1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "dm_services.h"
27 #include "basics/dc_common.h"
28 #include "dc.h"
29 #include "core_types.h"
30 #include "resource.h"
31 #include "ipp.h"
32 #include "timing_generator.h"
33 #include "dc_dmub_srv.h"
34 #include "dc_state_priv.h"
35 #include "dc_stream_priv.h"
36
37 #define DC_LOGGER dc->ctx->logger
38 #ifndef MIN
39 #define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
40 #endif
41 #ifndef MAX
42 #define MAX(x, y) ((x > y) ? x : y)
43 #endif
44
45 /*******************************************************************************
46 * Private functions
47 ******************************************************************************/
update_stream_signal(struct dc_stream_state * stream,struct dc_sink * sink)48 void update_stream_signal(struct dc_stream_state *stream, struct dc_sink *sink)
49 {
50 if (sink->sink_signal == SIGNAL_TYPE_NONE)
51 stream->signal = stream->link->connector_signal;
52 else
53 stream->signal = sink->sink_signal;
54
55 if (dc_is_dvi_signal(stream->signal)) {
56 if (stream->ctx->dc->caps.dual_link_dvi &&
57 (stream->timing.pix_clk_100hz / 10) > TMDS_MAX_PIXEL_CLOCK &&
58 sink->sink_signal != SIGNAL_TYPE_DVI_SINGLE_LINK)
59 stream->signal = SIGNAL_TYPE_DVI_DUAL_LINK;
60 else
61 stream->signal = SIGNAL_TYPE_DVI_SINGLE_LINK;
62 }
63 }
64
dc_stream_construct(struct dc_stream_state * stream,struct dc_sink * dc_sink_data)65 bool dc_stream_construct(struct dc_stream_state *stream,
66 struct dc_sink *dc_sink_data)
67 {
68 uint32_t i = 0;
69
70 stream->sink = dc_sink_data;
71 dc_sink_retain(dc_sink_data);
72
73 stream->ctx = dc_sink_data->ctx;
74 stream->link = dc_sink_data->link;
75 stream->sink_patches = dc_sink_data->edid_caps.panel_patch;
76 stream->converter_disable_audio = dc_sink_data->converter_disable_audio;
77 stream->qs_bit = dc_sink_data->edid_caps.qs_bit;
78 stream->qy_bit = dc_sink_data->edid_caps.qy_bit;
79
80 /* Copy audio modes */
81 /* TODO - Remove this translation */
82 for (i = 0; i < (dc_sink_data->edid_caps.audio_mode_count); i++) {
83 stream->audio_info.modes[i].channel_count = dc_sink_data->edid_caps.audio_modes[i].channel_count;
84 stream->audio_info.modes[i].format_code = dc_sink_data->edid_caps.audio_modes[i].format_code;
85 stream->audio_info.modes[i].sample_rates.all = dc_sink_data->edid_caps.audio_modes[i].sample_rate;
86 stream->audio_info.modes[i].sample_size = dc_sink_data->edid_caps.audio_modes[i].sample_size;
87 }
88 stream->audio_info.mode_count = dc_sink_data->edid_caps.audio_mode_count;
89 stream->audio_info.audio_latency = dc_sink_data->edid_caps.audio_latency;
90 stream->audio_info.video_latency = dc_sink_data->edid_caps.video_latency;
91 memmove(
92 stream->audio_info.display_name,
93 dc_sink_data->edid_caps.display_name,
94 AUDIO_INFO_DISPLAY_NAME_SIZE_IN_CHARS);
95 stream->audio_info.manufacture_id = dc_sink_data->edid_caps.manufacturer_id;
96 stream->audio_info.product_id = dc_sink_data->edid_caps.product_id;
97 stream->audio_info.flags.all = dc_sink_data->edid_caps.speaker_flags;
98
99 if (dc_sink_data->dc_container_id != NULL) {
100 struct dc_container_id *dc_container_id = dc_sink_data->dc_container_id;
101
102 stream->audio_info.port_id[0] = dc_container_id->portId[0];
103 stream->audio_info.port_id[1] = dc_container_id->portId[1];
104 } else {
105 /* TODO - WindowDM has implemented,
106 other DMs need Unhardcode port_id */
107 stream->audio_info.port_id[0] = 0x5558859e;
108 stream->audio_info.port_id[1] = 0xd989449;
109 }
110
111 /* EDID CAP translation for HDMI 2.0 */
112 stream->timing.flags.LTE_340MCSC_SCRAMBLE = dc_sink_data->edid_caps.lte_340mcsc_scramble;
113
114 memset(&stream->timing.dsc_cfg, 0, sizeof(stream->timing.dsc_cfg));
115 stream->timing.dsc_cfg.num_slices_h = 0;
116 stream->timing.dsc_cfg.num_slices_v = 0;
117 stream->timing.dsc_cfg.bits_per_pixel = 128;
118 stream->timing.dsc_cfg.block_pred_enable = 1;
119 stream->timing.dsc_cfg.linebuf_depth = 9;
120 stream->timing.dsc_cfg.version_minor = 2;
121 stream->timing.dsc_cfg.ycbcr422_simple = 0;
122
123 update_stream_signal(stream, dc_sink_data);
124
125 stream->out_transfer_func.type = TF_TYPE_BYPASS;
126
127 dc_stream_assign_stream_id(stream);
128
129 return true;
130 }
131
dc_stream_destruct(struct dc_stream_state * stream)132 void dc_stream_destruct(struct dc_stream_state *stream)
133 {
134 dc_sink_release(stream->sink);
135 }
136
dc_stream_assign_stream_id(struct dc_stream_state * stream)137 void dc_stream_assign_stream_id(struct dc_stream_state *stream)
138 {
139 /* MSB is reserved to indicate phantoms */
140 stream->stream_id = stream->ctx->dc_stream_id_count;
141 stream->ctx->dc_stream_id_count++;
142 }
143
dc_stream_retain(struct dc_stream_state * stream)144 void dc_stream_retain(struct dc_stream_state *stream)
145 {
146 kref_get(&stream->refcount);
147 }
148
dc_stream_free(struct kref * kref)149 static void dc_stream_free(struct kref *kref)
150 {
151 struct dc_stream_state *stream = container_of(kref, struct dc_stream_state, refcount);
152
153 dc_stream_destruct(stream);
154 kfree(stream);
155 }
156
dc_stream_release(struct dc_stream_state * stream)157 void dc_stream_release(struct dc_stream_state *stream)
158 {
159 if (stream != NULL) {
160 kref_put(&stream->refcount, dc_stream_free);
161 }
162 }
163
dc_create_stream_for_sink(struct dc_sink * sink)164 struct dc_stream_state *dc_create_stream_for_sink(
165 struct dc_sink *sink)
166 {
167 struct dc_stream_state *stream;
168
169 if (sink == NULL)
170 return NULL;
171
172 stream = kzalloc(sizeof(struct dc_stream_state), GFP_KERNEL);
173 if (stream == NULL)
174 goto alloc_fail;
175
176 if (dc_stream_construct(stream, sink) == false)
177 goto construct_fail;
178
179 kref_init(&stream->refcount);
180
181 return stream;
182
183 construct_fail:
184 kfree(stream);
185
186 alloc_fail:
187 return NULL;
188 }
189
dc_copy_stream(const struct dc_stream_state * stream)190 struct dc_stream_state *dc_copy_stream(const struct dc_stream_state *stream)
191 {
192 struct dc_stream_state *new_stream;
193
194 new_stream = kmemdup(stream, sizeof(struct dc_stream_state), GFP_KERNEL);
195 if (!new_stream)
196 return NULL;
197
198 if (new_stream->sink)
199 dc_sink_retain(new_stream->sink);
200
201 dc_stream_assign_stream_id(new_stream);
202
203 /* If using dynamic encoder assignment, wait till stream committed to assign encoder. */
204 if (new_stream->ctx->dc->res_pool->funcs->link_encs_assign &&
205 !new_stream->ctx->dc->config.unify_link_enc_assignment)
206 new_stream->link_enc = NULL;
207
208 kref_init(&new_stream->refcount);
209
210 return new_stream;
211 }
212
213 /**
214 * dc_stream_get_status() - Get current stream status of the given stream state
215 * @stream: The stream to get the stream status for.
216 *
217 * The given stream is expected to exist in dc->current_state. Otherwise, NULL
218 * will be returned.
219 */
dc_stream_get_status(struct dc_stream_state * stream)220 struct dc_stream_status *dc_stream_get_status(
221 struct dc_stream_state *stream)
222 {
223 struct dc *dc = stream->ctx->dc;
224 return dc_state_get_stream_status(dc->current_state, stream);
225 }
226
dc_stream_get_status_const(const struct dc_stream_state * stream)227 const struct dc_stream_status *dc_stream_get_status_const(
228 const struct dc_stream_state *stream)
229 {
230 struct dc *dc = stream->ctx->dc;
231
232 return dc_state_get_stream_status(dc->current_state, stream);
233 }
234
program_cursor_attributes(struct dc * dc,struct dc_stream_state * stream)235 void program_cursor_attributes(
236 struct dc *dc,
237 struct dc_stream_state *stream)
238 {
239 int i;
240 struct resource_context *res_ctx;
241 struct pipe_ctx *pipe_to_program = NULL;
242 bool enable_cursor_offload = dc_dmub_srv_is_cursor_offload_enabled(dc);
243
244 if (!stream)
245 return;
246
247 res_ctx = &dc->current_state->res_ctx;
248
249 for (i = 0; i < MAX_PIPES; i++) {
250 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
251
252 if (pipe_ctx->stream != stream)
253 continue;
254
255 if (!pipe_to_program) {
256 pipe_to_program = pipe_ctx;
257
258 if (enable_cursor_offload && dc->hwss.begin_cursor_offload_update) {
259 dc->hwss.begin_cursor_offload_update(dc, pipe_ctx);
260 } else {
261 dc->hwss.cursor_lock(dc, pipe_to_program, true);
262 if (pipe_to_program->next_odm_pipe)
263 dc->hwss.cursor_lock(dc, pipe_to_program->next_odm_pipe, true);
264 }
265 }
266
267 dc->hwss.set_cursor_attribute(pipe_ctx);
268 if (dc->ctx->dmub_srv)
269 dc_send_update_cursor_info_to_dmu(pipe_ctx, i);
270 if (dc->hwss.set_cursor_sdr_white_level)
271 dc->hwss.set_cursor_sdr_white_level(pipe_ctx);
272 if (enable_cursor_offload && dc->hwss.update_cursor_offload_pipe)
273 dc->hwss.update_cursor_offload_pipe(dc, pipe_ctx);
274 }
275
276 if (pipe_to_program) {
277 if (enable_cursor_offload && dc->hwss.commit_cursor_offload_update) {
278 dc->hwss.commit_cursor_offload_update(dc, pipe_to_program);
279 } else {
280 dc->hwss.cursor_lock(dc, pipe_to_program, false);
281 if (pipe_to_program->next_odm_pipe)
282 dc->hwss.cursor_lock(dc, pipe_to_program->next_odm_pipe, false);
283 }
284 }
285 }
286
287 /*
288 * dc_stream_check_cursor_attributes() - Check validitity of cursor attributes and surface address
289 */
dc_stream_check_cursor_attributes(const struct dc_stream_state * stream,struct dc_state * state,const struct dc_cursor_attributes * attributes)290 bool dc_stream_check_cursor_attributes(
291 const struct dc_stream_state *stream,
292 struct dc_state *state,
293 const struct dc_cursor_attributes *attributes)
294 {
295 const struct dc *dc;
296
297 unsigned int max_cursor_size;
298
299 if (NULL == stream) {
300 dm_error("DC: dc_stream is NULL!\n");
301 return false;
302 }
303 if (NULL == attributes) {
304 dm_error("DC: attributes is NULL!\n");
305 return false;
306 }
307
308 if (attributes->address.quad_part == 0) {
309 dm_output_to_console("DC: Cursor address is 0!\n");
310 return false;
311 }
312
313 dc = stream->ctx->dc;
314
315 /* SubVP is not compatible with HW cursor larger than what can fit in cursor SRAM.
316 * Therefore, if cursor is greater than this, fallback to SW cursor.
317 */
318 if (dc->debug.allow_sw_cursor_fallback && dc->res_pool->funcs->get_max_hw_cursor_size) {
319 max_cursor_size = dc->res_pool->funcs->get_max_hw_cursor_size(dc, state, stream);
320 max_cursor_size = max_cursor_size * max_cursor_size * 4;
321
322 if (attributes->height * attributes->width * 4 > max_cursor_size) {
323 return false;
324 }
325 }
326
327 return true;
328 }
329
330 /*
331 * dc_stream_set_cursor_attributes() - Update cursor attributes and set cursor surface address
332 */
dc_stream_set_cursor_attributes(struct dc_stream_state * stream,const struct dc_cursor_attributes * attributes)333 bool dc_stream_set_cursor_attributes(
334 struct dc_stream_state *stream,
335 const struct dc_cursor_attributes *attributes)
336 {
337 bool result = false;
338
339 if (!stream)
340 return false;
341
342 if (dc_stream_check_cursor_attributes(stream, stream->ctx->dc->current_state, attributes)) {
343 stream->cursor_attributes = *attributes;
344 result = true;
345 }
346
347 return result;
348 }
349
dc_stream_program_cursor_attributes(struct dc_stream_state * stream,const struct dc_cursor_attributes * attributes)350 bool dc_stream_program_cursor_attributes(
351 struct dc_stream_state *stream,
352 const struct dc_cursor_attributes *attributes)
353 {
354 struct dc *dc;
355 bool reset_idle_optimizations = false;
356
357 if (!stream)
358 return false;
359
360 dc = stream->ctx->dc;
361
362 if (dc_stream_set_cursor_attributes(stream, attributes)) {
363 dc_z10_restore(dc);
364 /* disable idle optimizations while updating cursor */
365 if (dc->idle_optimizations_allowed) {
366 dc_allow_idle_optimizations(dc, false);
367 reset_idle_optimizations = true;
368 }
369
370 program_cursor_attributes(dc, stream);
371
372 /* re-enable idle optimizations if necessary */
373 if (reset_idle_optimizations && !dc->debug.disable_dmub_reallow_idle)
374 dc_allow_idle_optimizations(dc, true);
375
376 return true;
377 }
378
379 return false;
380 }
381
program_cursor_position(struct dc * dc,struct dc_stream_state * stream)382 void program_cursor_position(
383 struct dc *dc,
384 struct dc_stream_state *stream)
385 {
386 int i;
387 struct resource_context *res_ctx;
388 struct pipe_ctx *pipe_to_program = NULL;
389 bool enable_cursor_offload = dc_dmub_srv_is_cursor_offload_enabled(dc);
390
391 if (!stream)
392 return;
393
394 res_ctx = &dc->current_state->res_ctx;
395
396 for (i = 0; i < MAX_PIPES; i++) {
397 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
398
399 if (pipe_ctx->stream != stream ||
400 (!pipe_ctx->plane_res.mi && !pipe_ctx->plane_res.hubp) ||
401 !pipe_ctx->plane_state ||
402 (!pipe_ctx->plane_res.xfm && !pipe_ctx->plane_res.dpp) ||
403 (!pipe_ctx->plane_res.ipp && !pipe_ctx->plane_res.dpp))
404 continue;
405
406 if (!pipe_to_program) {
407 pipe_to_program = pipe_ctx;
408
409 if (enable_cursor_offload && dc->hwss.begin_cursor_offload_update)
410 dc->hwss.begin_cursor_offload_update(dc, pipe_ctx);
411 else
412 dc->hwss.cursor_lock(dc, pipe_to_program, true);
413 }
414
415 dc->hwss.set_cursor_position(pipe_ctx);
416 if (enable_cursor_offload && dc->hwss.update_cursor_offload_pipe)
417 dc->hwss.update_cursor_offload_pipe(dc, pipe_ctx);
418
419 if (dc->ctx->dmub_srv)
420 dc_send_update_cursor_info_to_dmu(pipe_ctx, i);
421 }
422
423 if (pipe_to_program) {
424 if (enable_cursor_offload && dc->hwss.commit_cursor_offload_update)
425 dc->hwss.commit_cursor_offload_update(dc, pipe_to_program);
426 else
427 dc->hwss.cursor_lock(dc, pipe_to_program, false);
428 }
429 }
430
dc_stream_set_cursor_position(struct dc_stream_state * stream,const struct dc_cursor_position * position)431 bool dc_stream_set_cursor_position(
432 struct dc_stream_state *stream,
433 const struct dc_cursor_position *position)
434 {
435 if (NULL == stream) {
436 dm_error("DC: dc_stream is NULL!\n");
437 return false;
438 }
439
440 if (NULL == position) {
441 dm_error("DC: cursor position is NULL!\n");
442 return false;
443 }
444
445 stream->cursor_position = *position;
446
447
448 return true;
449 }
450
dc_stream_program_cursor_position(struct dc_stream_state * stream,const struct dc_cursor_position * position)451 bool dc_stream_program_cursor_position(
452 struct dc_stream_state *stream,
453 const struct dc_cursor_position *position)
454 {
455 struct dc *dc;
456 bool reset_idle_optimizations = false;
457 const struct dc_cursor_position *old_position;
458
459 if (!stream)
460 return false;
461
462 old_position = &stream->cursor_position;
463 dc = stream->ctx->dc;
464
465 if (dc_stream_set_cursor_position(stream, position)) {
466 dc_z10_restore(dc);
467
468 /* disable idle optimizations if enabling cursor */
469 if (dc->idle_optimizations_allowed &&
470 (!old_position->enable || dc->debug.exit_idle_opt_for_cursor_updates) &&
471 position->enable) {
472 dc_allow_idle_optimizations(dc, false);
473 reset_idle_optimizations = true;
474 }
475
476 program_cursor_position(dc, stream);
477 /* re-enable idle optimizations if necessary */
478 if (reset_idle_optimizations && !dc->debug.disable_dmub_reallow_idle)
479 dc_allow_idle_optimizations(dc, true);
480
481 /* apply/update visual confirm */
482 if (dc->debug.visual_confirm == VISUAL_CONFIRM_HW_CURSOR) {
483 /* update software state */
484 int i;
485
486 for (i = 0; i < dc->res_pool->pipe_count; i++) {
487 struct pipe_ctx *pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
488
489 /* adjust visual confirm color for all pipes with current stream */
490 if (stream == pipe_ctx->stream) {
491 get_cursor_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
492
493 /* programming hardware */
494 if (pipe_ctx->plane_state)
495 dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
496 pipe_ctx->plane_res.hubp->mpcc_id);
497 }
498 }
499 }
500
501 return true;
502 }
503
504 return false;
505 }
506
dc_stream_add_writeback(struct dc * dc,struct dc_stream_state * stream,struct dc_writeback_info * wb_info)507 bool dc_stream_add_writeback(struct dc *dc,
508 struct dc_stream_state *stream,
509 struct dc_writeback_info *wb_info)
510 {
511 bool isDrc = false;
512 int i = 0;
513 struct dwbc *dwb;
514
515 if (stream == NULL) {
516 dm_error("DC: dc_stream is NULL!\n");
517 return false;
518 }
519
520 if (wb_info == NULL) {
521 dm_error("DC: dc_writeback_info is NULL!\n");
522 return false;
523 }
524
525 if (wb_info->dwb_pipe_inst >= MAX_DWB_PIPES) {
526 dm_error("DC: writeback pipe is invalid!\n");
527 return false;
528 }
529
530 dc_exit_ips_for_hw_access(dc);
531
532 wb_info->dwb_params.out_transfer_func = &stream->out_transfer_func;
533
534 dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
535 dwb->dwb_is_drc = false;
536
537 /* recalculate and apply DML parameters */
538
539 for (i = 0; i < stream->num_wb_info; i++) {
540 /*dynamic update*/
541 if (stream->writeback_info[i].wb_enabled &&
542 stream->writeback_info[i].dwb_pipe_inst == wb_info->dwb_pipe_inst) {
543 stream->writeback_info[i] = *wb_info;
544 isDrc = true;
545 }
546 }
547
548 if (!isDrc) {
549 ASSERT(stream->num_wb_info + 1 <= MAX_DWB_PIPES);
550 stream->writeback_info[stream->num_wb_info++] = *wb_info;
551 }
552
553 if (dc->hwss.enable_writeback) {
554 struct dc_stream_status *stream_status = dc_stream_get_status(stream);
555 struct dwbc *dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
556 if (stream_status)
557 dwb->otg_inst = stream_status->primary_otg_inst;
558 }
559
560 if (!dc->hwss.update_bandwidth(dc, dc->current_state)) {
561 dm_error("DC: update_bandwidth failed!\n");
562 return false;
563 }
564
565 /* enable writeback */
566 if (dc->hwss.enable_writeback) {
567 struct dwbc *dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
568
569 if (dwb->funcs->is_enabled(dwb)) {
570 /* writeback pipe already enabled, only need to update */
571 dc->hwss.update_writeback(dc, wb_info, dc->current_state);
572 } else {
573 /* Enable writeback pipe from scratch*/
574 dc->hwss.enable_writeback(dc, wb_info, dc->current_state);
575 }
576 }
577
578 return true;
579 }
580
dc_stream_fc_disable_writeback(struct dc * dc,struct dc_stream_state * stream,uint32_t dwb_pipe_inst)581 bool dc_stream_fc_disable_writeback(struct dc *dc,
582 struct dc_stream_state *stream,
583 uint32_t dwb_pipe_inst)
584 {
585 struct dwbc *dwb = dc->res_pool->dwbc[dwb_pipe_inst];
586
587 if (stream == NULL) {
588 dm_error("DC: dc_stream is NULL!\n");
589 return false;
590 }
591
592 if (dwb_pipe_inst >= MAX_DWB_PIPES) {
593 dm_error("DC: writeback pipe is invalid!\n");
594 return false;
595 }
596
597 if (stream->num_wb_info > MAX_DWB_PIPES) {
598 dm_error("DC: num_wb_info is invalid!\n");
599 return false;
600 }
601
602 dc_exit_ips_for_hw_access(dc);
603
604 if (dwb->funcs->set_fc_enable)
605 dwb->funcs->set_fc_enable(dwb, DWB_FRAME_CAPTURE_DISABLE);
606
607 return true;
608 }
609
610 /**
611 * dc_stream_remove_writeback() - Disables writeback and removes writeback info.
612 * @dc: Display core control structure.
613 * @stream: Display core stream state.
614 * @dwb_pipe_inst: Display writeback pipe.
615 *
616 * Return: returns true on success, false otherwise.
617 */
dc_stream_remove_writeback(struct dc * dc,struct dc_stream_state * stream,uint32_t dwb_pipe_inst)618 bool dc_stream_remove_writeback(struct dc *dc,
619 struct dc_stream_state *stream,
620 uint32_t dwb_pipe_inst)
621 {
622 unsigned int i, j;
623 if (stream == NULL) {
624 dm_error("DC: dc_stream is NULL!\n");
625 return false;
626 }
627
628 if (dwb_pipe_inst >= MAX_DWB_PIPES) {
629 dm_error("DC: writeback pipe is invalid!\n");
630 return false;
631 }
632
633 if (stream->num_wb_info > MAX_DWB_PIPES) {
634 dm_error("DC: num_wb_info is invalid!\n");
635 return false;
636 }
637
638 /* remove writeback info for disabled writeback pipes from stream */
639 for (i = 0, j = 0; i < stream->num_wb_info; i++) {
640 if (stream->writeback_info[i].wb_enabled) {
641
642 if (stream->writeback_info[i].dwb_pipe_inst == dwb_pipe_inst)
643 stream->writeback_info[i].wb_enabled = false;
644
645 /* trim the array */
646 if (j < i) {
647 memcpy(&stream->writeback_info[j], &stream->writeback_info[i],
648 sizeof(struct dc_writeback_info));
649 j++;
650 }
651 }
652 }
653 stream->num_wb_info = j;
654
655 /* recalculate and apply DML parameters */
656 if (!dc->hwss.update_bandwidth(dc, dc->current_state)) {
657 dm_error("DC: update_bandwidth failed!\n");
658 return false;
659 }
660
661 dc_exit_ips_for_hw_access(dc);
662
663 /* disable writeback */
664 if (dc->hwss.disable_writeback) {
665 struct dwbc *dwb = dc->res_pool->dwbc[dwb_pipe_inst];
666
667 if (dwb->funcs->is_enabled(dwb))
668 dc->hwss.disable_writeback(dc, dwb_pipe_inst);
669 }
670
671 return true;
672 }
673
dc_stream_get_vblank_counter(const struct dc_stream_state * stream)674 uint32_t dc_stream_get_vblank_counter(const struct dc_stream_state *stream)
675 {
676 uint8_t i;
677 struct dc *dc = stream->ctx->dc;
678 struct resource_context *res_ctx =
679 &dc->current_state->res_ctx;
680
681 dc_exit_ips_for_hw_access(dc);
682
683 for (i = 0; i < MAX_PIPES; i++) {
684 struct timing_generator *tg = res_ctx->pipe_ctx[i].stream_res.tg;
685
686 if (res_ctx->pipe_ctx[i].stream != stream || !tg)
687 continue;
688
689 return tg->funcs->get_frame_count(tg);
690 }
691
692 return 0;
693 }
694
dc_stream_send_dp_sdp(const struct dc_stream_state * stream,const uint8_t * custom_sdp_message,unsigned int sdp_message_size)695 bool dc_stream_send_dp_sdp(const struct dc_stream_state *stream,
696 const uint8_t *custom_sdp_message,
697 unsigned int sdp_message_size)
698 {
699 int i;
700 struct dc *dc;
701 struct resource_context *res_ctx;
702
703 if (stream == NULL) {
704 dm_error("DC: dc_stream is NULL!\n");
705 return false;
706 }
707
708 dc = stream->ctx->dc;
709 res_ctx = &dc->current_state->res_ctx;
710
711 dc_exit_ips_for_hw_access(dc);
712
713 for (i = 0; i < MAX_PIPES; i++) {
714 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
715
716 if (pipe_ctx->stream != stream)
717 continue;
718
719 if (dc->hwss.send_immediate_sdp_message != NULL)
720 dc->hwss.send_immediate_sdp_message(pipe_ctx,
721 custom_sdp_message,
722 sdp_message_size);
723 else
724 DC_LOG_WARNING("%s:send_immediate_sdp_message not implemented on this ASIC\n",
725 __func__);
726
727 }
728
729 return true;
730 }
731
dc_stream_get_scanoutpos(const struct dc_stream_state * stream,uint32_t * v_blank_start,uint32_t * v_blank_end,uint32_t * h_position,uint32_t * v_position)732 bool dc_stream_get_scanoutpos(const struct dc_stream_state *stream,
733 uint32_t *v_blank_start,
734 uint32_t *v_blank_end,
735 uint32_t *h_position,
736 uint32_t *v_position)
737 {
738 uint8_t i;
739 bool ret = false;
740 struct dc *dc;
741 struct resource_context *res_ctx;
742
743 if (!stream->ctx)
744 return false;
745
746 dc = stream->ctx->dc;
747 res_ctx = &dc->current_state->res_ctx;
748
749 dc_exit_ips_for_hw_access(dc);
750
751 for (i = 0; i < MAX_PIPES; i++) {
752 struct timing_generator *tg = res_ctx->pipe_ctx[i].stream_res.tg;
753
754 if (res_ctx->pipe_ctx[i].stream != stream || !tg)
755 continue;
756
757 tg->funcs->get_scanoutpos(tg,
758 v_blank_start,
759 v_blank_end,
760 h_position,
761 v_position);
762
763 ret = true;
764 break;
765 }
766
767 return ret;
768 }
769
dc_stream_dmdata_status_done(struct dc * dc,struct dc_stream_state * stream)770 bool dc_stream_dmdata_status_done(struct dc *dc, struct dc_stream_state *stream)
771 {
772 struct pipe_ctx *pipe = NULL;
773 int i;
774
775 if (!dc->hwss.dmdata_status_done)
776 return false;
777
778 for (i = 0; i < MAX_PIPES; i++) {
779 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
780 if (pipe->stream == stream)
781 break;
782 }
783 /* Stream not found, by default we'll assume HUBP fetched dm data */
784 if (i == MAX_PIPES)
785 return true;
786
787 dc_exit_ips_for_hw_access(dc);
788
789 return dc->hwss.dmdata_status_done(pipe);
790 }
791
dc_stream_set_dynamic_metadata(struct dc * dc,struct dc_stream_state * stream,struct dc_dmdata_attributes * attr)792 bool dc_stream_set_dynamic_metadata(struct dc *dc,
793 struct dc_stream_state *stream,
794 struct dc_dmdata_attributes *attr)
795 {
796 struct pipe_ctx *pipe_ctx = NULL;
797 struct hubp *hubp;
798 int i;
799
800 /* Dynamic metadata is only supported on HDMI or DP */
801 if (!dc_is_hdmi_signal(stream->signal) && !dc_is_dp_signal(stream->signal))
802 return false;
803
804 /* Check hardware support */
805 if (!dc->hwss.program_dmdata_engine)
806 return false;
807
808 for (i = 0; i < MAX_PIPES; i++) {
809 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
810 if (pipe_ctx->stream == stream)
811 break;
812 }
813
814 if (i == MAX_PIPES)
815 return false;
816
817 hubp = pipe_ctx->plane_res.hubp;
818 if (hubp == NULL)
819 return false;
820
821 pipe_ctx->stream->dmdata_address = attr->address;
822
823 dc_exit_ips_for_hw_access(dc);
824
825 dc->hwss.program_dmdata_engine(pipe_ctx);
826
827 if (hubp->funcs->dmdata_set_attributes != NULL &&
828 pipe_ctx->stream->dmdata_address.quad_part != 0) {
829 hubp->funcs->dmdata_set_attributes(hubp, attr);
830 }
831
832 return true;
833 }
834
dc_stream_add_dsc_to_resource(struct dc * dc,struct dc_state * state,struct dc_stream_state * stream)835 enum dc_status dc_stream_add_dsc_to_resource(struct dc *dc,
836 struct dc_state *state,
837 struct dc_stream_state *stream)
838 {
839 if (dc->res_pool->funcs->add_dsc_to_stream_resource) {
840 return dc->res_pool->funcs->add_dsc_to_stream_resource(dc, state, stream);
841 } else {
842 return DC_NO_DSC_RESOURCE;
843 }
844 }
845
dc_stream_get_pipe_ctx(struct dc_stream_state * stream)846 struct pipe_ctx *dc_stream_get_pipe_ctx(struct dc_stream_state *stream)
847 {
848 int i = 0;
849
850 for (i = 0; i < MAX_PIPES; i++) {
851 struct pipe_ctx *pipe = &stream->ctx->dc->current_state->res_ctx.pipe_ctx[i];
852
853 if (pipe->stream == stream)
854 return pipe;
855 }
856
857 return NULL;
858 }
859
dc_stream_log(const struct dc * dc,const struct dc_stream_state * stream)860 void dc_stream_log(const struct dc *dc, const struct dc_stream_state *stream)
861 {
862 DC_LOG_DC(
863 "core_stream 0x%p: src: %d, %d, %d, %d; dst: %d, %d, %d, %d, colorSpace:%d\n",
864 stream,
865 stream->src.x,
866 stream->src.y,
867 stream->src.width,
868 stream->src.height,
869 stream->dst.x,
870 stream->dst.y,
871 stream->dst.width,
872 stream->dst.height,
873 stream->output_color_space);
874 DC_LOG_DC(
875 "\tpix_clk_khz: %d, h_total: %d, v_total: %d, pixel_encoding:%s, color_depth:%s\n",
876 stream->timing.pix_clk_100hz / 10,
877 stream->timing.h_total,
878 stream->timing.v_total,
879 dc_pixel_encoding_to_str(stream->timing.pixel_encoding),
880 dc_color_depth_to_str(stream->timing.display_color_depth));
881 DC_LOG_DC(
882 "\tlink: %d\n",
883 stream->link->link_index);
884
885 DC_LOG_DC(
886 "\tdsc: %d, mst_pbn: %d\n",
887 stream->timing.flags.DSC,
888 stream->timing.dsc_cfg.mst_pbn);
889
890 if (stream->sink) {
891 if (stream->sink->sink_signal != SIGNAL_TYPE_VIRTUAL &&
892 stream->sink->sink_signal != SIGNAL_TYPE_NONE) {
893
894 DC_LOG_DC(
895 "\tsignal: %x dispname: %s manufacturer_id: 0x%x product_id: 0x%x\n",
896 stream->signal,
897 stream->sink->edid_caps.display_name,
898 stream->sink->edid_caps.manufacturer_id,
899 stream->sink->edid_caps.product_id);
900 }
901 }
902 }
903
904 /*
905 * dc_stream_get_3dlut()
906 * Requirements:
907 * 1. Is stream already owns an RMCM instance, return it.
908 * 2. If it doesn't and we don't need to allocate, return NULL.
909 * 3. If there's a free RMCM instance, assign to stream and return it.
910 * 4. If no free RMCM instances, return NULL.
911 */
912
dc_stream_get_3dlut_for_stream(const struct dc * dc,const struct dc_stream_state * stream,bool allocate_one)913 struct dc_rmcm_3dlut *dc_stream_get_3dlut_for_stream(
914 const struct dc *dc,
915 const struct dc_stream_state *stream,
916 bool allocate_one)
917 {
918 unsigned int num_rmcm = dc->caps.color.mpc.num_rmcm_3dluts;
919
920 // see if one is allocated for this stream
921 for (int i = 0; i < num_rmcm; i++) {
922 if (dc->res_pool->rmcm_3dlut[i].isInUse &&
923 dc->res_pool->rmcm_3dlut[i].stream == stream)
924 return &dc->res_pool->rmcm_3dlut[i];
925 }
926
927 //case: not found one, and dont need to allocate
928 if (!allocate_one)
929 return NULL;
930
931 //see if there is an unused 3dlut, allocate
932 for (int i = 0; i < num_rmcm; i++) {
933 if (!dc->res_pool->rmcm_3dlut[i].isInUse) {
934 dc->res_pool->rmcm_3dlut[i].isInUse = true;
935 dc->res_pool->rmcm_3dlut[i].stream = stream;
936 return &dc->res_pool->rmcm_3dlut[i];
937 }
938 }
939
940 //dont have a 3dlut
941 return NULL;
942 }
943
944
dc_stream_release_3dlut_for_stream(const struct dc * dc,const struct dc_stream_state * stream)945 void dc_stream_release_3dlut_for_stream(
946 const struct dc *dc,
947 const struct dc_stream_state *stream)
948 {
949 struct dc_rmcm_3dlut *rmcm_3dlut =
950 dc_stream_get_3dlut_for_stream(dc, stream, false);
951
952 if (rmcm_3dlut) {
953 rmcm_3dlut->isInUse = false;
954 rmcm_3dlut->stream = NULL;
955 rmcm_3dlut->protection_bits = 0;
956 }
957 }
958
959
dc_stream_init_rmcm_3dlut(struct dc * dc)960 void dc_stream_init_rmcm_3dlut(struct dc *dc)
961 {
962 unsigned int num_rmcm = dc->caps.color.mpc.num_rmcm_3dluts;
963
964 for (int i = 0; i < num_rmcm; i++) {
965 dc->res_pool->rmcm_3dlut[i].isInUse = false;
966 dc->res_pool->rmcm_3dlut[i].stream = NULL;
967 dc->res_pool->rmcm_3dlut[i].protection_bits = 0;
968 }
969 }
970
971 /*
972 * Finds the greatest index in refresh_rate_hz that contains a value <= refresh
973 */
dc_stream_get_nearest_smallest_index(struct dc_stream_state * stream,int refresh)974 static int dc_stream_get_nearest_smallest_index(struct dc_stream_state *stream, int refresh)
975 {
976 for (int i = 0; i < (LUMINANCE_DATA_TABLE_SIZE - 1); ++i) {
977 if ((stream->lumin_data.refresh_rate_hz[i] <= refresh) && (refresh < stream->lumin_data.refresh_rate_hz[i + 1])) {
978 return i;
979 }
980 }
981 return 9;
982 }
983
984 /*
985 * Finds a corresponding brightness for a given refresh rate between 2 given indices, where index1 < index2
986 */
dc_stream_get_brightness_millinits_linear_interpolation(struct dc_stream_state * stream,int index1,int index2,int refresh_hz)987 static int dc_stream_get_brightness_millinits_linear_interpolation (struct dc_stream_state *stream,
988 int index1,
989 int index2,
990 int refresh_hz)
991 {
992 long long slope = 0;
993 if (stream->lumin_data.refresh_rate_hz[index2] != stream->lumin_data.refresh_rate_hz[index1]) {
994 slope = (stream->lumin_data.luminance_millinits[index2] - stream->lumin_data.luminance_millinits[index1]) /
995 (stream->lumin_data.refresh_rate_hz[index2] - stream->lumin_data.refresh_rate_hz[index1]);
996 }
997
998 int y_intercept = stream->lumin_data.luminance_millinits[index2] - slope * stream->lumin_data.refresh_rate_hz[index2];
999
1000 return (y_intercept + refresh_hz * slope);
1001 }
1002
1003 /*
1004 * Finds a corresponding refresh rate for a given brightness between 2 given indices, where index1 < index2
1005 */
dc_stream_get_refresh_hz_linear_interpolation(struct dc_stream_state * stream,int index1,int index2,int brightness_millinits)1006 static int dc_stream_get_refresh_hz_linear_interpolation (struct dc_stream_state *stream,
1007 int index1,
1008 int index2,
1009 int brightness_millinits)
1010 {
1011 long long slope = 1;
1012 if (stream->lumin_data.refresh_rate_hz[index2] != stream->lumin_data.refresh_rate_hz[index1]) {
1013 slope = (stream->lumin_data.luminance_millinits[index2] - stream->lumin_data.luminance_millinits[index1]) /
1014 (stream->lumin_data.refresh_rate_hz[index2] - stream->lumin_data.refresh_rate_hz[index1]);
1015 }
1016
1017 int y_intercept = stream->lumin_data.luminance_millinits[index2] - slope * stream->lumin_data.refresh_rate_hz[index2];
1018
1019 return ((int)div64_s64((brightness_millinits - y_intercept), slope));
1020 }
1021
1022 /*
1023 * Finds the current brightness in millinits given a refresh rate
1024 */
dc_stream_get_brightness_millinits_from_refresh(struct dc_stream_state * stream,int refresh_hz)1025 static int dc_stream_get_brightness_millinits_from_refresh (struct dc_stream_state *stream, int refresh_hz)
1026 {
1027 int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, refresh_hz);
1028 int nearest_smallest_value = stream->lumin_data.refresh_rate_hz[nearest_smallest_index];
1029
1030 if (nearest_smallest_value == refresh_hz)
1031 return stream->lumin_data.luminance_millinits[nearest_smallest_index];
1032
1033 if (nearest_smallest_index >= 9)
1034 return dc_stream_get_brightness_millinits_linear_interpolation(stream, nearest_smallest_index - 1, nearest_smallest_index, refresh_hz);
1035
1036 if (nearest_smallest_value == stream->lumin_data.refresh_rate_hz[nearest_smallest_index + 1])
1037 return stream->lumin_data.luminance_millinits[nearest_smallest_index];
1038
1039 return dc_stream_get_brightness_millinits_linear_interpolation(stream, nearest_smallest_index, nearest_smallest_index + 1, refresh_hz);
1040 }
1041
1042 /*
1043 * Finds the lowest/highest refresh rate (depending on search_for_max_increase)
1044 * that can be achieved from starting_refresh_hz while staying
1045 * within flicker criteria
1046 */
dc_stream_calculate_flickerless_refresh_rate(struct dc_stream_state * stream,int current_brightness,int starting_refresh_hz,bool is_gaming,bool search_for_max_increase)1047 static int dc_stream_calculate_flickerless_refresh_rate(struct dc_stream_state *stream,
1048 int current_brightness,
1049 int starting_refresh_hz,
1050 bool is_gaming,
1051 bool search_for_max_increase)
1052 {
1053 int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, starting_refresh_hz);
1054
1055 int flicker_criteria_millinits = is_gaming ?
1056 stream->lumin_data.flicker_criteria_milli_nits_GAMING :
1057 stream->lumin_data.flicker_criteria_milli_nits_STATIC;
1058
1059 int safe_upper_bound = current_brightness + flicker_criteria_millinits;
1060 int safe_lower_bound = current_brightness - flicker_criteria_millinits;
1061 int lumin_millinits_temp = 0;
1062
1063 int offset = -1;
1064 if (search_for_max_increase) {
1065 offset = 1;
1066 }
1067
1068 /*
1069 * Increments up or down by 1 depending on search_for_max_increase
1070 */
1071 for (int i = nearest_smallest_index; (i > 0 && !search_for_max_increase) || (i < (LUMINANCE_DATA_TABLE_SIZE - 1) && search_for_max_increase); i += offset) {
1072
1073 lumin_millinits_temp = stream->lumin_data.luminance_millinits[i + offset];
1074
1075 if ((lumin_millinits_temp >= safe_upper_bound) || (lumin_millinits_temp <= safe_lower_bound)) {
1076
1077 if (stream->lumin_data.refresh_rate_hz[i + offset] == stream->lumin_data.refresh_rate_hz[i])
1078 return stream->lumin_data.refresh_rate_hz[i];
1079
1080 int target_brightness = (stream->lumin_data.luminance_millinits[i + offset] >= (current_brightness + flicker_criteria_millinits)) ?
1081 current_brightness + flicker_criteria_millinits :
1082 current_brightness - flicker_criteria_millinits;
1083
1084 int refresh = 0;
1085
1086 /*
1087 * Need the second input to be < third input for dc_stream_get_refresh_hz_linear_interpolation
1088 */
1089 if (search_for_max_increase)
1090 refresh = dc_stream_get_refresh_hz_linear_interpolation(stream, i, i + offset, target_brightness);
1091 else
1092 refresh = dc_stream_get_refresh_hz_linear_interpolation(stream, i + offset, i, target_brightness);
1093
1094 if (refresh == stream->lumin_data.refresh_rate_hz[i + offset])
1095 return stream->lumin_data.refresh_rate_hz[i + offset];
1096
1097 return refresh;
1098 }
1099 }
1100
1101 if (search_for_max_increase)
1102 return (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, stream->timing.v_total*(long long)stream->timing.h_total);
1103 else
1104 return stream->lumin_data.refresh_rate_hz[0];
1105 }
1106
1107 /*
1108 * Gets the max delta luminance within a specified refresh range
1109 */
dc_stream_get_max_delta_lumin_millinits(struct dc_stream_state * stream,int hz1,int hz2,bool isGaming)1110 static int dc_stream_get_max_delta_lumin_millinits(struct dc_stream_state *stream, int hz1, int hz2, bool isGaming)
1111 {
1112 int lower_refresh_brightness = dc_stream_get_brightness_millinits_from_refresh (stream, hz1);
1113 int higher_refresh_brightness = dc_stream_get_brightness_millinits_from_refresh (stream, hz2);
1114
1115 int min = lower_refresh_brightness;
1116 int max = higher_refresh_brightness;
1117
1118 /*
1119 * Static screen, therefore no need to scan through array
1120 */
1121 if (!isGaming) {
1122 if (lower_refresh_brightness >= higher_refresh_brightness) {
1123 return lower_refresh_brightness - higher_refresh_brightness;
1124 }
1125 return higher_refresh_brightness - lower_refresh_brightness;
1126 }
1127
1128 min = MIN(lower_refresh_brightness, higher_refresh_brightness);
1129 max = MAX(lower_refresh_brightness, higher_refresh_brightness);
1130
1131 int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, hz1);
1132
1133 for (; nearest_smallest_index < (LUMINANCE_DATA_TABLE_SIZE - 1) &&
1134 stream->lumin_data.refresh_rate_hz[nearest_smallest_index + 1] <= hz2 ; nearest_smallest_index++) {
1135 min = MIN(min, stream->lumin_data.luminance_millinits[nearest_smallest_index + 1]);
1136 max = MAX(max, stream->lumin_data.luminance_millinits[nearest_smallest_index + 1]);
1137 }
1138
1139 return (max - min);
1140 }
1141
1142 /*
1143 * Determines the max flickerless instant vtotal delta for a stream.
1144 * Determines vtotal increase/decrease based on the bool "increase"
1145 */
dc_stream_get_max_flickerless_instant_vtotal_delta(struct dc_stream_state * stream,bool is_gaming,bool increase)1146 static unsigned int dc_stream_get_max_flickerless_instant_vtotal_delta(struct dc_stream_state *stream, bool is_gaming, bool increase)
1147 {
1148 if (stream->timing.v_total * stream->timing.h_total == 0)
1149 return 0;
1150
1151 int current_refresh_hz = (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, stream->timing.v_total*(long long)stream->timing.h_total);
1152
1153 int safe_refresh_hz = dc_stream_calculate_flickerless_refresh_rate(stream,
1154 dc_stream_get_brightness_millinits_from_refresh(stream, current_refresh_hz),
1155 current_refresh_hz,
1156 is_gaming,
1157 increase);
1158
1159 int safe_refresh_v_total = (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, safe_refresh_hz*(long long)stream->timing.h_total);
1160
1161 if (increase)
1162 return (((int) stream->timing.v_total - safe_refresh_v_total) >= 0) ? (stream->timing.v_total - safe_refresh_v_total) : 0;
1163
1164 return ((safe_refresh_v_total - (int) stream->timing.v_total) >= 0) ? (safe_refresh_v_total - stream->timing.v_total) : 0;
1165 }
1166
1167 /*
1168 * Finds the highest refresh rate that can be achieved
1169 * from starting_refresh_hz while staying within flicker criteria
1170 */
dc_stream_calculate_max_flickerless_refresh_rate(struct dc_stream_state * stream,int starting_refresh_hz,bool is_gaming)1171 int dc_stream_calculate_max_flickerless_refresh_rate(struct dc_stream_state *stream, int starting_refresh_hz, bool is_gaming)
1172 {
1173 if (!stream->lumin_data.is_valid)
1174 return 0;
1175
1176 int current_brightness = dc_stream_get_brightness_millinits_from_refresh(stream, starting_refresh_hz);
1177
1178 return dc_stream_calculate_flickerless_refresh_rate(stream,
1179 current_brightness,
1180 starting_refresh_hz,
1181 is_gaming,
1182 true);
1183 }
1184
1185 /*
1186 * Finds the lowest refresh rate that can be achieved
1187 * from starting_refresh_hz while staying within flicker criteria
1188 */
dc_stream_calculate_min_flickerless_refresh_rate(struct dc_stream_state * stream,int starting_refresh_hz,bool is_gaming)1189 int dc_stream_calculate_min_flickerless_refresh_rate(struct dc_stream_state *stream, int starting_refresh_hz, bool is_gaming)
1190 {
1191 if (!stream->lumin_data.is_valid)
1192 return 0;
1193
1194 int current_brightness = dc_stream_get_brightness_millinits_from_refresh(stream, starting_refresh_hz);
1195
1196 return dc_stream_calculate_flickerless_refresh_rate(stream,
1197 current_brightness,
1198 starting_refresh_hz,
1199 is_gaming,
1200 false);
1201 }
1202
1203 /*
1204 * Determines if there will be a flicker when moving between 2 refresh rates
1205 */
dc_stream_is_refresh_rate_range_flickerless(struct dc_stream_state * stream,int hz1,int hz2,bool is_gaming)1206 bool dc_stream_is_refresh_rate_range_flickerless(struct dc_stream_state *stream, int hz1, int hz2, bool is_gaming)
1207 {
1208
1209 /*
1210 * Assume that we wont flicker if there is invalid data
1211 */
1212 if (!stream->lumin_data.is_valid)
1213 return false;
1214
1215 int dl = dc_stream_get_max_delta_lumin_millinits(stream, hz1, hz2, is_gaming);
1216
1217 int flicker_criteria_millinits = (is_gaming) ?
1218 stream->lumin_data.flicker_criteria_milli_nits_GAMING :
1219 stream->lumin_data.flicker_criteria_milli_nits_STATIC;
1220
1221 return (dl <= flicker_criteria_millinits);
1222 }
1223
1224 /*
1225 * Determines the max instant vtotal delta increase that can be applied without
1226 * flickering for a given stream
1227 */
dc_stream_get_max_flickerless_instant_vtotal_decrease(struct dc_stream_state * stream,bool is_gaming)1228 unsigned int dc_stream_get_max_flickerless_instant_vtotal_decrease(struct dc_stream_state *stream,
1229 bool is_gaming)
1230 {
1231 if (!stream->lumin_data.is_valid)
1232 return 0;
1233
1234 return dc_stream_get_max_flickerless_instant_vtotal_delta(stream, is_gaming, true);
1235 }
1236
1237 /*
1238 * Determines the max instant vtotal delta decrease that can be applied without
1239 * flickering for a given stream
1240 */
dc_stream_get_max_flickerless_instant_vtotal_increase(struct dc_stream_state * stream,bool is_gaming)1241 unsigned int dc_stream_get_max_flickerless_instant_vtotal_increase(struct dc_stream_state *stream,
1242 bool is_gaming)
1243 {
1244 if (!stream->lumin_data.is_valid)
1245 return 0;
1246
1247 return dc_stream_get_max_flickerless_instant_vtotal_delta(stream, is_gaming, false);
1248 }
1249
dc_stream_is_cursor_limit_pending(struct dc * dc,struct dc_stream_state * stream)1250 bool dc_stream_is_cursor_limit_pending(struct dc *dc, struct dc_stream_state *stream)
1251 {
1252 bool is_limit_pending = false;
1253
1254 if (dc->current_state)
1255 is_limit_pending = dc_state_get_stream_cursor_subvp_limit(stream, dc->current_state);
1256
1257 return is_limit_pending;
1258 }
1259
dc_stream_can_clear_cursor_limit(struct dc * dc,struct dc_stream_state * stream)1260 bool dc_stream_can_clear_cursor_limit(struct dc *dc, struct dc_stream_state *stream)
1261 {
1262 bool can_clear_limit = false;
1263
1264 if (dc->current_state)
1265 can_clear_limit = dc_state_get_stream_cursor_subvp_limit(stream, dc->current_state) &&
1266 (stream->hw_cursor_req ||
1267 !stream->cursor_position.enable ||
1268 dc_stream_check_cursor_attributes(stream, dc->current_state, &stream->cursor_attributes));
1269
1270 return can_clear_limit;
1271 }
1272