1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "dm_services.h"
27 #include "basics/dc_common.h"
28 #include "dc.h"
29 #include "core_types.h"
30 #include "resource.h"
31 #include "ipp.h"
32 #include "timing_generator.h"
33 #include "dc_dmub_srv.h"
34 #include "dc_state_priv.h"
35 #include "dc_stream_priv.h"
36
37 #define DC_LOGGER dc->ctx->logger
38 #ifndef MIN
39 #define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
40 #endif
41 #ifndef MAX
42 #define MAX(x, y) ((x > y) ? x : y)
43 #endif
44
45 /*******************************************************************************
46 * Private functions
47 ******************************************************************************/
update_stream_signal(struct dc_stream_state * stream,struct dc_sink * sink)48 void update_stream_signal(struct dc_stream_state *stream, struct dc_sink *sink)
49 {
50 if (sink->sink_signal == SIGNAL_TYPE_NONE)
51 stream->signal = stream->link->connector_signal;
52 else
53 stream->signal = sink->sink_signal;
54
55 if (dc_is_dvi_signal(stream->signal)) {
56 if (stream->ctx->dc->caps.dual_link_dvi &&
57 (stream->timing.pix_clk_100hz / 10) > TMDS_MAX_PIXEL_CLOCK &&
58 sink->sink_signal != SIGNAL_TYPE_DVI_SINGLE_LINK)
59 stream->signal = SIGNAL_TYPE_DVI_DUAL_LINK;
60 else
61 stream->signal = SIGNAL_TYPE_DVI_SINGLE_LINK;
62 }
63 }
64
dc_stream_construct(struct dc_stream_state * stream,struct dc_sink * dc_sink_data)65 bool dc_stream_construct(struct dc_stream_state *stream,
66 struct dc_sink *dc_sink_data)
67 {
68 uint32_t i = 0;
69
70 stream->sink = dc_sink_data;
71 dc_sink_retain(dc_sink_data);
72
73 stream->ctx = dc_sink_data->ctx;
74 stream->link = dc_sink_data->link;
75 stream->sink_patches = dc_sink_data->edid_caps.panel_patch;
76 stream->converter_disable_audio = dc_sink_data->converter_disable_audio;
77 stream->qs_bit = dc_sink_data->edid_caps.qs_bit;
78 stream->qy_bit = dc_sink_data->edid_caps.qy_bit;
79
80 /* Copy audio modes */
81 /* TODO - Remove this translation */
82 for (i = 0; i < (dc_sink_data->edid_caps.audio_mode_count); i++) {
83 stream->audio_info.modes[i].channel_count = dc_sink_data->edid_caps.audio_modes[i].channel_count;
84 stream->audio_info.modes[i].format_code = dc_sink_data->edid_caps.audio_modes[i].format_code;
85 stream->audio_info.modes[i].sample_rates.all = dc_sink_data->edid_caps.audio_modes[i].sample_rate;
86 stream->audio_info.modes[i].sample_size = dc_sink_data->edid_caps.audio_modes[i].sample_size;
87 }
88 stream->audio_info.mode_count = dc_sink_data->edid_caps.audio_mode_count;
89 stream->audio_info.audio_latency = dc_sink_data->edid_caps.audio_latency;
90 stream->audio_info.video_latency = dc_sink_data->edid_caps.video_latency;
91 memmove(
92 stream->audio_info.display_name,
93 dc_sink_data->edid_caps.display_name,
94 AUDIO_INFO_DISPLAY_NAME_SIZE_IN_CHARS);
95 stream->audio_info.manufacture_id = dc_sink_data->edid_caps.manufacturer_id;
96 stream->audio_info.product_id = dc_sink_data->edid_caps.product_id;
97 stream->audio_info.flags.all = dc_sink_data->edid_caps.speaker_flags;
98
99 if (dc_sink_data->dc_container_id != NULL) {
100 struct dc_container_id *dc_container_id = dc_sink_data->dc_container_id;
101
102 stream->audio_info.port_id[0] = dc_container_id->portId[0];
103 stream->audio_info.port_id[1] = dc_container_id->portId[1];
104 } else {
105 /* TODO - WindowDM has implemented,
106 other DMs need Unhardcode port_id */
107 stream->audio_info.port_id[0] = 0x5558859e;
108 stream->audio_info.port_id[1] = 0xd989449;
109 }
110
111 /* EDID CAP translation for HDMI 2.0 */
112 stream->timing.flags.LTE_340MCSC_SCRAMBLE = dc_sink_data->edid_caps.lte_340mcsc_scramble;
113
114 memset(&stream->timing.dsc_cfg, 0, sizeof(stream->timing.dsc_cfg));
115 stream->timing.dsc_cfg.num_slices_h = 0;
116 stream->timing.dsc_cfg.num_slices_v = 0;
117 stream->timing.dsc_cfg.bits_per_pixel = 128;
118 stream->timing.dsc_cfg.block_pred_enable = 1;
119 stream->timing.dsc_cfg.linebuf_depth = 9;
120 stream->timing.dsc_cfg.version_minor = 2;
121 stream->timing.dsc_cfg.ycbcr422_simple = 0;
122
123 update_stream_signal(stream, dc_sink_data);
124
125 stream->out_transfer_func.type = TF_TYPE_BYPASS;
126
127 dc_stream_assign_stream_id(stream);
128
129 return true;
130 }
131
dc_stream_destruct(struct dc_stream_state * stream)132 void dc_stream_destruct(struct dc_stream_state *stream)
133 {
134 dc_sink_release(stream->sink);
135 }
136
dc_stream_assign_stream_id(struct dc_stream_state * stream)137 void dc_stream_assign_stream_id(struct dc_stream_state *stream)
138 {
139 /* MSB is reserved to indicate phantoms */
140 stream->stream_id = stream->ctx->dc_stream_id_count;
141 stream->ctx->dc_stream_id_count++;
142 }
143
dc_stream_retain(struct dc_stream_state * stream)144 void dc_stream_retain(struct dc_stream_state *stream)
145 {
146 kref_get(&stream->refcount);
147 }
148
dc_stream_free(struct kref * kref)149 static void dc_stream_free(struct kref *kref)
150 {
151 struct dc_stream_state *stream = container_of(kref, struct dc_stream_state, refcount);
152
153 dc_stream_destruct(stream);
154 kfree(stream);
155 }
156
dc_stream_release(struct dc_stream_state * stream)157 void dc_stream_release(struct dc_stream_state *stream)
158 {
159 if (stream != NULL) {
160 kref_put(&stream->refcount, dc_stream_free);
161 }
162 }
163
dc_create_stream_for_sink(struct dc_sink * sink)164 struct dc_stream_state *dc_create_stream_for_sink(
165 struct dc_sink *sink)
166 {
167 struct dc_stream_state *stream;
168
169 if (sink == NULL)
170 return NULL;
171
172 stream = kzalloc(sizeof(struct dc_stream_state), GFP_KERNEL);
173 if (stream == NULL)
174 goto alloc_fail;
175
176 if (dc_stream_construct(stream, sink) == false)
177 goto construct_fail;
178
179 kref_init(&stream->refcount);
180
181 return stream;
182
183 construct_fail:
184 kfree(stream);
185
186 alloc_fail:
187 return NULL;
188 }
189
dc_copy_stream(const struct dc_stream_state * stream)190 struct dc_stream_state *dc_copy_stream(const struct dc_stream_state *stream)
191 {
192 struct dc_stream_state *new_stream;
193
194 new_stream = kmemdup(stream, sizeof(struct dc_stream_state), GFP_KERNEL);
195 if (!new_stream)
196 return NULL;
197
198 if (new_stream->sink)
199 dc_sink_retain(new_stream->sink);
200
201 dc_stream_assign_stream_id(new_stream);
202
203 /* If using dynamic encoder assignment, wait till stream committed to assign encoder. */
204 if (new_stream->ctx->dc->res_pool->funcs->link_encs_assign)
205 new_stream->link_enc = NULL;
206
207 kref_init(&new_stream->refcount);
208
209 return new_stream;
210 }
211
212 /**
213 * dc_stream_get_status() - Get current stream status of the given stream state
214 * @stream: The stream to get the stream status for.
215 *
216 * The given stream is expected to exist in dc->current_state. Otherwise, NULL
217 * will be returned.
218 */
dc_stream_get_status(struct dc_stream_state * stream)219 struct dc_stream_status *dc_stream_get_status(
220 struct dc_stream_state *stream)
221 {
222 struct dc *dc = stream->ctx->dc;
223 return dc_state_get_stream_status(dc->current_state, stream);
224 }
225
program_cursor_attributes(struct dc * dc,struct dc_stream_state * stream)226 void program_cursor_attributes(
227 struct dc *dc,
228 struct dc_stream_state *stream)
229 {
230 int i;
231 struct resource_context *res_ctx;
232 struct pipe_ctx *pipe_to_program = NULL;
233
234 if (!stream)
235 return;
236
237 res_ctx = &dc->current_state->res_ctx;
238
239 for (i = 0; i < MAX_PIPES; i++) {
240 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
241
242 if (pipe_ctx->stream != stream)
243 continue;
244
245 if (!pipe_to_program) {
246 pipe_to_program = pipe_ctx;
247 dc->hwss.cursor_lock(dc, pipe_to_program, true);
248 if (pipe_to_program->next_odm_pipe)
249 dc->hwss.cursor_lock(dc, pipe_to_program->next_odm_pipe, true);
250 }
251
252 dc->hwss.set_cursor_attribute(pipe_ctx);
253 if (dc->ctx->dmub_srv)
254 dc_send_update_cursor_info_to_dmu(pipe_ctx, i);
255 if (dc->hwss.set_cursor_sdr_white_level)
256 dc->hwss.set_cursor_sdr_white_level(pipe_ctx);
257 }
258
259 if (pipe_to_program) {
260 dc->hwss.cursor_lock(dc, pipe_to_program, false);
261 if (pipe_to_program->next_odm_pipe)
262 dc->hwss.cursor_lock(dc, pipe_to_program->next_odm_pipe, false);
263 }
264 }
265
266 /*
267 * dc_stream_set_cursor_attributes() - Update cursor attributes and set cursor surface address
268 */
dc_stream_set_cursor_attributes(struct dc_stream_state * stream,const struct dc_cursor_attributes * attributes)269 bool dc_stream_set_cursor_attributes(
270 struct dc_stream_state *stream,
271 const struct dc_cursor_attributes *attributes)
272 {
273 struct dc *dc;
274
275 if (NULL == stream) {
276 dm_error("DC: dc_stream is NULL!\n");
277 return false;
278 }
279 if (NULL == attributes) {
280 dm_error("DC: attributes is NULL!\n");
281 return false;
282 }
283
284 if (attributes->address.quad_part == 0) {
285 dm_output_to_console("DC: Cursor address is 0!\n");
286 return false;
287 }
288
289 dc = stream->ctx->dc;
290
291 /* SubVP is not compatible with HW cursor larger than 64 x 64 x 4.
292 * Therefore, if cursor is greater than 64 x 64 x 4, fallback to SW cursor in the following case:
293 * 1. If the config is a candidate for SubVP high refresh (both single an dual display configs)
294 * 2. If not subvp high refresh, for single display cases, if resolution is >= 5K and refresh rate < 120hz
295 * 3. If not subvp high refresh, for multi display cases, if resolution is >= 4K and refresh rate < 120hz
296 */
297 if (dc->debug.allow_sw_cursor_fallback &&
298 attributes->height * attributes->width * 4 > 16384 &&
299 !stream->hw_cursor_req) {
300 if (check_subvp_sw_cursor_fallback_req(dc, stream))
301 return false;
302 }
303
304 stream->cursor_attributes = *attributes;
305
306 return true;
307 }
308
dc_stream_program_cursor_attributes(struct dc_stream_state * stream,const struct dc_cursor_attributes * attributes)309 bool dc_stream_program_cursor_attributes(
310 struct dc_stream_state *stream,
311 const struct dc_cursor_attributes *attributes)
312 {
313 struct dc *dc;
314 bool reset_idle_optimizations = false;
315
316 dc = stream ? stream->ctx->dc : NULL;
317
318 if (dc_stream_set_cursor_attributes(stream, attributes)) {
319 dc_z10_restore(dc);
320 /* disable idle optimizations while updating cursor */
321 if (dc->idle_optimizations_allowed) {
322 dc_allow_idle_optimizations(dc, false);
323 reset_idle_optimizations = true;
324 }
325
326 program_cursor_attributes(dc, stream);
327
328 /* re-enable idle optimizations if necessary */
329 if (reset_idle_optimizations && !dc->debug.disable_dmub_reallow_idle)
330 dc_allow_idle_optimizations(dc, true);
331
332 return true;
333 }
334
335 return false;
336 }
337
program_cursor_position(struct dc * dc,struct dc_stream_state * stream)338 void program_cursor_position(
339 struct dc *dc,
340 struct dc_stream_state *stream)
341 {
342 int i;
343 struct resource_context *res_ctx;
344 struct pipe_ctx *pipe_to_program = NULL;
345
346 if (!stream)
347 return;
348
349 res_ctx = &dc->current_state->res_ctx;
350
351 for (i = 0; i < MAX_PIPES; i++) {
352 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
353
354 if (pipe_ctx->stream != stream ||
355 (!pipe_ctx->plane_res.mi && !pipe_ctx->plane_res.hubp) ||
356 !pipe_ctx->plane_state ||
357 (!pipe_ctx->plane_res.xfm && !pipe_ctx->plane_res.dpp) ||
358 (!pipe_ctx->plane_res.ipp && !pipe_ctx->plane_res.dpp))
359 continue;
360
361 if (!pipe_to_program) {
362 pipe_to_program = pipe_ctx;
363 dc->hwss.cursor_lock(dc, pipe_to_program, true);
364 }
365
366 dc->hwss.set_cursor_position(pipe_ctx);
367 if (dc->ctx->dmub_srv)
368 dc_send_update_cursor_info_to_dmu(pipe_ctx, i);
369 }
370
371 if (pipe_to_program)
372 dc->hwss.cursor_lock(dc, pipe_to_program, false);
373 }
374
dc_stream_set_cursor_position(struct dc_stream_state * stream,const struct dc_cursor_position * position)375 bool dc_stream_set_cursor_position(
376 struct dc_stream_state *stream,
377 const struct dc_cursor_position *position)
378 {
379 if (NULL == stream) {
380 dm_error("DC: dc_stream is NULL!\n");
381 return false;
382 }
383
384 if (NULL == position) {
385 dm_error("DC: cursor position is NULL!\n");
386 return false;
387 }
388
389 stream->cursor_position = *position;
390
391
392 return true;
393 }
394
dc_stream_program_cursor_position(struct dc_stream_state * stream,const struct dc_cursor_position * position)395 bool dc_stream_program_cursor_position(
396 struct dc_stream_state *stream,
397 const struct dc_cursor_position *position)
398 {
399 struct dc *dc;
400 bool reset_idle_optimizations = false;
401 const struct dc_cursor_position *old_position;
402
403 if (!stream)
404 return false;
405
406 old_position = &stream->cursor_position;
407 dc = stream->ctx->dc;
408
409 if (dc_stream_set_cursor_position(stream, position)) {
410 dc_z10_restore(dc);
411
412 /* disable idle optimizations if enabling cursor */
413 if (dc->idle_optimizations_allowed &&
414 (!old_position->enable || dc->debug.exit_idle_opt_for_cursor_updates) &&
415 position->enable) {
416 dc_allow_idle_optimizations(dc, false);
417 reset_idle_optimizations = true;
418 }
419
420 program_cursor_position(dc, stream);
421 /* re-enable idle optimizations if necessary */
422 if (reset_idle_optimizations && !dc->debug.disable_dmub_reallow_idle)
423 dc_allow_idle_optimizations(dc, true);
424
425 /* apply/update visual confirm */
426 if (dc->debug.visual_confirm == VISUAL_CONFIRM_HW_CURSOR) {
427 /* update software state */
428 int i;
429
430 for (i = 0; i < dc->res_pool->pipe_count; i++) {
431 struct pipe_ctx *pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
432
433 /* adjust visual confirm color for all pipes with current stream */
434 if (stream == pipe_ctx->stream) {
435 get_cursor_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
436
437 /* programming hardware */
438 if (pipe_ctx->plane_state)
439 dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
440 pipe_ctx->plane_res.hubp->mpcc_id);
441 }
442 }
443 }
444
445 return true;
446 }
447
448 return false;
449 }
450
dc_stream_add_writeback(struct dc * dc,struct dc_stream_state * stream,struct dc_writeback_info * wb_info)451 bool dc_stream_add_writeback(struct dc *dc,
452 struct dc_stream_state *stream,
453 struct dc_writeback_info *wb_info)
454 {
455 bool isDrc = false;
456 int i = 0;
457 struct dwbc *dwb;
458
459 if (stream == NULL) {
460 dm_error("DC: dc_stream is NULL!\n");
461 return false;
462 }
463
464 if (wb_info == NULL) {
465 dm_error("DC: dc_writeback_info is NULL!\n");
466 return false;
467 }
468
469 if (wb_info->dwb_pipe_inst >= MAX_DWB_PIPES) {
470 dm_error("DC: writeback pipe is invalid!\n");
471 return false;
472 }
473
474 dc_exit_ips_for_hw_access(dc);
475
476 wb_info->dwb_params.out_transfer_func = &stream->out_transfer_func;
477
478 dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
479 dwb->dwb_is_drc = false;
480
481 /* recalculate and apply DML parameters */
482
483 for (i = 0; i < stream->num_wb_info; i++) {
484 /*dynamic update*/
485 if (stream->writeback_info[i].wb_enabled &&
486 stream->writeback_info[i].dwb_pipe_inst == wb_info->dwb_pipe_inst) {
487 stream->writeback_info[i] = *wb_info;
488 isDrc = true;
489 }
490 }
491
492 if (!isDrc) {
493 ASSERT(stream->num_wb_info + 1 <= MAX_DWB_PIPES);
494 stream->writeback_info[stream->num_wb_info++] = *wb_info;
495 }
496
497 if (dc->hwss.enable_writeback) {
498 struct dc_stream_status *stream_status = dc_stream_get_status(stream);
499 struct dwbc *dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
500 if (stream_status)
501 dwb->otg_inst = stream_status->primary_otg_inst;
502 }
503
504 if (!dc->hwss.update_bandwidth(dc, dc->current_state)) {
505 dm_error("DC: update_bandwidth failed!\n");
506 return false;
507 }
508
509 /* enable writeback */
510 if (dc->hwss.enable_writeback) {
511 struct dwbc *dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
512
513 if (dwb->funcs->is_enabled(dwb)) {
514 /* writeback pipe already enabled, only need to update */
515 dc->hwss.update_writeback(dc, wb_info, dc->current_state);
516 } else {
517 /* Enable writeback pipe from scratch*/
518 dc->hwss.enable_writeback(dc, wb_info, dc->current_state);
519 }
520 }
521
522 return true;
523 }
524
dc_stream_fc_disable_writeback(struct dc * dc,struct dc_stream_state * stream,uint32_t dwb_pipe_inst)525 bool dc_stream_fc_disable_writeback(struct dc *dc,
526 struct dc_stream_state *stream,
527 uint32_t dwb_pipe_inst)
528 {
529 struct dwbc *dwb = dc->res_pool->dwbc[dwb_pipe_inst];
530
531 if (stream == NULL) {
532 dm_error("DC: dc_stream is NULL!\n");
533 return false;
534 }
535
536 if (dwb_pipe_inst >= MAX_DWB_PIPES) {
537 dm_error("DC: writeback pipe is invalid!\n");
538 return false;
539 }
540
541 if (stream->num_wb_info > MAX_DWB_PIPES) {
542 dm_error("DC: num_wb_info is invalid!\n");
543 return false;
544 }
545
546 dc_exit_ips_for_hw_access(dc);
547
548 if (dwb->funcs->set_fc_enable)
549 dwb->funcs->set_fc_enable(dwb, DWB_FRAME_CAPTURE_DISABLE);
550
551 return true;
552 }
553
dc_stream_remove_writeback(struct dc * dc,struct dc_stream_state * stream,uint32_t dwb_pipe_inst)554 bool dc_stream_remove_writeback(struct dc *dc,
555 struct dc_stream_state *stream,
556 uint32_t dwb_pipe_inst)
557 {
558 unsigned int i, j;
559 if (stream == NULL) {
560 dm_error("DC: dc_stream is NULL!\n");
561 return false;
562 }
563
564 if (dwb_pipe_inst >= MAX_DWB_PIPES) {
565 dm_error("DC: writeback pipe is invalid!\n");
566 return false;
567 }
568
569 if (stream->num_wb_info > MAX_DWB_PIPES) {
570 dm_error("DC: num_wb_info is invalid!\n");
571 return false;
572 }
573
574 /* remove writeback info for disabled writeback pipes from stream */
575 for (i = 0, j = 0; i < stream->num_wb_info; i++) {
576 if (stream->writeback_info[i].wb_enabled) {
577
578 if (stream->writeback_info[i].dwb_pipe_inst == dwb_pipe_inst)
579 stream->writeback_info[i].wb_enabled = false;
580
581 /* trim the array */
582 if (j < i) {
583 memcpy(&stream->writeback_info[j], &stream->writeback_info[i],
584 sizeof(struct dc_writeback_info));
585 j++;
586 }
587 }
588 }
589 stream->num_wb_info = j;
590
591 /* recalculate and apply DML parameters */
592 if (!dc->hwss.update_bandwidth(dc, dc->current_state)) {
593 dm_error("DC: update_bandwidth failed!\n");
594 return false;
595 }
596
597 dc_exit_ips_for_hw_access(dc);
598
599 /* disable writeback */
600 if (dc->hwss.disable_writeback) {
601 struct dwbc *dwb = dc->res_pool->dwbc[dwb_pipe_inst];
602
603 if (dwb->funcs->is_enabled(dwb))
604 dc->hwss.disable_writeback(dc, dwb_pipe_inst);
605 }
606
607 return true;
608 }
609
dc_stream_get_vblank_counter(const struct dc_stream_state * stream)610 uint32_t dc_stream_get_vblank_counter(const struct dc_stream_state *stream)
611 {
612 uint8_t i;
613 struct dc *dc = stream->ctx->dc;
614 struct resource_context *res_ctx =
615 &dc->current_state->res_ctx;
616
617 dc_exit_ips_for_hw_access(dc);
618
619 for (i = 0; i < MAX_PIPES; i++) {
620 struct timing_generator *tg = res_ctx->pipe_ctx[i].stream_res.tg;
621
622 if (res_ctx->pipe_ctx[i].stream != stream || !tg)
623 continue;
624
625 return tg->funcs->get_frame_count(tg);
626 }
627
628 return 0;
629 }
630
dc_stream_send_dp_sdp(const struct dc_stream_state * stream,const uint8_t * custom_sdp_message,unsigned int sdp_message_size)631 bool dc_stream_send_dp_sdp(const struct dc_stream_state *stream,
632 const uint8_t *custom_sdp_message,
633 unsigned int sdp_message_size)
634 {
635 int i;
636 struct dc *dc;
637 struct resource_context *res_ctx;
638
639 if (stream == NULL) {
640 dm_error("DC: dc_stream is NULL!\n");
641 return false;
642 }
643
644 dc = stream->ctx->dc;
645 res_ctx = &dc->current_state->res_ctx;
646
647 dc_exit_ips_for_hw_access(dc);
648
649 for (i = 0; i < MAX_PIPES; i++) {
650 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
651
652 if (pipe_ctx->stream != stream)
653 continue;
654
655 if (dc->hwss.send_immediate_sdp_message != NULL)
656 dc->hwss.send_immediate_sdp_message(pipe_ctx,
657 custom_sdp_message,
658 sdp_message_size);
659 else
660 DC_LOG_WARNING("%s:send_immediate_sdp_message not implemented on this ASIC\n",
661 __func__);
662
663 }
664
665 return true;
666 }
667
dc_stream_get_scanoutpos(const struct dc_stream_state * stream,uint32_t * v_blank_start,uint32_t * v_blank_end,uint32_t * h_position,uint32_t * v_position)668 bool dc_stream_get_scanoutpos(const struct dc_stream_state *stream,
669 uint32_t *v_blank_start,
670 uint32_t *v_blank_end,
671 uint32_t *h_position,
672 uint32_t *v_position)
673 {
674 uint8_t i;
675 bool ret = false;
676 struct dc *dc = stream->ctx->dc;
677 struct resource_context *res_ctx =
678 &dc->current_state->res_ctx;
679
680 dc_exit_ips_for_hw_access(dc);
681
682 for (i = 0; i < MAX_PIPES; i++) {
683 struct timing_generator *tg = res_ctx->pipe_ctx[i].stream_res.tg;
684
685 if (res_ctx->pipe_ctx[i].stream != stream || !tg)
686 continue;
687
688 tg->funcs->get_scanoutpos(tg,
689 v_blank_start,
690 v_blank_end,
691 h_position,
692 v_position);
693
694 ret = true;
695 break;
696 }
697
698 return ret;
699 }
700
dc_stream_dmdata_status_done(struct dc * dc,struct dc_stream_state * stream)701 bool dc_stream_dmdata_status_done(struct dc *dc, struct dc_stream_state *stream)
702 {
703 struct pipe_ctx *pipe = NULL;
704 int i;
705
706 if (!dc->hwss.dmdata_status_done)
707 return false;
708
709 for (i = 0; i < MAX_PIPES; i++) {
710 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
711 if (pipe->stream == stream)
712 break;
713 }
714 /* Stream not found, by default we'll assume HUBP fetched dm data */
715 if (i == MAX_PIPES)
716 return true;
717
718 dc_exit_ips_for_hw_access(dc);
719
720 return dc->hwss.dmdata_status_done(pipe);
721 }
722
dc_stream_set_dynamic_metadata(struct dc * dc,struct dc_stream_state * stream,struct dc_dmdata_attributes * attr)723 bool dc_stream_set_dynamic_metadata(struct dc *dc,
724 struct dc_stream_state *stream,
725 struct dc_dmdata_attributes *attr)
726 {
727 struct pipe_ctx *pipe_ctx = NULL;
728 struct hubp *hubp;
729 int i;
730
731 /* Dynamic metadata is only supported on HDMI or DP */
732 if (!dc_is_hdmi_signal(stream->signal) && !dc_is_dp_signal(stream->signal))
733 return false;
734
735 /* Check hardware support */
736 if (!dc->hwss.program_dmdata_engine)
737 return false;
738
739 for (i = 0; i < MAX_PIPES; i++) {
740 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
741 if (pipe_ctx->stream == stream)
742 break;
743 }
744
745 if (i == MAX_PIPES)
746 return false;
747
748 hubp = pipe_ctx->plane_res.hubp;
749 if (hubp == NULL)
750 return false;
751
752 pipe_ctx->stream->dmdata_address = attr->address;
753
754 dc_exit_ips_for_hw_access(dc);
755
756 dc->hwss.program_dmdata_engine(pipe_ctx);
757
758 if (hubp->funcs->dmdata_set_attributes != NULL &&
759 pipe_ctx->stream->dmdata_address.quad_part != 0) {
760 hubp->funcs->dmdata_set_attributes(hubp, attr);
761 }
762
763 return true;
764 }
765
dc_stream_add_dsc_to_resource(struct dc * dc,struct dc_state * state,struct dc_stream_state * stream)766 enum dc_status dc_stream_add_dsc_to_resource(struct dc *dc,
767 struct dc_state *state,
768 struct dc_stream_state *stream)
769 {
770 if (dc->res_pool->funcs->add_dsc_to_stream_resource) {
771 return dc->res_pool->funcs->add_dsc_to_stream_resource(dc, state, stream);
772 } else {
773 return DC_NO_DSC_RESOURCE;
774 }
775 }
776
dc_stream_get_pipe_ctx(struct dc_stream_state * stream)777 struct pipe_ctx *dc_stream_get_pipe_ctx(struct dc_stream_state *stream)
778 {
779 int i = 0;
780
781 for (i = 0; i < MAX_PIPES; i++) {
782 struct pipe_ctx *pipe = &stream->ctx->dc->current_state->res_ctx.pipe_ctx[i];
783
784 if (pipe->stream == stream)
785 return pipe;
786 }
787
788 return NULL;
789 }
790
dc_stream_log(const struct dc * dc,const struct dc_stream_state * stream)791 void dc_stream_log(const struct dc *dc, const struct dc_stream_state *stream)
792 {
793 DC_LOG_DC(
794 "core_stream 0x%p: src: %d, %d, %d, %d; dst: %d, %d, %d, %d, colorSpace:%d\n",
795 stream,
796 stream->src.x,
797 stream->src.y,
798 stream->src.width,
799 stream->src.height,
800 stream->dst.x,
801 stream->dst.y,
802 stream->dst.width,
803 stream->dst.height,
804 stream->output_color_space);
805 DC_LOG_DC(
806 "\tpix_clk_khz: %d, h_total: %d, v_total: %d, pixel_encoding:%s, color_depth:%s\n",
807 stream->timing.pix_clk_100hz / 10,
808 stream->timing.h_total,
809 stream->timing.v_total,
810 dc_pixel_encoding_to_str(stream->timing.pixel_encoding),
811 dc_color_depth_to_str(stream->timing.display_color_depth));
812 DC_LOG_DC(
813 "\tlink: %d\n",
814 stream->link->link_index);
815
816 DC_LOG_DC(
817 "\tdsc: %d, mst_pbn: %d\n",
818 stream->timing.flags.DSC,
819 stream->timing.dsc_cfg.mst_pbn);
820
821 if (stream->sink) {
822 if (stream->sink->sink_signal != SIGNAL_TYPE_VIRTUAL &&
823 stream->sink->sink_signal != SIGNAL_TYPE_NONE) {
824
825 DC_LOG_DC(
826 "\tdispname: %s signal: %x\n",
827 stream->sink->edid_caps.display_name,
828 stream->signal);
829 }
830 }
831 }
832
833 /*
834 * Finds the greatest index in refresh_rate_hz that contains a value <= refresh
835 */
dc_stream_get_nearest_smallest_index(struct dc_stream_state * stream,int refresh)836 static int dc_stream_get_nearest_smallest_index(struct dc_stream_state *stream, int refresh)
837 {
838 for (int i = 0; i < (LUMINANCE_DATA_TABLE_SIZE - 1); ++i) {
839 if ((stream->lumin_data.refresh_rate_hz[i] <= refresh) && (refresh < stream->lumin_data.refresh_rate_hz[i + 1])) {
840 return i;
841 }
842 }
843 return 9;
844 }
845
846 /*
847 * Finds a corresponding brightness for a given refresh rate between 2 given indices, where index1 < index2
848 */
dc_stream_get_brightness_millinits_linear_interpolation(struct dc_stream_state * stream,int index1,int index2,int refresh_hz)849 static int dc_stream_get_brightness_millinits_linear_interpolation (struct dc_stream_state *stream,
850 int index1,
851 int index2,
852 int refresh_hz)
853 {
854 long long slope = 0;
855 if (stream->lumin_data.refresh_rate_hz[index2] != stream->lumin_data.refresh_rate_hz[index1]) {
856 slope = (stream->lumin_data.luminance_millinits[index2] - stream->lumin_data.luminance_millinits[index1]) /
857 (stream->lumin_data.refresh_rate_hz[index2] - stream->lumin_data.refresh_rate_hz[index1]);
858 }
859
860 int y_intercept = stream->lumin_data.luminance_millinits[index2] - slope * stream->lumin_data.refresh_rate_hz[index2];
861
862 return (y_intercept + refresh_hz * slope);
863 }
864
865 /*
866 * Finds a corresponding refresh rate for a given brightness between 2 given indices, where index1 < index2
867 */
dc_stream_get_refresh_hz_linear_interpolation(struct dc_stream_state * stream,int index1,int index2,int brightness_millinits)868 static int dc_stream_get_refresh_hz_linear_interpolation (struct dc_stream_state *stream,
869 int index1,
870 int index2,
871 int brightness_millinits)
872 {
873 long long slope = 1;
874 if (stream->lumin_data.refresh_rate_hz[index2] != stream->lumin_data.refresh_rate_hz[index1]) {
875 slope = (stream->lumin_data.luminance_millinits[index2] - stream->lumin_data.luminance_millinits[index1]) /
876 (stream->lumin_data.refresh_rate_hz[index2] - stream->lumin_data.refresh_rate_hz[index1]);
877 }
878
879 int y_intercept = stream->lumin_data.luminance_millinits[index2] - slope * stream->lumin_data.refresh_rate_hz[index2];
880
881 return ((int)div64_s64((brightness_millinits - y_intercept), slope));
882 }
883
884 /*
885 * Finds the current brightness in millinits given a refresh rate
886 */
dc_stream_get_brightness_millinits_from_refresh(struct dc_stream_state * stream,int refresh_hz)887 static int dc_stream_get_brightness_millinits_from_refresh (struct dc_stream_state *stream, int refresh_hz)
888 {
889 int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, refresh_hz);
890 int nearest_smallest_value = stream->lumin_data.refresh_rate_hz[nearest_smallest_index];
891
892 if (nearest_smallest_value == refresh_hz)
893 return stream->lumin_data.luminance_millinits[nearest_smallest_index];
894
895 if (nearest_smallest_index >= 9)
896 return dc_stream_get_brightness_millinits_linear_interpolation(stream, nearest_smallest_index - 1, nearest_smallest_index, refresh_hz);
897
898 if (nearest_smallest_value == stream->lumin_data.refresh_rate_hz[nearest_smallest_index + 1])
899 return stream->lumin_data.luminance_millinits[nearest_smallest_index];
900
901 return dc_stream_get_brightness_millinits_linear_interpolation(stream, nearest_smallest_index, nearest_smallest_index + 1, refresh_hz);
902 }
903
904 /*
905 * Finds the lowest/highest refresh rate (depending on search_for_max_increase)
906 * that can be achieved from starting_refresh_hz while staying
907 * within flicker criteria
908 */
dc_stream_calculate_flickerless_refresh_rate(struct dc_stream_state * stream,int current_brightness,int starting_refresh_hz,bool is_gaming,bool search_for_max_increase)909 static int dc_stream_calculate_flickerless_refresh_rate(struct dc_stream_state *stream,
910 int current_brightness,
911 int starting_refresh_hz,
912 bool is_gaming,
913 bool search_for_max_increase)
914 {
915 int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, starting_refresh_hz);
916
917 int flicker_criteria_millinits = is_gaming ?
918 stream->lumin_data.flicker_criteria_milli_nits_GAMING :
919 stream->lumin_data.flicker_criteria_milli_nits_STATIC;
920
921 int safe_upper_bound = current_brightness + flicker_criteria_millinits;
922 int safe_lower_bound = current_brightness - flicker_criteria_millinits;
923 int lumin_millinits_temp = 0;
924
925 int offset = -1;
926 if (search_for_max_increase) {
927 offset = 1;
928 }
929
930 /*
931 * Increments up or down by 1 depending on search_for_max_increase
932 */
933 for (int i = nearest_smallest_index; (i > 0 && !search_for_max_increase) || (i < (LUMINANCE_DATA_TABLE_SIZE - 1) && search_for_max_increase); i += offset) {
934
935 lumin_millinits_temp = stream->lumin_data.luminance_millinits[i + offset];
936
937 if ((lumin_millinits_temp >= safe_upper_bound) || (lumin_millinits_temp <= safe_lower_bound)) {
938
939 if (stream->lumin_data.refresh_rate_hz[i + offset] == stream->lumin_data.refresh_rate_hz[i])
940 return stream->lumin_data.refresh_rate_hz[i];
941
942 int target_brightness = (stream->lumin_data.luminance_millinits[i + offset] >= (current_brightness + flicker_criteria_millinits)) ?
943 current_brightness + flicker_criteria_millinits :
944 current_brightness - flicker_criteria_millinits;
945
946 int refresh = 0;
947
948 /*
949 * Need the second input to be < third input for dc_stream_get_refresh_hz_linear_interpolation
950 */
951 if (search_for_max_increase)
952 refresh = dc_stream_get_refresh_hz_linear_interpolation(stream, i, i + offset, target_brightness);
953 else
954 refresh = dc_stream_get_refresh_hz_linear_interpolation(stream, i + offset, i, target_brightness);
955
956 if (refresh == stream->lumin_data.refresh_rate_hz[i + offset])
957 return stream->lumin_data.refresh_rate_hz[i + offset];
958
959 return refresh;
960 }
961 }
962
963 if (search_for_max_increase)
964 return (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, stream->timing.v_total*(long long)stream->timing.h_total);
965 else
966 return stream->lumin_data.refresh_rate_hz[0];
967 }
968
969 /*
970 * Gets the max delta luminance within a specified refresh range
971 */
dc_stream_get_max_delta_lumin_millinits(struct dc_stream_state * stream,int hz1,int hz2,bool isGaming)972 static int dc_stream_get_max_delta_lumin_millinits(struct dc_stream_state *stream, int hz1, int hz2, bool isGaming)
973 {
974 int lower_refresh_brightness = dc_stream_get_brightness_millinits_from_refresh (stream, hz1);
975 int higher_refresh_brightness = dc_stream_get_brightness_millinits_from_refresh (stream, hz2);
976
977 int min = lower_refresh_brightness;
978 int max = higher_refresh_brightness;
979
980 /*
981 * Static screen, therefore no need to scan through array
982 */
983 if (!isGaming) {
984 if (lower_refresh_brightness >= higher_refresh_brightness) {
985 return lower_refresh_brightness - higher_refresh_brightness;
986 }
987 return higher_refresh_brightness - lower_refresh_brightness;
988 }
989
990 min = MIN(lower_refresh_brightness, higher_refresh_brightness);
991 max = MAX(lower_refresh_brightness, higher_refresh_brightness);
992
993 int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, hz1);
994
995 for (; nearest_smallest_index < (LUMINANCE_DATA_TABLE_SIZE - 1) &&
996 stream->lumin_data.refresh_rate_hz[nearest_smallest_index + 1] <= hz2 ; nearest_smallest_index++) {
997 min = MIN(min, stream->lumin_data.luminance_millinits[nearest_smallest_index + 1]);
998 max = MAX(max, stream->lumin_data.luminance_millinits[nearest_smallest_index + 1]);
999 }
1000
1001 return (max - min);
1002 }
1003
1004 /*
1005 * Determines the max flickerless instant vtotal delta for a stream.
1006 * Determines vtotal increase/decrease based on the bool "increase"
1007 */
dc_stream_get_max_flickerless_instant_vtotal_delta(struct dc_stream_state * stream,bool is_gaming,bool increase)1008 static unsigned int dc_stream_get_max_flickerless_instant_vtotal_delta(struct dc_stream_state *stream, bool is_gaming, bool increase)
1009 {
1010 if (stream->timing.v_total * stream->timing.h_total == 0)
1011 return 0;
1012
1013 int current_refresh_hz = (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, stream->timing.v_total*(long long)stream->timing.h_total);
1014
1015 int safe_refresh_hz = dc_stream_calculate_flickerless_refresh_rate(stream,
1016 dc_stream_get_brightness_millinits_from_refresh(stream, current_refresh_hz),
1017 current_refresh_hz,
1018 is_gaming,
1019 increase);
1020
1021 int safe_refresh_v_total = (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, safe_refresh_hz*(long long)stream->timing.h_total);
1022
1023 if (increase)
1024 return (((int) stream->timing.v_total - safe_refresh_v_total) >= 0) ? (stream->timing.v_total - safe_refresh_v_total) : 0;
1025
1026 return ((safe_refresh_v_total - (int) stream->timing.v_total) >= 0) ? (safe_refresh_v_total - stream->timing.v_total) : 0;
1027 }
1028
1029 /*
1030 * Finds the highest refresh rate that can be achieved
1031 * from starting_refresh_hz while staying within flicker criteria
1032 */
dc_stream_calculate_max_flickerless_refresh_rate(struct dc_stream_state * stream,int starting_refresh_hz,bool is_gaming)1033 int dc_stream_calculate_max_flickerless_refresh_rate(struct dc_stream_state *stream, int starting_refresh_hz, bool is_gaming)
1034 {
1035 if (!stream->lumin_data.is_valid)
1036 return 0;
1037
1038 int current_brightness = dc_stream_get_brightness_millinits_from_refresh(stream, starting_refresh_hz);
1039
1040 return dc_stream_calculate_flickerless_refresh_rate(stream,
1041 current_brightness,
1042 starting_refresh_hz,
1043 is_gaming,
1044 true);
1045 }
1046
1047 /*
1048 * Finds the lowest refresh rate that can be achieved
1049 * from starting_refresh_hz while staying within flicker criteria
1050 */
dc_stream_calculate_min_flickerless_refresh_rate(struct dc_stream_state * stream,int starting_refresh_hz,bool is_gaming)1051 int dc_stream_calculate_min_flickerless_refresh_rate(struct dc_stream_state *stream, int starting_refresh_hz, bool is_gaming)
1052 {
1053 if (!stream->lumin_data.is_valid)
1054 return 0;
1055
1056 int current_brightness = dc_stream_get_brightness_millinits_from_refresh(stream, starting_refresh_hz);
1057
1058 return dc_stream_calculate_flickerless_refresh_rate(stream,
1059 current_brightness,
1060 starting_refresh_hz,
1061 is_gaming,
1062 false);
1063 }
1064
1065 /*
1066 * Determines if there will be a flicker when moving between 2 refresh rates
1067 */
dc_stream_is_refresh_rate_range_flickerless(struct dc_stream_state * stream,int hz1,int hz2,bool is_gaming)1068 bool dc_stream_is_refresh_rate_range_flickerless(struct dc_stream_state *stream, int hz1, int hz2, bool is_gaming)
1069 {
1070
1071 /*
1072 * Assume that we wont flicker if there is invalid data
1073 */
1074 if (!stream->lumin_data.is_valid)
1075 return false;
1076
1077 int dl = dc_stream_get_max_delta_lumin_millinits(stream, hz1, hz2, is_gaming);
1078
1079 int flicker_criteria_millinits = (is_gaming) ?
1080 stream->lumin_data.flicker_criteria_milli_nits_GAMING :
1081 stream->lumin_data.flicker_criteria_milli_nits_STATIC;
1082
1083 return (dl <= flicker_criteria_millinits);
1084 }
1085
1086 /*
1087 * Determines the max instant vtotal delta increase that can be applied without
1088 * flickering for a given stream
1089 */
dc_stream_get_max_flickerless_instant_vtotal_decrease(struct dc_stream_state * stream,bool is_gaming)1090 unsigned int dc_stream_get_max_flickerless_instant_vtotal_decrease(struct dc_stream_state *stream,
1091 bool is_gaming)
1092 {
1093 if (!stream->lumin_data.is_valid)
1094 return 0;
1095
1096 return dc_stream_get_max_flickerless_instant_vtotal_delta(stream, is_gaming, true);
1097 }
1098
1099 /*
1100 * Determines the max instant vtotal delta decrease that can be applied without
1101 * flickering for a given stream
1102 */
dc_stream_get_max_flickerless_instant_vtotal_increase(struct dc_stream_state * stream,bool is_gaming)1103 unsigned int dc_stream_get_max_flickerless_instant_vtotal_increase(struct dc_stream_state *stream,
1104 bool is_gaming)
1105 {
1106 if (!stream->lumin_data.is_valid)
1107 return 0;
1108
1109 return dc_stream_get_max_flickerless_instant_vtotal_delta(stream, is_gaming, false);
1110 }
1111