1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "dm_services.h"
27 #include "dc.h"
28 #include "dc_bios_types.h"
29 #include "core_types.h"
30 #include "core_status.h"
31 #include "resource.h"
32 #include "dm_helpers.h"
33 #include "dce110_hwseq.h"
34 #include "dce110/dce110_timing_generator.h"
35 #include "dce/dce_hwseq.h"
36 #include "dce100/dce100_hwseq.h"
37 #include "gpio_service_interface.h"
38
39 #include "dce110/dce110_compressor.h"
40
41 #include "bios/bios_parser_helper.h"
42 #include "timing_generator.h"
43 #include "mem_input.h"
44 #include "opp.h"
45 #include "ipp.h"
46 #include "transform.h"
47 #include "stream_encoder.h"
48 #include "link_encoder.h"
49 #include "link_enc_cfg.h"
50 #include "link_hwss.h"
51 #include "link.h"
52 #include "dccg.h"
53 #include "clock_source.h"
54 #include "clk_mgr.h"
55 #include "abm.h"
56 #include "audio.h"
57 #include "reg_helper.h"
58 #include "panel_cntl.h"
59 #include "dc_state_priv.h"
60 #include "dpcd_defs.h"
61 #include "dsc.h"
62 /* include DCE11 register header files */
63 #include "dce/dce_11_0_d.h"
64 #include "dce/dce_11_0_sh_mask.h"
65 #include "custom_float.h"
66
67 #include "atomfirmware.h"
68
69 #include "dcn10/dcn10_hwseq.h"
70
71 #define GAMMA_HW_POINTS_NUM 256
72
73 /*
74 * All values are in milliseconds;
75 * For eDP, after power-up/power/down,
76 * 300/500 msec max. delay from LCDVCC to black video generation
77 */
78 #define PANEL_POWER_UP_TIMEOUT 300
79 #define PANEL_POWER_DOWN_TIMEOUT 500
80 #define HPD_CHECK_INTERVAL 10
81 #define OLED_POST_T7_DELAY 100
82 #define OLED_PRE_T11_DELAY 150
83
84 #define CTX \
85 hws->ctx
86
87 #define DC_LOGGER \
88 ctx->logger
89 #define DC_LOGGER_INIT() \
90 struct dc_context *ctx = dc->ctx
91
92 #define REG(reg)\
93 hws->regs->reg
94
95 #undef FN
96 #define FN(reg_name, field_name) \
97 hws->shifts->field_name, hws->masks->field_name
98
99 struct dce110_hw_seq_reg_offsets {
100 uint32_t crtc;
101 };
102
103 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
104 {
105 .crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
106 },
107 {
108 .crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
109 },
110 {
111 .crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
112 },
113 {
114 .crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
115 }
116 };
117
118 #define HW_REG_BLND(reg, id)\
119 (reg + reg_offsets[id].blnd)
120
121 #define HW_REG_CRTC(reg, id)\
122 (reg + reg_offsets[id].crtc)
123
124 #define MAX_WATERMARK 0xFFFF
125 #define SAFE_NBP_MARK 0x7FFF
126
127 /*******************************************************************************
128 * Private definitions
129 ******************************************************************************/
130 /***************************PIPE_CONTROL***********************************/
dce110_init_pte(struct dc_context * ctx)131 static void dce110_init_pte(struct dc_context *ctx)
132 {
133 uint32_t addr;
134 uint32_t value = 0;
135 uint32_t chunk_int = 0;
136 uint32_t chunk_mul = 0;
137
138 addr = mmUNP_DVMM_PTE_CONTROL;
139 value = dm_read_reg(ctx, addr);
140
141 set_reg_field_value(
142 value,
143 0,
144 DVMM_PTE_CONTROL,
145 DVMM_USE_SINGLE_PTE);
146
147 set_reg_field_value(
148 value,
149 1,
150 DVMM_PTE_CONTROL,
151 DVMM_PTE_BUFFER_MODE0);
152
153 set_reg_field_value(
154 value,
155 1,
156 DVMM_PTE_CONTROL,
157 DVMM_PTE_BUFFER_MODE1);
158
159 dm_write_reg(ctx, addr, value);
160
161 addr = mmDVMM_PTE_REQ;
162 value = dm_read_reg(ctx, addr);
163
164 chunk_int = get_reg_field_value(
165 value,
166 DVMM_PTE_REQ,
167 HFLIP_PTEREQ_PER_CHUNK_INT);
168
169 chunk_mul = get_reg_field_value(
170 value,
171 DVMM_PTE_REQ,
172 HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
173
174 if (chunk_int != 0x4 || chunk_mul != 0x4) {
175
176 set_reg_field_value(
177 value,
178 255,
179 DVMM_PTE_REQ,
180 MAX_PTEREQ_TO_ISSUE);
181
182 set_reg_field_value(
183 value,
184 4,
185 DVMM_PTE_REQ,
186 HFLIP_PTEREQ_PER_CHUNK_INT);
187
188 set_reg_field_value(
189 value,
190 4,
191 DVMM_PTE_REQ,
192 HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
193
194 dm_write_reg(ctx, addr, value);
195 }
196 }
197 /**************************************************************************/
198
enable_display_pipe_clock_gating(struct dc_context * ctx,bool clock_gating)199 static void enable_display_pipe_clock_gating(
200 struct dc_context *ctx,
201 bool clock_gating)
202 {
203 /*TODO*/
204 }
205
dce110_enable_display_power_gating(struct dc * dc,uint8_t controller_id,struct dc_bios * dcb,enum pipe_gating_control power_gating)206 static bool dce110_enable_display_power_gating(
207 struct dc *dc,
208 uint8_t controller_id,
209 struct dc_bios *dcb,
210 enum pipe_gating_control power_gating)
211 {
212 enum bp_result bp_result = BP_RESULT_OK;
213 enum bp_pipe_control_action cntl;
214 struct dc_context *ctx = dc->ctx;
215 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
216
217 if (power_gating == PIPE_GATING_CONTROL_INIT)
218 cntl = ASIC_PIPE_INIT;
219 else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
220 cntl = ASIC_PIPE_ENABLE;
221 else
222 cntl = ASIC_PIPE_DISABLE;
223
224 if (controller_id == underlay_idx)
225 controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
226
227 if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0) {
228
229 bp_result = dcb->funcs->enable_disp_power_gating(
230 dcb, controller_id + 1, cntl);
231
232 /* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
233 * by default when command table is called
234 *
235 * Bios parser accepts controller_id = 6 as indicative of
236 * underlay pipe in dce110. But we do not support more
237 * than 3.
238 */
239 if (controller_id < CONTROLLER_ID_MAX - 1)
240 dm_write_reg(ctx,
241 HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
242 0);
243 }
244
245 if (power_gating != PIPE_GATING_CONTROL_ENABLE)
246 dce110_init_pte(ctx);
247
248 if (bp_result == BP_RESULT_OK)
249 return true;
250 else
251 return false;
252 }
253
dce110_prescale_params(struct ipp_prescale_params * prescale_params,const struct dc_plane_state * plane_state)254 static void dce110_prescale_params(struct ipp_prescale_params *prescale_params,
255 const struct dc_plane_state *plane_state)
256 {
257 prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
258
259 switch (plane_state->format) {
260 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
261 prescale_params->scale = 0x2082;
262 break;
263 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
264 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
265 prescale_params->scale = 0x2020;
266 break;
267 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
268 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
269 prescale_params->scale = 0x2008;
270 break;
271 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
272 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
273 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
274 prescale_params->scale = 0x2000;
275 break;
276 default:
277 ASSERT(false);
278 break;
279 }
280 }
281
282 static bool
dce110_set_input_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_plane_state * plane_state)283 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
284 const struct dc_plane_state *plane_state)
285 {
286 struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
287 const struct dc_transfer_func *tf = NULL;
288 struct ipp_prescale_params prescale_params = { 0 };
289 bool result = true;
290
291 if (ipp == NULL)
292 return false;
293
294 tf = &plane_state->in_transfer_func;
295
296 dce110_prescale_params(&prescale_params, plane_state);
297 ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
298
299 if (!plane_state->gamma_correction.is_identity &&
300 dce_use_lut(plane_state->format))
301 ipp->funcs->ipp_program_input_lut(ipp, &plane_state->gamma_correction);
302
303 if (tf->type == TF_TYPE_PREDEFINED) {
304 switch (tf->tf) {
305 case TRANSFER_FUNCTION_SRGB:
306 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
307 break;
308 case TRANSFER_FUNCTION_BT709:
309 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
310 break;
311 case TRANSFER_FUNCTION_LINEAR:
312 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
313 break;
314 case TRANSFER_FUNCTION_PQ:
315 default:
316 result = false;
317 break;
318 }
319 } else if (tf->type == TF_TYPE_BYPASS) {
320 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
321 } else {
322 /*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
323 result = false;
324 }
325
326 return result;
327 }
328
convert_to_custom_float(struct pwl_result_data * rgb_resulted,struct curve_points * arr_points,uint32_t hw_points_num)329 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
330 struct curve_points *arr_points,
331 uint32_t hw_points_num)
332 {
333 struct custom_float_format fmt;
334
335 struct pwl_result_data *rgb = rgb_resulted;
336
337 uint32_t i = 0;
338
339 fmt.exponenta_bits = 6;
340 fmt.mantissa_bits = 12;
341 fmt.sign = true;
342
343 if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
344 &arr_points[0].custom_float_x)) {
345 BREAK_TO_DEBUGGER();
346 return false;
347 }
348
349 if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
350 &arr_points[0].custom_float_offset)) {
351 BREAK_TO_DEBUGGER();
352 return false;
353 }
354
355 if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
356 &arr_points[0].custom_float_slope)) {
357 BREAK_TO_DEBUGGER();
358 return false;
359 }
360
361 fmt.mantissa_bits = 10;
362 fmt.sign = false;
363
364 if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
365 &arr_points[1].custom_float_x)) {
366 BREAK_TO_DEBUGGER();
367 return false;
368 }
369
370 if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
371 &arr_points[1].custom_float_y)) {
372 BREAK_TO_DEBUGGER();
373 return false;
374 }
375
376 if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
377 &arr_points[1].custom_float_slope)) {
378 BREAK_TO_DEBUGGER();
379 return false;
380 }
381
382 fmt.mantissa_bits = 12;
383 fmt.sign = true;
384
385 while (i != hw_points_num) {
386 if (!convert_to_custom_float_format(rgb->red, &fmt,
387 &rgb->red_reg)) {
388 BREAK_TO_DEBUGGER();
389 return false;
390 }
391
392 if (!convert_to_custom_float_format(rgb->green, &fmt,
393 &rgb->green_reg)) {
394 BREAK_TO_DEBUGGER();
395 return false;
396 }
397
398 if (!convert_to_custom_float_format(rgb->blue, &fmt,
399 &rgb->blue_reg)) {
400 BREAK_TO_DEBUGGER();
401 return false;
402 }
403
404 if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
405 &rgb->delta_red_reg)) {
406 BREAK_TO_DEBUGGER();
407 return false;
408 }
409
410 if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
411 &rgb->delta_green_reg)) {
412 BREAK_TO_DEBUGGER();
413 return false;
414 }
415
416 if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
417 &rgb->delta_blue_reg)) {
418 BREAK_TO_DEBUGGER();
419 return false;
420 }
421
422 ++rgb;
423 ++i;
424 }
425
426 return true;
427 }
428
429 #define MAX_LOW_POINT 25
430 #define NUMBER_REGIONS 16
431 #define NUMBER_SW_SEGMENTS 16
432
433 static bool
dce110_translate_regamma_to_hw_format(const struct dc_transfer_func * output_tf,struct pwl_params * regamma_params)434 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
435 struct pwl_params *regamma_params)
436 {
437 struct curve_points *arr_points;
438 struct pwl_result_data *rgb_resulted;
439 struct pwl_result_data *rgb;
440 struct pwl_result_data *rgb_plus_1;
441 struct fixed31_32 y_r;
442 struct fixed31_32 y_g;
443 struct fixed31_32 y_b;
444 struct fixed31_32 y1_min;
445 struct fixed31_32 y3_max;
446
447 int32_t region_start, region_end;
448 uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
449
450 if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
451 return false;
452
453 arr_points = regamma_params->arr_points;
454 rgb_resulted = regamma_params->rgb_resulted;
455 hw_points = 0;
456
457 memset(regamma_params, 0, sizeof(struct pwl_params));
458
459 if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
460 /* 16 segments
461 * segments are from 2^-11 to 2^5
462 */
463 region_start = -11;
464 region_end = region_start + NUMBER_REGIONS;
465
466 for (i = 0; i < NUMBER_REGIONS; i++)
467 seg_distr[i] = 4;
468
469 } else {
470 /* 10 segments
471 * segment is from 2^-10 to 2^1
472 * We include an extra segment for range [2^0, 2^1). This is to
473 * ensure that colors with normalized values of 1 don't miss the
474 * LUT.
475 */
476 region_start = -10;
477 region_end = 1;
478
479 seg_distr[0] = 4;
480 seg_distr[1] = 4;
481 seg_distr[2] = 4;
482 seg_distr[3] = 4;
483 seg_distr[4] = 4;
484 seg_distr[5] = 4;
485 seg_distr[6] = 4;
486 seg_distr[7] = 4;
487 seg_distr[8] = 4;
488 seg_distr[9] = 4;
489 seg_distr[10] = 0;
490 seg_distr[11] = -1;
491 seg_distr[12] = -1;
492 seg_distr[13] = -1;
493 seg_distr[14] = -1;
494 seg_distr[15] = -1;
495 }
496
497 for (k = 0; k < 16; k++) {
498 if (seg_distr[k] != -1)
499 hw_points += (1 << seg_distr[k]);
500 }
501
502 j = 0;
503 for (k = 0; k < (region_end - region_start); k++) {
504 increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
505 start_index = (region_start + k + MAX_LOW_POINT) *
506 NUMBER_SW_SEGMENTS;
507 for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
508 i += increment) {
509 if (j == hw_points - 1)
510 break;
511 rgb_resulted[j].red = output_tf->tf_pts.red[i];
512 rgb_resulted[j].green = output_tf->tf_pts.green[i];
513 rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
514 j++;
515 }
516 }
517
518 /* last point */
519 start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
520 rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
521 rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
522 rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
523
524 arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
525 dc_fixpt_from_int(region_start));
526 arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
527 dc_fixpt_from_int(region_end));
528
529 y_r = rgb_resulted[0].red;
530 y_g = rgb_resulted[0].green;
531 y_b = rgb_resulted[0].blue;
532
533 y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
534
535 arr_points[0].y = y1_min;
536 arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
537 arr_points[0].x);
538
539 y_r = rgb_resulted[hw_points - 1].red;
540 y_g = rgb_resulted[hw_points - 1].green;
541 y_b = rgb_resulted[hw_points - 1].blue;
542
543 /* see comment above, m_arrPoints[1].y should be the Y value for the
544 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
545 */
546 y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
547
548 arr_points[1].y = y3_max;
549
550 arr_points[1].slope = dc_fixpt_zero;
551
552 if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
553 /* for PQ, we want to have a straight line from last HW X point,
554 * and the slope to be such that we hit 1.0 at 10000 nits.
555 */
556 const struct fixed31_32 end_value = dc_fixpt_from_int(125);
557
558 arr_points[1].slope = dc_fixpt_div(
559 dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
560 dc_fixpt_sub(end_value, arr_points[1].x));
561 }
562
563 regamma_params->hw_points_num = hw_points;
564
565 k = 0;
566 for (i = 1; i < 16; i++) {
567 if (seg_distr[k] != -1) {
568 regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
569 regamma_params->arr_curve_points[i].offset =
570 regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
571 }
572 k++;
573 }
574
575 if (seg_distr[k] != -1)
576 regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
577
578 rgb = rgb_resulted;
579 rgb_plus_1 = rgb_resulted + 1;
580
581 i = 1;
582
583 while (i != hw_points + 1) {
584 if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
585 rgb_plus_1->red = rgb->red;
586 if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
587 rgb_plus_1->green = rgb->green;
588 if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
589 rgb_plus_1->blue = rgb->blue;
590
591 rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
592 rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
593 rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
594
595 ++rgb_plus_1;
596 ++rgb;
597 ++i;
598 }
599
600 convert_to_custom_float(rgb_resulted, arr_points, hw_points);
601
602 return true;
603 }
604
605 static bool
dce110_set_output_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_stream_state * stream)606 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
607 const struct dc_stream_state *stream)
608 {
609 struct transform *xfm = pipe_ctx->plane_res.xfm;
610
611 xfm->funcs->opp_power_on_regamma_lut(xfm, true);
612 xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
613
614 if (stream->out_transfer_func.type == TF_TYPE_PREDEFINED &&
615 stream->out_transfer_func.tf == TRANSFER_FUNCTION_SRGB) {
616 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
617 } else if (dce110_translate_regamma_to_hw_format(&stream->out_transfer_func,
618 &xfm->regamma_params)) {
619 xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
620 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
621 } else {
622 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
623 }
624
625 xfm->funcs->opp_power_on_regamma_lut(xfm, false);
626
627 return true;
628 }
629
dce110_update_info_frame(struct pipe_ctx * pipe_ctx)630 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
631 {
632 bool is_hdmi_tmds;
633 bool is_dp;
634
635 ASSERT(pipe_ctx->stream);
636
637 if (pipe_ctx->stream_res.stream_enc == NULL)
638 return; /* this is not root pipe */
639
640 is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
641 is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
642
643 if (!is_hdmi_tmds && !is_dp)
644 return;
645
646 if (is_hdmi_tmds)
647 pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
648 pipe_ctx->stream_res.stream_enc,
649 &pipe_ctx->stream_res.encoder_info_frame);
650 else {
651 if (pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num)
652 pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num(
653 pipe_ctx->stream_res.stream_enc,
654 &pipe_ctx->stream_res.encoder_info_frame);
655
656 pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
657 pipe_ctx->stream_res.stream_enc,
658 &pipe_ctx->stream_res.encoder_info_frame);
659 }
660 }
661
dce110_enable_stream(struct pipe_ctx * pipe_ctx)662 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
663 {
664 enum dc_lane_count lane_count =
665 pipe_ctx->stream->link->cur_link_settings.lane_count;
666 struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
667 struct dc_link *link = pipe_ctx->stream->link;
668 const struct dc *dc = link->dc;
669 const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
670 uint32_t active_total_with_borders;
671 uint32_t early_control = 0;
672 struct timing_generator *tg = pipe_ctx->stream_res.tg;
673
674 link_hwss->setup_stream_encoder(pipe_ctx);
675
676 dc->hwss.update_info_frame(pipe_ctx);
677
678 /* enable early control to avoid corruption on DP monitor*/
679 active_total_with_borders =
680 timing->h_addressable
681 + timing->h_border_left
682 + timing->h_border_right;
683
684 if (lane_count != 0)
685 early_control = active_total_with_borders % lane_count;
686
687 if (early_control == 0)
688 early_control = lane_count;
689
690 tg->funcs->set_early_control(tg, early_control);
691 }
692
link_transmitter_control(struct dc_bios * bios,struct bp_transmitter_control * cntl)693 static enum bp_result link_transmitter_control(
694 struct dc_bios *bios,
695 struct bp_transmitter_control *cntl)
696 {
697 enum bp_result result;
698
699 result = bios->funcs->transmitter_control(bios, cntl);
700
701 return result;
702 }
703
704 /*
705 * @brief
706 * eDP only.
707 */
dce110_edp_wait_for_hpd_ready(struct dc_link * link,bool power_up)708 void dce110_edp_wait_for_hpd_ready(
709 struct dc_link *link,
710 bool power_up)
711 {
712 struct dc_context *ctx = link->ctx;
713 struct graphics_object_id connector = link->link_enc->connector;
714 struct gpio *hpd;
715 bool edp_hpd_high = false;
716 uint32_t time_elapsed = 0;
717 uint32_t timeout = power_up ?
718 PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
719
720 if (dal_graphics_object_id_get_connector_id(connector)
721 != CONNECTOR_ID_EDP) {
722 BREAK_TO_DEBUGGER();
723 return;
724 }
725
726 if (!power_up)
727 /*
728 * From KV, we will not HPD low after turning off VCC -
729 * instead, we will check the SW timer in power_up().
730 */
731 return;
732
733 /*
734 * When we power on/off the eDP panel,
735 * we need to wait until SENSE bit is high/low.
736 */
737
738 /* obtain HPD */
739 /* TODO what to do with this? */
740 hpd = ctx->dc->link_srv->get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
741
742 if (!hpd) {
743 BREAK_TO_DEBUGGER();
744 return;
745 }
746
747 if (link->panel_config.pps.extra_t3_ms > 0) {
748 int extra_t3_in_ms = link->panel_config.pps.extra_t3_ms;
749
750 msleep(extra_t3_in_ms);
751 }
752
753 dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
754
755 /* wait until timeout or panel detected */
756
757 do {
758 uint32_t detected = 0;
759
760 dal_gpio_get_value(hpd, &detected);
761
762 if (!(detected ^ power_up)) {
763 edp_hpd_high = true;
764 break;
765 }
766
767 msleep(HPD_CHECK_INTERVAL);
768
769 time_elapsed += HPD_CHECK_INTERVAL;
770 } while (time_elapsed < timeout);
771
772 dal_gpio_close(hpd);
773
774 dal_gpio_destroy_irq(&hpd);
775
776 /* ensure that the panel is detected */
777 if (!edp_hpd_high)
778 DC_LOG_DC("%s: wait timed out!\n", __func__);
779 }
780
dce110_edp_power_control(struct dc_link * link,bool power_up)781 void dce110_edp_power_control(
782 struct dc_link *link,
783 bool power_up)
784 {
785 struct dc_context *ctx = link->ctx;
786 struct bp_transmitter_control cntl = { 0 };
787 enum bp_result bp_result;
788 uint8_t pwrseq_instance;
789
790
791 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
792 != CONNECTOR_ID_EDP) {
793 BREAK_TO_DEBUGGER();
794 return;
795 }
796
797 if (!link->panel_cntl)
798 return;
799 if (power_up !=
800 link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
801
802 unsigned long long current_ts = dm_get_timestamp(ctx);
803 unsigned long long time_since_edp_poweroff_ms =
804 div64_u64(dm_get_elapse_time_in_ns(
805 ctx,
806 current_ts,
807 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
808 unsigned long long time_since_edp_poweron_ms =
809 div64_u64(dm_get_elapse_time_in_ns(
810 ctx,
811 current_ts,
812 ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link)), 1000000);
813 DC_LOG_HW_RESUME_S3(
814 "%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
815 __func__,
816 power_up,
817 current_ts,
818 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
819 ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link),
820 time_since_edp_poweroff_ms,
821 time_since_edp_poweron_ms);
822
823 /* Send VBIOS command to prompt eDP panel power */
824 if (power_up) {
825 /* edp requires a min of 500ms from LCDVDD off to on */
826 unsigned long long remaining_min_edp_poweroff_time_ms = 500;
827
828 /* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
829 if (link->local_sink != NULL)
830 remaining_min_edp_poweroff_time_ms +=
831 link->panel_config.pps.extra_t12_ms;
832
833 /* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
834 if (ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
835 if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
836 remaining_min_edp_poweroff_time_ms =
837 remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
838 else
839 remaining_min_edp_poweroff_time_ms = 0;
840 }
841
842 if (remaining_min_edp_poweroff_time_ms) {
843 DC_LOG_HW_RESUME_S3(
844 "%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
845 __func__, remaining_min_edp_poweroff_time_ms);
846 msleep(remaining_min_edp_poweroff_time_ms);
847 DC_LOG_HW_RESUME_S3(
848 "%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
849 __func__, remaining_min_edp_poweroff_time_ms);
850 dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
851 __func__, remaining_min_edp_poweroff_time_ms);
852 } else {
853 DC_LOG_HW_RESUME_S3(
854 "%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
855 __func__, remaining_min_edp_poweroff_time_ms);
856 }
857 }
858
859 DC_LOG_HW_RESUME_S3(
860 "%s: BEGIN: Panel Power action: %s\n",
861 __func__, (power_up ? "On":"Off"));
862
863 cntl.action = power_up ?
864 TRANSMITTER_CONTROL_POWER_ON :
865 TRANSMITTER_CONTROL_POWER_OFF;
866 cntl.transmitter = link->link_enc->transmitter;
867 cntl.connector_obj_id = link->link_enc->connector;
868 cntl.coherent = false;
869 cntl.lanes_number = LANE_COUNT_FOUR;
870 cntl.hpd_sel = link->link_enc->hpd_source;
871 pwrseq_instance = link->panel_cntl->pwrseq_inst;
872
873 if (ctx->dc->ctx->dmub_srv &&
874 ctx->dc->debug.dmub_command_table) {
875
876 if (cntl.action == TRANSMITTER_CONTROL_POWER_ON) {
877 bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
878 LVTMA_CONTROL_POWER_ON,
879 pwrseq_instance, link->link_powered_externally);
880 } else {
881 bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
882 LVTMA_CONTROL_POWER_OFF,
883 pwrseq_instance, link->link_powered_externally);
884 }
885 }
886
887 bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
888
889 DC_LOG_HW_RESUME_S3(
890 "%s: END: Panel Power action: %s bp_result=%u\n",
891 __func__, (power_up ? "On":"Off"),
892 bp_result);
893
894 ctx->dc->link_srv->dp_trace_set_edp_power_timestamp(link, power_up);
895
896 DC_LOG_HW_RESUME_S3(
897 "%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
898 __func__,
899 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
900 ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link));
901
902 if (bp_result != BP_RESULT_OK)
903 DC_LOG_ERROR(
904 "%s: Panel Power bp_result: %d\n",
905 __func__, bp_result);
906 } else {
907 DC_LOG_HW_RESUME_S3(
908 "%s: Skipping Panel Power action: %s\n",
909 __func__, (power_up ? "On":"Off"));
910 }
911 }
912
dce110_edp_wait_for_T12(struct dc_link * link)913 void dce110_edp_wait_for_T12(
914 struct dc_link *link)
915 {
916 struct dc_context *ctx = link->ctx;
917
918 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
919 != CONNECTOR_ID_EDP) {
920 BREAK_TO_DEBUGGER();
921 return;
922 }
923
924 if (!link->panel_cntl)
925 return;
926
927 if (!link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl) &&
928 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
929 unsigned int t12_duration = 500; // Default T12 as per spec
930 unsigned long long current_ts = dm_get_timestamp(ctx);
931 unsigned long long time_since_edp_poweroff_ms =
932 div64_u64(dm_get_elapse_time_in_ns(
933 ctx,
934 current_ts,
935 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
936
937 t12_duration += link->panel_config.pps.extra_t12_ms; // Add extra T12
938
939 if (time_since_edp_poweroff_ms < t12_duration)
940 msleep(t12_duration - time_since_edp_poweroff_ms);
941 }
942 }
943 /*todo: cloned in stream enc, fix*/
944 /*
945 * @brief
946 * eDP only. Control the backlight of the eDP panel
947 */
dce110_edp_backlight_control(struct dc_link * link,bool enable)948 void dce110_edp_backlight_control(
949 struct dc_link *link,
950 bool enable)
951 {
952 struct dc_context *ctx = link->ctx;
953 struct bp_transmitter_control cntl = { 0 };
954 uint8_t pwrseq_instance = 0;
955 unsigned int pre_T11_delay = (link->dpcd_sink_ext_caps.bits.oled ? OLED_PRE_T11_DELAY : 0);
956 unsigned int post_T7_delay = (link->dpcd_sink_ext_caps.bits.oled ? OLED_POST_T7_DELAY : 0);
957
958 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
959 != CONNECTOR_ID_EDP) {
960 BREAK_TO_DEBUGGER();
961 return;
962 }
963
964 if (link->panel_cntl && !(link->dpcd_sink_ext_caps.bits.oled ||
965 link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
966 link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)) {
967 bool is_backlight_on = link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl);
968
969 if ((enable && is_backlight_on) || (!enable && !is_backlight_on)) {
970 DC_LOG_HW_RESUME_S3(
971 "%s: panel already powered up/off. Do nothing.\n",
972 __func__);
973 return;
974 }
975 }
976
977 /* Send VBIOS command to control eDP panel backlight */
978
979 DC_LOG_HW_RESUME_S3(
980 "%s: backlight action: %s\n",
981 __func__, (enable ? "On":"Off"));
982
983 cntl.action = enable ?
984 TRANSMITTER_CONTROL_BACKLIGHT_ON :
985 TRANSMITTER_CONTROL_BACKLIGHT_OFF;
986
987 /*cntl.engine_id = ctx->engine;*/
988 cntl.transmitter = link->link_enc->transmitter;
989 cntl.connector_obj_id = link->link_enc->connector;
990 /*todo: unhardcode*/
991 cntl.lanes_number = LANE_COUNT_FOUR;
992 cntl.hpd_sel = link->link_enc->hpd_source;
993 cntl.signal = SIGNAL_TYPE_EDP;
994
995 /* For eDP, the following delays might need to be considered
996 * after link training completed:
997 * idle period - min. accounts for required BS-Idle pattern,
998 * max. allows for source frame synchronization);
999 * 50 msec max. delay from valid video data from source
1000 * to video on dislpay or backlight enable.
1001 *
1002 * Disable the delay for now.
1003 * Enable it in the future if necessary.
1004 */
1005 /* dc_service_sleep_in_milliseconds(50); */
1006 /*edp 1.2*/
1007 if (link->panel_cntl)
1008 pwrseq_instance = link->panel_cntl->pwrseq_inst;
1009
1010 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON) {
1011 if (!link->dc->config.edp_no_power_sequencing)
1012 /*
1013 * Sometimes, DP receiver chip power-controlled externally by an
1014 * Embedded Controller could be treated and used as eDP,
1015 * if it drives mobile display. In this case,
1016 * we shouldn't be doing power-sequencing, hence we can skip
1017 * waiting for T7-ready.
1018 */
1019 ctx->dc->link_srv->edp_receiver_ready_T7(link);
1020 else
1021 DC_LOG_DC("edp_receiver_ready_T7 skipped\n");
1022 }
1023
1024 /* Setting link_powered_externally will bypass delays in the backlight
1025 * as they are not required if the link is being powered by a different
1026 * source.
1027 */
1028 if (ctx->dc->ctx->dmub_srv &&
1029 ctx->dc->debug.dmub_command_table) {
1030 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
1031 ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1032 LVTMA_CONTROL_LCD_BLON,
1033 pwrseq_instance, link->link_powered_externally);
1034 else
1035 ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1036 LVTMA_CONTROL_LCD_BLOFF,
1037 pwrseq_instance, link->link_powered_externally);
1038 }
1039
1040 link_transmitter_control(ctx->dc_bios, &cntl);
1041
1042 if (enable && link->dpcd_sink_ext_caps.bits.oled &&
1043 !link->dc->config.edp_no_power_sequencing &&
1044 !link->local_sink->edid_caps.panel_patch.oled_optimize_display_on) {
1045 post_T7_delay += link->panel_config.pps.extra_post_t7_ms;
1046 msleep(post_T7_delay);
1047 }
1048
1049 if (link->dpcd_sink_ext_caps.bits.oled ||
1050 link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
1051 link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
1052 ctx->dc->link_srv->edp_backlight_enable_aux(link, enable);
1053
1054 /*edp 1.2*/
1055 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF) {
1056 if (!link->dc->config.edp_no_power_sequencing)
1057 /*
1058 * Sometimes, DP receiver chip power-controlled externally by an
1059 * Embedded Controller could be treated and used as eDP,
1060 * if it drives mobile display. In this case,
1061 * we shouldn't be doing power-sequencing, hence we can skip
1062 * waiting for T9-ready.
1063 */
1064 ctx->dc->link_srv->edp_add_delay_for_T9(link);
1065 else
1066 DC_LOG_DC("edp_receiver_ready_T9 skipped\n");
1067 }
1068
1069 if (!enable) {
1070 /*follow oem panel config's requirement*/
1071 pre_T11_delay += link->panel_config.pps.extra_pre_t11_ms;
1072 if (pre_T11_delay)
1073 msleep(pre_T11_delay);
1074 }
1075 }
1076
dce110_enable_audio_stream(struct pipe_ctx * pipe_ctx)1077 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
1078 {
1079 /* notify audio driver for audio modes of monitor */
1080 struct dc *dc;
1081 struct clk_mgr *clk_mgr;
1082 unsigned int i, num_audio = 1;
1083 const struct link_hwss *link_hwss;
1084
1085 if (!pipe_ctx->stream)
1086 return;
1087
1088 dc = pipe_ctx->stream->ctx->dc;
1089 clk_mgr = dc->clk_mgr;
1090 link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1091
1092 if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
1093 return;
1094
1095 if (pipe_ctx->stream_res.audio) {
1096 for (i = 0; i < MAX_PIPES; i++) {
1097 /*current_state not updated yet*/
1098 if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1099 num_audio++;
1100 }
1101
1102 pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1103
1104 if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
1105 /*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1106 clk_mgr->funcs->enable_pme_wa(clk_mgr);
1107
1108 link_hwss->enable_audio_packet(pipe_ctx);
1109
1110 if (pipe_ctx->stream_res.audio)
1111 pipe_ctx->stream_res.audio->enabled = true;
1112 }
1113 }
1114
dce110_disable_audio_stream(struct pipe_ctx * pipe_ctx)1115 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1116 {
1117 struct dc *dc;
1118 struct clk_mgr *clk_mgr;
1119 const struct link_hwss *link_hwss;
1120
1121 if (!pipe_ctx || !pipe_ctx->stream)
1122 return;
1123
1124 dc = pipe_ctx->stream->ctx->dc;
1125 clk_mgr = dc->clk_mgr;
1126 link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1127
1128 if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1129 return;
1130
1131 link_hwss->disable_audio_packet(pipe_ctx);
1132
1133 if (pipe_ctx->stream_res.audio) {
1134 pipe_ctx->stream_res.audio->enabled = false;
1135
1136 if (clk_mgr->funcs->enable_pme_wa)
1137 /*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1138 clk_mgr->funcs->enable_pme_wa(clk_mgr);
1139
1140 /* TODO: notify audio driver for if audio modes list changed
1141 * add audio mode list change flag */
1142 /* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1143 * stream->stream_engine_id);
1144 */
1145 }
1146 }
1147
dce110_disable_stream(struct pipe_ctx * pipe_ctx)1148 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1149 {
1150 struct dc_stream_state *stream = pipe_ctx->stream;
1151 struct dc_link *link = stream->link;
1152 struct dc *dc = pipe_ctx->stream->ctx->dc;
1153 const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
1154 struct dccg *dccg = dc->res_pool->dccg;
1155 struct timing_generator *tg = pipe_ctx->stream_res.tg;
1156 struct dtbclk_dto_params dto_params = {0};
1157 int dp_hpo_inst;
1158 struct link_encoder *link_enc = pipe_ctx->link_res.dio_link_enc;
1159 struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc;
1160
1161 if (!dc->config.unify_link_enc_assignment)
1162 link_enc = link_enc_cfg_get_link_enc(link);
1163
1164 if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1165 pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1166 pipe_ctx->stream_res.stream_enc);
1167 pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1168 pipe_ctx->stream_res.stream_enc);
1169 }
1170
1171 if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1172 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->stop_dp_info_packets(
1173 pipe_ctx->stream_res.hpo_dp_stream_enc);
1174 } else if (dc_is_dp_signal(pipe_ctx->stream->signal))
1175 pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1176 pipe_ctx->stream_res.stream_enc);
1177
1178 dc->hwss.disable_audio_stream(pipe_ctx);
1179
1180 link_hwss->reset_stream_encoder(pipe_ctx);
1181
1182 if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx) && dccg) {
1183 dto_params.otg_inst = tg->inst;
1184 dto_params.timing = &pipe_ctx->stream->timing;
1185 dp_hpo_inst = pipe_ctx->stream_res.hpo_dp_stream_enc->inst;
1186 if (dccg) {
1187 dccg->funcs->disable_symclk32_se(dccg, dp_hpo_inst);
1188 dccg->funcs->set_dpstreamclk(dccg, REFCLK, tg->inst, dp_hpo_inst);
1189 if (!(dc->ctx->dce_version >= DCN_VERSION_3_5)) {
1190 if (dccg && dccg->funcs->set_dtbclk_dto)
1191 dccg->funcs->set_dtbclk_dto(dccg, &dto_params);
1192 }
1193 }
1194 } else if (dccg && dccg->funcs->disable_symclk_se) {
1195 dccg->funcs->disable_symclk_se(dccg, stream_enc->stream_enc_inst,
1196 link_enc->transmitter - TRANSMITTER_UNIPHY_A);
1197 }
1198 }
1199
dce110_unblank_stream(struct pipe_ctx * pipe_ctx,struct dc_link_settings * link_settings)1200 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1201 struct dc_link_settings *link_settings)
1202 {
1203 struct encoder_unblank_param params = { { 0 } };
1204 struct dc_stream_state *stream = pipe_ctx->stream;
1205 struct dc_link *link = stream->link;
1206 struct dce_hwseq *hws = link->dc->hwseq;
1207
1208 /* only 3 items below are used by unblank */
1209 params.timing = pipe_ctx->stream->timing;
1210 params.link_settings.link_rate = link_settings->link_rate;
1211
1212 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1213 pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, ¶ms);
1214
1215 if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1216 hws->funcs.edp_backlight_control(link, true);
1217 }
1218 }
1219
dce110_blank_stream(struct pipe_ctx * pipe_ctx)1220 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1221 {
1222 struct dc_stream_state *stream = pipe_ctx->stream;
1223 struct dc_link *link = stream->link;
1224 struct dce_hwseq *hws = link->dc->hwseq;
1225
1226 if (hws && hws->wa_state.skip_blank_stream)
1227 return;
1228
1229 if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1230 if (!link->skip_implict_edp_power_control && hws)
1231 hws->funcs.edp_backlight_control(link, false);
1232 link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1233 }
1234
1235 if (link->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1236 /* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
1237 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_blank(
1238 pipe_ctx->stream_res.hpo_dp_stream_enc);
1239 } else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1240 pipe_ctx->stream_res.stream_enc->funcs->dp_blank(link, pipe_ctx->stream_res.stream_enc);
1241
1242 if (!dc_is_embedded_signal(pipe_ctx->stream->signal)) {
1243 /*
1244 * After output is idle pattern some sinks need time to recognize the stream
1245 * has changed or they enter protection state and hang.
1246 */
1247 msleep(60);
1248 }
1249 }
1250
1251 if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP &&
1252 !link->dc->config.edp_no_power_sequencing) {
1253 /*
1254 * Sometimes, DP receiver chip power-controlled externally by an
1255 * Embedded Controller could be treated and used as eDP,
1256 * if it drives mobile display. In this case,
1257 * we shouldn't be doing power-sequencing, hence we can skip
1258 * waiting for T9-ready.
1259 */
1260 link->dc->link_srv->edp_receiver_ready_T9(link);
1261 }
1262
1263 }
1264
1265
dce110_set_avmute(struct pipe_ctx * pipe_ctx,bool enable)1266 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1267 {
1268 if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1269 pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1270 }
1271
translate_to_dto_source(enum controller_id crtc_id)1272 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1273 {
1274 switch (crtc_id) {
1275 case CONTROLLER_ID_D0:
1276 return DTO_SOURCE_ID0;
1277 case CONTROLLER_ID_D1:
1278 return DTO_SOURCE_ID1;
1279 case CONTROLLER_ID_D2:
1280 return DTO_SOURCE_ID2;
1281 case CONTROLLER_ID_D3:
1282 return DTO_SOURCE_ID3;
1283 case CONTROLLER_ID_D4:
1284 return DTO_SOURCE_ID4;
1285 case CONTROLLER_ID_D5:
1286 return DTO_SOURCE_ID5;
1287 default:
1288 return DTO_SOURCE_UNKNOWN;
1289 }
1290 }
1291
populate_audio_dp_link_info(const struct pipe_ctx * pipe_ctx,struct audio_dp_link_info * dp_link_info)1292 static void populate_audio_dp_link_info(
1293 const struct pipe_ctx *pipe_ctx,
1294 struct audio_dp_link_info *dp_link_info)
1295 {
1296 const struct dc_stream_state *stream = pipe_ctx->stream;
1297 const struct dc_link *link = stream->link;
1298 struct fixed31_32 link_bw_kbps;
1299
1300 dp_link_info->encoding = link->dc->link_srv->dp_get_encoding_format(
1301 &pipe_ctx->link_config.dp_link_settings);
1302 dp_link_info->is_mst = (stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST);
1303 dp_link_info->lane_count = pipe_ctx->link_config.dp_link_settings.lane_count;
1304 dp_link_info->link_rate = pipe_ctx->link_config.dp_link_settings.link_rate;
1305
1306 link_bw_kbps = dc_fixpt_from_int(dc_link_bandwidth_kbps(link,
1307 &pipe_ctx->link_config.dp_link_settings));
1308
1309 /* For audio stream calculations, the video stream should not include FEC or SSC
1310 * in order to get the most pessimistic values.
1311 */
1312 if (dp_link_info->encoding == DP_8b_10b_ENCODING &&
1313 link->dc->link_srv->dp_is_fec_supported(link)) {
1314 link_bw_kbps = dc_fixpt_mul(link_bw_kbps,
1315 dc_fixpt_from_fraction(100, DATA_EFFICIENCY_8b_10b_FEC_EFFICIENCY_x100));
1316 } else if (dp_link_info->encoding == DP_128b_132b_ENCODING) {
1317 link_bw_kbps = dc_fixpt_mul(link_bw_kbps,
1318 dc_fixpt_from_fraction(10000, 9975)); /* 99.75% SSC overhead*/
1319 }
1320
1321 dp_link_info->link_bandwidth_kbps = dc_fixpt_floor(link_bw_kbps);
1322
1323 /* Calculates hblank_min_symbol_width for 128b/132b
1324 * Corresponding HBLANK_MIN_SYMBOL_WIDTH register is calculated as:
1325 * floor(h_blank * bits_per_pixel / 128)
1326 */
1327 if (dp_link_info->encoding == DP_128b_132b_ENCODING) {
1328 struct dc_crtc_timing *crtc_timing = &pipe_ctx->stream->timing;
1329
1330 uint32_t h_active = crtc_timing->h_addressable + crtc_timing->h_border_left
1331 + crtc_timing->h_border_right;
1332 uint32_t h_blank = crtc_timing->h_total - h_active;
1333
1334 uint32_t bpp;
1335
1336 if (crtc_timing->flags.DSC) {
1337 bpp = crtc_timing->dsc_cfg.bits_per_pixel;
1338 } else {
1339 /* When the timing is using DSC, dsc_cfg.bits_per_pixel is in 16th bits.
1340 * The bpp in this path is scaled to 16th bits so the final calculation
1341 * is correct for both cases.
1342 */
1343 bpp = 16;
1344 switch (crtc_timing->display_color_depth) {
1345 case COLOR_DEPTH_666:
1346 bpp *= 18;
1347 break;
1348 case COLOR_DEPTH_888:
1349 bpp *= 24;
1350 break;
1351 case COLOR_DEPTH_101010:
1352 bpp *= 30;
1353 break;
1354 case COLOR_DEPTH_121212:
1355 bpp *= 36;
1356 break;
1357 default:
1358 bpp = 0;
1359 break;
1360 }
1361
1362 switch (crtc_timing->pixel_encoding) {
1363 case PIXEL_ENCODING_YCBCR422:
1364 bpp = bpp * 2 / 3;
1365 break;
1366 case PIXEL_ENCODING_YCBCR420:
1367 bpp /= 2;
1368 break;
1369 default:
1370 break;
1371 }
1372 }
1373
1374 /* Min symbol width = floor(h_blank * (bpp/16) / 128) */
1375 dp_link_info->hblank_min_symbol_width = dc_fixpt_floor(
1376 dc_fixpt_div(dc_fixpt_from_int(h_blank * bpp),
1377 dc_fixpt_from_int(128 / 16)));
1378
1379 } else {
1380 dp_link_info->hblank_min_symbol_width = 0;
1381 }
1382 }
1383
build_audio_output(struct dc_state * state,const struct pipe_ctx * pipe_ctx,struct audio_output * audio_output)1384 void build_audio_output(
1385 struct dc_state *state,
1386 const struct pipe_ctx *pipe_ctx,
1387 struct audio_output *audio_output)
1388 {
1389 const struct dc_stream_state *stream = pipe_ctx->stream;
1390 audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1391
1392 audio_output->signal = pipe_ctx->stream->signal;
1393
1394 /* audio_crtc_info */
1395
1396 audio_output->crtc_info.h_total =
1397 stream->timing.h_total;
1398
1399 /*
1400 * Audio packets are sent during actual CRTC blank physical signal, we
1401 * need to specify actual active signal portion
1402 */
1403 audio_output->crtc_info.h_active =
1404 stream->timing.h_addressable
1405 + stream->timing.h_border_left
1406 + stream->timing.h_border_right;
1407
1408 audio_output->crtc_info.v_active =
1409 stream->timing.v_addressable
1410 + stream->timing.v_border_top
1411 + stream->timing.v_border_bottom;
1412
1413 audio_output->crtc_info.pixel_repetition = 1;
1414
1415 audio_output->crtc_info.interlaced =
1416 stream->timing.flags.INTERLACE;
1417
1418 audio_output->crtc_info.refresh_rate =
1419 (stream->timing.pix_clk_100hz*100)/
1420 (stream->timing.h_total*stream->timing.v_total);
1421
1422 audio_output->crtc_info.color_depth =
1423 stream->timing.display_color_depth;
1424
1425 audio_output->crtc_info.requested_pixel_clock_100Hz =
1426 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1427
1428 audio_output->crtc_info.calculated_pixel_clock_100Hz =
1429 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1430
1431 audio_output->crtc_info.pixel_encoding =
1432 stream->timing.pixel_encoding;
1433
1434 audio_output->crtc_info.dsc_bits_per_pixel =
1435 stream->timing.dsc_cfg.bits_per_pixel;
1436
1437 audio_output->crtc_info.dsc_num_slices =
1438 stream->timing.dsc_cfg.num_slices_h;
1439
1440 /*for HDMI, audio ACR is with deep color ratio factor*/
1441 if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1442 audio_output->crtc_info.requested_pixel_clock_100Hz ==
1443 (stream->timing.pix_clk_100hz)) {
1444 if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1445 audio_output->crtc_info.requested_pixel_clock_100Hz =
1446 audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1447 audio_output->crtc_info.calculated_pixel_clock_100Hz =
1448 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1449
1450 }
1451 }
1452
1453 if (state->clk_mgr &&
1454 (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1455 pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1456 audio_output->pll_info.audio_dto_source_clock_in_khz =
1457 state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1458 state->clk_mgr);
1459 }
1460
1461 audio_output->pll_info.feed_back_divider =
1462 pipe_ctx->pll_settings.feedback_divider;
1463
1464 audio_output->pll_info.dto_source =
1465 translate_to_dto_source(
1466 pipe_ctx->stream_res.tg->inst + 1);
1467
1468 /* TODO hard code to enable for now. Need get from stream */
1469 audio_output->pll_info.ss_enabled = true;
1470
1471 audio_output->pll_info.ss_percentage =
1472 pipe_ctx->pll_settings.ss_percentage;
1473
1474 if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1475 populate_audio_dp_link_info(pipe_ctx, &audio_output->dp_link_info);
1476 }
1477 }
1478
program_scaler(const struct dc * dc,const struct pipe_ctx * pipe_ctx)1479 static void program_scaler(const struct dc *dc,
1480 const struct pipe_ctx *pipe_ctx)
1481 {
1482 struct tg_color color = {0};
1483
1484 /* TOFPGA */
1485 if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1486 return;
1487
1488 if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1489 get_surface_visual_confirm_color(pipe_ctx, &color);
1490 else
1491 color_space_to_black_color(dc,
1492 pipe_ctx->stream->output_color_space,
1493 &color);
1494
1495 pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1496 pipe_ctx->plane_res.xfm,
1497 pipe_ctx->plane_res.scl_data.lb_params.depth,
1498 &pipe_ctx->stream->bit_depth_params);
1499
1500 if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1501 /*
1502 * The way 420 is packed, 2 channels carry Y component, 1 channel
1503 * alternate between Cb and Cr, so both channels need the pixel
1504 * value for Y
1505 */
1506 if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1507 color.color_r_cr = color.color_g_y;
1508
1509 pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1510 pipe_ctx->stream_res.tg,
1511 &color);
1512 }
1513
1514 pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1515 &pipe_ctx->plane_res.scl_data);
1516 }
1517
dce110_enable_stream_timing(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1518 static enum dc_status dce110_enable_stream_timing(
1519 struct pipe_ctx *pipe_ctx,
1520 struct dc_state *context,
1521 struct dc *dc)
1522 {
1523 struct dc_stream_state *stream = pipe_ctx->stream;
1524 struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1525 pipe_ctx[pipe_ctx->pipe_idx];
1526 struct tg_color black_color = {0};
1527
1528 if (!pipe_ctx_old->stream) {
1529
1530 /* program blank color */
1531 color_space_to_black_color(dc,
1532 stream->output_color_space, &black_color);
1533 pipe_ctx->stream_res.tg->funcs->set_blank_color(
1534 pipe_ctx->stream_res.tg,
1535 &black_color);
1536
1537 /*
1538 * Must blank CRTC after disabling power gating and before any
1539 * programming, otherwise CRTC will be hung in bad state
1540 */
1541 pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1542
1543 if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1544 pipe_ctx->clock_source,
1545 &pipe_ctx->stream_res.pix_clk_params,
1546 dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings),
1547 &pipe_ctx->pll_settings)) {
1548 BREAK_TO_DEBUGGER();
1549 return DC_ERROR_UNEXPECTED;
1550 }
1551
1552 if (dc_is_hdmi_tmds_signal(stream->signal)) {
1553 stream->link->phy_state.symclk_ref_cnts.otg = 1;
1554 if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
1555 stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
1556 else
1557 stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
1558 }
1559
1560 pipe_ctx->stream_res.tg->funcs->program_timing(
1561 pipe_ctx->stream_res.tg,
1562 &stream->timing,
1563 0,
1564 0,
1565 0,
1566 0,
1567 0,
1568 pipe_ctx->stream->signal,
1569 true);
1570 }
1571
1572 if (!pipe_ctx_old->stream) {
1573 if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1574 pipe_ctx->stream_res.tg)) {
1575 BREAK_TO_DEBUGGER();
1576 return DC_ERROR_UNEXPECTED;
1577 }
1578 }
1579
1580 return DC_OK;
1581 }
1582
dce110_apply_single_controller_ctx_to_hw(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1583 enum dc_status dce110_apply_single_controller_ctx_to_hw(
1584 struct pipe_ctx *pipe_ctx,
1585 struct dc_state *context,
1586 struct dc *dc)
1587 {
1588 struct dc_stream_state *stream = pipe_ctx->stream;
1589 struct dc_link *link = stream->link;
1590 struct drr_params params = {0};
1591 unsigned int event_triggers = 0;
1592 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1593 struct dce_hwseq *hws = dc->hwseq;
1594 const struct link_hwss *link_hwss = get_link_hwss(
1595 link, &pipe_ctx->link_res);
1596
1597
1598 if (hws->funcs.disable_stream_gating) {
1599 hws->funcs.disable_stream_gating(dc, pipe_ctx);
1600 }
1601
1602 if (pipe_ctx->stream_res.audio != NULL) {
1603 struct audio_output audio_output = {0};
1604
1605 build_audio_output(context, pipe_ctx, &audio_output);
1606
1607 link_hwss->setup_audio_output(pipe_ctx, &audio_output,
1608 pipe_ctx->stream_res.audio->inst);
1609
1610 pipe_ctx->stream_res.audio->funcs->az_configure(
1611 pipe_ctx->stream_res.audio,
1612 pipe_ctx->stream->signal,
1613 &audio_output.crtc_info,
1614 &pipe_ctx->stream->audio_info,
1615 &audio_output.dp_link_info);
1616
1617 if (dc->config.disable_hbr_audio_dp2)
1618 if (pipe_ctx->stream_res.audio->funcs->az_disable_hbr_audio &&
1619 dc->link_srv->dp_is_128b_132b_signal(pipe_ctx))
1620 pipe_ctx->stream_res.audio->funcs->az_disable_hbr_audio(pipe_ctx->stream_res.audio);
1621 }
1622
1623 /* make sure no pipes syncd to the pipe being enabled */
1624 if (!pipe_ctx->stream->apply_seamless_boot_optimization && dc->config.use_pipe_ctx_sync_logic)
1625 check_syncd_pipes_for_disabled_master_pipe(dc, context, pipe_ctx->pipe_idx);
1626
1627 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1628 pipe_ctx->stream_res.opp,
1629 &stream->bit_depth_params,
1630 &stream->clamping);
1631
1632 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1633 pipe_ctx->stream_res.opp,
1634 COLOR_SPACE_YCBCR601,
1635 stream->timing.display_color_depth,
1636 stream->signal);
1637
1638 while (odm_pipe) {
1639 odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1640 odm_pipe->stream_res.opp,
1641 COLOR_SPACE_YCBCR601,
1642 stream->timing.display_color_depth,
1643 stream->signal);
1644
1645 odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1646 odm_pipe->stream_res.opp,
1647 &stream->bit_depth_params,
1648 &stream->clamping);
1649 odm_pipe = odm_pipe->next_odm_pipe;
1650 }
1651
1652 /* DCN3.1 FPGA Workaround
1653 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1654 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1655 * function core_link_enable_stream
1656 */
1657 if (!(hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)))
1658 /* */
1659 /* Do not touch stream timing on seamless boot optimization. */
1660 if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1661 hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1662
1663 if (hws->funcs.setup_vupdate_interrupt)
1664 hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1665
1666 params.vertical_total_min = stream->adjust.v_total_min;
1667 params.vertical_total_max = stream->adjust.v_total_max;
1668 set_drr_and_clear_adjust_pending(pipe_ctx, stream, ¶ms);
1669
1670 // DRR should set trigger event to monitor surface update event
1671 if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1672 event_triggers = 0x80;
1673 /* Event triggers and num frames initialized for DRR, but can be
1674 * later updated for PSR use. Note DRR trigger events are generated
1675 * regardless of whether num frames met.
1676 */
1677 if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1678 pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1679 pipe_ctx->stream_res.tg, event_triggers, 2);
1680
1681 if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1682 pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1683 pipe_ctx->stream_res.stream_enc,
1684 pipe_ctx->stream_res.tg->inst);
1685
1686 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1687 dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_CONNECT_DIG_FE_OTG);
1688
1689 /* Temporary workaround to perform DSC programming ahead of stream enablement
1690 * for smartmux/SPRS
1691 * TODO: Remove SmartMux/SPRS checks once movement of DSC programming is generalized
1692 */
1693 if (pipe_ctx->stream->timing.flags.DSC) {
1694 if ((pipe_ctx->stream->signal == SIGNAL_TYPE_EDP &&
1695 ((link->dc->config.smart_mux_version && link->dc->is_switch_in_progress_dest)
1696 || link->is_dds || link->skip_implict_edp_power_control)) &&
1697 (dc_is_dp_signal(pipe_ctx->stream->signal) ||
1698 dc_is_virtual_signal(pipe_ctx->stream->signal)))
1699 dc->link_srv->set_dsc_enable(pipe_ctx, true);
1700 }
1701
1702 if (!stream->dpms_off)
1703 dc->link_srv->set_dpms_on(context, pipe_ctx);
1704
1705 /* DCN3.1 FPGA Workaround
1706 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1707 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1708 * function core_link_enable_stream
1709 */
1710 if (hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1711 if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1712 hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1713 }
1714
1715 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
1716
1717 /* Phantom and main stream share the same link (because the stream
1718 * is constructed with the same sink). Make sure not to override
1719 * and link programming on the main.
1720 */
1721 if (dc_state_get_pipe_subvp_type(context, pipe_ctx) != SUBVP_PHANTOM) {
1722 pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1723 pipe_ctx->stream->link->replay_settings.replay_feature_enabled = false;
1724 }
1725 return DC_OK;
1726 }
1727
1728 /******************************************************************************/
1729
power_down_encoders(struct dc * dc)1730 static void power_down_encoders(struct dc *dc)
1731 {
1732 int i;
1733
1734 for (i = 0; i < dc->link_count; i++) {
1735 enum signal_type signal = dc->links[i]->connector_signal;
1736
1737 dc->link_srv->blank_dp_stream(dc->links[i], false);
1738
1739 if (signal != SIGNAL_TYPE_EDP)
1740 signal = SIGNAL_TYPE_NONE;
1741
1742 if (dc->links[i]->ep_type == DISPLAY_ENDPOINT_PHY)
1743 dc->links[i]->link_enc->funcs->disable_output(
1744 dc->links[i]->link_enc, signal);
1745
1746 dc->links[i]->link_status.link_active = false;
1747 memset(&dc->links[i]->cur_link_settings, 0,
1748 sizeof(dc->links[i]->cur_link_settings));
1749 }
1750 }
1751
power_down_controllers(struct dc * dc)1752 static void power_down_controllers(struct dc *dc)
1753 {
1754 int i;
1755
1756 for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1757 dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1758 dc->res_pool->timing_generators[i]);
1759 }
1760 }
1761
power_down_clock_sources(struct dc * dc)1762 static void power_down_clock_sources(struct dc *dc)
1763 {
1764 int i;
1765
1766 if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1767 dc->res_pool->dp_clock_source) == false)
1768 dm_error("Failed to power down pll! (dp clk src)\n");
1769
1770 for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1771 if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1772 dc->res_pool->clock_sources[i]) == false)
1773 dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1774 }
1775 }
1776
power_down_all_hw_blocks(struct dc * dc)1777 static void power_down_all_hw_blocks(struct dc *dc)
1778 {
1779 power_down_encoders(dc);
1780
1781 power_down_controllers(dc);
1782
1783 power_down_clock_sources(dc);
1784
1785 if (dc->fbc_compressor)
1786 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1787 }
1788
disable_vga_and_power_gate_all_controllers(struct dc * dc)1789 static void disable_vga_and_power_gate_all_controllers(
1790 struct dc *dc)
1791 {
1792 int i;
1793 struct timing_generator *tg;
1794 struct dc_context *ctx = dc->ctx;
1795
1796 for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1797 tg = dc->res_pool->timing_generators[i];
1798
1799 if (tg->funcs->disable_vga)
1800 tg->funcs->disable_vga(tg);
1801 }
1802 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1803 /* Enable CLOCK gating for each pipe BEFORE controller
1804 * powergating. */
1805 enable_display_pipe_clock_gating(ctx,
1806 true);
1807
1808 dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1809 dc->hwss.disable_plane(dc, dc->current_state,
1810 &dc->current_state->res_ctx.pipe_ctx[i]);
1811 }
1812 }
1813
1814
get_edp_streams(struct dc_state * context,struct dc_stream_state ** edp_streams,int * edp_stream_num)1815 static void get_edp_streams(struct dc_state *context,
1816 struct dc_stream_state **edp_streams,
1817 int *edp_stream_num)
1818 {
1819 int i;
1820
1821 *edp_stream_num = 0;
1822 for (i = 0; i < context->stream_count; i++) {
1823 if (context->streams[i]->signal == SIGNAL_TYPE_EDP) {
1824 edp_streams[*edp_stream_num] = context->streams[i];
1825 if (++(*edp_stream_num) == MAX_NUM_EDP)
1826 return;
1827 }
1828 }
1829 }
1830
get_edp_links_with_sink(struct dc * dc,struct dc_link ** edp_links_with_sink,int * edp_with_sink_num)1831 static void get_edp_links_with_sink(
1832 struct dc *dc,
1833 struct dc_link **edp_links_with_sink,
1834 int *edp_with_sink_num)
1835 {
1836 int i;
1837
1838 /* check if there is an eDP panel not in use */
1839 *edp_with_sink_num = 0;
1840 for (i = 0; i < dc->link_count; i++) {
1841 if (dc->links[i]->local_sink &&
1842 dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1843 edp_links_with_sink[*edp_with_sink_num] = dc->links[i];
1844 if (++(*edp_with_sink_num) == MAX_NUM_EDP)
1845 return;
1846 }
1847 }
1848 }
1849
clean_up_dsc_blocks(struct dc * dc)1850 static void clean_up_dsc_blocks(struct dc *dc)
1851 {
1852 struct display_stream_compressor *dsc = NULL;
1853 struct timing_generator *tg = NULL;
1854 struct stream_encoder *se = NULL;
1855 struct dccg *dccg = dc->res_pool->dccg;
1856 struct pg_cntl *pg_cntl = dc->res_pool->pg_cntl;
1857 int i;
1858
1859 if (!dc->caps.is_apu ||
1860 dc->ctx->dce_version < DCN_VERSION_3_15)
1861 return;
1862 /*VBIOS supports dsc starts from dcn315*/
1863 for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++) {
1864 struct dcn_dsc_state s = {0};
1865
1866 dsc = dc->res_pool->dscs[i];
1867 dsc->funcs->dsc_read_state(dsc, &s);
1868 if (s.dsc_fw_en) {
1869 /* disable DSC in OPTC */
1870 if (i < dc->res_pool->timing_generator_count) {
1871 tg = dc->res_pool->timing_generators[i];
1872 tg->funcs->set_dsc_config(tg, OPTC_DSC_DISABLED, 0, 0);
1873 }
1874 /* disable DSC in stream encoder */
1875 if (i < dc->res_pool->stream_enc_count) {
1876 se = dc->res_pool->stream_enc[i];
1877 se->funcs->dp_set_dsc_config(se, OPTC_DSC_DISABLED, 0, 0);
1878 se->funcs->dp_set_dsc_pps_info_packet(se, false, NULL, true);
1879 }
1880 /* disable DSC block */
1881 if (dccg->funcs->set_ref_dscclk)
1882 dccg->funcs->set_ref_dscclk(dccg, dsc->inst);
1883 dsc->funcs->dsc_disable(dsc);
1884
1885 /* power down DSC */
1886 if (pg_cntl != NULL)
1887 pg_cntl->funcs->dsc_pg_control(pg_cntl, dsc->inst, false);
1888 }
1889 }
1890 }
1891
1892 /*
1893 * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1894 * 1. Power down all DC HW blocks
1895 * 2. Disable VGA engine on all controllers
1896 * 3. Enable power gating for controller
1897 * 4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1898 */
dce110_enable_accelerated_mode(struct dc * dc,struct dc_state * context)1899 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1900 {
1901 struct dc_link *edp_links_with_sink[MAX_NUM_EDP];
1902 struct dc_link *edp_links[MAX_NUM_EDP];
1903 struct dc_stream_state *edp_streams[MAX_NUM_EDP];
1904 struct dc_link *edp_link_with_sink = NULL;
1905 struct dc_link *edp_link = NULL;
1906 struct pipe_ctx *pipe_ctx = NULL;
1907 struct dce_hwseq *hws = dc->hwseq;
1908 int edp_with_sink_num;
1909 int edp_num;
1910 int edp_stream_num;
1911 int i;
1912 bool can_apply_edp_fast_boot = false;
1913 bool can_apply_seamless_boot = false;
1914 bool keep_edp_vdd_on = false;
1915 struct dc_bios *dcb = dc->ctx->dc_bios;
1916 DC_LOGGER_INIT();
1917
1918
1919 get_edp_links_with_sink(dc, edp_links_with_sink, &edp_with_sink_num);
1920 dc_get_edp_links(dc, edp_links, &edp_num);
1921
1922 if (hws->funcs.init_pipes)
1923 hws->funcs.init_pipes(dc, context);
1924
1925 get_edp_streams(context, edp_streams, &edp_stream_num);
1926
1927 // Check fastboot support, disable on DCE8 because of blank screens
1928 if (edp_num && edp_stream_num && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1929 dc->ctx->dce_version != DCE_VERSION_8_1 &&
1930 dc->ctx->dce_version != DCE_VERSION_8_3) {
1931 for (i = 0; i < edp_num; i++) {
1932 edp_link = edp_links[i];
1933 if (edp_link != edp_streams[0]->link)
1934 continue;
1935 // enable fastboot if backend is enabled on eDP
1936 if (edp_link->link_enc->funcs->is_dig_enabled &&
1937 edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
1938 edp_link->link_status.link_active) {
1939 struct dc_stream_state *edp_stream = edp_streams[0];
1940
1941 can_apply_edp_fast_boot = dc_validate_boot_timing(dc,
1942 edp_stream->sink, &edp_stream->timing);
1943
1944 // For Mux-platform, the default value is false.
1945 // Disable fast boot during mux switching.
1946 // The flag would be clean after switching done.
1947 if (dc->is_switch_in_progress_dest && edp_link->is_dds)
1948 can_apply_edp_fast_boot = false;
1949
1950 edp_stream->apply_edp_fast_boot_optimization = can_apply_edp_fast_boot;
1951 if (can_apply_edp_fast_boot) {
1952 DC_LOG_EVENT_LINK_TRAINING("eDP fast boot Enable\n");
1953
1954 // Vbios & Driver support different pixel rate div policy.
1955 pipe_ctx = resource_get_otg_master_for_stream(&context->res_ctx, edp_stream);
1956 if (pipe_ctx &&
1957 hws->funcs.is_dp_dig_pixel_rate_div_policy &&
1958 hws->funcs.is_dp_dig_pixel_rate_div_policy(pipe_ctx)) {
1959 // Get Vbios div factor from register
1960 dc->res_pool->dccg->funcs->get_pixel_rate_div(
1961 dc->res_pool->dccg,
1962 pipe_ctx->stream_res.tg->inst,
1963 &pipe_ctx->pixel_rate_divider.div_factor1,
1964 &pipe_ctx->pixel_rate_divider.div_factor2);
1965
1966 // VBios doesn't support pixel rate div, so force it.
1967 // If VBios supports it, we check it from reigster or other flags.
1968 pipe_ctx->stream_res.pix_clk_params.dio_se_pix_per_cycle = 1;
1969 }
1970 }
1971 break;
1972 }
1973 }
1974 // We are trying to enable eDP, don't power down VDD
1975 if (can_apply_edp_fast_boot)
1976 keep_edp_vdd_on = true;
1977 }
1978
1979 // Check seamless boot support
1980 for (i = 0; i < context->stream_count; i++) {
1981 if (context->streams[i]->apply_seamless_boot_optimization) {
1982 can_apply_seamless_boot = true;
1983 break;
1984 }
1985 }
1986
1987 /* eDP should not have stream in resume from S4 and so even with VBios post
1988 * it should get turned off
1989 */
1990 if (edp_with_sink_num)
1991 edp_link_with_sink = edp_links_with_sink[0];
1992
1993 // During a mux switch, powering down the HW blocks and then enabling
1994 // the link via a DPCD SET_POWER write causes a brief flash
1995 keep_edp_vdd_on |= dc->is_switch_in_progress_dest;
1996
1997 if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1998 if (edp_link_with_sink && !keep_edp_vdd_on) {
1999 /*turn off backlight before DP_blank and encoder powered down*/
2000 hws->funcs.edp_backlight_control(edp_link_with_sink, false);
2001 }
2002 /*resume from S3, no vbios posting, no need to power down again*/
2003 if (dcb && dcb->funcs && !dcb->funcs->is_accelerated_mode(dcb))
2004 clk_mgr_exit_optimized_pwr_state(dc, dc->clk_mgr);
2005
2006 power_down_all_hw_blocks(dc);
2007
2008 /* DSC could be enabled on eDP during VBIOS post.
2009 * To clean up dsc blocks if eDP is in link but not active.
2010 */
2011 if (edp_link_with_sink && (edp_stream_num == 0))
2012 clean_up_dsc_blocks(dc);
2013
2014 disable_vga_and_power_gate_all_controllers(dc);
2015 if (edp_link_with_sink && !keep_edp_vdd_on)
2016 dc->hwss.edp_power_control(edp_link_with_sink, false);
2017 if (dcb && dcb->funcs && !dcb->funcs->is_accelerated_mode(dcb))
2018 clk_mgr_optimize_pwr_state(dc, dc->clk_mgr);
2019 }
2020 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 1);
2021 }
2022
compute_pstate_blackout_duration(struct bw_fixed blackout_duration,const struct dc_stream_state * stream)2023 static uint32_t compute_pstate_blackout_duration(
2024 struct bw_fixed blackout_duration,
2025 const struct dc_stream_state *stream)
2026 {
2027 uint32_t total_dest_line_time_ns;
2028 uint32_t pstate_blackout_duration_ns;
2029
2030 pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
2031
2032 total_dest_line_time_ns = 1000000UL *
2033 (stream->timing.h_total * 10) /
2034 stream->timing.pix_clk_100hz +
2035 pstate_blackout_duration_ns;
2036
2037 return total_dest_line_time_ns;
2038 }
2039
dce110_set_displaymarks(const struct dc * dc,struct dc_state * context)2040 static void dce110_set_displaymarks(
2041 const struct dc *dc,
2042 struct dc_state *context)
2043 {
2044 uint8_t i, num_pipes;
2045 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
2046
2047 for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
2048 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2049 uint32_t total_dest_line_time_ns;
2050
2051 if (pipe_ctx->stream == NULL)
2052 continue;
2053
2054 total_dest_line_time_ns = compute_pstate_blackout_duration(
2055 dc->bw_vbios->blackout_duration, pipe_ctx->stream);
2056 pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
2057 pipe_ctx->plane_res.mi,
2058 context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
2059 context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
2060 context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
2061 context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
2062 total_dest_line_time_ns);
2063 if (i == underlay_idx) {
2064 num_pipes++;
2065 pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
2066 pipe_ctx->plane_res.mi,
2067 context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
2068 context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
2069 context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
2070 total_dest_line_time_ns);
2071 }
2072 num_pipes++;
2073 }
2074 }
2075
dce110_set_safe_displaymarks(struct resource_context * res_ctx,const struct resource_pool * pool)2076 void dce110_set_safe_displaymarks(
2077 struct resource_context *res_ctx,
2078 const struct resource_pool *pool)
2079 {
2080 int i;
2081 int underlay_idx = pool->underlay_pipe_index;
2082 struct dce_watermarks max_marks = {
2083 MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
2084 struct dce_watermarks nbp_marks = {
2085 SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
2086 struct dce_watermarks min_marks = { 0, 0, 0, 0};
2087
2088 for (i = 0; i < MAX_PIPES; i++) {
2089 if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
2090 continue;
2091
2092 res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
2093 res_ctx->pipe_ctx[i].plane_res.mi,
2094 nbp_marks,
2095 max_marks,
2096 min_marks,
2097 max_marks,
2098 MAX_WATERMARK);
2099
2100 if (i == underlay_idx)
2101 res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
2102 res_ctx->pipe_ctx[i].plane_res.mi,
2103 nbp_marks,
2104 max_marks,
2105 max_marks,
2106 MAX_WATERMARK);
2107
2108 }
2109 }
2110
2111 /*******************************************************************************
2112 * Public functions
2113 ******************************************************************************/
2114
set_drr(struct pipe_ctx ** pipe_ctx,int num_pipes,struct dc_crtc_timing_adjust adjust)2115 static void set_drr(struct pipe_ctx **pipe_ctx,
2116 int num_pipes, struct dc_crtc_timing_adjust adjust)
2117 {
2118 int i = 0;
2119 struct drr_params params = {0};
2120 // DRR should set trigger event to monitor surface update event
2121 unsigned int event_triggers = 0x80;
2122 // Note DRR trigger events are generated regardless of whether num frames met.
2123 unsigned int num_frames = 2;
2124
2125 params.vertical_total_max = adjust.v_total_max;
2126 params.vertical_total_min = adjust.v_total_min;
2127
2128 /* TODO: If multiple pipes are to be supported, you need
2129 * some GSL stuff. Static screen triggers may be programmed differently
2130 * as well.
2131 */
2132 for (i = 0; i < num_pipes; i++) {
2133 /* dc_state_destruct() might null the stream resources, so fetch tg
2134 * here first to avoid a race condition. The lifetime of the pointee
2135 * itself (the timing_generator object) is not a problem here.
2136 */
2137 struct timing_generator *tg = pipe_ctx[i]->stream_res.tg;
2138
2139 if ((tg != NULL) && tg->funcs) {
2140 set_drr_and_clear_adjust_pending(pipe_ctx[i], pipe_ctx[i]->stream, ¶ms);
2141 if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
2142 if (tg->funcs->set_static_screen_control)
2143 tg->funcs->set_static_screen_control(
2144 tg, event_triggers, num_frames);
2145 }
2146 }
2147 }
2148
get_position(struct pipe_ctx ** pipe_ctx,int num_pipes,struct crtc_position * position)2149 static void get_position(struct pipe_ctx **pipe_ctx,
2150 int num_pipes,
2151 struct crtc_position *position)
2152 {
2153 int i = 0;
2154
2155 /* TODO: handle pipes > 1
2156 */
2157 for (i = 0; i < num_pipes; i++)
2158 pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
2159 }
2160
set_static_screen_control(struct pipe_ctx ** pipe_ctx,int num_pipes,const struct dc_static_screen_params * params)2161 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
2162 int num_pipes, const struct dc_static_screen_params *params)
2163 {
2164 unsigned int i;
2165 unsigned int triggers = 0;
2166
2167 if (params->triggers.overlay_update)
2168 triggers |= 0x100;
2169 if (params->triggers.surface_update)
2170 triggers |= 0x80;
2171 if (params->triggers.cursor_update)
2172 triggers |= 0x2;
2173 if (params->triggers.force_trigger)
2174 triggers |= 0x1;
2175
2176 if (num_pipes) {
2177 struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
2178
2179 if (dc->fbc_compressor)
2180 triggers |= 0x84;
2181 }
2182
2183 for (i = 0; i < num_pipes; i++)
2184 pipe_ctx[i]->stream_res.tg->funcs->
2185 set_static_screen_control(pipe_ctx[i]->stream_res.tg,
2186 triggers, params->num_frames);
2187 }
2188
2189 /*
2190 * Check if FBC can be enabled
2191 */
should_enable_fbc(struct dc * dc,struct dc_state * context,uint32_t * pipe_idx)2192 static bool should_enable_fbc(struct dc *dc,
2193 struct dc_state *context,
2194 uint32_t *pipe_idx)
2195 {
2196 uint32_t i;
2197 struct pipe_ctx *pipe_ctx = NULL;
2198 struct resource_context *res_ctx = &context->res_ctx;
2199 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
2200
2201
2202 ASSERT(dc->fbc_compressor);
2203
2204 /* FBC memory should be allocated */
2205 if (!dc->ctx->fbc_gpu_addr)
2206 return false;
2207
2208 /* Only supports single display */
2209 if (context->stream_count != 1)
2210 return false;
2211
2212 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2213 if (res_ctx->pipe_ctx[i].stream) {
2214
2215 pipe_ctx = &res_ctx->pipe_ctx[i];
2216
2217 /* fbc not applicable on underlay pipe */
2218 if (pipe_ctx->pipe_idx != underlay_idx) {
2219 *pipe_idx = i;
2220 break;
2221 }
2222 }
2223 }
2224
2225 if (i == dc->res_pool->pipe_count)
2226 return false;
2227
2228 if (!pipe_ctx->stream->link)
2229 return false;
2230
2231 /* Only supports eDP */
2232 if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
2233 return false;
2234
2235 /* PSR should not be enabled */
2236 if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
2237 return false;
2238
2239 /* Replay should not be enabled */
2240 if (pipe_ctx->stream->link->replay_settings.replay_feature_enabled)
2241 return false;
2242
2243 /* Nothing to compress */
2244 if (!pipe_ctx->plane_state)
2245 return false;
2246
2247 /* Only for non-linear tiling */
2248 if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
2249 return false;
2250
2251 return true;
2252 }
2253
2254 /*
2255 * Enable FBC
2256 */
enable_fbc(struct dc * dc,struct dc_state * context)2257 static void enable_fbc(
2258 struct dc *dc,
2259 struct dc_state *context)
2260 {
2261 uint32_t pipe_idx = 0;
2262
2263 if (should_enable_fbc(dc, context, &pipe_idx)) {
2264 /* Program GRPH COMPRESSED ADDRESS and PITCH */
2265 struct compr_addr_and_pitch_params params = {0, 0, 0};
2266 struct compressor *compr = dc->fbc_compressor;
2267 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2268
2269 params.source_view_width = pipe_ctx->stream->timing.h_addressable;
2270 params.source_view_height = pipe_ctx->stream->timing.v_addressable;
2271 params.inst = pipe_ctx->stream_res.tg->inst;
2272 compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
2273
2274 compr->funcs->surface_address_and_pitch(compr, ¶ms);
2275 compr->funcs->set_fbc_invalidation_triggers(compr, 1);
2276
2277 compr->funcs->enable_fbc(compr, ¶ms);
2278 }
2279 }
2280
dce110_reset_hw_ctx_wrap(struct dc * dc,struct dc_state * context)2281 static void dce110_reset_hw_ctx_wrap(
2282 struct dc *dc,
2283 struct dc_state *context)
2284 {
2285 int i;
2286
2287 /* Reset old context */
2288 /* look up the targets that have been removed since last commit */
2289 for (i = 0; i < MAX_PIPES; i++) {
2290 struct pipe_ctx *pipe_ctx_old =
2291 &dc->current_state->res_ctx.pipe_ctx[i];
2292 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2293
2294 /* Note: We need to disable output if clock sources change,
2295 * since bios does optimization and doesn't apply if changing
2296 * PHY when not already disabled.
2297 */
2298
2299 /* Skip underlay pipe since it will be handled in commit surface*/
2300 if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
2301 continue;
2302
2303 if (!pipe_ctx->stream ||
2304 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2305 struct clock_source *old_clk = pipe_ctx_old->clock_source;
2306
2307 /* Disable if new stream is null. O/w, if stream is
2308 * disabled already, no need to disable again.
2309 */
2310 if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
2311 dc->link_srv->set_dpms_off(pipe_ctx_old);
2312
2313 /* free acquired resources*/
2314 if (pipe_ctx_old->stream_res.audio) {
2315 /*disable az_endpoint*/
2316 pipe_ctx_old->stream_res.audio->funcs->
2317 az_disable(pipe_ctx_old->stream_res.audio);
2318
2319 /*free audio*/
2320 if (dc->caps.dynamic_audio == true) {
2321 /*we have to dynamic arbitrate the audio endpoints*/
2322 /*we free the resource, need reset is_audio_acquired*/
2323 update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2324 pipe_ctx_old->stream_res.audio, false);
2325 pipe_ctx_old->stream_res.audio = NULL;
2326 }
2327 }
2328 }
2329
2330 pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
2331 if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
2332 dm_error("DC: failed to blank crtc!\n");
2333 BREAK_TO_DEBUGGER();
2334 }
2335 pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
2336 if (dc_is_hdmi_tmds_signal(pipe_ctx_old->stream->signal))
2337 pipe_ctx_old->stream->link->phy_state.symclk_ref_cnts.otg = 0;
2338 pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
2339 pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
2340
2341 if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
2342 dc->res_pool,
2343 old_clk))
2344 old_clk->funcs->cs_power_down(old_clk);
2345
2346 dc->hwss.disable_plane(dc, dc->current_state, pipe_ctx_old);
2347
2348 pipe_ctx_old->stream = NULL;
2349 }
2350 }
2351 }
2352
dce110_setup_audio_dto(struct dc * dc,struct dc_state * context)2353 static void dce110_setup_audio_dto(
2354 struct dc *dc,
2355 struct dc_state *context)
2356 {
2357 unsigned int i;
2358
2359 /* program audio wall clock. use HDMI as clock source if HDMI
2360 * audio active. Otherwise, use DP as clock source
2361 * first, loop to find any HDMI audio, if not, loop find DP audio
2362 */
2363 /* Setup audio rate clock source */
2364 /* Issue:
2365 * Audio lag happened on DP monitor when unplug a HDMI monitor
2366 *
2367 * Cause:
2368 * In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
2369 * is set to either dto0 or dto1, audio should work fine.
2370 * In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
2371 * set to dto0 will cause audio lag.
2372 *
2373 * Solution:
2374 * Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
2375 * find first available pipe with audio, setup audio wall DTO per topology
2376 * instead of per pipe.
2377 */
2378 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2379 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2380
2381 if (pipe_ctx->stream == NULL)
2382 continue;
2383
2384 if (pipe_ctx->top_pipe)
2385 continue;
2386 if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2387 continue;
2388 if (pipe_ctx->stream_res.audio != NULL) {
2389 struct audio_output audio_output;
2390
2391 build_audio_output(context, pipe_ctx, &audio_output);
2392
2393 if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->set_audio_dtbclk_dto) {
2394 struct dtbclk_dto_params dto_params = {0};
2395
2396 dc->res_pool->dccg->funcs->set_audio_dtbclk_dto(
2397 dc->res_pool->dccg, &dto_params);
2398
2399 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2400 pipe_ctx->stream_res.audio,
2401 pipe_ctx->stream->signal,
2402 &audio_output.crtc_info,
2403 &audio_output.pll_info);
2404 } else
2405 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2406 pipe_ctx->stream_res.audio,
2407 pipe_ctx->stream->signal,
2408 &audio_output.crtc_info,
2409 &audio_output.pll_info);
2410 break;
2411 }
2412 }
2413
2414 /* no HDMI audio is found, try DP audio */
2415 if (i == dc->res_pool->pipe_count) {
2416 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2417 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2418
2419 if (pipe_ctx->stream == NULL)
2420 continue;
2421
2422 if (pipe_ctx->top_pipe)
2423 continue;
2424
2425 if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2426 continue;
2427
2428 if (pipe_ctx->stream_res.audio != NULL) {
2429 struct audio_output audio_output = {0};
2430
2431 build_audio_output(context, pipe_ctx, &audio_output);
2432
2433 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2434 pipe_ctx->stream_res.audio,
2435 pipe_ctx->stream->signal,
2436 &audio_output.crtc_info,
2437 &audio_output.pll_info);
2438 break;
2439 }
2440 }
2441 }
2442 }
2443
dce110_apply_ctx_to_hw(struct dc * dc,struct dc_state * context)2444 enum dc_status dce110_apply_ctx_to_hw(
2445 struct dc *dc,
2446 struct dc_state *context)
2447 {
2448 struct dce_hwseq *hws = dc->hwseq;
2449 struct dc_bios *dcb = dc->ctx->dc_bios;
2450 enum dc_status status;
2451 int i;
2452 bool was_hpo_acquired = resource_is_hpo_acquired(dc->current_state);
2453 bool is_hpo_acquired = resource_is_hpo_acquired(context);
2454
2455 /* reset syncd pipes from disabled pipes */
2456 if (dc->config.use_pipe_ctx_sync_logic)
2457 reset_syncd_pipes_from_disabled_pipes(dc, context);
2458
2459 /* Reset old context */
2460 /* look up the targets that have been removed since last commit */
2461 hws->funcs.reset_hw_ctx_wrap(dc, context);
2462
2463 /* Skip applying if no targets */
2464 if (context->stream_count <= 0)
2465 return DC_OK;
2466
2467 /* Apply new context */
2468 dcb->funcs->set_scratch_critical_state(dcb, true);
2469
2470 /* below is for real asic only */
2471 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2472 struct pipe_ctx *pipe_ctx_old =
2473 &dc->current_state->res_ctx.pipe_ctx[i];
2474 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2475
2476 if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2477 continue;
2478
2479 if (pipe_ctx->stream == pipe_ctx_old->stream) {
2480 if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2481 dce_crtc_switch_to_clk_src(dc->hwseq,
2482 pipe_ctx->clock_source, i);
2483 continue;
2484 }
2485
2486 hws->funcs.enable_display_power_gating(
2487 dc, i, dc->ctx->dc_bios,
2488 PIPE_GATING_CONTROL_DISABLE);
2489 }
2490
2491 if (dc->fbc_compressor)
2492 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2493
2494 dce110_setup_audio_dto(dc, context);
2495
2496 if (dc->hwseq->funcs.setup_hpo_hw_control && was_hpo_acquired != is_hpo_acquired) {
2497 dc->hwseq->funcs.setup_hpo_hw_control(dc->hwseq, is_hpo_acquired);
2498 }
2499
2500 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2501 struct pipe_ctx *pipe_ctx_old =
2502 &dc->current_state->res_ctx.pipe_ctx[i];
2503 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2504
2505 if (pipe_ctx->stream == NULL)
2506 continue;
2507
2508 if (pipe_ctx->stream == pipe_ctx_old->stream &&
2509 pipe_ctx->stream->link->link_state_valid) {
2510 continue;
2511 }
2512
2513 if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2514 continue;
2515
2516 if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2517 continue;
2518
2519 status = dce110_apply_single_controller_ctx_to_hw(
2520 pipe_ctx,
2521 context,
2522 dc);
2523
2524 if (DC_OK != status)
2525 return status;
2526
2527 #ifdef CONFIG_DRM_AMD_DC_FP
2528 if (hws->funcs.resync_fifo_dccg_dio)
2529 hws->funcs.resync_fifo_dccg_dio(hws, dc, context, i);
2530 #endif
2531 }
2532
2533 if (dc->fbc_compressor)
2534 enable_fbc(dc, dc->current_state);
2535
2536 dcb->funcs->set_scratch_critical_state(dcb, false);
2537
2538 return DC_OK;
2539 }
2540
2541 /*******************************************************************************
2542 * Front End programming
2543 ******************************************************************************/
set_default_colors(struct pipe_ctx * pipe_ctx)2544 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2545 {
2546 struct default_adjustment default_adjust = { 0 };
2547
2548 default_adjust.force_hw_default = false;
2549 default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2550 default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2551 default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2552 default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2553
2554 /* display color depth */
2555 default_adjust.color_depth =
2556 pipe_ctx->stream->timing.display_color_depth;
2557
2558 /* Lb color depth */
2559 default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2560
2561 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2562 pipe_ctx->plane_res.xfm, &default_adjust);
2563 }
2564
2565
2566 /*******************************************************************************
2567 * In order to turn on/off specific surface we will program
2568 * Blender + CRTC
2569 *
2570 * In case that we have two surfaces and they have a different visibility
2571 * we can't turn off the CRTC since it will turn off the entire display
2572 *
2573 * |----------------------------------------------- |
2574 * |bottom pipe|curr pipe | | |
2575 * |Surface |Surface | Blender | CRCT |
2576 * |visibility |visibility | Configuration| |
2577 * |------------------------------------------------|
2578 * | off | off | CURRENT_PIPE | blank |
2579 * | off | on | CURRENT_PIPE | unblank |
2580 * | on | off | OTHER_PIPE | unblank |
2581 * | on | on | BLENDING | unblank |
2582 * -------------------------------------------------|
2583 *
2584 ******************************************************************************/
program_surface_visibility(const struct dc * dc,struct pipe_ctx * pipe_ctx)2585 static void program_surface_visibility(const struct dc *dc,
2586 struct pipe_ctx *pipe_ctx)
2587 {
2588 enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2589 bool blank_target = false;
2590
2591 if (pipe_ctx->bottom_pipe) {
2592
2593 /* For now we are supporting only two pipes */
2594 ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2595
2596 if (pipe_ctx->bottom_pipe->plane_state->visible) {
2597 if (pipe_ctx->plane_state->visible)
2598 blender_mode = BLND_MODE_BLENDING;
2599 else
2600 blender_mode = BLND_MODE_OTHER_PIPE;
2601
2602 } else if (!pipe_ctx->plane_state->visible)
2603 blank_target = true;
2604
2605 } else if (!pipe_ctx->plane_state->visible)
2606 blank_target = true;
2607
2608 dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2609 pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2610
2611 }
2612
program_gamut_remap(struct pipe_ctx * pipe_ctx)2613 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2614 {
2615 int i = 0;
2616 struct xfm_grph_csc_adjustment adjust;
2617 memset(&adjust, 0, sizeof(adjust));
2618 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2619
2620
2621 if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2622 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2623
2624 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2625 adjust.temperature_matrix[i] =
2626 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2627 }
2628
2629 pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2630 }
update_plane_addr(const struct dc * dc,struct pipe_ctx * pipe_ctx)2631 static void update_plane_addr(const struct dc *dc,
2632 struct pipe_ctx *pipe_ctx)
2633 {
2634 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2635
2636 if (plane_state == NULL)
2637 return;
2638
2639 pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2640 pipe_ctx->plane_res.mi,
2641 &plane_state->address,
2642 plane_state->flip_immediate);
2643
2644 plane_state->status.requested_address = plane_state->address;
2645 }
2646
dce110_update_pending_status(struct pipe_ctx * pipe_ctx)2647 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2648 {
2649 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2650
2651 if (plane_state == NULL)
2652 return;
2653
2654 plane_state->status.is_flip_pending =
2655 pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2656 pipe_ctx->plane_res.mi);
2657
2658 if (plane_state->status.is_flip_pending && !plane_state->visible)
2659 pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2660
2661 plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2662 if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2663 pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2664 plane_state->status.is_right_eye =\
2665 !pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2666 }
2667 }
2668
dce110_power_down(struct dc * dc)2669 void dce110_power_down(struct dc *dc)
2670 {
2671 power_down_all_hw_blocks(dc);
2672 disable_vga_and_power_gate_all_controllers(dc);
2673 }
2674
wait_for_reset_trigger_to_occur(struct dc_context * dc_ctx,struct timing_generator * tg)2675 static bool wait_for_reset_trigger_to_occur(
2676 struct dc_context *dc_ctx,
2677 struct timing_generator *tg)
2678 {
2679 struct dc_context *ctx = dc_ctx;
2680 bool rc = false;
2681
2682 /* To avoid endless loop we wait at most
2683 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2684 const uint32_t frames_to_wait_on_triggered_reset = 10;
2685 uint32_t i;
2686
2687 for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2688
2689 if (!tg->funcs->is_counter_moving(tg)) {
2690 DC_ERROR("TG counter is not moving!\n");
2691 break;
2692 }
2693
2694 if (tg->funcs->did_triggered_reset_occur(tg)) {
2695 rc = true;
2696 /* usually occurs at i=1 */
2697 DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2698 i);
2699 break;
2700 }
2701
2702 /* Wait for one frame. */
2703 tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2704 tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2705 }
2706
2707 if (false == rc)
2708 DC_ERROR("GSL: Timeout on reset trigger!\n");
2709
2710 return rc;
2711 }
2712
2713 /* Enable timing synchronization for a group of Timing Generators. */
dce110_enable_timing_synchronization(struct dc * dc,struct dc_state * state,int group_index,int group_size,struct pipe_ctx * grouped_pipes[])2714 static void dce110_enable_timing_synchronization(
2715 struct dc *dc,
2716 struct dc_state *state,
2717 int group_index,
2718 int group_size,
2719 struct pipe_ctx *grouped_pipes[])
2720 {
2721 struct dc_context *dc_ctx = dc->ctx;
2722 struct dcp_gsl_params gsl_params = { 0 };
2723 int i;
2724 DC_LOGGER_INIT();
2725
2726 DC_SYNC_INFO("GSL: Setting-up...\n");
2727
2728 /* Designate a single TG in the group as a master.
2729 * Since HW doesn't care which one, we always assign
2730 * the 1st one in the group. */
2731 gsl_params.gsl_group = 0;
2732 gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2733
2734 for (i = 0; i < group_size; i++)
2735 grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2736 grouped_pipes[i]->stream_res.tg, &gsl_params);
2737
2738 /* Reset slave controllers on master VSync */
2739 DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2740
2741 for (i = 1 /* skip the master */; i < group_size; i++)
2742 grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2743 grouped_pipes[i]->stream_res.tg,
2744 gsl_params.gsl_group);
2745
2746 for (i = 1 /* skip the master */; i < group_size; i++) {
2747 DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2748 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2749 grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2750 grouped_pipes[i]->stream_res.tg);
2751 }
2752
2753 /* GSL Vblank synchronization is a one time sync mechanism, assumption
2754 * is that the sync'ed displays will not drift out of sync over time*/
2755 DC_SYNC_INFO("GSL: Restoring register states.\n");
2756 for (i = 0; i < group_size; i++)
2757 grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2758
2759 DC_SYNC_INFO("GSL: Set-up complete.\n");
2760 }
2761
dce110_enable_per_frame_crtc_position_reset(struct dc * dc,int group_size,struct pipe_ctx * grouped_pipes[])2762 static void dce110_enable_per_frame_crtc_position_reset(
2763 struct dc *dc,
2764 int group_size,
2765 struct pipe_ctx *grouped_pipes[])
2766 {
2767 struct dc_context *dc_ctx = dc->ctx;
2768 struct dcp_gsl_params gsl_params = { 0 };
2769 int i;
2770 DC_LOGGER_INIT();
2771
2772 gsl_params.gsl_group = 0;
2773 gsl_params.gsl_master = 0;
2774
2775 for (i = 0; i < group_size; i++)
2776 grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2777 grouped_pipes[i]->stream_res.tg, &gsl_params);
2778
2779 DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2780
2781 for (i = 1; i < group_size; i++)
2782 grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2783 grouped_pipes[i]->stream_res.tg,
2784 gsl_params.gsl_master,
2785 &grouped_pipes[i]->stream->triggered_crtc_reset);
2786
2787 DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2788 for (i = 1; i < group_size; i++)
2789 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2790
2791 for (i = 0; i < group_size; i++)
2792 grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2793
2794 }
2795
dce110_init_pipes(struct dc * dc,struct dc_state * context)2796 static void dce110_init_pipes(struct dc *dc, struct dc_state *context)
2797 {
2798 // Do nothing
2799 }
2800
dce110_init_hw(struct dc * dc)2801 static void dce110_init_hw(struct dc *dc)
2802 {
2803 int i;
2804 struct dc_bios *bp;
2805 struct transform *xfm;
2806 struct abm *abm;
2807 struct dmcu *dmcu;
2808 struct dce_hwseq *hws = dc->hwseq;
2809 uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2810 uint32_t user_level = MAX_BACKLIGHT_LEVEL;
2811
2812 bp = dc->ctx->dc_bios;
2813 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2814 xfm = dc->res_pool->transforms[i];
2815 xfm->funcs->transform_reset(xfm);
2816
2817 hws->funcs.enable_display_power_gating(
2818 dc, i, bp,
2819 PIPE_GATING_CONTROL_INIT);
2820 hws->funcs.enable_display_power_gating(
2821 dc, i, bp,
2822 PIPE_GATING_CONTROL_DISABLE);
2823 hws->funcs.enable_display_pipe_clock_gating(
2824 dc->ctx,
2825 true);
2826 }
2827
2828 dce_clock_gating_power_up(dc->hwseq, false);
2829 /***************************************/
2830
2831 for (i = 0; i < dc->link_count; i++) {
2832 /****************************************/
2833 /* Power up AND update implementation according to the
2834 * required signal (which may be different from the
2835 * default signal on connector). */
2836 struct dc_link *link = dc->links[i];
2837
2838 link->link_enc->funcs->hw_init(link->link_enc);
2839 }
2840
2841 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2842 struct timing_generator *tg = dc->res_pool->timing_generators[i];
2843
2844 tg->funcs->disable_vga(tg);
2845
2846 /* Blank controller using driver code instead of
2847 * command table. */
2848 tg->funcs->set_blank(tg, true);
2849 hwss_wait_for_blank_complete(tg);
2850 }
2851
2852 for (i = 0; i < dc->res_pool->audio_count; i++) {
2853 struct audio *audio = dc->res_pool->audios[i];
2854 audio->funcs->hw_init(audio);
2855 }
2856
2857 for (i = 0; i < dc->link_count; i++) {
2858 struct dc_link *link = dc->links[i];
2859
2860 if (link->panel_cntl) {
2861 backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2862 user_level = link->panel_cntl->stored_backlight_registers.USER_LEVEL;
2863 }
2864 }
2865
2866 abm = dc->res_pool->abm;
2867 if (abm != NULL)
2868 abm->funcs->abm_init(abm, backlight, user_level);
2869
2870 dmcu = dc->res_pool->dmcu;
2871 if (dmcu != NULL && abm != NULL)
2872 abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2873
2874 if (dc->fbc_compressor)
2875 dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2876
2877 }
2878
2879
dce110_prepare_bandwidth(struct dc * dc,struct dc_state * context)2880 void dce110_prepare_bandwidth(
2881 struct dc *dc,
2882 struct dc_state *context)
2883 {
2884 struct clk_mgr *dccg = dc->clk_mgr;
2885
2886 dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2887 if (dccg)
2888 dccg->funcs->update_clocks(
2889 dccg,
2890 context,
2891 false);
2892 }
2893
dce110_optimize_bandwidth(struct dc * dc,struct dc_state * context)2894 void dce110_optimize_bandwidth(
2895 struct dc *dc,
2896 struct dc_state *context)
2897 {
2898 struct clk_mgr *dccg = dc->clk_mgr;
2899
2900 dce110_set_displaymarks(dc, context);
2901
2902 if (dccg)
2903 dccg->funcs->update_clocks(
2904 dccg,
2905 context,
2906 true);
2907 }
2908
dce110_program_front_end_for_pipe(struct dc * dc,struct pipe_ctx * pipe_ctx)2909 static void dce110_program_front_end_for_pipe(
2910 struct dc *dc, struct pipe_ctx *pipe_ctx)
2911 {
2912 struct mem_input *mi = pipe_ctx->plane_res.mi;
2913 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2914 struct xfm_grph_csc_adjustment adjust;
2915 struct out_csc_color_matrix tbl_entry;
2916 unsigned int i;
2917 struct dce_hwseq *hws = dc->hwseq;
2918
2919 memset(&tbl_entry, 0, sizeof(tbl_entry));
2920
2921 memset(&adjust, 0, sizeof(adjust));
2922 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2923
2924 dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2925
2926 set_default_colors(pipe_ctx);
2927 if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2928 == true) {
2929 tbl_entry.color_space =
2930 pipe_ctx->stream->output_color_space;
2931
2932 for (i = 0; i < 12; i++)
2933 tbl_entry.regval[i] =
2934 pipe_ctx->stream->csc_color_matrix.matrix[i];
2935
2936 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2937 (pipe_ctx->plane_res.xfm, &tbl_entry);
2938 }
2939
2940 if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2941 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2942
2943 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2944 adjust.temperature_matrix[i] =
2945 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2946 }
2947
2948 pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2949
2950 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
2951
2952 program_scaler(dc, pipe_ctx);
2953
2954 mi->funcs->mem_input_program_surface_config(
2955 mi,
2956 plane_state->format,
2957 &plane_state->tiling_info,
2958 &plane_state->plane_size,
2959 plane_state->rotation,
2960 NULL,
2961 false);
2962 if (mi->funcs->set_blank)
2963 mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2964
2965 if (dc->config.gpu_vm_support)
2966 mi->funcs->mem_input_program_pte_vm(
2967 pipe_ctx->plane_res.mi,
2968 plane_state->format,
2969 &plane_state->tiling_info,
2970 plane_state->rotation);
2971
2972 /* Moved programming gamma from dc to hwss */
2973 if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2974 pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2975 pipe_ctx->plane_state->update_flags.bits.gamma_change)
2976 hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2977
2978 if (pipe_ctx->plane_state->update_flags.bits.full_update)
2979 hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2980
2981 DC_LOG_SURFACE(
2982 "Pipe:%d %p: addr hi:0x%x, "
2983 "addr low:0x%x, "
2984 "src: %d, %d, %d,"
2985 " %d; dst: %d, %d, %d, %d;"
2986 "clip: %d, %d, %d, %d\n",
2987 pipe_ctx->pipe_idx,
2988 (void *) pipe_ctx->plane_state,
2989 pipe_ctx->plane_state->address.grph.addr.high_part,
2990 pipe_ctx->plane_state->address.grph.addr.low_part,
2991 pipe_ctx->plane_state->src_rect.x,
2992 pipe_ctx->plane_state->src_rect.y,
2993 pipe_ctx->plane_state->src_rect.width,
2994 pipe_ctx->plane_state->src_rect.height,
2995 pipe_ctx->plane_state->dst_rect.x,
2996 pipe_ctx->plane_state->dst_rect.y,
2997 pipe_ctx->plane_state->dst_rect.width,
2998 pipe_ctx->plane_state->dst_rect.height,
2999 pipe_ctx->plane_state->clip_rect.x,
3000 pipe_ctx->plane_state->clip_rect.y,
3001 pipe_ctx->plane_state->clip_rect.width,
3002 pipe_ctx->plane_state->clip_rect.height);
3003
3004 DC_LOG_SURFACE(
3005 "Pipe %d: width, height, x, y\n"
3006 "viewport:%d, %d, %d, %d\n"
3007 "recout: %d, %d, %d, %d\n",
3008 pipe_ctx->pipe_idx,
3009 pipe_ctx->plane_res.scl_data.viewport.width,
3010 pipe_ctx->plane_res.scl_data.viewport.height,
3011 pipe_ctx->plane_res.scl_data.viewport.x,
3012 pipe_ctx->plane_res.scl_data.viewport.y,
3013 pipe_ctx->plane_res.scl_data.recout.width,
3014 pipe_ctx->plane_res.scl_data.recout.height,
3015 pipe_ctx->plane_res.scl_data.recout.x,
3016 pipe_ctx->plane_res.scl_data.recout.y);
3017 }
3018
dce110_apply_ctx_for_surface(struct dc * dc,const struct dc_stream_state * stream,int num_planes,struct dc_state * context)3019 static void dce110_apply_ctx_for_surface(
3020 struct dc *dc,
3021 const struct dc_stream_state *stream,
3022 int num_planes,
3023 struct dc_state *context)
3024 {
3025 int i;
3026
3027 if (num_planes == 0)
3028 return;
3029
3030 if (dc->fbc_compressor)
3031 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
3032
3033 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3034 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3035
3036 if (pipe_ctx->stream != stream)
3037 continue;
3038
3039 /* Need to allocate mem before program front end for Fiji */
3040 pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
3041 pipe_ctx->plane_res.mi,
3042 pipe_ctx->stream->timing.h_total,
3043 pipe_ctx->stream->timing.v_total,
3044 pipe_ctx->stream->timing.pix_clk_100hz / 10,
3045 context->stream_count);
3046
3047 dce110_program_front_end_for_pipe(dc, pipe_ctx);
3048
3049 dc->hwss.update_plane_addr(dc, pipe_ctx);
3050
3051 program_surface_visibility(dc, pipe_ctx);
3052
3053 }
3054
3055 if (dc->fbc_compressor)
3056 enable_fbc(dc, context);
3057 }
3058
dce110_post_unlock_program_front_end(struct dc * dc,struct dc_state * context)3059 static void dce110_post_unlock_program_front_end(
3060 struct dc *dc,
3061 struct dc_state *context)
3062 {
3063 }
3064
dce110_power_down_fe(struct dc * dc,struct dc_state * state,struct pipe_ctx * pipe_ctx)3065 static void dce110_power_down_fe(struct dc *dc, struct dc_state *state, struct pipe_ctx *pipe_ctx)
3066 {
3067 struct dce_hwseq *hws = dc->hwseq;
3068 int fe_idx = pipe_ctx->plane_res.mi ?
3069 pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
3070
3071 /* Do not power down fe when stream is active on dce*/
3072 if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
3073 return;
3074
3075 hws->funcs.enable_display_power_gating(
3076 dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
3077
3078 dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
3079 dc->res_pool->transforms[fe_idx]);
3080 }
3081
dce110_wait_for_mpcc_disconnect(struct dc * dc,struct resource_pool * res_pool,struct pipe_ctx * pipe_ctx)3082 static void dce110_wait_for_mpcc_disconnect(
3083 struct dc *dc,
3084 struct resource_pool *res_pool,
3085 struct pipe_ctx *pipe_ctx)
3086 {
3087 /* do nothing*/
3088 }
3089
program_output_csc(struct dc * dc,struct pipe_ctx * pipe_ctx,enum dc_color_space colorspace,uint16_t * matrix,int opp_id)3090 static void program_output_csc(struct dc *dc,
3091 struct pipe_ctx *pipe_ctx,
3092 enum dc_color_space colorspace,
3093 uint16_t *matrix,
3094 int opp_id)
3095 {
3096 int i;
3097 struct out_csc_color_matrix tbl_entry;
3098
3099 if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
3100 enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
3101
3102 for (i = 0; i < 12; i++)
3103 tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
3104
3105 tbl_entry.color_space = color_space;
3106
3107 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
3108 pipe_ctx->plane_res.xfm, &tbl_entry);
3109 }
3110 }
3111
dce110_set_cursor_position(struct pipe_ctx * pipe_ctx)3112 static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
3113 {
3114 struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
3115 struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
3116 struct mem_input *mi = pipe_ctx->plane_res.mi;
3117 struct dc_cursor_mi_param param = {
3118 .pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
3119 .ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
3120 .viewport = pipe_ctx->plane_res.scl_data.viewport,
3121 .h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
3122 .v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
3123 .rotation = pipe_ctx->plane_state->rotation,
3124 .mirror = pipe_ctx->plane_state->horizontal_mirror
3125 };
3126
3127 /**
3128 * If the cursor's source viewport is clipped then we need to
3129 * translate the cursor to appear in the correct position on
3130 * the screen.
3131 *
3132 * This translation isn't affected by scaling so it needs to be
3133 * done *after* we adjust the position for the scale factor.
3134 *
3135 * This is only done by opt-in for now since there are still
3136 * some usecases like tiled display that might enable the
3137 * cursor on both streams while expecting dc to clip it.
3138 */
3139 if (pos_cpy.translate_by_source) {
3140 pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
3141 pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
3142 }
3143
3144 if (pipe_ctx->plane_state->address.type
3145 == PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
3146 pos_cpy.enable = false;
3147
3148 if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
3149 pos_cpy.enable = false;
3150
3151 if (ipp->funcs->ipp_cursor_set_position)
3152 ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, ¶m);
3153 if (mi->funcs->set_cursor_position)
3154 mi->funcs->set_cursor_position(mi, &pos_cpy, ¶m);
3155 }
3156
dce110_set_cursor_attribute(struct pipe_ctx * pipe_ctx)3157 static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
3158 {
3159 struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
3160
3161 if (pipe_ctx->plane_res.ipp &&
3162 pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
3163 pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
3164 pipe_ctx->plane_res.ipp, attributes);
3165
3166 if (pipe_ctx->plane_res.mi &&
3167 pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
3168 pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
3169 pipe_ctx->plane_res.mi, attributes);
3170
3171 if (pipe_ctx->plane_res.xfm &&
3172 pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
3173 pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
3174 pipe_ctx->plane_res.xfm, attributes);
3175 }
3176
dce110_set_backlight_level(struct pipe_ctx * pipe_ctx,struct set_backlight_level_params * backlight_level_params)3177 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
3178 struct set_backlight_level_params *backlight_level_params)
3179 {
3180 uint32_t backlight_pwm_u16_16 = backlight_level_params->backlight_pwm_u16_16;
3181 uint32_t frame_ramp = backlight_level_params->frame_ramp;
3182 struct dc_link *link = pipe_ctx->stream->link;
3183 struct dc *dc = link->ctx->dc;
3184 struct abm *abm = pipe_ctx->stream_res.abm;
3185 struct panel_cntl *panel_cntl = link->panel_cntl;
3186 struct dmcu *dmcu = dc->res_pool->dmcu;
3187 bool fw_set_brightness = true;
3188 /* DMCU -1 for all controller id values,
3189 * therefore +1 here
3190 */
3191 uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
3192
3193 if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
3194 return false;
3195
3196 if (dmcu)
3197 fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
3198
3199 if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
3200 panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
3201 else
3202 abm->funcs->set_backlight_level_pwm(
3203 abm,
3204 backlight_pwm_u16_16,
3205 frame_ramp,
3206 controller_id,
3207 link->panel_cntl->inst);
3208
3209 return true;
3210 }
3211
dce110_set_abm_immediate_disable(struct pipe_ctx * pipe_ctx)3212 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
3213 {
3214 struct abm *abm = pipe_ctx->stream_res.abm;
3215 struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
3216
3217 if (abm)
3218 abm->funcs->set_abm_immediate_disable(abm,
3219 pipe_ctx->stream->link->panel_cntl->inst);
3220
3221 if (panel_cntl)
3222 panel_cntl->funcs->store_backlight_level(panel_cntl);
3223 }
3224
dce110_set_pipe(struct pipe_ctx * pipe_ctx)3225 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
3226 {
3227 struct abm *abm = pipe_ctx->stream_res.abm;
3228 struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
3229 uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
3230
3231 if (abm && panel_cntl)
3232 abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
3233 }
3234
dce110_enable_lvds_link_output(struct dc_link * link,const struct link_resource * link_res,enum clock_source_id clock_source,uint32_t pixel_clock)3235 void dce110_enable_lvds_link_output(struct dc_link *link,
3236 const struct link_resource *link_res,
3237 enum clock_source_id clock_source,
3238 uint32_t pixel_clock)
3239 {
3240 link->link_enc->funcs->enable_lvds_output(
3241 link->link_enc,
3242 clock_source,
3243 pixel_clock);
3244 link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3245 }
3246
dce110_enable_tmds_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal,enum clock_source_id clock_source,enum dc_color_depth color_depth,uint32_t pixel_clock)3247 void dce110_enable_tmds_link_output(struct dc_link *link,
3248 const struct link_resource *link_res,
3249 enum signal_type signal,
3250 enum clock_source_id clock_source,
3251 enum dc_color_depth color_depth,
3252 uint32_t pixel_clock)
3253 {
3254 link->link_enc->funcs->enable_tmds_output(
3255 link->link_enc,
3256 clock_source,
3257 color_depth,
3258 signal,
3259 pixel_clock);
3260 link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3261 }
3262
dce110_enable_dp_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal,enum clock_source_id clock_source,const struct dc_link_settings * link_settings)3263 void dce110_enable_dp_link_output(
3264 struct dc_link *link,
3265 const struct link_resource *link_res,
3266 enum signal_type signal,
3267 enum clock_source_id clock_source,
3268 const struct dc_link_settings *link_settings)
3269 {
3270 struct dc *dc = link->ctx->dc;
3271 struct dmcu *dmcu = dc->res_pool->dmcu;
3272 struct pipe_ctx *pipes =
3273 link->dc->current_state->res_ctx.pipe_ctx;
3274 struct clock_source *dp_cs =
3275 link->dc->res_pool->dp_clock_source;
3276 const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3277 unsigned int i;
3278
3279 /*
3280 * Add the logic to extract BOTH power up and power down sequences
3281 * from enable/disable link output and only call edp panel control
3282 * in enable_link_dp and disable_link_dp once.
3283 */
3284 if (link->connector_signal == SIGNAL_TYPE_EDP) {
3285 link->dc->hwss.edp_wait_for_hpd_ready(link, true);
3286 }
3287
3288 /* If the current pixel clock source is not DTO(happens after
3289 * switching from HDMI passive dongle to DP on the same connector),
3290 * switch the pixel clock source to DTO.
3291 */
3292
3293 for (i = 0; i < MAX_PIPES; i++) {
3294 if (pipes[i].stream != NULL &&
3295 pipes[i].stream->link == link) {
3296 if (pipes[i].clock_source != NULL &&
3297 pipes[i].clock_source->id != CLOCK_SOURCE_ID_DP_DTO) {
3298 pipes[i].clock_source = dp_cs;
3299 pipes[i].stream_res.pix_clk_params.requested_pix_clk_100hz =
3300 pipes[i].stream->timing.pix_clk_100hz;
3301 pipes[i].clock_source->funcs->program_pix_clk(
3302 pipes[i].clock_source,
3303 &pipes[i].stream_res.pix_clk_params,
3304 dc->link_srv->dp_get_encoding_format(link_settings),
3305 &pipes[i].pll_settings);
3306 }
3307 }
3308 }
3309
3310 if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_8b_10b_ENCODING) {
3311 if (dc->clk_mgr->funcs->notify_link_rate_change)
3312 dc->clk_mgr->funcs->notify_link_rate_change(dc->clk_mgr, link);
3313 }
3314
3315 if (dmcu != NULL && dmcu->funcs->lock_phy)
3316 dmcu->funcs->lock_phy(dmcu);
3317
3318 if (link_hwss->ext.enable_dp_link_output)
3319 link_hwss->ext.enable_dp_link_output(link, link_res, signal,
3320 clock_source, link_settings);
3321
3322 link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3323
3324 if (dmcu != NULL && dmcu->funcs->unlock_phy)
3325 dmcu->funcs->unlock_phy(dmcu);
3326
3327 dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_ENABLE_LINK_PHY);
3328 }
3329
dce110_disable_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal)3330 void dce110_disable_link_output(struct dc_link *link,
3331 const struct link_resource *link_res,
3332 enum signal_type signal)
3333 {
3334 struct dc *dc = link->ctx->dc;
3335 const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3336 struct dmcu *dmcu = dc->res_pool->dmcu;
3337
3338 if (signal == SIGNAL_TYPE_EDP &&
3339 link->dc->hwss.edp_backlight_control &&
3340 !link->skip_implict_edp_power_control)
3341 link->dc->hwss.edp_backlight_control(link, false);
3342 else if (dmcu != NULL && dmcu->funcs->lock_phy)
3343 dmcu->funcs->lock_phy(dmcu);
3344
3345 link_hwss->disable_link_output(link, link_res, signal);
3346 link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
3347 /*
3348 * Add the logic to extract BOTH power up and power down sequences
3349 * from enable/disable link output and only call edp panel control
3350 * in enable_link_dp and disable_link_dp once.
3351 */
3352 if (dmcu != NULL && dmcu->funcs->unlock_phy)
3353 dmcu->funcs->unlock_phy(dmcu);
3354 dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_DISABLE_LINK_PHY);
3355 }
3356
3357 static const struct hw_sequencer_funcs dce110_funcs = {
3358 .program_gamut_remap = program_gamut_remap,
3359 .program_output_csc = program_output_csc,
3360 .init_hw = dce110_init_hw,
3361 .apply_ctx_to_hw = dce110_apply_ctx_to_hw,
3362 .apply_ctx_for_surface = dce110_apply_ctx_for_surface,
3363 .post_unlock_program_front_end = dce110_post_unlock_program_front_end,
3364 .update_plane_addr = update_plane_addr,
3365 .update_pending_status = dce110_update_pending_status,
3366 .clear_surface_dcc_and_tiling = dce100_reset_surface_dcc_and_tiling,
3367 .enable_accelerated_mode = dce110_enable_accelerated_mode,
3368 .enable_timing_synchronization = dce110_enable_timing_synchronization,
3369 .enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
3370 .update_info_frame = dce110_update_info_frame,
3371 .enable_stream = dce110_enable_stream,
3372 .disable_stream = dce110_disable_stream,
3373 .unblank_stream = dce110_unblank_stream,
3374 .blank_stream = dce110_blank_stream,
3375 .enable_audio_stream = dce110_enable_audio_stream,
3376 .disable_audio_stream = dce110_disable_audio_stream,
3377 .disable_plane = dce110_power_down_fe,
3378 .pipe_control_lock = dce_pipe_control_lock,
3379 .interdependent_update_lock = NULL,
3380 .cursor_lock = dce_pipe_control_lock,
3381 .prepare_bandwidth = dce110_prepare_bandwidth,
3382 .optimize_bandwidth = dce110_optimize_bandwidth,
3383 .set_drr = set_drr,
3384 .get_position = get_position,
3385 .set_static_screen_control = set_static_screen_control,
3386 .setup_stereo = NULL,
3387 .set_avmute = dce110_set_avmute,
3388 .wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
3389 .edp_backlight_control = dce110_edp_backlight_control,
3390 .edp_power_control = dce110_edp_power_control,
3391 .edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
3392 .set_cursor_position = dce110_set_cursor_position,
3393 .set_cursor_attribute = dce110_set_cursor_attribute,
3394 .set_backlight_level = dce110_set_backlight_level,
3395 .set_abm_immediate_disable = dce110_set_abm_immediate_disable,
3396 .set_pipe = dce110_set_pipe,
3397 .enable_lvds_link_output = dce110_enable_lvds_link_output,
3398 .enable_tmds_link_output = dce110_enable_tmds_link_output,
3399 .enable_dp_link_output = dce110_enable_dp_link_output,
3400 .disable_link_output = dce110_disable_link_output,
3401 };
3402
3403 static const struct hwseq_private_funcs dce110_private_funcs = {
3404 .init_pipes = dce110_init_pipes,
3405 .set_input_transfer_func = dce110_set_input_transfer_func,
3406 .set_output_transfer_func = dce110_set_output_transfer_func,
3407 .power_down = dce110_power_down,
3408 .enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
3409 .enable_display_power_gating = dce110_enable_display_power_gating,
3410 .reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
3411 .enable_stream_timing = dce110_enable_stream_timing,
3412 .disable_stream_gating = NULL,
3413 .enable_stream_gating = NULL,
3414 .edp_backlight_control = dce110_edp_backlight_control,
3415 };
3416
dce110_hw_sequencer_construct(struct dc * dc)3417 void dce110_hw_sequencer_construct(struct dc *dc)
3418 {
3419 dc->hwss = dce110_funcs;
3420 dc->hwseq->funcs = dce110_private_funcs;
3421 }
3422
3423