xref: /linux/drivers/gpu/drm/amd/display/dc/hwss/dce110/dce110_hwseq.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 #include "dc.h"
28 #include "dc_bios_types.h"
29 #include "core_types.h"
30 #include "core_status.h"
31 #include "resource.h"
32 #include "dm_helpers.h"
33 #include "dce110_hwseq.h"
34 #include "dce110/dce110_timing_generator.h"
35 #include "dce/dce_hwseq.h"
36 #include "dce100/dce100_hwseq.h"
37 #include "gpio_service_interface.h"
38 
39 #include "dce110/dce110_compressor.h"
40 
41 #include "bios/bios_parser_helper.h"
42 #include "timing_generator.h"
43 #include "mem_input.h"
44 #include "opp.h"
45 #include "ipp.h"
46 #include "transform.h"
47 #include "stream_encoder.h"
48 #include "link_encoder.h"
49 #include "link_enc_cfg.h"
50 #include "link_hwss.h"
51 #include "link_service.h"
52 #include "dccg.h"
53 #include "clock_source.h"
54 #include "clk_mgr.h"
55 #include "abm.h"
56 #include "audio.h"
57 #include "reg_helper.h"
58 #include "panel_cntl.h"
59 #include "dc_state_priv.h"
60 #include "dpcd_defs.h"
61 #include "dsc.h"
62 /* include DCE11 register header files */
63 #include "dce/dce_11_0_d.h"
64 #include "dce/dce_11_0_sh_mask.h"
65 #include "custom_float.h"
66 
67 #include "atomfirmware.h"
68 
69 #include "dcn10/dcn10_hwseq.h"
70 
71 #define GAMMA_HW_POINTS_NUM 256
72 
73 /*
74  * All values are in milliseconds;
75  * For eDP, after power-up/power/down,
76  * 300/500 msec max. delay from LCDVCC to black video generation
77  */
78 #define PANEL_POWER_UP_TIMEOUT 300
79 #define PANEL_POWER_DOWN_TIMEOUT 500
80 #define HPD_CHECK_INTERVAL 10
81 #define OLED_POST_T7_DELAY 100
82 #define OLED_PRE_T11_DELAY 150
83 
84 #define CTX \
85 	hws->ctx
86 
87 #define DC_LOGGER \
88 	ctx->logger
89 #define DC_LOGGER_INIT() \
90 	struct dc_context *ctx = dc->ctx
91 
92 #define REG(reg)\
93 	hws->regs->reg
94 
95 #undef FN
96 #define FN(reg_name, field_name) \
97 	hws->shifts->field_name, hws->masks->field_name
98 
99 struct dce110_hw_seq_reg_offsets {
100 	uint32_t crtc;
101 };
102 
103 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
104 {
105 	.crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
106 },
107 {
108 	.crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
109 },
110 {
111 	.crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
112 },
113 {
114 	.crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
115 }
116 };
117 
118 #define HW_REG_BLND(reg, id)\
119 	(reg + reg_offsets[id].blnd)
120 
121 #define HW_REG_CRTC(reg, id)\
122 	(reg + reg_offsets[id].crtc)
123 
124 #define MAX_WATERMARK 0xFFFF
125 #define SAFE_NBP_MARK 0x7FFF
126 
127 /*******************************************************************************
128  * Private definitions
129  ******************************************************************************/
130 /***************************PIPE_CONTROL***********************************/
dce110_init_pte(struct dc_context * ctx)131 static void dce110_init_pte(struct dc_context *ctx)
132 {
133 	uint32_t addr;
134 	uint32_t value = 0;
135 	uint32_t chunk_int = 0;
136 	uint32_t chunk_mul = 0;
137 
138 	addr = mmUNP_DVMM_PTE_CONTROL;
139 	value = dm_read_reg(ctx, addr);
140 
141 	set_reg_field_value(
142 		value,
143 		0,
144 		DVMM_PTE_CONTROL,
145 		DVMM_USE_SINGLE_PTE);
146 
147 	set_reg_field_value(
148 		value,
149 		1,
150 		DVMM_PTE_CONTROL,
151 		DVMM_PTE_BUFFER_MODE0);
152 
153 	set_reg_field_value(
154 		value,
155 		1,
156 		DVMM_PTE_CONTROL,
157 		DVMM_PTE_BUFFER_MODE1);
158 
159 	dm_write_reg(ctx, addr, value);
160 
161 	addr = mmDVMM_PTE_REQ;
162 	value = dm_read_reg(ctx, addr);
163 
164 	chunk_int = get_reg_field_value(
165 		value,
166 		DVMM_PTE_REQ,
167 		HFLIP_PTEREQ_PER_CHUNK_INT);
168 
169 	chunk_mul = get_reg_field_value(
170 		value,
171 		DVMM_PTE_REQ,
172 		HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
173 
174 	if (chunk_int != 0x4 || chunk_mul != 0x4) {
175 
176 		set_reg_field_value(
177 			value,
178 			255,
179 			DVMM_PTE_REQ,
180 			MAX_PTEREQ_TO_ISSUE);
181 
182 		set_reg_field_value(
183 			value,
184 			4,
185 			DVMM_PTE_REQ,
186 			HFLIP_PTEREQ_PER_CHUNK_INT);
187 
188 		set_reg_field_value(
189 			value,
190 			4,
191 			DVMM_PTE_REQ,
192 			HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
193 
194 		dm_write_reg(ctx, addr, value);
195 	}
196 }
197 /**************************************************************************/
198 
enable_display_pipe_clock_gating(struct dc_context * ctx,bool clock_gating)199 static void enable_display_pipe_clock_gating(
200 	struct dc_context *ctx,
201 	bool clock_gating)
202 {
203 	/*TODO*/
204 }
205 
dce110_enable_display_power_gating(struct dc * dc,uint8_t controller_id,struct dc_bios * dcb,enum pipe_gating_control power_gating)206 static bool dce110_enable_display_power_gating(
207 	struct dc *dc,
208 	uint8_t controller_id,
209 	struct dc_bios *dcb,
210 	enum pipe_gating_control power_gating)
211 {
212 	enum bp_result bp_result = BP_RESULT_OK;
213 	enum bp_pipe_control_action cntl;
214 	struct dc_context *ctx = dc->ctx;
215 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
216 
217 	if (power_gating == PIPE_GATING_CONTROL_INIT)
218 		cntl = ASIC_PIPE_INIT;
219 	else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
220 		cntl = ASIC_PIPE_ENABLE;
221 	else
222 		cntl = ASIC_PIPE_DISABLE;
223 
224 	if (controller_id == underlay_idx)
225 		controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
226 
227 	if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0) {
228 
229 		bp_result = dcb->funcs->enable_disp_power_gating(
230 						dcb, controller_id + 1, cntl);
231 
232 		/* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
233 		 * by default when command table is called
234 		 *
235 		 * Bios parser accepts controller_id = 6 as indicative of
236 		 * underlay pipe in dce110. But we do not support more
237 		 * than 3.
238 		 */
239 		if (controller_id < CONTROLLER_ID_MAX - 1)
240 			dm_write_reg(ctx,
241 				HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
242 				0);
243 	}
244 
245 	if (power_gating != PIPE_GATING_CONTROL_ENABLE)
246 		dce110_init_pte(ctx);
247 
248 	if (bp_result == BP_RESULT_OK)
249 		return true;
250 	else
251 		return false;
252 }
253 
dce110_prescale_params(struct ipp_prescale_params * prescale_params,const struct dc_plane_state * plane_state)254 static void dce110_prescale_params(struct ipp_prescale_params *prescale_params,
255 		const struct dc_plane_state *plane_state)
256 {
257 	prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
258 
259 	switch (plane_state->format) {
260 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
261 		prescale_params->scale = 0x2082;
262 		break;
263 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
264 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
265 		prescale_params->scale = 0x2020;
266 		break;
267 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
268 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
269 		prescale_params->scale = 0x2008;
270 		break;
271 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
272 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
273 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
274 		prescale_params->scale = 0x2000;
275 		break;
276 	default:
277 		ASSERT(false);
278 		break;
279 	}
280 }
281 
282 static bool
dce110_set_input_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_plane_state * plane_state)283 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
284 			       const struct dc_plane_state *plane_state)
285 {
286 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
287 	const struct dc_transfer_func *tf = NULL;
288 	struct ipp_prescale_params prescale_params = { 0 };
289 	bool result = true;
290 
291 	if (ipp == NULL)
292 		return false;
293 
294 	tf = &plane_state->in_transfer_func;
295 
296 	dce110_prescale_params(&prescale_params, plane_state);
297 	ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
298 
299 	if (!plane_state->gamma_correction.is_identity &&
300 			dce_use_lut(plane_state->format))
301 		ipp->funcs->ipp_program_input_lut(ipp, &plane_state->gamma_correction);
302 
303 	if (tf->type == TF_TYPE_PREDEFINED) {
304 		switch (tf->tf) {
305 		case TRANSFER_FUNCTION_SRGB:
306 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
307 			break;
308 		case TRANSFER_FUNCTION_BT709:
309 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
310 			break;
311 		case TRANSFER_FUNCTION_LINEAR:
312 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
313 			break;
314 		case TRANSFER_FUNCTION_PQ:
315 		default:
316 			result = false;
317 			break;
318 		}
319 	} else if (tf->type == TF_TYPE_BYPASS) {
320 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
321 	} else {
322 		/*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
323 		result = false;
324 	}
325 
326 	return result;
327 }
328 
convert_to_custom_float(struct pwl_result_data * rgb_resulted,struct curve_points * arr_points,uint32_t hw_points_num)329 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
330 				    struct curve_points *arr_points,
331 				    uint32_t hw_points_num)
332 {
333 	struct custom_float_format fmt;
334 
335 	struct pwl_result_data *rgb = rgb_resulted;
336 
337 	uint32_t i = 0;
338 
339 	fmt.exponenta_bits = 6;
340 	fmt.mantissa_bits = 12;
341 	fmt.sign = true;
342 
343 	if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
344 					    &arr_points[0].custom_float_x)) {
345 		BREAK_TO_DEBUGGER();
346 		return false;
347 	}
348 
349 	if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
350 					    &arr_points[0].custom_float_offset)) {
351 		BREAK_TO_DEBUGGER();
352 		return false;
353 	}
354 
355 	if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
356 					    &arr_points[0].custom_float_slope)) {
357 		BREAK_TO_DEBUGGER();
358 		return false;
359 	}
360 
361 	fmt.mantissa_bits = 10;
362 	fmt.sign = false;
363 
364 	if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
365 					    &arr_points[1].custom_float_x)) {
366 		BREAK_TO_DEBUGGER();
367 		return false;
368 	}
369 
370 	if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
371 					    &arr_points[1].custom_float_y)) {
372 		BREAK_TO_DEBUGGER();
373 		return false;
374 	}
375 
376 	if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
377 					    &arr_points[1].custom_float_slope)) {
378 		BREAK_TO_DEBUGGER();
379 		return false;
380 	}
381 
382 	fmt.mantissa_bits = 12;
383 	fmt.sign = true;
384 
385 	while (i != hw_points_num) {
386 		if (!convert_to_custom_float_format(rgb->red, &fmt,
387 						    &rgb->red_reg)) {
388 			BREAK_TO_DEBUGGER();
389 			return false;
390 		}
391 
392 		if (!convert_to_custom_float_format(rgb->green, &fmt,
393 						    &rgb->green_reg)) {
394 			BREAK_TO_DEBUGGER();
395 			return false;
396 		}
397 
398 		if (!convert_to_custom_float_format(rgb->blue, &fmt,
399 						    &rgb->blue_reg)) {
400 			BREAK_TO_DEBUGGER();
401 			return false;
402 		}
403 
404 		if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
405 						    &rgb->delta_red_reg)) {
406 			BREAK_TO_DEBUGGER();
407 			return false;
408 		}
409 
410 		if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
411 						    &rgb->delta_green_reg)) {
412 			BREAK_TO_DEBUGGER();
413 			return false;
414 		}
415 
416 		if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
417 						    &rgb->delta_blue_reg)) {
418 			BREAK_TO_DEBUGGER();
419 			return false;
420 		}
421 
422 		++rgb;
423 		++i;
424 	}
425 
426 	return true;
427 }
428 
429 #define MAX_LOW_POINT      25
430 #define NUMBER_REGIONS     16
431 #define NUMBER_SW_SEGMENTS 16
432 
433 static bool
dce110_translate_regamma_to_hw_format(const struct dc_transfer_func * output_tf,struct pwl_params * regamma_params)434 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
435 				      struct pwl_params *regamma_params)
436 {
437 	struct curve_points *arr_points;
438 	struct pwl_result_data *rgb_resulted;
439 	struct pwl_result_data *rgb;
440 	struct pwl_result_data *rgb_plus_1;
441 	struct fixed31_32 y_r;
442 	struct fixed31_32 y_g;
443 	struct fixed31_32 y_b;
444 	struct fixed31_32 y1_min;
445 	struct fixed31_32 y3_max;
446 
447 	int32_t region_start, region_end;
448 	uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
449 
450 	if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
451 		return false;
452 
453 	arr_points = regamma_params->arr_points;
454 	rgb_resulted = regamma_params->rgb_resulted;
455 	hw_points = 0;
456 
457 	memset(regamma_params, 0, sizeof(struct pwl_params));
458 
459 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
460 		/* 16 segments
461 		 * segments are from 2^-11 to 2^5
462 		 */
463 		region_start = -11;
464 		region_end = region_start + NUMBER_REGIONS;
465 
466 		for (i = 0; i < NUMBER_REGIONS; i++)
467 			seg_distr[i] = 4;
468 
469 	} else {
470 		/* 10 segments
471 		 * segment is from 2^-10 to 2^1
472 		 * We include an extra segment for range [2^0, 2^1). This is to
473 		 * ensure that colors with normalized values of 1 don't miss the
474 		 * LUT.
475 		 */
476 		region_start = -10;
477 		region_end = 1;
478 
479 		seg_distr[0] = 4;
480 		seg_distr[1] = 4;
481 		seg_distr[2] = 4;
482 		seg_distr[3] = 4;
483 		seg_distr[4] = 4;
484 		seg_distr[5] = 4;
485 		seg_distr[6] = 4;
486 		seg_distr[7] = 4;
487 		seg_distr[8] = 4;
488 		seg_distr[9] = 4;
489 		seg_distr[10] = 0;
490 		seg_distr[11] = -1;
491 		seg_distr[12] = -1;
492 		seg_distr[13] = -1;
493 		seg_distr[14] = -1;
494 		seg_distr[15] = -1;
495 	}
496 
497 	for (k = 0; k < 16; k++) {
498 		if (seg_distr[k] != -1)
499 			hw_points += (1 << seg_distr[k]);
500 	}
501 
502 	j = 0;
503 	for (k = 0; k < (region_end - region_start); k++) {
504 		increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
505 		start_index = (region_start + k + MAX_LOW_POINT) *
506 				NUMBER_SW_SEGMENTS;
507 		for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
508 				i += increment) {
509 			if (j == hw_points - 1)
510 				break;
511 			rgb_resulted[j].red = output_tf->tf_pts.red[i];
512 			rgb_resulted[j].green = output_tf->tf_pts.green[i];
513 			rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
514 			j++;
515 		}
516 	}
517 
518 	/* last point */
519 	start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
520 	rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
521 	rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
522 	rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
523 
524 	arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
525 					     dc_fixpt_from_int(region_start));
526 	arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
527 					     dc_fixpt_from_int(region_end));
528 
529 	y_r = rgb_resulted[0].red;
530 	y_g = rgb_resulted[0].green;
531 	y_b = rgb_resulted[0].blue;
532 
533 	y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
534 
535 	arr_points[0].y = y1_min;
536 	arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
537 						 arr_points[0].x);
538 
539 	y_r = rgb_resulted[hw_points - 1].red;
540 	y_g = rgb_resulted[hw_points - 1].green;
541 	y_b = rgb_resulted[hw_points - 1].blue;
542 
543 	/* see comment above, m_arrPoints[1].y should be the Y value for the
544 	 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
545 	 */
546 	y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
547 
548 	arr_points[1].y = y3_max;
549 
550 	arr_points[1].slope = dc_fixpt_zero;
551 
552 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
553 		/* for PQ, we want to have a straight line from last HW X point,
554 		 * and the slope to be such that we hit 1.0 at 10000 nits.
555 		 */
556 		const struct fixed31_32 end_value = dc_fixpt_from_int(125);
557 
558 		arr_points[1].slope = dc_fixpt_div(
559 				dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
560 				dc_fixpt_sub(end_value, arr_points[1].x));
561 	}
562 
563 	regamma_params->hw_points_num = hw_points;
564 
565 	k = 0;
566 	for (i = 1; i < 16; i++) {
567 		if (seg_distr[k] != -1) {
568 			regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
569 			regamma_params->arr_curve_points[i].offset =
570 					regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
571 		}
572 		k++;
573 	}
574 
575 	if (seg_distr[k] != -1)
576 		regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
577 
578 	rgb = rgb_resulted;
579 	rgb_plus_1 = rgb_resulted + 1;
580 
581 	i = 1;
582 
583 	while (i != hw_points + 1) {
584 		if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
585 			rgb_plus_1->red = rgb->red;
586 		if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
587 			rgb_plus_1->green = rgb->green;
588 		if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
589 			rgb_plus_1->blue = rgb->blue;
590 
591 		rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
592 		rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
593 		rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
594 
595 		++rgb_plus_1;
596 		++rgb;
597 		++i;
598 	}
599 
600 	convert_to_custom_float(rgb_resulted, arr_points, hw_points);
601 
602 	return true;
603 }
604 
605 static bool
dce110_set_output_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_stream_state * stream)606 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
607 				const struct dc_stream_state *stream)
608 {
609 	struct transform *xfm = pipe_ctx->plane_res.xfm;
610 
611 	xfm->funcs->opp_power_on_regamma_lut(xfm, true);
612 	xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
613 
614 	if (stream->out_transfer_func.type == TF_TYPE_PREDEFINED &&
615 	    stream->out_transfer_func.tf == TRANSFER_FUNCTION_SRGB) {
616 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
617 	} else if (dce110_translate_regamma_to_hw_format(&stream->out_transfer_func,
618 							 &xfm->regamma_params)) {
619 		xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
620 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
621 	} else {
622 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
623 	}
624 
625 	xfm->funcs->opp_power_on_regamma_lut(xfm, false);
626 
627 	return true;
628 }
629 
dce110_update_info_frame(struct pipe_ctx * pipe_ctx)630 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
631 {
632 	bool is_hdmi_tmds;
633 	bool is_dp;
634 
635 	ASSERT(pipe_ctx->stream);
636 
637 	if (pipe_ctx->stream_res.stream_enc == NULL)
638 		return;  /* this is not root pipe */
639 
640 	is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
641 	is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
642 
643 	if (!is_hdmi_tmds && !is_dp)
644 		return;
645 
646 	if (is_hdmi_tmds)
647 		pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
648 			pipe_ctx->stream_res.stream_enc,
649 			&pipe_ctx->stream_res.encoder_info_frame);
650 	else {
651 		if (pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num)
652 			pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num(
653 				pipe_ctx->stream_res.stream_enc,
654 				&pipe_ctx->stream_res.encoder_info_frame);
655 
656 		pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
657 			pipe_ctx->stream_res.stream_enc,
658 			&pipe_ctx->stream_res.encoder_info_frame);
659 	}
660 }
661 
662 static void
dce110_dac_encoder_control(struct pipe_ctx * pipe_ctx,bool enable)663 dce110_dac_encoder_control(struct pipe_ctx *pipe_ctx, bool enable)
664 {
665 	struct dc_link *link = pipe_ctx->stream->link;
666 	struct dc_bios *bios = link->ctx->dc_bios;
667 	struct bp_encoder_control encoder_control = {0};
668 
669 	encoder_control.action = enable ? ENCODER_CONTROL_ENABLE : ENCODER_CONTROL_DISABLE;
670 	encoder_control.engine_id = link->link_enc->analog_engine;
671 	encoder_control.pixel_clock = pipe_ctx->stream->timing.pix_clk_100hz / 10;
672 
673 	bios->funcs->encoder_control(bios, &encoder_control);
674 }
675 
dce110_enable_stream(struct pipe_ctx * pipe_ctx)676 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
677 {
678 	enum dc_lane_count lane_count =
679 		pipe_ctx->stream->link->cur_link_settings.lane_count;
680 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
681 	struct dc_link *link = pipe_ctx->stream->link;
682 	const struct dc *dc = link->dc;
683 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
684 	uint32_t active_total_with_borders;
685 	uint32_t early_control = 0;
686 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
687 
688 	link_hwss->setup_stream_encoder(pipe_ctx);
689 
690 	dc->hwss.update_info_frame(pipe_ctx);
691 
692 	/* enable early control to avoid corruption on DP monitor*/
693 	active_total_with_borders =
694 			timing->h_addressable
695 				+ timing->h_border_left
696 				+ timing->h_border_right;
697 
698 	if (lane_count != 0)
699 		early_control = active_total_with_borders % lane_count;
700 
701 	if (early_control == 0)
702 		early_control = lane_count;
703 
704 	tg->funcs->set_early_control(tg, early_control);
705 
706 	if (dc_is_rgb_signal(pipe_ctx->stream->signal))
707 		dce110_dac_encoder_control(pipe_ctx, true);
708 }
709 
link_transmitter_control(struct dc_bios * bios,struct bp_transmitter_control * cntl)710 static enum bp_result link_transmitter_control(
711 		struct dc_bios *bios,
712 	struct bp_transmitter_control *cntl)
713 {
714 	enum bp_result result;
715 
716 	result = bios->funcs->transmitter_control(bios, cntl);
717 
718 	return result;
719 }
720 
721 /*
722  * @brief
723  * eDP only.
724  */
dce110_edp_wait_for_hpd_ready(struct dc_link * link,bool power_up)725 void dce110_edp_wait_for_hpd_ready(
726 		struct dc_link *link,
727 		bool power_up)
728 {
729 	struct dc_context *ctx = link->ctx;
730 	struct graphics_object_id connector = link->link_enc->connector;
731 	struct gpio *hpd;
732 	bool edp_hpd_high = false;
733 	uint32_t time_elapsed = 0;
734 	uint32_t timeout = power_up ?
735 		PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
736 
737 	if (dal_graphics_object_id_get_connector_id(connector)
738 			!= CONNECTOR_ID_EDP) {
739 		BREAK_TO_DEBUGGER();
740 		return;
741 	}
742 
743 	if (!power_up)
744 		/*
745 		 * From KV, we will not HPD low after turning off VCC -
746 		 * instead, we will check the SW timer in power_up().
747 		 */
748 		return;
749 
750 	/*
751 	 * When we power on/off the eDP panel,
752 	 * we need to wait until SENSE bit is high/low.
753 	 */
754 
755 	/* obtain HPD */
756 	/* TODO what to do with this? */
757 	hpd = ctx->dc->link_srv->get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
758 
759 	if (!hpd) {
760 		BREAK_TO_DEBUGGER();
761 		return;
762 	}
763 
764 	if (link->panel_config.pps.extra_t3_ms > 0) {
765 		int extra_t3_in_ms = link->panel_config.pps.extra_t3_ms;
766 
767 		msleep(extra_t3_in_ms);
768 	}
769 
770 	dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
771 
772 	/* wait until timeout or panel detected */
773 
774 	do {
775 		uint32_t detected = 0;
776 
777 		dal_gpio_get_value(hpd, &detected);
778 
779 		if (!(detected ^ power_up)) {
780 			edp_hpd_high = true;
781 			break;
782 		}
783 
784 		msleep(HPD_CHECK_INTERVAL);
785 
786 		time_elapsed += HPD_CHECK_INTERVAL;
787 	} while (time_elapsed < timeout);
788 
789 	dal_gpio_close(hpd);
790 
791 	dal_gpio_destroy_irq(&hpd);
792 
793 	/* ensure that the panel is detected */
794 	if (!edp_hpd_high)
795 		DC_LOG_DC("%s: wait timed out!\n", __func__);
796 }
797 
dce110_edp_power_control(struct dc_link * link,bool power_up)798 void dce110_edp_power_control(
799 		struct dc_link *link,
800 		bool power_up)
801 {
802 	struct dc_context *ctx = link->ctx;
803 	struct bp_transmitter_control cntl = { 0 };
804 	enum bp_result bp_result;
805 	uint8_t pwrseq_instance;
806 
807 
808 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
809 			!= CONNECTOR_ID_EDP) {
810 		BREAK_TO_DEBUGGER();
811 		return;
812 	}
813 
814 	if (!link->panel_cntl)
815 		return;
816 	if (power_up !=
817 		link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
818 
819 		unsigned long long current_ts = dm_get_timestamp(ctx);
820 		unsigned long long time_since_edp_poweroff_ms =
821 				div64_u64(dm_get_elapse_time_in_ns(
822 						ctx,
823 						current_ts,
824 						ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
825 		unsigned long long time_since_edp_poweron_ms =
826 				div64_u64(dm_get_elapse_time_in_ns(
827 						ctx,
828 						current_ts,
829 						ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link)), 1000000);
830 		DC_LOG_HW_RESUME_S3(
831 				"%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
832 				__func__,
833 				power_up,
834 				current_ts,
835 				ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
836 				ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link),
837 				time_since_edp_poweroff_ms,
838 				time_since_edp_poweron_ms);
839 
840 		/* Send VBIOS command to prompt eDP panel power */
841 		if (power_up) {
842 			/* edp requires a min of 500ms from LCDVDD off to on */
843 			unsigned long long remaining_min_edp_poweroff_time_ms = 500;
844 
845 			/* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
846 			if (link->local_sink != NULL)
847 				remaining_min_edp_poweroff_time_ms +=
848 					link->panel_config.pps.extra_t12_ms;
849 
850 			/* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
851 			if (ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
852 				if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
853 					remaining_min_edp_poweroff_time_ms =
854 						remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
855 				else
856 					remaining_min_edp_poweroff_time_ms = 0;
857 			}
858 
859 			if (remaining_min_edp_poweroff_time_ms) {
860 				DC_LOG_HW_RESUME_S3(
861 						"%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
862 						__func__, remaining_min_edp_poweroff_time_ms);
863 				msleep(remaining_min_edp_poweroff_time_ms);
864 				DC_LOG_HW_RESUME_S3(
865 						"%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
866 						__func__, remaining_min_edp_poweroff_time_ms);
867 				dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
868 						__func__, remaining_min_edp_poweroff_time_ms);
869 			} else {
870 				DC_LOG_HW_RESUME_S3(
871 						"%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
872 						__func__, remaining_min_edp_poweroff_time_ms);
873 			}
874 		}
875 
876 		DC_LOG_HW_RESUME_S3(
877 				"%s: BEGIN: Panel Power action: %s\n",
878 				__func__, (power_up ? "On":"Off"));
879 
880 		cntl.action = power_up ?
881 			TRANSMITTER_CONTROL_POWER_ON :
882 			TRANSMITTER_CONTROL_POWER_OFF;
883 		cntl.transmitter = link->link_enc->transmitter;
884 		cntl.connector_obj_id = link->link_enc->connector;
885 		cntl.coherent = false;
886 		cntl.lanes_number = LANE_COUNT_FOUR;
887 		cntl.hpd_sel = link->link_enc->hpd_source;
888 		pwrseq_instance = link->panel_cntl->pwrseq_inst;
889 
890 		if (ctx->dc->ctx->dmub_srv &&
891 				ctx->dc->debug.dmub_command_table) {
892 
893 			if (cntl.action == TRANSMITTER_CONTROL_POWER_ON) {
894 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
895 						LVTMA_CONTROL_POWER_ON,
896 						pwrseq_instance, link->link_powered_externally);
897 			} else {
898 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
899 						LVTMA_CONTROL_POWER_OFF,
900 						pwrseq_instance, link->link_powered_externally);
901 			}
902 		}
903 
904 		bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
905 
906 		DC_LOG_HW_RESUME_S3(
907 				"%s: END: Panel Power action: %s bp_result=%u\n",
908 				__func__, (power_up ? "On":"Off"),
909 				bp_result);
910 
911 		ctx->dc->link_srv->dp_trace_set_edp_power_timestamp(link, power_up);
912 
913 		DC_LOG_HW_RESUME_S3(
914 				"%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
915 				__func__,
916 				ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
917 				ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link));
918 
919 		if (bp_result != BP_RESULT_OK)
920 			DC_LOG_ERROR(
921 					"%s: Panel Power bp_result: %d\n",
922 					__func__, bp_result);
923 	} else {
924 		DC_LOG_HW_RESUME_S3(
925 				"%s: Skipping Panel Power action: %s\n",
926 				__func__, (power_up ? "On":"Off"));
927 	}
928 }
929 
dce110_edp_wait_for_T12(struct dc_link * link)930 void dce110_edp_wait_for_T12(
931 		struct dc_link *link)
932 {
933 	struct dc_context *ctx = link->ctx;
934 
935 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
936 			!= CONNECTOR_ID_EDP) {
937 		BREAK_TO_DEBUGGER();
938 		return;
939 	}
940 
941 	if (!link->panel_cntl)
942 		return;
943 
944 	if (!link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl) &&
945 			ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
946 		unsigned int t12_duration = 500; // Default T12 as per spec
947 		unsigned long long current_ts = dm_get_timestamp(ctx);
948 		unsigned long long time_since_edp_poweroff_ms =
949 				div64_u64(dm_get_elapse_time_in_ns(
950 						ctx,
951 						current_ts,
952 						ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
953 
954 		t12_duration += link->panel_config.pps.extra_t12_ms; // Add extra T12
955 
956 		if (time_since_edp_poweroff_ms < t12_duration)
957 			msleep(t12_duration - time_since_edp_poweroff_ms);
958 	}
959 }
960 /*todo: cloned in stream enc, fix*/
961 /*
962  * @brief
963  * eDP only. Control the backlight of the eDP panel
964  */
dce110_edp_backlight_control(struct dc_link * link,bool enable)965 void dce110_edp_backlight_control(
966 		struct dc_link *link,
967 		bool enable)
968 {
969 	struct dc_context *ctx = link->ctx;
970 	struct bp_transmitter_control cntl = { 0 };
971 	uint8_t pwrseq_instance = 0;
972 	unsigned int pre_T11_delay = (link->dpcd_sink_ext_caps.bits.oled ? OLED_PRE_T11_DELAY : 0);
973 	unsigned int post_T7_delay = (link->dpcd_sink_ext_caps.bits.oled ? OLED_POST_T7_DELAY : 0);
974 
975 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
976 		!= CONNECTOR_ID_EDP) {
977 		BREAK_TO_DEBUGGER();
978 		return;
979 	}
980 
981 	if (link->panel_cntl && !(link->dpcd_sink_ext_caps.bits.oled ||
982 		link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
983 		link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)) {
984 		bool is_backlight_on = link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl);
985 
986 		if ((enable && is_backlight_on) || (!enable && !is_backlight_on)) {
987 			DC_LOG_HW_RESUME_S3(
988 				"%s: panel already powered up/off. Do nothing.\n",
989 				__func__);
990 			return;
991 		}
992 	}
993 
994 	/* Send VBIOS command to control eDP panel backlight */
995 
996 	DC_LOG_HW_RESUME_S3(
997 			"%s: backlight action: %s\n",
998 			__func__, (enable ? "On":"Off"));
999 
1000 	cntl.action = enable ?
1001 		TRANSMITTER_CONTROL_BACKLIGHT_ON :
1002 		TRANSMITTER_CONTROL_BACKLIGHT_OFF;
1003 
1004 	/*cntl.engine_id = ctx->engine;*/
1005 	cntl.transmitter = link->link_enc->transmitter;
1006 	cntl.connector_obj_id = link->link_enc->connector;
1007 	/*todo: unhardcode*/
1008 	cntl.lanes_number = LANE_COUNT_FOUR;
1009 	cntl.hpd_sel = link->link_enc->hpd_source;
1010 	cntl.signal = SIGNAL_TYPE_EDP;
1011 
1012 	/* For eDP, the following delays might need to be considered
1013 	 * after link training completed:
1014 	 * idle period - min. accounts for required BS-Idle pattern,
1015 	 * max. allows for source frame synchronization);
1016 	 * 50 msec max. delay from valid video data from source
1017 	 * to video on dislpay or backlight enable.
1018 	 *
1019 	 * Disable the delay for now.
1020 	 * Enable it in the future if necessary.
1021 	 */
1022 	/* dc_service_sleep_in_milliseconds(50); */
1023 		/*edp 1.2*/
1024 	if (link->panel_cntl)
1025 		pwrseq_instance = link->panel_cntl->pwrseq_inst;
1026 
1027 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON) {
1028 		if (!link->dc->config.edp_no_power_sequencing)
1029 		/*
1030 		 * Sometimes, DP receiver chip power-controlled externally by an
1031 		 * Embedded Controller could be treated and used as eDP,
1032 		 * if it drives mobile display. In this case,
1033 		 * we shouldn't be doing power-sequencing, hence we can skip
1034 		 * waiting for T7-ready.
1035 		 */
1036 			ctx->dc->link_srv->edp_receiver_ready_T7(link);
1037 		else
1038 			DC_LOG_DC("edp_receiver_ready_T7 skipped\n");
1039 	}
1040 
1041 	/* Setting link_powered_externally will bypass delays in the backlight
1042 	 * as they are not required if the link is being powered by a different
1043 	 * source.
1044 	 */
1045 	if (ctx->dc->ctx->dmub_srv &&
1046 			ctx->dc->debug.dmub_command_table) {
1047 		if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
1048 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1049 					LVTMA_CONTROL_LCD_BLON,
1050 					pwrseq_instance, link->link_powered_externally);
1051 		else
1052 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1053 					LVTMA_CONTROL_LCD_BLOFF,
1054 					pwrseq_instance, link->link_powered_externally);
1055 	}
1056 
1057 	link_transmitter_control(ctx->dc_bios, &cntl);
1058 
1059 	if (enable && link->dpcd_sink_ext_caps.bits.oled &&
1060 	    !link->dc->config.edp_no_power_sequencing &&
1061 	    !link->local_sink->edid_caps.panel_patch.oled_optimize_display_on) {
1062 		post_T7_delay += link->panel_config.pps.extra_post_t7_ms;
1063 		msleep(post_T7_delay);
1064 	}
1065 
1066 	if (link->dpcd_sink_ext_caps.bits.oled ||
1067 		link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
1068 		link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
1069 		ctx->dc->link_srv->edp_backlight_enable_aux(link, enable);
1070 
1071 	/*edp 1.2*/
1072 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF) {
1073 		if (!link->dc->config.edp_no_power_sequencing)
1074 		/*
1075 		 * Sometimes, DP receiver chip power-controlled externally by an
1076 		 * Embedded Controller could be treated and used as eDP,
1077 		 * if it drives mobile display. In this case,
1078 		 * we shouldn't be doing power-sequencing, hence we can skip
1079 		 * waiting for T9-ready.
1080 		 */
1081 			ctx->dc->link_srv->edp_add_delay_for_T9(link);
1082 		else
1083 			DC_LOG_DC("edp_receiver_ready_T9 skipped\n");
1084 	}
1085 
1086 	if (!enable) {
1087 		/*follow oem panel config's requirement*/
1088 		pre_T11_delay += link->panel_config.pps.extra_pre_t11_ms;
1089 		if (pre_T11_delay)
1090 			msleep(pre_T11_delay);
1091 	}
1092 }
1093 
dce110_enable_audio_stream(struct pipe_ctx * pipe_ctx)1094 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
1095 {
1096 	/* notify audio driver for audio modes of monitor */
1097 	struct dc *dc;
1098 	struct clk_mgr *clk_mgr;
1099 	unsigned int i, num_audio = 1;
1100 	const struct link_hwss *link_hwss;
1101 
1102 	if (!pipe_ctx->stream)
1103 		return;
1104 
1105 	if (dc_is_rgb_signal(pipe_ctx->stream->signal))
1106 		return;
1107 
1108 	dc = pipe_ctx->stream->ctx->dc;
1109 	clk_mgr = dc->clk_mgr;
1110 	link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1111 
1112 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
1113 		return;
1114 
1115 	if (pipe_ctx->stream_res.audio) {
1116 		for (i = 0; i < MAX_PIPES; i++) {
1117 			/*current_state not updated yet*/
1118 			if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1119 				num_audio++;
1120 		}
1121 
1122 		pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1123 
1124 		if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
1125 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1126 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1127 
1128 		link_hwss->enable_audio_packet(pipe_ctx);
1129 
1130 		if (pipe_ctx->stream_res.audio)
1131 			pipe_ctx->stream_res.audio->enabled = true;
1132 	}
1133 }
1134 
dce110_disable_audio_stream(struct pipe_ctx * pipe_ctx)1135 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1136 {
1137 	struct dc *dc;
1138 	struct clk_mgr *clk_mgr;
1139 	const struct link_hwss *link_hwss;
1140 
1141 	if (!pipe_ctx || !pipe_ctx->stream)
1142 		return;
1143 
1144 	if (dc_is_rgb_signal(pipe_ctx->stream->signal))
1145 		return;
1146 
1147 	dc = pipe_ctx->stream->ctx->dc;
1148 	clk_mgr = dc->clk_mgr;
1149 	link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1150 
1151 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1152 		return;
1153 
1154 	link_hwss->disable_audio_packet(pipe_ctx);
1155 
1156 	if (pipe_ctx->stream_res.audio) {
1157 		pipe_ctx->stream_res.audio->enabled = false;
1158 
1159 		if (clk_mgr->funcs->enable_pme_wa)
1160 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1161 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1162 
1163 		/* TODO: notify audio driver for if audio modes list changed
1164 		 * add audio mode list change flag */
1165 		/* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1166 		 * stream->stream_engine_id);
1167 		 */
1168 	}
1169 }
1170 
dce110_disable_stream(struct pipe_ctx * pipe_ctx)1171 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1172 {
1173 	struct dc_stream_state *stream = pipe_ctx->stream;
1174 	struct dc_link *link = stream->link;
1175 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1176 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
1177 	struct dccg *dccg = dc->res_pool->dccg;
1178 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
1179 	struct dtbclk_dto_params dto_params = {0};
1180 	int dp_hpo_inst;
1181 	struct link_encoder *link_enc = pipe_ctx->link_res.dio_link_enc;
1182 	struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc;
1183 
1184 	if (!dc->config.unify_link_enc_assignment)
1185 		link_enc = link_enc_cfg_get_link_enc(link);
1186 
1187 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1188 		pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1189 			pipe_ctx->stream_res.stream_enc);
1190 		pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1191 			pipe_ctx->stream_res.stream_enc);
1192 	}
1193 
1194 	if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1195 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->stop_dp_info_packets(
1196 					pipe_ctx->stream_res.hpo_dp_stream_enc);
1197 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal))
1198 		pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1199 			pipe_ctx->stream_res.stream_enc);
1200 
1201 	dc->hwss.disable_audio_stream(pipe_ctx);
1202 
1203 	link_hwss->reset_stream_encoder(pipe_ctx);
1204 
1205 	if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx) && dccg) {
1206 		dto_params.otg_inst = tg->inst;
1207 		dto_params.timing = &pipe_ctx->stream->timing;
1208 		dp_hpo_inst = pipe_ctx->stream_res.hpo_dp_stream_enc->inst;
1209 		if (dccg) {
1210 			dccg->funcs->disable_symclk32_se(dccg, dp_hpo_inst);
1211 			dccg->funcs->set_dpstreamclk(dccg, REFCLK, tg->inst, dp_hpo_inst);
1212 			if (!(dc->ctx->dce_version >= DCN_VERSION_3_5)) {
1213 				if (dccg && dccg->funcs->set_dtbclk_dto)
1214 					dccg->funcs->set_dtbclk_dto(dccg, &dto_params);
1215 			}
1216 		}
1217 	} else if (dccg && dccg->funcs->disable_symclk_se) {
1218 		dccg->funcs->disable_symclk_se(dccg, stream_enc->stream_enc_inst,
1219 					       link_enc->transmitter - TRANSMITTER_UNIPHY_A);
1220 	}
1221 
1222 	if (dc_is_rgb_signal(pipe_ctx->stream->signal))
1223 		dce110_dac_encoder_control(pipe_ctx, false);
1224 }
1225 
dce110_unblank_stream(struct pipe_ctx * pipe_ctx,struct dc_link_settings * link_settings)1226 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1227 		struct dc_link_settings *link_settings)
1228 {
1229 	struct encoder_unblank_param params = { { 0 } };
1230 	struct dc_stream_state *stream = pipe_ctx->stream;
1231 	struct dc_link *link = stream->link;
1232 	struct dce_hwseq *hws = link->dc->hwseq;
1233 
1234 	/* only 3 items below are used by unblank */
1235 	params.timing = pipe_ctx->stream->timing;
1236 	params.link_settings.link_rate = link_settings->link_rate;
1237 
1238 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1239 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
1240 
1241 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1242 		hws->funcs.edp_backlight_control(link, true);
1243 	}
1244 }
1245 
dce110_blank_stream(struct pipe_ctx * pipe_ctx)1246 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1247 {
1248 	struct dc_stream_state *stream = pipe_ctx->stream;
1249 	struct dc_link *link = stream->link;
1250 	struct dce_hwseq *hws = link->dc->hwseq;
1251 
1252 	if (hws && hws->wa_state.skip_blank_stream)
1253 		return;
1254 
1255 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1256 		if (!link->skip_implict_edp_power_control && hws)
1257 			hws->funcs.edp_backlight_control(link, false);
1258 		link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1259 	}
1260 
1261 	if (link->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1262 		/* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
1263 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_blank(
1264 				pipe_ctx->stream_res.hpo_dp_stream_enc);
1265 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1266 		pipe_ctx->stream_res.stream_enc->funcs->dp_blank(link, pipe_ctx->stream_res.stream_enc);
1267 
1268 		if (!dc_is_embedded_signal(pipe_ctx->stream->signal)) {
1269 			/*
1270 			 * After output is idle pattern some sinks need time to recognize the stream
1271 			 * has changed or they enter protection state and hang.
1272 			 */
1273 			msleep(60);
1274 		}
1275 	}
1276 
1277 	if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP &&
1278 	    !link->dc->config.edp_no_power_sequencing) {
1279 			/*
1280 			 * Sometimes, DP receiver chip power-controlled externally by an
1281 			 * Embedded Controller could be treated and used as eDP,
1282 			 * if it drives mobile display. In this case,
1283 			 * we shouldn't be doing power-sequencing, hence we can skip
1284 			 * waiting for T9-ready.
1285 			 */
1286 		link->dc->link_srv->edp_receiver_ready_T9(link);
1287 	}
1288 
1289 }
1290 
1291 
dce110_set_avmute(struct pipe_ctx * pipe_ctx,bool enable)1292 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1293 {
1294 	if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1295 		pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1296 }
1297 
translate_to_dto_source(enum controller_id crtc_id)1298 enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1299 {
1300 	switch (crtc_id) {
1301 	case CONTROLLER_ID_D0:
1302 		return DTO_SOURCE_ID0;
1303 	case CONTROLLER_ID_D1:
1304 		return DTO_SOURCE_ID1;
1305 	case CONTROLLER_ID_D2:
1306 		return DTO_SOURCE_ID2;
1307 	case CONTROLLER_ID_D3:
1308 		return DTO_SOURCE_ID3;
1309 	case CONTROLLER_ID_D4:
1310 		return DTO_SOURCE_ID4;
1311 	case CONTROLLER_ID_D5:
1312 		return DTO_SOURCE_ID5;
1313 	default:
1314 		return DTO_SOURCE_UNKNOWN;
1315 	}
1316 }
1317 
populate_audio_dp_link_info(const struct pipe_ctx * pipe_ctx,struct audio_dp_link_info * dp_link_info)1318 void populate_audio_dp_link_info(
1319 	const struct pipe_ctx *pipe_ctx,
1320 	struct audio_dp_link_info *dp_link_info)
1321 {
1322 	const struct dc_stream_state *stream = pipe_ctx->stream;
1323 	const struct dc_link *link = stream->link;
1324 	struct fixed31_32 link_bw_kbps;
1325 
1326 	dp_link_info->encoding = link->dc->link_srv->dp_get_encoding_format(
1327 				&pipe_ctx->link_config.dp_link_settings);
1328 	dp_link_info->is_mst = (stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST);
1329 	dp_link_info->lane_count = pipe_ctx->link_config.dp_link_settings.lane_count;
1330 	dp_link_info->link_rate = pipe_ctx->link_config.dp_link_settings.link_rate;
1331 
1332 	link_bw_kbps = dc_fixpt_from_int(dc_link_bandwidth_kbps(link,
1333 			&pipe_ctx->link_config.dp_link_settings));
1334 
1335 	/* For audio stream calculations, the video stream should not include FEC or SSC
1336 	 * in order to get the most pessimistic values.
1337 	 */
1338 	if (dp_link_info->encoding == DP_8b_10b_ENCODING &&
1339 			link->dc->link_srv->dp_is_fec_supported(link)) {
1340 		link_bw_kbps = dc_fixpt_mul(link_bw_kbps,
1341 				dc_fixpt_from_fraction(100, DATA_EFFICIENCY_8b_10b_FEC_EFFICIENCY_x100));
1342 	} else if (dp_link_info->encoding == DP_128b_132b_ENCODING) {
1343 		link_bw_kbps = dc_fixpt_mul(link_bw_kbps,
1344 				dc_fixpt_from_fraction(10000, 9975)); /* 99.75% SSC overhead*/
1345 	}
1346 
1347 	dp_link_info->link_bandwidth_kbps = dc_fixpt_floor(link_bw_kbps);
1348 
1349 	/* Calculates hblank_min_symbol_width for 128b/132b
1350 	 * Corresponding HBLANK_MIN_SYMBOL_WIDTH register is calculated as:
1351 	 *   floor(h_blank * bits_per_pixel / 128)
1352 	 */
1353 	if (dp_link_info->encoding == DP_128b_132b_ENCODING) {
1354 		struct dc_crtc_timing *crtc_timing = &pipe_ctx->stream->timing;
1355 
1356 		uint32_t h_active = crtc_timing->h_addressable + crtc_timing->h_border_left
1357 				+ crtc_timing->h_border_right;
1358 		uint32_t h_blank = crtc_timing->h_total - h_active;
1359 
1360 		uint32_t bpp;
1361 
1362 		if (crtc_timing->flags.DSC) {
1363 			bpp = crtc_timing->dsc_cfg.bits_per_pixel;
1364 		} else {
1365 			/* When the timing is using DSC, dsc_cfg.bits_per_pixel is in 16th bits.
1366 			 * The bpp in this path is scaled to 16th bits so the final calculation
1367 			 * is correct for both cases.
1368 			 */
1369 			bpp = 16;
1370 			switch (crtc_timing->display_color_depth) {
1371 			case COLOR_DEPTH_666:
1372 				bpp *= 18;
1373 				break;
1374 			case COLOR_DEPTH_888:
1375 				bpp *= 24;
1376 				break;
1377 			case COLOR_DEPTH_101010:
1378 				bpp *= 30;
1379 				break;
1380 			case COLOR_DEPTH_121212:
1381 				bpp *= 36;
1382 				break;
1383 			default:
1384 				bpp = 0;
1385 				break;
1386 			}
1387 
1388 			switch (crtc_timing->pixel_encoding) {
1389 			case PIXEL_ENCODING_YCBCR422:
1390 				bpp = bpp * 2 / 3;
1391 				break;
1392 			case PIXEL_ENCODING_YCBCR420:
1393 				bpp /= 2;
1394 				break;
1395 			default:
1396 				break;
1397 			}
1398 		}
1399 
1400 		/* Min symbol width = floor(h_blank * (bpp/16) / 128) */
1401 		dp_link_info->hblank_min_symbol_width = dc_fixpt_floor(
1402 				dc_fixpt_div(dc_fixpt_from_int(h_blank * bpp),
1403 						dc_fixpt_from_int(128 / 16)));
1404 
1405 	} else {
1406 		dp_link_info->hblank_min_symbol_width = 0;
1407 	}
1408 }
1409 
build_audio_output(struct dc_state * state,const struct pipe_ctx * pipe_ctx,struct audio_output * audio_output)1410 void build_audio_output(
1411 	struct dc_state *state,
1412 	const struct pipe_ctx *pipe_ctx,
1413 	struct audio_output *audio_output)
1414 {
1415 	const struct dc_stream_state *stream = pipe_ctx->stream;
1416 	audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1417 
1418 	audio_output->signal = pipe_ctx->stream->signal;
1419 
1420 	/* audio_crtc_info  */
1421 
1422 	audio_output->crtc_info.h_total =
1423 		stream->timing.h_total;
1424 
1425 	/*
1426 	 * Audio packets are sent during actual CRTC blank physical signal, we
1427 	 * need to specify actual active signal portion
1428 	 */
1429 	audio_output->crtc_info.h_active =
1430 			stream->timing.h_addressable
1431 			+ stream->timing.h_border_left
1432 			+ stream->timing.h_border_right;
1433 
1434 	audio_output->crtc_info.v_active =
1435 			stream->timing.v_addressable
1436 			+ stream->timing.v_border_top
1437 			+ stream->timing.v_border_bottom;
1438 
1439 	audio_output->crtc_info.pixel_repetition = 1;
1440 
1441 	audio_output->crtc_info.interlaced =
1442 			stream->timing.flags.INTERLACE;
1443 
1444 	audio_output->crtc_info.refresh_rate =
1445 		(stream->timing.pix_clk_100hz*100)/
1446 		(stream->timing.h_total*stream->timing.v_total);
1447 
1448 	audio_output->crtc_info.color_depth =
1449 		stream->timing.display_color_depth;
1450 
1451 	audio_output->crtc_info.requested_pixel_clock_100Hz =
1452 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1453 
1454 	audio_output->crtc_info.calculated_pixel_clock_100Hz =
1455 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1456 
1457 	audio_output->crtc_info.pixel_encoding =
1458 		stream->timing.pixel_encoding;
1459 
1460 	audio_output->crtc_info.dsc_bits_per_pixel =
1461 			stream->timing.dsc_cfg.bits_per_pixel;
1462 
1463 	audio_output->crtc_info.dsc_num_slices =
1464 			stream->timing.dsc_cfg.num_slices_h;
1465 
1466 /*for HDMI, audio ACR is with deep color ratio factor*/
1467 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1468 		audio_output->crtc_info.requested_pixel_clock_100Hz ==
1469 				(stream->timing.pix_clk_100hz)) {
1470 		if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1471 			audio_output->crtc_info.requested_pixel_clock_100Hz =
1472 					audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1473 			audio_output->crtc_info.calculated_pixel_clock_100Hz =
1474 					pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1475 
1476 		}
1477 	}
1478 
1479 	if (state->clk_mgr &&
1480 		(pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1481 			pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1482 		audio_output->pll_info.audio_dto_source_clock_in_khz =
1483 				state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1484 						state->clk_mgr);
1485 	}
1486 
1487 	audio_output->pll_info.feed_back_divider =
1488 			pipe_ctx->pll_settings.feedback_divider;
1489 
1490 	audio_output->pll_info.dto_source =
1491 		translate_to_dto_source(
1492 			pipe_ctx->stream_res.tg->inst + 1);
1493 
1494 	/* TODO hard code to enable for now. Need get from stream */
1495 	audio_output->pll_info.ss_enabled = true;
1496 
1497 	audio_output->pll_info.ss_percentage =
1498 			pipe_ctx->pll_settings.ss_percentage;
1499 
1500 	if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1501 		populate_audio_dp_link_info(pipe_ctx, &audio_output->dp_link_info);
1502 	}
1503 }
1504 
program_scaler(const struct dc * dc,const struct pipe_ctx * pipe_ctx)1505 static void program_scaler(const struct dc *dc,
1506 		const struct pipe_ctx *pipe_ctx)
1507 {
1508 	struct tg_color color = {0};
1509 
1510 	/* TOFPGA */
1511 	if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1512 		return;
1513 
1514 	if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1515 		get_surface_visual_confirm_color(pipe_ctx, &color);
1516 	else
1517 		color_space_to_black_color(dc,
1518 				pipe_ctx->stream->output_color_space,
1519 				&color);
1520 
1521 	pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1522 		pipe_ctx->plane_res.xfm,
1523 		pipe_ctx->plane_res.scl_data.lb_params.depth,
1524 		&pipe_ctx->stream->bit_depth_params);
1525 
1526 	if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1527 		/*
1528 		 * The way 420 is packed, 2 channels carry Y component, 1 channel
1529 		 * alternate between Cb and Cr, so both channels need the pixel
1530 		 * value for Y
1531 		 */
1532 		if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1533 			color.color_r_cr = color.color_g_y;
1534 
1535 		pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1536 				pipe_ctx->stream_res.tg,
1537 				&color);
1538 	}
1539 
1540 	pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1541 		&pipe_ctx->plane_res.scl_data);
1542 }
1543 
dce110_enable_stream_timing(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1544 static enum dc_status dce110_enable_stream_timing(
1545 		struct pipe_ctx *pipe_ctx,
1546 		struct dc_state *context,
1547 		struct dc *dc)
1548 {
1549 	struct dc_stream_state *stream = pipe_ctx->stream;
1550 	struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1551 			pipe_ctx[pipe_ctx->pipe_idx];
1552 	struct tg_color black_color = {0};
1553 
1554 	if (!pipe_ctx_old->stream) {
1555 
1556 		/* program blank color */
1557 		color_space_to_black_color(dc,
1558 				stream->output_color_space, &black_color);
1559 		pipe_ctx->stream_res.tg->funcs->set_blank_color(
1560 				pipe_ctx->stream_res.tg,
1561 				&black_color);
1562 
1563 		/*
1564 		 * Must blank CRTC after disabling power gating and before any
1565 		 * programming, otherwise CRTC will be hung in bad state
1566 		 */
1567 		pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1568 
1569 		if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1570 				pipe_ctx->clock_source,
1571 				&pipe_ctx->stream_res.pix_clk_params,
1572 				dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings),
1573 				&pipe_ctx->pll_settings)) {
1574 			BREAK_TO_DEBUGGER();
1575 			return DC_ERROR_UNEXPECTED;
1576 		}
1577 
1578 		if (dc_is_hdmi_tmds_signal(stream->signal)) {
1579 			stream->link->phy_state.symclk_ref_cnts.otg = 1;
1580 			if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
1581 				stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
1582 			else
1583 				stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
1584 		}
1585 
1586 		pipe_ctx->stream_res.tg->funcs->program_timing(
1587 				pipe_ctx->stream_res.tg,
1588 				&stream->timing,
1589 				0,
1590 				0,
1591 				0,
1592 				0,
1593 				0,
1594 				pipe_ctx->stream->signal,
1595 				true);
1596 	}
1597 
1598 	if (!pipe_ctx_old->stream) {
1599 		if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1600 				pipe_ctx->stream_res.tg)) {
1601 			BREAK_TO_DEBUGGER();
1602 			return DC_ERROR_UNEXPECTED;
1603 		}
1604 	}
1605 
1606 	return DC_OK;
1607 }
1608 
1609 static void
dce110_select_crtc_source(struct pipe_ctx * pipe_ctx)1610 dce110_select_crtc_source(struct pipe_ctx *pipe_ctx)
1611 {
1612 	struct dc_link *link = pipe_ctx->stream->link;
1613 	struct dc_bios *bios = link->ctx->dc_bios;
1614 	struct bp_crtc_source_select crtc_source_select = {0};
1615 	enum engine_id engine_id = link->link_enc->preferred_engine;
1616 	uint8_t bit_depth;
1617 
1618 	if (dc_is_rgb_signal(pipe_ctx->stream->signal))
1619 		engine_id = link->link_enc->analog_engine;
1620 
1621 	switch (pipe_ctx->stream->timing.display_color_depth) {
1622 	case COLOR_DEPTH_UNDEFINED:
1623 		bit_depth = 0;
1624 		break;
1625 	case COLOR_DEPTH_666:
1626 		bit_depth = 6;
1627 		break;
1628 	default:
1629 	case COLOR_DEPTH_888:
1630 		bit_depth = 8;
1631 		break;
1632 	case COLOR_DEPTH_101010:
1633 		bit_depth = 10;
1634 		break;
1635 	case COLOR_DEPTH_121212:
1636 		bit_depth = 12;
1637 		break;
1638 	case COLOR_DEPTH_141414:
1639 		bit_depth = 14;
1640 		break;
1641 	case COLOR_DEPTH_161616:
1642 		bit_depth = 16;
1643 		break;
1644 	}
1645 
1646 	crtc_source_select.controller_id = CONTROLLER_ID_D0 + pipe_ctx->stream_res.tg->inst;
1647 	crtc_source_select.bit_depth = bit_depth;
1648 	crtc_source_select.engine_id = engine_id;
1649 	crtc_source_select.sink_signal = pipe_ctx->stream->signal;
1650 
1651 	bios->funcs->select_crtc_source(bios, &crtc_source_select);
1652 }
1653 
dce110_apply_single_controller_ctx_to_hw(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1654 enum dc_status dce110_apply_single_controller_ctx_to_hw(
1655 		struct pipe_ctx *pipe_ctx,
1656 		struct dc_state *context,
1657 		struct dc *dc)
1658 {
1659 	struct dc_stream_state *stream = pipe_ctx->stream;
1660 	struct dc_link *link = stream->link;
1661 	struct drr_params params = {0};
1662 	unsigned int event_triggers = 0;
1663 	struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1664 	struct dce_hwseq *hws = dc->hwseq;
1665 	const struct link_hwss *link_hwss = get_link_hwss(
1666 			link, &pipe_ctx->link_res);
1667 
1668 
1669 	if (hws->funcs.disable_stream_gating) {
1670 		hws->funcs.disable_stream_gating(dc, pipe_ctx);
1671 	}
1672 
1673 	if (pipe_ctx->stream->signal == SIGNAL_TYPE_RGB) {
1674 		dce110_select_crtc_source(pipe_ctx);
1675 	}
1676 
1677 	if (pipe_ctx->stream_res.audio != NULL) {
1678 		struct audio_output audio_output = {0};
1679 
1680 		build_audio_output(context, pipe_ctx, &audio_output);
1681 
1682 		link_hwss->setup_audio_output(pipe_ctx, &audio_output,
1683 				pipe_ctx->stream_res.audio->inst);
1684 
1685 		pipe_ctx->stream_res.audio->funcs->az_configure(
1686 				pipe_ctx->stream_res.audio,
1687 				pipe_ctx->stream->signal,
1688 				&audio_output.crtc_info,
1689 				&pipe_ctx->stream->audio_info,
1690 				&audio_output.dp_link_info);
1691 
1692 		if (dc->config.disable_hbr_audio_dp2)
1693 			if (pipe_ctx->stream_res.audio->funcs->az_disable_hbr_audio &&
1694 					dc->link_srv->dp_is_128b_132b_signal(pipe_ctx))
1695 				pipe_ctx->stream_res.audio->funcs->az_disable_hbr_audio(pipe_ctx->stream_res.audio);
1696 	}
1697 
1698 	/* make sure no pipes syncd to the pipe being enabled */
1699 	if (!pipe_ctx->stream->apply_seamless_boot_optimization && dc->config.use_pipe_ctx_sync_logic)
1700 		check_syncd_pipes_for_disabled_master_pipe(dc, context, pipe_ctx->pipe_idx);
1701 
1702 	pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1703 		pipe_ctx->stream_res.opp,
1704 		&stream->bit_depth_params,
1705 		&stream->clamping);
1706 
1707 	pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1708 			pipe_ctx->stream_res.opp,
1709 			COLOR_SPACE_YCBCR601,
1710 			stream->timing.display_color_depth,
1711 			stream->signal);
1712 
1713 	while (odm_pipe) {
1714 		odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1715 				odm_pipe->stream_res.opp,
1716 				COLOR_SPACE_YCBCR601,
1717 				stream->timing.display_color_depth,
1718 				stream->signal);
1719 
1720 		odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1721 				odm_pipe->stream_res.opp,
1722 				&stream->bit_depth_params,
1723 				&stream->clamping);
1724 		odm_pipe = odm_pipe->next_odm_pipe;
1725 	}
1726 
1727 	/* DCN3.1 FPGA Workaround
1728 	 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1729 	 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1730 	 * function core_link_enable_stream
1731 	 */
1732 	if (!(hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)))
1733 		/*  */
1734 		/* Do not touch stream timing on seamless boot optimization. */
1735 		if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1736 			hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1737 
1738 	if (hws->funcs.setup_vupdate_interrupt)
1739 		hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1740 
1741 	params.vertical_total_min = stream->adjust.v_total_min;
1742 	params.vertical_total_max = stream->adjust.v_total_max;
1743 	set_drr_and_clear_adjust_pending(pipe_ctx, stream, &params);
1744 
1745 	// DRR should set trigger event to monitor surface update event
1746 	if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1747 		event_triggers = 0x80;
1748 	/* Event triggers and num frames initialized for DRR, but can be
1749 	 * later updated for PSR use. Note DRR trigger events are generated
1750 	 * regardless of whether num frames met.
1751 	 */
1752 	if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1753 		pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1754 				pipe_ctx->stream_res.tg, event_triggers, 2);
1755 
1756 	if (!dc_is_virtual_signal(pipe_ctx->stream->signal) &&
1757 		!dc_is_rgb_signal(pipe_ctx->stream->signal))
1758 		pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1759 			pipe_ctx->stream_res.stream_enc,
1760 			pipe_ctx->stream_res.tg->inst);
1761 
1762 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1763 		dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_CONNECT_DIG_FE_OTG);
1764 
1765 	/* Temporary workaround to perform DSC programming ahead of stream enablement
1766 	 * for smartmux/SPRS
1767 	 * TODO: Remove SmartMux/SPRS checks once movement of DSC programming is generalized
1768 	 */
1769 	if (pipe_ctx->stream->timing.flags.DSC) {
1770 		if ((pipe_ctx->stream->signal == SIGNAL_TYPE_EDP &&
1771 			((link->dc->config.smart_mux_version && link->dc->is_switch_in_progress_dest)
1772 			|| link->is_dds || link->skip_implict_edp_power_control)) &&
1773 			(dc_is_dp_signal(pipe_ctx->stream->signal) ||
1774 			dc_is_virtual_signal(pipe_ctx->stream->signal)))
1775 			dc->link_srv->set_dsc_enable(pipe_ctx, true);
1776 	}
1777 
1778 	if (!stream->dpms_off)
1779 		dc->link_srv->set_dpms_on(context, pipe_ctx);
1780 
1781 	/* DCN3.1 FPGA Workaround
1782 	 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1783 	 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1784 	 * function core_link_enable_stream
1785 	 */
1786 	if (hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1787 		if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1788 			hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1789 	}
1790 
1791 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
1792 
1793 	/* Phantom and main stream share the same link (because the stream
1794 	 * is constructed with the same sink). Make sure not to override
1795 	 * and link programming on the main.
1796 	 */
1797 	if (dc_state_get_pipe_subvp_type(context, pipe_ctx) != SUBVP_PHANTOM) {
1798 		pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1799 		pipe_ctx->stream->link->replay_settings.replay_feature_enabled = false;
1800 	}
1801 	return DC_OK;
1802 }
1803 
1804 /******************************************************************************/
1805 
power_down_encoders(struct dc * dc)1806 static void power_down_encoders(struct dc *dc)
1807 {
1808 	int i;
1809 
1810 	for (i = 0; i < dc->link_count; i++) {
1811 		enum signal_type signal = dc->links[i]->connector_signal;
1812 
1813 		dc->link_srv->blank_dp_stream(dc->links[i], false);
1814 
1815 		if (signal != SIGNAL_TYPE_EDP)
1816 			signal = SIGNAL_TYPE_NONE;
1817 
1818 		if (dc->links[i]->ep_type == DISPLAY_ENDPOINT_PHY)
1819 			dc->links[i]->link_enc->funcs->disable_output(
1820 					dc->links[i]->link_enc, signal);
1821 
1822 		dc->links[i]->link_status.link_active = false;
1823 		memset(&dc->links[i]->cur_link_settings, 0,
1824 				sizeof(dc->links[i]->cur_link_settings));
1825 	}
1826 }
1827 
power_down_controllers(struct dc * dc)1828 static void power_down_controllers(struct dc *dc)
1829 {
1830 	int i;
1831 
1832 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1833 		dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1834 				dc->res_pool->timing_generators[i]);
1835 	}
1836 }
1837 
power_down_clock_sources(struct dc * dc)1838 static void power_down_clock_sources(struct dc *dc)
1839 {
1840 	int i;
1841 
1842 	if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1843 		dc->res_pool->dp_clock_source) == false)
1844 		dm_error("Failed to power down pll! (dp clk src)\n");
1845 
1846 	for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1847 		if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1848 				dc->res_pool->clock_sources[i]) == false)
1849 			dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1850 	}
1851 }
1852 
power_down_all_hw_blocks(struct dc * dc)1853 static void power_down_all_hw_blocks(struct dc *dc)
1854 {
1855 	power_down_encoders(dc);
1856 
1857 	power_down_controllers(dc);
1858 
1859 	power_down_clock_sources(dc);
1860 
1861 	if (dc->fbc_compressor)
1862 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1863 }
1864 
disable_vga_and_power_gate_all_controllers(struct dc * dc)1865 static void disable_vga_and_power_gate_all_controllers(
1866 		struct dc *dc)
1867 {
1868 	int i;
1869 	struct timing_generator *tg;
1870 	struct dc_context *ctx = dc->ctx;
1871 
1872 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1873 		tg = dc->res_pool->timing_generators[i];
1874 
1875 		if (tg->funcs->disable_vga)
1876 			tg->funcs->disable_vga(tg);
1877 	}
1878 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1879 		/* Enable CLOCK gating for each pipe BEFORE controller
1880 		 * powergating. */
1881 		enable_display_pipe_clock_gating(ctx,
1882 				true);
1883 
1884 		dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1885 		dc->hwss.disable_plane(dc, dc->current_state,
1886 			&dc->current_state->res_ctx.pipe_ctx[i]);
1887 	}
1888 }
1889 
1890 
get_edp_streams(struct dc_state * context,struct dc_stream_state ** edp_streams,int * edp_stream_num)1891 static void get_edp_streams(struct dc_state *context,
1892 		struct dc_stream_state **edp_streams,
1893 		int *edp_stream_num)
1894 {
1895 	int i;
1896 
1897 	*edp_stream_num = 0;
1898 	for (i = 0; i < context->stream_count; i++) {
1899 		if (context->streams[i]->signal == SIGNAL_TYPE_EDP) {
1900 			edp_streams[*edp_stream_num] = context->streams[i];
1901 			if (++(*edp_stream_num) == MAX_NUM_EDP)
1902 				return;
1903 		}
1904 	}
1905 }
1906 
get_edp_links_with_sink(struct dc * dc,struct dc_link ** edp_links_with_sink,int * edp_with_sink_num)1907 static void get_edp_links_with_sink(
1908 		struct dc *dc,
1909 		struct dc_link **edp_links_with_sink,
1910 		int *edp_with_sink_num)
1911 {
1912 	int i;
1913 
1914 	/* check if there is an eDP panel not in use */
1915 	*edp_with_sink_num = 0;
1916 	for (i = 0; i < dc->link_count; i++) {
1917 		if (dc->links[i]->local_sink &&
1918 			dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1919 			edp_links_with_sink[*edp_with_sink_num] = dc->links[i];
1920 			if (++(*edp_with_sink_num) == MAX_NUM_EDP)
1921 				return;
1922 		}
1923 	}
1924 }
1925 
clean_up_dsc_blocks(struct dc * dc)1926 static void clean_up_dsc_blocks(struct dc *dc)
1927 {
1928 	struct display_stream_compressor *dsc = NULL;
1929 	struct timing_generator *tg = NULL;
1930 	struct stream_encoder *se = NULL;
1931 	struct dccg *dccg = dc->res_pool->dccg;
1932 	struct pg_cntl *pg_cntl = dc->res_pool->pg_cntl;
1933 	int i;
1934 
1935 	if (!dc->caps.is_apu ||
1936 		dc->ctx->dce_version < DCN_VERSION_3_15)
1937 		return;
1938 	/*VBIOS supports dsc starts from dcn315*/
1939 	for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++) {
1940 		struct dcn_dsc_state s  = {0};
1941 
1942 		dsc = dc->res_pool->dscs[i];
1943 		dsc->funcs->dsc_read_state(dsc, &s);
1944 		if (s.dsc_fw_en) {
1945 			/* disable DSC in OPTC */
1946 			if (i < dc->res_pool->timing_generator_count) {
1947 				tg = dc->res_pool->timing_generators[i];
1948 				tg->funcs->set_dsc_config(tg, OPTC_DSC_DISABLED, 0, 0);
1949 			}
1950 			/* disable DSC in stream encoder */
1951 			if (i < dc->res_pool->stream_enc_count) {
1952 				se = dc->res_pool->stream_enc[i];
1953 				se->funcs->dp_set_dsc_config(se, OPTC_DSC_DISABLED, 0, 0);
1954 				se->funcs->dp_set_dsc_pps_info_packet(se, false, NULL, true);
1955 			}
1956 			/* disable DSC block */
1957 			if (dccg->funcs->set_ref_dscclk)
1958 				dccg->funcs->set_ref_dscclk(dccg, dsc->inst);
1959 			dsc->funcs->dsc_disable(dsc);
1960 
1961 			/* power down DSC */
1962 			if (pg_cntl != NULL)
1963 				pg_cntl->funcs->dsc_pg_control(pg_cntl, dsc->inst, false);
1964 		}
1965 	}
1966 }
1967 
1968 /*
1969  * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1970  *  1. Power down all DC HW blocks
1971  *  2. Disable VGA engine on all controllers
1972  *  3. Enable power gating for controller
1973  *  4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1974  */
dce110_enable_accelerated_mode(struct dc * dc,struct dc_state * context)1975 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1976 {
1977 	struct dc_link *edp_links_with_sink[MAX_NUM_EDP];
1978 	struct dc_link *edp_links[MAX_NUM_EDP];
1979 	struct dc_stream_state *edp_streams[MAX_NUM_EDP];
1980 	struct dc_link *edp_link_with_sink = NULL;
1981 	struct dc_link *edp_link = NULL;
1982 	struct pipe_ctx *pipe_ctx = NULL;
1983 	struct dce_hwseq *hws = dc->hwseq;
1984 	int edp_with_sink_num;
1985 	int edp_num;
1986 	int edp_stream_num;
1987 	int i;
1988 	bool can_apply_edp_fast_boot = false;
1989 	bool can_apply_seamless_boot = false;
1990 	bool keep_edp_vdd_on = false;
1991 	bool should_clean_dsc_block = true;
1992 	struct dc_bios *dcb = dc->ctx->dc_bios;
1993 	DC_LOGGER_INIT();
1994 
1995 
1996 	get_edp_links_with_sink(dc, edp_links_with_sink, &edp_with_sink_num);
1997 	dc_get_edp_links(dc, edp_links, &edp_num);
1998 
1999 	if (hws->funcs.init_pipes)
2000 		hws->funcs.init_pipes(dc, context);
2001 
2002 	get_edp_streams(context, edp_streams, &edp_stream_num);
2003 
2004 	/* Check fastboot support, disable on DCE 6-8 because of blank screens */
2005 	if (edp_num && edp_stream_num && dc->ctx->dce_version < DCE_VERSION_10_0) {
2006 		for (i = 0; i < edp_num; i++) {
2007 			edp_link = edp_links[i];
2008 			if (edp_link != edp_streams[0]->link)
2009 				continue;
2010 			// enable fastboot if backend is enabled on eDP
2011 			if (edp_link->link_enc->funcs->is_dig_enabled &&
2012 			    edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
2013 			    edp_link->link_status.link_active) {
2014 				struct dc_stream_state *edp_stream = edp_streams[0];
2015 
2016 				can_apply_edp_fast_boot = dc_validate_boot_timing(dc,
2017 					edp_stream->sink, &edp_stream->timing);
2018 
2019 				// For Mux-platform, the default value is false.
2020 				// Disable fast boot during mux switching.
2021 				// The flag would be clean after switching done.
2022 				if (dc->is_switch_in_progress_dest && edp_link->is_dds)
2023 					can_apply_edp_fast_boot = false;
2024 
2025 				edp_stream->apply_edp_fast_boot_optimization = can_apply_edp_fast_boot;
2026 				if (can_apply_edp_fast_boot) {
2027 					DC_LOG_EVENT_LINK_TRAINING("eDP fast boot Enable\n");
2028 
2029 					// Vbios & Driver support different pixel rate div policy.
2030 					pipe_ctx = resource_get_otg_master_for_stream(&context->res_ctx, edp_stream);
2031 					if (pipe_ctx &&
2032 						hws->funcs.is_dp_dig_pixel_rate_div_policy &&
2033 						hws->funcs.is_dp_dig_pixel_rate_div_policy(pipe_ctx)) {
2034 						// Get Vbios div factor from register
2035 						dc->res_pool->dccg->funcs->get_pixel_rate_div(
2036 							dc->res_pool->dccg,
2037 							pipe_ctx->stream_res.tg->inst,
2038 							&pipe_ctx->pixel_rate_divider.div_factor1,
2039 							&pipe_ctx->pixel_rate_divider.div_factor2);
2040 
2041 						// VBios doesn't support pixel rate div, so force it.
2042 						// If VBios supports it, we check it from reigster or other flags.
2043 						pipe_ctx->stream_res.pix_clk_params.dio_se_pix_per_cycle = 1;
2044 					}
2045 				}
2046 				break;
2047 			}
2048 		}
2049 		// We are trying to enable eDP, don't power down VDD
2050 		if (can_apply_edp_fast_boot)
2051 			keep_edp_vdd_on = true;
2052 	}
2053 
2054 	// Check seamless boot support
2055 	for (i = 0; i < context->stream_count; i++) {
2056 		if (context->streams[i]->apply_seamless_boot_optimization) {
2057 			can_apply_seamless_boot = true;
2058 			break;
2059 		}
2060 	}
2061 
2062 	/* eDP should not have stream in resume from S4 and so even with VBios post
2063 	 * it should get turned off
2064 	 */
2065 	if (edp_with_sink_num)
2066 		edp_link_with_sink = edp_links_with_sink[0];
2067 
2068 	// During a mux switch, powering down the HW blocks and then enabling
2069 	// the link via a DPCD SET_POWER write causes a brief flash
2070 	keep_edp_vdd_on |= dc->is_switch_in_progress_dest;
2071 
2072 	if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
2073 		if (edp_link_with_sink && !keep_edp_vdd_on) {
2074 			/*turn off backlight before DP_blank and encoder powered down*/
2075 			hws->funcs.edp_backlight_control(edp_link_with_sink, false);
2076 		}
2077 		/*resume from S3, no vbios posting, no need to power down again*/
2078 		if (dcb && dcb->funcs && !dcb->funcs->is_accelerated_mode(dcb))
2079 			clk_mgr_exit_optimized_pwr_state(dc, dc->clk_mgr);
2080 
2081 		power_down_all_hw_blocks(dc);
2082 
2083 		/* DSC could be enabled on eDP during VBIOS post.
2084 		 * To clean up dsc blocks if all eDP dpms_off is true.
2085 		 */
2086 		for (i = 0; i < edp_stream_num; i++) {
2087 			if (!edp_streams[i]->dpms_off) {
2088 				should_clean_dsc_block = false;
2089 			}
2090 		}
2091 
2092 		if (should_clean_dsc_block)
2093 			clean_up_dsc_blocks(dc);
2094 
2095 		disable_vga_and_power_gate_all_controllers(dc);
2096 		if (edp_link_with_sink && !keep_edp_vdd_on)
2097 			dc->hwss.edp_power_control(edp_link_with_sink, false);
2098 		if (dcb && dcb->funcs && !dcb->funcs->is_accelerated_mode(dcb))
2099 			clk_mgr_optimize_pwr_state(dc, dc->clk_mgr);
2100 	}
2101 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 1);
2102 }
2103 
compute_pstate_blackout_duration(struct bw_fixed blackout_duration,const struct dc_stream_state * stream)2104 static uint32_t compute_pstate_blackout_duration(
2105 	struct bw_fixed blackout_duration,
2106 	const struct dc_stream_state *stream)
2107 {
2108 	uint32_t total_dest_line_time_ns;
2109 	uint32_t pstate_blackout_duration_ns;
2110 
2111 	pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
2112 
2113 	total_dest_line_time_ns = 1000000UL *
2114 		(stream->timing.h_total * 10) /
2115 		stream->timing.pix_clk_100hz +
2116 		pstate_blackout_duration_ns;
2117 
2118 	return total_dest_line_time_ns;
2119 }
2120 
dce110_set_displaymarks(const struct dc * dc,struct dc_state * context)2121 static void dce110_set_displaymarks(
2122 	const struct dc *dc,
2123 	struct dc_state *context)
2124 {
2125 	uint8_t i, num_pipes;
2126 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
2127 
2128 	for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
2129 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2130 		uint32_t total_dest_line_time_ns;
2131 
2132 		if (pipe_ctx->stream == NULL)
2133 			continue;
2134 
2135 		total_dest_line_time_ns = compute_pstate_blackout_duration(
2136 			dc->bw_vbios->blackout_duration, pipe_ctx->stream);
2137 		pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
2138 			pipe_ctx->plane_res.mi,
2139 			context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
2140 			context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
2141 			context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
2142 			context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
2143 			total_dest_line_time_ns);
2144 		if (i == underlay_idx) {
2145 			num_pipes++;
2146 			pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
2147 				pipe_ctx->plane_res.mi,
2148 				context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
2149 				context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
2150 				context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
2151 				total_dest_line_time_ns);
2152 		}
2153 		num_pipes++;
2154 	}
2155 }
2156 
dce110_set_safe_displaymarks(struct resource_context * res_ctx,const struct resource_pool * pool)2157 void dce110_set_safe_displaymarks(
2158 		struct resource_context *res_ctx,
2159 		const struct resource_pool *pool)
2160 {
2161 	int i;
2162 	int underlay_idx = pool->underlay_pipe_index;
2163 	struct dce_watermarks max_marks = {
2164 		MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
2165 	struct dce_watermarks nbp_marks = {
2166 		SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
2167 	struct dce_watermarks min_marks = { 0, 0, 0, 0};
2168 
2169 	for (i = 0; i < MAX_PIPES; i++) {
2170 		if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
2171 			continue;
2172 
2173 		res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
2174 				res_ctx->pipe_ctx[i].plane_res.mi,
2175 				nbp_marks,
2176 				max_marks,
2177 				min_marks,
2178 				max_marks,
2179 				MAX_WATERMARK);
2180 
2181 		if (i == underlay_idx)
2182 			res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
2183 				res_ctx->pipe_ctx[i].plane_res.mi,
2184 				nbp_marks,
2185 				max_marks,
2186 				max_marks,
2187 				MAX_WATERMARK);
2188 
2189 	}
2190 }
2191 
2192 /*******************************************************************************
2193  * Public functions
2194  ******************************************************************************/
2195 
set_drr(struct pipe_ctx ** pipe_ctx,int num_pipes,struct dc_crtc_timing_adjust adjust)2196 static void set_drr(struct pipe_ctx **pipe_ctx,
2197 		int num_pipes, struct dc_crtc_timing_adjust adjust)
2198 {
2199 	int i = 0;
2200 	struct drr_params params = {0};
2201 	// DRR should set trigger event to monitor surface update event
2202 	unsigned int event_triggers = 0x80;
2203 	// Note DRR trigger events are generated regardless of whether num frames met.
2204 	unsigned int num_frames = 2;
2205 
2206 	params.vertical_total_max = adjust.v_total_max;
2207 	params.vertical_total_min = adjust.v_total_min;
2208 
2209 	/* TODO: If multiple pipes are to be supported, you need
2210 	 * some GSL stuff. Static screen triggers may be programmed differently
2211 	 * as well.
2212 	 */
2213 	for (i = 0; i < num_pipes; i++) {
2214 		/* dc_state_destruct() might null the stream resources, so fetch tg
2215 		 * here first to avoid a race condition. The lifetime of the pointee
2216 		 * itself (the timing_generator object) is not a problem here.
2217 		 */
2218 		struct timing_generator *tg = pipe_ctx[i]->stream_res.tg;
2219 
2220 		if ((tg != NULL) && tg->funcs) {
2221 			set_drr_and_clear_adjust_pending(pipe_ctx[i], pipe_ctx[i]->stream, &params);
2222 			if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
2223 				if (tg->funcs->set_static_screen_control)
2224 					tg->funcs->set_static_screen_control(
2225 						tg, event_triggers, num_frames);
2226 		}
2227 	}
2228 }
2229 
get_position(struct pipe_ctx ** pipe_ctx,int num_pipes,struct crtc_position * position)2230 static void get_position(struct pipe_ctx **pipe_ctx,
2231 		int num_pipes,
2232 		struct crtc_position *position)
2233 {
2234 	int i = 0;
2235 
2236 	/* TODO: handle pipes > 1
2237 	 */
2238 	for (i = 0; i < num_pipes; i++)
2239 		pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
2240 }
2241 
set_static_screen_control(struct pipe_ctx ** pipe_ctx,int num_pipes,const struct dc_static_screen_params * params)2242 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
2243 		int num_pipes, const struct dc_static_screen_params *params)
2244 {
2245 	unsigned int i;
2246 	unsigned int triggers = 0;
2247 
2248 	if (params->triggers.overlay_update)
2249 		triggers |= 0x100;
2250 	if (params->triggers.surface_update)
2251 		triggers |= 0x80;
2252 	if (params->triggers.cursor_update)
2253 		triggers |= 0x2;
2254 	if (params->triggers.force_trigger)
2255 		triggers |= 0x1;
2256 
2257 	if (num_pipes) {
2258 		struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
2259 
2260 		if (dc->fbc_compressor)
2261 			triggers |= 0x84;
2262 	}
2263 
2264 	for (i = 0; i < num_pipes; i++)
2265 		pipe_ctx[i]->stream_res.tg->funcs->
2266 			set_static_screen_control(pipe_ctx[i]->stream_res.tg,
2267 					triggers, params->num_frames);
2268 }
2269 
2270 /*
2271  *  Check if FBC can be enabled
2272  */
should_enable_fbc(struct dc * dc,struct dc_state * context,uint32_t * pipe_idx)2273 static bool should_enable_fbc(struct dc *dc,
2274 		struct dc_state *context,
2275 		uint32_t *pipe_idx)
2276 {
2277 	uint32_t i;
2278 	struct pipe_ctx *pipe_ctx = NULL;
2279 	struct resource_context *res_ctx = &context->res_ctx;
2280 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
2281 
2282 
2283 	ASSERT(dc->fbc_compressor);
2284 
2285 	/* FBC memory should be allocated */
2286 	if (!dc->ctx->fbc_gpu_addr)
2287 		return false;
2288 
2289 	/* Only supports single display */
2290 	if (context->stream_count != 1)
2291 		return false;
2292 
2293 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2294 		if (res_ctx->pipe_ctx[i].stream) {
2295 
2296 			pipe_ctx = &res_ctx->pipe_ctx[i];
2297 
2298 			/* fbc not applicable on underlay pipe */
2299 			if (pipe_ctx->pipe_idx != underlay_idx) {
2300 				*pipe_idx = i;
2301 				break;
2302 			}
2303 		}
2304 	}
2305 
2306 	if (i == dc->res_pool->pipe_count)
2307 		return false;
2308 
2309 	if (!pipe_ctx->stream->link)
2310 		return false;
2311 
2312 	/* Only supports eDP */
2313 	if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
2314 		return false;
2315 
2316 	/* PSR should not be enabled */
2317 	if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
2318 		return false;
2319 
2320 	/* Replay should not be enabled */
2321 	if (pipe_ctx->stream->link->replay_settings.replay_feature_enabled)
2322 		return false;
2323 
2324 	/* Nothing to compress */
2325 	if (!pipe_ctx->plane_state)
2326 		return false;
2327 
2328 	/* Only for non-linear tiling */
2329 	if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
2330 		return false;
2331 
2332 	return true;
2333 }
2334 
2335 /*
2336  *  Enable FBC
2337  */
enable_fbc(struct dc * dc,struct dc_state * context)2338 void enable_fbc(
2339 		struct dc *dc,
2340 		struct dc_state *context)
2341 {
2342 	uint32_t pipe_idx = 0;
2343 
2344 	if (should_enable_fbc(dc, context, &pipe_idx)) {
2345 		/* Program GRPH COMPRESSED ADDRESS and PITCH */
2346 		struct compr_addr_and_pitch_params params = {0, 0, 0};
2347 		struct compressor *compr = dc->fbc_compressor;
2348 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2349 
2350 		params.source_view_width = pipe_ctx->stream->timing.h_addressable;
2351 		params.source_view_height = pipe_ctx->stream->timing.v_addressable;
2352 		params.inst = pipe_ctx->stream_res.tg->inst;
2353 		compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
2354 
2355 		compr->funcs->surface_address_and_pitch(compr, &params);
2356 		compr->funcs->set_fbc_invalidation_triggers(compr, 1);
2357 
2358 		compr->funcs->enable_fbc(compr, &params);
2359 	}
2360 }
2361 
dce110_reset_hw_ctx_wrap(struct dc * dc,struct dc_state * context)2362 static void dce110_reset_hw_ctx_wrap(
2363 		struct dc *dc,
2364 		struct dc_state *context)
2365 {
2366 	int i;
2367 
2368 	/* Reset old context */
2369 	/* look up the targets that have been removed since last commit */
2370 	for (i = 0; i < MAX_PIPES; i++) {
2371 		struct pipe_ctx *pipe_ctx_old =
2372 			&dc->current_state->res_ctx.pipe_ctx[i];
2373 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2374 
2375 		/* Note: We need to disable output if clock sources change,
2376 		 * since bios does optimization and doesn't apply if changing
2377 		 * PHY when not already disabled.
2378 		 */
2379 
2380 		/* Skip underlay pipe since it will be handled in commit surface*/
2381 		if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
2382 			continue;
2383 
2384 		if (!pipe_ctx->stream ||
2385 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2386 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
2387 
2388 			/* Disable if new stream is null. O/w, if stream is
2389 			 * disabled already, no need to disable again.
2390 			 */
2391 			if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
2392 				dc->link_srv->set_dpms_off(pipe_ctx_old);
2393 
2394 				/* free acquired resources*/
2395 				if (pipe_ctx_old->stream_res.audio) {
2396 					/*disable az_endpoint*/
2397 					pipe_ctx_old->stream_res.audio->funcs->
2398 							az_disable(pipe_ctx_old->stream_res.audio);
2399 
2400 					/*free audio*/
2401 					if (dc->caps.dynamic_audio == true) {
2402 						/*we have to dynamic arbitrate the audio endpoints*/
2403 						/*we free the resource, need reset is_audio_acquired*/
2404 						update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2405 								pipe_ctx_old->stream_res.audio, false);
2406 						pipe_ctx_old->stream_res.audio = NULL;
2407 					}
2408 				}
2409 			}
2410 
2411 			pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
2412 			if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
2413 				dm_error("DC: failed to blank crtc!\n");
2414 				BREAK_TO_DEBUGGER();
2415 			}
2416 			pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
2417 			if (dc_is_hdmi_tmds_signal(pipe_ctx_old->stream->signal))
2418 				pipe_ctx_old->stream->link->phy_state.symclk_ref_cnts.otg = 0;
2419 			pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
2420 					pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
2421 
2422 			if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
2423 										dc->res_pool,
2424 										old_clk))
2425 				old_clk->funcs->cs_power_down(old_clk);
2426 
2427 			dc->hwss.disable_plane(dc, dc->current_state, pipe_ctx_old);
2428 
2429 			pipe_ctx_old->stream = NULL;
2430 		}
2431 	}
2432 }
2433 
dce110_setup_audio_dto(struct dc * dc,struct dc_state * context)2434 static void dce110_setup_audio_dto(
2435 		struct dc *dc,
2436 		struct dc_state *context)
2437 {
2438 	unsigned int i;
2439 
2440 	/* program audio wall clock. use HDMI as clock source if HDMI
2441 	 * audio active. Otherwise, use DP as clock source
2442 	 * first, loop to find any HDMI audio, if not, loop find DP audio
2443 	 */
2444 	/* Setup audio rate clock source */
2445 	/* Issue:
2446 	* Audio lag happened on DP monitor when unplug a HDMI monitor
2447 	*
2448 	* Cause:
2449 	* In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
2450 	* is set to either dto0 or dto1, audio should work fine.
2451 	* In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
2452 	* set to dto0 will cause audio lag.
2453 	*
2454 	* Solution:
2455 	* Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
2456 	* find first available pipe with audio, setup audio wall DTO per topology
2457 	* instead of per pipe.
2458 	*/
2459 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2460 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2461 
2462 		if (pipe_ctx->stream == NULL)
2463 			continue;
2464 
2465 		if (pipe_ctx->top_pipe)
2466 			continue;
2467 		if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2468 			continue;
2469 		if (pipe_ctx->stream_res.audio != NULL) {
2470 			struct audio_output audio_output;
2471 
2472 			build_audio_output(context, pipe_ctx, &audio_output);
2473 
2474 			if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->set_audio_dtbclk_dto) {
2475 				struct dtbclk_dto_params dto_params = {0};
2476 
2477 				dc->res_pool->dccg->funcs->set_audio_dtbclk_dto(
2478 					dc->res_pool->dccg, &dto_params);
2479 
2480 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2481 						pipe_ctx->stream_res.audio,
2482 						pipe_ctx->stream->signal,
2483 						&audio_output.crtc_info,
2484 						&audio_output.pll_info);
2485 			} else
2486 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2487 					pipe_ctx->stream_res.audio,
2488 					pipe_ctx->stream->signal,
2489 					&audio_output.crtc_info,
2490 					&audio_output.pll_info);
2491 			break;
2492 		}
2493 	}
2494 
2495 	/* no HDMI audio is found, try DP audio */
2496 	if (i == dc->res_pool->pipe_count) {
2497 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2498 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2499 
2500 			if (pipe_ctx->stream == NULL)
2501 				continue;
2502 
2503 			if (pipe_ctx->top_pipe)
2504 				continue;
2505 
2506 			if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2507 				continue;
2508 
2509 			if (pipe_ctx->stream_res.audio != NULL) {
2510 				struct audio_output audio_output = {0};
2511 
2512 				build_audio_output(context, pipe_ctx, &audio_output);
2513 
2514 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2515 					pipe_ctx->stream_res.audio,
2516 					pipe_ctx->stream->signal,
2517 					&audio_output.crtc_info,
2518 					&audio_output.pll_info);
2519 				break;
2520 			}
2521 		}
2522 	}
2523 }
2524 
dce110_apply_ctx_to_hw(struct dc * dc,struct dc_state * context)2525 enum dc_status dce110_apply_ctx_to_hw(
2526 		struct dc *dc,
2527 		struct dc_state *context)
2528 {
2529 	struct dce_hwseq *hws = dc->hwseq;
2530 	struct dc_bios *dcb = dc->ctx->dc_bios;
2531 	enum dc_status status;
2532 	int i;
2533 	bool was_hpo_acquired = resource_is_hpo_acquired(dc->current_state);
2534 	bool is_hpo_acquired = resource_is_hpo_acquired(context);
2535 
2536 	/* reset syncd pipes from disabled pipes */
2537 	if (dc->config.use_pipe_ctx_sync_logic)
2538 		reset_syncd_pipes_from_disabled_pipes(dc, context);
2539 
2540 	/* Reset old context */
2541 	/* look up the targets that have been removed since last commit */
2542 	hws->funcs.reset_hw_ctx_wrap(dc, context);
2543 
2544 	/* Skip applying if no targets */
2545 	if (context->stream_count <= 0)
2546 		return DC_OK;
2547 
2548 	/* Apply new context */
2549 	dcb->funcs->set_scratch_critical_state(dcb, true);
2550 
2551 	/* below is for real asic only */
2552 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2553 		struct pipe_ctx *pipe_ctx_old =
2554 					&dc->current_state->res_ctx.pipe_ctx[i];
2555 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2556 
2557 		if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2558 			continue;
2559 
2560 		if (pipe_ctx->stream == pipe_ctx_old->stream) {
2561 			if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2562 				dce_crtc_switch_to_clk_src(dc->hwseq,
2563 						pipe_ctx->clock_source, i);
2564 			continue;
2565 		}
2566 
2567 		hws->funcs.enable_display_power_gating(
2568 				dc, i, dc->ctx->dc_bios,
2569 				PIPE_GATING_CONTROL_DISABLE);
2570 	}
2571 
2572 	if (dc->fbc_compressor)
2573 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2574 
2575 	dce110_setup_audio_dto(dc, context);
2576 
2577 	if (dc->hwseq->funcs.setup_hpo_hw_control && was_hpo_acquired != is_hpo_acquired) {
2578 		dc->hwseq->funcs.setup_hpo_hw_control(dc->hwseq, is_hpo_acquired);
2579 	}
2580 
2581 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2582 		struct pipe_ctx *pipe_ctx_old =
2583 					&dc->current_state->res_ctx.pipe_ctx[i];
2584 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2585 
2586 		if (pipe_ctx->stream == NULL)
2587 			continue;
2588 
2589 		if (pipe_ctx->stream == pipe_ctx_old->stream &&
2590 			pipe_ctx->stream->link->link_state_valid) {
2591 			continue;
2592 		}
2593 
2594 		if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2595 			continue;
2596 
2597 		if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2598 			continue;
2599 
2600 		status = dce110_apply_single_controller_ctx_to_hw(
2601 				pipe_ctx,
2602 				context,
2603 				dc);
2604 
2605 		if (DC_OK != status)
2606 			return status;
2607 
2608 #ifdef CONFIG_DRM_AMD_DC_FP
2609 		if (hws->funcs.resync_fifo_dccg_dio)
2610 			hws->funcs.resync_fifo_dccg_dio(hws, dc, context, i);
2611 #endif
2612 	}
2613 
2614 	if (dc->fbc_compressor)
2615 		enable_fbc(dc, dc->current_state);
2616 
2617 	dcb->funcs->set_scratch_critical_state(dcb, false);
2618 
2619 	return DC_OK;
2620 }
2621 
2622 /*******************************************************************************
2623  * Front End programming
2624  ******************************************************************************/
set_default_colors(struct pipe_ctx * pipe_ctx)2625 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2626 {
2627 	struct default_adjustment default_adjust = { 0 };
2628 
2629 	default_adjust.force_hw_default = false;
2630 	default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2631 	default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2632 	default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2633 	default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2634 
2635 	/* display color depth */
2636 	default_adjust.color_depth =
2637 		pipe_ctx->stream->timing.display_color_depth;
2638 
2639 	/* Lb color depth */
2640 	default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2641 
2642 	pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2643 					pipe_ctx->plane_res.xfm, &default_adjust);
2644 }
2645 
2646 
2647 /*******************************************************************************
2648  * In order to turn on/off specific surface we will program
2649  * Blender + CRTC
2650  *
2651  * In case that we have two surfaces and they have a different visibility
2652  * we can't turn off the CRTC since it will turn off the entire display
2653  *
2654  * |----------------------------------------------- |
2655  * |bottom pipe|curr pipe  |              |         |
2656  * |Surface    |Surface    | Blender      |  CRCT   |
2657  * |visibility |visibility | Configuration|         |
2658  * |------------------------------------------------|
2659  * |   off     |    off    | CURRENT_PIPE | blank   |
2660  * |   off     |    on     | CURRENT_PIPE | unblank |
2661  * |   on      |    off    | OTHER_PIPE   | unblank |
2662  * |   on      |    on     | BLENDING     | unblank |
2663  * -------------------------------------------------|
2664  *
2665  ******************************************************************************/
program_surface_visibility(const struct dc * dc,struct pipe_ctx * pipe_ctx)2666 static void program_surface_visibility(const struct dc *dc,
2667 		struct pipe_ctx *pipe_ctx)
2668 {
2669 	enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2670 	bool blank_target = false;
2671 
2672 	if (pipe_ctx->bottom_pipe) {
2673 
2674 		/* For now we are supporting only two pipes */
2675 		ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2676 
2677 		if (pipe_ctx->bottom_pipe->plane_state->visible) {
2678 			if (pipe_ctx->plane_state->visible)
2679 				blender_mode = BLND_MODE_BLENDING;
2680 			else
2681 				blender_mode = BLND_MODE_OTHER_PIPE;
2682 
2683 		} else if (!pipe_ctx->plane_state->visible)
2684 			blank_target = true;
2685 
2686 	} else if (!pipe_ctx->plane_state->visible)
2687 		blank_target = true;
2688 
2689 	dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2690 	pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2691 
2692 }
2693 
program_gamut_remap(struct pipe_ctx * pipe_ctx)2694 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2695 {
2696 	int i = 0;
2697 	struct xfm_grph_csc_adjustment adjust;
2698 	memset(&adjust, 0, sizeof(adjust));
2699 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2700 
2701 
2702 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2703 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2704 
2705 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2706 			adjust.temperature_matrix[i] =
2707 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2708 	}
2709 
2710 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2711 }
update_plane_addr(const struct dc * dc,struct pipe_ctx * pipe_ctx)2712 static void update_plane_addr(const struct dc *dc,
2713 		struct pipe_ctx *pipe_ctx)
2714 {
2715 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2716 
2717 	if (plane_state == NULL)
2718 		return;
2719 
2720 	pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2721 			pipe_ctx->plane_res.mi,
2722 			&plane_state->address,
2723 			plane_state->flip_immediate);
2724 
2725 	plane_state->status.requested_address = plane_state->address;
2726 }
2727 
dce110_update_pending_status(struct pipe_ctx * pipe_ctx)2728 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2729 {
2730 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2731 
2732 	if (plane_state == NULL)
2733 		return;
2734 
2735 	plane_state->status.is_flip_pending =
2736 			pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2737 					pipe_ctx->plane_res.mi);
2738 
2739 	if (plane_state->status.is_flip_pending && !plane_state->visible)
2740 		pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2741 
2742 	plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2743 	if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2744 			pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2745 		plane_state->status.is_right_eye =\
2746 				!pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2747 	}
2748 }
2749 
dce110_power_down(struct dc * dc)2750 void dce110_power_down(struct dc *dc)
2751 {
2752 	power_down_all_hw_blocks(dc);
2753 	disable_vga_and_power_gate_all_controllers(dc);
2754 }
2755 
wait_for_reset_trigger_to_occur(struct dc_context * dc_ctx,struct timing_generator * tg)2756 static bool wait_for_reset_trigger_to_occur(
2757 	struct dc_context *dc_ctx,
2758 	struct timing_generator *tg)
2759 {
2760 	struct dc_context *ctx = dc_ctx;
2761 	bool rc = false;
2762 
2763 	/* To avoid endless loop we wait at most
2764 	 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2765 	const uint32_t frames_to_wait_on_triggered_reset = 10;
2766 	uint32_t i;
2767 
2768 	for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2769 
2770 		if (!tg->funcs->is_counter_moving(tg)) {
2771 			DC_ERROR("TG counter is not moving!\n");
2772 			break;
2773 		}
2774 
2775 		if (tg->funcs->did_triggered_reset_occur(tg)) {
2776 			rc = true;
2777 			/* usually occurs at i=1 */
2778 			DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2779 					i);
2780 			break;
2781 		}
2782 
2783 		/* Wait for one frame. */
2784 		tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2785 		tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2786 	}
2787 
2788 	if (false == rc)
2789 		DC_ERROR("GSL: Timeout on reset trigger!\n");
2790 
2791 	return rc;
2792 }
2793 
2794 /* Enable timing synchronization for a group of Timing Generators. */
dce110_enable_timing_synchronization(struct dc * dc,struct dc_state * state,int group_index,int group_size,struct pipe_ctx * grouped_pipes[])2795 static void dce110_enable_timing_synchronization(
2796 		struct dc *dc,
2797 		struct dc_state *state,
2798 		int group_index,
2799 		int group_size,
2800 		struct pipe_ctx *grouped_pipes[])
2801 {
2802 	struct dc_context *dc_ctx = dc->ctx;
2803 	struct dcp_gsl_params gsl_params = { 0 };
2804 	int i;
2805 	DC_LOGGER_INIT();
2806 
2807 	DC_SYNC_INFO("GSL: Setting-up...\n");
2808 
2809 	/* Designate a single TG in the group as a master.
2810 	 * Since HW doesn't care which one, we always assign
2811 	 * the 1st one in the group. */
2812 	gsl_params.gsl_group = 0;
2813 	gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2814 
2815 	for (i = 0; i < group_size; i++)
2816 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2817 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2818 
2819 	/* Reset slave controllers on master VSync */
2820 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2821 
2822 	for (i = 1 /* skip the master */; i < group_size; i++)
2823 		grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2824 				grouped_pipes[i]->stream_res.tg,
2825 				gsl_params.gsl_group);
2826 
2827 	for (i = 1 /* skip the master */; i < group_size; i++) {
2828 		DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2829 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2830 		grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2831 				grouped_pipes[i]->stream_res.tg);
2832 	}
2833 
2834 	/* GSL Vblank synchronization is a one time sync mechanism, assumption
2835 	 * is that the sync'ed displays will not drift out of sync over time*/
2836 	DC_SYNC_INFO("GSL: Restoring register states.\n");
2837 	for (i = 0; i < group_size; i++)
2838 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2839 
2840 	DC_SYNC_INFO("GSL: Set-up complete.\n");
2841 }
2842 
dce110_enable_per_frame_crtc_position_reset(struct dc * dc,int group_size,struct pipe_ctx * grouped_pipes[])2843 static void dce110_enable_per_frame_crtc_position_reset(
2844 		struct dc *dc,
2845 		int group_size,
2846 		struct pipe_ctx *grouped_pipes[])
2847 {
2848 	struct dc_context *dc_ctx = dc->ctx;
2849 	struct dcp_gsl_params gsl_params = { 0 };
2850 	int i;
2851 	DC_LOGGER_INIT();
2852 
2853 	gsl_params.gsl_group = 0;
2854 	gsl_params.gsl_master = 0;
2855 
2856 	for (i = 0; i < group_size; i++)
2857 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2858 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2859 
2860 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2861 
2862 	for (i = 1; i < group_size; i++)
2863 		grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2864 				grouped_pipes[i]->stream_res.tg,
2865 				gsl_params.gsl_master,
2866 				&grouped_pipes[i]->stream->triggered_crtc_reset);
2867 
2868 	DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2869 	for (i = 1; i < group_size; i++)
2870 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2871 
2872 	for (i = 0; i < group_size; i++)
2873 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2874 
2875 }
2876 
dce110_init_pipes(struct dc * dc,struct dc_state * context)2877 static void dce110_init_pipes(struct dc *dc, struct dc_state *context)
2878 {
2879 	// Do nothing
2880 }
2881 
dce110_init_hw(struct dc * dc)2882 static void dce110_init_hw(struct dc *dc)
2883 {
2884 	int i;
2885 	struct dc_bios *bp;
2886 	struct transform *xfm;
2887 	struct abm *abm;
2888 	struct dmcu *dmcu;
2889 	struct dce_hwseq *hws = dc->hwseq;
2890 	uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2891 	uint32_t user_level = MAX_BACKLIGHT_LEVEL;
2892 
2893 	bp = dc->ctx->dc_bios;
2894 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2895 		xfm = dc->res_pool->transforms[i];
2896 		xfm->funcs->transform_reset(xfm);
2897 
2898 		hws->funcs.enable_display_power_gating(
2899 				dc, i, bp,
2900 				PIPE_GATING_CONTROL_INIT);
2901 		hws->funcs.enable_display_power_gating(
2902 				dc, i, bp,
2903 				PIPE_GATING_CONTROL_DISABLE);
2904 		hws->funcs.enable_display_pipe_clock_gating(
2905 			dc->ctx,
2906 			true);
2907 	}
2908 
2909 	dce_clock_gating_power_up(dc->hwseq, false);
2910 	/***************************************/
2911 
2912 	for (i = 0; i < dc->link_count; i++) {
2913 		/****************************************/
2914 		/* Power up AND update implementation according to the
2915 		 * required signal (which may be different from the
2916 		 * default signal on connector). */
2917 		struct dc_link *link = dc->links[i];
2918 
2919 		link->link_enc->funcs->hw_init(link->link_enc);
2920 	}
2921 
2922 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2923 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2924 
2925 		tg->funcs->disable_vga(tg);
2926 
2927 		/* Blank controller using driver code instead of
2928 		 * command table. */
2929 		tg->funcs->set_blank(tg, true);
2930 		hwss_wait_for_blank_complete(tg);
2931 	}
2932 
2933 	for (i = 0; i < dc->res_pool->audio_count; i++) {
2934 		struct audio *audio = dc->res_pool->audios[i];
2935 		audio->funcs->hw_init(audio);
2936 	}
2937 
2938 	for (i = 0; i < dc->link_count; i++) {
2939 		struct dc_link *link = dc->links[i];
2940 
2941 		if (link->panel_cntl) {
2942 			backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2943 			user_level = link->panel_cntl->stored_backlight_registers.USER_LEVEL;
2944 		}
2945 	}
2946 
2947 	abm = dc->res_pool->abm;
2948 	if (abm != NULL)
2949 		abm->funcs->abm_init(abm, backlight, user_level);
2950 
2951 	dmcu = dc->res_pool->dmcu;
2952 	if (dmcu != NULL && abm != NULL)
2953 		abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2954 
2955 	if (dc->fbc_compressor)
2956 		dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2957 
2958 }
2959 
2960 
dce110_prepare_bandwidth(struct dc * dc,struct dc_state * context)2961 void dce110_prepare_bandwidth(
2962 		struct dc *dc,
2963 		struct dc_state *context)
2964 {
2965 	struct clk_mgr *dccg = dc->clk_mgr;
2966 
2967 	dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2968 	if (dccg)
2969 		dccg->funcs->update_clocks(
2970 				dccg,
2971 				context,
2972 				false);
2973 }
2974 
dce110_optimize_bandwidth(struct dc * dc,struct dc_state * context)2975 void dce110_optimize_bandwidth(
2976 		struct dc *dc,
2977 		struct dc_state *context)
2978 {
2979 	struct clk_mgr *dccg = dc->clk_mgr;
2980 
2981 	dce110_set_displaymarks(dc, context);
2982 
2983 	if (dccg)
2984 		dccg->funcs->update_clocks(
2985 				dccg,
2986 				context,
2987 				true);
2988 }
2989 
dce110_program_front_end_for_pipe(struct dc * dc,struct pipe_ctx * pipe_ctx)2990 static void dce110_program_front_end_for_pipe(
2991 		struct dc *dc, struct pipe_ctx *pipe_ctx)
2992 {
2993 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2994 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2995 	struct xfm_grph_csc_adjustment adjust;
2996 	struct out_csc_color_matrix tbl_entry;
2997 	unsigned int i;
2998 	struct dce_hwseq *hws = dc->hwseq;
2999 
3000 	memset(&tbl_entry, 0, sizeof(tbl_entry));
3001 
3002 	memset(&adjust, 0, sizeof(adjust));
3003 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
3004 
3005 	dce_enable_fe_clock(dc->hwseq, mi->inst, true);
3006 
3007 	set_default_colors(pipe_ctx);
3008 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
3009 			== true) {
3010 		tbl_entry.color_space =
3011 			pipe_ctx->stream->output_color_space;
3012 
3013 		for (i = 0; i < 12; i++)
3014 			tbl_entry.regval[i] =
3015 			pipe_ctx->stream->csc_color_matrix.matrix[i];
3016 
3017 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
3018 				(pipe_ctx->plane_res.xfm, &tbl_entry);
3019 	}
3020 
3021 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
3022 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
3023 
3024 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
3025 			adjust.temperature_matrix[i] =
3026 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
3027 	}
3028 
3029 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
3030 
3031 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
3032 
3033 	program_scaler(dc, pipe_ctx);
3034 
3035 	mi->funcs->mem_input_program_surface_config(
3036 			mi,
3037 			plane_state->format,
3038 			&plane_state->tiling_info,
3039 			&plane_state->plane_size,
3040 			plane_state->rotation,
3041 			NULL,
3042 			false);
3043 	if (mi->funcs->set_blank)
3044 		mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
3045 
3046 	if (dc->config.gpu_vm_support)
3047 		mi->funcs->mem_input_program_pte_vm(
3048 				pipe_ctx->plane_res.mi,
3049 				plane_state->format,
3050 				&plane_state->tiling_info,
3051 				plane_state->rotation);
3052 
3053 	/* Moved programming gamma from dc to hwss */
3054 	if (pipe_ctx->plane_state->update_flags.bits.full_update ||
3055 			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
3056 			pipe_ctx->plane_state->update_flags.bits.gamma_change)
3057 		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
3058 
3059 	if (pipe_ctx->plane_state->update_flags.bits.full_update)
3060 		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
3061 
3062 	DC_LOG_SURFACE(
3063 			"Pipe:%d %p: addr hi:0x%x, "
3064 			"addr low:0x%x, "
3065 			"src: %d, %d, %d,"
3066 			" %d; dst: %d, %d, %d, %d;"
3067 			"clip: %d, %d, %d, %d\n",
3068 			pipe_ctx->pipe_idx,
3069 			(void *) pipe_ctx->plane_state,
3070 			pipe_ctx->plane_state->address.grph.addr.high_part,
3071 			pipe_ctx->plane_state->address.grph.addr.low_part,
3072 			pipe_ctx->plane_state->src_rect.x,
3073 			pipe_ctx->plane_state->src_rect.y,
3074 			pipe_ctx->plane_state->src_rect.width,
3075 			pipe_ctx->plane_state->src_rect.height,
3076 			pipe_ctx->plane_state->dst_rect.x,
3077 			pipe_ctx->plane_state->dst_rect.y,
3078 			pipe_ctx->plane_state->dst_rect.width,
3079 			pipe_ctx->plane_state->dst_rect.height,
3080 			pipe_ctx->plane_state->clip_rect.x,
3081 			pipe_ctx->plane_state->clip_rect.y,
3082 			pipe_ctx->plane_state->clip_rect.width,
3083 			pipe_ctx->plane_state->clip_rect.height);
3084 
3085 	DC_LOG_SURFACE(
3086 			"Pipe %d: width, height, x, y\n"
3087 			"viewport:%d, %d, %d, %d\n"
3088 			"recout:  %d, %d, %d, %d\n",
3089 			pipe_ctx->pipe_idx,
3090 			pipe_ctx->plane_res.scl_data.viewport.width,
3091 			pipe_ctx->plane_res.scl_data.viewport.height,
3092 			pipe_ctx->plane_res.scl_data.viewport.x,
3093 			pipe_ctx->plane_res.scl_data.viewport.y,
3094 			pipe_ctx->plane_res.scl_data.recout.width,
3095 			pipe_ctx->plane_res.scl_data.recout.height,
3096 			pipe_ctx->plane_res.scl_data.recout.x,
3097 			pipe_ctx->plane_res.scl_data.recout.y);
3098 }
3099 
dce110_apply_ctx_for_surface(struct dc * dc,const struct dc_stream_state * stream,int num_planes,struct dc_state * context)3100 static void dce110_apply_ctx_for_surface(
3101 		struct dc *dc,
3102 		const struct dc_stream_state *stream,
3103 		int num_planes,
3104 		struct dc_state *context)
3105 {
3106 	int i;
3107 
3108 	if (num_planes == 0)
3109 		return;
3110 
3111 	if (dc->fbc_compressor)
3112 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
3113 
3114 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3115 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3116 
3117 		if (pipe_ctx->stream != stream)
3118 			continue;
3119 
3120 		/* Need to allocate mem before program front end for Fiji */
3121 		pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
3122 				pipe_ctx->plane_res.mi,
3123 				pipe_ctx->stream->timing.h_total,
3124 				pipe_ctx->stream->timing.v_total,
3125 				pipe_ctx->stream->timing.pix_clk_100hz / 10,
3126 				context->stream_count);
3127 
3128 		dce110_program_front_end_for_pipe(dc, pipe_ctx);
3129 
3130 		dc->hwss.update_plane_addr(dc, pipe_ctx);
3131 
3132 		program_surface_visibility(dc, pipe_ctx);
3133 
3134 	}
3135 
3136 	if (dc->fbc_compressor)
3137 		enable_fbc(dc, context);
3138 }
3139 
dce110_post_unlock_program_front_end(struct dc * dc,struct dc_state * context)3140 static void dce110_post_unlock_program_front_end(
3141 		struct dc *dc,
3142 		struct dc_state *context)
3143 {
3144 }
3145 
dce110_power_down_fe(struct dc * dc,struct dc_state * state,struct pipe_ctx * pipe_ctx)3146 static void dce110_power_down_fe(struct dc *dc, struct dc_state *state, struct pipe_ctx *pipe_ctx)
3147 {
3148 	struct dce_hwseq *hws = dc->hwseq;
3149 	int fe_idx = pipe_ctx->plane_res.mi ?
3150 		pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
3151 
3152 	/* Do not power down fe when stream is active on dce*/
3153 	if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
3154 		return;
3155 
3156 	hws->funcs.enable_display_power_gating(
3157 		dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
3158 
3159 	dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
3160 				dc->res_pool->transforms[fe_idx]);
3161 }
3162 
dce110_wait_for_mpcc_disconnect(struct dc * dc,struct resource_pool * res_pool,struct pipe_ctx * pipe_ctx)3163 static void dce110_wait_for_mpcc_disconnect(
3164 		struct dc *dc,
3165 		struct resource_pool *res_pool,
3166 		struct pipe_ctx *pipe_ctx)
3167 {
3168 	/* do nothing*/
3169 }
3170 
program_output_csc(struct dc * dc,struct pipe_ctx * pipe_ctx,enum dc_color_space colorspace,uint16_t * matrix,int opp_id)3171 static void program_output_csc(struct dc *dc,
3172 		struct pipe_ctx *pipe_ctx,
3173 		enum dc_color_space colorspace,
3174 		uint16_t *matrix,
3175 		int opp_id)
3176 {
3177 	int i;
3178 	struct out_csc_color_matrix tbl_entry;
3179 
3180 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
3181 		enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
3182 
3183 		for (i = 0; i < 12; i++)
3184 			tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
3185 
3186 		tbl_entry.color_space = color_space;
3187 
3188 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
3189 				pipe_ctx->plane_res.xfm, &tbl_entry);
3190 	}
3191 }
3192 
dce110_set_cursor_position(struct pipe_ctx * pipe_ctx)3193 static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
3194 {
3195 	struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
3196 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
3197 	struct mem_input *mi = pipe_ctx->plane_res.mi;
3198 	struct dc_cursor_mi_param param = {
3199 		.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
3200 		.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
3201 		.viewport = pipe_ctx->plane_res.scl_data.viewport,
3202 		.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
3203 		.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
3204 		.rotation = pipe_ctx->plane_state->rotation,
3205 		.mirror = pipe_ctx->plane_state->horizontal_mirror
3206 	};
3207 
3208 	/**
3209 	 * If the cursor's source viewport is clipped then we need to
3210 	 * translate the cursor to appear in the correct position on
3211 	 * the screen.
3212 	 *
3213 	 * This translation isn't affected by scaling so it needs to be
3214 	 * done *after* we adjust the position for the scale factor.
3215 	 *
3216 	 * This is only done by opt-in for now since there are still
3217 	 * some usecases like tiled display that might enable the
3218 	 * cursor on both streams while expecting dc to clip it.
3219 	 */
3220 	if (pos_cpy.translate_by_source) {
3221 		pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
3222 		pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
3223 	}
3224 
3225 	if (pipe_ctx->plane_state->address.type
3226 			== PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
3227 		pos_cpy.enable = false;
3228 
3229 	if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
3230 		pos_cpy.enable = false;
3231 
3232 	if (ipp->funcs->ipp_cursor_set_position)
3233 		ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, &param);
3234 	if (mi->funcs->set_cursor_position)
3235 		mi->funcs->set_cursor_position(mi, &pos_cpy, &param);
3236 }
3237 
dce110_set_cursor_attribute(struct pipe_ctx * pipe_ctx)3238 static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
3239 {
3240 	struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
3241 
3242 	if (pipe_ctx->plane_res.ipp &&
3243 	    pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
3244 		pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
3245 				pipe_ctx->plane_res.ipp, attributes);
3246 
3247 	if (pipe_ctx->plane_res.mi &&
3248 	    pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
3249 		pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
3250 				pipe_ctx->plane_res.mi, attributes);
3251 
3252 	if (pipe_ctx->plane_res.xfm &&
3253 	    pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
3254 		pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
3255 				pipe_ctx->plane_res.xfm, attributes);
3256 }
3257 
dce110_set_backlight_level(struct pipe_ctx * pipe_ctx,struct set_backlight_level_params * backlight_level_params)3258 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
3259 	struct set_backlight_level_params *backlight_level_params)
3260 {
3261 	uint32_t backlight_pwm_u16_16 = backlight_level_params->backlight_pwm_u16_16;
3262 	uint32_t frame_ramp = backlight_level_params->frame_ramp;
3263 	struct dc_link *link = pipe_ctx->stream->link;
3264 	struct dc  *dc = link->ctx->dc;
3265 	struct abm *abm = pipe_ctx->stream_res.abm;
3266 	struct panel_cntl *panel_cntl = link->panel_cntl;
3267 	struct dmcu *dmcu = dc->res_pool->dmcu;
3268 	bool fw_set_brightness = true;
3269 	/* DMCU -1 for all controller id values,
3270 	 * therefore +1 here
3271 	 */
3272 	uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
3273 
3274 	if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
3275 		return false;
3276 
3277 	if (dmcu)
3278 		fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
3279 
3280 	if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
3281 		panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
3282 	else
3283 		abm->funcs->set_backlight_level_pwm(
3284 				abm,
3285 				backlight_pwm_u16_16,
3286 				frame_ramp,
3287 				controller_id,
3288 				link->panel_cntl->inst);
3289 
3290 	return true;
3291 }
3292 
dce110_set_abm_immediate_disable(struct pipe_ctx * pipe_ctx)3293 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
3294 {
3295 	struct abm *abm = pipe_ctx->stream_res.abm;
3296 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
3297 
3298 	if (abm)
3299 		abm->funcs->set_abm_immediate_disable(abm,
3300 				pipe_ctx->stream->link->panel_cntl->inst);
3301 
3302 	if (panel_cntl)
3303 		panel_cntl->funcs->store_backlight_level(panel_cntl);
3304 }
3305 
dce110_set_pipe(struct pipe_ctx * pipe_ctx)3306 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
3307 {
3308 	struct abm *abm = pipe_ctx->stream_res.abm;
3309 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
3310 	uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
3311 
3312 	if (abm && panel_cntl)
3313 		abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
3314 }
3315 
dce110_enable_lvds_link_output(struct dc_link * link,const struct link_resource * link_res,enum clock_source_id clock_source,uint32_t pixel_clock)3316 void dce110_enable_lvds_link_output(struct dc_link *link,
3317 		const struct link_resource *link_res,
3318 		enum clock_source_id clock_source,
3319 		uint32_t pixel_clock)
3320 {
3321 	link->link_enc->funcs->enable_lvds_output(
3322 			link->link_enc,
3323 			clock_source,
3324 			pixel_clock);
3325 	link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3326 }
3327 
dce110_enable_tmds_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal,enum clock_source_id clock_source,enum dc_color_depth color_depth,uint32_t pixel_clock)3328 void dce110_enable_tmds_link_output(struct dc_link *link,
3329 		const struct link_resource *link_res,
3330 		enum signal_type signal,
3331 		enum clock_source_id clock_source,
3332 		enum dc_color_depth color_depth,
3333 		uint32_t pixel_clock)
3334 {
3335 	link->link_enc->funcs->enable_tmds_output(
3336 			link->link_enc,
3337 			clock_source,
3338 			color_depth,
3339 			signal,
3340 			pixel_clock);
3341 	link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3342 }
3343 
dce110_enable_dp_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal,enum clock_source_id clock_source,const struct dc_link_settings * link_settings)3344 void dce110_enable_dp_link_output(
3345 		struct dc_link *link,
3346 		const struct link_resource *link_res,
3347 		enum signal_type signal,
3348 		enum clock_source_id clock_source,
3349 		const struct dc_link_settings *link_settings)
3350 {
3351 	struct dc  *dc = link->ctx->dc;
3352 	struct dmcu *dmcu = dc->res_pool->dmcu;
3353 	struct pipe_ctx *pipes =
3354 			link->dc->current_state->res_ctx.pipe_ctx;
3355 	struct clock_source *dp_cs =
3356 			link->dc->res_pool->dp_clock_source;
3357 	const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3358 	unsigned int i;
3359 
3360 	/*
3361 	 * Add the logic to extract BOTH power up and power down sequences
3362 	 * from enable/disable link output and only call edp panel control
3363 	 * in enable_link_dp and disable_link_dp once.
3364 	 */
3365 	if (link->connector_signal == SIGNAL_TYPE_EDP) {
3366 		link->dc->hwss.edp_wait_for_hpd_ready(link, true);
3367 	}
3368 
3369 	/* If the current pixel clock source is not DTO(happens after
3370 	 * switching from HDMI passive dongle to DP on the same connector),
3371 	 * switch the pixel clock source to DTO.
3372 	 */
3373 
3374 	for (i = 0; i < MAX_PIPES; i++) {
3375 		if (pipes[i].stream != NULL &&
3376 				pipes[i].stream->link == link) {
3377 			if (pipes[i].clock_source != NULL &&
3378 					pipes[i].clock_source->id != CLOCK_SOURCE_ID_DP_DTO) {
3379 				pipes[i].clock_source = dp_cs;
3380 				pipes[i].stream_res.pix_clk_params.requested_pix_clk_100hz =
3381 						pipes[i].stream->timing.pix_clk_100hz;
3382 				pipes[i].clock_source->funcs->program_pix_clk(
3383 						pipes[i].clock_source,
3384 						&pipes[i].stream_res.pix_clk_params,
3385 						dc->link_srv->dp_get_encoding_format(link_settings),
3386 						&pipes[i].pll_settings);
3387 			}
3388 		}
3389 	}
3390 
3391 	if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_8b_10b_ENCODING) {
3392 		if (dc->clk_mgr->funcs->notify_link_rate_change)
3393 			dc->clk_mgr->funcs->notify_link_rate_change(dc->clk_mgr, link);
3394 	}
3395 
3396 	if (dmcu != NULL && dmcu->funcs->lock_phy)
3397 		dmcu->funcs->lock_phy(dmcu);
3398 
3399 	if (link_hwss->ext.enable_dp_link_output)
3400 		link_hwss->ext.enable_dp_link_output(link, link_res, signal,
3401 				clock_source, link_settings);
3402 
3403 	link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3404 
3405 	if (dmcu != NULL && dmcu->funcs->unlock_phy)
3406 		dmcu->funcs->unlock_phy(dmcu);
3407 
3408 	dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_ENABLE_LINK_PHY);
3409 }
3410 
dce110_disable_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal)3411 void dce110_disable_link_output(struct dc_link *link,
3412 		const struct link_resource *link_res,
3413 		enum signal_type signal)
3414 {
3415 	struct dc *dc = link->ctx->dc;
3416 	const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3417 	struct dmcu *dmcu = dc->res_pool->dmcu;
3418 
3419 	if (signal == SIGNAL_TYPE_EDP &&
3420 			link->dc->hwss.edp_backlight_control &&
3421 			!link->skip_implict_edp_power_control)
3422 		link->dc->hwss.edp_backlight_control(link, false);
3423 	else if (dmcu != NULL && dmcu->funcs->lock_phy)
3424 		dmcu->funcs->lock_phy(dmcu);
3425 
3426 	link_hwss->disable_link_output(link, link_res, signal);
3427 	link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
3428 	/*
3429 	 * Add the logic to extract BOTH power up and power down sequences
3430 	 * from enable/disable link output and only call edp panel control
3431 	 * in enable_link_dp and disable_link_dp once.
3432 	 */
3433 	if (dmcu != NULL && dmcu->funcs->unlock_phy)
3434 		dmcu->funcs->unlock_phy(dmcu);
3435 	dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_DISABLE_LINK_PHY);
3436 }
3437 
3438 static const struct hw_sequencer_funcs dce110_funcs = {
3439 	.program_gamut_remap = program_gamut_remap,
3440 	.program_output_csc = program_output_csc,
3441 	.init_hw = dce110_init_hw,
3442 	.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
3443 	.apply_ctx_for_surface = dce110_apply_ctx_for_surface,
3444 	.post_unlock_program_front_end = dce110_post_unlock_program_front_end,
3445 	.update_plane_addr = update_plane_addr,
3446 	.update_pending_status = dce110_update_pending_status,
3447 	.clear_surface_dcc_and_tiling = dce100_reset_surface_dcc_and_tiling,
3448 	.enable_accelerated_mode = dce110_enable_accelerated_mode,
3449 	.enable_timing_synchronization = dce110_enable_timing_synchronization,
3450 	.enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
3451 	.update_info_frame = dce110_update_info_frame,
3452 	.enable_stream = dce110_enable_stream,
3453 	.disable_stream = dce110_disable_stream,
3454 	.unblank_stream = dce110_unblank_stream,
3455 	.blank_stream = dce110_blank_stream,
3456 	.enable_audio_stream = dce110_enable_audio_stream,
3457 	.disable_audio_stream = dce110_disable_audio_stream,
3458 	.disable_plane = dce110_power_down_fe,
3459 	.pipe_control_lock = dce_pipe_control_lock,
3460 	.interdependent_update_lock = NULL,
3461 	.cursor_lock = dce_pipe_control_lock,
3462 	.prepare_bandwidth = dce110_prepare_bandwidth,
3463 	.optimize_bandwidth = dce110_optimize_bandwidth,
3464 	.set_drr = set_drr,
3465 	.get_position = get_position,
3466 	.set_static_screen_control = set_static_screen_control,
3467 	.setup_stereo = NULL,
3468 	.set_avmute = dce110_set_avmute,
3469 	.wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
3470 	.edp_backlight_control = dce110_edp_backlight_control,
3471 	.edp_power_control = dce110_edp_power_control,
3472 	.edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
3473 	.set_cursor_position = dce110_set_cursor_position,
3474 	.set_cursor_attribute = dce110_set_cursor_attribute,
3475 	.set_backlight_level = dce110_set_backlight_level,
3476 	.set_abm_immediate_disable = dce110_set_abm_immediate_disable,
3477 	.set_pipe = dce110_set_pipe,
3478 	.enable_lvds_link_output = dce110_enable_lvds_link_output,
3479 	.enable_tmds_link_output = dce110_enable_tmds_link_output,
3480 	.enable_dp_link_output = dce110_enable_dp_link_output,
3481 	.disable_link_output = dce110_disable_link_output,
3482 };
3483 
3484 static const struct hwseq_private_funcs dce110_private_funcs = {
3485 	.init_pipes = dce110_init_pipes,
3486 	.set_input_transfer_func = dce110_set_input_transfer_func,
3487 	.set_output_transfer_func = dce110_set_output_transfer_func,
3488 	.power_down = dce110_power_down,
3489 	.enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
3490 	.enable_display_power_gating = dce110_enable_display_power_gating,
3491 	.reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
3492 	.enable_stream_timing = dce110_enable_stream_timing,
3493 	.disable_stream_gating = NULL,
3494 	.enable_stream_gating = NULL,
3495 	.edp_backlight_control = dce110_edp_backlight_control,
3496 };
3497 
dce110_hw_sequencer_construct(struct dc * dc)3498 void dce110_hw_sequencer_construct(struct dc *dc)
3499 {
3500 	dc->hwss = dce110_funcs;
3501 	dc->hwseq->funcs = dce110_private_funcs;
3502 }
3503 
3504