
192 	REG_STRUCT[id].reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
193 		regBIF_BX0_ ## reg_name
194 
195 #undef CTX
196 #define CTX ctx
197 #define REG(reg_name) \
198 	(ctx->dcn_reg_offsets[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)
199 
200 static struct bios_registers bios_regs;
201 
202 #define bios_regs_init() \
203 		( \
204 		NBIO_SR(BIOS_SCRATCH_3),\
205 		NBIO_SR(BIOS_SCRATCH_6)\
206 		)
207 
208 #define clk_src_regs_init(index, pllid)\
209 	CS_COMMON_REG_LIST_DCN3_0_RI(index, pllid)
210 
211 static struct dce110_clk_src_regs clk_src_regs[5];
212 
213 static const struct dce110_clk_src_shift cs_shift = {
214 		CS_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
215 };
216 
217 static const struct dce110_clk_src_mask cs_mask = {
218 		CS_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
219 };
220 
221 #define abm_regs_init(id)\
222 		ABM_DCN32_REG_LIST_RI(id)
223 
224 static struct dce_abm_registers abm_regs[4];
225 
226 static const struct dce_abm_shift abm_shift = {
227 		ABM_MASK_SH_LIST_DCN32(__SHIFT)
228 };
229 
230 static const struct dce_abm_mask abm_mask = {
231 		ABM_MASK_SH_LIST_DCN32(_MASK)
232 };
233 
234 #define audio_regs_init(id)\
235 		AUD_COMMON_REG_LIST_RI(id)
236 
237 static struct dce_audio_registers audio_regs[5];
238 
239 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
240 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
241 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
242 		AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
243 
244 static const struct dce_audio_shift audio_shift = {
245 		DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
246 };
247 
248 static const struct dce_audio_mask audio_mask = {
249 		DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
250 };
251 
252 #define vpg_regs_init(id)\
253 	VPG_DCN3_REG_LIST_RI(id)
254 
255 static struct dcn30_vpg_registers vpg_regs[10];
256 
257 static const struct dcn30_vpg_shift vpg_shift = {
258 	DCN3_VPG_MASK_SH_LIST(__SHIFT)
259 };
260 
261 static const struct dcn30_vpg_mask vpg_mask = {
262 	DCN3_VPG_MASK_SH_LIST(_MASK)
263 };
264 
265 #define afmt_regs_init(id)\
266 	AFMT_DCN3_REG_LIST_RI(id)
267 
268 static struct dcn30_afmt_registers afmt_regs[6];
269 
270 static const struct dcn30_afmt_shift afmt_shift = {
271 	DCN3_AFMT_MASK_SH_LIST(__SHIFT)
272 };
273 
274 static const struct dcn30_afmt_mask afmt_mask = {
275 	DCN3_AFMT_MASK_SH_LIST(_MASK)
276 };
277 
278 #define apg_regs_init(id)\
279 	APG_DCN31_REG_LIST_RI(id)
280 
281 static struct dcn31_apg_registers apg_regs[4];
282 
283 static const struct dcn31_apg_shift apg_shift = {
284 	DCN31_APG_MASK_SH_LIST(__SHIFT)
285 };
286 
287 static const struct dcn31_apg_mask apg_mask = {
288 		DCN31_APG_MASK_SH_LIST(_MASK)
289 };
290 
291 #define stream_enc_regs_init(id)\
292 	SE_DCN32_REG_LIST_RI(id)
293 
294 static struct dcn10_stream_enc_registers stream_enc_regs[5];
295 
296 static const struct dcn10_stream_encoder_shift se_shift = {
297 		SE_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
298 };
299 
300 static const struct dcn10_stream_encoder_mask se_mask = {
301 		SE_COMMON_MASK_SH_LIST_DCN32(_MASK)
302 };
303 
304 
305 #define aux_regs_init(id)\
306 	DCN2_AUX_REG_LIST_RI(id)
307 
308 static struct dcn10_link_enc_aux_registers link_enc_aux_regs[5];
309 
310 #define hpd_regs_init(id)\
311 	HPD_REG_LIST_RI(id)
312 
313 static struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[5];
314 
315 #define link_regs_init(id, phyid)\
316 	( \
317 	LE_DCN31_REG_LIST_RI(id), \
318 	UNIPHY_DCN2_REG_LIST_RI(id, phyid)\
319 	)
320 	/*DPCS_DCN31_REG_LIST(id),*/ \
321 
322 static struct dcn10_link_enc_registers link_enc_regs[5];
323 
324 static const struct dcn10_link_enc_shift le_shift = {
325 	LINK_ENCODER_MASK_SH_LIST_DCN31(__SHIFT), \
326 	//DPCS_DCN31_MASK_SH_LIST(__SHIFT)
327 };
328 
329 static const struct dcn10_link_enc_mask le_mask = {
330 	LINK_ENCODER_MASK_SH_LIST_DCN31(_MASK), \
331 	//DPCS_DCN31_MASK_SH_LIST(_MASK)
332 };
333 
334 #define hpo_dp_stream_encoder_reg_init(id)\
335 	DCN3_1_HPO_DP_STREAM_ENC_REG_LIST_RI(id)
336 
337 static struct dcn31_hpo_dp_stream_encoder_registers hpo_dp_stream_enc_regs[4];
338 
339 static const struct dcn31_hpo_dp_stream_encoder_shift hpo_dp_se_shift = {
340 	DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(__SHIFT)
341 };
342 
343 static const struct dcn31_hpo_dp_stream_encoder_mask hpo_dp_se_mask = {
344 	DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(_MASK)
345 };
346 
347 
348 #define hpo_dp_link_encoder_reg_init(id)\
349 	DCN3_1_HPO_DP_LINK_ENC_REG_LIST_RI(id)
350 	/*DCN3_1_RDPCSTX_REG_LIST(0),*/
351 	/*DCN3_1_RDPCSTX_REG_LIST(1),*/
352 	/*DCN3_1_RDPCSTX_REG_LIST(2),*/
353 	/*DCN3_1_RDPCSTX_REG_LIST(3),*/
354 
355 static struct dcn31_hpo_dp_link_encoder_registers hpo_dp_link_enc_regs[2];
356 
357 static const struct dcn31_hpo_dp_link_encoder_shift hpo_dp_le_shift = {
358 	DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(__SHIFT)
359 };
360 
361 static const struct dcn31_hpo_dp_link_encoder_mask hpo_dp_le_mask = {
362 	DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(_MASK)
363 };
364 
365 #define dpp_regs_init(id)\
366 	DPP_REG_LIST_DCN30_COMMON_RI(id)
367 
368 static struct dcn3_dpp_registers dpp_regs[4];
369 
370 static const struct dcn3_dpp_shift tf_shift = {
371 		DPP_REG_LIST_SH_MASK_DCN30_COMMON(__SHIFT)
372 };
373 
374 static const struct dcn3_dpp_mask tf_mask = {
375 		DPP_REG_LIST_SH_MASK_DCN30_COMMON(_MASK)
376 };
377 
378 
379 #define opp_regs_init(id)\
380 	OPP_REG_LIST_DCN30_RI(id)
381 
382 static struct dcn20_opp_registers opp_regs[4];
383 
384 static const struct dcn20_opp_shift opp_shift = {
385 	OPP_MASK_SH_LIST_DCN20(__SHIFT)
386 };
387 
388 static const struct dcn20_opp_mask opp_mask = {
389 	OPP_MASK_SH_LIST_DCN20(_MASK)
390 };
391 
392 #define aux_engine_regs_init(id)\
393 	( \
394 	AUX_COMMON_REG_LIST0_RI(id), \
395 	SR_ARR_INIT(AUXN_IMPCAL, id, 0), \
396 	SR_ARR_INIT(AUXP_IMPCAL, id, 0), \
397 	SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK), \
398 	SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK)\
399 	)
400 
401 static struct dce110_aux_registers aux_engine_regs[5];
402 
403 static const struct dce110_aux_registers_shift aux_shift = {
404 	DCN_AUX_MASK_SH_LIST(__SHIFT)
405 };
406 
407 static const struct dce110_aux_registers_mask aux_mask = {
408 	DCN_AUX_MASK_SH_LIST(_MASK)
409 };
410 
411 #define dwbc_regs_dcn3_init(id)\
412 	DWBC_COMMON_REG_LIST_DCN30_RI(id)
413 
414 static struct dcn30_dwbc_registers dwbc30_regs[1];
415 
416 static const struct dcn30_dwbc_shift dwbc30_shift = {
417 	DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
418 };
419 
420 static const struct dcn30_dwbc_mask dwbc30_mask = {
421 	DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
422 };
423 
424 #define mcif_wb_regs_dcn3_init(id)\
425 	MCIF_WB_COMMON_REG_LIST_DCN32_RI(id)
426 
427 static struct dcn30_mmhubbub_registers mcif_wb30_regs[1];
428 
429 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
430 	MCIF_WB_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
431 };
432 
433 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
434 	MCIF_WB_COMMON_MASK_SH_LIST_DCN32(_MASK)
435 };
436 
437 #define dsc_regsDCN20_init(id)\
438 	DSC_REG_LIST_DCN20_RI(id)
439 
440 static struct dcn20_dsc_registers dsc_regs[4];
441 
442 static const struct dcn20_dsc_shift dsc_shift = {
443 	DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
444 };
445 
446 static const struct dcn20_dsc_mask dsc_mask = {
447 	DSC_REG_LIST_SH_MASK_DCN20(_MASK)
448 };
449 
450 static struct dcn30_mpc_registers mpc_regs;
451 
452 #define dcn_mpc_regs_init() \
453 	MPC_REG_LIST_DCN3_2_RI(0),\
454 	MPC_REG_LIST_DCN3_2_RI(1),\
455 	MPC_REG_LIST_DCN3_2_RI(2),\
456 	MPC_REG_LIST_DCN3_2_RI(3),\
457 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(0),\
458 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(1),\
459 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(2),\
460 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(3),\
461 	MPC_DWB_MUX_REG_LIST_DCN3_0_RI(0)
462 
463 static const struct dcn30_mpc_shift mpc_shift = {
464 	MPC_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
465 };
466 
467 static const struct dcn30_mpc_mask mpc_mask = {
468 	MPC_COMMON_MASK_SH_LIST_DCN32(_MASK)
469 };
470 
471 #define optc_regs_init(id)\
472 	OPTC_COMMON_REG_LIST_DCN3_2_RI(id)
473 
474 static struct dcn_optc_registers optc_regs[4];
475 
476 static const struct dcn_optc_shift optc_shift = {
477 	OPTC_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
478 };
479 
480 static const struct dcn_optc_mask optc_mask = {
481 	OPTC_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
482 };
483 
484 #define hubp_regs_init(id)\
485 	HUBP_REG_LIST_DCN32_RI(id)
486 
487 static struct dcn_hubp2_registers hubp_regs[4];
488 
489 
490 static const struct dcn_hubp2_shift hubp_shift = {
491 		HUBP_MASK_SH_LIST_DCN32(__SHIFT)
492 };
493 
494 static const struct dcn_hubp2_mask hubp_mask = {
495 		HUBP_MASK_SH_LIST_DCN32(_MASK)
496 };
497 
498 static struct dcn_hubbub_registers hubbub_reg;
499 #define hubbub_reg_init()\
500 		HUBBUB_REG_LIST_DCN32_RI(0)
501 
502 static const struct dcn_hubbub_shift hubbub_shift = {
503 		HUBBUB_MASK_SH_LIST_DCN32(__SHIFT)
504 };
505 
506 static const struct dcn_hubbub_mask hubbub_mask = {
507 		HUBBUB_MASK_SH_LIST_DCN32(_MASK)
508 };
509 
510 static struct dccg_registers dccg_regs;
511 
512 #define dccg_regs_init()\
513 	DCCG_REG_LIST_DCN32_RI()
514 
515 static const struct dccg_shift dccg_shift = {
516 		DCCG_MASK_SH_LIST_DCN32(__SHIFT)
517 };
518 
519 static const struct dccg_mask dccg_mask = {
520 		DCCG_MASK_SH_LIST_DCN32(_MASK)
521 };
522 
523 
524 #define SRII2(reg_name_pre, reg_name_post, id)\
525 	.reg_name_pre ## _ ##  reg_name_post[id] = BASE(reg ## reg_name_pre \
526 			## id ## _ ## reg_name_post ## _BASE_IDX) + \
527 			reg ## reg_name_pre ## id ## _ ## reg_name_post
528 
529 
530 #define HWSEQ_DCN32_REG_LIST()\
531 	SR(DCHUBBUB_GLOBAL_TIMER_CNTL), \
532 	SR(DIO_MEM_PWR_CTRL), \
533 	SR(ODM_MEM_PWR_CTRL3), \
534 	SR(MMHUBBUB_MEM_PWR_CNTL), \
535 	SR(DCCG_GATE_DISABLE_CNTL), \
536 	SR(DCCG_GATE_DISABLE_CNTL2), \
537 	SR(DCFCLK_CNTL),\
538 	SR(DC_MEM_GLOBAL_PWR_REQ_CNTL), \
539 	SRII(PIXEL_RATE_CNTL, OTG, 0), \
540 	SRII(PIXEL_RATE_CNTL, OTG, 1),\
541 	SRII(PIXEL_RATE_CNTL, OTG, 2),\
542 	SRII(PIXEL_RATE_CNTL, OTG, 3),\
543 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 0),\
544 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 1),\
545 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 2),\
546 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 3),\
547 	SR(MICROSECOND_TIME_BASE_DIV), \
548 	SR(MILLISECOND_TIME_BASE_DIV), \
549 	SR(DISPCLK_FREQ_CHANGE_CNTL), \
550 	SR(RBBMIF_TIMEOUT_DIS), \
551 	SR(RBBMIF_TIMEOUT_DIS_2), \
552 	SR(DCHUBBUB_CRC_CTRL), \
553 	SR(DPP_TOP0_DPP_CRC_CTRL), \
554 	SR(DPP_TOP0_DPP_CRC_VAL_B_A), \
555 	SR(DPP_TOP0_DPP_CRC_VAL_R_G), \
556 	SR(MPC_CRC_CTRL), \
557 	SR(MPC_CRC_RESULT_GB), \
558 	SR(MPC_CRC_RESULT_C), \
559 	SR(MPC_CRC_RESULT_AR), \
560 	SR(DOMAIN0_PG_CONFIG), \
561 	SR(DOMAIN1_PG_CONFIG), \
562 	SR(DOMAIN2_PG_CONFIG), \
563 	SR(DOMAIN3_PG_CONFIG), \
564 	SR(DOMAIN16_PG_CONFIG), \
565 	SR(DOMAIN17_PG_CONFIG), \
566 	SR(DOMAIN18_PG_CONFIG), \
567 	SR(DOMAIN19_PG_CONFIG), \
568 	SR(DOMAIN0_PG_STATUS), \
569 	SR(DOMAIN1_PG_STATUS), \
570 	SR(DOMAIN2_PG_STATUS), \
571 	SR(DOMAIN3_PG_STATUS), \
572 	SR(DOMAIN16_PG_STATUS), \
573 	SR(DOMAIN17_PG_STATUS), \
574 	SR(DOMAIN18_PG_STATUS), \
575 	SR(DOMAIN19_PG_STATUS), \
576 	SR(D1VGA_CONTROL), \
577 	SR(D2VGA_CONTROL), \
578 	SR(D3VGA_CONTROL), \
579 	SR(D4VGA_CONTROL), \
580 	SR(D5VGA_CONTROL), \
581 	SR(D6VGA_CONTROL), \
582 	SR(DC_IP_REQUEST_CNTL), \
583 	SR(AZALIA_AUDIO_DTO), \
584 	SR(AZALIA_CONTROLLER_CLOCK_GATING)
585 
586 static struct dce_hwseq_registers hwseq_reg;
587 
588 #define hwseq_reg_init()\
589 	HWSEQ_DCN32_REG_LIST()
590 
591 #define HWSEQ_DCN32_MASK_SH_LIST(mask_sh)\
592 	HWSEQ_DCN_MASK_SH_LIST(mask_sh), \
593 	HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \
594 	HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
595 	HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
596 	HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
597 	HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
598 	HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
599 	HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
600 	HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
601 	HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
602 	HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
603 	HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
604 	HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
605 	HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
606 	HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
607 	HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
608 	HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
609 	HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
610 	HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
611 	HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
612 	HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
613 	HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
614 	HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
615 	HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
616 	HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
617 	HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
618 	HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \
619 	HWS_SF(, AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, mask_sh), \
620 	HWS_SF(, HPO_TOP_CLOCK_CONTROL, HPO_HDMISTREAMCLK_G_GATE_DIS, mask_sh), \
621 	HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_UNASSIGNED_PWR_MODE, mask_sh), \
622 	HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_VBLANK_PWR_MODE, mask_sh), \
623 	HWS_SF(, MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, mask_sh)
624 
625 static const struct dce_hwseq_shift hwseq_shift = {
626 		HWSEQ_DCN32_MASK_SH_LIST(__SHIFT)
627 };
628 
629 static const struct dce_hwseq_mask hwseq_mask = {
630 		HWSEQ_DCN32_MASK_SH_LIST(_MASK)
631 };
632 #define vmid_regs_init(id)\
633 		DCN20_VMID_REG_LIST_RI(id)
634 
635 static struct dcn_vmid_registers vmid_regs[16];
636 
637 static const struct dcn20_vmid_shift vmid_shifts = {
638 		DCN20_VMID_MASK_SH_LIST(__SHIFT)
639 };
640 
641 static const struct dcn20_vmid_mask vmid_masks = {
642 		DCN20_VMID_MASK_SH_LIST(_MASK)
643 };
644 
645 static const struct resource_caps res_cap_dcn32 = {
646 	.num_timing_generator = 4,
647 	.num_opp = 4,
648 	.num_video_plane = 4,
649 	.num_audio = 5,
650 	.num_stream_encoder = 5,
651 	.num_hpo_dp_stream_encoder = 4,
652 	.num_hpo_dp_link_encoder = 2,
653 	.num_pll = 5,
654 	.num_dwb = 1,
655 	.num_ddc = 5,
656 	.num_vmid = 16,
657 	.num_mpc_3dlut = 4,
658 	.num_dsc = 4,
659 };
660 
661 static const struct dc_plane_cap plane_cap = {
662 	.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
663 	.per_pixel_alpha = true,
664 
665 	.pixel_format_support = {
666 			.argb8888 = true,
667 			.nv12 = true,
668 			.fp16 = true,
669 			.p010 = true,
670 			.ayuv = false,
671 	},
672 
673 	.max_upscale_factor = {
674 			.argb8888 = 16000,
675 			.nv12 = 16000,
676 			.fp16 = 16000
677 	},
678 
679 	// 6:1 downscaling ratio: 1000/6 = 166.666
680 	.max_downscale_factor = {
681 			.argb8888 = 167,
682 			.nv12 = 167,
683 			.fp16 = 167
684 	},
685 	64,
686 	64
687 };
688 
689 static const struct dc_debug_options debug_defaults_drv = {
690 	.disable_dmcu = true,
691 	.force_abm_enable = false,
692 	.timing_trace = false,
693 	.clock_trace = true,
694 	.disable_pplib_clock_request = false,
695 	.pipe_split_policy = MPC_SPLIT_AVOID, // Due to CRB, no need to MPC split anymore
696 	.force_single_disp_pipe_split = false,
697 	.disable_dcc = DCC_ENABLE,
698 	.vsr_support = true,
699 	.performance_trace = false,
700 	.max_downscale_src_width = 7680,/*upto 8K*/
701 	.disable_pplib_wm_range = false,
702 	.scl_reset_length10 = true,
703 	.sanity_checks = false,
704 	.underflow_assert_delay_us = 0xFFFFFFFF,
705 	.dwb_fi_phase = -1, // -1 = disable,
706 	.dmub_command_table = true,
707 	.enable_mem_low_power = {
708 		.bits = {
709 			.vga = false,
710 			.i2c = false,
711 			.dmcu = false, // This is previously known to cause hang on S3 cycles if enabled
712 			.dscl = false,
713 			.cm = false,
714 			.mpc = false,
715 			.optc = true,
716 		}
717 	},
718 	.use_max_lb = true,
719 	.force_disable_subvp = false,
720 	.exit_idle_opt_for_cursor_updates = true,
721 	.using_dml2 = false,
722 	.using_dml21 = false, // TODO : Temporary for N-1 validation. Remove after N-1 is done.
723 	.enable_single_display_2to1_odm_policy = true,
724 
725 	/* Must match enable_single_display_2to1_odm_policy to support dynamic ODM transitions*/
726 	.enable_double_buffered_dsc_pg_support = true,
727 	.enable_dp_dig_pixel_rate_div_policy = 1,
728 	.allow_sw_cursor_fallback = false, // Linux can't do SW cursor "fallback"
729 	.alloc_extra_way_for_cursor = true,
730 	.min_prefetch_in_strobe_ns = 60000, // 60us
731 	.disable_unbounded_requesting = false,
732 	.override_dispclk_programming = true,
733 	.disable_fpo_optimizations = false,
734 	.fpo_vactive_margin_us = 2000, // 2000us
735 	.disable_fpo_vactive = false,
736 	.disable_boot_optimizations = false,
737 	.disable_subvp_high_refresh = false,
738 	.disable_dp_plus_plus_wa = true,
739 	.fpo_vactive_min_active_margin_us = 200,
740 	.fpo_vactive_max_blank_us = 1000,
741 	.enable_legacy_fast_update = false,
742 };
743 
744 static struct dce_aux *dcn32_aux_engine_create(
745 	struct dc_context *ctx,
746 	uint32_t inst)
747 {
748 	struct aux_engine_dce110 *aux_engine =
749 		kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
750 
751 	if (!aux_engine)
752 		return NULL;
753 
754 #undef REG_STRUCT
755 #define REG_STRUCT aux_engine_regs
756 	aux_engine_regs_init(0),
757 	aux_engine_regs_init(1),
758 	aux_engine_regs_init(2),
759 	aux_engine_regs_init(3),
760 	aux_engine_regs_init(4);
761 
762 	dce110_aux_engine_construct(aux_engine, ctx, inst,
763 				    SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
764 				    &aux_engine_regs[inst],
765 					&aux_mask,
766 					&aux_shift,
767 					ctx->dc->caps.extended_aux_timeout_support);
768 
769 	return &aux_engine->base;
770 }
771 #define i2c_inst_regs_init(id)\
772 	I2C_HW_ENGINE_COMMON_REG_LIST_DCN30_RI(id)
773 
774 static struct dce_i2c_registers i2c_hw_regs[5];
775 
776 static const struct dce_i2c_shift i2c_shifts = {
777 		I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
778 };
779 
780 static const struct dce_i2c_mask i2c_masks = {
781 		I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
782 };
783 
784 static struct dce_i2c_hw *dcn32_i2c_hw_create(
785 	struct dc_context *ctx,
786 	uint32_t inst)
787 {
788 	struct dce_i2c_hw *dce_i2c_hw =
789 		kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
790 
791 	if (!dce_i2c_hw)
792 		return NULL;
793 
794 #undef REG_STRUCT
795 #define REG_STRUCT i2c_hw_regs
796 	i2c_inst_regs_init(1),
797 	i2c_inst_regs_init(2),
798 	i2c_inst_regs_init(3),
799 	i2c_inst_regs_init(4),
800 	i2c_inst_regs_init(5);
801 
802 	dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
803 				    &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
804 
805 	return dce_i2c_hw;
806 }
807 
808 static struct clock_source *dcn32_clock_source_create(
809 		struct dc_context *ctx,
810 		struct dc_bios *bios,
811 		enum clock_source_id id,
812 		const struct dce110_clk_src_regs *regs,
813 		bool dp_clk_src)
814 {
815 	struct dce110_clk_src *clk_src =
816 		kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
817 
818 	if (!clk_src)
819 		return NULL;
820 
821 	if (dcn31_clk_src_construct(clk_src, ctx, bios, id,
822 			regs, &cs_shift, &cs_mask)) {
823 		clk_src->base.dp_clk_src = dp_clk_src;
824 		return &clk_src->base;
825 	}
826 
827 	kfree(clk_src);
828 	BREAK_TO_DEBUGGER();
829 	return NULL;
830 }
831 
832 static struct hubbub *dcn32_hubbub_create(struct dc_context *ctx)
833 {
834 	int i;
835 
836 	struct dcn20_hubbub *hubbub2 = kzalloc(sizeof(struct dcn20_hubbub),
837 					  GFP_KERNEL);
838 
839 	if (!hubbub2)
840 		return NULL;
841 
842 #undef REG_STRUCT
843 #define REG_STRUCT hubbub_reg
844 	hubbub_reg_init();
845 
846 #undef REG_STRUCT
847 #define REG_STRUCT vmid_regs
848 	vmid_regs_init(0),
849 	vmid_regs_init(1),
850 	vmid_regs_init(2),
851 	vmid_regs_init(3),
852 	vmid_regs_init(4),
853 	vmid_regs_init(5),
854 	vmid_regs_init(6),
855 	vmid_regs_init(7),
856 	vmid_regs_init(8),
857 	vmid_regs_init(9),
858 	vmid_regs_init(10),
859 	vmid_regs_init(11),
860 	vmid_regs_init(12),
861 	vmid_regs_init(13),
862 	vmid_regs_init(14),
863 	vmid_regs_init(15);
864 
865 	hubbub32_construct(hubbub2, ctx,
866 			&hubbub_reg,
867 			&hubbub_shift,
868 			&hubbub_mask,
869 			ctx->dc->dml.ip.det_buffer_size_kbytes,
870 			ctx->dc->dml.ip.pixel_chunk_size_kbytes,
871 			ctx->dc->dml.ip.config_return_buffer_size_in_kbytes);
872 
873 
874 	for (i = 0; i < res_cap_dcn32.num_vmid; i++) {
875 		struct dcn20_vmid *vmid = &hubbub2->vmid[i];
876 
877 		vmid->ctx = ctx;
878 
879 		vmid->regs = &vmid_regs[i];
880 		vmid->shifts = &vmid_shifts;
881 		vmid->masks = &vmid_masks;
882 	}
883 
884 	return &hubbub2->base;
885 }
886 
887 static struct hubp *dcn32_hubp_create(
888 	struct dc_context *ctx,
889 	uint32_t inst)
890 {
891 	struct dcn20_hubp *hubp2 =
892 		kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
893 
894 	if (!hubp2)
895 		return NULL;
896 
897 #undef REG_STRUCT
898 #define REG_STRUCT hubp_regs
899 	hubp_regs_init(0),
900 	hubp_regs_init(1),
901 	hubp_regs_init(2),
902 	hubp_regs_init(3);
903 
904 	if (hubp32_construct(hubp2, ctx, inst,
905 			&hubp_regs[inst], &hubp_shift, &hubp_mask))
906 		return &hubp2->base;
907 
908 	BREAK_TO_DEBUGGER();
909 	kfree(hubp2);
910 	return NULL;
911 }
912 
913 static void dcn32_dpp_destroy(struct dpp **dpp)
914 {
915 	kfree(TO_DCN30_DPP(*dpp));
916 	*dpp = NULL;
917 }
918 
919 static struct dpp *dcn32_dpp_create(
920 	struct dc_context *ctx,
921 	uint32_t inst)
922 {
923 	struct dcn3_dpp *dpp3 =
924 		kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
925 
926 	if (!dpp3)
927 		return NULL;
928 
929 #undef REG_STRUCT
930 #define REG_STRUCT dpp_regs
931 	dpp_regs_init(0),
932 	dpp_regs_init(1),
933 	dpp_regs_init(2),
934 	dpp_regs_init(3);
935 
936 	if (dpp32_construct(dpp3, ctx, inst,
937 			&dpp_regs[inst], &tf_shift, &tf_mask))
938 		return &dpp3->base;
939 
940 	BREAK_TO_DEBUGGER();
941 	kfree(dpp3);
942 	return NULL;
943 }
944 
945 static struct mpc *dcn32_mpc_create(
946 		struct dc_context *ctx,
947 		int num_mpcc,
948 		int num_rmu)
949 {
950 	struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
951 					  GFP_KERNEL);
952 
953 	if (!mpc30)
954 		return NULL;
955 
956 #undef REG_STRUCT
957 #define REG_STRUCT mpc_regs
958 	dcn_mpc_regs_init();
959 
960 	dcn32_mpc_construct(mpc30, ctx,
961 			&mpc_regs,
962 			&mpc_shift,
963 			&mpc_mask,
964 			num_mpcc,
965 			num_rmu);
966 
967 	return &mpc30->base;
968 }
969 
970 static struct output_pixel_processor *dcn32_opp_create(
971 	struct dc_context *ctx, uint32_t inst)
972 {
973 	struct dcn20_opp *opp2 =
974 		kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
975 
976 	if (!opp2) {
977 		BREAK_TO_DEBUGGER();
978 		return NULL;
979 	}
980 
981 #undef REG_STRUCT
982 #define REG_STRUCT opp_regs
983 	opp_regs_init(0),
984 	opp_regs_init(1),
985 	opp_regs_init(2),
986 	opp_regs_init(3);
987 
988 	dcn20_opp_construct(opp2, ctx, inst,
989 			&opp_regs[inst], &opp_shift, &opp_mask);
990 	return &opp2->base;
991 }
992 
993 
994 static struct timing_generator *dcn32_timing_generator_create(
995 		struct dc_context *ctx,
996 		uint32_t instance)
997 {
998 	struct optc *tgn10 =
999 		kzalloc(sizeof(struct optc), GFP_KERNEL);
1000 
1001 	if (!tgn10)
1002 		return NULL;
1003 
1004 #undef REG_STRUCT
1005 #define REG_STRUCT optc_regs
1006 	optc_regs_init(0),
1007 	optc_regs_init(1),
1008 	optc_regs_init(2),
1009 	optc_regs_init(3);
1010 
1011 	tgn10->base.inst = instance;
1012 	tgn10->base.ctx = ctx;
1013 
1014 	tgn10->tg_regs = &optc_regs[instance];
1015 	tgn10->tg_shift = &optc_shift;
1016 	tgn10->tg_mask = &optc_mask;
1017 
1018 	dcn32_timing_generator_init(tgn10);
1019 
1020 	return &tgn10->base;
1021 }
1022 
1023 static const struct encoder_feature_support link_enc_feature = {
1024 		.max_hdmi_deep_color = COLOR_DEPTH_121212,
1025 		.max_hdmi_pixel_clock = 600000,
1026 		.hdmi_ycbcr420_supported = true,
1027 		.dp_ycbcr420_supported = true,
1028 		.fec_supported = true,
1029 		.flags.bits.IS_HBR2_CAPABLE = true,
1030 		.flags.bits.IS_HBR3_CAPABLE = true,
1031 		.flags.bits.IS_TPS3_CAPABLE = true,
1032 		.flags.bits.IS_TPS4_CAPABLE = true
1033 };
1034 
1035 static struct link_encoder *dcn32_link_encoder_create(
1036 	struct dc_context *ctx,
1037 	const struct encoder_init_data *enc_init_data)
1038 {
1039 	struct dcn20_link_encoder *enc20 =
1040 		kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
1041 
1042 	if (!enc20)
1043 		return NULL;
1044 
1045 #undef REG_STRUCT
1046 #define REG_STRUCT link_enc_aux_regs
1047 	aux_regs_init(0),
1048 	aux_regs_init(1),
1049 	aux_regs_init(2),
1050 	aux_regs_init(3),
1051 	aux_regs_init(4);
1052 
1053 #undef REG_STRUCT
1054 #define REG_STRUCT link_enc_hpd_regs
1055 	hpd_regs_init(0),
1056 	hpd_regs_init(1),
1057 	hpd_regs_init(2),
1058 	hpd_regs_init(3),
1059 	hpd_regs_init(4);
1060 
1061 #undef REG_STRUCT
1062 #define REG_STRUCT link_enc_regs
1063 	link_regs_init(0, A),
1064 	link_regs_init(1, B),
1065 	link_regs_init(2, C),
1066 	link_regs_init(3, D),
1067 	link_regs_init(4, E);
1068 
1069 	dcn32_link_encoder_construct(enc20,
1070 			enc_init_data,
1071 			&link_enc_feature,
1072 			&link_enc_regs[enc_init_data->transmitter],
1073 			&link_enc_aux_regs[enc_init_data->channel - 1],
1074 			&link_enc_hpd_regs[enc_init_data->hpd_source],
1075 			&le_shift,
1076 			&le_mask);
1077 
1078 	return &enc20->enc10.base;
1079 }
1080 
1081 struct panel_cntl *dcn32_panel_cntl_create(const struct panel_cntl_init_data *init_data)
1082 {
1083 	struct dcn31_panel_cntl *panel_cntl =
1084 		kzalloc(sizeof(struct dcn31_panel_cntl), GFP_KERNEL);
1085 
1086 	if (!panel_cntl)
1087 		return NULL;
1088 
1089 	dcn31_panel_cntl_construct(panel_cntl, init_data);
1090 
1091 	return &panel_cntl->base;
1092 }
1093 
1094 static void read_dce_straps(
1095 	struct dc_context *ctx,
1096 	struct resource_straps *straps)
1097 {
1098 	generic_reg_get(ctx, ctx->dcn_reg_offsets[regDC_PINSTRAPS_BASE_IDX] + regDC_PINSTRAPS,
1099 		FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
1100 
1101 }
1102 
1103 static struct audio *dcn32_create_audio(
1104 		struct dc_context *ctx, unsigned int inst)
1105 {
1106 
1107 #undef REG_STRUCT
1108 #define REG_STRUCT audio_regs
1109 	audio_regs_init(0),
1110 	audio_regs_init(1),
1111 	audio_regs_init(2),
1112 	audio_regs_init(3),
1113 	audio_regs_init(4);
1114 
1115 	return dce_audio_create(ctx, inst,
1116 			&audio_regs[inst], &audio_shift, &audio_mask);
1117 }
1118 
1119 static struct vpg *dcn32_vpg_create(
1120 	struct dc_context *ctx,
1121 	uint32_t inst)
1122 {
1123 	struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
1124 
1125 	if (!vpg3)
1126 		return NULL;
1127 
1128 #undef REG_STRUCT
1129 #define REG_STRUCT vpg_regs
1130 	vpg_regs_init(0),
1131 	vpg_regs_init(1),
1132 	vpg_regs_init(2),
1133 	vpg_regs_init(3),
1134 	vpg_regs_init(4),
1135 	vpg_regs_init(5),
1136 	vpg_regs_init(6),
1137 	vpg_regs_init(7),
1138 	vpg_regs_init(8),
1139 	vpg_regs_init(9);
1140 
1141 	vpg3_construct(vpg3, ctx, inst,
1142 			&vpg_regs[inst],
1143 			&vpg_shift,
1144 			&vpg_mask);
1145 
1146 	return &vpg3->base;
1147 }
1148 
1149 static struct afmt *dcn32_afmt_create(
1150 	struct dc_context *ctx,
1151 	uint32_t inst)
1152 {
1153 	struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
1154 
1155 	if (!afmt3)
1156 		return NULL;
1157 
1158 #undef REG_STRUCT
1159 #define REG_STRUCT afmt_regs
1160 	afmt_regs_init(0),
1161 	afmt_regs_init(1),
1162 	afmt_regs_init(2),
1163 	afmt_regs_init(3),
1164 	afmt_regs_init(4),
1165 	afmt_regs_init(5);
1166 
1167 	afmt3_construct(afmt3, ctx, inst,
1168 			&afmt_regs[inst],
1169 			&afmt_shift,
1170 			&afmt_mask);
1171 
1172 	return &afmt3->base;
1173 }
1174 
1175 static struct apg *dcn31_apg_create(
1176 	struct dc_context *ctx,
1177 	uint32_t inst)
1178 {
1179 	struct dcn31_apg *apg31 = kzalloc(sizeof(struct dcn31_apg), GFP_KERNEL);
1180 
1181 	if (!apg31)
1182 		return NULL;
1183 
1184 #undef REG_STRUCT
1185 #define REG_STRUCT apg_regs
1186 	apg_regs_init(0),
1187 	apg_regs_init(1),
1188 	apg_regs_init(2),
1189 	apg_regs_init(3);
1190 
1191 	apg31_construct(apg31, ctx, inst,
1192 			&apg_regs[inst],
1193 			&apg_shift,
1194 			&apg_mask);
1195 
1196 	return &apg31->base;
1197 }
1198 
1199 static struct stream_encoder *dcn32_stream_encoder_create(
1200 	enum engine_id eng_id,
1201 	struct dc_context *ctx)
1202 {
1203 	struct dcn10_stream_encoder *enc1;
1204 	struct vpg *vpg;
1205 	struct afmt *afmt;
1206 	int vpg_inst;
1207 	int afmt_inst;
1208 
1209 	/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
1210 	if (eng_id <= ENGINE_ID_DIGF) {
1211 		vpg_inst = eng_id;
1212 		afmt_inst = eng_id;
1213 	} else
1214 		return NULL;
1215 
1216 	enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1217 	vpg = dcn32_vpg_create(ctx, vpg_inst);
1218 	afmt = dcn32_afmt_create(ctx, afmt_inst);
1219 
1220 	if (!enc1 || !vpg || !afmt) {
1221 		kfree(enc1);
1222 		kfree(vpg);
1223 		kfree(afmt);
1224 		return NULL;
1225 	}
1226 
1227 #undef REG_STRUCT
1228 #define REG_STRUCT stream_enc_regs
1229 	stream_enc_regs_init(0),
1230 	stream_enc_regs_init(1),
1231 	stream_enc_regs_init(2),
1232 	stream_enc_regs_init(3),
1233 	stream_enc_regs_init(4);
1234 
1235 	dcn32_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
1236 					eng_id, vpg, afmt,
1237 					&stream_enc_regs[eng_id],
1238 					&se_shift, &se_mask);
1239 
1240 	return &enc1->base;
1241 }
1242 
1243 static struct hpo_dp_stream_encoder *dcn32_hpo_dp_stream_encoder_create(
1244 	enum engine_id eng_id,
1245 	struct dc_context *ctx)
1246 {
1247 	struct dcn31_hpo_dp_stream_encoder *hpo_dp_enc31;
1248 	struct vpg *vpg;
1249 	struct apg *apg;
1250 	uint32_t hpo_dp_inst;
1251 	uint32_t vpg_inst;
1252 	uint32_t apg_inst;
1253 
1254 	ASSERT((eng_id >= ENGINE_ID_HPO_DP_0) && (eng_id <= ENGINE_ID_HPO_DP_3));
1255 	hpo_dp_inst = eng_id - ENGINE_ID_HPO_DP_0;
1256 
1257 	/* Mapping of VPG register blocks to HPO DP block instance:
1258 	 * VPG[6] -> HPO_DP[0]
1259 	 * VPG[7] -> HPO_DP[1]
1260 	 * VPG[8] -> HPO_DP[2]
1261 	 * VPG[9] -> HPO_DP[3]
1262 	 */
1263 	vpg_inst = hpo_dp_inst + 6;
1264 
1265 	/* Mapping of APG register blocks to HPO DP block instance:
1266 	 * APG[0] -> HPO_DP[0]
1267 	 * APG[1] -> HPO_DP[1]
1268 	 * APG[2] -> HPO_DP[2]
1269 	 * APG[3] -> HPO_DP[3]
1270 	 */
1271 	apg_inst = hpo_dp_inst;
1272 
1273 	/* allocate HPO stream encoder and create VPG sub-block */
1274 	hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_stream_encoder), GFP_KERNEL);
1275 	vpg = dcn32_vpg_create(ctx, vpg_inst);
1276 	apg = dcn31_apg_create(ctx, apg_inst);
1277 
1278 	if (!hpo_dp_enc31 || !vpg || !apg) {
1279 		kfree(hpo_dp_enc31);
1280 		kfree(vpg);
1281 		kfree(apg);
1282 		return NULL;
1283 	}
1284 
1285 #undef REG_STRUCT
1286 #define REG_STRUCT hpo_dp_stream_enc_regs
1287 	hpo_dp_stream_encoder_reg_init(0),
1288 	hpo_dp_stream_encoder_reg_init(1),
1289 	hpo_dp_stream_encoder_reg_init(2),
1290 	hpo_dp_stream_encoder_reg_init(3);
1291 
1292 	dcn31_hpo_dp_stream_encoder_construct(hpo_dp_enc31, ctx, ctx->dc_bios,
1293 					hpo_dp_inst, eng_id, vpg, apg,
1294 					&hpo_dp_stream_enc_regs[hpo_dp_inst],
1295 					&hpo_dp_se_shift, &hpo_dp_se_mask);
1296 
1297 	return &hpo_dp_enc31->base;
1298 }
1299 
1300 static struct hpo_dp_link_encoder *dcn32_hpo_dp_link_encoder_create(
1301 	uint8_t inst,
1302 	struct dc_context *ctx)
1303 {
1304 	struct dcn31_hpo_dp_link_encoder *hpo_dp_enc31;
1305 
1306 	/* allocate HPO link encoder */
1307 	hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_link_encoder), GFP_KERNEL);
1308 	if (!hpo_dp_enc31)
1309 		return NULL; /* out of memory */
1310 
1311 #undef REG_STRUCT
1312 #define REG_STRUCT hpo_dp_link_enc_regs
1313 	hpo_dp_link_encoder_reg_init(0),
1314 	hpo_dp_link_encoder_reg_init(1);
1315 
1316 	hpo_dp_link_encoder32_construct(hpo_dp_enc31, ctx, inst,
1317 					&hpo_dp_link_enc_regs[inst],
1318 					&hpo_dp_le_shift, &hpo_dp_le_mask);
1319 
1320 	return &hpo_dp_enc31->base;
1321 }
1322 
1323 static struct dce_hwseq *dcn32_hwseq_create(
1324 	struct dc_context *ctx)
1325 {
1326 	struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1327 
1328 #undef REG_STRUCT
1329 #define REG_STRUCT hwseq_reg
1330 	hwseq_reg_init();
1331 
1332 	if (hws) {
1333 		hws->ctx = ctx;
1334 		hws->regs = &hwseq_reg;
1335 		hws->shifts = &hwseq_shift;
1336 		hws->masks = &hwseq_mask;
1337 	}
1338 	return hws;
1339 }
1340 static const struct resource_create_funcs res_create_funcs = {
1341 	.read_dce_straps = read_dce_straps,
1342 	.create_audio = dcn32_create_audio,
1343 	.create_stream_encoder = dcn32_stream_encoder_create,
1344 	.create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create,
1345 	.create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create,
1346 	.create_hwseq = dcn32_hwseq_create,
1347 };
1348 
1349 static void dcn32_resource_destruct(struct dcn32_resource_pool *pool)
1350 {
1351 	unsigned int i;
1352 
1353 	for (i = 0; i < pool->base.stream_enc_count; i++) {
1354 		if (pool->base.stream_enc[i] != NULL) {
1355 			if (pool->base.stream_enc[i]->vpg != NULL) {
1356 				kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
1357 				pool->base.stream_enc[i]->vpg = NULL;
1358 			}
1359 			if (pool->base.stream_enc[i]->afmt != NULL) {
1360 				kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
1361 				pool->base.stream_enc[i]->afmt = NULL;
1362 			}
1363 			kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1364 			pool->base.stream_enc[i] = NULL;
1365 		}
1366 	}
1367 
1368 	for (i = 0; i < pool->base.hpo_dp_stream_enc_count; i++) {
1369 		if (pool->base.hpo_dp_stream_enc[i] != NULL) {
1370 			if (pool->base.hpo_dp_stream_enc[i]->vpg != NULL) {
1371 				kfree(DCN30_VPG_FROM_VPG(pool->base.hpo_dp_stream_enc[i]->vpg));
1372 				pool->base.hpo_dp_stream_enc[i]->vpg = NULL;
1373 			}
1374 			if (pool->base.hpo_dp_stream_enc[i]->apg != NULL) {
1375 				kfree(DCN31_APG_FROM_APG(pool->base.hpo_dp_stream_enc[i]->apg));
1376 				pool->base.hpo_dp_stream_enc[i]->apg = NULL;
1377 			}
1378 			kfree(DCN3_1_HPO_DP_STREAM_ENC_FROM_HPO_STREAM_ENC(pool->base.hpo_dp_stream_enc[i]));
1379 			pool->base.hpo_dp_stream_enc[i] = NULL;
1380 		}
1381 	}
1382 
1383 	for (i = 0; i < pool->base.hpo_dp_link_enc_count; i++) {
1384 		if (pool->base.hpo_dp_link_enc[i] != NULL) {
1385 			kfree(DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(pool->base.hpo_dp_link_enc[i]));
1386 			pool->base.hpo_dp_link_enc[i] = NULL;
1387 		}
1388 	}
1389 
1390 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1391 		if (pool->base.dscs[i] != NULL)
1392 			dcn20_dsc_destroy(&pool->base.dscs[i]);
1393 	}
1394 
1395 	if (pool->base.mpc != NULL) {
1396 		kfree(TO_DCN20_MPC(pool->base.mpc));
1397 		pool->base.mpc = NULL;
1398 	}
1399 	if (pool->base.hubbub != NULL) {
1400 		kfree(TO_DCN20_HUBBUB(pool->base.hubbub));
1401 		pool->base.hubbub = NULL;
1402 	}
1403 	for (i = 0; i < pool->base.pipe_count; i++) {
1404 		if (pool->base.dpps[i] != NULL)
1405 			dcn32_dpp_destroy(&pool->base.dpps[i]);
1406 
1407 		if (pool->base.ipps[i] != NULL)
1408 			pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1409 
1410 		if (pool->base.hubps[i] != NULL) {
1411 			kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1412 			pool->base.hubps[i] = NULL;
1413 		}
1414 
1415 		if (pool->base.irqs != NULL) {
1416 			dal_irq_service_destroy(&pool->base.irqs);
1417 		}
1418 	}
1419 
1420 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1421 		if (pool->base.engines[i] != NULL)
1422 			dce110_engine_destroy(&pool->base.engines[i]);
1423 		if (pool->base.hw_i2cs[i] != NULL) {
1424 			kfree(pool->base.hw_i2cs[i]);
1425 			pool->base.hw_i2cs[i] = NULL;
1426 		}
1427 		if (pool->base.sw_i2cs[i] != NULL) {
1428 			kfree(pool->base.sw_i2cs[i]);
1429 			pool->base.sw_i2cs[i] = NULL;
1430 		}
1431 	}
1432 
1433 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1434 		if (pool->base.opps[i] != NULL)
1435 			pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1436 	}
1437 
1438 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1439 		if (pool->base.timing_generators[i] != NULL)	{
1440 			kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1441 			pool->base.timing_generators[i] = NULL;
1442 		}
1443 	}
1444 
1445 	for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1446 		if (pool->base.dwbc[i] != NULL) {
1447 			kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
1448 			pool->base.dwbc[i] = NULL;
1449 		}
1450 		if (pool->base.mcif_wb[i] != NULL) {
1451 			kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
1452 			pool->base.mcif_wb[i] = NULL;
1453 		}
1454 	}
1455 
1456 	for (i = 0; i < pool->base.audio_count; i++) {
1457 		if (pool->base.audios[i])
1458 			dce_aud_destroy(&pool->base.audios[i]);
1459 	}
1460 
1461 	for (i = 0; i < pool->base.clk_src_count; i++) {
1462 		if (pool->base.clock_sources[i] != NULL) {
1463 			dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1464 			pool->base.clock_sources[i] = NULL;
1465 		}
1466 	}
1467 
1468 	for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
1469 		if (pool->base.mpc_lut[i] != NULL) {
1470 			dc_3dlut_func_release(pool->base.mpc_lut[i]);
1471 			pool->base.mpc_lut[i] = NULL;
1472 		}
1473 		if (pool->base.mpc_shaper[i] != NULL) {
1474 			dc_transfer_func_release(pool->base.mpc_shaper[i]);
1475 			pool->base.mpc_shaper[i] = NULL;
1476 		}
1477 	}
1478 
1479 	if (pool->base.dp_clock_source != NULL) {
1480 		dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1481 		pool->base.dp_clock_source = NULL;
1482 	}
1483 
1484 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1485 		if (pool->base.multiple_abms[i] != NULL)
1486 			dce_abm_destroy(&pool->base.multiple_abms[i]);
1487 	}
1488 
1489 	if (pool->base.psr != NULL)
1490 		dmub_psr_destroy(&pool->base.psr);
1491 
1492 	if (pool->base.dccg != NULL)
1493 		dcn_dccg_destroy(&pool->base.dccg);
1494 
1495 	if (pool->base.oem_device != NULL) {
1496 		struct dc *dc = pool->base.oem_device->ctx->dc;
1497 
1498 		dc->link_srv->destroy_ddc_service(&pool->base.oem_device);
1499 	}
1500 }
1501 
1502 
1503 static bool dcn32_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
1504 {
1505 	int i;
1506 	uint32_t dwb_count = pool->res_cap->num_dwb;
1507 
1508 	for (i = 0; i < dwb_count; i++) {
1509 		struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
1510 						    GFP_KERNEL);
1511 
1512 		if (!dwbc30) {
1513 			dm_error("DC: failed to create dwbc30!\n");
1514 			return false;
1515 		}
1516 
1517 #undef REG_STRUCT
1518 #define REG_STRUCT dwbc30_regs
1519 		dwbc_regs_dcn3_init(0);
1520 
1521 		dcn30_dwbc_construct(dwbc30, ctx,
1522 				&dwbc30_regs[i],
1523 				&dwbc30_shift,
1524 				&dwbc30_mask,
1525 				i);
1526 
1527 		pool->dwbc[i] = &dwbc30->base;
1528 	}
1529 	return true;
1530 }
1531 
1532 static bool dcn32_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
1533 {
1534 	int i;
1535 	uint32_t dwb_count = pool->res_cap->num_dwb;
1536 
1537 	for (i = 0; i < dwb_count; i++) {
1538 		struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
1539 						    GFP_KERNEL);
1540 
1541 		if (!mcif_wb30) {
1542 			dm_error("DC: failed to create mcif_wb30!\n");
1543 			return false;
1544 		}
1545 
1546 #undef REG_STRUCT
1547 #define REG_STRUCT mcif_wb30_regs
1548 		mcif_wb_regs_dcn3_init(0);
1549 
1550 		dcn32_mmhubbub_construct(mcif_wb30, ctx,
1551 				&mcif_wb30_regs[i],
1552 				&mcif_wb30_shift,
1553 				&mcif_wb30_mask,
1554 				i);
1555 
1556 		pool->mcif_wb[i] = &mcif_wb30->base;
1557 	}
1558 	return true;
1559 }
1560 
1561 static struct display_stream_compressor *dcn32_dsc_create(
1562 	struct dc_context *ctx, uint32_t inst)
1563 {
1564 	struct dcn20_dsc *dsc =
1565 		kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
1566 
1567 	if (!dsc) {
1568 		BREAK_TO_DEBUGGER();
1569 		return NULL;
1570 	}
1571 
1572 #undef REG_STRUCT
1573 #define REG_STRUCT dsc_regs
1574 	dsc_regsDCN20_init(0),
1575 	dsc_regsDCN20_init(1),
1576 	dsc_regsDCN20_init(2),
1577 	dsc_regsDCN20_init(3);
1578 
1579 	dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1580 
1581 	dsc->max_image_width = 6016;
1582 
1583 	return &dsc->base;
1584 }
1585 
1586 static void dcn32_destroy_resource_pool(struct resource_pool **pool)
1587 {
1588 	struct dcn32_resource_pool *dcn32_pool = TO_DCN32_RES_POOL(*pool);
1589 
1590 	dcn32_resource_destruct(dcn32_pool);
1591 	kfree(dcn32_pool);
1592 	*pool = NULL;
1593 }
1594 
1595 bool dcn32_acquire_post_bldn_3dlut(
1596 		struct resource_context *res_ctx,
1597 		const struct resource_pool *pool,
1598 		int mpcc_id,
1599 		struct dc_3dlut **lut,
1600 		struct dc_transfer_func **shaper)
1601 {
1602 	bool ret = false;
1603 
1604 	ASSERT(*lut == NULL && *shaper == NULL);
1605 	*lut = NULL;
1606 	*shaper = NULL;
1607 
1608 	if (!res_ctx->is_mpc_3dlut_acquired[mpcc_id]) {
1609 		*lut = pool->mpc_lut[mpcc_id];
1610 		*shaper = pool->mpc_shaper[mpcc_id];
1611 		res_ctx->is_mpc_3dlut_acquired[mpcc_id] = true;
1612 		ret = true;
1613 	}
1614 	return ret;
1615 }
1616 
1617 bool dcn32_release_post_bldn_3dlut(
1618 		struct resource_context *res_ctx,
1619 		const struct resource_pool *pool,
1620 		struct dc_3dlut **lut,
1621 		struct dc_transfer_func **shaper)
1622 {
1623 	int i;
1624 	bool ret = false;
1625 
1626 	for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1627 		if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
1628 			res_ctx->is_mpc_3dlut_acquired[i] = false;
1629 			pool->mpc_lut[i]->state.raw = 0;
1630 			*lut = NULL;
1631 			*shaper = NULL;
1632 			ret = true;
1633 			break;
1634 		}
1635 	}
1636 	return ret;
1637 }
1638 
1639 static void dcn32_enable_phantom_plane(struct dc *dc,
1640 		struct dc_state *context,
1641 		struct dc_stream_state *phantom_stream,
1642 		unsigned int dc_pipe_idx)
1643 {
1644 	struct dc_plane_state *phantom_plane = NULL;
1645 	struct dc_plane_state *prev_phantom_plane = NULL;
1646 	struct pipe_ctx *curr_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1647 
1648 	while (curr_pipe) {
1649 		if (curr_pipe->top_pipe && curr_pipe->top_pipe->plane_state == curr_pipe->plane_state)
1650 			phantom_plane = prev_phantom_plane;
1651 		else
1652 			phantom_plane = dc_state_create_phantom_plane(dc, context, curr_pipe->plane_state);
1653 
1654 		if (!phantom_plane)
1655 			continue;
1656 
1657 		memcpy(&phantom_plane->address, &curr_pipe->plane_state->address, sizeof(phantom_plane->address));
1658 		memcpy(&phantom_plane->scaling_quality, &curr_pipe->plane_state->scaling_quality,
1659 				sizeof(phantom_plane->scaling_quality));
1660 		memcpy(&phantom_plane->src_rect, &curr_pipe->plane_state->src_rect, sizeof(phantom_plane->src_rect));
1661 		memcpy(&phantom_plane->dst_rect, &curr_pipe->plane_state->dst_rect, sizeof(phantom_plane->dst_rect));
1662 		memcpy(&phantom_plane->clip_rect, &curr_pipe->plane_state->clip_rect, sizeof(phantom_plane->clip_rect));
1663 		memcpy(&phantom_plane->plane_size, &curr_pipe->plane_state->plane_size,
1664 				sizeof(phantom_plane->plane_size));
1665 		memcpy(&phantom_plane->tiling_info, &curr_pipe->plane_state->tiling_info,
1666 				sizeof(phantom_plane->tiling_info));
1667 		memcpy(&phantom_plane->dcc, &curr_pipe->plane_state->dcc, sizeof(phantom_plane->dcc));
1668 		phantom_plane->format = curr_pipe->plane_state->format;
1669 		phantom_plane->rotation = curr_pipe->plane_state->rotation;
1670 		phantom_plane->visible = curr_pipe->plane_state->visible;
1671 
1672 		/* Shadow pipe has small viewport. */
1673 		phantom_plane->clip_rect.y = 0;
1674 		phantom_plane->clip_rect.height = phantom_stream->src.height;
1675 
1676 		dc_state_add_phantom_plane(dc, phantom_stream, phantom_plane, context);
1677 
1678 		curr_pipe = curr_pipe->bottom_pipe;
1679 		prev_phantom_plane = phantom_plane;
1680 	}
1681 }
1682 
1683 static struct dc_stream_state *dcn32_enable_phantom_stream(struct dc *dc,
1684 		struct dc_state *context,
1685 		display_e2e_pipe_params_st *pipes,
1686 		unsigned int pipe_cnt,
1687 		unsigned int dc_pipe_idx)
1688 {
1689 	struct dc_stream_state *phantom_stream = NULL;
1690 	struct pipe_ctx *ref_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1691 
1692 	phantom_stream = dc_state_create_phantom_stream(dc, context, ref_pipe->stream);
1693 	if (!phantom_stream)
1694 		return phantom_stream;
1695 
1696 	/* stream has limited viewport and small timing */
1697 	memcpy(&phantom_stream->timing, &ref_pipe->stream->timing, sizeof(phantom_stream->timing));
1698 	memcpy(&phantom_stream->src, &ref_pipe->stream->src, sizeof(phantom_stream->src));
1699 	memcpy(&phantom_stream->dst, &ref_pipe->stream->dst, sizeof(phantom_stream->dst));
1700 	DC_FP_START();
1701 	dcn32_set_phantom_stream_timing(dc, context, ref_pipe, phantom_stream, pipes, pipe_cnt, dc_pipe_idx);
1702 	DC_FP_END();
1703 
1704 	dc_state_add_phantom_stream(dc, context, phantom_stream, ref_pipe->stream);
1705 	return phantom_stream;
1706 }
1707 
1708 /* TODO: Input to this function should indicate which pipe indexes (or streams)
1709  * require a phantom pipe / stream
1710  */
1711 void dcn32_add_phantom_pipes(struct dc *dc, struct dc_state *context,
1712 		display_e2e_pipe_params_st *pipes,
1713 		unsigned int pipe_cnt,
1714 		unsigned int index)
1715 {
1716 	struct dc_stream_state *phantom_stream = NULL;
1717 	unsigned int i;
1718 
1719 	// The index of the DC pipe passed into this function is guarenteed to
1720 	// be a valid candidate for SubVP (i.e. has a plane, stream, doesn't
1721 	// already have phantom pipe assigned, etc.) by previous checks.
1722 	phantom_stream = dcn32_enable_phantom_stream(dc, context, pipes, pipe_cnt, index);
1723 	if (!phantom_stream)
1724 		return;
1725 
1726 	dcn32_enable_phantom_plane(dc, context, phantom_stream, index);
1727 
1728 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1729 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1730 
1731 		// Build scaling params for phantom pipes which were newly added.
1732 		// We determine which phantom pipes were added by comparing with
1733 		// the phantom stream.
1734 		if (pipe->plane_state && pipe->stream && pipe->stream == phantom_stream &&
1735 				dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
1736 			pipe->stream->use_dynamic_meta = false;
1737 			pipe->plane_state->flip_immediate = false;
1738 			if (!resource_build_scaling_params(pipe)) {
1739 				// Log / remove phantom pipes since failed to build scaling params
1740 			}
1741 		}
1742 	}
1743 }
1744 
1745 static bool dml1_validate(struct dc *dc, struct dc_state *context, bool fast_validate)
1746 {
1747 	bool out = false;
1748 
1749 	BW_VAL_TRACE_SETUP();
1750 
1751 	int vlevel = 0;
1752 	int pipe_cnt = 0;
1753 	display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
1754 
1755 	/* To handle Freesync properly, setting FreeSync DML parameters
1756 	 * to its default state for the first stage of validation
1757 	 */
1758 	context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
1759 	context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
1760 
1761 	DC_LOGGER_INIT(dc->ctx->logger);
1762 
1763 	BW_VAL_TRACE_COUNT();
1764 
1765 	if (!pipes)
1766 		goto validate_fail;
1767 
1768 	DC_FP_START();
1769 	out = dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate);
1770 	DC_FP_END();
1771 
1772 	if (pipe_cnt == 0)
1773 		goto validate_out;
1774 
1775 	if (!out)
1776 		goto validate_fail;
1777 
1778 	BW_VAL_TRACE_END_VOLTAGE_LEVEL();
1779 
1780 	if (fast_validate) {
1781 		BW_VAL_TRACE_SKIP(fast);
1782 		goto validate_out;
1783 	}
1784 
1785 	dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
1786 
1787 	dcn32_override_min_req_memclk(dc, context);
1788 	dcn32_override_min_req_dcfclk(dc, context);
1789 
1790 	BW_VAL_TRACE_END_WATERMARKS();
1791 
1792 	goto validate_out;
1793 
1794 validate_fail:
1795 	DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
1796 		dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));
1797 
1798 	BW_VAL_TRACE_SKIP(fail);
1799 	out = false;
1800 
1801 validate_out:
1802 	kfree(pipes);
1803 
1804 	BW_VAL_TRACE_FINISH();
1805 
1806 	return out;
1807 }
1808 
1809 bool dcn32_validate_bandwidth(struct dc *dc,
1810 		struct dc_state *context,
1811 		bool fast_validate)
1812 {
1813 	bool out = false;
1814 
1815 	if (dc->debug.using_dml2)
1816 		out = dml2_validate(dc, context,
1817 				context->power_source == DC_POWER_SOURCE_DC ? context->bw_ctx.dml2_dc_power_source : context->bw_ctx.dml2,
1818 				fast_validate);
1819 	else
1820 		out = dml1_validate(dc, context, fast_validate);
1821 	return out;
1822 }
1823 
1824 int dcn32_populate_dml_pipes_from_context(
1825 	struct dc *dc, struct dc_state *context,
1826 	display_e2e_pipe_params_st *pipes,
1827 	bool fast_validate)
1828 {
1829 	int i, pipe_cnt;
1830 	struct resource_context *res_ctx = &context->res_ctx;
1831 	struct pipe_ctx *pipe = NULL;
1832 	bool subvp_in_use = false;
1833 	struct dc_crtc_timing *timing;
1834 	int subvp_main_pipe_index = -1;
1835 	enum mall_stream_type mall_type;
1836 	bool single_display_subvp = false;
1837 	struct dc_stream_state *stream = NULL;
1838 	int num_subvp_main = 0;
1839 	int num_subvp_phantom = 0;
1840 	int num_subvp_none = 0;
1841 	int odm_slice_count;
1842 
1843 	dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);
1844 
1845 	/* For single display subvp, look for subvp main so if we have phantom
1846 	 *  pipe, we can set odm policy to match main pipe
1847 	 */
1848 	for (i = 0; i < context->stream_count; i++) {
1849 		stream = context->streams[i];
1850 		mall_type = dc_state_get_stream_subvp_type(context, stream);
1851 		if (mall_type == SUBVP_MAIN)
1852 			num_subvp_main++;
1853 		else if (mall_type == SUBVP_PHANTOM)
1854 			num_subvp_phantom++;
1855 		else
1856 			num_subvp_none++;
1857 	}
1858 	if (num_subvp_main == 1 && num_subvp_phantom == 1 && num_subvp_none == 0)
1859 		single_display_subvp = true;
1860 
1861 	if (single_display_subvp) {
1862 		for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1863 			pipe = &res_ctx->pipe_ctx[i];
1864 			if (!res_ctx->pipe_ctx[i].stream)
1865 				continue;
1866 
1867 			mall_type = dc_state_get_pipe_subvp_type(context, pipe);
1868 			if (mall_type == SUBVP_MAIN) {
1869 				if (resource_is_pipe_type(pipe, OTG_MASTER))
1870 					subvp_main_pipe_index = i;
1871 			}
1872 			pipe_cnt++;
1873 		}
1874 	}
1875 
1876 	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1877 
1878 		if (!res_ctx->pipe_ctx[i].stream)
1879 			continue;
1880 		pipe = &res_ctx->pipe_ctx[i];
1881 		timing = &pipe->stream->timing;
1882 
1883 		pipes[pipe_cnt].pipe.src.gpuvm = true;
1884 		DC_FP_START();
1885 		dcn32_zero_pipe_dcc_fraction(pipes, pipe_cnt);
1886 		DC_FP_END();
1887 		pipes[pipe_cnt].pipe.dest.vfront_porch = timing->v_front_porch;
1888 		if (dc->config.enable_windowed_mpo_odm &&
1889 				dc->debug.enable_single_display_2to1_odm_policy) {
1890 			/* For single display subvp, if pipe is phantom pipe,
1891 			 *  then copy odm policy from subvp main pipe
1892 			 */
1893 			mall_type = dc_state_get_pipe_subvp_type(context, pipe);
1894 			if (single_display_subvp && (mall_type == SUBVP_PHANTOM)) {
1895 				if (subvp_main_pipe_index < 0) {
1896 					odm_slice_count = -1;
1897 					ASSERT(0);
1898 				} else {
1899 					odm_slice_count = resource_get_odm_slice_count(&res_ctx->pipe_ctx[subvp_main_pipe_index]);
1900 				}
1901 			} else {
1902 				odm_slice_count = resource_get_odm_slice_count(pipe);
1903 			}
1904 			switch (odm_slice_count) {
1905 			case 2:
1906 				pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
1907 				break;
1908 			case 4:
1909 				pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_4to1;
1910 				break;
1911 			default:
1912 				pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal;
1913 			}
1914 		} else {
1915 			pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal;
1916 		}
1917 
1918 		pipes[pipe_cnt].pipe.src.gpuvm_min_page_size_kbytes = 256; // according to spreadsheet
1919 		pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
1920 		pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_19;
1921 
1922 		/* Only populate DML input with subvp info for full updates.
1923 		 * This is just a workaround -- needs a proper fix.
1924 		 */
1925 		if (!fast_validate) {
1926 			switch (dc_state_get_pipe_subvp_type(context, pipe)) {
1927 			case SUBVP_MAIN:
1928 				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_sub_viewport;
1929 				subvp_in_use = true;
1930 				break;
1931 			case SUBVP_PHANTOM:
1932 				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_phantom_pipe;
1933 				pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
1934 				// Disallow unbounded req for SubVP according to DCHUB programming guide
1935 				pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
1936 				break;
1937 			case SUBVP_NONE:
1938 				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_disable;
1939 				pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
1940 				break;
1941 			default:
1942 				break;
1943 			}
1944 		}
1945 
1946 		pipes[pipe_cnt].dout.dsc_input_bpc = 0;
1947 		if (pipes[pipe_cnt].dout.dsc_enable) {
1948 			switch (timing->display_color_depth) {
1949 			case COLOR_DEPTH_888:
1950 				pipes[pipe_cnt].dout.dsc_input_bpc = 8;
1951 				break;
1952 			case COLOR_DEPTH_101010:
1953 				pipes[pipe_cnt].dout.dsc_input_bpc = 10;
1954 				break;
1955 			case COLOR_DEPTH_121212:
1956 				pipes[pipe_cnt].dout.dsc_input_bpc = 12;
1957 				break;
1958 			default:
1959 				ASSERT(0);
1960 				break;
1961 			}
1962 		}
1963 
1964 
1965 		pipe_cnt++;
1966 	}
1967 
1968 	/* For DET allocation, we don't want to use DML policy (not optimal for utilizing all
1969 	 * the DET available for each pipe). Use the DET override input to maintain our driver
1970 	 * policy.
1971 	 */
1972 	dcn32_set_det_allocations(dc, context, pipes);
1973 
1974 	// In general cases we want to keep the dram clock change requirement
1975 	// (prefer configs that support MCLK switch). Only override to false
1976 	// for SubVP
1977 	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || subvp_in_use)
1978 		context->bw_ctx.dml.soc.dram_clock_change_requirement_final = false;
1979 	else
1980 		context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
1981 
1982 	return pipe_cnt;
1983 }
1984 
1985 unsigned int dcn32_calculate_mall_ways_from_bytes(const struct dc *dc, unsigned int total_size_in_mall_bytes)
1986 {
1987 	uint32_t cache_lines_used, lines_per_way, total_cache_lines, num_ways;
1988 
1989 	if (total_size_in_mall_bytes == 0) {
1990 		return 0;
1991 	}
1992 
1993 	/* add 2 lines for worst case alignment */
1994 	cache_lines_used = total_size_in_mall_bytes / dc->caps.cache_line_size + 2;
1995 
1996 	total_cache_lines = dc->caps.max_cab_allocation_bytes / dc->caps.cache_line_size;
1997 	lines_per_way = total_cache_lines / dc->caps.cache_num_ways;
1998 	num_ways = cache_lines_used / lines_per_way;
1999 	if (cache_lines_used % lines_per_way > 0)
2000 		num_ways++;
2001 
2002 	return num_ways;
2003 }
2004 
2005 static struct dc_cap_funcs cap_funcs = {
2006 	.get_dcc_compression_cap = dcn20_get_dcc_compression_cap,
2007 	.get_subvp_en = dcn32_subvp_in_use,
2008 };
2009 
2010 void dcn32_calculate_wm_and_dlg(struct dc *dc, struct dc_state *context,
2011 				display_e2e_pipe_params_st *pipes,
2012 				int pipe_cnt,
2013 				int vlevel)
2014 {
2015     DC_FP_START();
2016     dcn32_calculate_wm_and_dlg_fpu(dc, context, pipes, pipe_cnt, vlevel);
2017     DC_FP_END();
2018 }
2019 
2020 static void dcn32_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
2021 {
2022 	struct dml2_configuration_options *dml2_opt = &dc->dml2_tmp;
2023 
2024 	memcpy(dml2_opt, &dc->dml2_options, sizeof(dc->dml2_options));
2025 
2026 	DC_FP_START();
2027 
2028 	dcn32_update_bw_bounding_box_fpu(dc, bw_params);
2029 
2030 	dml2_opt->use_clock_dc_limits = false;
2031 	if (dc->debug.using_dml2 && dc->current_state && dc->current_state->bw_ctx.dml2)
2032 		dml2_reinit(dc, dml2_opt, &dc->current_state->bw_ctx.dml2);
2033 
2034 	dml2_opt->use_clock_dc_limits = true;
2035 	if (dc->debug.using_dml2 && dc->current_state && dc->current_state->bw_ctx.dml2_dc_power_source)
2036 		dml2_reinit(dc, dml2_opt, &dc->current_state->bw_ctx.dml2_dc_power_source);
2037 
2038 	DC_FP_END();
2039 }
2040 
2041 static struct resource_funcs dcn32_res_pool_funcs = {
2042 	.destroy = dcn32_destroy_resource_pool,
2043 	.link_enc_create = dcn32_link_encoder_create,
2044 	.link_enc_create_minimal = NULL,
2045 	.panel_cntl_create = dcn32_panel_cntl_create,
2046 	.validate_bandwidth = dcn32_validate_bandwidth,
2047 	.calculate_wm_and_dlg = dcn32_calculate_wm_and_dlg,
2048 	.populate_dml_pipes = dcn32_populate_dml_pipes_from_context,
2049 	.acquire_free_pipe_as_secondary_dpp_pipe = dcn32_acquire_free_pipe_as_secondary_dpp_pipe,
2050 	.acquire_free_pipe_as_secondary_opp_head = dcn32_acquire_free_pipe_as_secondary_opp_head,
2051 	.release_pipe = dcn20_release_pipe,
2052 	.add_stream_to_ctx = dcn30_add_stream_to_ctx,
2053 	.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2054 	.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2055 	.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
2056 	.set_mcif_arb_params = dcn30_set_mcif_arb_params,
2057 	.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
2058 	.acquire_post_bldn_3dlut = dcn32_acquire_post_bldn_3dlut,
2059 	.release_post_bldn_3dlut = dcn32_release_post_bldn_3dlut,
2060 	.update_bw_bounding_box = dcn32_update_bw_bounding_box,
2061 	.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2062 	.update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
2063 	.add_phantom_pipes = dcn32_add_phantom_pipes,
2064 	.build_pipe_pix_clk_params = dcn20_build_pipe_pix_clk_params,
2065 	.calculate_mall_ways_from_bytes = dcn32_calculate_mall_ways_from_bytes,
2066 };
2067 
2068 static uint32_t read_pipe_fuses(struct dc_context *ctx)
2069 {
2070 	uint32_t value = REG_READ(CC_DC_PIPE_DIS);
2071 	/* DCN32 support max 4 pipes */
2072 	value = value & 0xf;
2073 	return value;
2074 }
2075 
2076 
2077 static bool dcn32_resource_construct(
2078 	uint8_t num_virtual_links,
2079 	struct dc *dc,
2080 	struct dcn32_resource_pool *pool)
2081 {
2082 	int i, j;
2083 	struct dc_context *ctx = dc->ctx;
2084 	struct irq_service_init_data init_data;
2085 	struct ddc_service_init_data ddc_init_data = {0};
2086 	uint32_t pipe_fuses = 0;
2087 	uint32_t num_pipes  = 4;
2088 
2089 #undef REG_STRUCT
2090 #define REG_STRUCT bios_regs
2091 	bios_regs_init();
2092 
2093 #undef REG_STRUCT
2094 #define REG_STRUCT clk_src_regs
2095 	clk_src_regs_init(0, A),
2096 	clk_src_regs_init(1, B),
2097 	clk_src_regs_init(2, C),
2098 	clk_src_regs_init(3, D),
2099 	clk_src_regs_init(4, E);
2100 
2101 #undef REG_STRUCT
2102 #define REG_STRUCT abm_regs
2103 	abm_regs_init(0),
2104 	abm_regs_init(1),
2105 	abm_regs_init(2),
2106 	abm_regs_init(3);
2107 
2108 #undef REG_STRUCT
2109 #define REG_STRUCT dccg_regs
2110 	dccg_regs_init();
2111 
2112 	DC_FP_START();
2113 
2114 	ctx->dc_bios->regs = &bios_regs;
2115 
2116 	pool->base.res_cap = &res_cap_dcn32;
2117 	/* max number of pipes for ASIC before checking for pipe fuses */
2118 	num_pipes  = pool->base.res_cap->num_timing_generator;
2119 	pipe_fuses = read_pipe_fuses(ctx);
2120 
2121 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++)
2122 		if (pipe_fuses & 1 << i)
2123 			num_pipes--;
2124 
2125 	if (pipe_fuses & 1)
2126 		ASSERT(0); //Unexpected - Pipe 0 should always be fully functional!
2127 
2128 	if (pipe_fuses & CC_DC_PIPE_DIS__DC_FULL_DIS_MASK)
2129 		ASSERT(0); //Entire DCN is harvested!
2130 
2131 	/* within dml lib, initial value is hard coded, if ASIC pipe is fused, the
2132 	 * value will be changed, update max_num_dpp and max_num_otg for dml.
2133 	 */
2134 	dcn3_2_ip.max_num_dpp = num_pipes;
2135 	dcn3_2_ip.max_num_otg = num_pipes;
2136 
2137 	pool->base.funcs = &dcn32_res_pool_funcs;
2138 
2139 	/*************************************************
2140 	 *  Resource + asic cap harcoding                *
2141 	 *************************************************/
2142 	pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2143 	pool->base.timing_generator_count = num_pipes;
2144 	pool->base.pipe_count = num_pipes;
2145 	pool->base.mpcc_count = num_pipes;
2146 	dc->caps.max_downscale_ratio = 600;
2147 	dc->caps.i2c_speed_in_khz = 100;
2148 	dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a applied by default*/
2149 	/* TODO: Bring max_cursor_size back to 256 after subvp cursor corruption is fixed*/
2150 	dc->caps.max_cursor_size = 64;
2151 	dc->caps.min_horizontal_blanking_period = 80;
2152 	dc->caps.dmdata_alloc_size = 2048;
2153 	dc->caps.mall_size_per_mem_channel = 4;
2154 	/* total size = mall per channel * num channels * 1024 * 1024 */
2155 	dc->caps.mall_size_total = dc->caps.mall_size_per_mem_channel * dc->ctx->dc_bios->vram_info.num_chans * 1048576;
2156 	dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
2157 
2158 	dc->caps.cache_line_size = 64;
2159 	dc->caps.cache_num_ways = 16;
2160 
2161 	/* Calculate the available MALL space */
2162 	dc->caps.max_cab_allocation_bytes = dcn32_calc_num_avail_chans_for_mall(
2163 		dc, dc->ctx->dc_bios->vram_info.num_chans) *
2164 		dc->caps.mall_size_per_mem_channel * 1024 * 1024;
2165 	dc->caps.mall_size_total = dc->caps.max_cab_allocation_bytes;
2166 
2167 	dc->caps.subvp_fw_processing_delay_us = 15;
2168 	dc->caps.subvp_drr_max_vblank_margin_us = 40;
2169 	dc->caps.subvp_prefetch_end_to_mall_start_us = 15;
2170 	dc->caps.subvp_swath_height_margin_lines = 16;
2171 	dc->caps.subvp_pstate_allow_width_us = 20;
2172 	dc->caps.subvp_vertical_int_margin_us = 30;
2173 	dc->caps.subvp_drr_vblank_start_margin_us = 100; // 100us margin
2174 
2175 	dc->caps.max_slave_planes = 2;
2176 	dc->caps.max_slave_yuv_planes = 2;
2177 	dc->caps.max_slave_rgb_planes = 2;
2178 	dc->caps.post_blend_color_processing = true;
2179 	dc->caps.force_dp_tps4_for_cp2520 = true;
2180 	if (dc->config.forceHBR2CP2520)
2181 		dc->caps.force_dp_tps4_for_cp2520 = false;
2182 	dc->caps.dp_hpo = true;
2183 	dc->caps.dp_hdmi21_pcon_support = true;
2184 	dc->caps.edp_dsc_support = true;
2185 	dc->caps.extended_aux_timeout_support = true;
2186 	dc->caps.dmcub_support = true;
2187 	dc->caps.seamless_odm = true;
2188 	dc->caps.max_v_total = (1 << 15) - 1;
2189 
2190 	/* Color pipeline capabilities */
2191 	dc->caps.color.dpp.dcn_arch = 1;
2192 	dc->caps.color.dpp.input_lut_shared = 0;
2193 	dc->caps.color.dpp.icsc = 1;
2194 	dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
2195 	dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2196 	dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2197 	dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
2198 	dc->caps.color.dpp.dgam_rom_caps.pq = 1;
2199 	dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
2200 	dc->caps.color.dpp.post_csc = 1;
2201 	dc->caps.color.dpp.gamma_corr = 1;
2202 	dc->caps.color.dpp.dgam_rom_for_yuv = 0;
2203 
2204 	dc->caps.color.dpp.hw_3d_lut = 1;
2205 	dc->caps.color.dpp.ogam_ram = 0;  // no OGAM in DPP since DCN1
2206 	// no OGAM ROM on DCN2 and later ASICs
2207 	dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2208 	dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2209 	dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2210 	dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2211 	dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2212 	dc->caps.color.dpp.ocsc = 0;
2213 
2214 	dc->caps.color.mpc.gamut_remap = 1;
2215 	dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //4, configurable to be before or after BLND in MPCC
2216 	dc->caps.color.mpc.ogam_ram = 1;
2217 	dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2218 	dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2219 	dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2220 	dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2221 	dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2222 	dc->caps.color.mpc.ocsc = 1;
2223 
2224 	/* Use pipe context based otg sync logic */
2225 	dc->config.use_pipe_ctx_sync_logic = true;
2226 
2227 	dc->config.dc_mode_clk_limit_support = true;
2228 	dc->config.enable_windowed_mpo_odm = true;
2229 	dc->config.disable_hbr_audio_dp2 = true;
2230 	/* read VBIOS LTTPR caps */
2231 	{
2232 		if (ctx->dc_bios->funcs->get_lttpr_caps) {
2233 			enum bp_result bp_query_result;
2234 			uint8_t is_vbios_lttpr_enable = 0;
2235 
2236 			bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
2237 			dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
2238 		}
2239 
2240 		/* interop bit is implicit */
2241 		{
2242 			dc->caps.vbios_lttpr_aware = true;
2243 		}
2244 	}
2245 
2246 	if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
2247 		dc->debug = debug_defaults_drv;
2248 
2249 	// Init the vm_helper
2250 	if (dc->vm_helper)
2251 		vm_helper_init(dc->vm_helper, 16);
2252 
2253 	/*************************************************
2254 	 *  Create resources                             *
2255 	 *************************************************/
2256 
2257 	/* Clock Sources for Pixel Clock*/
2258 	pool->base.clock_sources[DCN32_CLK_SRC_PLL0] =
2259 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2260 				CLOCK_SOURCE_COMBO_PHY_PLL0,
2261 				&clk_src_regs[0], false);
2262 	pool->base.clock_sources[DCN32_CLK_SRC_PLL1] =
2263 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2264 				CLOCK_SOURCE_COMBO_PHY_PLL1,
2265 				&clk_src_regs[1], false);
2266 	pool->base.clock_sources[DCN32_CLK_SRC_PLL2] =
2267 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2268 				CLOCK_SOURCE_COMBO_PHY_PLL2,
2269 				&clk_src_regs[2], false);
2270 	pool->base.clock_sources[DCN32_CLK_SRC_PLL3] =
2271 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2272 				CLOCK_SOURCE_COMBO_PHY_PLL3,
2273 				&clk_src_regs[3], false);
2274 	pool->base.clock_sources[DCN32_CLK_SRC_PLL4] =
2275 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2276 				CLOCK_SOURCE_COMBO_PHY_PLL4,
2277 				&clk_src_regs[4], false);
2278 
2279 	pool->base.clk_src_count = DCN32_CLK_SRC_TOTAL;
2280 
2281 	/* todo: not reuse phy_pll registers */
2282 	pool->base.dp_clock_source =
2283 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2284 				CLOCK_SOURCE_ID_DP_DTO,
2285 				&clk_src_regs[0], true);
2286 
2287 	for (i = 0; i < pool->base.clk_src_count; i++) {
2288 		if (pool->base.clock_sources[i] == NULL) {
2289 			dm_error("DC: failed to create clock sources!\n");
2290 			BREAK_TO_DEBUGGER();
2291 			goto create_fail;
2292 		}
2293 	}
2294 
2295 	/* DCCG */
2296 	pool->base.dccg = dccg32_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2297 	if (pool->base.dccg == NULL) {
2298 		dm_error("DC: failed to create dccg!\n");
2299 		BREAK_TO_DEBUGGER();
2300 		goto create_fail;
2301 	}
2302 
2303 	/* DML */
2304 	dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2305 
2306 	/* IRQ Service */
2307 	init_data.ctx = dc->ctx;
2308 	pool->base.irqs = dal_irq_service_dcn32_create(&init_data);
2309 	if (!pool->base.irqs)
2310 		goto create_fail;
2311 
2312 	/* HUBBUB */
2313 	pool->base.hubbub = dcn32_hubbub_create(ctx);
2314 	if (pool->base.hubbub == NULL) {
2315 		BREAK_TO_DEBUGGER();
2316 		dm_error("DC: failed to create hubbub!\n");
2317 		goto create_fail;
2318 	}
2319 
2320 	/* HUBPs, DPPs, OPPs, TGs, ABMs */
2321 	for (i = 0, j = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2322 
2323 		/* if pipe is disabled, skip instance of HW pipe,
2324 		 * i.e, skip ASIC register instance
2325 		 */
2326 		if (pipe_fuses & 1 << i)
2327 			continue;
2328 
2329 		/* HUBPs */
2330 		pool->base.hubps[j] = dcn32_hubp_create(ctx, i);
2331 		if (pool->base.hubps[j] == NULL) {
2332 			BREAK_TO_DEBUGGER();
2333 			dm_error(
2334 				"DC: failed to create hubps!\n");
2335 			goto create_fail;
2336 		}
2337 
2338 		/* DPPs */
2339 		pool->base.dpps[j] = dcn32_dpp_create(ctx, i);
2340 		if (pool->base.dpps[j] == NULL) {
2341 			BREAK_TO_DEBUGGER();
2342 			dm_error(
2343 				"DC: failed to create dpps!\n");
2344 			goto create_fail;
2345 		}
2346 
2347 		/* OPPs */
2348 		pool->base.opps[j] = dcn32_opp_create(ctx, i);
2349 		if (pool->base.opps[j] == NULL) {
2350 			BREAK_TO_DEBUGGER();
2351 			dm_error(
2352 				"DC: failed to create output pixel processor!\n");
2353 			goto create_fail;
2354 		}
2355 
2356 		/* TGs */
2357 		pool->base.timing_generators[j] = dcn32_timing_generator_create(
2358 				ctx, i);
2359 		if (pool->base.timing_generators[j] == NULL) {
2360 			BREAK_TO_DEBUGGER();
2361 			dm_error("DC: failed to create tg!\n");
2362 			goto create_fail;
2363 		}
2364 
2365 		/* ABMs */
2366 		pool->base.multiple_abms[j] = dmub_abm_create(ctx,
2367 				&abm_regs[i],
2368 				&abm_shift,
2369 				&abm_mask);
2370 		if (pool->base.multiple_abms[j] == NULL) {
2371 			dm_error("DC: failed to create abm for pipe %d!\n", i);
2372 			BREAK_TO_DEBUGGER();
2373 			goto create_fail;
2374 		}
2375 
2376 		/* index for resource pool arrays for next valid pipe */
2377 		j++;
2378 	}
2379 
2380 	/* PSR */
2381 	pool->base.psr = dmub_psr_create(ctx);
2382 	if (pool->base.psr == NULL) {
2383 		dm_error("DC: failed to create psr obj!\n");
2384 		BREAK_TO_DEBUGGER();
2385 		goto create_fail;
2386 	}
2387 
2388 	/* MPCCs */
2389 	pool->base.mpc = dcn32_mpc_create(ctx, pool->base.res_cap->num_timing_generator, pool->base.res_cap->num_mpc_3dlut);
2390 	if (pool->base.mpc == NULL) {
2391 		BREAK_TO_DEBUGGER();
2392 		dm_error("DC: failed to create mpc!\n");
2393 		goto create_fail;
2394 	}
2395 
2396 	/* DSCs */
2397 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2398 		pool->base.dscs[i] = dcn32_dsc_create(ctx, i);
2399 		if (pool->base.dscs[i] == NULL) {
2400 			BREAK_TO_DEBUGGER();
2401 			dm_error("DC: failed to create display stream compressor %d!\n", i);
2402 			goto create_fail;
2403 		}
2404 	}
2405 
2406 	/* DWB */
2407 	if (!dcn32_dwbc_create(ctx, &pool->base)) {
2408 		BREAK_TO_DEBUGGER();
2409 		dm_error("DC: failed to create dwbc!\n");
2410 		goto create_fail;
2411 	}
2412 
2413 	/* MMHUBBUB */
2414 	if (!dcn32_mmhubbub_create(ctx, &pool->base)) {
2415 		BREAK_TO_DEBUGGER();
2416 		dm_error("DC: failed to create mcif_wb!\n");
2417 		goto create_fail;
2418 	}
2419 
2420 	/* AUX and I2C */
2421 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2422 		pool->base.engines[i] = dcn32_aux_engine_create(ctx, i);
2423 		if (pool->base.engines[i] == NULL) {
2424 			BREAK_TO_DEBUGGER();
2425 			dm_error(
2426 				"DC:failed to create aux engine!!\n");
2427 			goto create_fail;
2428 		}
2429 		pool->base.hw_i2cs[i] = dcn32_i2c_hw_create(ctx, i);
2430 		if (pool->base.hw_i2cs[i] == NULL) {
2431 			BREAK_TO_DEBUGGER();
2432 			dm_error(
2433 				"DC:failed to create hw i2c!!\n");
2434 			goto create_fail;
2435 		}
2436 		pool->base.sw_i2cs[i] = NULL;
2437 	}
2438 
2439 	/* Audio, HWSeq, Stream Encoders including HPO and virtual, MPC 3D LUTs */
2440 	if (!resource_construct(num_virtual_links, dc, &pool->base,
2441 			&res_create_funcs))
2442 		goto create_fail;
2443 
2444 	/* HW Sequencer init functions and Plane caps */
2445 	dcn32_hw_sequencer_init_functions(dc);
2446 
2447 	dc->caps.max_planes =  pool->base.pipe_count;
2448 
2449 	for (i = 0; i < dc->caps.max_planes; ++i)
2450 		dc->caps.planes[i] = plane_cap;
2451 
2452 	dc->cap_funcs = cap_funcs;
2453 
2454 	if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2455 		ddc_init_data.ctx = dc->ctx;
2456 		ddc_init_data.link = NULL;
2457 		ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2458 		ddc_init_data.id.enum_id = 0;
2459 		ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2460 		pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data);
2461 	} else {
2462 		pool->base.oem_device = NULL;
2463 	}
2464 
2465 	dc->dml2_options.dcn_pipe_count = pool->base.pipe_count;
2466 	dc->dml2_options.use_native_pstate_optimization = false;
2467 	dc->dml2_options.use_native_soc_bb_construction = true;
2468 	dc->dml2_options.minimize_dispclk_using_odm = true;
2469 
2470 	resource_init_common_dml2_callbacks(dc, &dc->dml2_options);
2471 	dc->dml2_options.callbacks.can_support_mclk_switch_using_fw_based_vblank_stretch = &dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch;
2472 	dc->dml2_options.svp_pstate.callbacks.release_dsc = &dcn20_release_dsc;
2473 	dc->dml2_options.svp_pstate.callbacks.calculate_mall_ways_from_bytes = pool->base.funcs->calculate_mall_ways_from_bytes;
2474 
2475 	dc->dml2_options.svp_pstate.subvp_fw_processing_delay_us = dc->caps.subvp_fw_processing_delay_us;
2476 	dc->dml2_options.svp_pstate.subvp_prefetch_end_to_mall_start_us = dc->caps.subvp_prefetch_end_to_mall_start_us;
2477 	dc->dml2_options.svp_pstate.subvp_pstate_allow_width_us = dc->caps.subvp_pstate_allow_width_us;
2478 	dc->dml2_options.svp_pstate.subvp_swath_height_margin_lines = dc->caps.subvp_swath_height_margin_lines;
2479 
2480 	dc->dml2_options.svp_pstate.force_disable_subvp = dc->debug.force_disable_subvp;
2481 	dc->dml2_options.svp_pstate.force_enable_subvp = dc->debug.force_subvp_mclk_switch;
2482 
2483 	dc->dml2_options.mall_cfg.cache_line_size_bytes = dc->caps.cache_line_size;
2484 	dc->dml2_options.mall_cfg.cache_num_ways = dc->caps.cache_num_ways;
2485 	dc->dml2_options.mall_cfg.max_cab_allocation_bytes = dc->caps.max_cab_allocation_bytes;
2486 	dc->dml2_options.mall_cfg.mblk_height_4bpe_pixels = DCN3_2_MBLK_HEIGHT_4BPE;
2487 	dc->dml2_options.mall_cfg.mblk_height_8bpe_pixels = DCN3_2_MBLK_HEIGHT_8BPE;
2488 	dc->dml2_options.mall_cfg.mblk_size_bytes = DCN3_2_MALL_MBLK_SIZE_BYTES;
2489 	dc->dml2_options.mall_cfg.mblk_width_pixels = DCN3_2_MBLK_WIDTH;
2490 
2491 	dc->dml2_options.max_segments_per_hubp = 18;
2492 	dc->dml2_options.det_segment_size = DCN3_2_DET_SEG_SIZE;
2493 	dc->dml2_options.map_dc_pipes_with_callbacks = true;
2494 
2495 	if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev) && (dc->config.sdpif_request_limit_words_per_umc == 0))
2496 		dc->config.sdpif_request_limit_words_per_umc = 16;
2497 
2498 	DC_FP_END();
2499 
2500 	return true;
2501 
2502 create_fail:
2503 
2504 	DC_FP_END();
2505 
2506 	dcn32_resource_destruct(pool);
2507 
2508 	return false;
2509 }
2510 
2511 struct resource_pool *dcn32_create_resource_pool(
2512 		const struct dc_init_data *init_data,
2513 		struct dc *dc)
2514 {
2515 	struct dcn32_resource_pool *pool =
2516 		kzalloc(sizeof(struct dcn32_resource_pool), GFP_KERNEL);
2517 
2518 	if (!pool)
2519 		return NULL;
2520 
2521 	if (dcn32_resource_construct(init_data->num_virtual_links, dc, pool))
2522 		return &pool->base;
2523 
2524 	BREAK_TO_DEBUGGER();
2525 	kfree(pool);
2526 	return NULL;
2527 }
2528 
2529 /*
2530  * Find the most optimal free pipe from res_ctx, which could be used as a
2531  * secondary dpp pipe for input opp head pipe.
2532  *
2533  * a free pipe - a pipe in input res_ctx not yet used for any streams or
2534  * planes.
2535  * secondary dpp pipe - a pipe gets inserted to a head OPP pipe's MPC blending
2536  * tree. This is typical used for rendering MPO planes or additional offset
2537  * areas in MPCC combine.
2538  *
2539  * Hardware Transition Minimization Algorithm for Finding a Secondary DPP Pipe
2540  * -------------------------------------------------------------------------
2541  *
2542  * PROBLEM:
2543  *
2544  * 1. There is a hardware limitation that a secondary DPP pipe cannot be
2545  * transferred from one MPC blending tree to the other in a single frame.
2546  * Otherwise it could cause glitches on the screen.
2547  *
2548  * For instance, we cannot transition from state 1 to state 2 in one frame. This
2549  * is because PIPE1 is transferred from PIPE0's MPC blending tree over to
2550  * PIPE2's MPC blending tree, which is not supported by hardware.
2551  * To support this transition we need to first remove PIPE1 from PIPE0's MPC
2552  * blending tree in one frame and then insert PIPE1 to PIPE2's MPC blending tree
2553  * in the next frame. This is not optimal as it will delay the flip for two
2554  * frames.
2555  *
2556  *	State 1:
2557  *	PIPE0 -- secondary DPP pipe --> (PIPE1)
2558  *	PIPE2 -- secondary DPP pipe --> NONE
2559  *
2560  *	State 2:
2561  *	PIPE0 -- secondary DPP pipe --> NONE
2562  *	PIPE2 -- secondary DPP pipe --> (PIPE1)
2563  *
2564  * 2. We want to in general minimize the unnecessary changes in pipe topology.
2565  * If a pipe is already added in current blending tree and there are no changes
2566  * to plane topology, we don't want to swap it with another free pipe
2567  * unnecessarily in every update. Powering up and down a pipe would require a
2568  * full update which delays the flip for 1 frame. If we use the original pipe
2569  * we don't have to toggle its power. So we can flip faster.
2570  */
2571 int dcn32_find_optimal_free_pipe_as_secondary_dpp_pipe(
2572 		const struct resource_context *cur_res_ctx,
2573 		struct resource_context *new_res_ctx,
2574 		const struct resource_pool *pool,
2575 		const struct pipe_ctx *new_opp_head)
2576 {
2577 	const struct pipe_ctx *cur_opp_head;
2578 	int free_pipe_idx;
2579 
2580 	cur_opp_head = &cur_res_ctx->pipe_ctx[new_opp_head->pipe_idx];
2581 	free_pipe_idx = resource_find_free_pipe_used_in_cur_mpc_blending_tree(
2582 			cur_res_ctx, new_res_ctx, cur_opp_head);
2583 
2584 	/* Up until here if we have not found a free secondary pipe, we will
2585 	 * need to wait for at least one frame to complete the transition
2586 	 * sequence.
2587 	 */
2588 	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2589 		free_pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx(
2590 				cur_res_ctx, new_res_ctx, pool);
2591 
2592 	/* Up until here if we have not found a free secondary pipe, we will
2593 	 * need to wait for at least two frames to complete the transition
2594 	 * sequence. It really doesn't matter which pipe we decide take from
2595 	 * current enabled pipes. It won't save our frame time when we swap only
2596 	 * one pipe or more pipes.
2597 	 */
2598 	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2599 		free_pipe_idx = resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(
2600 				cur_res_ctx, new_res_ctx, pool);
2601 
2602 	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2603 		free_pipe_idx = resource_find_any_free_pipe(new_res_ctx, pool);
2604 
2605 	return free_pipe_idx;
2606 }
2607 
2608 static struct pipe_ctx *find_idle_secondary_pipe_check_mpo(
2609 		struct resource_context *res_ctx,
2610 		const struct resource_pool *pool,
2611 		const struct pipe_ctx *primary_pipe)
2612 {
2613 	int i;
2614 	struct pipe_ctx *secondary_pipe = NULL;
2615 	struct pipe_ctx *next_odm_mpo_pipe = NULL;
2616 	int primary_index, preferred_pipe_idx;
2617 	struct pipe_ctx *old_primary_pipe = NULL;
2618 
2619 	/*
2620 	 * Modified from find_idle_secondary_pipe
2621 	 * With windowed MPO and ODM, we want to avoid the case where we want a
2622 	 *  free pipe for the left side but the free pipe is being used on the
2623 	 *  right side.
2624 	 * Add check on current_state if the primary_pipe is the left side,
2625 	 *  to check the right side ( primary_pipe->next_odm_pipe ) to see if
2626 	 *  it is using a pipe for MPO ( primary_pipe->next_odm_pipe->bottom_pipe )
2627 	 * - If so, then don't use this pipe
2628 	 * EXCEPTION - 3 plane ( 2 MPO plane ) case
2629 	 * - in this case, the primary pipe has already gotten a free pipe for the
2630 	 *  MPO window in the left
2631 	 * - when it tries to get a free pipe for the MPO window on the right,
2632 	 *  it will see that it is already assigned to the right side
2633 	 *  ( primary_pipe->next_odm_pipe ).  But in this case, we want this
2634 	 *  free pipe, since it will be for the right side.  So add an
2635 	 *  additional condition, that skipping the free pipe on the right only
2636 	 *  applies if the primary pipe has no bottom pipe currently assigned
2637 	 */
2638 	if (primary_pipe) {
2639 		primary_index = primary_pipe->pipe_idx;
2640 		old_primary_pipe = &primary_pipe->stream->ctx->dc->current_state->res_ctx.pipe_ctx[primary_index];
2641 		if ((old_primary_pipe->next_odm_pipe) && (old_primary_pipe->next_odm_pipe->bottom_pipe)
2642 			&& (!primary_pipe->bottom_pipe))
2643 			next_odm_mpo_pipe = old_primary_pipe->next_odm_pipe->bottom_pipe;
2644 
2645 		preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
2646 		if ((res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) &&
2647 			!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == preferred_pipe_idx)) {
2648 			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
2649 			secondary_pipe->pipe_idx = preferred_pipe_idx;
2650 		}
2651 	}
2652 
2653 	/*
2654 	 * search backwards for the second pipe to keep pipe
2655 	 * assignment more consistent
2656 	 */
2657 	if (!secondary_pipe)
2658 		for (i = pool->pipe_count - 1; i >= 0; i--) {
2659 			if ((res_ctx->pipe_ctx[i].stream == NULL) &&
2660 				!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == i)) {
2661 				secondary_pipe = &res_ctx->pipe_ctx[i];
2662 				secondary_pipe->pipe_idx = i;
2663 				break;
2664 			}
2665 		}
2666 
2667 	return secondary_pipe;
2668 }
2669 
2670 static struct pipe_ctx *dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
2671 		struct dc_state *state,
2672 		const struct resource_pool *pool,
2673 		struct dc_stream_state *stream,
2674 		const struct pipe_ctx *head_pipe)
2675 {
2676 	struct resource_context *res_ctx = &state->res_ctx;
2677 	struct pipe_ctx *idle_pipe, *pipe;
2678 	struct resource_context *old_ctx = &stream->ctx->dc->current_state->res_ctx;
2679 	int head_index;
2680 
2681 	if (!head_pipe) {
2682 		ASSERT(0);
2683 		return NULL;
2684 	}
2685 
2686 	/*
2687 	 * Modified from dcn20_acquire_idle_pipe_for_layer
2688 	 * Check if head_pipe in old_context already has bottom_pipe allocated.
2689 	 * - If so, check if that pipe is available in the current context.
2690 	 * --  If so, reuse pipe from old_context
2691 	 */
2692 	head_index = head_pipe->pipe_idx;
2693 	pipe = &old_ctx->pipe_ctx[head_index];
2694 	if (pipe->bottom_pipe && res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx].stream == NULL) {
2695 		idle_pipe = &res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx];
2696 		idle_pipe->pipe_idx = pipe->bottom_pipe->pipe_idx;
2697 	} else {
2698 		idle_pipe = find_idle_secondary_pipe_check_mpo(res_ctx, pool, head_pipe);
2699 		if (!idle_pipe)
2700 			return NULL;
2701 	}
2702 
2703 	idle_pipe->stream = head_pipe->stream;
2704 	idle_pipe->stream_res.tg = head_pipe->stream_res.tg;
2705 	idle_pipe->stream_res.opp = head_pipe->stream_res.opp;
2706 
2707 	idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx];
2708 	idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx];
2709 	idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx];
2710 	idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst;
2711 
2712 	return idle_pipe;
2713 }
2714 
2715 static int find_optimal_free_pipe_as_secondary_opp_head(
2716 		const struct resource_context *cur_res_ctx,
2717 		struct resource_context *new_res_ctx,
2718 		const struct resource_pool *pool,
2719 		const struct pipe_ctx *new_otg_master)
2720 {
2721 	const struct pipe_ctx *cur_otg_master;
2722 	int free_pipe_idx;
2723 
2724 	cur_otg_master =  &cur_res_ctx->pipe_ctx[new_otg_master->pipe_idx];
2725 	free_pipe_idx = resource_find_free_pipe_used_as_sec_opp_head_by_cur_otg_master(
2726 			cur_res_ctx, new_res_ctx, cur_otg_master);
2727 
2728 	/* Up until here if we have not found a free secondary pipe, we will
2729 	 * need to wait for at least one frame to complete the transition
2730 	 * sequence.
2731 	 */
2732 	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2733 		free_pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx(
2734 				cur_res_ctx, new_res_ctx, pool);
2735 
2736 	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2737 		free_pipe_idx = resource_find_any_free_pipe(new_res_ctx, pool);
2738 
2739 	return free_pipe_idx;
2740 }
2741 
2742 struct pipe_ctx *dcn32_acquire_free_pipe_as_secondary_dpp_pipe(
2743 		const struct dc_state *cur_ctx,
2744 		struct dc_state *new_ctx,
2745 		const struct resource_pool *pool,
2746 		const struct pipe_ctx *opp_head_pipe)
2747 {
2748 
2749 	int free_pipe_idx;
2750 	struct pipe_ctx *free_pipe;
2751 
2752 	if (!opp_head_pipe->stream->ctx->dc->config.enable_windowed_mpo_odm)
2753 		return dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
2754 				new_ctx, pool, opp_head_pipe->stream, opp_head_pipe);
2755 
2756 	free_pipe_idx = dcn32_find_optimal_free_pipe_as_secondary_dpp_pipe(
2757 					&cur_ctx->res_ctx, &new_ctx->res_ctx,
2758 					pool, opp_head_pipe);
2759 	if (free_pipe_idx >= 0) {
2760 		free_pipe = &new_ctx->res_ctx.pipe_ctx[free_pipe_idx];
2761 		free_pipe->pipe_idx = free_pipe_idx;
2762 		free_pipe->stream = opp_head_pipe->stream;
2763 		free_pipe->stream_res.tg = opp_head_pipe->stream_res.tg;
2764 		free_pipe->stream_res.opp = opp_head_pipe->stream_res.opp;
2765 
2766 		free_pipe->plane_res.hubp = pool->hubps[free_pipe->pipe_idx];
2767 		free_pipe->plane_res.ipp = pool->ipps[free_pipe->pipe_idx];
2768 		free_pipe->plane_res.dpp = pool->dpps[free_pipe->pipe_idx];
2769 		free_pipe->plane_res.mpcc_inst =
2770 				pool->dpps[free_pipe->pipe_idx]->inst;
2771 	} else {
2772 		ASSERT(opp_head_pipe);
2773 		free_pipe = NULL;
2774 	}
2775 
2776 	return free_pipe;
2777 }
2778 
2779 struct pipe_ctx *dcn32_acquire_free_pipe_as_secondary_opp_head(
2780 		const struct dc_state *cur_ctx,
2781 		struct dc_state *new_ctx,
2782 		const struct resource_pool *pool,
2783 		const struct pipe_ctx *otg_master)
2784 {
2785 	int free_pipe_idx = find_optimal_free_pipe_as_secondary_opp_head(
2786 			&cur_ctx->res_ctx, &new_ctx->res_ctx,
2787 			pool, otg_master);
2788 	struct pipe_ctx *free_pipe;
2789 
2790 	if (free_pipe_idx >= 0) {
2791 		free_pipe = &new_ctx->res_ctx.pipe_ctx[free_pipe_idx];
2792 		free_pipe->pipe_idx = free_pipe_idx;
2793 		free_pipe->stream = otg_master->stream;
2794 		free_pipe->stream_res.tg = otg_master->stream_res.tg;
2795 		free_pipe->stream_res.dsc = NULL;
2796 		free_pipe->stream_res.opp = pool->opps[free_pipe_idx];
2797 		free_pipe->plane_res.mi = pool->mis[free_pipe_idx];
2798 		free_pipe->plane_res.hubp = pool->hubps[free_pipe_idx];
2799 		free_pipe->plane_res.ipp = pool->ipps[free_pipe_idx];
2800 		free_pipe->plane_res.xfm = pool->transforms[free_pipe_idx];
2801 		free_pipe->plane_res.dpp = pool->dpps[free_pipe_idx];
2802 		free_pipe->plane_res.mpcc_inst = pool->dpps[free_pipe_idx]->inst;
2803 		if (free_pipe->stream->timing.flags.DSC == 1) {
2804 			dcn20_acquire_dsc(free_pipe->stream->ctx->dc,
2805 					&new_ctx->res_ctx,
2806 					&free_pipe->stream_res.dsc,
2807 					free_pipe_idx);
2808 			ASSERT(free_pipe->stream_res.dsc);
2809 			if (free_pipe->stream_res.dsc == NULL) {
2810 				memset(free_pipe, 0, sizeof(*free_pipe));
2811 				free_pipe = NULL;
2812 			}
2813 		}
2814 	} else {
2815 		ASSERT(otg_master);
2816 		free_pipe = NULL;
2817 	}
2818 
2819 	return free_pipe;
2820 }
2821 
2822 unsigned int dcn32_calc_num_avail_chans_for_mall(struct dc *dc, int num_chans)
2823 {
2824 	/*
2825 	 * DCN32 and DCN321 SKUs may have different sizes for MALL
2826 	 *  but we may not be able to access all the MALL space.
2827 	 *  If the num_chans is power of 2, then we can access all
2828 	 *  of the available MALL space.  Otherwise, we can only
2829 	 *  access:
2830 	 *
2831 	 *  max_cab_size_in_bytes = total_cache_size_in_bytes *
2832 	 *    ((2^floor(log2(num_chans)))/num_chans)
2833 	 *
2834 	 * Calculating the MALL sizes for all available SKUs, we
2835 	 *  have come up with the follow simplified check.
2836 	 * - we have max_chans which provides the max MALL size.
2837 	 *  Each chans supports 4MB of MALL so:
2838 	 *
2839 	 *  total_cache_size_in_bytes = max_chans * 4 MB
2840 	 *
2841 	 * - we have avail_chans which shows the number of channels
2842 	 *  we can use if we can't access the entire MALL space.
2843 	 *  It is generally half of max_chans
2844 	 * - so we use the following checks:
2845 	 *
2846 	 *   if (num_chans == max_chans), return max_chans
2847 	 *   if (num_chans < max_chans), return avail_chans
2848 	 *
2849 	 * - exception is GC_11_0_0 where we can't access max_chans,
2850 	 *  so we define max_avail_chans as the maximum available
2851 	 *  MALL space
2852 	 *
2853 	 */
2854 	int gc_11_0_0_max_chans = 48;
2855 	int gc_11_0_0_max_avail_chans = 32;
2856 	int gc_11_0_0_avail_chans = 16;
2857 	int gc_11_0_3_max_chans = 16;
2858 	int gc_11_0_3_avail_chans = 8;
2859 	int gc_11_0_2_max_chans = 8;
2860 	int gc_11_0_2_avail_chans = 4;
2861 
2862 	if (ASICREV_IS_GC_11_0_0(dc->ctx->asic_id.hw_internal_rev)) {
2863 		return (num_chans == gc_11_0_0_max_chans) ?
2864 			gc_11_0_0_max_avail_chans : gc_11_0_0_avail_chans;
2865 	} else if (ASICREV_IS_GC_11_0_2(dc->ctx->asic_id.hw_internal_rev)) {
2866 		return (num_chans == gc_11_0_2_max_chans) ?
2867 			gc_11_0_2_max_chans : gc_11_0_2_avail_chans;
2868 	} else { // if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev)) {
2869 		return (num_chans == gc_11_0_3_max_chans) ?
2870 			gc_11_0_3_max_chans : gc_11_0_3_avail_chans;
2871 	}
2872 }
2873