xref: /linux/drivers/gpu/drm/amd/display/dc/core/dc_stream.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 #include "basics/dc_common.h"
28 #include "dc.h"
29 #include "core_types.h"
30 #include "resource.h"
31 #include "ipp.h"
32 #include "timing_generator.h"
33 #include "dc_dmub_srv.h"
34 #include "dc_state_priv.h"
35 #include "dc_stream_priv.h"
36 
37 #define DC_LOGGER dc->ctx->logger
38 #ifndef MIN
39 #define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
40 #endif
41 #ifndef MAX
42 #define MAX(x, y) ((x > y) ? x : y)
43 #endif
44 
45 /*******************************************************************************
46  * Private functions
47  ******************************************************************************/
update_stream_signal(struct dc_stream_state * stream,struct dc_sink * sink)48 void update_stream_signal(struct dc_stream_state *stream, struct dc_sink *sink)
49 {
50 	if (sink->sink_signal == SIGNAL_TYPE_NONE)
51 		stream->signal = stream->link->connector_signal;
52 	else
53 		stream->signal = sink->sink_signal;
54 
55 	if (dc_is_dvi_signal(stream->signal)) {
56 		if (stream->ctx->dc->caps.dual_link_dvi &&
57 			(stream->timing.pix_clk_100hz / 10) > TMDS_MAX_PIXEL_CLOCK &&
58 			sink->sink_signal != SIGNAL_TYPE_DVI_SINGLE_LINK)
59 			stream->signal = SIGNAL_TYPE_DVI_DUAL_LINK;
60 		else
61 			stream->signal = SIGNAL_TYPE_DVI_SINGLE_LINK;
62 	}
63 }
64 
dc_stream_construct(struct dc_stream_state * stream,struct dc_sink * dc_sink_data)65 bool dc_stream_construct(struct dc_stream_state *stream,
66 	struct dc_sink *dc_sink_data)
67 {
68 	uint32_t i = 0;
69 
70 	stream->sink = dc_sink_data;
71 	dc_sink_retain(dc_sink_data);
72 
73 	stream->ctx = dc_sink_data->ctx;
74 	stream->link = dc_sink_data->link;
75 	stream->sink_patches = dc_sink_data->edid_caps.panel_patch;
76 	stream->converter_disable_audio = dc_sink_data->converter_disable_audio;
77 	stream->qs_bit = dc_sink_data->edid_caps.qs_bit;
78 	stream->qy_bit = dc_sink_data->edid_caps.qy_bit;
79 
80 	/* Copy audio modes */
81 	/* TODO - Remove this translation */
82 	for (i = 0; i < (dc_sink_data->edid_caps.audio_mode_count); i++) {
83 		stream->audio_info.modes[i].channel_count = dc_sink_data->edid_caps.audio_modes[i].channel_count;
84 		stream->audio_info.modes[i].format_code = dc_sink_data->edid_caps.audio_modes[i].format_code;
85 		stream->audio_info.modes[i].sample_rates.all = dc_sink_data->edid_caps.audio_modes[i].sample_rate;
86 		stream->audio_info.modes[i].sample_size = dc_sink_data->edid_caps.audio_modes[i].sample_size;
87 	}
88 	stream->audio_info.mode_count = dc_sink_data->edid_caps.audio_mode_count;
89 	stream->audio_info.audio_latency = dc_sink_data->edid_caps.audio_latency;
90 	stream->audio_info.video_latency = dc_sink_data->edid_caps.video_latency;
91 	memmove(
92 		stream->audio_info.display_name,
93 		dc_sink_data->edid_caps.display_name,
94 		AUDIO_INFO_DISPLAY_NAME_SIZE_IN_CHARS);
95 	stream->audio_info.manufacture_id = dc_sink_data->edid_caps.manufacturer_id;
96 	stream->audio_info.product_id = dc_sink_data->edid_caps.product_id;
97 	stream->audio_info.flags.all = dc_sink_data->edid_caps.speaker_flags;
98 
99 	if (dc_sink_data->dc_container_id != NULL) {
100 		struct dc_container_id *dc_container_id = dc_sink_data->dc_container_id;
101 
102 		stream->audio_info.port_id[0] = dc_container_id->portId[0];
103 		stream->audio_info.port_id[1] = dc_container_id->portId[1];
104 	} else {
105 		/* TODO - WindowDM has implemented,
106 		other DMs need Unhardcode port_id */
107 		stream->audio_info.port_id[0] = 0x5558859e;
108 		stream->audio_info.port_id[1] = 0xd989449;
109 	}
110 
111 	/* EDID CAP translation for HDMI 2.0 */
112 	stream->timing.flags.LTE_340MCSC_SCRAMBLE = dc_sink_data->edid_caps.lte_340mcsc_scramble;
113 
114 	memset(&stream->timing.dsc_cfg, 0, sizeof(stream->timing.dsc_cfg));
115 	stream->timing.dsc_cfg.num_slices_h = 0;
116 	stream->timing.dsc_cfg.num_slices_v = 0;
117 	stream->timing.dsc_cfg.bits_per_pixel = 128;
118 	stream->timing.dsc_cfg.block_pred_enable = 1;
119 	stream->timing.dsc_cfg.linebuf_depth = 9;
120 	stream->timing.dsc_cfg.version_minor = 2;
121 	stream->timing.dsc_cfg.ycbcr422_simple = 0;
122 
123 	update_stream_signal(stream, dc_sink_data);
124 
125 	stream->out_transfer_func.type = TF_TYPE_BYPASS;
126 
127 	dc_stream_assign_stream_id(stream);
128 
129 	return true;
130 }
131 
dc_stream_destruct(struct dc_stream_state * stream)132 void dc_stream_destruct(struct dc_stream_state *stream)
133 {
134 	dc_sink_release(stream->sink);
135 }
136 
dc_stream_assign_stream_id(struct dc_stream_state * stream)137 void dc_stream_assign_stream_id(struct dc_stream_state *stream)
138 {
139 	/* MSB is reserved to indicate phantoms */
140 	stream->stream_id = stream->ctx->dc_stream_id_count;
141 	stream->ctx->dc_stream_id_count++;
142 }
143 
dc_stream_retain(struct dc_stream_state * stream)144 void dc_stream_retain(struct dc_stream_state *stream)
145 {
146 	kref_get(&stream->refcount);
147 }
148 
dc_stream_free(struct kref * kref)149 static void dc_stream_free(struct kref *kref)
150 {
151 	struct dc_stream_state *stream = container_of(kref, struct dc_stream_state, refcount);
152 
153 	dc_stream_destruct(stream);
154 	kfree(stream);
155 }
156 
dc_stream_release(struct dc_stream_state * stream)157 void dc_stream_release(struct dc_stream_state *stream)
158 {
159 	if (stream != NULL) {
160 		kref_put(&stream->refcount, dc_stream_free);
161 	}
162 }
163 
dc_create_stream_for_sink(struct dc_sink * sink)164 struct dc_stream_state *dc_create_stream_for_sink(
165 		struct dc_sink *sink)
166 {
167 	struct dc_stream_state *stream;
168 
169 	if (sink == NULL)
170 		return NULL;
171 
172 	stream = kzalloc(sizeof(struct dc_stream_state), GFP_KERNEL);
173 	if (stream == NULL)
174 		goto alloc_fail;
175 
176 	if (dc_stream_construct(stream, sink) == false)
177 		goto construct_fail;
178 
179 	kref_init(&stream->refcount);
180 
181 	return stream;
182 
183 construct_fail:
184 	kfree(stream);
185 
186 alloc_fail:
187 	return NULL;
188 }
189 
dc_copy_stream(const struct dc_stream_state * stream)190 struct dc_stream_state *dc_copy_stream(const struct dc_stream_state *stream)
191 {
192 	struct dc_stream_state *new_stream;
193 
194 	new_stream = kmemdup(stream, sizeof(struct dc_stream_state), GFP_KERNEL);
195 	if (!new_stream)
196 		return NULL;
197 
198 	if (new_stream->sink)
199 		dc_sink_retain(new_stream->sink);
200 
201 	dc_stream_assign_stream_id(new_stream);
202 
203 	/* If using dynamic encoder assignment, wait till stream committed to assign encoder. */
204 	if (new_stream->ctx->dc->res_pool->funcs->link_encs_assign &&
205 			!new_stream->ctx->dc->config.unify_link_enc_assignment)
206 		new_stream->link_enc = NULL;
207 
208 	kref_init(&new_stream->refcount);
209 
210 	return new_stream;
211 }
212 
213 /**
214  * dc_stream_get_status() - Get current stream status of the given stream state
215  * @stream: The stream to get the stream status for.
216  *
217  * The given stream is expected to exist in dc->current_state. Otherwise, NULL
218  * will be returned.
219  */
dc_stream_get_status(struct dc_stream_state * stream)220 struct dc_stream_status *dc_stream_get_status(
221 	struct dc_stream_state *stream)
222 {
223 	struct dc *dc = stream->ctx->dc;
224 	return dc_state_get_stream_status(dc->current_state, stream);
225 }
226 
dc_stream_get_status_const(const struct dc_stream_state * stream)227 const struct dc_stream_status *dc_stream_get_status_const(
228 	const struct dc_stream_state *stream)
229 {
230 	struct dc *dc = stream->ctx->dc;
231 
232 	return dc_state_get_stream_status(dc->current_state, stream);
233 }
234 
program_cursor_attributes(struct dc * dc,struct dc_stream_state * stream)235 void program_cursor_attributes(
236 	struct dc *dc,
237 	struct dc_stream_state *stream)
238 {
239 	int i;
240 	struct resource_context *res_ctx;
241 	struct pipe_ctx *pipe_to_program = NULL;
242 	bool enable_cursor_offload = dc_dmub_srv_is_cursor_offload_enabled(dc);
243 
244 	if (!stream)
245 		return;
246 
247 	res_ctx = &dc->current_state->res_ctx;
248 
249 	for (i = 0; i < MAX_PIPES; i++) {
250 		struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
251 
252 		if (pipe_ctx->stream != stream)
253 			continue;
254 
255 		if (!pipe_to_program) {
256 			pipe_to_program = pipe_ctx;
257 
258 			if (enable_cursor_offload && dc->hwss.begin_cursor_offload_update) {
259 				dc->hwss.begin_cursor_offload_update(dc, pipe_ctx);
260 			} else {
261 				dc->hwss.cursor_lock(dc, pipe_to_program, true);
262 				if (pipe_to_program->next_odm_pipe)
263 					dc->hwss.cursor_lock(dc, pipe_to_program->next_odm_pipe, true);
264 			}
265 		}
266 
267 		dc->hwss.set_cursor_attribute(pipe_ctx);
268 		if (dc->ctx->dmub_srv)
269 			dc_send_update_cursor_info_to_dmu(pipe_ctx, i);
270 		if (dc->hwss.set_cursor_sdr_white_level)
271 			dc->hwss.set_cursor_sdr_white_level(pipe_ctx);
272 		if (enable_cursor_offload && dc->hwss.update_cursor_offload_pipe)
273 			dc->hwss.update_cursor_offload_pipe(dc, pipe_ctx);
274 	}
275 
276 	if (pipe_to_program) {
277 		if (enable_cursor_offload && dc->hwss.commit_cursor_offload_update) {
278 			dc->hwss.commit_cursor_offload_update(dc, pipe_to_program);
279 		} else {
280 			dc->hwss.cursor_lock(dc, pipe_to_program, false);
281 			if (pipe_to_program->next_odm_pipe)
282 				dc->hwss.cursor_lock(dc, pipe_to_program->next_odm_pipe, false);
283 		}
284 	}
285 }
286 
287 /*
288  * dc_stream_check_cursor_attributes() - Check validitity of cursor attributes and surface address
289  */
dc_stream_check_cursor_attributes(const struct dc_stream_state * stream,struct dc_state * state,const struct dc_cursor_attributes * attributes)290 bool dc_stream_check_cursor_attributes(
291 	const struct dc_stream_state *stream,
292 	struct dc_state *state,
293 	const struct dc_cursor_attributes *attributes)
294 {
295 	const struct dc *dc;
296 
297 	unsigned int max_cursor_size;
298 
299 	if (NULL == stream) {
300 		dm_error("DC: dc_stream is NULL!\n");
301 		return false;
302 	}
303 	if (NULL == attributes) {
304 		dm_error("DC: attributes is NULL!\n");
305 		return false;
306 	}
307 
308 	if (attributes->address.quad_part == 0) {
309 		dm_output_to_console("DC: Cursor address is 0!\n");
310 		return false;
311 	}
312 
313 	dc = stream->ctx->dc;
314 
315 	/* SubVP is not compatible with HW cursor larger than what can fit in cursor SRAM.
316 	 * Therefore, if cursor is greater than this, fallback to SW cursor.
317 	 */
318 	if (dc->debug.allow_sw_cursor_fallback && dc->res_pool->funcs->get_max_hw_cursor_size) {
319 		max_cursor_size = dc->res_pool->funcs->get_max_hw_cursor_size(dc, state, stream);
320 		max_cursor_size = max_cursor_size * max_cursor_size * 4;
321 
322 		if (attributes->height * attributes->width * 4 > max_cursor_size) {
323 			return false;
324 		}
325 	}
326 
327 	return true;
328 }
329 
330 /*
331  * dc_stream_set_cursor_attributes() - Update cursor attributes and set cursor surface address
332  */
dc_stream_set_cursor_attributes(struct dc_stream_state * stream,const struct dc_cursor_attributes * attributes)333 bool dc_stream_set_cursor_attributes(
334 	struct dc_stream_state *stream,
335 	const struct dc_cursor_attributes *attributes)
336 {
337 	bool result = false;
338 
339 	if (!stream)
340 		return false;
341 
342 	if (dc_stream_check_cursor_attributes(stream, stream->ctx->dc->current_state, attributes)) {
343 		stream->cursor_attributes = *attributes;
344 		result = true;
345 	}
346 
347 	return result;
348 }
349 
dc_stream_program_cursor_attributes(struct dc_stream_state * stream,const struct dc_cursor_attributes * attributes)350 bool dc_stream_program_cursor_attributes(
351 	struct dc_stream_state *stream,
352 	const struct dc_cursor_attributes *attributes)
353 {
354 	struct dc  *dc;
355 	bool reset_idle_optimizations = false;
356 
357 	if (!stream)
358 		return false;
359 
360 	dc = stream->ctx->dc;
361 
362 	if (dc_stream_set_cursor_attributes(stream, attributes)) {
363 		dc_z10_restore(dc);
364 		/* disable idle optimizations while updating cursor */
365 		if (dc->idle_optimizations_allowed) {
366 			dc_allow_idle_optimizations(dc, false);
367 			reset_idle_optimizations = true;
368 		}
369 
370 		program_cursor_attributes(dc, stream);
371 
372 		/* re-enable idle optimizations if necessary */
373 		if (reset_idle_optimizations && !dc->debug.disable_dmub_reallow_idle)
374 			dc_allow_idle_optimizations(dc, true);
375 
376 		return true;
377 	}
378 
379 	return false;
380 }
381 
program_cursor_position(struct dc * dc,struct dc_stream_state * stream)382 void program_cursor_position(
383 	struct dc *dc,
384 	struct dc_stream_state *stream)
385 {
386 	int i;
387 	struct resource_context *res_ctx;
388 	struct pipe_ctx *pipe_to_program = NULL;
389 	bool enable_cursor_offload = dc_dmub_srv_is_cursor_offload_enabled(dc);
390 
391 	if (!stream)
392 		return;
393 
394 	res_ctx = &dc->current_state->res_ctx;
395 
396 	for (i = 0; i < MAX_PIPES; i++) {
397 		struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
398 
399 		if (pipe_ctx->stream != stream ||
400 				(!pipe_ctx->plane_res.mi  && !pipe_ctx->plane_res.hubp) ||
401 				!pipe_ctx->plane_state ||
402 				(!pipe_ctx->plane_res.xfm && !pipe_ctx->plane_res.dpp) ||
403 				(!pipe_ctx->plane_res.ipp && !pipe_ctx->plane_res.dpp))
404 			continue;
405 
406 		if (!pipe_to_program) {
407 			pipe_to_program = pipe_ctx;
408 
409 			if (enable_cursor_offload && dc->hwss.begin_cursor_offload_update)
410 				dc->hwss.begin_cursor_offload_update(dc, pipe_ctx);
411 			else
412 				dc->hwss.cursor_lock(dc, pipe_to_program, true);
413 		}
414 
415 		dc->hwss.set_cursor_position(pipe_ctx);
416 		if (enable_cursor_offload && dc->hwss.update_cursor_offload_pipe)
417 			dc->hwss.update_cursor_offload_pipe(dc, pipe_ctx);
418 
419 		if (dc->ctx->dmub_srv)
420 			dc_send_update_cursor_info_to_dmu(pipe_ctx, i);
421 	}
422 
423 	if (pipe_to_program) {
424 		if (enable_cursor_offload && dc->hwss.commit_cursor_offload_update)
425 			dc->hwss.commit_cursor_offload_update(dc, pipe_to_program);
426 		else
427 			dc->hwss.cursor_lock(dc, pipe_to_program, false);
428 	}
429 }
430 
dc_stream_set_cursor_position(struct dc_stream_state * stream,const struct dc_cursor_position * position)431 bool dc_stream_set_cursor_position(
432 	struct dc_stream_state *stream,
433 	const struct dc_cursor_position *position)
434 {
435 	if (NULL == stream) {
436 		dm_error("DC: dc_stream is NULL!\n");
437 		return false;
438 	}
439 
440 	if (NULL == position) {
441 		dm_error("DC: cursor position is NULL!\n");
442 		return false;
443 	}
444 
445 	stream->cursor_position = *position;
446 
447 
448 	return true;
449 }
450 
dc_stream_program_cursor_position(struct dc_stream_state * stream,const struct dc_cursor_position * position)451 bool dc_stream_program_cursor_position(
452 	struct dc_stream_state *stream,
453 	const struct dc_cursor_position *position)
454 {
455 	struct dc *dc;
456 	bool reset_idle_optimizations = false;
457 	const struct dc_cursor_position *old_position;
458 
459 	if (!stream)
460 		return false;
461 
462 	old_position = &stream->cursor_position;
463 	dc = stream->ctx->dc;
464 
465 	if (dc_stream_set_cursor_position(stream, position)) {
466 		dc_z10_restore(dc);
467 
468 		/* disable idle optimizations if enabling cursor */
469 		if (dc->idle_optimizations_allowed &&
470 		    (!old_position->enable || dc->debug.exit_idle_opt_for_cursor_updates) &&
471 		    position->enable) {
472 			dc_allow_idle_optimizations(dc, false);
473 			reset_idle_optimizations = true;
474 		}
475 
476 		program_cursor_position(dc, stream);
477 		/* re-enable idle optimizations if necessary */
478 		if (reset_idle_optimizations && !dc->debug.disable_dmub_reallow_idle)
479 			dc_allow_idle_optimizations(dc, true);
480 
481 		/* apply/update visual confirm */
482 		if (dc->debug.visual_confirm == VISUAL_CONFIRM_HW_CURSOR) {
483 			/* update software state */
484 			int i;
485 
486 			for (i = 0; i < dc->res_pool->pipe_count; i++) {
487 				struct pipe_ctx *pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
488 
489 				/* adjust visual confirm color for all pipes with current stream */
490 				if (stream == pipe_ctx->stream) {
491 					get_cursor_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
492 
493 					/* programming hardware */
494 					if (pipe_ctx->plane_state)
495 						dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
496 								pipe_ctx->plane_res.hubp->mpcc_id);
497 				}
498 			}
499 		}
500 
501 		return true;
502 	}
503 
504 	return false;
505 }
506 
dc_stream_add_writeback(struct dc * dc,struct dc_stream_state * stream,struct dc_writeback_info * wb_info)507 bool dc_stream_add_writeback(struct dc *dc,
508 		struct dc_stream_state *stream,
509 		struct dc_writeback_info *wb_info)
510 {
511 	bool isDrc = false;
512 	int i = 0;
513 	struct dwbc *dwb;
514 
515 	if (stream == NULL) {
516 		dm_error("DC: dc_stream is NULL!\n");
517 		return false;
518 	}
519 
520 	if (wb_info == NULL) {
521 		dm_error("DC: dc_writeback_info is NULL!\n");
522 		return false;
523 	}
524 
525 	if (wb_info->dwb_pipe_inst >= MAX_DWB_PIPES) {
526 		dm_error("DC: writeback pipe is invalid!\n");
527 		return false;
528 	}
529 
530 	dc_exit_ips_for_hw_access(dc);
531 
532 	wb_info->dwb_params.out_transfer_func = &stream->out_transfer_func;
533 
534 	dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
535 	dwb->dwb_is_drc = false;
536 
537 	/* recalculate and apply DML parameters */
538 
539 	for (i = 0; i < stream->num_wb_info; i++) {
540 		/*dynamic update*/
541 		if (stream->writeback_info[i].wb_enabled &&
542 			stream->writeback_info[i].dwb_pipe_inst == wb_info->dwb_pipe_inst) {
543 			stream->writeback_info[i] = *wb_info;
544 			isDrc = true;
545 		}
546 	}
547 
548 	if (!isDrc) {
549 		ASSERT(stream->num_wb_info + 1 <= MAX_DWB_PIPES);
550 		stream->writeback_info[stream->num_wb_info++] = *wb_info;
551 	}
552 
553 	if (dc->hwss.enable_writeback) {
554 		struct dc_stream_status *stream_status = dc_stream_get_status(stream);
555 		struct dwbc *dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
556 		if (stream_status)
557 			dwb->otg_inst = stream_status->primary_otg_inst;
558 	}
559 
560 	if (!dc->hwss.update_bandwidth(dc, dc->current_state)) {
561 		dm_error("DC: update_bandwidth failed!\n");
562 		return false;
563 	}
564 
565 	/* enable writeback */
566 	if (dc->hwss.enable_writeback) {
567 		struct dwbc *dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
568 
569 		if (dwb->funcs->is_enabled(dwb)) {
570 			/* writeback pipe already enabled, only need to update */
571 			dc->hwss.update_writeback(dc, wb_info, dc->current_state);
572 		} else {
573 			/* Enable writeback pipe from scratch*/
574 			dc->hwss.enable_writeback(dc, wb_info, dc->current_state);
575 		}
576 	}
577 
578 	return true;
579 }
580 
dc_stream_fc_disable_writeback(struct dc * dc,struct dc_stream_state * stream,uint32_t dwb_pipe_inst)581 bool dc_stream_fc_disable_writeback(struct dc *dc,
582 		struct dc_stream_state *stream,
583 		uint32_t dwb_pipe_inst)
584 {
585 	struct dwbc *dwb = dc->res_pool->dwbc[dwb_pipe_inst];
586 
587 	if (stream == NULL) {
588 		dm_error("DC: dc_stream is NULL!\n");
589 		return false;
590 	}
591 
592 	if (dwb_pipe_inst >= MAX_DWB_PIPES) {
593 		dm_error("DC: writeback pipe is invalid!\n");
594 		return false;
595 	}
596 
597 	if (stream->num_wb_info > MAX_DWB_PIPES) {
598 		dm_error("DC: num_wb_info is invalid!\n");
599 		return false;
600 	}
601 
602 	dc_exit_ips_for_hw_access(dc);
603 
604 	if (dwb->funcs->set_fc_enable)
605 		dwb->funcs->set_fc_enable(dwb, DWB_FRAME_CAPTURE_DISABLE);
606 
607 	return true;
608 }
609 
610 /**
611  * dc_stream_remove_writeback() - Disables writeback and removes writeback info.
612  * @dc: Display core control structure.
613  * @stream: Display core stream state.
614  * @dwb_pipe_inst: Display writeback pipe.
615  *
616  * Return: returns true on success, false otherwise.
617  */
dc_stream_remove_writeback(struct dc * dc,struct dc_stream_state * stream,uint32_t dwb_pipe_inst)618 bool dc_stream_remove_writeback(struct dc *dc,
619 		struct dc_stream_state *stream,
620 		uint32_t dwb_pipe_inst)
621 {
622 	unsigned int i, j;
623 	if (stream == NULL) {
624 		dm_error("DC: dc_stream is NULL!\n");
625 		return false;
626 	}
627 
628 	if (dwb_pipe_inst >= MAX_DWB_PIPES) {
629 		dm_error("DC: writeback pipe is invalid!\n");
630 		return false;
631 	}
632 
633 	if (stream->num_wb_info > MAX_DWB_PIPES) {
634 		dm_error("DC: num_wb_info is invalid!\n");
635 		return false;
636 	}
637 
638 	/* remove writeback info for disabled writeback pipes from stream */
639 	for (i = 0, j = 0; i < stream->num_wb_info; i++) {
640 		if (stream->writeback_info[i].wb_enabled) {
641 
642 			if (stream->writeback_info[i].dwb_pipe_inst == dwb_pipe_inst)
643 				stream->writeback_info[i].wb_enabled = false;
644 
645 			/* trim the array */
646 			if (j < i) {
647 				memcpy(&stream->writeback_info[j], &stream->writeback_info[i],
648 						sizeof(struct dc_writeback_info));
649 				j++;
650 			}
651 		}
652 	}
653 	stream->num_wb_info = j;
654 
655 	/* recalculate and apply DML parameters */
656 	if (!dc->hwss.update_bandwidth(dc, dc->current_state)) {
657 		dm_error("DC: update_bandwidth failed!\n");
658 		return false;
659 	}
660 
661 	dc_exit_ips_for_hw_access(dc);
662 
663 	/* disable writeback */
664 	if (dc->hwss.disable_writeback) {
665 		struct dwbc *dwb = dc->res_pool->dwbc[dwb_pipe_inst];
666 
667 		if (dwb->funcs->is_enabled(dwb))
668 			dc->hwss.disable_writeback(dc, dwb_pipe_inst);
669 	}
670 
671 	return true;
672 }
673 
dc_stream_get_vblank_counter(const struct dc_stream_state * stream)674 uint32_t dc_stream_get_vblank_counter(const struct dc_stream_state *stream)
675 {
676 	uint8_t i;
677 	struct dc  *dc = stream->ctx->dc;
678 	struct resource_context *res_ctx =
679 		&dc->current_state->res_ctx;
680 
681 	dc_exit_ips_for_hw_access(dc);
682 
683 	for (i = 0; i < MAX_PIPES; i++) {
684 		struct timing_generator *tg = res_ctx->pipe_ctx[i].stream_res.tg;
685 
686 		if (res_ctx->pipe_ctx[i].stream != stream || !tg)
687 			continue;
688 
689 		return tg->funcs->get_frame_count(tg);
690 	}
691 
692 	return 0;
693 }
694 
dc_stream_send_dp_sdp(const struct dc_stream_state * stream,const uint8_t * custom_sdp_message,unsigned int sdp_message_size)695 bool dc_stream_send_dp_sdp(const struct dc_stream_state *stream,
696 		const uint8_t *custom_sdp_message,
697 		unsigned int sdp_message_size)
698 {
699 	int i;
700 	struct dc  *dc;
701 	struct resource_context *res_ctx;
702 
703 	if (stream == NULL) {
704 		dm_error("DC: dc_stream is NULL!\n");
705 		return false;
706 	}
707 
708 	dc = stream->ctx->dc;
709 	res_ctx = &dc->current_state->res_ctx;
710 
711 	dc_exit_ips_for_hw_access(dc);
712 
713 	for (i = 0; i < MAX_PIPES; i++) {
714 		struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
715 
716 		if (pipe_ctx->stream != stream)
717 			continue;
718 
719 		if (dc->hwss.send_immediate_sdp_message != NULL)
720 			dc->hwss.send_immediate_sdp_message(pipe_ctx,
721 								custom_sdp_message,
722 								sdp_message_size);
723 		else
724 			DC_LOG_WARNING("%s:send_immediate_sdp_message not implemented on this ASIC\n",
725 			__func__);
726 
727 	}
728 
729 	return true;
730 }
731 
dc_stream_get_scanoutpos(const struct dc_stream_state * stream,uint32_t * v_blank_start,uint32_t * v_blank_end,uint32_t * h_position,uint32_t * v_position)732 bool dc_stream_get_scanoutpos(const struct dc_stream_state *stream,
733 				  uint32_t *v_blank_start,
734 				  uint32_t *v_blank_end,
735 				  uint32_t *h_position,
736 				  uint32_t *v_position)
737 {
738 	uint8_t i;
739 	bool ret = false;
740 	struct dc  *dc;
741 	struct resource_context *res_ctx;
742 
743 	if (!stream->ctx)
744 		return false;
745 
746 	dc = stream->ctx->dc;
747 	res_ctx = &dc->current_state->res_ctx;
748 
749 	dc_exit_ips_for_hw_access(dc);
750 
751 	for (i = 0; i < MAX_PIPES; i++) {
752 		struct timing_generator *tg = res_ctx->pipe_ctx[i].stream_res.tg;
753 
754 		if (res_ctx->pipe_ctx[i].stream != stream || !tg)
755 			continue;
756 
757 		tg->funcs->get_scanoutpos(tg,
758 					  v_blank_start,
759 					  v_blank_end,
760 					  h_position,
761 					  v_position);
762 
763 		ret = true;
764 		break;
765 	}
766 
767 	return ret;
768 }
769 
dc_stream_dmdata_status_done(struct dc * dc,struct dc_stream_state * stream)770 bool dc_stream_dmdata_status_done(struct dc *dc, struct dc_stream_state *stream)
771 {
772 	struct pipe_ctx *pipe = NULL;
773 	int i;
774 
775 	if (!dc->hwss.dmdata_status_done)
776 		return false;
777 
778 	for (i = 0; i < MAX_PIPES; i++) {
779 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
780 		if (pipe->stream == stream)
781 			break;
782 	}
783 	/* Stream not found, by default we'll assume HUBP fetched dm data */
784 	if (i == MAX_PIPES)
785 		return true;
786 
787 	dc_exit_ips_for_hw_access(dc);
788 
789 	return dc->hwss.dmdata_status_done(pipe);
790 }
791 
dc_stream_set_dynamic_metadata(struct dc * dc,struct dc_stream_state * stream,struct dc_dmdata_attributes * attr)792 bool dc_stream_set_dynamic_metadata(struct dc *dc,
793 		struct dc_stream_state *stream,
794 		struct dc_dmdata_attributes *attr)
795 {
796 	struct pipe_ctx *pipe_ctx = NULL;
797 	struct hubp *hubp;
798 	int i;
799 
800 	/* Dynamic metadata is only supported on HDMI or DP */
801 	if (!dc_is_hdmi_signal(stream->signal) && !dc_is_dp_signal(stream->signal))
802 		return false;
803 
804 	/* Check hardware support */
805 	if (!dc->hwss.program_dmdata_engine)
806 		return false;
807 
808 	for (i = 0; i < MAX_PIPES; i++) {
809 		pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
810 		if (pipe_ctx->stream == stream)
811 			break;
812 	}
813 
814 	if (i == MAX_PIPES)
815 		return false;
816 
817 	hubp = pipe_ctx->plane_res.hubp;
818 	if (hubp == NULL)
819 		return false;
820 
821 	pipe_ctx->stream->dmdata_address = attr->address;
822 
823 	dc_exit_ips_for_hw_access(dc);
824 
825 	dc->hwss.program_dmdata_engine(pipe_ctx);
826 
827 	if (hubp->funcs->dmdata_set_attributes != NULL &&
828 			pipe_ctx->stream->dmdata_address.quad_part != 0) {
829 		hubp->funcs->dmdata_set_attributes(hubp, attr);
830 	}
831 
832 	return true;
833 }
834 
dc_stream_add_dsc_to_resource(struct dc * dc,struct dc_state * state,struct dc_stream_state * stream)835 enum dc_status dc_stream_add_dsc_to_resource(struct dc *dc,
836 		struct dc_state *state,
837 		struct dc_stream_state *stream)
838 {
839 	if (dc->res_pool->funcs->add_dsc_to_stream_resource) {
840 		return dc->res_pool->funcs->add_dsc_to_stream_resource(dc, state, stream);
841 	} else {
842 		return DC_NO_DSC_RESOURCE;
843 	}
844 }
845 
dc_stream_get_pipe_ctx(struct dc_stream_state * stream)846 struct pipe_ctx *dc_stream_get_pipe_ctx(struct dc_stream_state *stream)
847 {
848 	int i = 0;
849 
850 	for (i = 0; i < MAX_PIPES; i++) {
851 		struct pipe_ctx *pipe = &stream->ctx->dc->current_state->res_ctx.pipe_ctx[i];
852 
853 		if (pipe->stream == stream)
854 			return pipe;
855 	}
856 
857 	return NULL;
858 }
859 
dc_stream_log(const struct dc * dc,const struct dc_stream_state * stream)860 void dc_stream_log(const struct dc *dc, const struct dc_stream_state *stream)
861 {
862 	DC_LOG_DC(
863 			"core_stream 0x%p: src: %d, %d, %d, %d; dst: %d, %d, %d, %d, colorSpace:%d\n",
864 			stream,
865 			stream->src.x,
866 			stream->src.y,
867 			stream->src.width,
868 			stream->src.height,
869 			stream->dst.x,
870 			stream->dst.y,
871 			stream->dst.width,
872 			stream->dst.height,
873 			stream->output_color_space);
874 	DC_LOG_DC(
875 			"\tpix_clk_khz: %d, h_total: %d, v_total: %d, pixel_encoding:%s, color_depth:%s\n",
876 			stream->timing.pix_clk_100hz / 10,
877 			stream->timing.h_total,
878 			stream->timing.v_total,
879 			dc_pixel_encoding_to_str(stream->timing.pixel_encoding),
880 			dc_color_depth_to_str(stream->timing.display_color_depth));
881 	DC_LOG_DC(
882 			"\tlink: %d\n",
883 			stream->link->link_index);
884 
885 	DC_LOG_DC(
886 			"\tdsc: %d, mst_pbn: %d\n",
887 			stream->timing.flags.DSC,
888 			stream->timing.dsc_cfg.mst_pbn);
889 
890 	if (stream->sink) {
891 		if (stream->sink->sink_signal != SIGNAL_TYPE_VIRTUAL &&
892 			stream->sink->sink_signal != SIGNAL_TYPE_NONE) {
893 
894 			DC_LOG_DC(
895 					"\tsignal: %x dispname: %s manufacturer_id: 0x%x product_id: 0x%x\n",
896 					stream->signal,
897 					stream->sink->edid_caps.display_name,
898 					stream->sink->edid_caps.manufacturer_id,
899 					stream->sink->edid_caps.product_id);
900 		}
901 	}
902 }
903 
904 /*
905 *	dc_stream_get_3dlut()
906 *	Requirements:
907 *	1. Is stream already owns an RMCM instance, return it.
908 *	2. If it doesn't and we don't need to allocate, return NULL.
909 *	3. If there's a free RMCM instance, assign to stream and return it.
910 *	4. If no free RMCM instances, return NULL.
911 */
912 
dc_stream_get_3dlut_for_stream(const struct dc * dc,const struct dc_stream_state * stream,bool allocate_one)913 struct dc_rmcm_3dlut *dc_stream_get_3dlut_for_stream(
914 	const struct dc *dc,
915 	const struct dc_stream_state *stream,
916 	bool allocate_one)
917 {
918 	unsigned int num_rmcm = dc->caps.color.mpc.num_rmcm_3dluts;
919 
920 	// see if one is allocated for this stream
921 	for (int i = 0; i < num_rmcm; i++) {
922 		if (dc->res_pool->rmcm_3dlut[i].isInUse &&
923 			dc->res_pool->rmcm_3dlut[i].stream == stream)
924 			return &dc->res_pool->rmcm_3dlut[i];
925 	}
926 
927 	//case: not found one, and dont need to allocate
928 	if (!allocate_one)
929 		return NULL;
930 
931 	//see if there is an unused 3dlut, allocate
932 	for (int i = 0; i < num_rmcm; i++) {
933 		if (!dc->res_pool->rmcm_3dlut[i].isInUse) {
934 			dc->res_pool->rmcm_3dlut[i].isInUse = true;
935 			dc->res_pool->rmcm_3dlut[i].stream = stream;
936 			return &dc->res_pool->rmcm_3dlut[i];
937 		}
938 	}
939 
940 	//dont have a 3dlut
941 	return NULL;
942 }
943 
944 
dc_stream_release_3dlut_for_stream(const struct dc * dc,const struct dc_stream_state * stream)945 void dc_stream_release_3dlut_for_stream(
946 	const struct dc *dc,
947 	const struct dc_stream_state *stream)
948 {
949 	struct dc_rmcm_3dlut *rmcm_3dlut =
950 		dc_stream_get_3dlut_for_stream(dc, stream, false);
951 
952 	if (rmcm_3dlut) {
953 		rmcm_3dlut->isInUse = false;
954 		rmcm_3dlut->stream  = NULL;
955 		rmcm_3dlut->protection_bits = 0;
956 	}
957 }
958 
959 
dc_stream_init_rmcm_3dlut(struct dc * dc)960 void dc_stream_init_rmcm_3dlut(struct dc *dc)
961 {
962 	unsigned int num_rmcm = dc->caps.color.mpc.num_rmcm_3dluts;
963 
964 	for (int i = 0; i < num_rmcm; i++) {
965 		dc->res_pool->rmcm_3dlut[i].isInUse = false;
966 		dc->res_pool->rmcm_3dlut[i].stream = NULL;
967 		dc->res_pool->rmcm_3dlut[i].protection_bits = 0;
968 	}
969 }
970 
971 /*
972  * Finds the greatest index in refresh_rate_hz that contains a value <= refresh
973  */
dc_stream_get_nearest_smallest_index(struct dc_stream_state * stream,int refresh)974 static int dc_stream_get_nearest_smallest_index(struct dc_stream_state *stream, int refresh)
975 {
976 	for (int i = 0; i < (LUMINANCE_DATA_TABLE_SIZE - 1); ++i) {
977 		if ((stream->lumin_data.refresh_rate_hz[i] <= refresh) && (refresh < stream->lumin_data.refresh_rate_hz[i + 1])) {
978 			return i;
979 		}
980 	}
981 	return 9;
982 }
983 
984 /*
985  * Finds a corresponding brightness for a given refresh rate between 2 given indices, where index1 < index2
986  */
dc_stream_get_brightness_millinits_linear_interpolation(struct dc_stream_state * stream,int index1,int index2,int refresh_hz)987 static int dc_stream_get_brightness_millinits_linear_interpolation (struct dc_stream_state *stream,
988 								     int index1,
989 								     int index2,
990 								     int refresh_hz)
991 {
992 	long long slope = 0;
993 	if (stream->lumin_data.refresh_rate_hz[index2] != stream->lumin_data.refresh_rate_hz[index1]) {
994 		slope = (stream->lumin_data.luminance_millinits[index2] - stream->lumin_data.luminance_millinits[index1]) /
995 			    (stream->lumin_data.refresh_rate_hz[index2] - stream->lumin_data.refresh_rate_hz[index1]);
996 	}
997 
998 	int y_intercept = stream->lumin_data.luminance_millinits[index2] - slope * stream->lumin_data.refresh_rate_hz[index2];
999 
1000 	return (y_intercept + refresh_hz * slope);
1001 }
1002 
1003 /*
1004  * Finds a corresponding refresh rate for a given brightness between 2 given indices, where index1 < index2
1005  */
dc_stream_get_refresh_hz_linear_interpolation(struct dc_stream_state * stream,int index1,int index2,int brightness_millinits)1006 static int dc_stream_get_refresh_hz_linear_interpolation (struct dc_stream_state *stream,
1007 							   int index1,
1008 							   int index2,
1009 							   int brightness_millinits)
1010 {
1011 	long long slope = 1;
1012 	if (stream->lumin_data.refresh_rate_hz[index2] != stream->lumin_data.refresh_rate_hz[index1]) {
1013 		slope = (stream->lumin_data.luminance_millinits[index2] - stream->lumin_data.luminance_millinits[index1]) /
1014 				(stream->lumin_data.refresh_rate_hz[index2] - stream->lumin_data.refresh_rate_hz[index1]);
1015 	}
1016 
1017 	int y_intercept = stream->lumin_data.luminance_millinits[index2] - slope * stream->lumin_data.refresh_rate_hz[index2];
1018 
1019 	return ((int)div64_s64((brightness_millinits - y_intercept), slope));
1020 }
1021 
1022 /*
1023  * Finds the current brightness in millinits given a refresh rate
1024  */
dc_stream_get_brightness_millinits_from_refresh(struct dc_stream_state * stream,int refresh_hz)1025 static int dc_stream_get_brightness_millinits_from_refresh (struct dc_stream_state *stream, int refresh_hz)
1026 {
1027 	int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, refresh_hz);
1028 	int nearest_smallest_value = stream->lumin_data.refresh_rate_hz[nearest_smallest_index];
1029 
1030 	if (nearest_smallest_value == refresh_hz)
1031 		return stream->lumin_data.luminance_millinits[nearest_smallest_index];
1032 
1033 	if (nearest_smallest_index >= 9)
1034 		return dc_stream_get_brightness_millinits_linear_interpolation(stream, nearest_smallest_index - 1, nearest_smallest_index, refresh_hz);
1035 
1036 	if (nearest_smallest_value == stream->lumin_data.refresh_rate_hz[nearest_smallest_index + 1])
1037 		return stream->lumin_data.luminance_millinits[nearest_smallest_index];
1038 
1039 	return dc_stream_get_brightness_millinits_linear_interpolation(stream, nearest_smallest_index, nearest_smallest_index + 1, refresh_hz);
1040 }
1041 
1042 /*
1043  * Finds the lowest/highest refresh rate (depending on search_for_max_increase)
1044  * that can be achieved from starting_refresh_hz while staying
1045  * within flicker criteria
1046  */
dc_stream_calculate_flickerless_refresh_rate(struct dc_stream_state * stream,int current_brightness,int starting_refresh_hz,bool is_gaming,bool search_for_max_increase)1047 static int dc_stream_calculate_flickerless_refresh_rate(struct dc_stream_state *stream,
1048 							 int current_brightness,
1049 							 int starting_refresh_hz,
1050 							 bool is_gaming,
1051 							 bool search_for_max_increase)
1052 {
1053 	int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, starting_refresh_hz);
1054 
1055 	int flicker_criteria_millinits = is_gaming ?
1056 					 stream->lumin_data.flicker_criteria_milli_nits_GAMING :
1057 					 stream->lumin_data.flicker_criteria_milli_nits_STATIC;
1058 
1059 	int safe_upper_bound = current_brightness + flicker_criteria_millinits;
1060 	int safe_lower_bound = current_brightness - flicker_criteria_millinits;
1061 	int lumin_millinits_temp = 0;
1062 
1063 	int offset = -1;
1064 	if (search_for_max_increase) {
1065 		offset = 1;
1066 	}
1067 
1068 	/*
1069 	 * Increments up or down by 1 depending on search_for_max_increase
1070 	 */
1071 	for (int i = nearest_smallest_index; (i > 0 && !search_for_max_increase) || (i < (LUMINANCE_DATA_TABLE_SIZE - 1) && search_for_max_increase); i += offset) {
1072 
1073 		lumin_millinits_temp = stream->lumin_data.luminance_millinits[i + offset];
1074 
1075 		if ((lumin_millinits_temp >= safe_upper_bound) || (lumin_millinits_temp <= safe_lower_bound)) {
1076 
1077 			if (stream->lumin_data.refresh_rate_hz[i + offset] == stream->lumin_data.refresh_rate_hz[i])
1078 				return stream->lumin_data.refresh_rate_hz[i];
1079 
1080 			int target_brightness = (stream->lumin_data.luminance_millinits[i + offset] >= (current_brightness + flicker_criteria_millinits)) ?
1081 											current_brightness + flicker_criteria_millinits :
1082 											current_brightness - flicker_criteria_millinits;
1083 
1084 			int refresh = 0;
1085 
1086 			/*
1087 			 * Need the second input to be < third input for dc_stream_get_refresh_hz_linear_interpolation
1088 			 */
1089 			if (search_for_max_increase)
1090 				refresh = dc_stream_get_refresh_hz_linear_interpolation(stream, i, i + offset, target_brightness);
1091 			else
1092 				refresh = dc_stream_get_refresh_hz_linear_interpolation(stream, i + offset, i, target_brightness);
1093 
1094 			if (refresh == stream->lumin_data.refresh_rate_hz[i + offset])
1095 				return stream->lumin_data.refresh_rate_hz[i + offset];
1096 
1097 			return refresh;
1098 		}
1099 	}
1100 
1101 	if (search_for_max_increase)
1102 		return (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, stream->timing.v_total*(long long)stream->timing.h_total);
1103 	else
1104 		return stream->lumin_data.refresh_rate_hz[0];
1105 }
1106 
1107 /*
1108  * Gets the max delta luminance within a specified refresh range
1109  */
dc_stream_get_max_delta_lumin_millinits(struct dc_stream_state * stream,int hz1,int hz2,bool isGaming)1110 static int dc_stream_get_max_delta_lumin_millinits(struct dc_stream_state *stream, int hz1, int hz2, bool isGaming)
1111 {
1112 	int lower_refresh_brightness = dc_stream_get_brightness_millinits_from_refresh (stream, hz1);
1113 	int higher_refresh_brightness = dc_stream_get_brightness_millinits_from_refresh (stream, hz2);
1114 
1115 	int min = lower_refresh_brightness;
1116 	int max = higher_refresh_brightness;
1117 
1118 	/*
1119 	 * Static screen, therefore no need to scan through array
1120 	 */
1121 	if (!isGaming) {
1122 		if (lower_refresh_brightness >= higher_refresh_brightness) {
1123 			return lower_refresh_brightness - higher_refresh_brightness;
1124 		}
1125 		return higher_refresh_brightness - lower_refresh_brightness;
1126 	}
1127 
1128 	min = MIN(lower_refresh_brightness, higher_refresh_brightness);
1129 	max = MAX(lower_refresh_brightness, higher_refresh_brightness);
1130 
1131 	int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, hz1);
1132 
1133 	for (; nearest_smallest_index < (LUMINANCE_DATA_TABLE_SIZE - 1) &&
1134 			stream->lumin_data.refresh_rate_hz[nearest_smallest_index + 1] <= hz2 ; nearest_smallest_index++) {
1135 		min = MIN(min, stream->lumin_data.luminance_millinits[nearest_smallest_index + 1]);
1136 		max = MAX(max, stream->lumin_data.luminance_millinits[nearest_smallest_index + 1]);
1137 	}
1138 
1139 	return (max - min);
1140 }
1141 
1142 /*
1143  * Determines the max flickerless instant vtotal delta for a stream.
1144  * Determines vtotal increase/decrease based on the bool "increase"
1145  */
dc_stream_get_max_flickerless_instant_vtotal_delta(struct dc_stream_state * stream,bool is_gaming,bool increase)1146 static unsigned int dc_stream_get_max_flickerless_instant_vtotal_delta(struct dc_stream_state *stream, bool is_gaming, bool increase)
1147 {
1148 	if (stream->timing.v_total * stream->timing.h_total == 0)
1149 		return 0;
1150 
1151 	int current_refresh_hz = (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, stream->timing.v_total*(long long)stream->timing.h_total);
1152 
1153 	int safe_refresh_hz = dc_stream_calculate_flickerless_refresh_rate(stream,
1154 							 dc_stream_get_brightness_millinits_from_refresh(stream, current_refresh_hz),
1155 							 current_refresh_hz,
1156 							 is_gaming,
1157 							 increase);
1158 
1159 	int safe_refresh_v_total = (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, safe_refresh_hz*(long long)stream->timing.h_total);
1160 
1161 	if (increase)
1162 		return (((int) stream->timing.v_total - safe_refresh_v_total) >= 0) ? (stream->timing.v_total - safe_refresh_v_total) : 0;
1163 
1164 	return ((safe_refresh_v_total - (int) stream->timing.v_total) >= 0) ? (safe_refresh_v_total - stream->timing.v_total) : 0;
1165 }
1166 
1167 /*
1168  * Finds the highest refresh rate that can be achieved
1169  * from starting_refresh_hz while staying within flicker criteria
1170  */
dc_stream_calculate_max_flickerless_refresh_rate(struct dc_stream_state * stream,int starting_refresh_hz,bool is_gaming)1171 int dc_stream_calculate_max_flickerless_refresh_rate(struct dc_stream_state *stream, int starting_refresh_hz, bool is_gaming)
1172 {
1173 	if (!stream->lumin_data.is_valid)
1174 		return 0;
1175 
1176 	int current_brightness = dc_stream_get_brightness_millinits_from_refresh(stream, starting_refresh_hz);
1177 
1178 	return dc_stream_calculate_flickerless_refresh_rate(stream,
1179 							    current_brightness,
1180 							    starting_refresh_hz,
1181 							    is_gaming,
1182 							    true);
1183 }
1184 
1185 /*
1186  * Finds the lowest refresh rate that can be achieved
1187  * from starting_refresh_hz while staying within flicker criteria
1188  */
dc_stream_calculate_min_flickerless_refresh_rate(struct dc_stream_state * stream,int starting_refresh_hz,bool is_gaming)1189 int dc_stream_calculate_min_flickerless_refresh_rate(struct dc_stream_state *stream, int starting_refresh_hz, bool is_gaming)
1190 {
1191 	if (!stream->lumin_data.is_valid)
1192 			return 0;
1193 
1194 	int current_brightness = dc_stream_get_brightness_millinits_from_refresh(stream, starting_refresh_hz);
1195 
1196 	return dc_stream_calculate_flickerless_refresh_rate(stream,
1197 							    current_brightness,
1198 							    starting_refresh_hz,
1199 							    is_gaming,
1200 							    false);
1201 }
1202 
1203 /*
1204  * Determines if there will be a flicker when moving between 2 refresh rates
1205  */
dc_stream_is_refresh_rate_range_flickerless(struct dc_stream_state * stream,int hz1,int hz2,bool is_gaming)1206 bool dc_stream_is_refresh_rate_range_flickerless(struct dc_stream_state *stream, int hz1, int hz2, bool is_gaming)
1207 {
1208 
1209 	/*
1210 	 * Assume that we wont flicker if there is invalid data
1211 	 */
1212 	if (!stream->lumin_data.is_valid)
1213 		return false;
1214 
1215 	int dl = dc_stream_get_max_delta_lumin_millinits(stream, hz1, hz2, is_gaming);
1216 
1217 	int flicker_criteria_millinits = (is_gaming) ?
1218 					  stream->lumin_data.flicker_criteria_milli_nits_GAMING :
1219 					  stream->lumin_data.flicker_criteria_milli_nits_STATIC;
1220 
1221 	return (dl <= flicker_criteria_millinits);
1222 }
1223 
1224 /*
1225  * Determines the max instant vtotal delta increase that can be applied without
1226  * flickering for a given stream
1227  */
dc_stream_get_max_flickerless_instant_vtotal_decrease(struct dc_stream_state * stream,bool is_gaming)1228 unsigned int dc_stream_get_max_flickerless_instant_vtotal_decrease(struct dc_stream_state *stream,
1229 									  bool is_gaming)
1230 {
1231 	if (!stream->lumin_data.is_valid)
1232 		return 0;
1233 
1234 	return dc_stream_get_max_flickerless_instant_vtotal_delta(stream, is_gaming, true);
1235 }
1236 
1237 /*
1238  * Determines the max instant vtotal delta decrease that can be applied without
1239  * flickering for a given stream
1240  */
dc_stream_get_max_flickerless_instant_vtotal_increase(struct dc_stream_state * stream,bool is_gaming)1241 unsigned int dc_stream_get_max_flickerless_instant_vtotal_increase(struct dc_stream_state *stream,
1242 									  bool is_gaming)
1243 {
1244 	if (!stream->lumin_data.is_valid)
1245 		return 0;
1246 
1247 	return dc_stream_get_max_flickerless_instant_vtotal_delta(stream, is_gaming, false);
1248 }
1249 
dc_stream_is_cursor_limit_pending(struct dc * dc,struct dc_stream_state * stream)1250 bool dc_stream_is_cursor_limit_pending(struct dc *dc, struct dc_stream_state *stream)
1251 {
1252 	bool is_limit_pending = false;
1253 
1254 	if (dc->current_state)
1255 		is_limit_pending = dc_state_get_stream_cursor_subvp_limit(stream, dc->current_state);
1256 
1257 	return is_limit_pending;
1258 }
1259 
dc_stream_can_clear_cursor_limit(struct dc * dc,struct dc_stream_state * stream)1260 bool dc_stream_can_clear_cursor_limit(struct dc *dc, struct dc_stream_state *stream)
1261 {
1262 	bool can_clear_limit = false;
1263 
1264 	if (dc->current_state)
1265 		can_clear_limit = dc_state_get_stream_cursor_subvp_limit(stream, dc->current_state) &&
1266 				(stream->hw_cursor_req ||
1267 				!stream->cursor_position.enable ||
1268 				dc_stream_check_cursor_attributes(stream, dc->current_state, &stream->cursor_attributes));
1269 
1270 	return can_clear_limit;
1271 }
1272