1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 */
24
25 #include "dm_services.h"
26
27 #include "amdgpu.h"
28
29 #include "dc.h"
30
31 #include "core_status.h"
32 #include "core_types.h"
33 #include "hw_sequencer.h"
34 #include "dce/dce_hwseq.h"
35
36 #include "resource.h"
37 #include "dc_state.h"
38 #include "dc_state_priv.h"
39 #include "dc_plane.h"
40 #include "dc_plane_priv.h"
41 #include "dc_stream_priv.h"
42
43 #include "gpio_service_interface.h"
44 #include "clk_mgr.h"
45 #include "clock_source.h"
46 #include "dc_bios_types.h"
47
48 #include "bios_parser_interface.h"
49 #include "bios/bios_parser_helper.h"
50 #include "include/irq_service_interface.h"
51 #include "transform.h"
52 #include "dmcu.h"
53 #include "dpp.h"
54 #include "timing_generator.h"
55 #include "abm.h"
56 #include "virtual/virtual_link_encoder.h"
57 #include "hubp.h"
58
59 #include "link_hwss.h"
60 #include "link_encoder.h"
61 #include "link_enc_cfg.h"
62
63 #include "link_service.h"
64 #include "dm_helpers.h"
65 #include "mem_input.h"
66
67 #include "dc_dmub_srv.h"
68
69 #include "dsc.h"
70
71 #include "vm_helper.h"
72
73 #include "dce/dce_i2c.h"
74
75 #include "dmub/dmub_srv.h"
76
77 #include "dce/dmub_psr.h"
78
79 #include "dce/dmub_hw_lock_mgr.h"
80
81 #include "dc_trace.h"
82
83 #include "hw_sequencer_private.h"
84
85 #if defined(CONFIG_DRM_AMD_DC_FP)
86 #include "dml2_0/dml2_internal_types.h"
87 #include "soc_and_ip_translator.h"
88 #endif
89
90 #include "dce/dmub_outbox.h"
91
92 #define CTX \
93 dc->ctx
94
95 #define DC_LOGGER \
96 dc->ctx->logger
97
98 static const char DC_BUILD_ID[] = "production-build";
99
100 /**
101 * DOC: Overview
102 *
103 * DC is the OS-agnostic component of the amdgpu DC driver.
104 *
105 * DC maintains and validates a set of structs representing the state of the
106 * driver and writes that state to AMD hardware
107 *
108 * Main DC HW structs:
109 *
110 * struct dc - The central struct. One per driver. Created on driver load,
111 * destroyed on driver unload.
112 *
113 * struct dc_context - One per driver.
114 * Used as a backpointer by most other structs in dc.
115 *
116 * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
117 * plugpoints). Created on driver load, destroyed on driver unload.
118 *
119 * struct dc_sink - One per display. Created on boot or hotplug.
120 * Destroyed on shutdown or hotunplug. A dc_link can have a local sink
121 * (the display directly attached). It may also have one or more remote
122 * sinks (in the Multi-Stream Transport case)
123 *
124 * struct resource_pool - One per driver. Represents the hw blocks not in the
125 * main pipeline. Not directly accessible by dm.
126 *
127 * Main dc state structs:
128 *
129 * These structs can be created and destroyed as needed. There is a full set of
130 * these structs in dc->current_state representing the currently programmed state.
131 *
132 * struct dc_state - The global DC state to track global state information,
133 * such as bandwidth values.
134 *
135 * struct dc_stream_state - Represents the hw configuration for the pipeline from
136 * a framebuffer to a display. Maps one-to-one with dc_sink.
137 *
138 * struct dc_plane_state - Represents a framebuffer. Each stream has at least one,
139 * and may have more in the Multi-Plane Overlay case.
140 *
141 * struct resource_context - Represents the programmable state of everything in
142 * the resource_pool. Not directly accessible by dm.
143 *
144 * struct pipe_ctx - A member of struct resource_context. Represents the
145 * internal hardware pipeline components. Each dc_plane_state has either
146 * one or two (in the pipe-split case).
147 */
148
149 /* Private functions */
150
elevate_update_type(struct surface_update_descriptor * descriptor,enum surface_update_type new_type,enum dc_lock_descriptor new_locks)151 static inline void elevate_update_type(
152 struct surface_update_descriptor *descriptor,
153 enum surface_update_type new_type,
154 enum dc_lock_descriptor new_locks
155 )
156 {
157 if (new_type > descriptor->update_type)
158 descriptor->update_type = new_type;
159
160 descriptor->lock_descriptor |= new_locks;
161 }
162
destroy_links(struct dc * dc)163 static void destroy_links(struct dc *dc)
164 {
165 uint32_t i;
166
167 for (i = 0; i < dc->link_count; i++) {
168 if (NULL != dc->links[i])
169 dc->link_srv->destroy_link(&dc->links[i]);
170 }
171 }
172
get_num_of_internal_disp(struct dc_link ** links,uint32_t num_links)173 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
174 {
175 int i;
176 uint32_t count = 0;
177
178 for (i = 0; i < num_links; i++) {
179 if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
180 links[i]->is_internal_display)
181 count++;
182 }
183
184 return count;
185 }
186
get_seamless_boot_stream_count(struct dc_state * ctx)187 static int get_seamless_boot_stream_count(struct dc_state *ctx)
188 {
189 uint8_t i;
190 uint8_t seamless_boot_stream_count = 0;
191
192 for (i = 0; i < ctx->stream_count; i++)
193 if (ctx->streams[i]->apply_seamless_boot_optimization)
194 seamless_boot_stream_count++;
195
196 return seamless_boot_stream_count;
197 }
198
create_links(struct dc * dc,uint32_t num_virtual_links)199 static bool create_links(
200 struct dc *dc,
201 uint32_t num_virtual_links)
202 {
203 int i;
204 int connectors_num;
205 struct dc_bios *bios = dc->ctx->dc_bios;
206
207 dc->link_count = 0;
208
209 connectors_num = bios->funcs->get_connectors_number(bios);
210
211 DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
212
213 if (connectors_num > ENUM_ID_COUNT) {
214 dm_error(
215 "DC: Number of connectors %d exceeds maximum of %d!\n",
216 connectors_num,
217 ENUM_ID_COUNT);
218 return false;
219 }
220
221 dm_output_to_console(
222 "DC: %s: connectors_num: physical:%d, virtual:%d\n",
223 __func__,
224 connectors_num,
225 num_virtual_links);
226
227 /* When getting the number of connectors, the VBIOS reports the number of valid indices,
228 * but it doesn't say which indices are valid, and not every index has an actual connector.
229 * So, if we don't find a connector on an index, that is not an error.
230 *
231 * - There is no guarantee that the first N indices will be valid
232 * - VBIOS may report a higher amount of valid indices than there are actual connectors
233 * - Some VBIOS have valid configurations for more connectors than there actually are
234 * on the card. This may be because the manufacturer used the same VBIOS for different
235 * variants of the same card.
236 */
237 for (i = 0; dc->link_count < connectors_num && i < MAX_LINKS; i++) {
238 struct graphics_object_id connector_id = bios->funcs->get_connector_id(bios, i);
239 struct link_init_data link_init_params = {0};
240 struct dc_link *link;
241
242 if (connector_id.id == CONNECTOR_ID_UNKNOWN)
243 continue;
244
245 DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
246
247 link_init_params.ctx = dc->ctx;
248 /* next BIOS object table connector */
249 link_init_params.connector_index = i;
250 link_init_params.link_index = dc->link_count;
251 link_init_params.dc = dc;
252 link = dc->link_srv->create_link(&link_init_params);
253
254 if (link) {
255 dc->links[dc->link_count] = link;
256 link->dc = dc;
257 ++dc->link_count;
258 }
259 }
260
261 DC_LOG_DC("BIOS object table - end");
262
263 /* Create a link for each usb4 dpia port */
264 dc->lowest_dpia_link_index = MAX_LINKS;
265 for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
266 struct link_init_data link_init_params = {0};
267 struct dc_link *link;
268
269 link_init_params.ctx = dc->ctx;
270 link_init_params.connector_index = i;
271 link_init_params.link_index = dc->link_count;
272 link_init_params.dc = dc;
273 link_init_params.is_dpia_link = true;
274
275 link = dc->link_srv->create_link(&link_init_params);
276 if (link) {
277 if (dc->lowest_dpia_link_index > dc->link_count)
278 dc->lowest_dpia_link_index = dc->link_count;
279
280 dc->links[dc->link_count] = link;
281 link->dc = dc;
282 ++dc->link_count;
283 }
284 }
285
286 for (i = 0; i < num_virtual_links; i++) {
287 struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
288 struct encoder_init_data enc_init = {0};
289
290 if (link == NULL) {
291 BREAK_TO_DEBUGGER();
292 goto failed_alloc;
293 }
294
295 link->link_index = dc->link_count;
296 dc->links[dc->link_count] = link;
297 dc->link_count++;
298
299 link->ctx = dc->ctx;
300 link->dc = dc;
301 link->connector_signal = SIGNAL_TYPE_VIRTUAL;
302 link->link_id.type = OBJECT_TYPE_CONNECTOR;
303 link->link_id.id = CONNECTOR_ID_VIRTUAL;
304 link->link_id.enum_id = ENUM_ID_1;
305 link->psr_settings.psr_version = DC_PSR_VERSION_UNSUPPORTED;
306 link->replay_settings.config.replay_version = DC_REPLAY_VERSION_UNSUPPORTED;
307 link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
308
309 if (!link->link_enc) {
310 BREAK_TO_DEBUGGER();
311 goto failed_alloc;
312 }
313
314 link->link_status.dpcd_caps = &link->dpcd_caps;
315
316 enc_init.ctx = dc->ctx;
317 enc_init.channel = CHANNEL_ID_UNKNOWN;
318 enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
319 enc_init.transmitter = TRANSMITTER_UNKNOWN;
320 enc_init.connector = link->link_id;
321 enc_init.encoder.type = OBJECT_TYPE_ENCODER;
322 enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
323 enc_init.encoder.enum_id = ENUM_ID_1;
324 virtual_link_encoder_construct(link->link_enc, &enc_init);
325 }
326
327 dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
328
329 return true;
330
331 failed_alloc:
332 return false;
333 }
334
335 /* Create additional DIG link encoder objects if fewer than the platform
336 * supports were created during link construction. This can happen if the
337 * number of physical connectors is less than the number of DIGs.
338 */
create_link_encoders(struct dc * dc)339 static bool create_link_encoders(struct dc *dc)
340 {
341 bool res = true;
342 unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
343 unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
344 int i;
345
346 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
347 * link encoders and physical display endpoints and does not require
348 * additional link encoder objects.
349 */
350 if (num_usb4_dpia == 0)
351 return res;
352
353 /* Create as many link encoder objects as the platform supports. DPIA
354 * endpoints can be programmably mapped to any DIG.
355 */
356 if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
357 for (i = 0; i < num_dig_link_enc; i++) {
358 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
359
360 if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
361 link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
362 (enum engine_id)(ENGINE_ID_DIGA + i));
363 if (link_enc) {
364 dc->res_pool->link_encoders[i] = link_enc;
365 dc->res_pool->dig_link_enc_count++;
366 } else {
367 res = false;
368 }
369 }
370 }
371 }
372
373 return res;
374 }
375
376 /* Destroy any additional DIG link encoder objects created by
377 * create_link_encoders().
378 * NB: Must only be called after destroy_links().
379 */
destroy_link_encoders(struct dc * dc)380 static void destroy_link_encoders(struct dc *dc)
381 {
382 unsigned int num_usb4_dpia;
383 unsigned int num_dig_link_enc;
384 int i;
385
386 if (!dc->res_pool)
387 return;
388
389 num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
390 num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
391
392 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
393 * link encoders and physical display endpoints and does not require
394 * additional link encoder objects.
395 */
396 if (num_usb4_dpia == 0)
397 return;
398
399 for (i = 0; i < num_dig_link_enc; i++) {
400 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
401
402 if (link_enc) {
403 link_enc->funcs->destroy(&link_enc);
404 dc->res_pool->link_encoders[i] = NULL;
405 dc->res_pool->dig_link_enc_count--;
406 }
407 }
408 }
409
dc_perf_trace_create(void)410 static struct dc_perf_trace *dc_perf_trace_create(void)
411 {
412 return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
413 }
414
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)415 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
416 {
417 kfree(*perf_trace);
418 *perf_trace = NULL;
419 }
420
set_long_vtotal(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)421 static bool set_long_vtotal(struct dc *dc, struct dc_stream_state *stream, struct dc_crtc_timing_adjust *adjust)
422 {
423 if (!dc || !stream || !adjust)
424 return false;
425
426 if (!dc->current_state)
427 return false;
428
429 int i;
430
431 for (i = 0; i < MAX_PIPES; i++) {
432 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
433
434 if (pipe->stream == stream && pipe->stream_res.tg) {
435 if (dc->hwss.set_long_vtotal)
436 dc->hwss.set_long_vtotal(&pipe, 1, adjust->v_total_min, adjust->v_total_max);
437
438 return true;
439 }
440 }
441
442 return false;
443 }
444
445 /**
446 * dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
447 * @dc: dc reference
448 * @stream: Initial dc stream state
449 * @adjust: Updated parameters for vertical_total_min and vertical_total_max
450 *
451 * Looks up the pipe context of dc_stream_state and updates the
452 * vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
453 * Rate, which is a power-saving feature that targets reducing panel
454 * refresh rate while the screen is static
455 *
456 * Return: %true if the pipe context is found and adjusted;
457 * %false if the pipe context is not found.
458 */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)459 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
460 struct dc_stream_state *stream,
461 struct dc_crtc_timing_adjust *adjust)
462 {
463 int i;
464
465 /*
466 * Don't adjust DRR while there's bandwidth optimizations pending to
467 * avoid conflicting with firmware updates.
468 */
469 if (dc->ctx->dce_version > DCE_VERSION_MAX) {
470 if (dc->optimized_required &&
471 (stream->adjust.v_total_max != adjust->v_total_max ||
472 stream->adjust.v_total_min != adjust->v_total_min)) {
473 stream->adjust.timing_adjust_pending = true;
474 return false;
475 }
476 }
477
478 dc_exit_ips_for_hw_access(dc);
479
480 stream->adjust.v_total_max = adjust->v_total_max;
481 stream->adjust.v_total_mid = adjust->v_total_mid;
482 stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
483 stream->adjust.v_total_min = adjust->v_total_min;
484 stream->adjust.allow_otg_v_count_halt = adjust->allow_otg_v_count_halt;
485
486 if (dc->caps.max_v_total != 0 &&
487 (adjust->v_total_max > dc->caps.max_v_total || adjust->v_total_min > dc->caps.max_v_total)) {
488 stream->adjust.timing_adjust_pending = false;
489 if (adjust->allow_otg_v_count_halt)
490 return set_long_vtotal(dc, stream, adjust);
491 else
492 return false;
493 }
494
495 for (i = 0; i < MAX_PIPES; i++) {
496 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
497
498 if (pipe->stream == stream && pipe->stream_res.tg) {
499 dc->hwss.set_drr(&pipe,
500 1,
501 *adjust);
502 stream->adjust.timing_adjust_pending = false;
503
504 if (dc->hwss.notify_cursor_offload_drr_update)
505 dc->hwss.notify_cursor_offload_drr_update(dc, dc->current_state, stream);
506
507 return true;
508 }
509 }
510
511 return false;
512 }
513
514 /**
515 * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
516 * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
517 *
518 * @dc: [in] dc reference
519 * @stream: [in] Initial dc stream state
520 * @refresh_rate: [in] new refresh_rate
521 *
522 * Return: %true if the pipe context is found and there is an associated
523 * timing_generator for the DC;
524 * %false if the pipe context is not found or there is no
525 * timing_generator for the DC.
526 */
dc_stream_get_last_used_drr_vtotal(struct dc * dc,struct dc_stream_state * stream,uint32_t * refresh_rate)527 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
528 struct dc_stream_state *stream,
529 uint32_t *refresh_rate)
530 {
531 bool status = false;
532
533 int i = 0;
534
535 dc_exit_ips_for_hw_access(dc);
536
537 for (i = 0; i < MAX_PIPES; i++) {
538 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
539
540 if (pipe->stream == stream && pipe->stream_res.tg) {
541 /* Only execute if a function pointer has been defined for
542 * the DC version in question
543 */
544 if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
545 pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
546
547 status = true;
548
549 break;
550 }
551 }
552 }
553
554 return status;
555 }
556
557 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
558 static inline void
dc_stream_forward_dmub_crc_window(struct dc_dmub_srv * dmub_srv,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)559 dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
560 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
561 {
562 union dmub_rb_cmd cmd = {0};
563
564 cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
565 cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
566
567 if (is_stop) {
568 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
569 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
570 } else {
571 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
572 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
573 cmd.secure_display.roi_info.x_start = rect->x;
574 cmd.secure_display.roi_info.y_start = rect->y;
575 cmd.secure_display.roi_info.x_end = rect->x + rect->width;
576 cmd.secure_display.roi_info.y_end = rect->y + rect->height;
577 }
578
579 dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
580 }
581
582 static inline void
dc_stream_forward_dmcu_crc_window(struct dmcu * dmcu,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)583 dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
584 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
585 {
586 if (is_stop)
587 dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
588 else
589 dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
590 }
591
592 bool
dc_stream_forward_crc_window(struct dc_stream_state * stream,struct rect * rect,uint8_t phy_id,bool is_stop)593 dc_stream_forward_crc_window(struct dc_stream_state *stream,
594 struct rect *rect, uint8_t phy_id, bool is_stop)
595 {
596 struct dmcu *dmcu;
597 struct dc_dmub_srv *dmub_srv;
598 struct otg_phy_mux mux_mapping;
599 struct pipe_ctx *pipe;
600 int i;
601 struct dc *dc = stream->ctx->dc;
602
603 for (i = 0; i < MAX_PIPES; i++) {
604 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
605 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
606 break;
607 }
608
609 /* Stream not found */
610 if (i == MAX_PIPES)
611 return false;
612
613 mux_mapping.phy_output_num = phy_id;
614 mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
615
616 dmcu = dc->res_pool->dmcu;
617 dmub_srv = dc->ctx->dmub_srv;
618
619 /* forward to dmub */
620 if (dmub_srv)
621 dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
622 /* forward to dmcu */
623 else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
624 dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
625 else
626 return false;
627
628 return true;
629 }
630
631 static void
dc_stream_forward_dmub_multiple_crc_window(struct dc_dmub_srv * dmub_srv,struct crc_window * window,struct otg_phy_mux * mux_mapping,bool stop)632 dc_stream_forward_dmub_multiple_crc_window(struct dc_dmub_srv *dmub_srv,
633 struct crc_window *window, struct otg_phy_mux *mux_mapping, bool stop)
634 {
635 int i;
636 union dmub_rb_cmd cmd = {0};
637
638 cmd.secure_display.mul_roi_ctl.phy_id = mux_mapping->phy_output_num;
639 cmd.secure_display.mul_roi_ctl.otg_id = mux_mapping->otg_output_num;
640
641 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
642
643 if (stop) {
644 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_MULTIPLE_CRC_STOP_UPDATE;
645 } else {
646 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_MULTIPLE_CRC_WIN_NOTIFY;
647 for (i = 0; i < MAX_CRC_WINDOW_NUM; i++) {
648 cmd.secure_display.mul_roi_ctl.roi_ctl[i].x_start = window[i].rect.x;
649 cmd.secure_display.mul_roi_ctl.roi_ctl[i].y_start = window[i].rect.y;
650 cmd.secure_display.mul_roi_ctl.roi_ctl[i].x_end = window[i].rect.x + window[i].rect.width;
651 cmd.secure_display.mul_roi_ctl.roi_ctl[i].y_end = window[i].rect.y + window[i].rect.height;
652 cmd.secure_display.mul_roi_ctl.roi_ctl[i].enable = window[i].enable;
653 }
654 }
655
656 dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
657 }
658
659 bool
dc_stream_forward_multiple_crc_window(struct dc_stream_state * stream,struct crc_window * window,uint8_t phy_id,bool stop)660 dc_stream_forward_multiple_crc_window(struct dc_stream_state *stream,
661 struct crc_window *window, uint8_t phy_id, bool stop)
662 {
663 struct dc_dmub_srv *dmub_srv;
664 struct otg_phy_mux mux_mapping;
665 struct pipe_ctx *pipe;
666 int i;
667 struct dc *dc = stream->ctx->dc;
668
669 for (i = 0; i < MAX_PIPES; i++) {
670 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
671 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
672 break;
673 }
674
675 /* Stream not found */
676 if (i == MAX_PIPES)
677 return false;
678
679 mux_mapping.phy_output_num = phy_id;
680 mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
681
682 dmub_srv = dc->ctx->dmub_srv;
683
684 /* forward to dmub only. no dmcu support*/
685 if (dmub_srv)
686 dc_stream_forward_dmub_multiple_crc_window(dmub_srv, window, &mux_mapping, stop);
687 else
688 return false;
689
690 return true;
691 }
692 #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
693
694 /**
695 * dc_stream_configure_crc() - Configure CRC capture for the given stream.
696 * @dc: DC Object
697 * @stream: The stream to configure CRC on.
698 * @crc_window: CRC window (x/y start/end) information
699 * @enable: Enable CRC if true, disable otherwise.
700 * @continuous: Capture CRC on every frame if true. Otherwise, only capture
701 * once.
702 * @idx: Capture CRC on which CRC engine instance
703 * @reset: Reset CRC engine before the configuration
704 *
705 * By default, the entire frame is used to calculate the CRC.
706 *
707 * Return: %false if the stream is not found or CRC capture is not supported;
708 * %true if the stream has been configured.
709 */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window,bool enable,bool continuous,uint8_t idx,bool reset)710 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
711 struct crc_params *crc_window, bool enable, bool continuous,
712 uint8_t idx, bool reset)
713 {
714 struct pipe_ctx *pipe;
715 struct crc_params param;
716 struct timing_generator *tg;
717
718 pipe = resource_get_otg_master_for_stream(
719 &dc->current_state->res_ctx, stream);
720
721 /* Stream not found */
722 if (pipe == NULL)
723 return false;
724
725 dc_exit_ips_for_hw_access(dc);
726
727 /* By default, capture the full frame */
728 param.windowa_x_start = 0;
729 param.windowa_y_start = 0;
730 param.windowa_x_end = pipe->stream->timing.h_addressable;
731 param.windowa_y_end = pipe->stream->timing.v_addressable;
732 param.windowb_x_start = 0;
733 param.windowb_y_start = 0;
734 param.windowb_x_end = pipe->stream->timing.h_addressable;
735 param.windowb_y_end = pipe->stream->timing.v_addressable;
736
737 if (crc_window) {
738 param.windowa_x_start = crc_window->windowa_x_start;
739 param.windowa_y_start = crc_window->windowa_y_start;
740 param.windowa_x_end = crc_window->windowa_x_end;
741 param.windowa_y_end = crc_window->windowa_y_end;
742 param.windowb_x_start = crc_window->windowb_x_start;
743 param.windowb_y_start = crc_window->windowb_y_start;
744 param.windowb_x_end = crc_window->windowb_x_end;
745 param.windowb_y_end = crc_window->windowb_y_end;
746 }
747
748 param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
749 param.odm_mode = pipe->next_odm_pipe ? 1:0;
750
751 /* Default to the union of both windows */
752 param.selection = UNION_WINDOW_A_B;
753 param.continuous_mode = continuous;
754 param.enable = enable;
755
756 param.crc_eng_inst = idx;
757 param.reset = reset;
758
759 tg = pipe->stream_res.tg;
760
761 /* Only call if supported */
762 if (tg->funcs->configure_crc)
763 return tg->funcs->configure_crc(tg, ¶m);
764 DC_LOG_WARNING("CRC capture not supported.");
765 return false;
766 }
767
768 /**
769 * dc_stream_get_crc() - Get CRC values for the given stream.
770 *
771 * @dc: DC object.
772 * @stream: The DC stream state of the stream to get CRCs from.
773 * @idx: index of crc engine to get CRC from
774 * @r_cr: CRC value for the red component.
775 * @g_y: CRC value for the green component.
776 * @b_cb: CRC value for the blue component.
777 *
778 * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
779 *
780 * Return:
781 * %false if stream is not found, or if CRCs are not enabled.
782 */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint8_t idx,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)783 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream, uint8_t idx,
784 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
785 {
786 int i;
787 struct pipe_ctx *pipe;
788 struct timing_generator *tg;
789
790 dc_exit_ips_for_hw_access(dc);
791
792 for (i = 0; i < MAX_PIPES; i++) {
793 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
794 if (pipe->stream == stream)
795 break;
796 }
797 /* Stream not found */
798 if (i == MAX_PIPES)
799 return false;
800
801 tg = pipe->stream_res.tg;
802
803 if (tg->funcs->get_crc)
804 return tg->funcs->get_crc(tg, idx, r_cr, g_y, b_cb);
805 DC_LOG_WARNING("CRC capture not supported.");
806 return false;
807 }
808
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)809 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
810 enum dc_dynamic_expansion option)
811 {
812 /* OPP FMT dyn expansion updates*/
813 int i;
814 struct pipe_ctx *pipe_ctx;
815
816 dc_exit_ips_for_hw_access(dc);
817
818 for (i = 0; i < MAX_PIPES; i++) {
819 if (dc->current_state->res_ctx.pipe_ctx[i].stream
820 == stream) {
821 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
822 pipe_ctx->stream_res.opp->dyn_expansion = option;
823 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
824 pipe_ctx->stream_res.opp,
825 COLOR_SPACE_YCBCR601,
826 stream->timing.display_color_depth,
827 stream->signal);
828 }
829 }
830 }
831
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)832 void dc_stream_set_dither_option(struct dc_stream_state *stream,
833 enum dc_dither_option option)
834 {
835 struct bit_depth_reduction_params params;
836 struct dc_link *link = stream->link;
837 struct pipe_ctx *pipes = NULL;
838 int i;
839
840 for (i = 0; i < MAX_PIPES; i++) {
841 if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
842 stream) {
843 pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
844 break;
845 }
846 }
847
848 if (!pipes)
849 return;
850 if (option > DITHER_OPTION_MAX)
851 return;
852
853 dc_exit_ips_for_hw_access(stream->ctx->dc);
854
855 stream->dither_option = option;
856
857 memset(¶ms, 0, sizeof(params));
858 resource_build_bit_depth_reduction_params(stream, ¶ms);
859 stream->bit_depth_params = params;
860
861 if (pipes->plane_res.xfm &&
862 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
863 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
864 pipes->plane_res.xfm,
865 pipes->plane_res.scl_data.lb_params.depth,
866 &stream->bit_depth_params);
867 }
868
869 pipes->stream_res.opp->funcs->
870 opp_program_bit_depth_reduction(pipes->stream_res.opp, ¶ms);
871 }
872
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)873 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
874 {
875 int i;
876 bool ret = false;
877 struct pipe_ctx *pipes;
878
879 dc_exit_ips_for_hw_access(dc);
880
881 for (i = 0; i < MAX_PIPES; i++) {
882 if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
883 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
884 dc->hwss.program_gamut_remap(pipes);
885 ret = true;
886 }
887 }
888
889 return ret;
890 }
891
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)892 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
893 {
894 int i;
895 bool ret = false;
896 struct pipe_ctx *pipes;
897
898 dc_exit_ips_for_hw_access(dc);
899
900 for (i = 0; i < MAX_PIPES; i++) {
901 if (dc->current_state->res_ctx.pipe_ctx[i].stream
902 == stream) {
903
904 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
905 dc->hwss.program_output_csc(dc,
906 pipes,
907 stream->output_color_space,
908 stream->csc_color_matrix.matrix,
909 pipes->stream_res.opp->inst);
910 ret = true;
911 }
912 }
913
914 return ret;
915 }
916
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)917 void dc_stream_set_static_screen_params(struct dc *dc,
918 struct dc_stream_state **streams,
919 int num_streams,
920 const struct dc_static_screen_params *params)
921 {
922 int i, j;
923 struct pipe_ctx *pipes_affected[MAX_PIPES];
924 int num_pipes_affected = 0;
925
926 dc_exit_ips_for_hw_access(dc);
927
928 for (i = 0; i < num_streams; i++) {
929 struct dc_stream_state *stream = streams[i];
930
931 for (j = 0; j < MAX_PIPES; j++) {
932 if (dc->current_state->res_ctx.pipe_ctx[j].stream
933 == stream) {
934 pipes_affected[num_pipes_affected++] =
935 &dc->current_state->res_ctx.pipe_ctx[j];
936 }
937 }
938 }
939
940 dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
941 }
942
dc_destruct(struct dc * dc)943 static void dc_destruct(struct dc *dc)
944 {
945 // reset link encoder assignment table on destruct
946 if (dc->res_pool && dc->res_pool->funcs->link_encs_assign &&
947 !dc->config.unify_link_enc_assignment)
948 link_enc_cfg_init(dc, dc->current_state);
949
950 if (dc->current_state) {
951 dc_state_release(dc->current_state);
952 dc->current_state = NULL;
953 }
954
955 destroy_links(dc);
956
957 destroy_link_encoders(dc);
958
959 if (dc->clk_mgr) {
960 dc_destroy_clk_mgr(dc->clk_mgr);
961 dc->clk_mgr = NULL;
962 }
963
964 dc_destroy_resource_pool(dc);
965 #ifdef CONFIG_DRM_AMD_DC_FP
966 dc_destroy_soc_and_ip_translator(&dc->soc_and_ip_translator);
967 #endif
968 if (dc->link_srv)
969 link_destroy_link_service(&dc->link_srv);
970
971 if (dc->ctx) {
972 if (dc->ctx->gpio_service)
973 dal_gpio_service_destroy(&dc->ctx->gpio_service);
974
975 if (dc->ctx->created_bios)
976 dal_bios_parser_destroy(&dc->ctx->dc_bios);
977 kfree(dc->ctx->logger);
978 dc_perf_trace_destroy(&dc->ctx->perf_trace);
979
980 kfree(dc->ctx);
981 dc->ctx = NULL;
982 }
983
984 kfree(dc->bw_vbios);
985 dc->bw_vbios = NULL;
986
987 kfree(dc->bw_dceip);
988 dc->bw_dceip = NULL;
989
990 kfree(dc->dcn_soc);
991 dc->dcn_soc = NULL;
992
993 kfree(dc->dcn_ip);
994 dc->dcn_ip = NULL;
995
996 kfree(dc->vm_helper);
997 dc->vm_helper = NULL;
998
999 }
1000
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)1001 static bool dc_construct_ctx(struct dc *dc,
1002 const struct dc_init_data *init_params)
1003 {
1004 struct dc_context *dc_ctx;
1005
1006 dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
1007 if (!dc_ctx)
1008 return false;
1009
1010 dc_stream_init_rmcm_3dlut(dc);
1011
1012 dc_ctx->cgs_device = init_params->cgs_device;
1013 dc_ctx->driver_context = init_params->driver;
1014 dc_ctx->dc = dc;
1015 dc_ctx->asic_id = init_params->asic_id;
1016 dc_ctx->dc_sink_id_count = 0;
1017 dc_ctx->dc_stream_id_count = 0;
1018 dc_ctx->dce_environment = init_params->dce_environment;
1019 dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
1020 dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
1021 dc_ctx->clk_reg_offsets = init_params->clk_reg_offsets;
1022
1023 /* Create logger */
1024 dc_ctx->logger = kmalloc(sizeof(*dc_ctx->logger), GFP_KERNEL);
1025
1026 if (!dc_ctx->logger) {
1027 kfree(dc_ctx);
1028 return false;
1029 }
1030
1031 dc_ctx->logger->dev = adev_to_drm(init_params->driver);
1032 dc->dml.logger = dc_ctx->logger;
1033
1034 dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id);
1035
1036 dc_ctx->perf_trace = dc_perf_trace_create();
1037 if (!dc_ctx->perf_trace) {
1038 kfree(dc_ctx);
1039 ASSERT_CRITICAL(false);
1040 return false;
1041 }
1042
1043 dc->ctx = dc_ctx;
1044
1045 dc->link_srv = link_create_link_service();
1046 if (!dc->link_srv)
1047 return false;
1048
1049 return true;
1050 }
1051
dc_construct(struct dc * dc,const struct dc_init_data * init_params)1052 static bool dc_construct(struct dc *dc,
1053 const struct dc_init_data *init_params)
1054 {
1055 struct dc_context *dc_ctx;
1056 struct bw_calcs_dceip *dc_dceip;
1057 struct bw_calcs_vbios *dc_vbios;
1058 struct dcn_soc_bounding_box *dcn_soc;
1059 struct dcn_ip_params *dcn_ip;
1060
1061 dc->config = init_params->flags;
1062
1063 // Allocate memory for the vm_helper
1064 dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
1065 if (!dc->vm_helper) {
1066 dm_error("%s: failed to create dc->vm_helper\n", __func__);
1067 goto fail;
1068 }
1069
1070 memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
1071
1072 dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
1073 if (!dc_dceip) {
1074 dm_error("%s: failed to create dceip\n", __func__);
1075 goto fail;
1076 }
1077
1078 dc->bw_dceip = dc_dceip;
1079
1080 dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
1081 if (!dc_vbios) {
1082 dm_error("%s: failed to create vbios\n", __func__);
1083 goto fail;
1084 }
1085
1086 dc->bw_vbios = dc_vbios;
1087 dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
1088 if (!dcn_soc) {
1089 dm_error("%s: failed to create dcn_soc\n", __func__);
1090 goto fail;
1091 }
1092
1093 dc->dcn_soc = dcn_soc;
1094
1095 dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
1096 if (!dcn_ip) {
1097 dm_error("%s: failed to create dcn_ip\n", __func__);
1098 goto fail;
1099 }
1100
1101 dc->dcn_ip = dcn_ip;
1102
1103 if (init_params->bb_from_dmub)
1104 dc->dml2_options.bb_from_dmub = init_params->bb_from_dmub;
1105 else
1106 dc->dml2_options.bb_from_dmub = NULL;
1107
1108 if (!dc_construct_ctx(dc, init_params)) {
1109 dm_error("%s: failed to create ctx\n", __func__);
1110 goto fail;
1111 }
1112
1113 dc_ctx = dc->ctx;
1114
1115 /* Resource should construct all asic specific resources.
1116 * This should be the only place where we need to parse the asic id
1117 */
1118 if (init_params->vbios_override)
1119 dc_ctx->dc_bios = init_params->vbios_override;
1120 else {
1121 /* Create BIOS parser */
1122 struct bp_init_data bp_init_data;
1123
1124 bp_init_data.ctx = dc_ctx;
1125 bp_init_data.bios = init_params->asic_id.atombios_base_address;
1126
1127 dc_ctx->dc_bios = dal_bios_parser_create(
1128 &bp_init_data, dc_ctx->dce_version);
1129
1130 if (!dc_ctx->dc_bios) {
1131 ASSERT_CRITICAL(false);
1132 goto fail;
1133 }
1134
1135 dc_ctx->created_bios = true;
1136 }
1137
1138 dc->vendor_signature = init_params->vendor_signature;
1139
1140 /* Create GPIO service */
1141 dc_ctx->gpio_service = dal_gpio_service_create(
1142 dc_ctx->dce_version,
1143 dc_ctx->dce_environment,
1144 dc_ctx);
1145
1146 if (!dc_ctx->gpio_service) {
1147 ASSERT_CRITICAL(false);
1148 goto fail;
1149 }
1150
1151 dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
1152 if (!dc->res_pool)
1153 goto fail;
1154
1155 /* set i2c speed if not done by the respective dcnxxx__resource.c */
1156 if (dc->caps.i2c_speed_in_khz_hdcp == 0)
1157 dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
1158 if (dc->check_config.max_optimizable_video_width == 0)
1159 dc->check_config.max_optimizable_video_width = 5120;
1160 dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
1161 if (!dc->clk_mgr)
1162 goto fail;
1163 #ifdef CONFIG_DRM_AMD_DC_FP
1164 dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
1165
1166 if (dc->res_pool->funcs->update_bw_bounding_box) {
1167 DC_FP_START();
1168 dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1169 DC_FP_END();
1170 }
1171 dc->soc_and_ip_translator = dc_create_soc_and_ip_translator(dc_ctx->dce_version);
1172 if (!dc->soc_and_ip_translator)
1173 goto fail;
1174 #endif
1175
1176 if (!create_links(dc, init_params->num_virtual_links))
1177 goto fail;
1178
1179 /* Create additional DIG link encoder objects if fewer than the platform
1180 * supports were created during link construction.
1181 */
1182 if (!create_link_encoders(dc))
1183 goto fail;
1184
1185 /* Creation of current_state must occur after dc->dml
1186 * is initialized in dc_create_resource_pool because
1187 * on creation it copies the contents of dc->dml
1188 */
1189 dc->current_state = dc_state_create(dc, NULL);
1190
1191 if (!dc->current_state) {
1192 dm_error("%s: failed to create validate ctx\n", __func__);
1193 goto fail;
1194 }
1195
1196 return true;
1197
1198 fail:
1199 return false;
1200 }
1201
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1202 static void disable_all_writeback_pipes_for_stream(
1203 const struct dc *dc,
1204 struct dc_stream_state *stream,
1205 struct dc_state *context)
1206 {
1207 int i;
1208
1209 for (i = 0; i < stream->num_wb_info; i++)
1210 stream->writeback_info[i].wb_enabled = false;
1211 }
1212
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)1213 static void apply_ctx_interdependent_lock(struct dc *dc,
1214 struct dc_state *context,
1215 struct dc_stream_state *stream,
1216 bool lock)
1217 {
1218 int i;
1219
1220 /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1221 if (dc->hwss.interdependent_update_lock)
1222 dc->hwss.interdependent_update_lock(dc, context, lock);
1223 else {
1224 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1225 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1226 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1227
1228 // Copied conditions that were previously in dce110_apply_ctx_for_surface
1229 if (stream == pipe_ctx->stream) {
1230 if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) &&
1231 (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1232 dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1233 }
1234 }
1235 }
1236 }
1237
dc_update_visual_confirm_color(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)1238 static void dc_update_visual_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1239 {
1240 if (dc->debug.visual_confirm & VISUAL_CONFIRM_EXPLICIT) {
1241 memcpy(&pipe_ctx->visual_confirm_color, &pipe_ctx->plane_state->visual_confirm_color,
1242 sizeof(pipe_ctx->visual_confirm_color));
1243 return;
1244 }
1245
1246 if (dc->ctx->dce_version >= DCN_VERSION_1_0) {
1247 memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color));
1248
1249 if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
1250 get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1251 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1252 get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1253 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
1254 get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1255 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_HW_CURSOR)
1256 get_cursor_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1257 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_DCC)
1258 get_dcc_visual_confirm_color(dc, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1259 else {
1260 if (dc->ctx->dce_version < DCN_VERSION_2_0)
1261 color_space_to_black_color(
1262 dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color));
1263 }
1264 if (dc->ctx->dce_version >= DCN_VERSION_2_0) {
1265 if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
1266 get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1267 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
1268 get_subvp_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1269 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH)
1270 get_mclk_switch_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1271 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_FAMS2)
1272 get_fams2_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1273 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_VABC)
1274 get_vabc_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1275 }
1276 }
1277 }
1278
dc_get_visual_confirm_for_stream(struct dc * dc,struct dc_stream_state * stream_state,struct tg_color * color)1279 void dc_get_visual_confirm_for_stream(
1280 struct dc *dc,
1281 struct dc_stream_state *stream_state,
1282 struct tg_color *color)
1283 {
1284 struct dc_stream_status *stream_status = dc_stream_get_status(stream_state);
1285 struct pipe_ctx *pipe_ctx;
1286 int i;
1287 struct dc_plane_state *plane_state = NULL;
1288
1289 if (!stream_status)
1290 return;
1291
1292 switch (dc->debug.visual_confirm) {
1293 case VISUAL_CONFIRM_DISABLE:
1294 return;
1295 case VISUAL_CONFIRM_PSR:
1296 case VISUAL_CONFIRM_FAMS:
1297 pipe_ctx = dc_stream_get_pipe_ctx(stream_state);
1298 if (!pipe_ctx)
1299 return;
1300 dc_dmub_srv_get_visual_confirm_color_cmd(dc, pipe_ctx);
1301 memcpy(color, &dc->ctx->dmub_srv->dmub->visual_confirm_color, sizeof(struct tg_color));
1302 return;
1303
1304 default:
1305 /* find plane with highest layer_index */
1306 for (i = 0; i < stream_status->plane_count; i++) {
1307 if (stream_status->plane_states[i]->visible)
1308 plane_state = stream_status->plane_states[i];
1309 }
1310 if (!plane_state)
1311 return;
1312 /* find pipe that contains plane with highest layer index */
1313 for (i = 0; i < MAX_PIPES; i++) {
1314 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1315
1316 if (pipe->plane_state == plane_state) {
1317 memcpy(color, &pipe->visual_confirm_color, sizeof(struct tg_color));
1318 return;
1319 }
1320 }
1321 }
1322 }
1323
disable_dangling_plane(struct dc * dc,struct dc_state * context)1324 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1325 {
1326 int i, j;
1327 struct dc_state *dangling_context = dc_state_create_current_copy(dc);
1328 struct dc_state *current_ctx;
1329 struct pipe_ctx *pipe;
1330 struct timing_generator *tg;
1331
1332 if (dangling_context == NULL)
1333 return;
1334
1335 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1336 struct dc_stream_state *old_stream =
1337 dc->current_state->res_ctx.pipe_ctx[i].stream;
1338 bool should_disable = true;
1339 bool pipe_split_change = false;
1340
1341 if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1342 (dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1343 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1344 dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1345 else
1346 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1347 dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1348
1349 for (j = 0; j < context->stream_count; j++) {
1350 if (old_stream == context->streams[j]) {
1351 should_disable = false;
1352 break;
1353 }
1354 }
1355 if (!should_disable && pipe_split_change &&
1356 dc->current_state->stream_count != context->stream_count)
1357 should_disable = true;
1358
1359 if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1360 !dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1361 struct pipe_ctx *old_pipe, *new_pipe;
1362
1363 old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1364 new_pipe = &context->res_ctx.pipe_ctx[i];
1365
1366 if (old_pipe->plane_state && !new_pipe->plane_state)
1367 should_disable = true;
1368 }
1369
1370 if (should_disable && old_stream) {
1371 bool is_phantom = dc_state_get_stream_subvp_type(dc->current_state, old_stream) == SUBVP_PHANTOM;
1372 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1373 tg = pipe->stream_res.tg;
1374 /* When disabling plane for a phantom pipe, we must turn on the
1375 * phantom OTG so the disable programming gets the double buffer
1376 * update. Otherwise the pipe will be left in a partially disabled
1377 * state that can result in underflow or hang when enabling it
1378 * again for different use.
1379 */
1380 if (is_phantom) {
1381 if (tg->funcs->enable_crtc) {
1382 if (dc->hwseq->funcs.blank_pixel_data)
1383 dc->hwseq->funcs.blank_pixel_data(dc, pipe, true);
1384 tg->funcs->enable_crtc(tg);
1385 }
1386 }
1387
1388 if (is_phantom)
1389 dc_state_rem_all_phantom_planes_for_stream(dc, old_stream, dangling_context, true);
1390 else
1391 dc_state_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1392 disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1393
1394 if (pipe->stream && pipe->plane_state) {
1395 if (!dc->debug.using_dml2)
1396 set_p_state_switch_method(dc, context, pipe);
1397 dc_update_visual_confirm_color(dc, context, pipe);
1398 }
1399
1400 if (dc->hwss.apply_ctx_for_surface) {
1401 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1402 dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1403 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1404 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1405 }
1406
1407 if (dc->res_pool->funcs->prepare_mcache_programming)
1408 dc->res_pool->funcs->prepare_mcache_programming(dc, dangling_context);
1409 if (dc->hwss.program_front_end_for_ctx) {
1410 dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1411 dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1412 dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1413 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1414 }
1415 /* We need to put the phantom OTG back into it's default (disabled) state or we
1416 * can get corruption when transition from one SubVP config to a different one.
1417 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1418 * will still get it's double buffer update.
1419 */
1420 if (is_phantom) {
1421 if (tg->funcs->disable_phantom_crtc)
1422 tg->funcs->disable_phantom_crtc(tg);
1423 }
1424 }
1425 }
1426
1427 current_ctx = dc->current_state;
1428 dc->current_state = dangling_context;
1429 dc_state_release(current_ctx);
1430 }
1431
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)1432 static void disable_vbios_mode_if_required(
1433 struct dc *dc,
1434 struct dc_state *context)
1435 {
1436 unsigned int i, j;
1437
1438 /* check if timing_changed, disable stream*/
1439 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1440 struct dc_stream_state *stream = NULL;
1441 struct dc_link *link = NULL;
1442 struct pipe_ctx *pipe = NULL;
1443
1444 pipe = &context->res_ctx.pipe_ctx[i];
1445 stream = pipe->stream;
1446 if (stream == NULL)
1447 continue;
1448
1449 if (stream->apply_seamless_boot_optimization)
1450 continue;
1451
1452 // only looking for first odm pipe
1453 if (pipe->prev_odm_pipe)
1454 continue;
1455
1456 if (stream->link->local_sink &&
1457 stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1458 link = stream->link;
1459 }
1460
1461 if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1462 unsigned int enc_inst, tg_inst = 0;
1463 unsigned int pix_clk_100hz = 0;
1464
1465 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1466 if (enc_inst != ENGINE_ID_UNKNOWN) {
1467 for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1468 if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1469 tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1470 dc->res_pool->stream_enc[j]);
1471 break;
1472 }
1473 }
1474
1475 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1476 dc->res_pool->dp_clock_source,
1477 tg_inst, &pix_clk_100hz);
1478
1479 if (link->link_status.link_active) {
1480 uint32_t requested_pix_clk_100hz =
1481 pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1482
1483 if (pix_clk_100hz != requested_pix_clk_100hz) {
1484 dc->link_srv->set_dpms_off(pipe);
1485 pipe->stream->dpms_off = false;
1486 }
1487 }
1488 }
1489 }
1490 }
1491 }
1492
1493 /* Public functions */
1494
dc_create(const struct dc_init_data * init_params)1495 struct dc *dc_create(const struct dc_init_data *init_params)
1496 {
1497 struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1498 unsigned int full_pipe_count;
1499
1500 if (!dc)
1501 return NULL;
1502
1503 if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1504 dc->caps.linear_pitch_alignment = 64;
1505 if (!dc_construct_ctx(dc, init_params))
1506 goto destruct_dc;
1507 } else {
1508 if (!dc_construct(dc, init_params))
1509 goto destruct_dc;
1510
1511 full_pipe_count = dc->res_pool->pipe_count;
1512 if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1513 full_pipe_count--;
1514 dc->caps.max_streams = min(
1515 full_pipe_count,
1516 dc->res_pool->stream_enc_count);
1517
1518 dc->caps.max_links = dc->link_count;
1519 dc->caps.max_audios = dc->res_pool->audio_count;
1520 dc->caps.linear_pitch_alignment = 64;
1521
1522 dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1523
1524 dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1525
1526 if (dc->res_pool->dmcu != NULL)
1527 dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1528 }
1529
1530 dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1531 dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1532 dc->clk_reg_offsets = init_params->clk_reg_offsets;
1533
1534 /* Populate versioning information */
1535 dc->versions.dc_ver = DC_VER;
1536
1537 dc->build_id = DC_BUILD_ID;
1538
1539 DC_LOG_DC("Display Core initialized\n");
1540
1541 return dc;
1542
1543 destruct_dc:
1544 dc_destruct(dc);
1545 kfree(dc);
1546 return NULL;
1547 }
1548
detect_edp_presence(struct dc * dc)1549 static void detect_edp_presence(struct dc *dc)
1550 {
1551 struct dc_link *edp_links[MAX_NUM_EDP];
1552 struct dc_link *edp_link = NULL;
1553 enum dc_connection_type type;
1554 int i;
1555 int edp_num;
1556
1557 dc_get_edp_links(dc, edp_links, &edp_num);
1558 if (!edp_num)
1559 return;
1560
1561 for (i = 0; i < edp_num; i++) {
1562 edp_link = edp_links[i];
1563 if (dc->config.edp_not_connected) {
1564 edp_link->edp_sink_present = false;
1565 } else {
1566 dc_link_detect_connection_type(edp_link, &type);
1567 edp_link->edp_sink_present = (type != dc_connection_none);
1568 }
1569 }
1570 }
1571
dc_hardware_init(struct dc * dc)1572 void dc_hardware_init(struct dc *dc)
1573 {
1574
1575 detect_edp_presence(dc);
1576 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1577 dc->hwss.init_hw(dc);
1578 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, DC_ACPI_CM_POWER_STATE_D0);
1579 }
1580
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1581 void dc_init_callbacks(struct dc *dc,
1582 const struct dc_callback_init *init_params)
1583 {
1584 dc->ctx->cp_psp = init_params->cp_psp;
1585 }
1586
dc_deinit_callbacks(struct dc * dc)1587 void dc_deinit_callbacks(struct dc *dc)
1588 {
1589 memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1590 }
1591
dc_destroy(struct dc ** dc)1592 void dc_destroy(struct dc **dc)
1593 {
1594 dc_destruct(*dc);
1595 kfree(*dc);
1596 *dc = NULL;
1597 }
1598
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1599 static void enable_timing_multisync(
1600 struct dc *dc,
1601 struct dc_state *ctx)
1602 {
1603 int i, multisync_count = 0;
1604 int pipe_count = dc->res_pool->pipe_count;
1605 struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1606
1607 for (i = 0; i < pipe_count; i++) {
1608 if (!ctx->res_ctx.pipe_ctx[i].stream ||
1609 !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1610 continue;
1611 if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1612 continue;
1613 multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1614 multisync_count++;
1615 }
1616
1617 if (multisync_count > 0) {
1618 dc->hwss.enable_per_frame_crtc_position_reset(
1619 dc, multisync_count, multisync_pipes);
1620 }
1621 }
1622
program_timing_sync(struct dc * dc,struct dc_state * ctx)1623 static void program_timing_sync(
1624 struct dc *dc,
1625 struct dc_state *ctx)
1626 {
1627 int i, j, k;
1628 int group_index = 0;
1629 int num_group = 0;
1630 int pipe_count = dc->res_pool->pipe_count;
1631 struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1632
1633 for (i = 0; i < pipe_count; i++) {
1634 if (!ctx->res_ctx.pipe_ctx[i].stream
1635 || ctx->res_ctx.pipe_ctx[i].top_pipe
1636 || ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1637 continue;
1638
1639 unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1640 }
1641
1642 for (i = 0; i < pipe_count; i++) {
1643 int group_size = 1;
1644 enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1645 struct pipe_ctx *pipe_set[MAX_PIPES];
1646
1647 if (!unsynced_pipes[i])
1648 continue;
1649
1650 pipe_set[0] = unsynced_pipes[i];
1651 unsynced_pipes[i] = NULL;
1652
1653 /* Add tg to the set, search rest of the tg's for ones with
1654 * same timing, add all tgs with same timing to the group
1655 */
1656 for (j = i + 1; j < pipe_count; j++) {
1657 if (!unsynced_pipes[j])
1658 continue;
1659 if (sync_type != TIMING_SYNCHRONIZABLE &&
1660 dc->hwss.enable_vblanks_synchronization &&
1661 unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1662 resource_are_vblanks_synchronizable(
1663 unsynced_pipes[j]->stream,
1664 pipe_set[0]->stream)) {
1665 sync_type = VBLANK_SYNCHRONIZABLE;
1666 pipe_set[group_size] = unsynced_pipes[j];
1667 unsynced_pipes[j] = NULL;
1668 group_size++;
1669 } else
1670 if (sync_type != VBLANK_SYNCHRONIZABLE &&
1671 resource_are_streams_timing_synchronizable(
1672 unsynced_pipes[j]->stream,
1673 pipe_set[0]->stream)) {
1674 sync_type = TIMING_SYNCHRONIZABLE;
1675 pipe_set[group_size] = unsynced_pipes[j];
1676 unsynced_pipes[j] = NULL;
1677 group_size++;
1678 }
1679 }
1680
1681 /* set first unblanked pipe as master */
1682 for (j = 0; j < group_size; j++) {
1683 bool is_blanked;
1684
1685 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1686 is_blanked =
1687 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1688 else
1689 is_blanked =
1690 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1691 if (!is_blanked) {
1692 if (j == 0)
1693 break;
1694
1695 swap(pipe_set[0], pipe_set[j]);
1696 break;
1697 }
1698 }
1699
1700 for (k = 0; k < group_size; k++) {
1701 struct dc_stream_status *status = dc_state_get_stream_status(ctx, pipe_set[k]->stream);
1702
1703 if (!status)
1704 continue;
1705
1706 status->timing_sync_info.group_id = num_group;
1707 status->timing_sync_info.group_size = group_size;
1708 if (k == 0)
1709 status->timing_sync_info.master = true;
1710 else
1711 status->timing_sync_info.master = false;
1712
1713 }
1714
1715 /* remove any other unblanked pipes as they have already been synced */
1716 if (dc->config.use_pipe_ctx_sync_logic) {
1717 /* check pipe's syncd to decide which pipe to be removed */
1718 for (j = 1; j < group_size; j++) {
1719 if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1720 group_size--;
1721 pipe_set[j] = pipe_set[group_size];
1722 j--;
1723 } else
1724 /* link slave pipe's syncd with master pipe */
1725 pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1726 }
1727 } else {
1728 /* remove any other pipes by checking valid plane */
1729 for (j = j + 1; j < group_size; j++) {
1730 bool is_blanked;
1731
1732 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1733 is_blanked =
1734 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1735 else
1736 is_blanked =
1737 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1738 if (!is_blanked) {
1739 group_size--;
1740 pipe_set[j] = pipe_set[group_size];
1741 j--;
1742 }
1743 }
1744 }
1745
1746 if (group_size > 1) {
1747 if (sync_type == TIMING_SYNCHRONIZABLE) {
1748 dc->hwss.enable_timing_synchronization(
1749 dc, ctx, group_index, group_size, pipe_set);
1750 } else
1751 if (sync_type == VBLANK_SYNCHRONIZABLE) {
1752 dc->hwss.enable_vblanks_synchronization(
1753 dc, group_index, group_size, pipe_set);
1754 }
1755 group_index++;
1756 }
1757 num_group++;
1758 }
1759 }
1760
streams_changed(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)1761 static bool streams_changed(struct dc *dc,
1762 struct dc_stream_state *streams[],
1763 uint8_t stream_count)
1764 {
1765 uint8_t i;
1766
1767 if (stream_count != dc->current_state->stream_count)
1768 return true;
1769
1770 for (i = 0; i < dc->current_state->stream_count; i++) {
1771 if (dc->current_state->streams[i] != streams[i])
1772 return true;
1773 if (!streams[i]->link->link_state_valid)
1774 return true;
1775 }
1776
1777 return false;
1778 }
1779
dc_validate_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1780 bool dc_validate_boot_timing(const struct dc *dc,
1781 const struct dc_sink *sink,
1782 struct dc_crtc_timing *crtc_timing)
1783 {
1784 struct timing_generator *tg;
1785 struct stream_encoder *se = NULL;
1786
1787 struct dc_crtc_timing hw_crtc_timing = {0};
1788
1789 struct dc_link *link = sink->link;
1790 unsigned int i, enc_inst, tg_inst = 0;
1791
1792 /* Support seamless boot on EDP displays only */
1793 if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1794 return false;
1795 }
1796
1797 if (dc->debug.force_odm_combine) {
1798 DC_LOG_DEBUG("boot timing validation failed due to force_odm_combine\n");
1799 return false;
1800 }
1801
1802 /* Check for enabled DIG to identify enabled display */
1803 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1804 DC_LOG_DEBUG("boot timing validation failed due to disabled DIG\n");
1805 return false;
1806 }
1807
1808 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1809
1810 if (enc_inst == ENGINE_ID_UNKNOWN) {
1811 DC_LOG_DEBUG("boot timing validation failed due to unknown DIG engine ID\n");
1812 return false;
1813 }
1814
1815 for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1816 if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1817
1818 se = dc->res_pool->stream_enc[i];
1819
1820 tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1821 dc->res_pool->stream_enc[i]);
1822 break;
1823 }
1824 }
1825
1826 // tg_inst not found
1827 if (i == dc->res_pool->stream_enc_count) {
1828 DC_LOG_DEBUG("boot timing validation failed due to timing generator instance not found\n");
1829 return false;
1830 }
1831
1832 if (tg_inst >= dc->res_pool->timing_generator_count) {
1833 DC_LOG_DEBUG("boot timing validation failed due to invalid timing generator count\n");
1834 return false;
1835 }
1836
1837 if (tg_inst != link->link_enc->preferred_engine) {
1838 DC_LOG_DEBUG("boot timing validation failed due to non-preferred timing generator\n");
1839 return false;
1840 }
1841
1842 tg = dc->res_pool->timing_generators[tg_inst];
1843
1844 if (!tg->funcs->get_hw_timing) {
1845 DC_LOG_DEBUG("boot timing validation failed due to missing get_hw_timing callback\n");
1846 return false;
1847 }
1848
1849 if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing)) {
1850 DC_LOG_DEBUG("boot timing validation failed due to failed get_hw_timing return\n");
1851 return false;
1852 }
1853
1854 if (crtc_timing->h_total != hw_crtc_timing.h_total) {
1855 DC_LOG_DEBUG("boot timing validation failed due to h_total mismatch\n");
1856 return false;
1857 }
1858
1859 if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left) {
1860 DC_LOG_DEBUG("boot timing validation failed due to h_border_left mismatch\n");
1861 return false;
1862 }
1863
1864 if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable) {
1865 DC_LOG_DEBUG("boot timing validation failed due to h_addressable mismatch\n");
1866 return false;
1867 }
1868
1869 if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right) {
1870 DC_LOG_DEBUG("boot timing validation failed due to h_border_right mismatch\n");
1871 return false;
1872 }
1873
1874 if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch) {
1875 DC_LOG_DEBUG("boot timing validation failed due to h_front_porch mismatch\n");
1876 return false;
1877 }
1878
1879 if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width) {
1880 DC_LOG_DEBUG("boot timing validation failed due to h_sync_width mismatch\n");
1881 return false;
1882 }
1883
1884 if (crtc_timing->v_total != hw_crtc_timing.v_total) {
1885 DC_LOG_DEBUG("boot timing validation failed due to v_total mismatch\n");
1886 return false;
1887 }
1888
1889 if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top) {
1890 DC_LOG_DEBUG("boot timing validation failed due to v_border_top mismatch\n");
1891 return false;
1892 }
1893
1894 if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable) {
1895 DC_LOG_DEBUG("boot timing validation failed due to v_addressable mismatch\n");
1896 return false;
1897 }
1898
1899 if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom) {
1900 DC_LOG_DEBUG("boot timing validation failed due to v_border_bottom mismatch\n");
1901 return false;
1902 }
1903
1904 if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch) {
1905 DC_LOG_DEBUG("boot timing validation failed due to v_front_porch mismatch\n");
1906 return false;
1907 }
1908
1909 if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width) {
1910 DC_LOG_DEBUG("boot timing validation failed due to v_sync_width mismatch\n");
1911 return false;
1912 }
1913
1914 /* block DSC for now, as VBIOS does not currently support DSC timings */
1915 if (crtc_timing->flags.DSC) {
1916 DC_LOG_DEBUG("boot timing validation failed due to DSC\n");
1917 return false;
1918 }
1919
1920 if (dc_is_dp_signal(link->connector_signal)) {
1921 unsigned int pix_clk_100hz = 0;
1922 uint32_t numOdmPipes = 1;
1923 uint32_t id_src[4] = {0};
1924
1925 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1926 dc->res_pool->dp_clock_source,
1927 tg_inst, &pix_clk_100hz);
1928
1929 if (tg->funcs->get_optc_source)
1930 tg->funcs->get_optc_source(tg,
1931 &numOdmPipes, &id_src[0], &id_src[1]);
1932
1933 if (numOdmPipes == 2) {
1934 pix_clk_100hz *= 2;
1935 } else if (numOdmPipes == 4) {
1936 pix_clk_100hz *= 4;
1937 } else if (se && se->funcs->get_pixels_per_cycle) {
1938 uint32_t pixels_per_cycle = se->funcs->get_pixels_per_cycle(se);
1939
1940 if (pixels_per_cycle != 1 && !dc->debug.enable_dp_dig_pixel_rate_div_policy) {
1941 DC_LOG_DEBUG("boot timing validation failed due to pixels_per_cycle\n");
1942 return false;
1943 }
1944
1945 pix_clk_100hz *= pixels_per_cycle;
1946 }
1947
1948 // Note: In rare cases, HW pixclk may differ from crtc's pixclk
1949 // slightly due to rounding issues in 10 kHz units.
1950 if (crtc_timing->pix_clk_100hz != pix_clk_100hz) {
1951 DC_LOG_DEBUG("boot timing validation failed due to pix_clk_100hz mismatch\n");
1952 return false;
1953 }
1954
1955 if (!se || !se->funcs->dp_get_pixel_format) {
1956 DC_LOG_DEBUG("boot timing validation failed due to missing dp_get_pixel_format\n");
1957 return false;
1958 }
1959
1960 if (!se->funcs->dp_get_pixel_format(
1961 se,
1962 &hw_crtc_timing.pixel_encoding,
1963 &hw_crtc_timing.display_color_depth)) {
1964 DC_LOG_DEBUG("boot timing validation failed due to dp_get_pixel_format failure\n");
1965 return false;
1966 }
1967
1968 if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth) {
1969 DC_LOG_DEBUG("boot timing validation failed due to display_color_depth mismatch\n");
1970 return false;
1971 }
1972
1973 if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding) {
1974 DC_LOG_DEBUG("boot timing validation failed due to pixel_encoding mismatch\n");
1975 return false;
1976 }
1977 }
1978
1979
1980 if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1981 DC_LOG_DEBUG("boot timing validation failed due to VSC SDP colorimetry\n");
1982 return false;
1983 }
1984
1985 if (link->dpcd_caps.channel_coding_cap.bits.DP_128b_132b_SUPPORTED) {
1986 DC_LOG_DEBUG("boot timing validation failed due to DP 128b/132b\n");
1987 return false;
1988 }
1989
1990 if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1991 DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1992 return false;
1993 }
1994
1995 return true;
1996 }
1997
should_update_pipe_for_stream(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)1998 static inline bool should_update_pipe_for_stream(
1999 struct dc_state *context,
2000 struct pipe_ctx *pipe_ctx,
2001 struct dc_stream_state *stream)
2002 {
2003 return (pipe_ctx->stream && pipe_ctx->stream == stream);
2004 }
2005
should_update_pipe_for_plane(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_plane_state * plane_state)2006 static inline bool should_update_pipe_for_plane(
2007 struct dc_state *context,
2008 struct pipe_ctx *pipe_ctx,
2009 struct dc_plane_state *plane_state)
2010 {
2011 return (pipe_ctx->plane_state == plane_state);
2012 }
2013
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)2014 void dc_enable_stereo(
2015 struct dc *dc,
2016 struct dc_state *context,
2017 struct dc_stream_state *streams[],
2018 uint8_t stream_count)
2019 {
2020 int i, j;
2021 struct pipe_ctx *pipe;
2022
2023 dc_exit_ips_for_hw_access(dc);
2024
2025 for (i = 0; i < MAX_PIPES; i++) {
2026 if (context != NULL) {
2027 pipe = &context->res_ctx.pipe_ctx[i];
2028 } else {
2029 context = dc->current_state;
2030 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2031 }
2032
2033 for (j = 0; pipe && j < stream_count; j++) {
2034 if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
2035 dc->hwss.setup_stereo)
2036 dc->hwss.setup_stereo(pipe, dc);
2037 }
2038 }
2039 }
2040
dc_trigger_sync(struct dc * dc,struct dc_state * context)2041 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
2042 {
2043 if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
2044 dc_exit_ips_for_hw_access(dc);
2045
2046 enable_timing_multisync(dc, context);
2047 program_timing_sync(dc, context);
2048 }
2049 }
2050
get_stream_mask(struct dc * dc,struct dc_state * context)2051 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
2052 {
2053 int i;
2054 unsigned int stream_mask = 0;
2055
2056 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2057 if (context->res_ctx.pipe_ctx[i].stream)
2058 stream_mask |= 1 << i;
2059 }
2060
2061 return stream_mask;
2062 }
2063
dc_z10_restore(const struct dc * dc)2064 void dc_z10_restore(const struct dc *dc)
2065 {
2066 if (dc->hwss.z10_restore)
2067 dc->hwss.z10_restore(dc);
2068 }
2069
dc_z10_save_init(struct dc * dc)2070 void dc_z10_save_init(struct dc *dc)
2071 {
2072 if (dc->hwss.z10_save_init)
2073 dc->hwss.z10_save_init(dc);
2074 }
2075
2076 /* Set a pipe unlock order based on the change in DET allocation and stores it in dc scratch memory
2077 * Prevents over allocation of DET during unlock process
2078 * e.g. 2 pipe config with different streams with a max of 20 DET segments
2079 * Before: After:
2080 * - Pipe0: 10 DET segments - Pipe0: 12 DET segments
2081 * - Pipe1: 10 DET segments - Pipe1: 8 DET segments
2082 * If Pipe0 gets updated first, 22 DET segments will be allocated
2083 */
determine_pipe_unlock_order(struct dc * dc,struct dc_state * context)2084 static void determine_pipe_unlock_order(struct dc *dc, struct dc_state *context)
2085 {
2086 unsigned int i = 0;
2087 struct pipe_ctx *pipe = NULL;
2088 struct timing_generator *tg = NULL;
2089
2090 if (!dc->config.set_pipe_unlock_order)
2091 return;
2092
2093 memset(dc->scratch.pipes_to_unlock_first, 0, sizeof(dc->scratch.pipes_to_unlock_first));
2094 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2095 pipe = &context->res_ctx.pipe_ctx[i];
2096 tg = pipe->stream_res.tg;
2097
2098 if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
2099 !tg->funcs->is_tg_enabled(tg) ||
2100 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
2101 continue;
2102 }
2103
2104 if (resource_calculate_det_for_stream(context, pipe) <
2105 resource_calculate_det_for_stream(dc->current_state, &dc->current_state->res_ctx.pipe_ctx[i])) {
2106 dc->scratch.pipes_to_unlock_first[i] = true;
2107 }
2108 }
2109 }
2110
2111 /**
2112 * dc_commit_state_no_check - Apply context to the hardware
2113 *
2114 * @dc: DC object with the current status to be updated
2115 * @context: New state that will become the current status at the end of this function
2116 *
2117 * Applies given context to the hardware and copy it into current context.
2118 * It's up to the user to release the src context afterwards.
2119 *
2120 * Return: an enum dc_status result code for the operation
2121 */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)2122 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
2123 {
2124 struct dc_bios *dcb = dc->ctx->dc_bios;
2125 enum dc_status result = DC_ERROR_UNEXPECTED;
2126 struct pipe_ctx *pipe;
2127 int i, k, l;
2128 struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
2129 struct dc_state *old_state;
2130 bool subvp_prev_use = false;
2131
2132 dc_z10_restore(dc);
2133 dc_allow_idle_optimizations(dc, false);
2134
2135 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2136 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2137
2138 /* Check old context for SubVP */
2139 subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
2140 if (subvp_prev_use)
2141 break;
2142 }
2143
2144 for (i = 0; i < context->stream_count; i++)
2145 dc_streams[i] = context->streams[i];
2146
2147 if (!dcb->funcs->is_accelerated_mode(dcb)) {
2148 disable_vbios_mode_if_required(dc, context);
2149 dc->hwss.enable_accelerated_mode(dc, context);
2150 } else if (get_seamless_boot_stream_count(dc->current_state) > 0) {
2151 /* If the previous Stream still retains the apply seamless boot flag,
2152 * it means the OS has not actually performed a flip yet.
2153 * At this point, if we receive dc_commit_streams again, we should
2154 * once more check whether the actual HW timing matches what the OS
2155 * has provided
2156 */
2157 disable_vbios_mode_if_required(dc, context);
2158 }
2159
2160 if (dc->hwseq->funcs.wait_for_pipe_update_if_needed) {
2161 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2162 pipe = &context->res_ctx.pipe_ctx[i];
2163 //Only delay otg master for a given config
2164 if (resource_is_pipe_type(pipe, OTG_MASTER)) {
2165 //dc_commit_state_no_check is always a full update
2166 dc->hwseq->funcs.wait_for_pipe_update_if_needed(dc, pipe, false);
2167 break;
2168 }
2169 }
2170 }
2171
2172 if (context->stream_count > get_seamless_boot_stream_count(context) ||
2173 context->stream_count == 0)
2174 dc->hwss.prepare_bandwidth(dc, context);
2175
2176 /* When SubVP is active, all HW programming must be done while
2177 * SubVP lock is acquired
2178 */
2179 if (dc->hwss.subvp_pipe_control_lock)
2180 dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
2181 if (dc->hwss.dmub_hw_control_lock)
2182 dc->hwss.dmub_hw_control_lock(dc, context, true);
2183
2184 if (dc->hwss.update_dsc_pg)
2185 dc->hwss.update_dsc_pg(dc, context, false);
2186
2187 disable_dangling_plane(dc, context);
2188 /* re-program planes for existing stream, in case we need to
2189 * free up plane resource for later use
2190 */
2191 if (dc->hwss.apply_ctx_for_surface) {
2192 for (i = 0; i < context->stream_count; i++) {
2193 if (context->streams[i]->mode_changed)
2194 continue;
2195 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
2196 dc->hwss.apply_ctx_for_surface(
2197 dc, context->streams[i],
2198 context->stream_status[i].plane_count,
2199 context); /* use new pipe config in new context */
2200 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
2201 dc->hwss.post_unlock_program_front_end(dc, context);
2202 }
2203 }
2204
2205 /* Program hardware */
2206 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2207 pipe = &context->res_ctx.pipe_ctx[i];
2208 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
2209 }
2210
2211 for (i = 0; i < dc->current_state->stream_count; i++)
2212 dc_dmub_srv_control_cursor_offload(dc, dc->current_state, dc->current_state->streams[i], false);
2213
2214 result = dc->hwss.apply_ctx_to_hw(dc, context);
2215
2216 for (i = 0; i < context->stream_count; i++)
2217 dc_dmub_srv_control_cursor_offload(dc, context, context->streams[i], true);
2218
2219 if (result != DC_OK) {
2220 /* Application of dc_state to hardware stopped. */
2221 dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
2222 return result;
2223 }
2224
2225 dc_trigger_sync(dc, context);
2226
2227 /* Full update should unconditionally be triggered when dc_commit_state_no_check is called */
2228 for (i = 0; i < context->stream_count; i++) {
2229 uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed;
2230
2231 context->streams[i]->update_flags.raw = 0xFFFFFFFF;
2232 context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed;
2233 }
2234
2235 determine_pipe_unlock_order(dc, context);
2236 /* Program all planes within new context*/
2237 if (dc->res_pool->funcs->prepare_mcache_programming)
2238 dc->res_pool->funcs->prepare_mcache_programming(dc, context);
2239 if (dc->hwss.program_front_end_for_ctx) {
2240 dc->hwss.interdependent_update_lock(dc, context, true);
2241 dc->hwss.program_front_end_for_ctx(dc, context);
2242
2243 if (dc->hwseq->funcs.set_wait_for_update_needed_for_pipe) {
2244 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2245 pipe = &context->res_ctx.pipe_ctx[i];
2246 dc->hwseq->funcs.set_wait_for_update_needed_for_pipe(dc, pipe);
2247 }
2248 }
2249
2250 dc->hwss.interdependent_update_lock(dc, context, false);
2251 dc->hwss.post_unlock_program_front_end(dc, context);
2252 }
2253
2254 if (dc->hwss.commit_subvp_config)
2255 dc->hwss.commit_subvp_config(dc, context);
2256 if (dc->hwss.subvp_pipe_control_lock)
2257 dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
2258 if (dc->hwss.dmub_hw_control_lock)
2259 dc->hwss.dmub_hw_control_lock(dc, context, false);
2260
2261 for (i = 0; i < context->stream_count; i++) {
2262 const struct dc_link *link = context->streams[i]->link;
2263
2264 if (!context->streams[i]->mode_changed)
2265 continue;
2266
2267 if (dc->hwss.apply_ctx_for_surface) {
2268 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
2269 dc->hwss.apply_ctx_for_surface(
2270 dc, context->streams[i],
2271 context->stream_status[i].plane_count,
2272 context);
2273 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
2274 dc->hwss.post_unlock_program_front_end(dc, context);
2275 }
2276
2277 /*
2278 * enable stereo
2279 * TODO rework dc_enable_stereo call to work with validation sets?
2280 */
2281 for (k = 0; k < MAX_PIPES; k++) {
2282 pipe = &context->res_ctx.pipe_ctx[k];
2283
2284 for (l = 0 ; pipe && l < context->stream_count; l++) {
2285 if (context->streams[l] &&
2286 context->streams[l] == pipe->stream &&
2287 dc->hwss.setup_stereo)
2288 dc->hwss.setup_stereo(pipe, dc);
2289 }
2290 }
2291
2292 CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
2293 context->streams[i]->timing.h_addressable,
2294 context->streams[i]->timing.v_addressable,
2295 context->streams[i]->timing.h_total,
2296 context->streams[i]->timing.v_total,
2297 context->streams[i]->timing.pix_clk_100hz / 10);
2298 }
2299
2300 dc_enable_stereo(dc, context, dc_streams, context->stream_count);
2301
2302 if (get_seamless_boot_stream_count(context) == 0 ||
2303 context->stream_count == 0) {
2304 /* Must wait for no flips to be pending before doing optimize bw */
2305 hwss_wait_for_no_pipes_pending(dc, context);
2306 /*
2307 * optimized dispclk depends on ODM setup. Need to wait for ODM
2308 * update pending complete before optimizing bandwidth.
2309 */
2310 hwss_wait_for_odm_update_pending_complete(dc, context);
2311 /* pplib is notified if disp_num changed */
2312 dc->hwss.optimize_bandwidth(dc, context);
2313 /* Need to do otg sync again as otg could be out of sync due to otg
2314 * workaround applied during clock update
2315 */
2316 dc_trigger_sync(dc, context);
2317 }
2318
2319 if (dc->hwss.update_dsc_pg)
2320 dc->hwss.update_dsc_pg(dc, context, true);
2321
2322 if (dc->ctx->dce_version >= DCE_VERSION_MAX)
2323 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2324 else
2325 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2326
2327 context->stream_mask = get_stream_mask(dc, context);
2328
2329 if (context->stream_mask != dc->current_state->stream_mask)
2330 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
2331
2332 for (i = 0; i < context->stream_count; i++)
2333 context->streams[i]->mode_changed = false;
2334
2335 /* Clear update flags that were set earlier to avoid redundant programming */
2336 for (i = 0; i < context->stream_count; i++) {
2337 context->streams[i]->update_flags.raw = 0x0;
2338 }
2339
2340 old_state = dc->current_state;
2341 dc->current_state = context;
2342
2343 dc_state_release(old_state);
2344
2345 dc_state_retain(dc->current_state);
2346
2347 return result;
2348 }
2349
2350 static bool commit_minimal_transition_state(struct dc *dc,
2351 struct dc_state *transition_base_context);
2352
2353 /**
2354 * dc_commit_streams - Commit current stream state
2355 *
2356 * @dc: DC object with the commit state to be configured in the hardware
2357 * @params: Parameters for the commit, including the streams to be committed
2358 *
2359 * Function responsible for commit streams change to the hardware.
2360 *
2361 * Return:
2362 * Return DC_OK if everything work as expected, otherwise, return a dc_status
2363 * code.
2364 */
dc_commit_streams(struct dc * dc,struct dc_commit_streams_params * params)2365 enum dc_status dc_commit_streams(struct dc *dc, struct dc_commit_streams_params *params)
2366 {
2367 int i, j;
2368 struct dc_state *context;
2369 enum dc_status res = DC_OK;
2370 struct dc_validation_set set[MAX_STREAMS] = {0};
2371 struct pipe_ctx *pipe;
2372 bool handle_exit_odm2to1 = false;
2373
2374 if (!params)
2375 return DC_ERROR_UNEXPECTED;
2376
2377 if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2378 return res;
2379
2380 if (!streams_changed(dc, params->streams, params->stream_count) &&
2381 dc->current_state->power_source == params->power_source)
2382 return res;
2383
2384 dc_exit_ips_for_hw_access(dc);
2385
2386 DC_LOG_DC("%s: %d streams\n", __func__, params->stream_count);
2387
2388 for (i = 0; i < params->stream_count; i++) {
2389 struct dc_stream_state *stream = params->streams[i];
2390 struct dc_stream_status *status = dc_stream_get_status(stream);
2391 struct dc_sink *sink = stream->sink;
2392
2393 /* revalidate streams */
2394 if (!dc_is_virtual_signal(sink->sink_signal)) {
2395 res = dc_validate_stream(dc, stream);
2396 if (res != DC_OK)
2397 return res;
2398 }
2399
2400
2401 dc_stream_log(dc, stream);
2402
2403 set[i].stream = stream;
2404
2405 if (status) {
2406 set[i].plane_count = status->plane_count;
2407 for (j = 0; j < status->plane_count; j++)
2408 set[i].plane_states[j] = status->plane_states[j];
2409 }
2410 }
2411
2412 /* ODM Combine 2:1 power optimization is only applied for single stream
2413 * scenario, it uses extra pipes than needed to reduce power consumption
2414 * We need to switch off this feature to make room for new streams.
2415 */
2416 if (params->stream_count > dc->current_state->stream_count &&
2417 dc->current_state->stream_count == 1) {
2418 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2419 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2420 if (pipe->next_odm_pipe)
2421 handle_exit_odm2to1 = true;
2422 }
2423 }
2424
2425 if (handle_exit_odm2to1)
2426 res = commit_minimal_transition_state(dc, dc->current_state);
2427
2428 context = dc_state_create_current_copy(dc);
2429 if (!context)
2430 goto context_alloc_fail;
2431
2432 context->power_source = params->power_source;
2433
2434 res = dc_validate_with_context(dc, set, params->stream_count, context, DC_VALIDATE_MODE_AND_PROGRAMMING);
2435
2436 /*
2437 * Only update link encoder to stream assignment after bandwidth validation passed.
2438 */
2439 if (res == DC_OK && dc->res_pool->funcs->link_encs_assign && !dc->config.unify_link_enc_assignment)
2440 dc->res_pool->funcs->link_encs_assign(
2441 dc, context, context->streams, context->stream_count);
2442
2443 if (res != DC_OK) {
2444 BREAK_TO_DEBUGGER();
2445 goto fail;
2446 }
2447
2448 /*
2449 * If not already seamless, make transition seamless by inserting intermediate minimal transition
2450 */
2451 if (dc->hwss.is_pipe_topology_transition_seamless &&
2452 !dc->hwss.is_pipe_topology_transition_seamless(dc, dc->current_state, context)) {
2453 res = commit_minimal_transition_state(dc, context);
2454 if (res != DC_OK) {
2455 BREAK_TO_DEBUGGER();
2456 goto fail;
2457 }
2458 }
2459
2460 res = dc_commit_state_no_check(dc, context);
2461
2462 for (i = 0; i < params->stream_count; i++) {
2463 for (j = 0; j < context->stream_count; j++) {
2464 if (params->streams[i]->stream_id == context->streams[j]->stream_id)
2465 params->streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2466
2467 if (dc_is_embedded_signal(params->streams[i]->signal)) {
2468 struct dc_stream_status *status = dc_state_get_stream_status(context, params->streams[i]);
2469
2470 if (!status)
2471 continue;
2472
2473 if (dc->hwss.is_abm_supported)
2474 status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, params->streams[i]);
2475 else
2476 status->is_abm_supported = true;
2477 }
2478 }
2479 }
2480
2481 fail:
2482 dc_state_release(context);
2483
2484 context_alloc_fail:
2485
2486 DC_LOG_DC("%s Finished.\n", __func__);
2487
2488 return res;
2489 }
2490
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)2491 bool dc_acquire_release_mpc_3dlut(
2492 struct dc *dc, bool acquire,
2493 struct dc_stream_state *stream,
2494 struct dc_3dlut **lut,
2495 struct dc_transfer_func **shaper)
2496 {
2497 int pipe_idx;
2498 bool ret = false;
2499 bool found_pipe_idx = false;
2500 const struct resource_pool *pool = dc->res_pool;
2501 struct resource_context *res_ctx = &dc->current_state->res_ctx;
2502 int mpcc_id = 0;
2503
2504 if (pool && res_ctx) {
2505 if (acquire) {
2506 /*find pipe idx for the given stream*/
2507 for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2508 if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2509 found_pipe_idx = true;
2510 mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2511 break;
2512 }
2513 }
2514 } else
2515 found_pipe_idx = true;/*for release pipe_idx is not required*/
2516
2517 if (found_pipe_idx) {
2518 if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2519 ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2520 else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2521 ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2522 }
2523 }
2524 return ret;
2525 }
2526
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)2527 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2528 {
2529 int i;
2530 struct pipe_ctx *pipe;
2531
2532 for (i = 0; i < MAX_PIPES; i++) {
2533 pipe = &context->res_ctx.pipe_ctx[i];
2534
2535 // Don't check flip pending on phantom pipes
2536 if (!pipe->plane_state || (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM))
2537 continue;
2538
2539 /* Must set to false to start with, due to OR in update function */
2540 pipe->plane_state->status.is_flip_pending = false;
2541 dc->hwss.update_pending_status(pipe);
2542 if (pipe->plane_state->status.is_flip_pending)
2543 return true;
2544 }
2545 return false;
2546 }
2547
2548 /* Perform updates here which need to be deferred until next vupdate
2549 *
2550 * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2551 * but forcing lut memory to shutdown state is immediate. This causes
2552 * single frame corruption as lut gets disabled mid-frame unless shutdown
2553 * is deferred until after entering bypass.
2554 */
process_deferred_updates(struct dc * dc)2555 static void process_deferred_updates(struct dc *dc)
2556 {
2557 int i = 0;
2558
2559 if (dc->debug.enable_mem_low_power.bits.cm) {
2560 ASSERT(dc->dcn_ip->max_num_dpp);
2561 for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2562 if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2563 dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2564 }
2565 }
2566
dc_post_update_surfaces_to_stream(struct dc * dc)2567 void dc_post_update_surfaces_to_stream(struct dc *dc)
2568 {
2569 int i;
2570 struct dc_state *context = dc->current_state;
2571
2572 if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2573 return;
2574
2575 post_surface_trace(dc);
2576
2577 /*
2578 * Only relevant for DCN behavior where we can guarantee the optimization
2579 * is safe to apply - retain the legacy behavior for DCE.
2580 */
2581
2582 if (dc->ctx->dce_version < DCE_VERSION_MAX)
2583 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2584 else {
2585 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2586
2587 if (is_flip_pending_in_pipes(dc, context))
2588 return;
2589
2590 for (i = 0; i < dc->res_pool->pipe_count; i++)
2591 if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2592 context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2593 context->res_ctx.pipe_ctx[i].pipe_idx = i;
2594 dc->hwss.disable_plane(dc, context, &context->res_ctx.pipe_ctx[i]);
2595 }
2596
2597 process_deferred_updates(dc);
2598
2599 dc->hwss.optimize_bandwidth(dc, context);
2600
2601 if (dc->hwss.update_dsc_pg)
2602 dc->hwss.update_dsc_pg(dc, context, true);
2603 }
2604
2605 dc->optimized_required = false;
2606 }
2607
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)2608 bool dc_set_generic_gpio_for_stereo(bool enable,
2609 struct gpio_service *gpio_service)
2610 {
2611 enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2612 struct gpio_pin_info pin_info;
2613 struct gpio *generic;
2614 struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2615 GFP_KERNEL);
2616
2617 if (!config)
2618 return false;
2619 pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2620
2621 if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2622 kfree(config);
2623 return false;
2624 } else {
2625 generic = dal_gpio_service_create_generic_mux(
2626 gpio_service,
2627 pin_info.offset,
2628 pin_info.mask);
2629 }
2630
2631 if (!generic) {
2632 kfree(config);
2633 return false;
2634 }
2635
2636 gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2637
2638 config->enable_output_from_mux = enable;
2639 config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2640
2641 if (gpio_result == GPIO_RESULT_OK)
2642 gpio_result = dal_mux_setup_config(generic, config);
2643
2644 if (gpio_result == GPIO_RESULT_OK) {
2645 dal_gpio_close(generic);
2646 dal_gpio_destroy_generic_mux(&generic);
2647 kfree(config);
2648 return true;
2649 } else {
2650 dal_gpio_close(generic);
2651 dal_gpio_destroy_generic_mux(&generic);
2652 kfree(config);
2653 return false;
2654 }
2655 }
2656
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)2657 static bool is_surface_in_context(
2658 const struct dc_state *context,
2659 const struct dc_plane_state *plane_state)
2660 {
2661 int j;
2662
2663 for (j = 0; j < MAX_PIPES; j++) {
2664 const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2665
2666 if (plane_state == pipe_ctx->plane_state) {
2667 return true;
2668 }
2669 }
2670
2671 return false;
2672 }
2673
get_plane_info_update_type(const struct dc_surface_update * u)2674 static struct surface_update_descriptor get_plane_info_update_type(const struct dc_surface_update *u)
2675 {
2676 union surface_update_flags *update_flags = &u->surface->update_flags;
2677 struct surface_update_descriptor update_type = { UPDATE_TYPE_FAST, LOCK_DESCRIPTOR_NONE };
2678
2679 if (!u->plane_info)
2680 return update_type;
2681
2682 // `plane_info` present means at least `STREAM` lock is required
2683 elevate_update_type(&update_type, UPDATE_TYPE_FAST, LOCK_DESCRIPTOR_STREAM);
2684
2685 if (u->plane_info->color_space != u->surface->color_space) {
2686 update_flags->bits.color_space_change = 1;
2687 elevate_update_type(&update_type, UPDATE_TYPE_MED, LOCK_DESCRIPTOR_STREAM);
2688 }
2689
2690 if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2691 update_flags->bits.horizontal_mirror_change = 1;
2692 elevate_update_type(&update_type, UPDATE_TYPE_MED, LOCK_DESCRIPTOR_STREAM);
2693 }
2694
2695 if (u->plane_info->rotation != u->surface->rotation) {
2696 update_flags->bits.rotation_change = 1;
2697 elevate_update_type(&update_type, UPDATE_TYPE_FULL, LOCK_DESCRIPTOR_GLOBAL);
2698 }
2699
2700 if (u->plane_info->format != u->surface->format) {
2701 update_flags->bits.pixel_format_change = 1;
2702 elevate_update_type(&update_type, UPDATE_TYPE_FULL, LOCK_DESCRIPTOR_GLOBAL);
2703 }
2704
2705 if (u->plane_info->stereo_format != u->surface->stereo_format) {
2706 update_flags->bits.stereo_format_change = 1;
2707 elevate_update_type(&update_type, UPDATE_TYPE_FULL, LOCK_DESCRIPTOR_GLOBAL);
2708 }
2709
2710 if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2711 update_flags->bits.per_pixel_alpha_change = 1;
2712 elevate_update_type(&update_type, UPDATE_TYPE_MED, LOCK_DESCRIPTOR_STREAM);
2713 }
2714
2715 if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2716 update_flags->bits.global_alpha_change = 1;
2717 elevate_update_type(&update_type, UPDATE_TYPE_MED, LOCK_DESCRIPTOR_STREAM);
2718 }
2719
2720 if (u->plane_info->dcc.enable != u->surface->dcc.enable
2721 || u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2722 || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2723 /* During DCC on/off, stutter period is calculated before
2724 * DCC has fully transitioned. This results in incorrect
2725 * stutter period calculation. Triggering a full update will
2726 * recalculate stutter period.
2727 */
2728 update_flags->bits.dcc_change = 1;
2729 elevate_update_type(&update_type, UPDATE_TYPE_FULL, LOCK_DESCRIPTOR_GLOBAL);
2730 }
2731
2732 if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2733 resource_pixel_format_to_bpp(u->surface->format)) {
2734 /* different bytes per element will require full bandwidth
2735 * and DML calculation
2736 */
2737 update_flags->bits.bpp_change = 1;
2738 elevate_update_type(&update_type, UPDATE_TYPE_FULL, LOCK_DESCRIPTOR_GLOBAL);
2739 }
2740
2741 if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2742 || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2743 update_flags->bits.plane_size_change = 1;
2744 elevate_update_type(&update_type, UPDATE_TYPE_MED, LOCK_DESCRIPTOR_STREAM);
2745 }
2746
2747 const struct dc_tiling_info *tiling = &u->plane_info->tiling_info;
2748
2749 if (memcmp(tiling, &u->surface->tiling_info, sizeof(*tiling)) != 0) {
2750 update_flags->bits.swizzle_change = 1;
2751 elevate_update_type(&update_type, UPDATE_TYPE_MED, LOCK_DESCRIPTOR_STREAM);
2752
2753 switch (tiling->gfxversion) {
2754 case DcGfxVersion9:
2755 case DcGfxVersion10:
2756 case DcGfxVersion11:
2757 if (tiling->gfx9.swizzle != DC_SW_LINEAR) {
2758 update_flags->bits.bandwidth_change = 1;
2759 elevate_update_type(&update_type, UPDATE_TYPE_FULL, LOCK_DESCRIPTOR_GLOBAL);
2760 }
2761 break;
2762 case DcGfxAddr3:
2763 if (tiling->gfx_addr3.swizzle != DC_ADDR3_SW_LINEAR) {
2764 update_flags->bits.bandwidth_change = 1;
2765 elevate_update_type(&update_type, UPDATE_TYPE_FULL, LOCK_DESCRIPTOR_GLOBAL);
2766 }
2767 break;
2768 case DcGfxVersion7:
2769 case DcGfxVersion8:
2770 case DcGfxVersionUnknown:
2771 default:
2772 break;
2773 }
2774 }
2775
2776 /* This should be UPDATE_TYPE_FAST if nothing has changed. */
2777 return update_type;
2778 }
2779
get_scaling_info_update_type(const struct dc_check_config * check_config,const struct dc_surface_update * u)2780 static struct surface_update_descriptor get_scaling_info_update_type(
2781 const struct dc_check_config *check_config,
2782 const struct dc_surface_update *u)
2783 {
2784 union surface_update_flags *update_flags = &u->surface->update_flags;
2785 struct surface_update_descriptor update_type = { UPDATE_TYPE_FAST, LOCK_DESCRIPTOR_NONE };
2786
2787 if (!u->scaling_info)
2788 return update_type;
2789
2790 // `scaling_info` present means at least `STREAM` lock is required
2791 elevate_update_type(&update_type, UPDATE_TYPE_FAST, LOCK_DESCRIPTOR_STREAM);
2792
2793 if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2794 || u->scaling_info->src_rect.height != u->surface->src_rect.height
2795 || u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2796 || u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2797 || u->scaling_info->clip_rect.width != u->surface->clip_rect.width
2798 || u->scaling_info->clip_rect.height != u->surface->clip_rect.height
2799 || u->scaling_info->scaling_quality.integer_scaling !=
2800 u->surface->scaling_quality.integer_scaling) {
2801 update_flags->bits.scaling_change = 1;
2802 elevate_update_type(&update_type, UPDATE_TYPE_FULL, LOCK_DESCRIPTOR_GLOBAL);
2803
2804 if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2805 || u->scaling_info->src_rect.height > u->surface->src_rect.height)
2806 /* Making src rect bigger requires a bandwidth change */
2807 update_flags->bits.clock_change = 1;
2808
2809 if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2810 || u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2811 && (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2812 || u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2813 /* Making dst rect smaller requires a bandwidth change */
2814 update_flags->bits.bandwidth_change = 1;
2815
2816 if (u->scaling_info->src_rect.width > check_config->max_optimizable_video_width &&
2817 (u->scaling_info->clip_rect.width > u->surface->clip_rect.width ||
2818 u->scaling_info->clip_rect.height > u->surface->clip_rect.height))
2819 /* Changing clip size of a large surface may result in MPC slice count change */
2820 update_flags->bits.bandwidth_change = 1;
2821 }
2822
2823 if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2824 || u->scaling_info->src_rect.y != u->surface->src_rect.y
2825 || u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2826 || u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2827 || u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2828 || u->scaling_info->dst_rect.y != u->surface->dst_rect.y) {
2829 elevate_update_type(&update_type, UPDATE_TYPE_MED, LOCK_DESCRIPTOR_STREAM);
2830 update_flags->bits.position_change = 1;
2831 }
2832
2833 return update_type;
2834 }
2835
det_surface_update(const struct dc_check_config * check_config,struct dc_surface_update * u)2836 static struct surface_update_descriptor det_surface_update(
2837 const struct dc_check_config *check_config,
2838 struct dc_surface_update *u)
2839 {
2840 struct surface_update_descriptor overall_type = { UPDATE_TYPE_FAST, LOCK_DESCRIPTOR_NONE };
2841 union surface_update_flags *update_flags = &u->surface->update_flags;
2842
2843 if (u->surface->force_full_update) {
2844 update_flags->raw = 0xFFFFFFFF;
2845 elevate_update_type(&overall_type, UPDATE_TYPE_FULL, LOCK_DESCRIPTOR_GLOBAL);
2846 return overall_type;
2847 }
2848
2849 update_flags->raw = 0; // Reset all flags
2850
2851 struct surface_update_descriptor inner_type = get_plane_info_update_type(u);
2852
2853 elevate_update_type(&overall_type, inner_type.update_type, inner_type.lock_descriptor);
2854
2855 inner_type = get_scaling_info_update_type(check_config, u);
2856 elevate_update_type(&overall_type, inner_type.update_type, inner_type.lock_descriptor);
2857
2858 if (u->flip_addr) {
2859 update_flags->bits.addr_update = 1;
2860 elevate_update_type(&overall_type, UPDATE_TYPE_FAST, LOCK_DESCRIPTOR_STREAM);
2861
2862 if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2863 update_flags->bits.tmz_changed = 1;
2864 elevate_update_type(&overall_type, UPDATE_TYPE_FULL, LOCK_DESCRIPTOR_GLOBAL);
2865 }
2866 }
2867 if (u->in_transfer_func) {
2868 update_flags->bits.in_transfer_func_change = 1;
2869 elevate_update_type(&overall_type, UPDATE_TYPE_MED, LOCK_DESCRIPTOR_STREAM);
2870 }
2871
2872 if (u->input_csc_color_matrix) {
2873 update_flags->bits.input_csc_change = 1;
2874 elevate_update_type(&overall_type, UPDATE_TYPE_FAST, LOCK_DESCRIPTOR_STREAM);
2875 }
2876
2877 if (u->coeff_reduction_factor) {
2878 update_flags->bits.coeff_reduction_change = 1;
2879 elevate_update_type(&overall_type, UPDATE_TYPE_FAST, LOCK_DESCRIPTOR_STREAM);
2880 }
2881
2882 if (u->gamut_remap_matrix) {
2883 update_flags->bits.gamut_remap_change = 1;
2884 elevate_update_type(&overall_type, UPDATE_TYPE_FAST, LOCK_DESCRIPTOR_STREAM);
2885 }
2886
2887 if (u->blend_tf || (u->gamma && dce_use_lut(u->plane_info ? u->plane_info->format : u->surface->format))) {
2888 update_flags->bits.gamma_change = 1;
2889 elevate_update_type(&overall_type, UPDATE_TYPE_FAST, LOCK_DESCRIPTOR_STREAM);
2890 }
2891
2892 if (u->lut3d_func || u->func_shaper) {
2893 update_flags->bits.lut_3d = 1;
2894 elevate_update_type(&overall_type, UPDATE_TYPE_FAST, LOCK_DESCRIPTOR_STREAM);
2895 }
2896
2897 if (u->hdr_mult.value)
2898 if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2899 // TODO: Should be fast?
2900 update_flags->bits.hdr_mult = 1;
2901 elevate_update_type(&overall_type, UPDATE_TYPE_MED, LOCK_DESCRIPTOR_STREAM);
2902 }
2903
2904 if (u->sdr_white_level_nits)
2905 if (u->sdr_white_level_nits != u->surface->sdr_white_level_nits) {
2906 // TODO: Should be fast?
2907 update_flags->bits.sdr_white_level_nits = 1;
2908 elevate_update_type(&overall_type, UPDATE_TYPE_FULL, LOCK_DESCRIPTOR_GLOBAL);
2909 }
2910
2911 if (u->cm2_params) {
2912 if (u->cm2_params->component_settings.shaper_3dlut_setting != u->surface->mcm_shaper_3dlut_setting
2913 || u->cm2_params->component_settings.lut1d_enable != u->surface->mcm_lut1d_enable
2914 || u->cm2_params->cm2_luts.lut3d_data.lut3d_src != u->surface->mcm_luts.lut3d_data.lut3d_src) {
2915 update_flags->bits.mcm_transfer_function_enable_change = 1;
2916 elevate_update_type(&overall_type, UPDATE_TYPE_FULL, LOCK_DESCRIPTOR_GLOBAL);
2917 }
2918 }
2919
2920 if (update_flags->bits.lut_3d &&
2921 u->surface->mcm_luts.lut3d_data.lut3d_src != DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM) {
2922 elevate_update_type(&overall_type, UPDATE_TYPE_FULL, LOCK_DESCRIPTOR_GLOBAL);
2923 }
2924
2925 if (check_config->enable_legacy_fast_update &&
2926 (update_flags->bits.gamma_change ||
2927 update_flags->bits.gamut_remap_change ||
2928 update_flags->bits.input_csc_change ||
2929 update_flags->bits.coeff_reduction_change)) {
2930 elevate_update_type(&overall_type, UPDATE_TYPE_FULL, LOCK_DESCRIPTOR_GLOBAL);
2931 }
2932 return overall_type;
2933 }
2934
2935 /* May need to flip the desktop plane in cases where MPO plane receives a flip but desktop plane doesn't
2936 * while both planes are flip_immediate
2937 */
force_immediate_gsl_plane_flip(struct dc * dc,struct dc_surface_update * updates,int surface_count)2938 static void force_immediate_gsl_plane_flip(struct dc *dc, struct dc_surface_update *updates, int surface_count)
2939 {
2940 bool has_flip_immediate_plane = false;
2941 int i;
2942
2943 for (i = 0; i < surface_count; i++) {
2944 if (updates[i].surface->flip_immediate) {
2945 has_flip_immediate_plane = true;
2946 break;
2947 }
2948 }
2949
2950 if (has_flip_immediate_plane && surface_count > 1) {
2951 for (i = 0; i < surface_count; i++) {
2952 if (updates[i].surface->flip_immediate)
2953 updates[i].surface->update_flags.bits.addr_update = 1;
2954 }
2955 }
2956 }
2957
check_update_surfaces_for_stream(const struct dc_check_config * check_config,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update)2958 static struct surface_update_descriptor check_update_surfaces_for_stream(
2959 const struct dc_check_config *check_config,
2960 struct dc_surface_update *updates,
2961 int surface_count,
2962 struct dc_stream_update *stream_update)
2963 {
2964 struct surface_update_descriptor overall_type = { UPDATE_TYPE_FAST, LOCK_DESCRIPTOR_NONE };
2965
2966 if (stream_update && stream_update->pending_test_pattern) {
2967 elevate_update_type(&overall_type, UPDATE_TYPE_FULL, LOCK_DESCRIPTOR_GLOBAL);
2968 }
2969
2970 if (stream_update && stream_update->hw_cursor_req) {
2971 elevate_update_type(&overall_type, UPDATE_TYPE_FULL, LOCK_DESCRIPTOR_GLOBAL);
2972 }
2973
2974 /* some stream updates require passive update */
2975 if (stream_update) {
2976 elevate_update_type(&overall_type, UPDATE_TYPE_FAST, LOCK_DESCRIPTOR_STREAM);
2977
2978 union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2979
2980 if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2981 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2982 stream_update->integer_scaling_update)
2983 su_flags->bits.scaling = 1;
2984
2985 if (check_config->enable_legacy_fast_update && stream_update->out_transfer_func)
2986 su_flags->bits.out_tf = 1;
2987
2988 if (stream_update->abm_level)
2989 su_flags->bits.abm_level = 1;
2990
2991 if (stream_update->dpms_off) {
2992 su_flags->bits.dpms_off = 1;
2993 elevate_update_type(&overall_type, UPDATE_TYPE_FULL, LOCK_DESCRIPTOR_GLOBAL | LOCK_DESCRIPTOR_LINK);
2994 }
2995
2996 if (stream_update->gamut_remap)
2997 su_flags->bits.gamut_remap = 1;
2998
2999 if (stream_update->wb_update)
3000 su_flags->bits.wb_update = 1;
3001
3002 if (stream_update->dsc_config)
3003 su_flags->bits.dsc_changed = 1;
3004
3005 if (stream_update->mst_bw_update)
3006 su_flags->bits.mst_bw = 1;
3007
3008 if (stream_update->stream->freesync_on_desktop &&
3009 (stream_update->vrr_infopacket || stream_update->allow_freesync ||
3010 stream_update->vrr_active_variable || stream_update->vrr_active_fixed))
3011 su_flags->bits.fams_changed = 1;
3012
3013 if (stream_update->scaler_sharpener_update)
3014 su_flags->bits.scaler_sharpener = 1;
3015
3016 if (stream_update->sharpening_required)
3017 su_flags->bits.sharpening_required = 1;
3018
3019 if (stream_update->output_color_space)
3020 su_flags->bits.out_csc = 1;
3021
3022 // TODO: Make each elevation explicit, as to not override fast stream in crct_timing_adjust
3023 if (su_flags->raw)
3024 elevate_update_type(&overall_type, UPDATE_TYPE_FULL, LOCK_DESCRIPTOR_GLOBAL);
3025
3026 // Non-global cases
3027 if (stream_update->output_csc_transform) {
3028 su_flags->bits.out_csc = 1;
3029 elevate_update_type(&overall_type, UPDATE_TYPE_FAST, LOCK_DESCRIPTOR_STREAM);
3030 }
3031
3032 if (!check_config->enable_legacy_fast_update && stream_update->out_transfer_func) {
3033 su_flags->bits.out_tf = 1;
3034 elevate_update_type(&overall_type, UPDATE_TYPE_FAST, LOCK_DESCRIPTOR_STREAM);
3035 }
3036 }
3037
3038 for (int i = 0 ; i < surface_count; i++) {
3039 struct surface_update_descriptor inner_type =
3040 det_surface_update(check_config, &updates[i]);
3041
3042 elevate_update_type(&overall_type, inner_type.update_type, inner_type.lock_descriptor);
3043 }
3044
3045 return overall_type;
3046 }
3047
3048 /*
3049 * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
3050 *
3051 * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
3052 */
dc_check_update_surfaces_for_stream(const struct dc_check_config * check_config,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update)3053 struct surface_update_descriptor dc_check_update_surfaces_for_stream(
3054 const struct dc_check_config *check_config,
3055 struct dc_surface_update *updates,
3056 int surface_count,
3057 struct dc_stream_update *stream_update)
3058 {
3059 if (stream_update)
3060 stream_update->stream->update_flags.raw = 0;
3061 for (size_t i = 0; i < surface_count; i++)
3062 updates[i].surface->update_flags.raw = 0;
3063
3064 return check_update_surfaces_for_stream(check_config, updates, surface_count, stream_update);
3065 }
3066
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)3067 static struct dc_stream_status *stream_get_status(
3068 struct dc_state *ctx,
3069 struct dc_stream_state *stream)
3070 {
3071 uint8_t i;
3072
3073 for (i = 0; i < ctx->stream_count; i++) {
3074 if (stream == ctx->streams[i]) {
3075 return &ctx->stream_status[i];
3076 }
3077 }
3078
3079 return NULL;
3080 }
3081
3082 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
3083
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)3084 static void copy_surface_update_to_plane(
3085 struct dc_plane_state *surface,
3086 struct dc_surface_update *srf_update)
3087 {
3088 if (srf_update->flip_addr) {
3089 surface->address = srf_update->flip_addr->address;
3090 surface->flip_immediate =
3091 srf_update->flip_addr->flip_immediate;
3092 surface->time.time_elapsed_in_us[surface->time.index] =
3093 srf_update->flip_addr->flip_timestamp_in_us -
3094 surface->time.prev_update_time_in_us;
3095 surface->time.prev_update_time_in_us =
3096 srf_update->flip_addr->flip_timestamp_in_us;
3097 surface->time.index++;
3098 if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
3099 surface->time.index = 0;
3100
3101 surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
3102 }
3103
3104 if (srf_update->scaling_info) {
3105 surface->scaling_quality =
3106 srf_update->scaling_info->scaling_quality;
3107 surface->dst_rect =
3108 srf_update->scaling_info->dst_rect;
3109 surface->src_rect =
3110 srf_update->scaling_info->src_rect;
3111 surface->clip_rect =
3112 srf_update->scaling_info->clip_rect;
3113 }
3114
3115 if (srf_update->plane_info) {
3116 surface->color_space =
3117 srf_update->plane_info->color_space;
3118 surface->format =
3119 srf_update->plane_info->format;
3120 surface->plane_size =
3121 srf_update->plane_info->plane_size;
3122 surface->rotation =
3123 srf_update->plane_info->rotation;
3124 surface->horizontal_mirror =
3125 srf_update->plane_info->horizontal_mirror;
3126 surface->stereo_format =
3127 srf_update->plane_info->stereo_format;
3128 surface->tiling_info =
3129 srf_update->plane_info->tiling_info;
3130 surface->visible =
3131 srf_update->plane_info->visible;
3132 surface->per_pixel_alpha =
3133 srf_update->plane_info->per_pixel_alpha;
3134 surface->global_alpha =
3135 srf_update->plane_info->global_alpha;
3136 surface->global_alpha_value =
3137 srf_update->plane_info->global_alpha_value;
3138 surface->dcc =
3139 srf_update->plane_info->dcc;
3140 surface->layer_index =
3141 srf_update->plane_info->layer_index;
3142 }
3143
3144 if (srf_update->gamma) {
3145 memcpy(&surface->gamma_correction.entries,
3146 &srf_update->gamma->entries,
3147 sizeof(struct dc_gamma_entries));
3148 surface->gamma_correction.is_identity =
3149 srf_update->gamma->is_identity;
3150 surface->gamma_correction.num_entries =
3151 srf_update->gamma->num_entries;
3152 surface->gamma_correction.type =
3153 srf_update->gamma->type;
3154 }
3155
3156 if (srf_update->in_transfer_func) {
3157 surface->in_transfer_func.sdr_ref_white_level =
3158 srf_update->in_transfer_func->sdr_ref_white_level;
3159 surface->in_transfer_func.tf =
3160 srf_update->in_transfer_func->tf;
3161 surface->in_transfer_func.type =
3162 srf_update->in_transfer_func->type;
3163 memcpy(&surface->in_transfer_func.tf_pts,
3164 &srf_update->in_transfer_func->tf_pts,
3165 sizeof(struct dc_transfer_func_distributed_points));
3166 }
3167
3168 if (srf_update->cm2_params) {
3169 surface->mcm_shaper_3dlut_setting = srf_update->cm2_params->component_settings.shaper_3dlut_setting;
3170 surface->mcm_lut1d_enable = srf_update->cm2_params->component_settings.lut1d_enable;
3171 surface->mcm_luts = srf_update->cm2_params->cm2_luts;
3172 }
3173
3174 if (srf_update->func_shaper) {
3175 memcpy(&surface->in_shaper_func, srf_update->func_shaper,
3176 sizeof(surface->in_shaper_func));
3177
3178 if (surface->mcm_shaper_3dlut_setting >= DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER)
3179 surface->mcm_luts.shaper = &surface->in_shaper_func;
3180 }
3181
3182 if (srf_update->lut3d_func)
3183 memcpy(&surface->lut3d_func, srf_update->lut3d_func,
3184 sizeof(surface->lut3d_func));
3185
3186 if (srf_update->hdr_mult.value)
3187 surface->hdr_mult =
3188 srf_update->hdr_mult;
3189
3190 if (srf_update->sdr_white_level_nits)
3191 surface->sdr_white_level_nits =
3192 srf_update->sdr_white_level_nits;
3193
3194 if (srf_update->blend_tf) {
3195 memcpy(&surface->blend_tf, srf_update->blend_tf,
3196 sizeof(surface->blend_tf));
3197
3198 if (surface->mcm_lut1d_enable)
3199 surface->mcm_luts.lut1d_func = &surface->blend_tf;
3200 }
3201
3202 if (srf_update->cm2_params || srf_update->blend_tf)
3203 surface->lut_bank_a = !surface->lut_bank_a;
3204
3205 if (srf_update->input_csc_color_matrix)
3206 surface->input_csc_color_matrix =
3207 *srf_update->input_csc_color_matrix;
3208
3209 if (srf_update->coeff_reduction_factor)
3210 surface->coeff_reduction_factor =
3211 *srf_update->coeff_reduction_factor;
3212
3213 if (srf_update->gamut_remap_matrix)
3214 surface->gamut_remap_matrix =
3215 *srf_update->gamut_remap_matrix;
3216
3217 if (srf_update->cursor_csc_color_matrix)
3218 surface->cursor_csc_color_matrix =
3219 *srf_update->cursor_csc_color_matrix;
3220
3221 if (srf_update->bias_and_scale.bias_and_scale_valid)
3222 surface->bias_and_scale =
3223 srf_update->bias_and_scale;
3224 }
3225
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)3226 static void copy_stream_update_to_stream(struct dc *dc,
3227 struct dc_state *context,
3228 struct dc_stream_state *stream,
3229 struct dc_stream_update *update)
3230 {
3231 struct dc_context *dc_ctx = dc->ctx;
3232
3233 if (update == NULL || stream == NULL)
3234 return;
3235
3236 if (update->src.height && update->src.width)
3237 stream->src = update->src;
3238
3239 if (update->dst.height && update->dst.width)
3240 stream->dst = update->dst;
3241
3242 if (update->out_transfer_func) {
3243 stream->out_transfer_func.sdr_ref_white_level =
3244 update->out_transfer_func->sdr_ref_white_level;
3245 stream->out_transfer_func.tf = update->out_transfer_func->tf;
3246 stream->out_transfer_func.type =
3247 update->out_transfer_func->type;
3248 memcpy(&stream->out_transfer_func.tf_pts,
3249 &update->out_transfer_func->tf_pts,
3250 sizeof(struct dc_transfer_func_distributed_points));
3251 }
3252
3253 if (update->hdr_static_metadata)
3254 stream->hdr_static_metadata = *update->hdr_static_metadata;
3255
3256 if (update->abm_level)
3257 stream->abm_level = *update->abm_level;
3258
3259 if (update->periodic_interrupt)
3260 stream->periodic_interrupt = *update->periodic_interrupt;
3261
3262 if (update->gamut_remap)
3263 stream->gamut_remap_matrix = *update->gamut_remap;
3264
3265 /* Note: this being updated after mode set is currently not a use case
3266 * however if it arises OCSC would need to be reprogrammed at the
3267 * minimum
3268 */
3269 if (update->output_color_space)
3270 stream->output_color_space = *update->output_color_space;
3271
3272 if (update->output_csc_transform)
3273 stream->csc_color_matrix = *update->output_csc_transform;
3274
3275 if (update->vrr_infopacket)
3276 stream->vrr_infopacket = *update->vrr_infopacket;
3277
3278 if (update->hw_cursor_req)
3279 stream->hw_cursor_req = *update->hw_cursor_req;
3280
3281 if (update->allow_freesync)
3282 stream->allow_freesync = *update->allow_freesync;
3283
3284 if (update->vrr_active_variable)
3285 stream->vrr_active_variable = *update->vrr_active_variable;
3286
3287 if (update->vrr_active_fixed)
3288 stream->vrr_active_fixed = *update->vrr_active_fixed;
3289
3290 if (update->crtc_timing_adjust) {
3291 if (stream->adjust.v_total_min != update->crtc_timing_adjust->v_total_min ||
3292 stream->adjust.v_total_max != update->crtc_timing_adjust->v_total_max ||
3293 stream->adjust.timing_adjust_pending)
3294 update->crtc_timing_adjust->timing_adjust_pending = true;
3295 stream->adjust = *update->crtc_timing_adjust;
3296 update->crtc_timing_adjust->timing_adjust_pending = false;
3297 }
3298
3299 if (update->dpms_off)
3300 stream->dpms_off = *update->dpms_off;
3301
3302 if (update->hfvsif_infopacket)
3303 stream->hfvsif_infopacket = *update->hfvsif_infopacket;
3304
3305 if (update->vtem_infopacket)
3306 stream->vtem_infopacket = *update->vtem_infopacket;
3307
3308 if (update->vsc_infopacket)
3309 stream->vsc_infopacket = *update->vsc_infopacket;
3310
3311 if (update->vsp_infopacket)
3312 stream->vsp_infopacket = *update->vsp_infopacket;
3313
3314 if (update->adaptive_sync_infopacket)
3315 stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
3316
3317 if (update->avi_infopacket)
3318 stream->avi_infopacket = *update->avi_infopacket;
3319
3320 if (update->dither_option)
3321 stream->dither_option = *update->dither_option;
3322
3323 if (update->pending_test_pattern)
3324 stream->test_pattern = *update->pending_test_pattern;
3325 /* update current stream with writeback info */
3326 if (update->wb_update) {
3327 int i;
3328
3329 stream->num_wb_info = update->wb_update->num_wb_info;
3330 ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
3331 for (i = 0; i < stream->num_wb_info; i++)
3332 stream->writeback_info[i] =
3333 update->wb_update->writeback_info[i];
3334 }
3335 if (update->dsc_config) {
3336 struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
3337 uint32_t old_dsc_enabled = stream->timing.flags.DSC;
3338 uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
3339 update->dsc_config->num_slices_v != 0);
3340
3341 /* Use temporarry context for validating new DSC config */
3342 struct dc_state *dsc_validate_context = dc_state_create_copy(dc->current_state);
3343
3344 if (dsc_validate_context) {
3345 stream->timing.dsc_cfg = *update->dsc_config;
3346 stream->timing.flags.DSC = enable_dsc;
3347 if (dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context,
3348 DC_VALIDATE_MODE_ONLY) != DC_OK) {
3349 stream->timing.dsc_cfg = old_dsc_cfg;
3350 stream->timing.flags.DSC = old_dsc_enabled;
3351 update->dsc_config = NULL;
3352 }
3353
3354 dc_state_release(dsc_validate_context);
3355 } else {
3356 DC_ERROR("Failed to allocate new validate context for DSC change\n");
3357 update->dsc_config = NULL;
3358 }
3359 }
3360 if (update->scaler_sharpener_update)
3361 stream->scaler_sharpener_update = *update->scaler_sharpener_update;
3362 if (update->sharpening_required)
3363 stream->sharpening_required = *update->sharpening_required;
3364 }
3365
backup_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3366 static void backup_planes_and_stream_state(
3367 struct dc_scratch_space *scratch,
3368 struct dc_stream_state *stream)
3369 {
3370 int i;
3371 struct dc_stream_status *status = dc_stream_get_status(stream);
3372
3373 if (!status)
3374 return;
3375
3376 for (i = 0; i < status->plane_count; i++) {
3377 dc_plane_copy_config(&scratch->plane_states[i], status->plane_states[i]);
3378 }
3379 scratch->stream_state = *stream;
3380 }
3381
restore_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3382 static void restore_planes_and_stream_state(
3383 struct dc_scratch_space *scratch,
3384 struct dc_stream_state *stream)
3385 {
3386 int i;
3387 struct dc_stream_status *status = dc_stream_get_status(stream);
3388
3389 if (!status)
3390 return;
3391
3392 for (i = 0; i < status->plane_count; i++) {
3393 dc_plane_copy_config(status->plane_states[i], &scratch->plane_states[i]);
3394 }
3395
3396 // refcount is persistent
3397 struct kref temp_refcount = stream->refcount;
3398 *stream = scratch->stream_state;
3399 stream->refcount = temp_refcount;
3400 }
3401
3402 /**
3403 * update_seamless_boot_flags() - Helper function for updating seamless boot flags
3404 *
3405 * @dc: Current DC state
3406 * @context: New DC state to be programmed
3407 * @surface_count: Number of surfaces that have an updated
3408 * @stream: Corresponding stream to be updated in the current flip
3409 *
3410 * Updating seamless boot flags do not need to be part of the commit sequence. This
3411 * helper function will update the seamless boot flags on each flip (if required)
3412 * outside of the HW commit sequence (fast or slow).
3413 *
3414 * Return: void
3415 */
update_seamless_boot_flags(struct dc * dc,struct dc_state * context,int surface_count,struct dc_stream_state * stream)3416 static void update_seamless_boot_flags(struct dc *dc,
3417 struct dc_state *context,
3418 int surface_count,
3419 struct dc_stream_state *stream)
3420 {
3421 if (get_seamless_boot_stream_count(context) > 0 && (surface_count > 0 || stream->dpms_off)) {
3422 /* Optimize seamless boot flag keeps clocks and watermarks high until
3423 * first flip. After first flip, optimization is required to lower
3424 * bandwidth. Important to note that it is expected UEFI will
3425 * only light up a single display on POST, therefore we only expect
3426 * one stream with seamless boot flag set.
3427 */
3428 if (stream->apply_seamless_boot_optimization) {
3429 stream->apply_seamless_boot_optimization = false;
3430
3431 if (get_seamless_boot_stream_count(context) == 0)
3432 dc->optimized_required = true;
3433 }
3434 }
3435 }
3436
3437 static bool full_update_required_weak(
3438 const struct dc *dc,
3439 const struct dc_surface_update *srf_updates,
3440 int surface_count,
3441 const struct dc_stream_update *stream_update,
3442 const struct dc_stream_state *stream);
3443
3444 /**
3445 * update_planes_and_stream_state() - The function takes planes and stream
3446 * updates as inputs and determines the appropriate update type. If update type
3447 * is FULL, the function allocates a new context, populates and validates it.
3448 * Otherwise, it updates current dc context. The function will return both
3449 * new_context and new_update_type back to the caller. The function also backs
3450 * up both current and new contexts into corresponding dc state scratch memory.
3451 * TODO: The function does too many things, and even conditionally allocates dc
3452 * context memory implicitly. We should consider to break it down.
3453 *
3454 * @dc: Current DC state
3455 * @srf_updates: an array of surface updates
3456 * @surface_count: surface update count
3457 * @stream: Corresponding stream to be updated
3458 * @stream_update: stream update
3459 * @new_update_type: [out] determined update type by the function
3460 * @new_context: [out] new context allocated and validated if update type is
3461 * FULL, reference to current context if update type is less than FULL.
3462 *
3463 * Return: true if a valid update is populated into new_context, false
3464 * otherwise.
3465 */
update_planes_and_stream_state(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type * new_update_type,struct dc_state ** new_context)3466 static bool update_planes_and_stream_state(struct dc *dc,
3467 struct dc_surface_update *srf_updates, int surface_count,
3468 struct dc_stream_state *stream,
3469 struct dc_stream_update *stream_update,
3470 enum surface_update_type *new_update_type,
3471 struct dc_state **new_context)
3472 {
3473 struct dc_state *context;
3474 int i, j;
3475 enum surface_update_type update_type;
3476 const struct dc_stream_status *stream_status;
3477 struct dc_context *dc_ctx = dc->ctx;
3478
3479 stream_status = dc_stream_get_status(stream);
3480
3481 if (!stream_status) {
3482 if (surface_count) /* Only an error condition if surf_count non-zero*/
3483 ASSERT(false);
3484
3485 return false; /* Cannot commit surface to stream that is not committed */
3486 }
3487
3488 context = dc->current_state;
3489 update_type = dc_check_update_surfaces_for_stream(
3490 &dc->check_config, srf_updates, surface_count, stream_update).update_type;
3491 if (full_update_required_weak(dc, srf_updates, surface_count, stream_update, stream))
3492 update_type = UPDATE_TYPE_FULL;
3493
3494 /* It is possible to receive a flip for one plane while there are multiple flip_immediate planes in the same stream.
3495 * E.g. Desktop and MPO plane are flip_immediate but only the MPO plane received a flip
3496 * Force the other flip_immediate planes to flip so GSL doesn't wait for a flip that won't come.
3497 */
3498 force_immediate_gsl_plane_flip(dc, srf_updates, surface_count);
3499 if (update_type == UPDATE_TYPE_FULL)
3500 backup_planes_and_stream_state(&dc->scratch.current_state, stream);
3501
3502 /* update current stream with the new updates */
3503 copy_stream_update_to_stream(dc, context, stream, stream_update);
3504
3505 /* do not perform surface update if surface has invalid dimensions
3506 * (all zero) and no scaling_info is provided
3507 */
3508 if (surface_count > 0) {
3509 for (i = 0; i < surface_count; i++) {
3510 if ((srf_updates[i].surface->src_rect.width == 0 ||
3511 srf_updates[i].surface->src_rect.height == 0 ||
3512 srf_updates[i].surface->dst_rect.width == 0 ||
3513 srf_updates[i].surface->dst_rect.height == 0) &&
3514 (!srf_updates[i].scaling_info ||
3515 srf_updates[i].scaling_info->src_rect.width == 0 ||
3516 srf_updates[i].scaling_info->src_rect.height == 0 ||
3517 srf_updates[i].scaling_info->dst_rect.width == 0 ||
3518 srf_updates[i].scaling_info->dst_rect.height == 0)) {
3519 DC_ERROR("Invalid src/dst rects in surface update!\n");
3520 return false;
3521 }
3522 }
3523 }
3524
3525 if (update_type == UPDATE_TYPE_FULL) {
3526 if (stream_update) {
3527 uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
3528 stream_update->stream->update_flags.raw = 0xFFFFFFFF;
3529 stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
3530 }
3531 for (i = 0; i < surface_count; i++)
3532 srf_updates[i].surface->update_flags.raw = 0xFFFFFFFF;
3533 }
3534
3535 if (update_type >= update_surface_trace_level)
3536 update_surface_trace(dc, srf_updates, surface_count);
3537
3538 for (i = 0; i < surface_count; i++)
3539 copy_surface_update_to_plane(srf_updates[i].surface, &srf_updates[i]);
3540
3541 if (update_type >= UPDATE_TYPE_FULL) {
3542 struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3543
3544 for (i = 0; i < surface_count; i++)
3545 new_planes[i] = srf_updates[i].surface;
3546
3547 /* initialize scratch memory for building context */
3548 context = dc_state_create_copy(dc->current_state);
3549 if (context == NULL) {
3550 DC_ERROR("Failed to allocate new validate context!\n");
3551 return false;
3552 }
3553
3554 /* For each full update, remove all existing phantom pipes first.
3555 * Ensures that we have enough pipes for newly added MPO planes
3556 */
3557 dc_state_remove_phantom_streams_and_planes(dc, context);
3558 dc_state_release_phantom_streams_and_planes(dc, context);
3559
3560 /*remove old surfaces from context */
3561 if (!dc_state_rem_all_planes_for_stream(dc, stream, context)) {
3562
3563 BREAK_TO_DEBUGGER();
3564 goto fail;
3565 }
3566
3567 /* add surface to context */
3568 if (!dc_state_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3569
3570 BREAK_TO_DEBUGGER();
3571 goto fail;
3572 }
3573 }
3574
3575 /* save update parameters into surface */
3576 for (i = 0; i < surface_count; i++) {
3577 struct dc_plane_state *surface = srf_updates[i].surface;
3578
3579 if (update_type != UPDATE_TYPE_MED)
3580 continue;
3581 if (surface->update_flags.bits.position_change) {
3582 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3583 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3584
3585 if (pipe_ctx->plane_state != surface)
3586 continue;
3587
3588 resource_build_scaling_params(pipe_ctx);
3589 }
3590 }
3591 }
3592
3593 if (update_type == UPDATE_TYPE_FULL) {
3594 if (dc->res_pool->funcs->validate_bandwidth(dc, context, DC_VALIDATE_MODE_AND_PROGRAMMING) != DC_OK) {
3595 BREAK_TO_DEBUGGER();
3596 goto fail;
3597 }
3598 }
3599 update_seamless_boot_flags(dc, context, surface_count, stream);
3600
3601 *new_context = context;
3602 *new_update_type = update_type;
3603 if (update_type == UPDATE_TYPE_FULL)
3604 backup_planes_and_stream_state(&dc->scratch.new_state, stream);
3605
3606 return true;
3607
3608 fail:
3609 dc_state_release(context);
3610
3611 return false;
3612
3613 }
3614
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3615 static void commit_planes_do_stream_update(struct dc *dc,
3616 struct dc_stream_state *stream,
3617 struct dc_stream_update *stream_update,
3618 enum surface_update_type update_type,
3619 struct dc_state *context)
3620 {
3621 int j;
3622
3623 // Stream updates
3624 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3625 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3626
3627 if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) {
3628
3629 if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3630 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3631
3632 if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3633 stream_update->vrr_infopacket ||
3634 stream_update->vsc_infopacket ||
3635 stream_update->vsp_infopacket ||
3636 stream_update->hfvsif_infopacket ||
3637 stream_update->adaptive_sync_infopacket ||
3638 stream_update->vtem_infopacket ||
3639 stream_update->avi_infopacket) {
3640 resource_build_info_frame(pipe_ctx);
3641 dc->hwss.update_info_frame(pipe_ctx);
3642
3643 if (dc_is_dp_signal(pipe_ctx->stream->signal))
3644 dc->link_srv->dp_trace_source_sequence(
3645 pipe_ctx->stream->link,
3646 DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3647 }
3648
3649 if (stream_update->hdr_static_metadata &&
3650 stream->use_dynamic_meta &&
3651 dc->hwss.set_dmdata_attributes &&
3652 pipe_ctx->stream->dmdata_address.quad_part != 0)
3653 dc->hwss.set_dmdata_attributes(pipe_ctx);
3654
3655 if (stream_update->gamut_remap)
3656 dc_stream_set_gamut_remap(dc, stream);
3657
3658 if (stream_update->output_csc_transform)
3659 dc_stream_program_csc_matrix(dc, stream);
3660
3661 if (stream_update->dither_option) {
3662 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3663 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3664 &pipe_ctx->stream->bit_depth_params);
3665 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3666 &stream->bit_depth_params,
3667 &stream->clamping);
3668 while (odm_pipe) {
3669 odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3670 &stream->bit_depth_params,
3671 &stream->clamping);
3672 odm_pipe = odm_pipe->next_odm_pipe;
3673 }
3674 }
3675
3676 if (stream_update->cursor_attributes)
3677 program_cursor_attributes(dc, stream);
3678
3679 if (stream_update->cursor_position)
3680 program_cursor_position(dc, stream);
3681
3682 /* Full fe update*/
3683 if (update_type == UPDATE_TYPE_FAST)
3684 continue;
3685
3686 if (stream_update->dsc_config)
3687 dc->link_srv->update_dsc_config(pipe_ctx);
3688
3689 if (stream_update->mst_bw_update) {
3690 if (stream_update->mst_bw_update->is_increase)
3691 dc->link_srv->increase_mst_payload(pipe_ctx,
3692 stream_update->mst_bw_update->mst_stream_bw);
3693 else
3694 dc->link_srv->reduce_mst_payload(pipe_ctx,
3695 stream_update->mst_bw_update->mst_stream_bw);
3696 }
3697
3698 if (stream_update->pending_test_pattern) {
3699 /*
3700 * test pattern params depends on ODM topology
3701 * changes that we could be applying to front
3702 * end. Since at the current stage front end
3703 * changes are not yet applied. We can only
3704 * apply test pattern in hw based on current
3705 * state and populate the final test pattern
3706 * params in new state. If current and new test
3707 * pattern params are different as result of
3708 * different ODM topology being used, it will be
3709 * detected and handle during front end
3710 * programming update.
3711 */
3712 dc->link_srv->dp_set_test_pattern(stream->link,
3713 stream->test_pattern.type,
3714 stream->test_pattern.color_space,
3715 stream->test_pattern.p_link_settings,
3716 stream->test_pattern.p_custom_pattern,
3717 stream->test_pattern.cust_pattern_size);
3718 resource_build_test_pattern_params(&context->res_ctx, pipe_ctx);
3719 }
3720
3721 if (stream_update->dpms_off) {
3722 if (*stream_update->dpms_off) {
3723 dc->link_srv->set_dpms_off(pipe_ctx);
3724 /* for dpms, keep acquired resources*/
3725 if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3726 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3727
3728 dc->optimized_required = true;
3729
3730 } else {
3731 if (get_seamless_boot_stream_count(context) == 0)
3732 dc->hwss.prepare_bandwidth(dc, dc->current_state);
3733 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3734 }
3735 } else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space
3736 && !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) {
3737 /*
3738 * Workaround for firmware issue in some receivers where they don't pick up
3739 * correct output color space unless DP link is disabled/re-enabled
3740 */
3741 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3742 }
3743
3744 if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3745 bool should_program_abm = true;
3746
3747 // if otg funcs defined check if blanked before programming
3748 if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3749 if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3750 should_program_abm = false;
3751
3752 if (should_program_abm) {
3753 if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3754 dc->hwss.set_abm_immediate_disable(pipe_ctx);
3755 } else {
3756 pipe_ctx->stream_res.abm->funcs->set_abm_level(
3757 pipe_ctx->stream_res.abm, stream->abm_level);
3758 }
3759 }
3760 }
3761 }
3762 }
3763 }
3764
dc_dmub_should_send_dirty_rect_cmd(struct dc * dc,struct dc_stream_state * stream)3765 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3766 {
3767 if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3768 || stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3769 && stream->ctx->dce_version >= DCN_VERSION_3_1)
3770 return true;
3771
3772 if (stream->link->replay_settings.config.replay_supported)
3773 return true;
3774
3775 if (stream->ctx->dce_version >= DCN_VERSION_3_5 && stream->abm_level)
3776 return true;
3777
3778 return false;
3779 }
3780
dc_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context)3781 void dc_dmub_update_dirty_rect(struct dc *dc,
3782 int surface_count,
3783 struct dc_stream_state *stream,
3784 struct dc_surface_update *srf_updates,
3785 struct dc_state *context)
3786 {
3787 union dmub_rb_cmd cmd;
3788 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3789 unsigned int i, j;
3790 unsigned int panel_inst = 0;
3791
3792 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3793 return;
3794
3795 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3796 return;
3797
3798 memset(&cmd, 0x0, sizeof(cmd));
3799 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3800 cmd.update_dirty_rect.header.sub_type = 0;
3801 cmd.update_dirty_rect.header.payload_bytes =
3802 sizeof(cmd.update_dirty_rect) -
3803 sizeof(cmd.update_dirty_rect.header);
3804 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3805 for (i = 0; i < surface_count; i++) {
3806 struct dc_plane_state *plane_state = srf_updates[i].surface;
3807 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3808
3809 if (!srf_updates[i].surface || !flip_addr)
3810 continue;
3811 /* Do not send in immediate flip mode */
3812 if (srf_updates[i].surface->flip_immediate)
3813 continue;
3814
3815 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3816 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3817 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3818 sizeof(flip_addr->dirty_rects));
3819 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3820 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3821
3822 if (pipe_ctx->stream != stream)
3823 continue;
3824 if (pipe_ctx->plane_state != plane_state)
3825 continue;
3826
3827 update_dirty_rect->panel_inst = panel_inst;
3828 update_dirty_rect->pipe_idx = j;
3829 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
3830 }
3831 }
3832 }
3833
build_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3834 static void build_dmub_update_dirty_rect(
3835 struct dc *dc,
3836 int surface_count,
3837 struct dc_stream_state *stream,
3838 struct dc_surface_update *srf_updates,
3839 struct dc_state *context,
3840 struct dc_dmub_cmd dc_dmub_cmd[],
3841 unsigned int *dmub_cmd_count)
3842 {
3843 union dmub_rb_cmd cmd;
3844 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3845 unsigned int i, j;
3846 unsigned int panel_inst = 0;
3847
3848 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3849 return;
3850
3851 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3852 return;
3853
3854 memset(&cmd, 0x0, sizeof(cmd));
3855 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3856 cmd.update_dirty_rect.header.sub_type = 0;
3857 cmd.update_dirty_rect.header.payload_bytes =
3858 sizeof(cmd.update_dirty_rect) -
3859 sizeof(cmd.update_dirty_rect.header);
3860 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3861 for (i = 0; i < surface_count; i++) {
3862 struct dc_plane_state *plane_state = srf_updates[i].surface;
3863 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3864
3865 if (!srf_updates[i].surface || !flip_addr)
3866 continue;
3867 /* Do not send in immediate flip mode */
3868 if (srf_updates[i].surface->flip_immediate)
3869 continue;
3870 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3871 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3872 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3873 sizeof(flip_addr->dirty_rects));
3874 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3875 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3876
3877 if (pipe_ctx->stream != stream)
3878 continue;
3879 if (pipe_ctx->plane_state != plane_state)
3880 continue;
3881 update_dirty_rect->panel_inst = panel_inst;
3882 update_dirty_rect->pipe_idx = j;
3883 dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd;
3884 dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT;
3885 (*dmub_cmd_count)++;
3886 }
3887 }
3888 }
3889
check_address_only_update(union surface_update_flags update_flags)3890 static bool check_address_only_update(union surface_update_flags update_flags)
3891 {
3892 union surface_update_flags addr_only_update_flags;
3893 addr_only_update_flags.raw = 0;
3894 addr_only_update_flags.bits.addr_update = 1;
3895
3896 return update_flags.bits.addr_update &&
3897 !(update_flags.raw & ~addr_only_update_flags.raw);
3898 }
3899
3900 /**
3901 * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB
3902 *
3903 * @dc: Current DC state
3904 * @srf_updates: Array of surface updates
3905 * @surface_count: Number of surfaces that have an updated
3906 * @stream: Corresponding stream to be updated in the current flip
3907 * @context: New DC state to be programmed
3908 *
3909 * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB
3910 * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array
3911 *
3912 * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required
3913 * to build an array of commands and have them sent while the OTG lock is acquired.
3914 *
3915 * Return: void
3916 */
build_dmub_cmd_list(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3917 static void build_dmub_cmd_list(struct dc *dc,
3918 struct dc_surface_update *srf_updates,
3919 int surface_count,
3920 struct dc_stream_state *stream,
3921 struct dc_state *context,
3922 struct dc_dmub_cmd dc_dmub_cmd[],
3923 unsigned int *dmub_cmd_count)
3924 {
3925 // Initialize cmd count to 0
3926 *dmub_cmd_count = 0;
3927 build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count);
3928 }
3929
commit_plane_for_stream_offload_fams2_flip(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context)3930 static void commit_plane_for_stream_offload_fams2_flip(struct dc *dc,
3931 struct dc_surface_update *srf_updates,
3932 int surface_count,
3933 struct dc_stream_state *stream,
3934 struct dc_state *context)
3935 {
3936 int i, j;
3937
3938 /* update dirty rect for PSR */
3939 dc_dmub_update_dirty_rect(dc, surface_count, stream,
3940 srf_updates, context);
3941
3942 /* Perform requested Updates */
3943 for (i = 0; i < surface_count; i++) {
3944 struct dc_plane_state *plane_state = srf_updates[i].surface;
3945
3946 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3947 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3948
3949 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3950 continue;
3951
3952 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3953 continue;
3954
3955 /* update pipe context for plane */
3956 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3957 dc->hwss.update_plane_addr(dc, pipe_ctx);
3958 }
3959 }
3960
3961 /* Send commands to DMCUB */
3962 dc_dmub_srv_fams2_passthrough_flip(dc,
3963 context,
3964 stream,
3965 srf_updates,
3966 surface_count);
3967 }
3968
commit_planes_for_stream_fast(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3969 static void commit_planes_for_stream_fast(struct dc *dc,
3970 struct dc_surface_update *srf_updates,
3971 int surface_count,
3972 struct dc_stream_state *stream,
3973 struct dc_stream_update *stream_update,
3974 enum surface_update_type update_type,
3975 struct dc_state *context)
3976 {
3977 int i, j;
3978 struct pipe_ctx *top_pipe_to_program = NULL;
3979 struct dc_stream_status *stream_status = NULL;
3980 bool should_offload_fams2_flip = false;
3981 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3982
3983 if (should_lock_all_pipes)
3984 determine_pipe_unlock_order(dc, context);
3985
3986 if (dc->debug.fams2_config.bits.enable &&
3987 dc->debug.fams2_config.bits.enable_offload_flip &&
3988 dc_state_is_fams2_in_use(dc, context)) {
3989 /* if not offloading to HWFQ, offload to FAMS2 if needed */
3990 should_offload_fams2_flip = true;
3991 for (i = 0; i < surface_count; i++) {
3992 if (srf_updates[i].surface &&
3993 srf_updates[i].surface->update_flags.raw &&
3994 !check_address_only_update(srf_updates[i].surface->update_flags)) {
3995 /* more than address update, need to acquire FAMS2 lock */
3996 should_offload_fams2_flip = false;
3997 break;
3998 }
3999 }
4000 if (stream_update) {
4001 /* more than address update, need to acquire FAMS2 lock */
4002 should_offload_fams2_flip = false;
4003 }
4004 }
4005
4006 dc_exit_ips_for_hw_access(dc);
4007
4008 dc_z10_restore(dc);
4009
4010 top_pipe_to_program = resource_get_otg_master_for_stream(
4011 &context->res_ctx,
4012 stream);
4013
4014 if (!top_pipe_to_program)
4015 return;
4016
4017 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4018 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
4019
4020 if (pipe->stream && pipe->plane_state) {
4021 if (!dc->debug.using_dml2)
4022 set_p_state_switch_method(dc, context, pipe);
4023
4024 if (dc->debug.visual_confirm)
4025 dc_update_visual_confirm_color(dc, context, pipe);
4026 }
4027 }
4028
4029 for (i = 0; i < surface_count; i++) {
4030 struct dc_plane_state *plane_state = srf_updates[i].surface;
4031 /*set logical flag for lock/unlock use*/
4032 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4033 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4034
4035 if (!pipe_ctx->plane_state)
4036 continue;
4037 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4038 continue;
4039
4040 pipe_ctx->plane_state->triplebuffer_flips = false;
4041 if (update_type == UPDATE_TYPE_FAST &&
4042 dc->hwss.program_triplebuffer != NULL &&
4043 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
4044 /*triple buffer for VUpdate only*/
4045 pipe_ctx->plane_state->triplebuffer_flips = true;
4046 }
4047 }
4048 }
4049
4050 stream_status = dc_state_get_stream_status(context, stream);
4051
4052 if (should_offload_fams2_flip) {
4053 commit_plane_for_stream_offload_fams2_flip(dc,
4054 srf_updates,
4055 surface_count,
4056 stream,
4057 context);
4058 } else if (stream_status) {
4059 build_dmub_cmd_list(dc,
4060 srf_updates,
4061 surface_count,
4062 stream,
4063 context,
4064 context->dc_dmub_cmd,
4065 &(context->dmub_cmd_count));
4066 hwss_build_fast_sequence(dc,
4067 context->dc_dmub_cmd,
4068 context->dmub_cmd_count,
4069 context->block_sequence,
4070 &(context->block_sequence_steps),
4071 top_pipe_to_program,
4072 stream_status,
4073 context);
4074 hwss_execute_sequence(dc,
4075 context->block_sequence,
4076 context->block_sequence_steps);
4077 }
4078
4079 /* Clear update flags so next flip doesn't have redundant programming
4080 * (if there's no stream update, the update flags are not cleared).
4081 * Surface updates are cleared unconditionally at the beginning of each flip,
4082 * so no need to clear here.
4083 */
4084 if (top_pipe_to_program->stream)
4085 top_pipe_to_program->stream->update_flags.raw = 0;
4086 }
4087
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)4088 static void commit_planes_for_stream(struct dc *dc,
4089 struct dc_surface_update *srf_updates,
4090 int surface_count,
4091 struct dc_stream_state *stream,
4092 struct dc_stream_update *stream_update,
4093 enum surface_update_type update_type,
4094 struct dc_state *context)
4095 {
4096 int i, j;
4097 struct pipe_ctx *top_pipe_to_program = NULL;
4098 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
4099 bool subvp_prev_use = false;
4100 bool subvp_curr_use = false;
4101 uint8_t current_stream_mask = 0;
4102
4103 if (should_lock_all_pipes)
4104 determine_pipe_unlock_order(dc, context);
4105 // Once we apply the new subvp context to hardware it won't be in the
4106 // dc->current_state anymore, so we have to cache it before we apply
4107 // the new SubVP context
4108 subvp_prev_use = false;
4109 dc_exit_ips_for_hw_access(dc);
4110
4111 dc_z10_restore(dc);
4112 if (update_type == UPDATE_TYPE_FULL && dc->optimized_required)
4113 hwss_process_outstanding_hw_updates(dc, dc->current_state);
4114
4115 if (update_type != UPDATE_TYPE_FAST && dc->res_pool->funcs->prepare_mcache_programming)
4116 dc->res_pool->funcs->prepare_mcache_programming(dc, context);
4117
4118 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4119 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
4120
4121 if (pipe->stream && pipe->plane_state) {
4122 if (!dc->debug.using_dml2)
4123 set_p_state_switch_method(dc, context, pipe);
4124
4125 if (dc->debug.visual_confirm)
4126 dc_update_visual_confirm_color(dc, context, pipe);
4127 }
4128 }
4129
4130 if (update_type == UPDATE_TYPE_FULL) {
4131 dc_allow_idle_optimizations(dc, false);
4132
4133 if (get_seamless_boot_stream_count(context) == 0)
4134 dc->hwss.prepare_bandwidth(dc, context);
4135
4136 if (dc->hwss.update_dsc_pg)
4137 dc->hwss.update_dsc_pg(dc, context, false);
4138
4139 context_clock_trace(dc, context);
4140 }
4141
4142 if (update_type == UPDATE_TYPE_FULL)
4143 hwss_wait_for_outstanding_hw_updates(dc, dc->current_state);
4144
4145 top_pipe_to_program = resource_get_otg_master_for_stream(
4146 &context->res_ctx,
4147 stream);
4148 ASSERT(top_pipe_to_program != NULL);
4149
4150 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4151 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4152
4153 // Check old context for SubVP
4154 subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
4155 if (subvp_prev_use)
4156 break;
4157 }
4158
4159 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4160 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
4161
4162 if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
4163 subvp_curr_use = true;
4164 break;
4165 }
4166 }
4167
4168 if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
4169 struct pipe_ctx *mpcc_pipe;
4170 struct pipe_ctx *odm_pipe;
4171
4172 for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
4173 for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
4174 odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
4175 }
4176
4177 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
4178 if (top_pipe_to_program &&
4179 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
4180 if (should_use_dmub_inbox1_lock(dc, stream->link)) {
4181 union dmub_hw_lock_flags hw_locks = { 0 };
4182 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
4183
4184 hw_locks.bits.lock_dig = 1;
4185 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
4186
4187 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
4188 true,
4189 &hw_locks,
4190 &inst_flags);
4191 } else
4192 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
4193 top_pipe_to_program->stream_res.tg);
4194 }
4195
4196 if (dc->hwss.wait_for_dcc_meta_propagation) {
4197 dc->hwss.wait_for_dcc_meta_propagation(dc, top_pipe_to_program);
4198 }
4199
4200 if (dc->hwseq->funcs.wait_for_pipe_update_if_needed)
4201 dc->hwseq->funcs.wait_for_pipe_update_if_needed(dc, top_pipe_to_program, update_type < UPDATE_TYPE_FULL);
4202
4203 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4204 if (dc->hwss.subvp_pipe_control_lock)
4205 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
4206
4207 if (dc->hwss.dmub_hw_control_lock)
4208 dc->hwss.dmub_hw_control_lock(dc, context, true);
4209
4210 dc->hwss.interdependent_update_lock(dc, context, true);
4211 } else {
4212 if (dc->hwss.subvp_pipe_control_lock)
4213 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
4214
4215 if (dc->hwss.dmub_hw_control_lock)
4216 dc->hwss.dmub_hw_control_lock(dc, context, true);
4217
4218 /* Lock the top pipe while updating plane addrs, since freesync requires
4219 * plane addr update event triggers to be synchronized.
4220 * top_pipe_to_program is expected to never be NULL
4221 */
4222 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
4223 }
4224
4225 dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
4226
4227 // Stream updates
4228 if (stream_update)
4229 commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
4230
4231 if (surface_count == 0) {
4232 /*
4233 * In case of turning off screen, no need to program front end a second time.
4234 * just return after program blank.
4235 */
4236 if (dc->hwss.apply_ctx_for_surface)
4237 dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
4238 if (dc->hwss.program_front_end_for_ctx)
4239 dc->hwss.program_front_end_for_ctx(dc, context);
4240
4241 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4242 dc->hwss.interdependent_update_lock(dc, context, false);
4243 } else {
4244 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
4245 }
4246 dc->hwss.post_unlock_program_front_end(dc, context);
4247
4248 if (update_type != UPDATE_TYPE_FAST)
4249 if (dc->hwss.commit_subvp_config)
4250 dc->hwss.commit_subvp_config(dc, context);
4251
4252 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
4253 * move the SubVP lock to after the phantom pipes have been setup
4254 */
4255 if (dc->hwss.subvp_pipe_control_lock)
4256 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
4257 NULL, subvp_prev_use);
4258
4259 if (dc->hwss.dmub_hw_control_lock)
4260 dc->hwss.dmub_hw_control_lock(dc, context, false);
4261 return;
4262 }
4263
4264 if (update_type != UPDATE_TYPE_FAST) {
4265 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4266 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4267
4268 if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP ||
4269 dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) &&
4270 pipe_ctx->stream && pipe_ctx->plane_state) {
4271 /* Only update visual confirm for SUBVP and Mclk switching here.
4272 * The bar appears on all pipes, so we need to update the bar on all displays,
4273 * so the information doesn't get stale.
4274 */
4275 dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
4276 pipe_ctx->plane_res.hubp->inst);
4277 }
4278 }
4279 }
4280
4281 for (i = 0; i < surface_count; i++) {
4282 struct dc_plane_state *plane_state = srf_updates[i].surface;
4283
4284 /*set logical flag for lock/unlock use*/
4285 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4286 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4287 if (!pipe_ctx->plane_state)
4288 continue;
4289 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4290 continue;
4291 pipe_ctx->plane_state->triplebuffer_flips = false;
4292 if (update_type == UPDATE_TYPE_FAST &&
4293 dc->hwss.program_triplebuffer != NULL &&
4294 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
4295 /*triple buffer for VUpdate only*/
4296 pipe_ctx->plane_state->triplebuffer_flips = true;
4297 }
4298 }
4299 if (update_type == UPDATE_TYPE_FULL) {
4300 /* force vsync flip when reconfiguring pipes to prevent underflow */
4301 plane_state->flip_immediate = false;
4302 plane_state->triplebuffer_flips = false;
4303 }
4304 }
4305
4306 // Update Type FULL, Surface updates
4307 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4308 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4309
4310 if (!pipe_ctx->top_pipe &&
4311 !pipe_ctx->prev_odm_pipe &&
4312 should_update_pipe_for_stream(context, pipe_ctx, stream)) {
4313 struct dc_stream_status *stream_status = NULL;
4314
4315 if (!pipe_ctx->plane_state)
4316 continue;
4317
4318 /* Full fe update*/
4319 if (update_type == UPDATE_TYPE_FAST)
4320 continue;
4321
4322 stream_status =
4323 stream_get_status(context, pipe_ctx->stream);
4324
4325 if (dc->hwss.apply_ctx_for_surface && stream_status)
4326 dc->hwss.apply_ctx_for_surface(
4327 dc, pipe_ctx->stream, stream_status->plane_count, context);
4328 }
4329 }
4330
4331 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4332 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4333
4334 if (!pipe_ctx->plane_state)
4335 continue;
4336
4337 /* Full fe update*/
4338 if (update_type == UPDATE_TYPE_FAST)
4339 continue;
4340
4341 ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
4342 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
4343 /*turn off triple buffer for full update*/
4344 dc->hwss.program_triplebuffer(
4345 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
4346 }
4347 }
4348
4349 if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
4350 dc->hwss.program_front_end_for_ctx(dc, context);
4351
4352 //Pipe busy until some frame and line #
4353 if (dc->hwseq->funcs.set_wait_for_update_needed_for_pipe && update_type == UPDATE_TYPE_FULL) {
4354 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4355 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4356
4357 dc->hwseq->funcs.set_wait_for_update_needed_for_pipe(dc, pipe_ctx);
4358 }
4359 }
4360
4361 if (dc->debug.validate_dml_output) {
4362 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4363 struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
4364 if (cur_pipe->stream == NULL)
4365 continue;
4366
4367 cur_pipe->plane_res.hubp->funcs->validate_dml_output(
4368 cur_pipe->plane_res.hubp, dc->ctx,
4369 &context->res_ctx.pipe_ctx[i].rq_regs,
4370 &context->res_ctx.pipe_ctx[i].dlg_regs,
4371 &context->res_ctx.pipe_ctx[i].ttu_regs);
4372 }
4373 }
4374 }
4375
4376 // Update Type FAST, Surface updates
4377 if (update_type == UPDATE_TYPE_FAST) {
4378 if (dc->hwss.set_flip_control_gsl)
4379 for (i = 0; i < surface_count; i++) {
4380 struct dc_plane_state *plane_state = srf_updates[i].surface;
4381
4382 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4383 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4384
4385 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
4386 continue;
4387
4388 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4389 continue;
4390
4391 // GSL has to be used for flip immediate
4392 dc->hwss.set_flip_control_gsl(pipe_ctx,
4393 pipe_ctx->plane_state->flip_immediate);
4394 }
4395 }
4396
4397 /* Perform requested Updates */
4398 for (i = 0; i < surface_count; i++) {
4399 struct dc_plane_state *plane_state = srf_updates[i].surface;
4400
4401 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4402 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4403
4404 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
4405 continue;
4406
4407 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4408 continue;
4409
4410 if (srf_updates[i].cm2_params &&
4411 srf_updates[i].cm2_params->cm2_luts.lut3d_data.lut3d_src ==
4412 DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM &&
4413 srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting ==
4414 DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER_3DLUT &&
4415 dc->hwss.trigger_3dlut_dma_load)
4416 dc->hwss.trigger_3dlut_dma_load(dc, pipe_ctx);
4417
4418 /*program triple buffer after lock based on flip type*/
4419 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
4420 /*only enable triplebuffer for fast_update*/
4421 dc->hwss.program_triplebuffer(
4422 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
4423 }
4424 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
4425 dc->hwss.update_plane_addr(dc, pipe_ctx);
4426 }
4427 }
4428 }
4429
4430 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4431 dc->hwss.interdependent_update_lock(dc, context, false);
4432 } else {
4433 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
4434 }
4435
4436 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
4437 if (top_pipe_to_program &&
4438 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
4439 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4440 top_pipe_to_program->stream_res.tg,
4441 CRTC_STATE_VACTIVE);
4442 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4443 top_pipe_to_program->stream_res.tg,
4444 CRTC_STATE_VBLANK);
4445 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4446 top_pipe_to_program->stream_res.tg,
4447 CRTC_STATE_VACTIVE);
4448
4449 if (should_use_dmub_inbox1_lock(dc, stream->link)) {
4450 union dmub_hw_lock_flags hw_locks = { 0 };
4451 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
4452
4453 hw_locks.bits.lock_dig = 1;
4454 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
4455
4456 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
4457 false,
4458 &hw_locks,
4459 &inst_flags);
4460 } else
4461 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
4462 top_pipe_to_program->stream_res.tg);
4463 }
4464
4465 if (subvp_curr_use) {
4466 /* If enabling subvp or transitioning from subvp->subvp, enable the
4467 * phantom streams before we program front end for the phantom pipes.
4468 */
4469 if (update_type != UPDATE_TYPE_FAST) {
4470 if (dc->hwss.enable_phantom_streams)
4471 dc->hwss.enable_phantom_streams(dc, context);
4472 }
4473 }
4474
4475 if (update_type != UPDATE_TYPE_FAST)
4476 dc->hwss.post_unlock_program_front_end(dc, context);
4477
4478 if (subvp_prev_use && !subvp_curr_use) {
4479 /* If disabling subvp, disable phantom streams after front end
4480 * programming has completed (we turn on phantom OTG in order
4481 * to complete the plane disable for phantom pipes).
4482 */
4483
4484 if (dc->hwss.disable_phantom_streams)
4485 dc->hwss.disable_phantom_streams(dc, context);
4486 }
4487
4488 if (update_type != UPDATE_TYPE_FAST)
4489 if (dc->hwss.commit_subvp_config)
4490 dc->hwss.commit_subvp_config(dc, context);
4491 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
4492 * move the SubVP lock to after the phantom pipes have been setup
4493 */
4494 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4495 if (dc->hwss.subvp_pipe_control_lock)
4496 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
4497 if (dc->hwss.dmub_hw_control_lock)
4498 dc->hwss.dmub_hw_control_lock(dc, context, false);
4499 } else {
4500 if (dc->hwss.subvp_pipe_control_lock)
4501 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
4502 if (dc->hwss.dmub_hw_control_lock)
4503 dc->hwss.dmub_hw_control_lock(dc, context, false);
4504 }
4505
4506 // Fire manual trigger only when bottom plane is flipped
4507 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4508 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4509
4510 if (!pipe_ctx->plane_state)
4511 continue;
4512
4513 if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
4514 !pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
4515 !pipe_ctx->plane_state->update_flags.bits.addr_update ||
4516 pipe_ctx->plane_state->skip_manual_trigger)
4517 continue;
4518
4519 if (dc->hwss.program_cursor_offload_now)
4520 dc->hwss.program_cursor_offload_now(dc, pipe_ctx);
4521 if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
4522 pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
4523 }
4524
4525 current_stream_mask = get_stream_mask(dc, context);
4526 if (current_stream_mask != context->stream_mask) {
4527 context->stream_mask = current_stream_mask;
4528 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, current_stream_mask);
4529 }
4530 }
4531
4532 /**
4533 * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
4534 *
4535 * @dc: Used to get the current state status
4536 * @stream: Target stream, which we want to remove the attached planes
4537 * @srf_updates: Array of surface updates
4538 * @surface_count: Number of surface update
4539 * @is_plane_addition: [in] Fill out with true if it is a plane addition case
4540 *
4541 * DCN32x and newer support a feature named Dynamic ODM which can conflict with
4542 * the MPO if used simultaneously in some specific configurations (e.g.,
4543 * 4k@144). This function checks if the incoming context requires applying a
4544 * transition state with unnecessary pipe splitting and ODM disabled to
4545 * circumvent our hardware limitations to prevent this edge case. If the OPP
4546 * associated with an MPCC might change due to plane additions, this function
4547 * returns true.
4548 *
4549 * Return:
4550 * Return true if OPP and MPCC might change, otherwise, return false.
4551 */
could_mpcc_tree_change_for_active_pipes(struct dc * dc,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count,bool * is_plane_addition)4552 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
4553 struct dc_stream_state *stream,
4554 struct dc_surface_update *srf_updates,
4555 int surface_count,
4556 bool *is_plane_addition)
4557 {
4558
4559 struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
4560 bool force_minimal_pipe_splitting = false;
4561 bool subvp_active = false;
4562 uint32_t i;
4563
4564 *is_plane_addition = false;
4565
4566 if (cur_stream_status &&
4567 dc->current_state->stream_count > 0 &&
4568 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
4569 /* determine if minimal transition is required due to MPC*/
4570 if (surface_count > 0) {
4571 if (cur_stream_status->plane_count > surface_count) {
4572 force_minimal_pipe_splitting = true;
4573 } else if (cur_stream_status->plane_count < surface_count) {
4574 force_minimal_pipe_splitting = true;
4575 *is_plane_addition = true;
4576 }
4577 }
4578 }
4579
4580 if (cur_stream_status &&
4581 dc->current_state->stream_count == 1 &&
4582 dc->debug.enable_single_display_2to1_odm_policy) {
4583 /* determine if minimal transition is required due to dynamic ODM*/
4584 if (surface_count > 0) {
4585 if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
4586 force_minimal_pipe_splitting = true;
4587 } else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
4588 force_minimal_pipe_splitting = true;
4589 *is_plane_addition = true;
4590 }
4591 }
4592 }
4593
4594 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4595 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4596
4597 if (dc_state_get_pipe_subvp_type(dc->current_state, pipe) != SUBVP_NONE) {
4598 subvp_active = true;
4599 break;
4600 }
4601 }
4602
4603 /* For SubVP when adding or removing planes we need to add a minimal transition
4604 * (even when disabling all planes). Whenever disabling a phantom pipe, we
4605 * must use the minimal transition path to disable the pipe correctly.
4606 *
4607 * We want to use the minimal transition whenever subvp is active, not only if
4608 * a plane is being added / removed from a subvp stream (MPO plane can be added
4609 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
4610 * a min transition to disable subvp.
4611 */
4612 if (cur_stream_status && subvp_active) {
4613 /* determine if minimal transition is required due to SubVP*/
4614 if (cur_stream_status->plane_count > surface_count) {
4615 force_minimal_pipe_splitting = true;
4616 } else if (cur_stream_status->plane_count < surface_count) {
4617 force_minimal_pipe_splitting = true;
4618 *is_plane_addition = true;
4619 }
4620 }
4621
4622 return force_minimal_pipe_splitting;
4623 }
4624
4625 struct pipe_split_policy_backup {
4626 bool dynamic_odm_policy;
4627 bool subvp_policy;
4628 enum pipe_split_policy mpc_policy;
4629 char force_odm[MAX_PIPES];
4630 };
4631
backup_and_set_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4632 static void backup_and_set_minimal_pipe_split_policy(struct dc *dc,
4633 struct dc_state *context,
4634 struct pipe_split_policy_backup *policy)
4635 {
4636 int i;
4637
4638 if (!dc->config.is_vmin_only_asic) {
4639 policy->mpc_policy = dc->debug.pipe_split_policy;
4640 dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
4641 }
4642 policy->dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
4643 dc->debug.enable_single_display_2to1_odm_policy = false;
4644 policy->subvp_policy = dc->debug.force_disable_subvp;
4645 dc->debug.force_disable_subvp = true;
4646 for (i = 0; i < context->stream_count; i++) {
4647 policy->force_odm[i] = context->streams[i]->debug.force_odm_combine_segments;
4648 if (context->streams[i]->debug.allow_transition_for_forced_odm)
4649 context->streams[i]->debug.force_odm_combine_segments = 0;
4650 }
4651 }
4652
restore_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4653 static void restore_minimal_pipe_split_policy(struct dc *dc,
4654 struct dc_state *context,
4655 struct pipe_split_policy_backup *policy)
4656 {
4657 uint8_t i;
4658
4659 if (!dc->config.is_vmin_only_asic)
4660 dc->debug.pipe_split_policy = policy->mpc_policy;
4661 dc->debug.enable_single_display_2to1_odm_policy =
4662 policy->dynamic_odm_policy;
4663 dc->debug.force_disable_subvp = policy->subvp_policy;
4664 for (i = 0; i < context->stream_count; i++)
4665 context->streams[i]->debug.force_odm_combine_segments = policy->force_odm[i];
4666 }
4667
release_minimal_transition_state(struct dc * dc,struct dc_state * minimal_transition_context,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4668 static void release_minimal_transition_state(struct dc *dc,
4669 struct dc_state *minimal_transition_context,
4670 struct dc_state *base_context,
4671 struct pipe_split_policy_backup *policy)
4672 {
4673 restore_minimal_pipe_split_policy(dc, base_context, policy);
4674 dc_state_release(minimal_transition_context);
4675 }
4676
force_vsync_flip_in_minimal_transition_context(struct dc_state * context)4677 static void force_vsync_flip_in_minimal_transition_context(struct dc_state *context)
4678 {
4679 uint8_t i;
4680 int j;
4681 struct dc_stream_status *stream_status;
4682
4683 for (i = 0; i < context->stream_count; i++) {
4684 stream_status = &context->stream_status[i];
4685
4686 for (j = 0; j < stream_status->plane_count; j++)
4687 stream_status->plane_states[j]->flip_immediate = false;
4688 }
4689 }
4690
create_minimal_transition_state(struct dc * dc,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4691 static struct dc_state *create_minimal_transition_state(struct dc *dc,
4692 struct dc_state *base_context, struct pipe_split_policy_backup *policy)
4693 {
4694 struct dc_state *minimal_transition_context = NULL;
4695
4696 minimal_transition_context = dc_state_create_copy(base_context);
4697 if (!minimal_transition_context)
4698 return NULL;
4699
4700 backup_and_set_minimal_pipe_split_policy(dc, base_context, policy);
4701 /* commit minimal state */
4702 if (dc->res_pool->funcs->validate_bandwidth(dc, minimal_transition_context,
4703 DC_VALIDATE_MODE_AND_PROGRAMMING) == DC_OK) {
4704 /* prevent underflow and corruption when reconfiguring pipes */
4705 force_vsync_flip_in_minimal_transition_context(minimal_transition_context);
4706 } else {
4707 /*
4708 * This should never happen, minimal transition state should
4709 * always be validated first before adding pipe split features.
4710 */
4711 release_minimal_transition_state(dc, minimal_transition_context, base_context, policy);
4712 BREAK_TO_DEBUGGER();
4713 minimal_transition_context = NULL;
4714 }
4715 return minimal_transition_context;
4716 }
4717
is_pipe_topology_transition_seamless_with_intermediate_step(struct dc * dc,struct dc_state * initial_state,struct dc_state * intermediate_state,struct dc_state * final_state)4718 static bool is_pipe_topology_transition_seamless_with_intermediate_step(
4719 struct dc *dc,
4720 struct dc_state *initial_state,
4721 struct dc_state *intermediate_state,
4722 struct dc_state *final_state)
4723 {
4724 return dc->hwss.is_pipe_topology_transition_seamless(dc, initial_state,
4725 intermediate_state) &&
4726 dc->hwss.is_pipe_topology_transition_seamless(dc,
4727 intermediate_state, final_state);
4728 }
4729
swap_and_release_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4730 static void swap_and_release_current_context(struct dc *dc,
4731 struct dc_state *new_context, struct dc_stream_state *stream)
4732 {
4733
4734 int i;
4735 struct dc_state *old = dc->current_state;
4736 struct pipe_ctx *pipe_ctx;
4737
4738 /* Since memory free requires elevated IRQ, an interrupt
4739 * request is generated by mem free. If this happens
4740 * between freeing and reassigning the context, our vsync
4741 * interrupt will call into dc and cause a memory
4742 * corruption. Hence, we first reassign the context,
4743 * then free the old context.
4744 */
4745 dc->current_state = new_context;
4746 dc_state_release(old);
4747
4748 // clear any forced full updates
4749 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4750 pipe_ctx = &new_context->res_ctx.pipe_ctx[i];
4751
4752 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4753 pipe_ctx->plane_state->force_full_update = false;
4754 }
4755 }
4756
initialize_empty_surface_updates(struct dc_stream_state * stream,struct dc_surface_update * srf_updates)4757 static int initialize_empty_surface_updates(
4758 struct dc_stream_state *stream,
4759 struct dc_surface_update *srf_updates)
4760 {
4761 struct dc_stream_status *status = dc_stream_get_status(stream);
4762 int i;
4763
4764 if (!status)
4765 return 0;
4766
4767 for (i = 0; i < status->plane_count; i++)
4768 srf_updates[i].surface = status->plane_states[i];
4769
4770 return status->plane_count;
4771 }
4772
commit_minimal_transition_based_on_new_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4773 static bool commit_minimal_transition_based_on_new_context(struct dc *dc,
4774 struct dc_state *new_context,
4775 struct dc_stream_state *stream,
4776 struct dc_surface_update *srf_updates,
4777 int surface_count)
4778 {
4779 bool success = false;
4780 struct pipe_split_policy_backup policy;
4781 struct dc_state *intermediate_context =
4782 create_minimal_transition_state(dc, new_context,
4783 &policy);
4784
4785 if (intermediate_context) {
4786 if (is_pipe_topology_transition_seamless_with_intermediate_step(
4787 dc,
4788 dc->current_state,
4789 intermediate_context,
4790 new_context)) {
4791 DC_LOG_DC("commit minimal transition state: base = new state\n");
4792 commit_planes_for_stream(dc, srf_updates,
4793 surface_count, stream, NULL,
4794 UPDATE_TYPE_FULL, intermediate_context);
4795 swap_and_release_current_context(
4796 dc, intermediate_context, stream);
4797 dc_state_retain(dc->current_state);
4798 success = true;
4799 }
4800 release_minimal_transition_state(
4801 dc, intermediate_context, new_context, &policy);
4802 }
4803 return success;
4804 }
4805
commit_minimal_transition_based_on_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4806 static bool commit_minimal_transition_based_on_current_context(struct dc *dc,
4807 struct dc_state *new_context, struct dc_stream_state *stream)
4808 {
4809 bool success = false;
4810 struct pipe_split_policy_backup policy;
4811 struct dc_state *intermediate_context;
4812 struct dc_state *old_current_state = dc->current_state;
4813 struct dc_surface_update srf_updates[MAX_SURFACES] = {0};
4814 int surface_count;
4815
4816 /*
4817 * Both current and new contexts share the same stream and plane state
4818 * pointers. When new context is validated, stream and planes get
4819 * populated with new updates such as new plane addresses. This makes
4820 * the current context no longer valid because stream and planes are
4821 * modified from the original. We backup current stream and plane states
4822 * into scratch space whenever we are populating new context. So we can
4823 * restore the original values back by calling the restore function now.
4824 * This restores back the original stream and plane states associated
4825 * with the current state.
4826 */
4827 restore_planes_and_stream_state(&dc->scratch.current_state, stream);
4828 dc_state_retain(old_current_state);
4829 intermediate_context = create_minimal_transition_state(dc,
4830 old_current_state, &policy);
4831
4832 if (intermediate_context) {
4833 if (is_pipe_topology_transition_seamless_with_intermediate_step(
4834 dc,
4835 dc->current_state,
4836 intermediate_context,
4837 new_context)) {
4838 DC_LOG_DC("commit minimal transition state: base = current state\n");
4839 surface_count = initialize_empty_surface_updates(
4840 stream, srf_updates);
4841 commit_planes_for_stream(dc, srf_updates,
4842 surface_count, stream, NULL,
4843 UPDATE_TYPE_FULL, intermediate_context);
4844 swap_and_release_current_context(
4845 dc, intermediate_context, stream);
4846 dc_state_retain(dc->current_state);
4847 success = true;
4848 }
4849 release_minimal_transition_state(dc, intermediate_context,
4850 old_current_state, &policy);
4851 }
4852 dc_state_release(old_current_state);
4853 /*
4854 * Restore stream and plane states back to the values associated with
4855 * new context.
4856 */
4857 restore_planes_and_stream_state(&dc->scratch.new_state, stream);
4858 return success;
4859 }
4860
4861 /**
4862 * commit_minimal_transition_state_in_dc_update - Commit a minimal state based
4863 * on current or new context
4864 *
4865 * @dc: DC structure, used to get the current state
4866 * @new_context: New context
4867 * @stream: Stream getting the update for the flip
4868 * @srf_updates: Surface updates
4869 * @surface_count: Number of surfaces
4870 *
4871 * The function takes in current state and new state and determine a minimal
4872 * transition state as the intermediate step which could make the transition
4873 * between current and new states seamless. If found, it will commit the minimal
4874 * transition state and update current state to this minimal transition state
4875 * and return true, if not, it will return false.
4876 *
4877 * Return:
4878 * Return True if the minimal transition succeeded, false otherwise
4879 */
commit_minimal_transition_state_in_dc_update(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4880 static bool commit_minimal_transition_state_in_dc_update(struct dc *dc,
4881 struct dc_state *new_context,
4882 struct dc_stream_state *stream,
4883 struct dc_surface_update *srf_updates,
4884 int surface_count)
4885 {
4886 bool success = commit_minimal_transition_based_on_new_context(
4887 dc, new_context, stream, srf_updates,
4888 surface_count);
4889 if (!success)
4890 success = commit_minimal_transition_based_on_current_context(dc,
4891 new_context, stream);
4892 if (!success)
4893 DC_LOG_ERROR("Fail to commit a seamless minimal transition state between current and new states.\nThis pipe topology update is non-seamless!\n");
4894 return success;
4895 }
4896
4897 /**
4898 * commit_minimal_transition_state - Create a transition pipe split state
4899 *
4900 * @dc: Used to get the current state status
4901 * @transition_base_context: New transition state
4902 *
4903 * In some specific configurations, such as pipe split on multi-display with
4904 * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
4905 * programming when moving to new planes. To mitigate those types of problems,
4906 * this function adds a transition state that minimizes pipe usage before
4907 * programming the new configuration. When adding a new plane, the current
4908 * state requires the least pipes, so it is applied without splitting. When
4909 * removing a plane, the new state requires the least pipes, so it is applied
4910 * without splitting.
4911 *
4912 * Return:
4913 * Return false if something is wrong in the transition state.
4914 */
commit_minimal_transition_state(struct dc * dc,struct dc_state * transition_base_context)4915 static bool commit_minimal_transition_state(struct dc *dc,
4916 struct dc_state *transition_base_context)
4917 {
4918 struct dc_state *transition_context;
4919 struct pipe_split_policy_backup policy;
4920 enum dc_status ret = DC_ERROR_UNEXPECTED;
4921 unsigned int i, j;
4922 unsigned int pipe_in_use = 0;
4923 bool subvp_in_use = false;
4924 bool odm_in_use = false;
4925
4926 /* check current pipes in use*/
4927 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4928 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4929
4930 if (pipe->plane_state)
4931 pipe_in_use++;
4932 }
4933
4934 /* If SubVP is enabled and we are adding or removing planes from any main subvp
4935 * pipe, we must use the minimal transition.
4936 */
4937 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4938 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4939
4940 if (pipe->stream && dc_state_get_pipe_subvp_type(dc->current_state, pipe) == SUBVP_PHANTOM) {
4941 subvp_in_use = true;
4942 break;
4943 }
4944 }
4945
4946 /* If ODM is enabled and we are adding or removing planes from any ODM
4947 * pipe, we must use the minimal transition.
4948 */
4949 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4950 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4951
4952 if (resource_is_pipe_type(pipe, OTG_MASTER)) {
4953 odm_in_use = resource_get_odm_slice_count(pipe) > 1;
4954 break;
4955 }
4956 }
4957
4958 /* When the OS add a new surface if we have been used all of pipes with odm combine
4959 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
4960 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
4961 * call it again. Otherwise return true to skip.
4962 *
4963 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
4964 * enter/exit MPO when DCN still have enough resources.
4965 */
4966 if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use)
4967 return true;
4968
4969 DC_LOG_DC("%s base = %s state, reason = %s\n", __func__,
4970 dc->current_state == transition_base_context ? "current" : "new",
4971 subvp_in_use ? "Subvp In Use" :
4972 odm_in_use ? "ODM in Use" :
4973 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID ? "MPC in Use" :
4974 "Unknown");
4975
4976 dc_state_retain(transition_base_context);
4977 transition_context = create_minimal_transition_state(dc,
4978 transition_base_context, &policy);
4979 if (transition_context) {
4980 ret = dc_commit_state_no_check(dc, transition_context);
4981 release_minimal_transition_state(dc, transition_context, transition_base_context, &policy);
4982 }
4983 dc_state_release(transition_base_context);
4984
4985 if (ret != DC_OK) {
4986 /* this should never happen */
4987 BREAK_TO_DEBUGGER();
4988 return false;
4989 }
4990
4991 /* force full surface update */
4992 for (i = 0; i < dc->current_state->stream_count; i++) {
4993 for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
4994 dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
4995 }
4996 }
4997
4998 return true;
4999 }
5000
populate_fast_updates(struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update)5001 void populate_fast_updates(struct dc_fast_update *fast_update,
5002 struct dc_surface_update *srf_updates,
5003 int surface_count,
5004 struct dc_stream_update *stream_update)
5005 {
5006 int i = 0;
5007
5008 if (stream_update) {
5009 fast_update[0].out_transfer_func = stream_update->out_transfer_func;
5010 fast_update[0].output_csc_transform = stream_update->output_csc_transform;
5011 } else {
5012 fast_update[0].out_transfer_func = NULL;
5013 fast_update[0].output_csc_transform = NULL;
5014 }
5015
5016 for (i = 0; i < surface_count; i++) {
5017 fast_update[i].flip_addr = srf_updates[i].flip_addr;
5018 fast_update[i].gamma = srf_updates[i].gamma;
5019 fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix;
5020 fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix;
5021 fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor;
5022 fast_update[i].cursor_csc_color_matrix = srf_updates[i].cursor_csc_color_matrix;
5023 }
5024 }
5025
fast_updates_exist(const struct dc_fast_update * fast_update,int surface_count)5026 static bool fast_updates_exist(const struct dc_fast_update *fast_update, int surface_count)
5027 {
5028 int i;
5029
5030 if (fast_update[0].out_transfer_func ||
5031 fast_update[0].output_csc_transform)
5032 return true;
5033
5034 for (i = 0; i < surface_count; i++) {
5035 if (fast_update[i].flip_addr ||
5036 fast_update[i].gamma ||
5037 fast_update[i].gamut_remap_matrix ||
5038 fast_update[i].input_csc_color_matrix ||
5039 fast_update[i].cursor_csc_color_matrix ||
5040 fast_update[i].coeff_reduction_factor)
5041 return true;
5042 }
5043
5044 return false;
5045 }
5046
fast_nonaddr_updates_exist(struct dc_fast_update * fast_update,int surface_count)5047 bool fast_nonaddr_updates_exist(struct dc_fast_update *fast_update, int surface_count)
5048 {
5049 int i;
5050
5051 if (fast_update[0].out_transfer_func ||
5052 fast_update[0].output_csc_transform)
5053 return true;
5054
5055 for (i = 0; i < surface_count; i++) {
5056 if (fast_update[i].input_csc_color_matrix ||
5057 fast_update[i].gamma ||
5058 fast_update[i].gamut_remap_matrix ||
5059 fast_update[i].coeff_reduction_factor ||
5060 fast_update[i].cursor_csc_color_matrix)
5061 return true;
5062 }
5063
5064 return false;
5065 }
5066
full_update_required_weak(const struct dc * dc,const struct dc_surface_update * srf_updates,int surface_count,const struct dc_stream_update * stream_update,const struct dc_stream_state * stream)5067 static bool full_update_required_weak(
5068 const struct dc *dc,
5069 const struct dc_surface_update *srf_updates,
5070 int surface_count,
5071 const struct dc_stream_update *stream_update,
5072 const struct dc_stream_state *stream)
5073 {
5074 const struct dc_state *context = dc->current_state;
5075 if (srf_updates)
5076 for (int i = 0; i < surface_count; i++)
5077 if (!is_surface_in_context(context, srf_updates[i].surface))
5078 return true;
5079
5080 if (stream) {
5081 const struct dc_stream_status *stream_status = dc_stream_get_status_const(stream);
5082 if (stream_status == NULL || stream_status->plane_count != surface_count)
5083 return true;
5084 }
5085 if (dc->idle_optimizations_allowed)
5086 return true;
5087
5088 if (dc_can_clear_cursor_limit(dc))
5089 return true;
5090
5091 return false;
5092 }
5093
full_update_required(const struct dc * dc,const struct dc_surface_update * srf_updates,int surface_count,const struct dc_stream_update * stream_update,const struct dc_stream_state * stream)5094 static bool full_update_required(
5095 const struct dc *dc,
5096 const struct dc_surface_update *srf_updates,
5097 int surface_count,
5098 const struct dc_stream_update *stream_update,
5099 const struct dc_stream_state *stream)
5100 {
5101 if (full_update_required_weak(dc, srf_updates, surface_count, stream_update, stream))
5102 return true;
5103
5104 for (int i = 0; i < surface_count; i++) {
5105 if (srf_updates &&
5106 (srf_updates[i].plane_info ||
5107 srf_updates[i].scaling_info ||
5108 (srf_updates[i].hdr_mult.value &&
5109 srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) ||
5110 (srf_updates[i].sdr_white_level_nits &&
5111 srf_updates[i].sdr_white_level_nits != srf_updates->surface->sdr_white_level_nits) ||
5112 srf_updates[i].in_transfer_func ||
5113 srf_updates[i].func_shaper ||
5114 srf_updates[i].lut3d_func ||
5115 srf_updates[i].surface->force_full_update ||
5116 (srf_updates[i].flip_addr &&
5117 srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) ||
5118 (srf_updates[i].cm2_params &&
5119 (srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting != srf_updates[i].surface->mcm_shaper_3dlut_setting ||
5120 srf_updates[i].cm2_params->component_settings.lut1d_enable != srf_updates[i].surface->mcm_lut1d_enable))))
5121 return true;
5122 }
5123
5124 if (stream_update &&
5125 (((stream_update->src.height != 0 && stream_update->src.width != 0) ||
5126 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
5127 stream_update->integer_scaling_update) ||
5128 stream_update->hdr_static_metadata ||
5129 stream_update->abm_level ||
5130 stream_update->periodic_interrupt ||
5131 stream_update->vrr_infopacket ||
5132 stream_update->vsc_infopacket ||
5133 stream_update->vsp_infopacket ||
5134 stream_update->hfvsif_infopacket ||
5135 stream_update->vtem_infopacket ||
5136 stream_update->adaptive_sync_infopacket ||
5137 stream_update->avi_infopacket ||
5138 stream_update->dpms_off ||
5139 stream_update->allow_freesync ||
5140 stream_update->vrr_active_variable ||
5141 stream_update->vrr_active_fixed ||
5142 stream_update->gamut_remap ||
5143 stream_update->output_color_space ||
5144 stream_update->dither_option ||
5145 stream_update->wb_update ||
5146 stream_update->dsc_config ||
5147 stream_update->mst_bw_update ||
5148 stream_update->func_shaper ||
5149 stream_update->lut3d_func ||
5150 stream_update->pending_test_pattern ||
5151 stream_update->crtc_timing_adjust ||
5152 stream_update->scaler_sharpener_update ||
5153 stream_update->hw_cursor_req))
5154 return true;
5155
5156 return false;
5157 }
5158
fast_update_only(const struct dc * dc,const struct dc_fast_update * fast_update,const struct dc_surface_update * srf_updates,int surface_count,const struct dc_stream_update * stream_update,const struct dc_stream_state * stream)5159 static bool fast_update_only(
5160 const struct dc *dc,
5161 const struct dc_fast_update *fast_update,
5162 const struct dc_surface_update *srf_updates,
5163 int surface_count,
5164 const struct dc_stream_update *stream_update,
5165 const struct dc_stream_state *stream)
5166 {
5167 return fast_updates_exist(fast_update, surface_count)
5168 && !full_update_required(dc, srf_updates, surface_count, stream_update, stream);
5169 }
5170
update_planes_and_stream_v2(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5171 static bool update_planes_and_stream_v2(struct dc *dc,
5172 struct dc_surface_update *srf_updates, int surface_count,
5173 struct dc_stream_state *stream,
5174 struct dc_stream_update *stream_update)
5175 {
5176 struct dc_state *context;
5177 enum surface_update_type update_type;
5178 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
5179
5180 /* In cases where MPO and split or ODM are used transitions can
5181 * cause underflow. Apply stream configuration with minimal pipe
5182 * split first to avoid unsupported transitions for active pipes.
5183 */
5184 bool force_minimal_pipe_splitting = 0;
5185 bool is_plane_addition = 0;
5186 bool is_fast_update_only;
5187
5188 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
5189 is_fast_update_only = fast_update_only(dc, fast_update, srf_updates,
5190 surface_count, stream_update, stream);
5191 force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
5192 dc,
5193 stream,
5194 srf_updates,
5195 surface_count,
5196 &is_plane_addition);
5197
5198 /* on plane addition, minimal state is the current one */
5199 if (force_minimal_pipe_splitting && is_plane_addition &&
5200 !commit_minimal_transition_state(dc, dc->current_state))
5201 return false;
5202
5203 if (!update_planes_and_stream_state(
5204 dc,
5205 srf_updates,
5206 surface_count,
5207 stream,
5208 stream_update,
5209 &update_type,
5210 &context))
5211 return false;
5212
5213 /* on plane removal, minimal state is the new one */
5214 if (force_minimal_pipe_splitting && !is_plane_addition) {
5215 if (!commit_minimal_transition_state(dc, context)) {
5216 dc_state_release(context);
5217 return false;
5218 }
5219 update_type = UPDATE_TYPE_FULL;
5220 }
5221
5222 if (dc->hwss.is_pipe_topology_transition_seamless &&
5223 !dc->hwss.is_pipe_topology_transition_seamless(
5224 dc, dc->current_state, context))
5225 commit_minimal_transition_state_in_dc_update(dc, context, stream,
5226 srf_updates, surface_count);
5227
5228 if (is_fast_update_only && !dc->check_config.enable_legacy_fast_update) {
5229 commit_planes_for_stream_fast(dc,
5230 srf_updates,
5231 surface_count,
5232 stream,
5233 stream_update,
5234 update_type,
5235 context);
5236 } else {
5237 if (!stream_update &&
5238 dc->hwss.is_pipe_topology_transition_seamless &&
5239 !dc->hwss.is_pipe_topology_transition_seamless(
5240 dc, dc->current_state, context)) {
5241 DC_LOG_ERROR("performing non-seamless pipe topology transition with surface only update!\n");
5242 BREAK_TO_DEBUGGER();
5243 }
5244 commit_planes_for_stream(
5245 dc,
5246 srf_updates,
5247 surface_count,
5248 stream,
5249 stream_update,
5250 update_type,
5251 context);
5252 }
5253 if (dc->current_state != context)
5254 swap_and_release_current_context(dc, context, stream);
5255 return true;
5256 }
5257
commit_planes_and_stream_update_on_current_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type)5258 static void commit_planes_and_stream_update_on_current_context(struct dc *dc,
5259 struct dc_surface_update *srf_updates, int surface_count,
5260 struct dc_stream_state *stream,
5261 struct dc_stream_update *stream_update,
5262 enum surface_update_type update_type)
5263 {
5264 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
5265
5266 ASSERT(update_type < UPDATE_TYPE_FULL);
5267 populate_fast_updates(fast_update, srf_updates, surface_count,
5268 stream_update);
5269 if (fast_update_only(dc, fast_update, srf_updates, surface_count,
5270 stream_update, stream) &&
5271 !dc->check_config.enable_legacy_fast_update)
5272 commit_planes_for_stream_fast(dc,
5273 srf_updates,
5274 surface_count,
5275 stream,
5276 stream_update,
5277 update_type,
5278 dc->current_state);
5279 else
5280 commit_planes_for_stream(
5281 dc,
5282 srf_updates,
5283 surface_count,
5284 stream,
5285 stream_update,
5286 update_type,
5287 dc->current_state);
5288 }
5289
commit_planes_and_stream_update_with_new_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * new_context)5290 static void commit_planes_and_stream_update_with_new_context(struct dc *dc,
5291 struct dc_surface_update *srf_updates, int surface_count,
5292 struct dc_stream_state *stream,
5293 struct dc_stream_update *stream_update,
5294 enum surface_update_type update_type,
5295 struct dc_state *new_context)
5296 {
5297 ASSERT(update_type >= UPDATE_TYPE_FULL);
5298 if (!dc->hwss.is_pipe_topology_transition_seamless(dc,
5299 dc->current_state, new_context))
5300 /*
5301 * It is required by the feature design that all pipe topologies
5302 * using extra free pipes for power saving purposes such as
5303 * dynamic ODM or SubVp shall only be enabled when it can be
5304 * transitioned seamlessly to AND from its minimal transition
5305 * state. A minimal transition state is defined as the same dc
5306 * state but with all power saving features disabled. So it uses
5307 * the minimum pipe topology. When we can't seamlessly
5308 * transition from state A to state B, we will insert the
5309 * minimal transition state A' or B' in between so seamless
5310 * transition between A and B can be made possible.
5311 */
5312 commit_minimal_transition_state_in_dc_update(dc, new_context,
5313 stream, srf_updates, surface_count);
5314
5315 commit_planes_for_stream(
5316 dc,
5317 srf_updates,
5318 surface_count,
5319 stream,
5320 stream_update,
5321 update_type,
5322 new_context);
5323 }
5324
update_planes_and_stream_v3(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5325 static bool update_planes_and_stream_v3(struct dc *dc,
5326 struct dc_surface_update *srf_updates, int surface_count,
5327 struct dc_stream_state *stream,
5328 struct dc_stream_update *stream_update)
5329 {
5330 struct dc_state *new_context;
5331 enum surface_update_type update_type;
5332
5333 /*
5334 * When this function returns true and new_context is not equal to
5335 * current state, the function allocates and validates a new dc state
5336 * and assigns it to new_context. The function expects that the caller
5337 * is responsible to free this memory when new_context is no longer
5338 * used. We swap current with new context and free current instead. So
5339 * new_context's memory will live until the next full update after it is
5340 * replaced by a newer context. Refer to the use of
5341 * swap_and_free_current_context below.
5342 */
5343 if (!update_planes_and_stream_state(dc, srf_updates, surface_count,
5344 stream, stream_update, &update_type,
5345 &new_context))
5346 return false;
5347
5348 if (new_context == dc->current_state) {
5349 commit_planes_and_stream_update_on_current_context(dc,
5350 srf_updates, surface_count, stream,
5351 stream_update, update_type);
5352 } else {
5353 commit_planes_and_stream_update_with_new_context(dc,
5354 srf_updates, surface_count, stream,
5355 stream_update, update_type, new_context);
5356 swap_and_release_current_context(dc, new_context, stream);
5357 }
5358
5359 return true;
5360 }
5361
clear_update_flags(struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream)5362 static void clear_update_flags(struct dc_surface_update *srf_updates,
5363 int surface_count, struct dc_stream_state *stream)
5364 {
5365 int i;
5366
5367 if (stream)
5368 stream->update_flags.raw = 0;
5369
5370 for (i = 0; i < surface_count; i++)
5371 if (srf_updates[i].surface)
5372 srf_updates[i].surface->update_flags.raw = 0;
5373 }
5374
dc_update_planes_and_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5375 bool dc_update_planes_and_stream(struct dc *dc,
5376 struct dc_surface_update *srf_updates, int surface_count,
5377 struct dc_stream_state *stream,
5378 struct dc_stream_update *stream_update)
5379 {
5380 bool ret = false;
5381
5382 dc_exit_ips_for_hw_access(dc);
5383 /*
5384 * update planes and stream version 3 separates FULL and FAST updates
5385 * to their own sequences. It aims to clean up frequent checks for
5386 * update type resulting unnecessary branching in logic flow. It also
5387 * adds a new commit minimal transition sequence, which detects the need
5388 * for minimal transition based on the actual comparison of current and
5389 * new states instead of "predicting" it based on per feature software
5390 * policy.i.e could_mpcc_tree_change_for_active_pipes. The new commit
5391 * minimal transition sequence is made universal to any power saving
5392 * features that would use extra free pipes such as Dynamic ODM/MPC
5393 * Combine, MPO or SubVp. Therefore there is no longer a need to
5394 * specially handle compatibility problems with transitions among those
5395 * features as they are now transparent to the new sequence.
5396 */
5397 if (dc->ctx->dce_version >= DCN_VERSION_4_01 || dc->ctx->dce_version == DCN_VERSION_3_2 ||
5398 dc->ctx->dce_version == DCN_VERSION_3_21)
5399 ret = update_planes_and_stream_v3(dc, srf_updates,
5400 surface_count, stream, stream_update);
5401 else
5402 ret = update_planes_and_stream_v2(dc, srf_updates,
5403 surface_count, stream, stream_update);
5404 if (ret && (dc->ctx->dce_version >= DCN_VERSION_3_2 ||
5405 dc->ctx->dce_version == DCN_VERSION_3_01))
5406 clear_update_flags(srf_updates, surface_count, stream);
5407
5408 return ret;
5409 }
5410
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)5411 void dc_commit_updates_for_stream(struct dc *dc,
5412 struct dc_surface_update *srf_updates,
5413 int surface_count,
5414 struct dc_stream_state *stream,
5415 struct dc_stream_update *stream_update,
5416 struct dc_state *state)
5417 {
5418 bool ret = false;
5419
5420 dc_exit_ips_for_hw_access(dc);
5421 /* TODO: Since change commit sequence can have a huge impact,
5422 * we decided to only enable it for DCN3x. However, as soon as
5423 * we get more confident about this change we'll need to enable
5424 * the new sequence for all ASICs.
5425 */
5426 if (dc->ctx->dce_version >= DCN_VERSION_4_01) {
5427 ret = update_planes_and_stream_v3(dc, srf_updates, surface_count,
5428 stream, stream_update);
5429 } else {
5430 ret = update_planes_and_stream_v2(dc, srf_updates, surface_count,
5431 stream, stream_update);
5432 }
5433
5434 if (ret && dc->ctx->dce_version >= DCN_VERSION_3_2)
5435 clear_update_flags(srf_updates, surface_count, stream);
5436 }
5437
dc_get_current_stream_count(struct dc * dc)5438 uint8_t dc_get_current_stream_count(struct dc *dc)
5439 {
5440 return dc->current_state->stream_count;
5441 }
5442
dc_get_stream_at_index(struct dc * dc,uint8_t i)5443 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
5444 {
5445 if (i < dc->current_state->stream_count)
5446 return dc->current_state->streams[i];
5447 return NULL;
5448 }
5449
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)5450 enum dc_irq_source dc_interrupt_to_irq_source(
5451 struct dc *dc,
5452 uint32_t src_id,
5453 uint32_t ext_id)
5454 {
5455 return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
5456 }
5457
5458 /*
5459 * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
5460 */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)5461 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
5462 {
5463
5464 if (dc == NULL)
5465 return false;
5466
5467 return dal_irq_service_set(dc->res_pool->irqs, src, enable);
5468 }
5469
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)5470 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
5471 {
5472 dal_irq_service_ack(dc->res_pool->irqs, src);
5473 }
5474
dc_power_down_on_boot(struct dc * dc)5475 void dc_power_down_on_boot(struct dc *dc)
5476 {
5477 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
5478 dc->hwss.power_down_on_boot) {
5479 if (dc->caps.ips_support)
5480 dc_exit_ips_for_hw_access(dc);
5481 dc->hwss.power_down_on_boot(dc);
5482 }
5483 }
5484
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)5485 void dc_set_power_state(struct dc *dc, enum dc_acpi_cm_power_state power_state)
5486 {
5487 if (!dc->current_state)
5488 return;
5489
5490 switch (power_state) {
5491 case DC_ACPI_CM_POWER_STATE_D0:
5492 dc_state_construct(dc, dc->current_state);
5493
5494 dc_exit_ips_for_hw_access(dc);
5495
5496 dc_z10_restore(dc);
5497
5498 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5499
5500 dc->hwss.init_hw(dc);
5501
5502 if (dc->hwss.init_sys_ctx != NULL &&
5503 dc->vm_pa_config.valid) {
5504 dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
5505 }
5506 break;
5507 case DC_ACPI_CM_POWER_STATE_D3:
5508 if (dc->caps.ips_support)
5509 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, DC_ACPI_CM_POWER_STATE_D3);
5510
5511 if (dc->caps.ips_v2_support) {
5512 if (dc->clk_mgr->funcs->set_low_power_state)
5513 dc->clk_mgr->funcs->set_low_power_state(dc->clk_mgr);
5514 }
5515 break;
5516 default:
5517 ASSERT(dc->current_state->stream_count == 0);
5518 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5519
5520 dc_state_destruct(dc->current_state);
5521
5522 break;
5523 }
5524 }
5525
dc_resume(struct dc * dc)5526 void dc_resume(struct dc *dc)
5527 {
5528 uint32_t i;
5529
5530 for (i = 0; i < dc->link_count; i++)
5531 dc->link_srv->resume(dc->links[i]);
5532 }
5533
dc_is_dmcu_initialized(struct dc * dc)5534 bool dc_is_dmcu_initialized(struct dc *dc)
5535 {
5536 struct dmcu *dmcu = dc->res_pool->dmcu;
5537
5538 if (dmcu)
5539 return dmcu->funcs->is_dmcu_initialized(dmcu);
5540 return false;
5541 }
5542
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)5543 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
5544 {
5545 if (dc->hwss.set_clock)
5546 return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
5547 return DC_ERROR_UNEXPECTED;
5548 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)5549 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
5550 {
5551 if (dc->hwss.get_clock)
5552 dc->hwss.get_clock(dc, clock_type, clock_cfg);
5553 }
5554
5555 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)5556 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
5557 {
5558 int i;
5559 bool allow_active;
5560
5561 for (i = 0; i < dc->current_state->stream_count ; i++) {
5562 struct dc_link *link;
5563 struct dc_stream_state *stream = dc->current_state->streams[i];
5564
5565 link = stream->link;
5566 if (!link)
5567 continue;
5568
5569 if (link->psr_settings.psr_feature_enabled) {
5570 if (enable && !link->psr_settings.psr_allow_active) {
5571 allow_active = true;
5572 if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
5573 return false;
5574 } else if (!enable && link->psr_settings.psr_allow_active) {
5575 allow_active = false;
5576 if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
5577 return false;
5578 }
5579 }
5580 }
5581
5582 return true;
5583 }
5584
5585 /* enable/disable eDP Replay without specify stream for eDP */
dc_set_replay_allow_active(struct dc * dc,bool active)5586 bool dc_set_replay_allow_active(struct dc *dc, bool active)
5587 {
5588 int i;
5589 bool allow_active;
5590
5591 for (i = 0; i < dc->current_state->stream_count; i++) {
5592 struct dc_link *link;
5593 struct dc_stream_state *stream = dc->current_state->streams[i];
5594
5595 link = stream->link;
5596 if (!link)
5597 continue;
5598
5599 if (link->replay_settings.replay_feature_enabled) {
5600 if (active && !link->replay_settings.replay_allow_active) {
5601 allow_active = true;
5602 if (!dc_link_set_replay_allow_active(link, &allow_active,
5603 false, false, NULL))
5604 return false;
5605 } else if (!active && link->replay_settings.replay_allow_active) {
5606 allow_active = false;
5607 if (!dc_link_set_replay_allow_active(link, &allow_active,
5608 true, false, NULL))
5609 return false;
5610 }
5611 }
5612 }
5613
5614 return true;
5615 }
5616
5617 /* set IPS disable state */
dc_set_ips_disable(struct dc * dc,unsigned int disable_ips)5618 bool dc_set_ips_disable(struct dc *dc, unsigned int disable_ips)
5619 {
5620 dc_exit_ips_for_hw_access(dc);
5621
5622 dc->config.disable_ips = disable_ips;
5623
5624 return true;
5625 }
5626
dc_allow_idle_optimizations_internal(struct dc * dc,bool allow,char const * caller_name)5627 void dc_allow_idle_optimizations_internal(struct dc *dc, bool allow, char const *caller_name)
5628 {
5629 int idle_fclk_khz = 0, idle_dramclk_khz = 0, i = 0;
5630 enum mall_stream_type subvp_pipe_type[MAX_PIPES] = {0};
5631 struct pipe_ctx *pipe = NULL;
5632 struct dc_state *context = dc->current_state;
5633
5634 if (dc->debug.disable_idle_power_optimizations) {
5635 DC_LOG_DEBUG("%s: disabled\n", __func__);
5636 return;
5637 }
5638
5639 if (allow != dc->idle_optimizations_allowed)
5640 DC_LOG_IPS("%s: allow_idle old=%d new=%d (caller=%s)\n", __func__,
5641 dc->idle_optimizations_allowed, allow, caller_name);
5642
5643 if (dc->caps.ips_support && (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5644 return;
5645
5646 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
5647 if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
5648 return;
5649
5650 if (allow == dc->idle_optimizations_allowed)
5651 return;
5652
5653 if (dc->hwss.apply_idle_power_optimizations && dc->clk_mgr != NULL &&
5654 dc->hwss.apply_idle_power_optimizations(dc, allow)) {
5655 dc->idle_optimizations_allowed = allow;
5656 DC_LOG_DEBUG("%s: %s\n", __func__, allow ? "enabled" : "disabled");
5657 }
5658
5659 // log idle clocks and sub vp pipe types at idle optimization time
5660 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->get_hard_min_fclk)
5661 idle_fclk_khz = dc->clk_mgr->funcs->get_hard_min_fclk(dc->clk_mgr);
5662
5663 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->get_hard_min_memclk)
5664 idle_dramclk_khz = dc->clk_mgr->funcs->get_hard_min_memclk(dc->clk_mgr);
5665
5666 if (dc->res_pool && context) {
5667 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5668 pipe = &context->res_ctx.pipe_ctx[i];
5669 subvp_pipe_type[i] = dc_state_get_pipe_subvp_type(context, pipe);
5670 }
5671 }
5672 if (!dc->caps.is_apu)
5673 DC_LOG_DC("%s: allow_idle=%d\n HardMinUClk_Khz=%d HardMinDramclk_Khz=%d\n Pipe_0=%d Pipe_1=%d Pipe_2=%d Pipe_3=%d Pipe_4=%d Pipe_5=%d (caller=%s)\n",
5674 __func__, allow, idle_fclk_khz, idle_dramclk_khz, subvp_pipe_type[0], subvp_pipe_type[1], subvp_pipe_type[2],
5675 subvp_pipe_type[3], subvp_pipe_type[4], subvp_pipe_type[5], caller_name);
5676
5677 }
5678
dc_exit_ips_for_hw_access_internal(struct dc * dc,const char * caller_name)5679 void dc_exit_ips_for_hw_access_internal(struct dc *dc, const char *caller_name)
5680 {
5681 if (dc->caps.ips_support)
5682 dc_allow_idle_optimizations_internal(dc, false, caller_name);
5683 }
5684
dc_dmub_is_ips_idle_state(struct dc * dc)5685 bool dc_dmub_is_ips_idle_state(struct dc *dc)
5686 {
5687 if (dc->debug.disable_idle_power_optimizations)
5688 return false;
5689
5690 if (!dc->caps.ips_support || (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5691 return false;
5692
5693 if (!dc->ctx->dmub_srv)
5694 return false;
5695
5696 return dc->ctx->dmub_srv->idle_allowed;
5697 }
5698
5699 /* set min and max memory clock to lowest and highest DPM level, respectively */
dc_unlock_memory_clock_frequency(struct dc * dc)5700 void dc_unlock_memory_clock_frequency(struct dc *dc)
5701 {
5702 if (dc->clk_mgr->funcs->set_hard_min_memclk)
5703 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
5704
5705 if (dc->clk_mgr->funcs->set_hard_max_memclk)
5706 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5707 }
5708
5709 /* set min memory clock to the min required for current mode, max to maxDPM */
dc_lock_memory_clock_frequency(struct dc * dc)5710 void dc_lock_memory_clock_frequency(struct dc *dc)
5711 {
5712 if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
5713 dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
5714
5715 if (dc->clk_mgr->funcs->set_hard_min_memclk)
5716 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
5717
5718 if (dc->clk_mgr->funcs->set_hard_max_memclk)
5719 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5720 }
5721
blank_and_force_memclk(struct dc * dc,bool apply,unsigned int memclk_mhz)5722 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
5723 {
5724 struct dc_state *context = dc->current_state;
5725 struct hubp *hubp;
5726 struct pipe_ctx *pipe;
5727 int i;
5728
5729 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5730 pipe = &context->res_ctx.pipe_ctx[i];
5731
5732 if (pipe->stream != NULL) {
5733 dc->hwss.disable_pixel_data(dc, pipe, true);
5734
5735 // wait for double buffer
5736 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5737 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
5738 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5739
5740 hubp = pipe->plane_res.hubp;
5741 hubp->funcs->set_blank_regs(hubp, true);
5742 }
5743 }
5744 if (dc->clk_mgr->funcs->set_max_memclk)
5745 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
5746 if (dc->clk_mgr->funcs->set_min_memclk)
5747 dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
5748
5749 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5750 pipe = &context->res_ctx.pipe_ctx[i];
5751
5752 if (pipe->stream != NULL) {
5753 dc->hwss.disable_pixel_data(dc, pipe, false);
5754
5755 hubp = pipe->plane_res.hubp;
5756 hubp->funcs->set_blank_regs(hubp, false);
5757 }
5758 }
5759 }
5760
5761
5762 /**
5763 * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
5764 * @dc: pointer to dc of the dm calling this
5765 * @enable: True = transition to DC mode, false = transition back to AC mode
5766 *
5767 * Some SoCs define additional clock limits when in DC mode, DM should
5768 * invoke this function when the platform undergoes a power source transition
5769 * so DC can apply/unapply the limit. This interface may be disruptive to
5770 * the onscreen content.
5771 *
5772 * Context: Triggered by OS through DM interface, or manually by escape calls.
5773 * Need to hold a dclock when doing so.
5774 *
5775 * Return: none (void function)
5776 *
5777 */
dc_enable_dcmode_clk_limit(struct dc * dc,bool enable)5778 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
5779 {
5780 unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i;
5781 bool p_state_change_support;
5782
5783 if (!dc->config.dc_mode_clk_limit_support)
5784 return;
5785
5786 softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
5787 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) {
5788 if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM)
5789 maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
5790 }
5791 funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
5792 p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
5793
5794 if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
5795 if (p_state_change_support) {
5796 if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5797 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
5798 // else: No-Op
5799 } else {
5800 if (funcMin <= softMax)
5801 blank_and_force_memclk(dc, true, softMax);
5802 // else: No-Op
5803 }
5804 } else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
5805 if (p_state_change_support) {
5806 if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5807 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
5808 // else: No-Op
5809 } else {
5810 if (funcMin <= softMax)
5811 blank_and_force_memclk(dc, true, maxDPM);
5812 // else: No-Op
5813 }
5814 }
5815 dc->clk_mgr->dc_mode_softmax_enabled = enable;
5816 }
dc_is_plane_eligible_for_idle_optimizations(struct dc * dc,unsigned int pitch,unsigned int height,enum surface_pixel_format format,struct dc_cursor_attributes * cursor_attr)5817 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc,
5818 unsigned int pitch,
5819 unsigned int height,
5820 enum surface_pixel_format format,
5821 struct dc_cursor_attributes *cursor_attr)
5822 {
5823 if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, pitch, height, format, cursor_attr))
5824 return true;
5825 return false;
5826 }
5827
5828 /* cleanup on driver unload */
dc_hardware_release(struct dc * dc)5829 void dc_hardware_release(struct dc *dc)
5830 {
5831 dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
5832
5833 if (dc->hwss.hardware_release)
5834 dc->hwss.hardware_release(dc);
5835 }
5836
dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc * dc)5837 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
5838 {
5839 if (dc->current_state)
5840 dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
5841 }
5842
5843 /**
5844 * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
5845 *
5846 * @dc: [in] dc structure
5847 *
5848 * Checks whether DMUB FW supports outbox notifications, if supported DM
5849 * should register outbox interrupt prior to actually enabling interrupts
5850 * via dc_enable_dmub_outbox
5851 *
5852 * Return:
5853 * True if DMUB FW supports outbox notifications, False otherwise
5854 */
dc_is_dmub_outbox_supported(struct dc * dc)5855 bool dc_is_dmub_outbox_supported(struct dc *dc)
5856 {
5857 if (!dc->caps.dmcub_support)
5858 return false;
5859
5860 switch (dc->ctx->asic_id.chip_family) {
5861
5862 case FAMILY_YELLOW_CARP:
5863 /* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
5864 if (dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
5865 !dc->debug.dpia_debug.bits.disable_dpia)
5866 return true;
5867 break;
5868
5869 case AMDGPU_FAMILY_GC_11_0_1:
5870 case AMDGPU_FAMILY_GC_11_5_0:
5871 if (!dc->debug.dpia_debug.bits.disable_dpia)
5872 return true;
5873 break;
5874
5875 default:
5876 break;
5877 }
5878
5879 /* dmub aux needs dmub notifications to be enabled */
5880 return dc->debug.enable_dmub_aux_for_legacy_ddc;
5881
5882 }
5883
5884 /**
5885 * dc_enable_dmub_notifications - Check if dmub fw supports outbox
5886 *
5887 * @dc: [in] dc structure
5888 *
5889 * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
5890 * notifications. All DMs shall switch to dc_is_dmub_outbox_supported. This
5891 * API shall be removed after switching.
5892 *
5893 * Return:
5894 * True if DMUB FW supports outbox notifications, False otherwise
5895 */
dc_enable_dmub_notifications(struct dc * dc)5896 bool dc_enable_dmub_notifications(struct dc *dc)
5897 {
5898 return dc_is_dmub_outbox_supported(dc);
5899 }
5900
5901 /**
5902 * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
5903 *
5904 * @dc: [in] dc structure
5905 *
5906 * Enables DMUB unsolicited notifications to x86 via outbox.
5907 */
dc_enable_dmub_outbox(struct dc * dc)5908 void dc_enable_dmub_outbox(struct dc *dc)
5909 {
5910 struct dc_context *dc_ctx = dc->ctx;
5911
5912 dmub_enable_outbox_notification(dc_ctx->dmub_srv);
5913 DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
5914 }
5915
5916 /**
5917 * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
5918 * Sets port index appropriately for legacy DDC
5919 * @dc: dc structure
5920 * @link_index: link index
5921 * @payload: aux payload
5922 *
5923 * Returns: True if successful, False if failure
5924 */
dc_process_dmub_aux_transfer_async(struct dc * dc,uint32_t link_index,struct aux_payload * payload)5925 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
5926 uint32_t link_index,
5927 struct aux_payload *payload)
5928 {
5929 uint8_t action;
5930 union dmub_rb_cmd cmd = {0};
5931
5932 ASSERT(payload->length <= 16);
5933
5934 cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
5935 cmd.dp_aux_access.header.payload_bytes = 0;
5936 /* For dpia, ddc_pin is set to NULL */
5937 if (!dc->links[link_index]->ddc->ddc_pin)
5938 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
5939 else
5940 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
5941
5942 cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
5943 cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
5944 cmd.dp_aux_access.aux_control.timeout = 0;
5945 cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
5946 cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
5947 cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
5948
5949 /* set aux action */
5950 if (payload->i2c_over_aux) {
5951 if (payload->write) {
5952 if (payload->mot)
5953 action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
5954 else
5955 action = DP_AUX_REQ_ACTION_I2C_WRITE;
5956 } else {
5957 if (payload->mot)
5958 action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
5959 else
5960 action = DP_AUX_REQ_ACTION_I2C_READ;
5961 }
5962 } else {
5963 if (payload->write)
5964 action = DP_AUX_REQ_ACTION_DPCD_WRITE;
5965 else
5966 action = DP_AUX_REQ_ACTION_DPCD_READ;
5967 }
5968
5969 cmd.dp_aux_access.aux_control.dpaux.action = action;
5970
5971 if (payload->length && payload->write) {
5972 memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
5973 payload->data,
5974 payload->length
5975 );
5976 }
5977
5978 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5979
5980 return true;
5981 }
5982
dc_smart_power_oled_enable(const struct dc_link * link,bool enable,uint16_t peak_nits,uint8_t debug_control,uint16_t fixed_CLL,uint32_t triggerline)5983 bool dc_smart_power_oled_enable(const struct dc_link *link, bool enable, uint16_t peak_nits,
5984 uint8_t debug_control, uint16_t fixed_CLL, uint32_t triggerline)
5985 {
5986 bool status = false;
5987 struct dc *dc = link->ctx->dc;
5988 union dmub_rb_cmd cmd;
5989 uint8_t otg_inst = 0;
5990 unsigned int panel_inst = 0;
5991 struct pipe_ctx *pipe_ctx = NULL;
5992 struct resource_context *res_ctx = &link->ctx->dc->current_state->res_ctx;
5993 int i = 0;
5994
5995 // get panel_inst
5996 if (!dc_get_edp_link_panel_inst(dc, link, &panel_inst))
5997 return status;
5998
5999 // get otg_inst
6000 for (i = 0; i < MAX_PIPES; i++) {
6001 if (res_ctx &&
6002 res_ctx->pipe_ctx[i].stream &&
6003 res_ctx->pipe_ctx[i].stream->link &&
6004 res_ctx->pipe_ctx[i].stream->link == link &&
6005 res_ctx->pipe_ctx[i].stream->link->connector_signal == SIGNAL_TYPE_EDP) {
6006 pipe_ctx = &res_ctx->pipe_ctx[i];
6007 //TODO: refactor for multi edp support
6008 break;
6009 }
6010 }
6011
6012 if (pipe_ctx)
6013 otg_inst = pipe_ctx->stream_res.tg->inst;
6014
6015 // before enable smart power OLED, we need to call set pipe for DMUB to set ABM config
6016 if (enable) {
6017 if (dc->hwss.set_pipe && pipe_ctx)
6018 dc->hwss.set_pipe(pipe_ctx);
6019 }
6020
6021 // fill in cmd
6022 memset(&cmd, 0, sizeof(cmd));
6023
6024 cmd.smart_power_oled_enable.header.type = DMUB_CMD__SMART_POWER_OLED;
6025 cmd.smart_power_oled_enable.header.sub_type = DMUB_CMD__SMART_POWER_OLED_ENABLE;
6026 cmd.smart_power_oled_enable.header.payload_bytes =
6027 sizeof(struct dmub_rb_cmd_smart_power_oled_enable_data) - sizeof(struct dmub_cmd_header);
6028 cmd.smart_power_oled_enable.header.ret_status = 1;
6029 cmd.smart_power_oled_enable.data.enable = enable;
6030 cmd.smart_power_oled_enable.data.panel_inst = panel_inst;
6031 cmd.smart_power_oled_enable.data.peak_nits = peak_nits;
6032 cmd.smart_power_oled_enable.data.otg_inst = otg_inst;
6033 cmd.smart_power_oled_enable.data.digfe_inst = link->link_enc->preferred_engine;
6034 cmd.smart_power_oled_enable.data.digbe_inst = link->link_enc->transmitter;
6035
6036 cmd.smart_power_oled_enable.data.debugcontrol = debug_control;
6037 cmd.smart_power_oled_enable.data.triggerline = triggerline;
6038 cmd.smart_power_oled_enable.data.fixed_max_cll = fixed_CLL;
6039
6040 // send cmd
6041 status = dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
6042
6043 return status;
6044 }
6045
dc_smart_power_oled_get_max_cll(const struct dc_link * link,unsigned int * pCurrent_MaxCLL)6046 bool dc_smart_power_oled_get_max_cll(const struct dc_link *link, unsigned int *pCurrent_MaxCLL)
6047 {
6048 struct dc *dc = link->ctx->dc;
6049 union dmub_rb_cmd cmd;
6050 bool status = false;
6051 unsigned int panel_inst = 0;
6052
6053 // get panel_inst
6054 if (!dc_get_edp_link_panel_inst(dc, link, &panel_inst))
6055 return status;
6056
6057 // fill in cmd
6058 memset(&cmd, 0, sizeof(cmd));
6059
6060 cmd.smart_power_oled_getmaxcll.header.type = DMUB_CMD__SMART_POWER_OLED;
6061 cmd.smart_power_oled_getmaxcll.header.sub_type = DMUB_CMD__SMART_POWER_OLED_GETMAXCLL;
6062 cmd.smart_power_oled_getmaxcll.header.payload_bytes = sizeof(cmd.smart_power_oled_getmaxcll.data);
6063 cmd.smart_power_oled_getmaxcll.header.ret_status = 1;
6064
6065 cmd.smart_power_oled_getmaxcll.data.input.panel_inst = panel_inst;
6066
6067 // send cmd and wait for reply
6068 status = dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY);
6069
6070 if (status)
6071 *pCurrent_MaxCLL = cmd.smart_power_oled_getmaxcll.data.output.current_max_cll;
6072 else
6073 *pCurrent_MaxCLL = 0;
6074
6075 return status;
6076 }
6077
get_link_index_from_dpia_port_index(const struct dc * dc,uint8_t dpia_port_index)6078 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
6079 uint8_t dpia_port_index)
6080 {
6081 uint8_t index, link_index = 0xFF;
6082
6083 for (index = 0; index < dc->link_count; index++) {
6084 /* ddc_hw_inst has dpia port index for dpia links
6085 * and ddc instance for legacy links
6086 */
6087 if (!dc->links[index]->ddc->ddc_pin) {
6088 if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
6089 link_index = index;
6090 break;
6091 }
6092 }
6093 }
6094 ASSERT(link_index != 0xFF);
6095 return link_index;
6096 }
6097
6098 /**
6099 * dc_process_dmub_set_config_async - Submits set_config command
6100 *
6101 * @dc: [in] dc structure
6102 * @link_index: [in] link_index: link index
6103 * @payload: [in] aux payload
6104 * @notify: [out] set_config immediate reply
6105 *
6106 * Submits set_config command to dmub via inbox message.
6107 *
6108 * Return:
6109 * True if successful, False if failure
6110 */
dc_process_dmub_set_config_async(struct dc * dc,uint32_t link_index,struct set_config_cmd_payload * payload,struct dmub_notification * notify)6111 bool dc_process_dmub_set_config_async(struct dc *dc,
6112 uint32_t link_index,
6113 struct set_config_cmd_payload *payload,
6114 struct dmub_notification *notify)
6115 {
6116 union dmub_rb_cmd cmd = {0};
6117 bool is_cmd_complete = true;
6118
6119 /* prepare SET_CONFIG command */
6120 cmd.set_config_access.header.type = DMUB_CMD__DPIA;
6121 cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
6122
6123 cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
6124 cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
6125 cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
6126
6127 if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) {
6128 /* command is not processed by dmub */
6129 notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
6130 return is_cmd_complete;
6131 }
6132
6133 /* command processed by dmub, if ret_status is 1, it is completed instantly */
6134 if (cmd.set_config_access.header.ret_status == 1)
6135 notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
6136 else
6137 /* cmd pending, will receive notification via outbox */
6138 is_cmd_complete = false;
6139
6140 return is_cmd_complete;
6141 }
6142
6143 /**
6144 * dc_process_dmub_set_mst_slots - Submits MST solt allocation
6145 *
6146 * @dc: [in] dc structure
6147 * @link_index: [in] link index
6148 * @mst_alloc_slots: [in] mst slots to be allotted
6149 * @mst_slots_in_use: [out] mst slots in use returned in failure case
6150 *
6151 * Submits mst slot allocation command to dmub via inbox message
6152 *
6153 * Return:
6154 * DC_OK if successful, DC_ERROR if failure
6155 */
dc_process_dmub_set_mst_slots(const struct dc * dc,uint32_t link_index,uint8_t mst_alloc_slots,uint8_t * mst_slots_in_use)6156 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
6157 uint32_t link_index,
6158 uint8_t mst_alloc_slots,
6159 uint8_t *mst_slots_in_use)
6160 {
6161 union dmub_rb_cmd cmd = {0};
6162
6163 /* prepare MST_ALLOC_SLOTS command */
6164 cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
6165 cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
6166
6167 cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
6168 cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
6169
6170 if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY))
6171 /* command is not processed by dmub */
6172 return DC_ERROR_UNEXPECTED;
6173
6174 /* command processed by dmub, if ret_status is 1 */
6175 if (cmd.set_config_access.header.ret_status != 1)
6176 /* command processing error */
6177 return DC_ERROR_UNEXPECTED;
6178
6179 /* command processed and we have a status of 2, mst not enabled in dpia */
6180 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
6181 return DC_FAIL_UNSUPPORTED_1;
6182
6183 /* previously configured mst alloc and used slots did not match */
6184 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
6185 *mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
6186 return DC_NOT_SUPPORTED;
6187 }
6188
6189 return DC_OK;
6190 }
6191
6192 /**
6193 * dc_process_dmub_dpia_set_tps_notification - Submits tps notification
6194 *
6195 * @dc: [in] dc structure
6196 * @link_index: [in] link index
6197 * @tps: [in] request tps
6198 *
6199 * Submits set_tps_notification command to dmub via inbox message
6200 */
dc_process_dmub_dpia_set_tps_notification(const struct dc * dc,uint32_t link_index,uint8_t tps)6201 void dc_process_dmub_dpia_set_tps_notification(const struct dc *dc, uint32_t link_index, uint8_t tps)
6202 {
6203 union dmub_rb_cmd cmd = {0};
6204
6205 cmd.set_tps_notification.header.type = DMUB_CMD__DPIA;
6206 cmd.set_tps_notification.header.sub_type = DMUB_CMD__DPIA_SET_TPS_NOTIFICATION;
6207 cmd.set_tps_notification.tps_notification.instance = dc->links[link_index]->ddc_hw_inst;
6208 cmd.set_tps_notification.tps_notification.tps = tps;
6209
6210 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
6211 }
6212
6213 /**
6214 * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
6215 *
6216 * @dc: [in] dc structure
6217 * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
6218 *
6219 * Submits dpia hpd int enable command to dmub via inbox message
6220 */
dc_process_dmub_dpia_hpd_int_enable(const struct dc * dc,uint32_t hpd_int_enable)6221 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
6222 uint32_t hpd_int_enable)
6223 {
6224 union dmub_rb_cmd cmd = {0};
6225
6226 cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
6227 cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
6228
6229 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
6230
6231 DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
6232 }
6233
6234 /**
6235 * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging
6236 *
6237 * @dc: [in] dc structure
6238 *
6239 *
6240 */
dc_print_dmub_diagnostic_data(const struct dc * dc)6241 void dc_print_dmub_diagnostic_data(const struct dc *dc)
6242 {
6243 dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv);
6244 }
6245
6246 /**
6247 * dc_disable_accelerated_mode - disable accelerated mode
6248 * @dc: dc structure
6249 */
dc_disable_accelerated_mode(struct dc * dc)6250 void dc_disable_accelerated_mode(struct dc *dc)
6251 {
6252 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
6253 }
6254
6255
6256 /**
6257 * dc_notify_vsync_int_state - notifies vsync enable/disable state
6258 * @dc: dc structure
6259 * @stream: stream where vsync int state changed
6260 * @enable: whether vsync is enabled or disabled
6261 *
6262 * Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
6263 * interrupts after steady state is reached.
6264 */
dc_notify_vsync_int_state(struct dc * dc,struct dc_stream_state * stream,bool enable)6265 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
6266 {
6267 int i;
6268 int edp_num;
6269 struct pipe_ctx *pipe = NULL;
6270 struct dc_link *link = stream->sink->link;
6271 struct dc_link *edp_links[MAX_NUM_EDP];
6272
6273
6274 if (link->psr_settings.psr_feature_enabled)
6275 return;
6276
6277 if (link->replay_settings.replay_feature_enabled)
6278 return;
6279
6280 /*find primary pipe associated with stream*/
6281 for (i = 0; i < MAX_PIPES; i++) {
6282 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
6283
6284 if (pipe->stream == stream && pipe->stream_res.tg)
6285 break;
6286 }
6287
6288 if (i == MAX_PIPES) {
6289 ASSERT(0);
6290 return;
6291 }
6292
6293 dc_get_edp_links(dc, edp_links, &edp_num);
6294
6295 /* Determine panel inst */
6296 for (i = 0; i < edp_num; i++) {
6297 if (edp_links[i] == link)
6298 break;
6299 }
6300
6301 if (i == edp_num) {
6302 return;
6303 }
6304
6305 if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
6306 pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
6307 }
6308
6309 /*****************************************************************************
6310 * dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause
6311 * ABM
6312 * @dc: dc structure
6313 * @stream: stream where vsync int state changed
6314 * @pData: abm hw states
6315 *
6316 ****************************************************************************/
dc_abm_save_restore(struct dc * dc,struct dc_stream_state * stream,struct abm_save_restore * pData)6317 bool dc_abm_save_restore(
6318 struct dc *dc,
6319 struct dc_stream_state *stream,
6320 struct abm_save_restore *pData)
6321 {
6322 int i;
6323 int edp_num;
6324 struct pipe_ctx *pipe = NULL;
6325 struct dc_link *link = stream->sink->link;
6326 struct dc_link *edp_links[MAX_NUM_EDP];
6327
6328 if (link->replay_settings.replay_feature_enabled)
6329 return false;
6330
6331 /*find primary pipe associated with stream*/
6332 for (i = 0; i < MAX_PIPES; i++) {
6333 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
6334
6335 if (pipe->stream == stream && pipe->stream_res.tg)
6336 break;
6337 }
6338
6339 if (i == MAX_PIPES) {
6340 ASSERT(0);
6341 return false;
6342 }
6343
6344 dc_get_edp_links(dc, edp_links, &edp_num);
6345
6346 /* Determine panel inst */
6347 for (i = 0; i < edp_num; i++)
6348 if (edp_links[i] == link)
6349 break;
6350
6351 if (i == edp_num)
6352 return false;
6353
6354 if (pipe->stream_res.abm &&
6355 pipe->stream_res.abm->funcs->save_restore)
6356 return pipe->stream_res.abm->funcs->save_restore(
6357 pipe->stream_res.abm,
6358 i,
6359 pData);
6360 return false;
6361 }
6362
dc_query_current_properties(struct dc * dc,struct dc_current_properties * properties)6363 void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties)
6364 {
6365 unsigned int i;
6366 unsigned int max_cursor_size = dc->caps.max_cursor_size;
6367 unsigned int stream_cursor_size;
6368
6369 if (dc->debug.allow_sw_cursor_fallback && dc->res_pool->funcs->get_max_hw_cursor_size) {
6370 for (i = 0; i < dc->current_state->stream_count; i++) {
6371 stream_cursor_size = dc->res_pool->funcs->get_max_hw_cursor_size(dc,
6372 dc->current_state,
6373 dc->current_state->streams[i]);
6374
6375 if (stream_cursor_size < max_cursor_size) {
6376 max_cursor_size = stream_cursor_size;
6377 }
6378 }
6379 }
6380
6381 properties->cursor_size_limit = max_cursor_size;
6382 }
6383
6384 /**
6385 * dc_set_edp_power() - DM controls eDP power to be ON/OFF
6386 *
6387 * Called when DM wants to power on/off eDP.
6388 * Only work on links with flag skip_implict_edp_power_control is set.
6389 *
6390 * @dc: Current DC state
6391 * @edp_link: a link with eDP connector signal type
6392 * @powerOn: power on/off eDP
6393 *
6394 * Return: void
6395 */
dc_set_edp_power(const struct dc * dc,struct dc_link * edp_link,bool powerOn)6396 void dc_set_edp_power(const struct dc *dc, struct dc_link *edp_link,
6397 bool powerOn)
6398 {
6399 if (edp_link->connector_signal != SIGNAL_TYPE_EDP)
6400 return;
6401
6402 if (edp_link->skip_implict_edp_power_control == false)
6403 return;
6404
6405 edp_link->dc->link_srv->edp_set_panel_power(edp_link, powerOn);
6406 }
6407
6408 /**
6409 * dc_get_power_profile_for_dc_state() - extracts power profile from dc state
6410 *
6411 * Called when DM wants to make power policy decisions based on dc_state
6412 *
6413 * @context: Pointer to the dc_state from which the power profile is extracted.
6414 *
6415 * Return: The power profile structure containing the power level information.
6416 */
dc_get_power_profile_for_dc_state(const struct dc_state * context)6417 struct dc_power_profile dc_get_power_profile_for_dc_state(const struct dc_state *context)
6418 {
6419 struct dc_power_profile profile = { 0 };
6420
6421 profile.power_level = !context->bw_ctx.bw.dcn.clk.p_state_change_support;
6422 if (!context->clk_mgr || !context->clk_mgr->ctx || !context->clk_mgr->ctx->dc)
6423 return profile;
6424 struct dc *dc = context->clk_mgr->ctx->dc;
6425
6426 if (dc->res_pool->funcs->get_power_profile)
6427 profile.power_level = dc->res_pool->funcs->get_power_profile(context);
6428 return profile;
6429 }
6430
6431 /**
6432 * dc_get_det_buffer_size_from_state() - extracts detile buffer size from dc state
6433 *
6434 * This function is called to log the detile buffer size from the dc_state.
6435 *
6436 * @context: a pointer to the dc_state from which the detile buffer size is extracted.
6437 *
6438 * Return: the size of the detile buffer, or 0 if not available.
6439 */
dc_get_det_buffer_size_from_state(const struct dc_state * context)6440 unsigned int dc_get_det_buffer_size_from_state(const struct dc_state *context)
6441 {
6442 struct dc *dc = context->clk_mgr->ctx->dc;
6443
6444 if (dc->res_pool->funcs->get_det_buffer_size)
6445 return dc->res_pool->funcs->get_det_buffer_size(context);
6446 else
6447 return 0;
6448 }
6449
6450 /**
6451 * dc_get_host_router_index: Get index of host router from a dpia link
6452 *
6453 * This function return a host router index of the target link. If the target link is dpia link.
6454 *
6455 * @link: Pointer to the target link (input)
6456 * @host_router_index: Pointer to store the host router index of the target link (output).
6457 *
6458 * Return: true if the host router index is found and valid.
6459 *
6460 */
dc_get_host_router_index(const struct dc_link * link,unsigned int * host_router_index)6461 bool dc_get_host_router_index(const struct dc_link *link, unsigned int *host_router_index)
6462 {
6463 struct dc *dc;
6464
6465 if (!link || !host_router_index || link->ep_type != DISPLAY_ENDPOINT_USB4_DPIA)
6466 return false;
6467
6468 dc = link->ctx->dc;
6469
6470 if (link->link_index < dc->lowest_dpia_link_index)
6471 return false;
6472
6473 *host_router_index = (link->link_index - dc->lowest_dpia_link_index) / dc->caps.num_of_dpias_per_host_router;
6474 if (*host_router_index < dc->caps.num_of_host_routers)
6475 return true;
6476 else
6477 return false;
6478 }
6479
dc_is_cursor_limit_pending(struct dc * dc)6480 bool dc_is_cursor_limit_pending(struct dc *dc)
6481 {
6482 uint32_t i;
6483
6484 for (i = 0; i < dc->current_state->stream_count; i++) {
6485 if (dc_stream_is_cursor_limit_pending(dc, dc->current_state->streams[i]))
6486 return true;
6487 }
6488
6489 return false;
6490 }
6491
dc_can_clear_cursor_limit(const struct dc * dc)6492 bool dc_can_clear_cursor_limit(const struct dc *dc)
6493 {
6494 uint32_t i;
6495
6496 for (i = 0; i < dc->current_state->stream_count; i++) {
6497 if (dc_state_can_clear_stream_cursor_subvp_limit(dc->current_state->streams[i], dc->current_state))
6498 return true;
6499 }
6500
6501 return false;
6502 }
6503
dc_get_underflow_debug_data_for_otg(struct dc * dc,int primary_otg_inst,struct dc_underflow_debug_data * out_data)6504 void dc_get_underflow_debug_data_for_otg(struct dc *dc, int primary_otg_inst,
6505 struct dc_underflow_debug_data *out_data)
6506 {
6507 struct timing_generator *tg = NULL;
6508
6509 for (int i = 0; i < MAX_PIPES; i++) {
6510 if (dc->res_pool->timing_generators[i] &&
6511 dc->res_pool->timing_generators[i]->inst == primary_otg_inst) {
6512 tg = dc->res_pool->timing_generators[i];
6513 break;
6514 }
6515 }
6516
6517 dc_exit_ips_for_hw_access(dc);
6518 if (dc->hwss.get_underflow_debug_data)
6519 dc->hwss.get_underflow_debug_data(dc, tg, out_data);
6520 }
6521
dc_get_power_feature_status(struct dc * dc,int primary_otg_inst,struct power_features * out_data)6522 void dc_get_power_feature_status(struct dc *dc, int primary_otg_inst,
6523 struct power_features *out_data)
6524 {
6525 out_data->uclk_p_state = dc->current_state->clk_mgr->clks.p_state_change_support;
6526 out_data->fams = dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching;
6527 }
6528
dc_capture_register_software_state(struct dc * dc,struct dc_register_software_state * state)6529 bool dc_capture_register_software_state(struct dc *dc, struct dc_register_software_state *state)
6530 {
6531 struct dc_state *context;
6532 struct resource_context *res_ctx;
6533 int i;
6534
6535 if (!dc || !dc->current_state || !state) {
6536 if (state)
6537 state->state_valid = false;
6538 return false;
6539 }
6540
6541 /* Initialize the state structure */
6542 memset(state, 0, sizeof(struct dc_register_software_state));
6543
6544 context = dc->current_state;
6545 res_ctx = &context->res_ctx;
6546
6547 /* Count active pipes and streams */
6548 state->active_pipe_count = 0;
6549 state->active_stream_count = context->stream_count;
6550
6551 for (i = 0; i < dc->res_pool->pipe_count; i++) {
6552 if (res_ctx->pipe_ctx[i].stream)
6553 state->active_pipe_count++;
6554 }
6555
6556 /* Capture HUBP programming state for each pipe */
6557 for (i = 0; i < MAX_PIPES && i < dc->res_pool->pipe_count; i++) {
6558 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
6559
6560 state->hubp[i].valid_stream = false;
6561 if (!pipe_ctx->stream)
6562 continue;
6563
6564 state->hubp[i].valid_stream = true;
6565
6566 /* HUBP register programming variables */
6567 if (pipe_ctx->stream_res.tg)
6568 state->hubp[i].vtg_sel = pipe_ctx->stream_res.tg->inst;
6569
6570 state->hubp[i].hubp_clock_enable = (pipe_ctx->plane_res.hubp != NULL) ? 1 : 0;
6571
6572 state->hubp[i].valid_plane_state = false;
6573 if (pipe_ctx->plane_state) {
6574 state->hubp[i].valid_plane_state = true;
6575 state->hubp[i].surface_pixel_format = pipe_ctx->plane_state->format;
6576 state->hubp[i].rotation_angle = pipe_ctx->plane_state->rotation;
6577 state->hubp[i].h_mirror_en = pipe_ctx->plane_state->horizontal_mirror ? 1 : 0;
6578
6579 /* Surface size */
6580 if (pipe_ctx->plane_state->plane_size.surface_size.width > 0) {
6581 state->hubp[i].surface_size_width = pipe_ctx->plane_state->plane_size.surface_size.width;
6582 state->hubp[i].surface_size_height = pipe_ctx->plane_state->plane_size.surface_size.height;
6583 }
6584
6585 /* Viewport dimensions from scaler data */
6586 if (pipe_ctx->plane_state->src_rect.width > 0) {
6587 state->hubp[i].pri_viewport_width = pipe_ctx->plane_state->src_rect.width;
6588 state->hubp[i].pri_viewport_height = pipe_ctx->plane_state->src_rect.height;
6589 state->hubp[i].pri_viewport_x_start = pipe_ctx->plane_state->src_rect.x;
6590 state->hubp[i].pri_viewport_y_start = pipe_ctx->plane_state->src_rect.y;
6591 }
6592
6593 /* DCC settings */
6594 state->hubp[i].surface_dcc_en = (pipe_ctx->plane_state->dcc.enable) ? 1 : 0;
6595 state->hubp[i].surface_dcc_ind_64b_blk = pipe_ctx->plane_state->dcc.independent_64b_blks;
6596 state->hubp[i].surface_dcc_ind_128b_blk = pipe_ctx->plane_state->dcc.dcc_ind_blk;
6597
6598 /* Surface pitch */
6599 state->hubp[i].surface_pitch = pipe_ctx->plane_state->plane_size.surface_pitch;
6600 state->hubp[i].meta_pitch = pipe_ctx->plane_state->dcc.meta_pitch;
6601 state->hubp[i].chroma_pitch = pipe_ctx->plane_state->plane_size.chroma_pitch;
6602 state->hubp[i].meta_pitch_c = pipe_ctx->plane_state->dcc.meta_pitch_c;
6603
6604 /* Surface addresses - primary */
6605 state->hubp[i].primary_surface_address_low = pipe_ctx->plane_state->address.grph.addr.low_part;
6606 state->hubp[i].primary_surface_address_high = pipe_ctx->plane_state->address.grph.addr.high_part;
6607 state->hubp[i].primary_meta_surface_address_low = pipe_ctx->plane_state->address.grph.meta_addr.low_part;
6608 state->hubp[i].primary_meta_surface_address_high = pipe_ctx->plane_state->address.grph.meta_addr.high_part;
6609
6610 /* TMZ settings */
6611 state->hubp[i].primary_surface_tmz = pipe_ctx->plane_state->address.tmz_surface;
6612 state->hubp[i].primary_meta_surface_tmz = pipe_ctx->plane_state->address.tmz_surface;
6613
6614 /* Tiling configuration */
6615 state->hubp[i].min_dc_gfx_version9 = false;
6616 if (pipe_ctx->plane_state->tiling_info.gfxversion >= DcGfxVersion9) {
6617 state->hubp[i].min_dc_gfx_version9 = true;
6618 state->hubp[i].sw_mode = pipe_ctx->plane_state->tiling_info.gfx9.swizzle;
6619 state->hubp[i].num_pipes = pipe_ctx->plane_state->tiling_info.gfx9.num_pipes;
6620 state->hubp[i].num_banks = pipe_ctx->plane_state->tiling_info.gfx9.num_banks;
6621 state->hubp[i].pipe_interleave = pipe_ctx->plane_state->tiling_info.gfx9.pipe_interleave;
6622 state->hubp[i].num_shader_engines = pipe_ctx->plane_state->tiling_info.gfx9.num_shader_engines;
6623 state->hubp[i].num_rb_per_se = pipe_ctx->plane_state->tiling_info.gfx9.num_rb_per_se;
6624 state->hubp[i].num_pkrs = pipe_ctx->plane_state->tiling_info.gfx9.num_pkrs;
6625 }
6626 }
6627
6628 /* DML Request Size Configuration */
6629 if (pipe_ctx->rq_regs.rq_regs_l.chunk_size > 0) {
6630 state->hubp[i].rq_chunk_size = pipe_ctx->rq_regs.rq_regs_l.chunk_size;
6631 state->hubp[i].rq_min_chunk_size = pipe_ctx->rq_regs.rq_regs_l.min_chunk_size;
6632 state->hubp[i].rq_meta_chunk_size = pipe_ctx->rq_regs.rq_regs_l.meta_chunk_size;
6633 state->hubp[i].rq_min_meta_chunk_size = pipe_ctx->rq_regs.rq_regs_l.min_meta_chunk_size;
6634 state->hubp[i].rq_dpte_group_size = pipe_ctx->rq_regs.rq_regs_l.dpte_group_size;
6635 state->hubp[i].rq_mpte_group_size = pipe_ctx->rq_regs.rq_regs_l.mpte_group_size;
6636 state->hubp[i].rq_swath_height_l = pipe_ctx->rq_regs.rq_regs_l.swath_height;
6637 state->hubp[i].rq_pte_row_height_l = pipe_ctx->rq_regs.rq_regs_l.pte_row_height_linear;
6638 }
6639
6640 /* Chroma request size configuration */
6641 if (pipe_ctx->rq_regs.rq_regs_c.chunk_size > 0) {
6642 state->hubp[i].rq_chunk_size_c = pipe_ctx->rq_regs.rq_regs_c.chunk_size;
6643 state->hubp[i].rq_min_chunk_size_c = pipe_ctx->rq_regs.rq_regs_c.min_chunk_size;
6644 state->hubp[i].rq_meta_chunk_size_c = pipe_ctx->rq_regs.rq_regs_c.meta_chunk_size;
6645 state->hubp[i].rq_min_meta_chunk_size_c = pipe_ctx->rq_regs.rq_regs_c.min_meta_chunk_size;
6646 state->hubp[i].rq_dpte_group_size_c = pipe_ctx->rq_regs.rq_regs_c.dpte_group_size;
6647 state->hubp[i].rq_mpte_group_size_c = pipe_ctx->rq_regs.rq_regs_c.mpte_group_size;
6648 state->hubp[i].rq_swath_height_c = pipe_ctx->rq_regs.rq_regs_c.swath_height;
6649 state->hubp[i].rq_pte_row_height_c = pipe_ctx->rq_regs.rq_regs_c.pte_row_height_linear;
6650 }
6651
6652 /* DML expansion modes */
6653 state->hubp[i].drq_expansion_mode = pipe_ctx->rq_regs.drq_expansion_mode;
6654 state->hubp[i].prq_expansion_mode = pipe_ctx->rq_regs.prq_expansion_mode;
6655 state->hubp[i].mrq_expansion_mode = pipe_ctx->rq_regs.mrq_expansion_mode;
6656 state->hubp[i].crq_expansion_mode = pipe_ctx->rq_regs.crq_expansion_mode;
6657
6658 /* DML DLG parameters - nominal */
6659 state->hubp[i].dst_y_per_vm_vblank = pipe_ctx->dlg_regs.dst_y_per_vm_vblank;
6660 state->hubp[i].dst_y_per_row_vblank = pipe_ctx->dlg_regs.dst_y_per_row_vblank;
6661 state->hubp[i].dst_y_per_vm_flip = pipe_ctx->dlg_regs.dst_y_per_vm_flip;
6662 state->hubp[i].dst_y_per_row_flip = pipe_ctx->dlg_regs.dst_y_per_row_flip;
6663
6664 /* DML prefetch settings */
6665 state->hubp[i].dst_y_prefetch = pipe_ctx->dlg_regs.dst_y_prefetch;
6666 state->hubp[i].vratio_prefetch = pipe_ctx->dlg_regs.vratio_prefetch;
6667 state->hubp[i].vratio_prefetch_c = pipe_ctx->dlg_regs.vratio_prefetch_c;
6668
6669 /* TTU parameters */
6670 state->hubp[i].qos_level_low_wm = pipe_ctx->ttu_regs.qos_level_low_wm;
6671 state->hubp[i].qos_level_high_wm = pipe_ctx->ttu_regs.qos_level_high_wm;
6672 state->hubp[i].qos_level_flip = pipe_ctx->ttu_regs.qos_level_flip;
6673 state->hubp[i].min_ttu_vblank = pipe_ctx->ttu_regs.min_ttu_vblank;
6674 }
6675
6676 /* Capture HUBBUB programming state */
6677 if (dc->res_pool->hubbub) {
6678 /* Individual DET buffer sizes - software state variables that program DET registers */
6679 for (i = 0; i < 4 && i < dc->res_pool->pipe_count; i++) {
6680 uint32_t det_size = res_ctx->pipe_ctx[i].det_buffer_size_kb;
6681 switch (i) {
6682 case 0:
6683 state->hubbub.det0_size = det_size;
6684 break;
6685 case 1:
6686 state->hubbub.det1_size = det_size;
6687 break;
6688 case 2:
6689 state->hubbub.det2_size = det_size;
6690 break;
6691 case 3:
6692 state->hubbub.det3_size = det_size;
6693 break;
6694 }
6695 }
6696
6697 /* Compression buffer configuration - software state that programs COMPBUF_SIZE register */
6698 // TODO: Handle logic for legacy DCN pre-DCN401
6699 state->hubbub.compbuf_size = context->bw_ctx.bw.dcn.arb_regs.compbuf_size;
6700 }
6701
6702 /* Capture DPP programming state for each pipe */
6703 for (i = 0; i < MAX_PIPES && i < dc->res_pool->pipe_count; i++) {
6704 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
6705
6706 if (!pipe_ctx->stream)
6707 continue;
6708
6709 state->dpp[i].dpp_clock_enable = (pipe_ctx->plane_res.dpp != NULL) ? 1 : 0;
6710
6711 if (pipe_ctx->plane_state && pipe_ctx->plane_res.scl_data.recout.width > 0) {
6712 /* Access dscl_prog_data directly - this contains the actual software state used for register programming */
6713 struct dscl_prog_data *dscl_data = &pipe_ctx->plane_res.scl_data.dscl_prog_data;
6714
6715 /* Recout (Rectangle of Interest) configuration - software state that programs RECOUT registers */
6716 state->dpp[i].recout_start_x = dscl_data->recout.x;
6717 state->dpp[i].recout_start_y = dscl_data->recout.y;
6718 state->dpp[i].recout_width = dscl_data->recout.width;
6719 state->dpp[i].recout_height = dscl_data->recout.height;
6720
6721 /* MPC (Multiple Pipe/Plane Combiner) size - software state that programs MPC_SIZE registers */
6722 state->dpp[i].mpc_width = dscl_data->mpc_size.width;
6723 state->dpp[i].mpc_height = dscl_data->mpc_size.height;
6724
6725 /* DSCL mode - software state that programs SCL_MODE registers */
6726 state->dpp[i].dscl_mode = dscl_data->dscl_mode;
6727
6728 /* Scaler ratios - software state that programs scale ratio registers (use actual programmed ratios) */
6729 state->dpp[i].horz_ratio_int = dscl_data->ratios.h_scale_ratio >> 19; // Extract integer part from programmed ratio
6730 state->dpp[i].vert_ratio_int = dscl_data->ratios.v_scale_ratio >> 19; // Extract integer part from programmed ratio
6731
6732 /* Basic scaler taps - software state that programs tap control registers (use actual programmed taps) */
6733 state->dpp[i].h_taps = dscl_data->taps.h_taps + 1; // dscl_prog_data.taps stores (taps - 1), so add 1 back
6734 state->dpp[i].v_taps = dscl_data->taps.v_taps + 1; // dscl_prog_data.taps stores (taps - 1), so add 1 back
6735 }
6736 }
6737
6738 /* Capture essential clock state for underflow analysis */
6739 if (dc->clk_mgr && dc->clk_mgr->clks.dispclk_khz > 0) {
6740 /* Core display clocks affecting bandwidth and timing */
6741 state->dccg.dispclk_khz = dc->clk_mgr->clks.dispclk_khz;
6742
6743 /* Per-pipe clock configuration - only capture what's essential */
6744 for (i = 0; i < MAX_PIPES && i < dc->res_pool->pipe_count; i++) {
6745 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
6746 if (pipe_ctx->stream) {
6747 /* Essential clocks that directly affect underflow risk */
6748 state->dccg.dppclk_khz[i] = dc->clk_mgr->clks.dppclk_khz;
6749 state->dccg.pixclk_khz[i] = pipe_ctx->stream->timing.pix_clk_100hz / 10;
6750 state->dccg.dppclk_enable[i] = 1;
6751
6752 /* DP stream clock only for DP signals */
6753 if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
6754 pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) {
6755 state->dccg.dpstreamclk_enable[i] = 1;
6756 } else {
6757 state->dccg.dpstreamclk_enable[i] = 0;
6758 }
6759 } else {
6760 /* Inactive pipe - no clocks */
6761 state->dccg.dppclk_khz[i] = 0;
6762 state->dccg.pixclk_khz[i] = 0;
6763 state->dccg.dppclk_enable[i] = 0;
6764 if (i < 4) {
6765 state->dccg.dpstreamclk_enable[i] = 0;
6766 }
6767 }
6768 }
6769
6770 /* DSC clock state - only when actually using DSC */
6771 for (i = 0; i < MAX_PIPES; i++) {
6772 struct pipe_ctx *pipe_ctx = (i < dc->res_pool->pipe_count) ? &res_ctx->pipe_ctx[i] : NULL;
6773 if (pipe_ctx && pipe_ctx->stream && pipe_ctx->stream->timing.dsc_cfg.num_slices_h > 0) {
6774 state->dccg.dscclk_khz[i] = 400000; /* Typical DSC clock frequency */
6775 } else {
6776 state->dccg.dscclk_khz[i] = 0;
6777 }
6778 }
6779
6780 /* SYMCLK32 LE Control - only the essential HPO state for underflow analysis */
6781 for (i = 0; i < 2; i++) {
6782 state->dccg.symclk32_le_enable[i] = 0; /* Default: disabled */
6783 }
6784
6785 }
6786
6787 /* Capture essential DSC configuration for underflow analysis */
6788 for (i = 0; i < MAX_PIPES && i < dc->res_pool->pipe_count; i++) {
6789 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
6790
6791 if (pipe_ctx->stream && pipe_ctx->stream->timing.dsc_cfg.num_slices_h > 0) {
6792 /* DSC is enabled - capture essential configuration */
6793 state->dsc[i].dsc_clock_enable = 1;
6794
6795 /* DSC configuration affecting bandwidth and timing */
6796 struct dc_dsc_config *dsc_cfg = &pipe_ctx->stream->timing.dsc_cfg;
6797 state->dsc[i].dsc_num_slices_h = dsc_cfg->num_slices_h;
6798 state->dsc[i].dsc_num_slices_v = dsc_cfg->num_slices_v;
6799 state->dsc[i].dsc_bits_per_pixel = dsc_cfg->bits_per_pixel;
6800
6801 /* OPP pipe source for DSC forwarding */
6802 if (pipe_ctx->stream_res.opp) {
6803 state->dsc[i].dscrm_dsc_forward_enable = 1;
6804 state->dsc[i].dscrm_dsc_opp_pipe_source = pipe_ctx->stream_res.opp->inst;
6805 } else {
6806 state->dsc[i].dscrm_dsc_forward_enable = 0;
6807 state->dsc[i].dscrm_dsc_opp_pipe_source = 0;
6808 }
6809 } else {
6810 /* DSC not enabled - clear all fields */
6811 memset(&state->dsc[i], 0, sizeof(state->dsc[i]));
6812 }
6813 }
6814
6815 /* Capture MPC programming state - comprehensive register field coverage */
6816 for (i = 0; i < MAX_PIPES && i < dc->res_pool->pipe_count; i++) {
6817 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
6818
6819 if (pipe_ctx->plane_state && pipe_ctx->stream) {
6820 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
6821
6822 /* MPCC blending tree and mode control - capture actual blend configuration */
6823 state->mpc.mpcc_mode[i] = (plane_state->blend_tf.type != TF_TYPE_BYPASS) ? 1 : 0;
6824 state->mpc.mpcc_alpha_blend_mode[i] = plane_state->per_pixel_alpha ? 1 : 0;
6825 state->mpc.mpcc_alpha_multiplied_mode[i] = plane_state->pre_multiplied_alpha ? 1 : 0;
6826 state->mpc.mpcc_blnd_active_overlap_only[i] = 0; /* Default - no overlap restriction */
6827 state->mpc.mpcc_global_alpha[i] = plane_state->global_alpha_value;
6828 state->mpc.mpcc_global_gain[i] = plane_state->global_alpha ? 255 : 0;
6829 state->mpc.mpcc_bg_bpc[i] = 8; /* Standard 8-bit background */
6830 state->mpc.mpcc_bot_gain_mode[i] = 0; /* Standard gain mode */
6831
6832 /* MPCC blending tree connections - capture tree topology */
6833 if (pipe_ctx->bottom_pipe) {
6834 state->mpc.mpcc_bot_sel[i] = pipe_ctx->bottom_pipe->pipe_idx;
6835 } else {
6836 state->mpc.mpcc_bot_sel[i] = 0xF; /* No bottom connection */
6837 }
6838 state->mpc.mpcc_top_sel[i] = pipe_ctx->pipe_idx; /* This pipe's DPP ID */
6839
6840 /* MPCC output gamma control - capture gamma programming */
6841 if (plane_state->gamma_correction.type != GAMMA_CS_TFM_1D && plane_state->gamma_correction.num_entries > 0) {
6842 state->mpc.mpcc_ogam_mode[i] = 1; /* Gamma enabled */
6843 state->mpc.mpcc_ogam_select[i] = 0; /* Bank A selection */
6844 state->mpc.mpcc_ogam_pwl_disable[i] = 0; /* PWL enabled */
6845 } else {
6846 state->mpc.mpcc_ogam_mode[i] = 0; /* Bypass mode */
6847 state->mpc.mpcc_ogam_select[i] = 0;
6848 state->mpc.mpcc_ogam_pwl_disable[i] = 1; /* PWL disabled */
6849 }
6850
6851 /* MPCC pipe assignment and operational status */
6852 if (pipe_ctx->stream_res.opp) {
6853 state->mpc.mpcc_opp_id[i] = pipe_ctx->stream_res.opp->inst;
6854 } else {
6855 state->mpc.mpcc_opp_id[i] = 0xF; /* No OPP assignment */
6856 }
6857
6858 /* MPCC status indicators - active pipe state */
6859 state->mpc.mpcc_idle[i] = 0; /* Active pipe - not idle */
6860 state->mpc.mpcc_busy[i] = 1; /* Active pipe - busy processing */
6861
6862 } else {
6863 /* Pipe not active - set disabled/idle state for all fields */
6864 state->mpc.mpcc_mode[i] = 0;
6865 state->mpc.mpcc_alpha_blend_mode[i] = 0;
6866 state->mpc.mpcc_alpha_multiplied_mode[i] = 0;
6867 state->mpc.mpcc_blnd_active_overlap_only[i] = 0;
6868 state->mpc.mpcc_global_alpha[i] = 0;
6869 state->mpc.mpcc_global_gain[i] = 0;
6870 state->mpc.mpcc_bg_bpc[i] = 0;
6871 state->mpc.mpcc_bot_gain_mode[i] = 0;
6872 state->mpc.mpcc_bot_sel[i] = 0xF; /* No bottom connection */
6873 state->mpc.mpcc_top_sel[i] = 0xF; /* No top connection */
6874 state->mpc.mpcc_ogam_mode[i] = 0; /* Bypass */
6875 state->mpc.mpcc_ogam_select[i] = 0;
6876 state->mpc.mpcc_ogam_pwl_disable[i] = 1; /* PWL disabled */
6877 state->mpc.mpcc_opp_id[i] = 0xF; /* No OPP assignment */
6878 state->mpc.mpcc_idle[i] = 1; /* Idle */
6879 state->mpc.mpcc_busy[i] = 0; /* Not busy */
6880 }
6881 }
6882
6883 /* Capture OPP programming state for each pipe - comprehensive register field coverage */
6884 for (i = 0; i < MAX_PIPES && i < dc->res_pool->pipe_count; i++) {
6885 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
6886
6887 if (!pipe_ctx->stream)
6888 continue;
6889
6890 if (pipe_ctx->stream_res.opp) {
6891 struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
6892
6893 /* OPP Pipe Control */
6894 state->opp[i].opp_pipe_clock_enable = 1; /* Active pipe has clock enabled */
6895
6896 /* Display Pattern Generator (DPG) Control - 19 fields */
6897 if (pipe_ctx->stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
6898 state->opp[i].dpg_enable = 1;
6899 } else {
6900 /* Video mode - DPG disabled */
6901 state->opp[i].dpg_enable = 0;
6902 }
6903
6904 /* Format Control (FMT) - 18 fields */
6905 state->opp[i].fmt_pixel_encoding = timing->pixel_encoding;
6906
6907 /* Chroma subsampling mode based on pixel encoding */
6908 if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420) {
6909 state->opp[i].fmt_subsampling_mode = 1; /* 4:2:0 subsampling */
6910 } else if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR422) {
6911 state->opp[i].fmt_subsampling_mode = 2; /* 4:2:2 subsampling */
6912 } else {
6913 state->opp[i].fmt_subsampling_mode = 0; /* No subsampling (4:4:4) */
6914 }
6915
6916 state->opp[i].fmt_cbcr_bit_reduction_bypass = (timing->pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
6917 state->opp[i].fmt_stereosync_override = (timing->timing_3d_format != TIMING_3D_FORMAT_NONE) ? 1 : 0;
6918
6919 /* Dithering control based on bit depth */
6920 if (timing->display_color_depth < COLOR_DEPTH_121212) {
6921 state->opp[i].fmt_spatial_dither_frame_counter_max = 15; /* Typical frame counter max */
6922 state->opp[i].fmt_spatial_dither_frame_counter_bit_swap = 0; /* No bit swapping */
6923 state->opp[i].fmt_spatial_dither_enable = 1;
6924 state->opp[i].fmt_spatial_dither_mode = 0; /* Spatial dithering mode */
6925 state->opp[i].fmt_spatial_dither_depth = timing->display_color_depth;
6926 state->opp[i].fmt_temporal_dither_enable = 0; /* Spatial dithering preferred */
6927 } else {
6928 state->opp[i].fmt_spatial_dither_frame_counter_max = 0;
6929 state->opp[i].fmt_spatial_dither_frame_counter_bit_swap = 0;
6930 state->opp[i].fmt_spatial_dither_enable = 0;
6931 state->opp[i].fmt_spatial_dither_mode = 0;
6932 state->opp[i].fmt_spatial_dither_depth = 0;
6933 state->opp[i].fmt_temporal_dither_enable = 0;
6934 }
6935
6936 /* Truncation control for bit depth reduction */
6937 if (timing->display_color_depth < COLOR_DEPTH_121212) {
6938 state->opp[i].fmt_truncate_enable = 1;
6939 state->opp[i].fmt_truncate_depth = timing->display_color_depth;
6940 state->opp[i].fmt_truncate_mode = 0; /* Round mode */
6941 } else {
6942 state->opp[i].fmt_truncate_enable = 0;
6943 state->opp[i].fmt_truncate_depth = 0;
6944 state->opp[i].fmt_truncate_mode = 0;
6945 }
6946
6947 /* Data clamping control */
6948 state->opp[i].fmt_clamp_data_enable = 1; /* Clamping typically enabled */
6949 state->opp[i].fmt_clamp_color_format = timing->pixel_encoding;
6950
6951 /* Dynamic expansion for limited range content */
6952 if (timing->pixel_encoding != PIXEL_ENCODING_RGB) {
6953 state->opp[i].fmt_dynamic_exp_enable = 1; /* YCbCr typically needs expansion */
6954 state->opp[i].fmt_dynamic_exp_mode = 0; /* Standard expansion */
6955 } else {
6956 state->opp[i].fmt_dynamic_exp_enable = 0; /* RGB typically full range */
6957 state->opp[i].fmt_dynamic_exp_mode = 0;
6958 }
6959
6960 /* Legacy field for compatibility */
6961 state->opp[i].fmt_bit_depth_control = timing->display_color_depth;
6962
6963 /* Output Buffer (OPPBUF) Control - 6 fields */
6964 state->opp[i].oppbuf_active_width = timing->h_addressable;
6965 state->opp[i].oppbuf_pixel_repetition = 0; /* No pixel repetition by default */
6966
6967 /* Multi-Stream Output (MSO) / ODM segmentation */
6968 if (pipe_ctx->next_odm_pipe) {
6969 state->opp[i].oppbuf_display_segmentation = 1; /* Segmented display */
6970 state->opp[i].oppbuf_overlap_pixel_num = 0; /* ODM overlap pixels */
6971 } else {
6972 state->opp[i].oppbuf_display_segmentation = 0; /* Single segment */
6973 state->opp[i].oppbuf_overlap_pixel_num = 0;
6974 }
6975
6976 /* 3D/Stereo control */
6977 if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE) {
6978 state->opp[i].oppbuf_3d_vact_space1_size = 30; /* Typical stereo blanking */
6979 state->opp[i].oppbuf_3d_vact_space2_size = 30;
6980 } else {
6981 state->opp[i].oppbuf_3d_vact_space1_size = 0;
6982 state->opp[i].oppbuf_3d_vact_space2_size = 0;
6983 }
6984
6985 /* DSC Forward Config - 3 fields */
6986 if (timing->dsc_cfg.num_slices_h > 0) {
6987 state->opp[i].dscrm_dsc_forward_enable = 1;
6988 state->opp[i].dscrm_dsc_opp_pipe_source = pipe_ctx->stream_res.opp->inst;
6989 state->opp[i].dscrm_dsc_forward_enable_status = 1; /* Status follows enable */
6990 } else {
6991 state->opp[i].dscrm_dsc_forward_enable = 0;
6992 state->opp[i].dscrm_dsc_opp_pipe_source = 0;
6993 state->opp[i].dscrm_dsc_forward_enable_status = 0;
6994 }
6995 } else {
6996 /* No OPP resource - set all fields to disabled state */
6997 memset(&state->opp[i], 0, sizeof(state->opp[i]));
6998 }
6999 }
7000
7001 /* Capture OPTC programming state for each pipe - comprehensive register field coverage */
7002 for (i = 0; i < MAX_PIPES && i < dc->res_pool->pipe_count; i++) {
7003 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
7004
7005 if (!pipe_ctx->stream)
7006 continue;
7007
7008 if (pipe_ctx->stream_res.tg) {
7009 struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
7010
7011 state->optc[i].otg_master_inst = pipe_ctx->stream_res.tg->inst;
7012
7013 /* OTG_CONTROL register - 5 fields */
7014 state->optc[i].otg_master_enable = 1; /* Active stream */
7015 state->optc[i].otg_disable_point_cntl = 0; /* Normal operation */
7016 state->optc[i].otg_start_point_cntl = 0; /* Normal start */
7017 state->optc[i].otg_field_number_cntl = (timing->flags.INTERLACE) ? 1 : 0;
7018 state->optc[i].otg_out_mux = 0; /* Direct output */
7019
7020 /* OTG Horizontal Timing - 7 fields */
7021 state->optc[i].otg_h_total = timing->h_total;
7022 state->optc[i].otg_h_blank_start = timing->h_addressable;
7023 state->optc[i].otg_h_blank_end = timing->h_total - timing->h_front_porch;
7024 state->optc[i].otg_h_sync_start = timing->h_addressable + timing->h_front_porch;
7025 state->optc[i].otg_h_sync_end = timing->h_addressable + timing->h_front_porch + timing->h_sync_width;
7026 state->optc[i].otg_h_sync_polarity = timing->flags.HSYNC_POSITIVE_POLARITY ? 0 : 1;
7027 state->optc[i].otg_h_timing_div_mode = (pipe_ctx->next_odm_pipe) ? 1 : 0; /* ODM divide mode */
7028
7029 /* OTG Vertical Timing - 7 fields */
7030 state->optc[i].otg_v_total = timing->v_total;
7031 state->optc[i].otg_v_blank_start = timing->v_addressable;
7032 state->optc[i].otg_v_blank_end = timing->v_total - timing->v_front_porch;
7033 state->optc[i].otg_v_sync_start = timing->v_addressable + timing->v_front_porch;
7034 state->optc[i].otg_v_sync_end = timing->v_addressable + timing->v_front_porch + timing->v_sync_width;
7035 state->optc[i].otg_v_sync_polarity = timing->flags.VSYNC_POSITIVE_POLARITY ? 0 : 1;
7036 state->optc[i].otg_v_sync_mode = 0; /* Normal sync mode */
7037
7038 /* Initialize remaining core fields with appropriate defaults */
7039 // TODO: Update logic for accurate vtotal min/max
7040 state->optc[i].otg_v_total_max = timing->v_total + 100; /* Typical DRR range */
7041 state->optc[i].otg_v_total_min = timing->v_total - 50;
7042 state->optc[i].otg_v_total_mid = timing->v_total;
7043
7044 /* ODM configuration */
7045 // TODO: Update logic to have complete ODM mappings (e.g. 3:1 and 4:1) stored in single pipe
7046 if (pipe_ctx->next_odm_pipe) {
7047 state->optc[i].optc_seg0_src_sel = pipe_ctx->stream_res.opp ? pipe_ctx->stream_res.opp->inst : 0;
7048 state->optc[i].optc_seg1_src_sel = pipe_ctx->next_odm_pipe->stream_res.opp ? pipe_ctx->next_odm_pipe->stream_res.opp->inst : 0;
7049 state->optc[i].optc_num_of_input_segment = 1; /* 2 segments - 1 */
7050 } else {
7051 state->optc[i].optc_seg0_src_sel = pipe_ctx->stream_res.opp ? pipe_ctx->stream_res.opp->inst : 0;
7052 state->optc[i].optc_seg1_src_sel = 0;
7053 state->optc[i].optc_num_of_input_segment = 0; /* Single segment */
7054 }
7055
7056 /* DSC configuration */
7057 if (timing->dsc_cfg.num_slices_h > 0) {
7058 state->optc[i].optc_dsc_mode = 1; /* DSC enabled */
7059 state->optc[i].optc_dsc_bytes_per_pixel = timing->dsc_cfg.bits_per_pixel / 16; /* Convert to bytes */
7060 state->optc[i].optc_dsc_slice_width = timing->h_addressable / timing->dsc_cfg.num_slices_h;
7061 } else {
7062 state->optc[i].optc_dsc_mode = 0;
7063 state->optc[i].optc_dsc_bytes_per_pixel = 0;
7064 state->optc[i].optc_dsc_slice_width = 0;
7065 }
7066
7067 /* Essential control fields */
7068 state->optc[i].otg_stereo_enable = (timing->timing_3d_format != TIMING_3D_FORMAT_NONE) ? 1 : 0;
7069 state->optc[i].otg_interlace_enable = timing->flags.INTERLACE ? 1 : 0;
7070 state->optc[i].otg_clock_enable = 1; /* OTG clock enabled */
7071 state->optc[i].vtg0_enable = 1; /* VTG enabled for timing generation */
7072
7073 /* Initialize other key fields to defaults */
7074 state->optc[i].optc_input_pix_clk_en = 1;
7075 state->optc[i].optc_segment_width = (pipe_ctx->next_odm_pipe) ? (timing->h_addressable / 2) : timing->h_addressable;
7076 state->optc[i].otg_vready_offset = 1;
7077 state->optc[i].otg_vstartup_start = timing->v_addressable + 10;
7078 state->optc[i].otg_vupdate_offset = 0;
7079 state->optc[i].otg_vupdate_width = 5;
7080 } else {
7081 /* No timing generator resource - initialize all fields to 0 */
7082 memset(&state->optc[i], 0, sizeof(state->optc[i]));
7083 }
7084 }
7085
7086 state->state_valid = true;
7087 return true;
7088 }
7089
dc_log_preos_dmcub_info(const struct dc * dc)7090 void dc_log_preos_dmcub_info(const struct dc *dc)
7091 {
7092 dc_dmub_srv_log_preos_dmcub_info(dc->ctx->dmub_srv);
7093 }
7094