1 /* 2 * Copyright 2015 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: AMD 23 */ 24 25 #include "dm_services.h" 26 27 #include "amdgpu.h" 28 29 #include "dc.h" 30 31 #include "core_status.h" 32 #include "core_types.h" 33 #include "hw_sequencer.h" 34 #include "dce/dce_hwseq.h" 35 36 #include "resource.h" 37 #include "dc_state.h" 38 #include "dc_state_priv.h" 39 #include "dc_plane_priv.h" 40 41 #include "gpio_service_interface.h" 42 #include "clk_mgr.h" 43 #include "clock_source.h" 44 #include "dc_bios_types.h" 45 46 #include "bios_parser_interface.h" 47 #include "bios/bios_parser_helper.h" 48 #include "include/irq_service_interface.h" 49 #include "transform.h" 50 #include "dmcu.h" 51 #include "dpp.h" 52 #include "timing_generator.h" 53 #include "abm.h" 54 #include "virtual/virtual_link_encoder.h" 55 #include "hubp.h" 56 57 #include "link_hwss.h" 58 #include "link_encoder.h" 59 #include "link_enc_cfg.h" 60 61 #include "link.h" 62 #include "dm_helpers.h" 63 #include "mem_input.h" 64 65 #include "dc_dmub_srv.h" 66 67 #include "dsc.h" 68 69 #include "vm_helper.h" 70 71 #include "dce/dce_i2c.h" 72 73 #include "dmub/dmub_srv.h" 74 75 #include "dce/dmub_psr.h" 76 77 #include "dce/dmub_hw_lock_mgr.h" 78 79 #include "dc_trace.h" 80 81 #include "hw_sequencer_private.h" 82 83 #if defined(CONFIG_DRM_AMD_DC_FP) 84 #include "dml2/dml2_internal_types.h" 85 #endif 86 87 #include "dce/dmub_outbox.h" 88 89 #define CTX \ 90 dc->ctx 91 92 #define DC_LOGGER \ 93 dc->ctx->logger 94 95 static const char DC_BUILD_ID[] = "production-build"; 96 97 /** 98 * DOC: Overview 99 * 100 * DC is the OS-agnostic component of the amdgpu DC driver. 101 * 102 * DC maintains and validates a set of structs representing the state of the 103 * driver and writes that state to AMD hardware 104 * 105 * Main DC HW structs: 106 * 107 * struct dc - The central struct. One per driver. Created on driver load, 108 * destroyed on driver unload. 109 * 110 * struct dc_context - One per driver. 111 * Used as a backpointer by most other structs in dc. 112 * 113 * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP 114 * plugpoints). Created on driver load, destroyed on driver unload. 115 * 116 * struct dc_sink - One per display. Created on boot or hotplug. 117 * Destroyed on shutdown or hotunplug. A dc_link can have a local sink 118 * (the display directly attached). It may also have one or more remote 119 * sinks (in the Multi-Stream Transport case) 120 * 121 * struct resource_pool - One per driver. Represents the hw blocks not in the 122 * main pipeline. Not directly accessible by dm. 123 * 124 * Main dc state structs: 125 * 126 * These structs can be created and destroyed as needed. There is a full set of 127 * these structs in dc->current_state representing the currently programmed state. 128 * 129 * struct dc_state - The global DC state to track global state information, 130 * such as bandwidth values. 131 * 132 * struct dc_stream_state - Represents the hw configuration for the pipeline from 133 * a framebuffer to a display. Maps one-to-one with dc_sink. 134 * 135 * struct dc_plane_state - Represents a framebuffer. Each stream has at least one, 136 * and may have more in the Multi-Plane Overlay case. 137 * 138 * struct resource_context - Represents the programmable state of everything in 139 * the resource_pool. Not directly accessible by dm. 140 * 141 * struct pipe_ctx - A member of struct resource_context. Represents the 142 * internal hardware pipeline components. Each dc_plane_state has either 143 * one or two (in the pipe-split case). 144 */ 145 146 /* Private functions */ 147 elevate_update_type(enum surface_update_type * original,enum surface_update_type new)148 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new) 149 { 150 if (new > *original) 151 *original = new; 152 } 153 destroy_links(struct dc * dc)154 static void destroy_links(struct dc *dc) 155 { 156 uint32_t i; 157 158 for (i = 0; i < dc->link_count; i++) { 159 if (NULL != dc->links[i]) 160 dc->link_srv->destroy_link(&dc->links[i]); 161 } 162 } 163 get_num_of_internal_disp(struct dc_link ** links,uint32_t num_links)164 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links) 165 { 166 int i; 167 uint32_t count = 0; 168 169 for (i = 0; i < num_links; i++) { 170 if (links[i]->connector_signal == SIGNAL_TYPE_EDP || 171 links[i]->is_internal_display) 172 count++; 173 } 174 175 return count; 176 } 177 get_seamless_boot_stream_count(struct dc_state * ctx)178 static int get_seamless_boot_stream_count(struct dc_state *ctx) 179 { 180 uint8_t i; 181 uint8_t seamless_boot_stream_count = 0; 182 183 for (i = 0; i < ctx->stream_count; i++) 184 if (ctx->streams[i]->apply_seamless_boot_optimization) 185 seamless_boot_stream_count++; 186 187 return seamless_boot_stream_count; 188 } 189 create_links(struct dc * dc,uint32_t num_virtual_links)190 static bool create_links( 191 struct dc *dc, 192 uint32_t num_virtual_links) 193 { 194 int i; 195 int connectors_num; 196 struct dc_bios *bios = dc->ctx->dc_bios; 197 198 dc->link_count = 0; 199 200 connectors_num = bios->funcs->get_connectors_number(bios); 201 202 DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num); 203 204 if (connectors_num > ENUM_ID_COUNT) { 205 dm_error( 206 "DC: Number of connectors %d exceeds maximum of %d!\n", 207 connectors_num, 208 ENUM_ID_COUNT); 209 return false; 210 } 211 212 dm_output_to_console( 213 "DC: %s: connectors_num: physical:%d, virtual:%d\n", 214 __func__, 215 connectors_num, 216 num_virtual_links); 217 218 // condition loop on link_count to allow skipping invalid indices 219 for (i = 0; dc->link_count < connectors_num && i < MAX_LINKS; i++) { 220 struct link_init_data link_init_params = {0}; 221 struct dc_link *link; 222 223 DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count); 224 225 link_init_params.ctx = dc->ctx; 226 /* next BIOS object table connector */ 227 link_init_params.connector_index = i; 228 link_init_params.link_index = dc->link_count; 229 link_init_params.dc = dc; 230 link = dc->link_srv->create_link(&link_init_params); 231 232 if (link) { 233 dc->links[dc->link_count] = link; 234 link->dc = dc; 235 ++dc->link_count; 236 } 237 } 238 239 DC_LOG_DC("BIOS object table - end"); 240 241 /* Create a link for each usb4 dpia port */ 242 for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) { 243 struct link_init_data link_init_params = {0}; 244 struct dc_link *link; 245 246 link_init_params.ctx = dc->ctx; 247 link_init_params.connector_index = i; 248 link_init_params.link_index = dc->link_count; 249 link_init_params.dc = dc; 250 link_init_params.is_dpia_link = true; 251 252 link = dc->link_srv->create_link(&link_init_params); 253 if (link) { 254 dc->links[dc->link_count] = link; 255 link->dc = dc; 256 ++dc->link_count; 257 } 258 } 259 260 for (i = 0; i < num_virtual_links; i++) { 261 struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL); 262 struct encoder_init_data enc_init = {0}; 263 264 if (link == NULL) { 265 BREAK_TO_DEBUGGER(); 266 goto failed_alloc; 267 } 268 269 link->link_index = dc->link_count; 270 dc->links[dc->link_count] = link; 271 dc->link_count++; 272 273 link->ctx = dc->ctx; 274 link->dc = dc; 275 link->connector_signal = SIGNAL_TYPE_VIRTUAL; 276 link->link_id.type = OBJECT_TYPE_CONNECTOR; 277 link->link_id.id = CONNECTOR_ID_VIRTUAL; 278 link->link_id.enum_id = ENUM_ID_1; 279 link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL); 280 281 if (!link->link_enc) { 282 BREAK_TO_DEBUGGER(); 283 goto failed_alloc; 284 } 285 286 link->link_status.dpcd_caps = &link->dpcd_caps; 287 288 enc_init.ctx = dc->ctx; 289 enc_init.channel = CHANNEL_ID_UNKNOWN; 290 enc_init.hpd_source = HPD_SOURCEID_UNKNOWN; 291 enc_init.transmitter = TRANSMITTER_UNKNOWN; 292 enc_init.connector = link->link_id; 293 enc_init.encoder.type = OBJECT_TYPE_ENCODER; 294 enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL; 295 enc_init.encoder.enum_id = ENUM_ID_1; 296 virtual_link_encoder_construct(link->link_enc, &enc_init); 297 } 298 299 dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count); 300 301 return true; 302 303 failed_alloc: 304 return false; 305 } 306 307 /* Create additional DIG link encoder objects if fewer than the platform 308 * supports were created during link construction. This can happen if the 309 * number of physical connectors is less than the number of DIGs. 310 */ create_link_encoders(struct dc * dc)311 static bool create_link_encoders(struct dc *dc) 312 { 313 bool res = true; 314 unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia; 315 unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc; 316 int i; 317 318 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG 319 * link encoders and physical display endpoints and does not require 320 * additional link encoder objects. 321 */ 322 if (num_usb4_dpia == 0) 323 return res; 324 325 /* Create as many link encoder objects as the platform supports. DPIA 326 * endpoints can be programmably mapped to any DIG. 327 */ 328 if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) { 329 for (i = 0; i < num_dig_link_enc; i++) { 330 struct link_encoder *link_enc = dc->res_pool->link_encoders[i]; 331 332 if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) { 333 link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx, 334 (enum engine_id)(ENGINE_ID_DIGA + i)); 335 if (link_enc) { 336 dc->res_pool->link_encoders[i] = link_enc; 337 dc->res_pool->dig_link_enc_count++; 338 } else { 339 res = false; 340 } 341 } 342 } 343 } 344 345 return res; 346 } 347 348 /* Destroy any additional DIG link encoder objects created by 349 * create_link_encoders(). 350 * NB: Must only be called after destroy_links(). 351 */ destroy_link_encoders(struct dc * dc)352 static void destroy_link_encoders(struct dc *dc) 353 { 354 unsigned int num_usb4_dpia; 355 unsigned int num_dig_link_enc; 356 int i; 357 358 if (!dc->res_pool) 359 return; 360 361 num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia; 362 num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc; 363 364 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG 365 * link encoders and physical display endpoints and does not require 366 * additional link encoder objects. 367 */ 368 if (num_usb4_dpia == 0) 369 return; 370 371 for (i = 0; i < num_dig_link_enc; i++) { 372 struct link_encoder *link_enc = dc->res_pool->link_encoders[i]; 373 374 if (link_enc) { 375 link_enc->funcs->destroy(&link_enc); 376 dc->res_pool->link_encoders[i] = NULL; 377 dc->res_pool->dig_link_enc_count--; 378 } 379 } 380 } 381 dc_perf_trace_create(void)382 static struct dc_perf_trace *dc_perf_trace_create(void) 383 { 384 return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL); 385 } 386 dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)387 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace) 388 { 389 kfree(*perf_trace); 390 *perf_trace = NULL; 391 } 392 set_long_vtotal(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)393 static bool set_long_vtotal(struct dc *dc, struct dc_stream_state *stream, struct dc_crtc_timing_adjust *adjust) 394 { 395 if (!dc || !stream || !adjust) 396 return false; 397 398 if (!dc->current_state) 399 return false; 400 401 int i; 402 403 for (i = 0; i < MAX_PIPES; i++) { 404 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 405 406 if (pipe->stream == stream && pipe->stream_res.tg) { 407 if (dc->hwss.set_long_vtotal) 408 dc->hwss.set_long_vtotal(&pipe, 1, adjust->v_total_min, adjust->v_total_max); 409 410 return true; 411 } 412 } 413 414 return false; 415 } 416 417 /** 418 * dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR 419 * @dc: dc reference 420 * @stream: Initial dc stream state 421 * @adjust: Updated parameters for vertical_total_min and vertical_total_max 422 * 423 * Looks up the pipe context of dc_stream_state and updates the 424 * vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh 425 * Rate, which is a power-saving feature that targets reducing panel 426 * refresh rate while the screen is static 427 * 428 * Return: %true if the pipe context is found and adjusted; 429 * %false if the pipe context is not found. 430 */ dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)431 bool dc_stream_adjust_vmin_vmax(struct dc *dc, 432 struct dc_stream_state *stream, 433 struct dc_crtc_timing_adjust *adjust) 434 { 435 int i; 436 437 /* 438 * Don't adjust DRR while there's bandwidth optimizations pending to 439 * avoid conflicting with firmware updates. 440 */ 441 if (dc->ctx->dce_version > DCE_VERSION_MAX) 442 if (dc->optimized_required || dc->wm_optimized_required) 443 return false; 444 445 dc_exit_ips_for_hw_access(dc); 446 447 stream->adjust.v_total_max = adjust->v_total_max; 448 stream->adjust.v_total_mid = adjust->v_total_mid; 449 stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num; 450 stream->adjust.v_total_min = adjust->v_total_min; 451 stream->adjust.allow_otg_v_count_halt = adjust->allow_otg_v_count_halt; 452 453 if (dc->caps.max_v_total != 0 && 454 (adjust->v_total_max > dc->caps.max_v_total || adjust->v_total_min > dc->caps.max_v_total)) { 455 if (adjust->allow_otg_v_count_halt) 456 return set_long_vtotal(dc, stream, adjust); 457 else 458 return false; 459 } 460 461 for (i = 0; i < MAX_PIPES; i++) { 462 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 463 464 if (pipe->stream == stream && pipe->stream_res.tg) { 465 dc->hwss.set_drr(&pipe, 466 1, 467 *adjust); 468 469 return true; 470 } 471 } 472 return false; 473 } 474 475 /** 476 * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of 477 * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate) 478 * 479 * @dc: [in] dc reference 480 * @stream: [in] Initial dc stream state 481 * @refresh_rate: [in] new refresh_rate 482 * 483 * Return: %true if the pipe context is found and there is an associated 484 * timing_generator for the DC; 485 * %false if the pipe context is not found or there is no 486 * timing_generator for the DC. 487 */ dc_stream_get_last_used_drr_vtotal(struct dc * dc,struct dc_stream_state * stream,uint32_t * refresh_rate)488 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc, 489 struct dc_stream_state *stream, 490 uint32_t *refresh_rate) 491 { 492 bool status = false; 493 494 int i = 0; 495 496 dc_exit_ips_for_hw_access(dc); 497 498 for (i = 0; i < MAX_PIPES; i++) { 499 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 500 501 if (pipe->stream == stream && pipe->stream_res.tg) { 502 /* Only execute if a function pointer has been defined for 503 * the DC version in question 504 */ 505 if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) { 506 pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate); 507 508 status = true; 509 510 break; 511 } 512 } 513 } 514 515 return status; 516 } 517 dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)518 bool dc_stream_get_crtc_position(struct dc *dc, 519 struct dc_stream_state **streams, int num_streams, 520 unsigned int *v_pos, unsigned int *nom_v_pos) 521 { 522 /* TODO: Support multiple streams */ 523 const struct dc_stream_state *stream = streams[0]; 524 int i; 525 bool ret = false; 526 struct crtc_position position; 527 528 dc_exit_ips_for_hw_access(dc); 529 530 for (i = 0; i < MAX_PIPES; i++) { 531 struct pipe_ctx *pipe = 532 &dc->current_state->res_ctx.pipe_ctx[i]; 533 534 if (pipe->stream == stream && pipe->stream_res.stream_enc) { 535 dc->hwss.get_position(&pipe, 1, &position); 536 537 *v_pos = position.vertical_count; 538 *nom_v_pos = position.nominal_vcount; 539 ret = true; 540 } 541 } 542 return ret; 543 } 544 545 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY) 546 static inline void dc_stream_forward_dmub_crc_window(struct dc_dmub_srv * dmub_srv,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)547 dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv, 548 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop) 549 { 550 union dmub_rb_cmd cmd = {0}; 551 552 cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num; 553 cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num; 554 555 if (is_stop) { 556 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY; 557 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE; 558 } else { 559 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY; 560 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY; 561 cmd.secure_display.roi_info.x_start = rect->x; 562 cmd.secure_display.roi_info.y_start = rect->y; 563 cmd.secure_display.roi_info.x_end = rect->x + rect->width; 564 cmd.secure_display.roi_info.y_end = rect->y + rect->height; 565 } 566 567 dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT); 568 } 569 570 static inline void dc_stream_forward_dmcu_crc_window(struct dmcu * dmcu,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)571 dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu, 572 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop) 573 { 574 if (is_stop) 575 dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping); 576 else 577 dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping); 578 } 579 580 bool dc_stream_forward_crc_window(struct dc_stream_state * stream,struct rect * rect,uint8_t phy_id,bool is_stop)581 dc_stream_forward_crc_window(struct dc_stream_state *stream, 582 struct rect *rect, uint8_t phy_id, bool is_stop) 583 { 584 struct dmcu *dmcu; 585 struct dc_dmub_srv *dmub_srv; 586 struct otg_phy_mux mux_mapping; 587 struct pipe_ctx *pipe; 588 int i; 589 struct dc *dc = stream->ctx->dc; 590 591 for (i = 0; i < MAX_PIPES; i++) { 592 pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 593 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe) 594 break; 595 } 596 597 /* Stream not found */ 598 if (i == MAX_PIPES) 599 return false; 600 601 mux_mapping.phy_output_num = phy_id; 602 mux_mapping.otg_output_num = pipe->stream_res.tg->inst; 603 604 dmcu = dc->res_pool->dmcu; 605 dmub_srv = dc->ctx->dmub_srv; 606 607 /* forward to dmub */ 608 if (dmub_srv) 609 dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop); 610 /* forward to dmcu */ 611 else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) 612 dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop); 613 else 614 return false; 615 616 return true; 617 } 618 619 static void dc_stream_forward_dmub_multiple_crc_window(struct dc_dmub_srv * dmub_srv,struct crc_window * window,struct otg_phy_mux * mux_mapping,bool stop)620 dc_stream_forward_dmub_multiple_crc_window(struct dc_dmub_srv *dmub_srv, 621 struct crc_window *window, struct otg_phy_mux *mux_mapping, bool stop) 622 { 623 int i; 624 union dmub_rb_cmd cmd = {0}; 625 626 cmd.secure_display.mul_roi_ctl.phy_id = mux_mapping->phy_output_num; 627 cmd.secure_display.mul_roi_ctl.otg_id = mux_mapping->otg_output_num; 628 629 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY; 630 631 if (stop) { 632 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_MULTIPLE_CRC_STOP_UPDATE; 633 } else { 634 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_MULTIPLE_CRC_WIN_NOTIFY; 635 for (i = 0; i < MAX_CRC_WINDOW_NUM; i++) { 636 cmd.secure_display.mul_roi_ctl.roi_ctl[i].x_start = window[i].rect.x; 637 cmd.secure_display.mul_roi_ctl.roi_ctl[i].y_start = window[i].rect.y; 638 cmd.secure_display.mul_roi_ctl.roi_ctl[i].x_end = window[i].rect.x + window[i].rect.width; 639 cmd.secure_display.mul_roi_ctl.roi_ctl[i].y_end = window[i].rect.y + window[i].rect.height; 640 cmd.secure_display.mul_roi_ctl.roi_ctl[i].enable = window[i].enable; 641 } 642 } 643 644 dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT); 645 } 646 647 bool dc_stream_forward_multiple_crc_window(struct dc_stream_state * stream,struct crc_window * window,uint8_t phy_id,bool stop)648 dc_stream_forward_multiple_crc_window(struct dc_stream_state *stream, 649 struct crc_window *window, uint8_t phy_id, bool stop) 650 { 651 struct dc_dmub_srv *dmub_srv; 652 struct otg_phy_mux mux_mapping; 653 struct pipe_ctx *pipe; 654 int i; 655 struct dc *dc = stream->ctx->dc; 656 657 for (i = 0; i < MAX_PIPES; i++) { 658 pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 659 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe) 660 break; 661 } 662 663 /* Stream not found */ 664 if (i == MAX_PIPES) 665 return false; 666 667 mux_mapping.phy_output_num = phy_id; 668 mux_mapping.otg_output_num = pipe->stream_res.tg->inst; 669 670 dmub_srv = dc->ctx->dmub_srv; 671 672 /* forward to dmub only. no dmcu support*/ 673 if (dmub_srv) 674 dc_stream_forward_dmub_multiple_crc_window(dmub_srv, window, &mux_mapping, stop); 675 else 676 return false; 677 678 return true; 679 } 680 #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */ 681 682 /** 683 * dc_stream_configure_crc() - Configure CRC capture for the given stream. 684 * @dc: DC Object 685 * @stream: The stream to configure CRC on. 686 * @crc_window: CRC window (x/y start/end) information 687 * @enable: Enable CRC if true, disable otherwise. 688 * @continuous: Capture CRC on every frame if true. Otherwise, only capture 689 * once. 690 * @idx: Capture CRC on which CRC engine instance 691 * @reset: Reset CRC engine before the configuration 692 * 693 * By default, the entire frame is used to calculate the CRC. 694 * 695 * Return: %false if the stream is not found or CRC capture is not supported; 696 * %true if the stream has been configured. 697 */ dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window,bool enable,bool continuous,uint8_t idx,bool reset)698 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream, 699 struct crc_params *crc_window, bool enable, bool continuous, 700 uint8_t idx, bool reset) 701 { 702 struct pipe_ctx *pipe; 703 struct crc_params param; 704 struct timing_generator *tg; 705 706 pipe = resource_get_otg_master_for_stream( 707 &dc->current_state->res_ctx, stream); 708 709 /* Stream not found */ 710 if (pipe == NULL) 711 return false; 712 713 dc_exit_ips_for_hw_access(dc); 714 715 /* By default, capture the full frame */ 716 param.windowa_x_start = 0; 717 param.windowa_y_start = 0; 718 param.windowa_x_end = pipe->stream->timing.h_addressable; 719 param.windowa_y_end = pipe->stream->timing.v_addressable; 720 param.windowb_x_start = 0; 721 param.windowb_y_start = 0; 722 param.windowb_x_end = pipe->stream->timing.h_addressable; 723 param.windowb_y_end = pipe->stream->timing.v_addressable; 724 725 if (crc_window) { 726 param.windowa_x_start = crc_window->windowa_x_start; 727 param.windowa_y_start = crc_window->windowa_y_start; 728 param.windowa_x_end = crc_window->windowa_x_end; 729 param.windowa_y_end = crc_window->windowa_y_end; 730 param.windowb_x_start = crc_window->windowb_x_start; 731 param.windowb_y_start = crc_window->windowb_y_start; 732 param.windowb_x_end = crc_window->windowb_x_end; 733 param.windowb_y_end = crc_window->windowb_y_end; 734 } 735 736 param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0; 737 param.odm_mode = pipe->next_odm_pipe ? 1:0; 738 739 /* Default to the union of both windows */ 740 param.selection = UNION_WINDOW_A_B; 741 param.continuous_mode = continuous; 742 param.enable = enable; 743 744 param.crc_eng_inst = idx; 745 param.reset = reset; 746 747 tg = pipe->stream_res.tg; 748 749 /* Only call if supported */ 750 if (tg->funcs->configure_crc) 751 return tg->funcs->configure_crc(tg, ¶m); 752 DC_LOG_WARNING("CRC capture not supported."); 753 return false; 754 } 755 756 /** 757 * dc_stream_get_crc() - Get CRC values for the given stream. 758 * 759 * @dc: DC object. 760 * @stream: The DC stream state of the stream to get CRCs from. 761 * @idx: index of crc engine to get CRC from 762 * @r_cr: CRC value for the red component. 763 * @g_y: CRC value for the green component. 764 * @b_cb: CRC value for the blue component. 765 * 766 * dc_stream_configure_crc needs to be called beforehand to enable CRCs. 767 * 768 * Return: 769 * %false if stream is not found, or if CRCs are not enabled. 770 */ dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint8_t idx,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)771 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream, uint8_t idx, 772 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb) 773 { 774 int i; 775 struct pipe_ctx *pipe; 776 struct timing_generator *tg; 777 778 dc_exit_ips_for_hw_access(dc); 779 780 for (i = 0; i < MAX_PIPES; i++) { 781 pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 782 if (pipe->stream == stream) 783 break; 784 } 785 /* Stream not found */ 786 if (i == MAX_PIPES) 787 return false; 788 789 tg = pipe->stream_res.tg; 790 791 if (tg->funcs->get_crc) 792 return tg->funcs->get_crc(tg, idx, r_cr, g_y, b_cb); 793 DC_LOG_WARNING("CRC capture not supported."); 794 return false; 795 } 796 dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)797 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream, 798 enum dc_dynamic_expansion option) 799 { 800 /* OPP FMT dyn expansion updates*/ 801 int i; 802 struct pipe_ctx *pipe_ctx; 803 804 dc_exit_ips_for_hw_access(dc); 805 806 for (i = 0; i < MAX_PIPES; i++) { 807 if (dc->current_state->res_ctx.pipe_ctx[i].stream 808 == stream) { 809 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; 810 pipe_ctx->stream_res.opp->dyn_expansion = option; 811 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion( 812 pipe_ctx->stream_res.opp, 813 COLOR_SPACE_YCBCR601, 814 stream->timing.display_color_depth, 815 stream->signal); 816 } 817 } 818 } 819 dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)820 void dc_stream_set_dither_option(struct dc_stream_state *stream, 821 enum dc_dither_option option) 822 { 823 struct bit_depth_reduction_params params; 824 struct dc_link *link = stream->link; 825 struct pipe_ctx *pipes = NULL; 826 int i; 827 828 for (i = 0; i < MAX_PIPES; i++) { 829 if (link->dc->current_state->res_ctx.pipe_ctx[i].stream == 830 stream) { 831 pipes = &link->dc->current_state->res_ctx.pipe_ctx[i]; 832 break; 833 } 834 } 835 836 if (!pipes) 837 return; 838 if (option > DITHER_OPTION_MAX) 839 return; 840 841 dc_exit_ips_for_hw_access(stream->ctx->dc); 842 843 stream->dither_option = option; 844 845 memset(¶ms, 0, sizeof(params)); 846 resource_build_bit_depth_reduction_params(stream, ¶ms); 847 stream->bit_depth_params = params; 848 849 if (pipes->plane_res.xfm && 850 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) { 851 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth( 852 pipes->plane_res.xfm, 853 pipes->plane_res.scl_data.lb_params.depth, 854 &stream->bit_depth_params); 855 } 856 857 pipes->stream_res.opp->funcs-> 858 opp_program_bit_depth_reduction(pipes->stream_res.opp, ¶ms); 859 } 860 dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)861 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream) 862 { 863 int i; 864 bool ret = false; 865 struct pipe_ctx *pipes; 866 867 dc_exit_ips_for_hw_access(dc); 868 869 for (i = 0; i < MAX_PIPES; i++) { 870 if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) { 871 pipes = &dc->current_state->res_ctx.pipe_ctx[i]; 872 dc->hwss.program_gamut_remap(pipes); 873 ret = true; 874 } 875 } 876 877 return ret; 878 } 879 dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)880 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream) 881 { 882 int i; 883 bool ret = false; 884 struct pipe_ctx *pipes; 885 886 dc_exit_ips_for_hw_access(dc); 887 888 for (i = 0; i < MAX_PIPES; i++) { 889 if (dc->current_state->res_ctx.pipe_ctx[i].stream 890 == stream) { 891 892 pipes = &dc->current_state->res_ctx.pipe_ctx[i]; 893 dc->hwss.program_output_csc(dc, 894 pipes, 895 stream->output_color_space, 896 stream->csc_color_matrix.matrix, 897 pipes->stream_res.opp->inst); 898 ret = true; 899 } 900 } 901 902 return ret; 903 } 904 dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)905 void dc_stream_set_static_screen_params(struct dc *dc, 906 struct dc_stream_state **streams, 907 int num_streams, 908 const struct dc_static_screen_params *params) 909 { 910 int i, j; 911 struct pipe_ctx *pipes_affected[MAX_PIPES]; 912 int num_pipes_affected = 0; 913 914 dc_exit_ips_for_hw_access(dc); 915 916 for (i = 0; i < num_streams; i++) { 917 struct dc_stream_state *stream = streams[i]; 918 919 for (j = 0; j < MAX_PIPES; j++) { 920 if (dc->current_state->res_ctx.pipe_ctx[j].stream 921 == stream) { 922 pipes_affected[num_pipes_affected++] = 923 &dc->current_state->res_ctx.pipe_ctx[j]; 924 } 925 } 926 } 927 928 dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params); 929 } 930 dc_destruct(struct dc * dc)931 static void dc_destruct(struct dc *dc) 932 { 933 // reset link encoder assignment table on destruct 934 if (dc->res_pool && dc->res_pool->funcs->link_encs_assign) 935 link_enc_cfg_init(dc, dc->current_state); 936 937 if (dc->current_state) { 938 dc_state_release(dc->current_state); 939 dc->current_state = NULL; 940 } 941 942 destroy_links(dc); 943 944 destroy_link_encoders(dc); 945 946 if (dc->clk_mgr) { 947 dc_destroy_clk_mgr(dc->clk_mgr); 948 dc->clk_mgr = NULL; 949 } 950 951 dc_destroy_resource_pool(dc); 952 953 if (dc->link_srv) 954 link_destroy_link_service(&dc->link_srv); 955 956 if (dc->ctx->gpio_service) 957 dal_gpio_service_destroy(&dc->ctx->gpio_service); 958 959 if (dc->ctx->created_bios) 960 dal_bios_parser_destroy(&dc->ctx->dc_bios); 961 962 kfree(dc->ctx->logger); 963 dc_perf_trace_destroy(&dc->ctx->perf_trace); 964 965 kfree(dc->ctx); 966 dc->ctx = NULL; 967 968 kfree(dc->bw_vbios); 969 dc->bw_vbios = NULL; 970 971 kfree(dc->bw_dceip); 972 dc->bw_dceip = NULL; 973 974 kfree(dc->dcn_soc); 975 dc->dcn_soc = NULL; 976 977 kfree(dc->dcn_ip); 978 dc->dcn_ip = NULL; 979 980 kfree(dc->vm_helper); 981 dc->vm_helper = NULL; 982 983 } 984 dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)985 static bool dc_construct_ctx(struct dc *dc, 986 const struct dc_init_data *init_params) 987 { 988 struct dc_context *dc_ctx; 989 990 dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL); 991 if (!dc_ctx) 992 return false; 993 994 dc_ctx->cgs_device = init_params->cgs_device; 995 dc_ctx->driver_context = init_params->driver; 996 dc_ctx->dc = dc; 997 dc_ctx->asic_id = init_params->asic_id; 998 dc_ctx->dc_sink_id_count = 0; 999 dc_ctx->dc_stream_id_count = 0; 1000 dc_ctx->dce_environment = init_params->dce_environment; 1001 dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets; 1002 dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets; 1003 dc_ctx->clk_reg_offsets = init_params->clk_reg_offsets; 1004 1005 /* Create logger */ 1006 dc_ctx->logger = kmalloc(sizeof(*dc_ctx->logger), GFP_KERNEL); 1007 1008 if (!dc_ctx->logger) { 1009 kfree(dc_ctx); 1010 return false; 1011 } 1012 1013 dc_ctx->logger->dev = adev_to_drm(init_params->driver); 1014 dc->dml.logger = dc_ctx->logger; 1015 1016 dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id); 1017 1018 dc_ctx->perf_trace = dc_perf_trace_create(); 1019 if (!dc_ctx->perf_trace) { 1020 kfree(dc_ctx); 1021 ASSERT_CRITICAL(false); 1022 return false; 1023 } 1024 1025 dc->ctx = dc_ctx; 1026 1027 dc->link_srv = link_create_link_service(); 1028 if (!dc->link_srv) 1029 return false; 1030 1031 return true; 1032 } 1033 dc_construct(struct dc * dc,const struct dc_init_data * init_params)1034 static bool dc_construct(struct dc *dc, 1035 const struct dc_init_data *init_params) 1036 { 1037 struct dc_context *dc_ctx; 1038 struct bw_calcs_dceip *dc_dceip; 1039 struct bw_calcs_vbios *dc_vbios; 1040 struct dcn_soc_bounding_box *dcn_soc; 1041 struct dcn_ip_params *dcn_ip; 1042 1043 dc->config = init_params->flags; 1044 1045 // Allocate memory for the vm_helper 1046 dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL); 1047 if (!dc->vm_helper) { 1048 dm_error("%s: failed to create dc->vm_helper\n", __func__); 1049 goto fail; 1050 } 1051 1052 memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides)); 1053 1054 dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL); 1055 if (!dc_dceip) { 1056 dm_error("%s: failed to create dceip\n", __func__); 1057 goto fail; 1058 } 1059 1060 dc->bw_dceip = dc_dceip; 1061 1062 dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL); 1063 if (!dc_vbios) { 1064 dm_error("%s: failed to create vbios\n", __func__); 1065 goto fail; 1066 } 1067 1068 dc->bw_vbios = dc_vbios; 1069 dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL); 1070 if (!dcn_soc) { 1071 dm_error("%s: failed to create dcn_soc\n", __func__); 1072 goto fail; 1073 } 1074 1075 dc->dcn_soc = dcn_soc; 1076 1077 dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL); 1078 if (!dcn_ip) { 1079 dm_error("%s: failed to create dcn_ip\n", __func__); 1080 goto fail; 1081 } 1082 1083 dc->dcn_ip = dcn_ip; 1084 1085 if (init_params->bb_from_dmub) 1086 dc->dml2_options.bb_from_dmub = init_params->bb_from_dmub; 1087 else 1088 dc->dml2_options.bb_from_dmub = NULL; 1089 1090 if (!dc_construct_ctx(dc, init_params)) { 1091 dm_error("%s: failed to create ctx\n", __func__); 1092 goto fail; 1093 } 1094 1095 dc_ctx = dc->ctx; 1096 1097 /* Resource should construct all asic specific resources. 1098 * This should be the only place where we need to parse the asic id 1099 */ 1100 if (init_params->vbios_override) 1101 dc_ctx->dc_bios = init_params->vbios_override; 1102 else { 1103 /* Create BIOS parser */ 1104 struct bp_init_data bp_init_data; 1105 1106 bp_init_data.ctx = dc_ctx; 1107 bp_init_data.bios = init_params->asic_id.atombios_base_address; 1108 1109 dc_ctx->dc_bios = dal_bios_parser_create( 1110 &bp_init_data, dc_ctx->dce_version); 1111 1112 if (!dc_ctx->dc_bios) { 1113 ASSERT_CRITICAL(false); 1114 goto fail; 1115 } 1116 1117 dc_ctx->created_bios = true; 1118 } 1119 1120 dc->vendor_signature = init_params->vendor_signature; 1121 1122 /* Create GPIO service */ 1123 dc_ctx->gpio_service = dal_gpio_service_create( 1124 dc_ctx->dce_version, 1125 dc_ctx->dce_environment, 1126 dc_ctx); 1127 1128 if (!dc_ctx->gpio_service) { 1129 ASSERT_CRITICAL(false); 1130 goto fail; 1131 } 1132 1133 dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version); 1134 if (!dc->res_pool) 1135 goto fail; 1136 1137 /* set i2c speed if not done by the respective dcnxxx__resource.c */ 1138 if (dc->caps.i2c_speed_in_khz_hdcp == 0) 1139 dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz; 1140 if (dc->caps.max_optimizable_video_width == 0) 1141 dc->caps.max_optimizable_video_width = 5120; 1142 dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg); 1143 if (!dc->clk_mgr) 1144 goto fail; 1145 #ifdef CONFIG_DRM_AMD_DC_FP 1146 dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present; 1147 1148 if (dc->res_pool->funcs->update_bw_bounding_box) { 1149 DC_FP_START(); 1150 dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params); 1151 DC_FP_END(); 1152 } 1153 #endif 1154 1155 if (!create_links(dc, init_params->num_virtual_links)) 1156 goto fail; 1157 1158 /* Create additional DIG link encoder objects if fewer than the platform 1159 * supports were created during link construction. 1160 */ 1161 if (!create_link_encoders(dc)) 1162 goto fail; 1163 1164 /* Creation of current_state must occur after dc->dml 1165 * is initialized in dc_create_resource_pool because 1166 * on creation it copies the contents of dc->dml 1167 */ 1168 dc->current_state = dc_state_create(dc, NULL); 1169 1170 if (!dc->current_state) { 1171 dm_error("%s: failed to create validate ctx\n", __func__); 1172 goto fail; 1173 } 1174 1175 return true; 1176 1177 fail: 1178 return false; 1179 } 1180 disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1181 static void disable_all_writeback_pipes_for_stream( 1182 const struct dc *dc, 1183 struct dc_stream_state *stream, 1184 struct dc_state *context) 1185 { 1186 int i; 1187 1188 for (i = 0; i < stream->num_wb_info; i++) 1189 stream->writeback_info[i].wb_enabled = false; 1190 } 1191 apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)1192 static void apply_ctx_interdependent_lock(struct dc *dc, 1193 struct dc_state *context, 1194 struct dc_stream_state *stream, 1195 bool lock) 1196 { 1197 int i; 1198 1199 /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */ 1200 if (dc->hwss.interdependent_update_lock) 1201 dc->hwss.interdependent_update_lock(dc, context, lock); 1202 else { 1203 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1204 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; 1205 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; 1206 1207 // Copied conditions that were previously in dce110_apply_ctx_for_surface 1208 if (stream == pipe_ctx->stream) { 1209 if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) && 1210 (pipe_ctx->plane_state || old_pipe_ctx->plane_state)) 1211 dc->hwss.pipe_control_lock(dc, pipe_ctx, lock); 1212 } 1213 } 1214 } 1215 } 1216 dc_update_visual_confirm_color(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)1217 static void dc_update_visual_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx) 1218 { 1219 if (dc->ctx->dce_version >= DCN_VERSION_1_0) { 1220 memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color)); 1221 1222 if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR) 1223 get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color)); 1224 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE) 1225 get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color)); 1226 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE) 1227 get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color)); 1228 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_HW_CURSOR) 1229 get_cursor_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color)); 1230 else { 1231 if (dc->ctx->dce_version < DCN_VERSION_2_0) 1232 color_space_to_black_color( 1233 dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color)); 1234 } 1235 if (dc->ctx->dce_version >= DCN_VERSION_2_0) { 1236 if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE) 1237 get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color)); 1238 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP) 1239 get_subvp_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color)); 1240 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) 1241 get_mclk_switch_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color)); 1242 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_FAMS2) 1243 get_fams2_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color)); 1244 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_VABC) 1245 get_vabc_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color)); 1246 } 1247 } 1248 } 1249 disable_dangling_plane(struct dc * dc,struct dc_state * context)1250 static void disable_dangling_plane(struct dc *dc, struct dc_state *context) 1251 { 1252 int i, j; 1253 struct dc_state *dangling_context = dc_state_create_current_copy(dc); 1254 struct dc_state *current_ctx; 1255 struct pipe_ctx *pipe; 1256 struct timing_generator *tg; 1257 1258 if (dangling_context == NULL) 1259 return; 1260 1261 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1262 struct dc_stream_state *old_stream = 1263 dc->current_state->res_ctx.pipe_ctx[i].stream; 1264 bool should_disable = true; 1265 bool pipe_split_change = false; 1266 1267 if ((context->res_ctx.pipe_ctx[i].top_pipe) && 1268 (dc->current_state->res_ctx.pipe_ctx[i].top_pipe)) 1269 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx != 1270 dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx; 1271 else 1272 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe != 1273 dc->current_state->res_ctx.pipe_ctx[i].top_pipe; 1274 1275 for (j = 0; j < context->stream_count; j++) { 1276 if (old_stream == context->streams[j]) { 1277 should_disable = false; 1278 break; 1279 } 1280 } 1281 if (!should_disable && pipe_split_change && 1282 dc->current_state->stream_count != context->stream_count) 1283 should_disable = true; 1284 1285 if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe && 1286 !dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) { 1287 struct pipe_ctx *old_pipe, *new_pipe; 1288 1289 old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 1290 new_pipe = &context->res_ctx.pipe_ctx[i]; 1291 1292 if (old_pipe->plane_state && !new_pipe->plane_state) 1293 should_disable = true; 1294 } 1295 1296 if (should_disable && old_stream) { 1297 bool is_phantom = dc_state_get_stream_subvp_type(dc->current_state, old_stream) == SUBVP_PHANTOM; 1298 pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 1299 tg = pipe->stream_res.tg; 1300 /* When disabling plane for a phantom pipe, we must turn on the 1301 * phantom OTG so the disable programming gets the double buffer 1302 * update. Otherwise the pipe will be left in a partially disabled 1303 * state that can result in underflow or hang when enabling it 1304 * again for different use. 1305 */ 1306 if (is_phantom) { 1307 if (tg->funcs->enable_crtc) { 1308 if (dc->hwseq->funcs.blank_pixel_data) 1309 dc->hwseq->funcs.blank_pixel_data(dc, pipe, true); 1310 tg->funcs->enable_crtc(tg); 1311 } 1312 } 1313 1314 if (is_phantom) 1315 dc_state_rem_all_phantom_planes_for_stream(dc, old_stream, dangling_context, true); 1316 else 1317 dc_state_rem_all_planes_for_stream(dc, old_stream, dangling_context); 1318 disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context); 1319 1320 if (pipe->stream && pipe->plane_state) { 1321 if (!dc->debug.using_dml2) 1322 set_p_state_switch_method(dc, context, pipe); 1323 dc_update_visual_confirm_color(dc, context, pipe); 1324 } 1325 1326 if (dc->hwss.apply_ctx_for_surface) { 1327 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true); 1328 dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context); 1329 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false); 1330 dc->hwss.post_unlock_program_front_end(dc, dangling_context); 1331 } 1332 1333 if (dc->res_pool->funcs->prepare_mcache_programming) 1334 dc->res_pool->funcs->prepare_mcache_programming(dc, dangling_context); 1335 if (dc->hwss.program_front_end_for_ctx) { 1336 dc->hwss.interdependent_update_lock(dc, dc->current_state, true); 1337 dc->hwss.program_front_end_for_ctx(dc, dangling_context); 1338 dc->hwss.interdependent_update_lock(dc, dc->current_state, false); 1339 dc->hwss.post_unlock_program_front_end(dc, dangling_context); 1340 } 1341 /* We need to put the phantom OTG back into it's default (disabled) state or we 1342 * can get corruption when transition from one SubVP config to a different one. 1343 * The OTG is set to disable on falling edge of VUPDATE so the plane disable 1344 * will still get it's double buffer update. 1345 */ 1346 if (is_phantom) { 1347 if (tg->funcs->disable_phantom_crtc) 1348 tg->funcs->disable_phantom_crtc(tg); 1349 } 1350 } 1351 } 1352 1353 current_ctx = dc->current_state; 1354 dc->current_state = dangling_context; 1355 dc_state_release(current_ctx); 1356 } 1357 disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)1358 static void disable_vbios_mode_if_required( 1359 struct dc *dc, 1360 struct dc_state *context) 1361 { 1362 unsigned int i, j; 1363 1364 /* check if timing_changed, disable stream*/ 1365 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1366 struct dc_stream_state *stream = NULL; 1367 struct dc_link *link = NULL; 1368 struct pipe_ctx *pipe = NULL; 1369 1370 pipe = &context->res_ctx.pipe_ctx[i]; 1371 stream = pipe->stream; 1372 if (stream == NULL) 1373 continue; 1374 1375 if (stream->apply_seamless_boot_optimization) 1376 continue; 1377 1378 // only looking for first odm pipe 1379 if (pipe->prev_odm_pipe) 1380 continue; 1381 1382 if (stream->link->local_sink && 1383 stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) { 1384 link = stream->link; 1385 } 1386 1387 if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) { 1388 unsigned int enc_inst, tg_inst = 0; 1389 unsigned int pix_clk_100hz = 0; 1390 1391 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc); 1392 if (enc_inst != ENGINE_ID_UNKNOWN) { 1393 for (j = 0; j < dc->res_pool->stream_enc_count; j++) { 1394 if (dc->res_pool->stream_enc[j]->id == enc_inst) { 1395 tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg( 1396 dc->res_pool->stream_enc[j]); 1397 break; 1398 } 1399 } 1400 1401 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz( 1402 dc->res_pool->dp_clock_source, 1403 tg_inst, &pix_clk_100hz); 1404 1405 if (link->link_status.link_active) { 1406 uint32_t requested_pix_clk_100hz = 1407 pipe->stream_res.pix_clk_params.requested_pix_clk_100hz; 1408 1409 if (pix_clk_100hz != requested_pix_clk_100hz) { 1410 dc->link_srv->set_dpms_off(pipe); 1411 pipe->stream->dpms_off = false; 1412 } 1413 } 1414 } 1415 } 1416 } 1417 } 1418 1419 /* Public functions */ 1420 dc_create(const struct dc_init_data * init_params)1421 struct dc *dc_create(const struct dc_init_data *init_params) 1422 { 1423 struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL); 1424 unsigned int full_pipe_count; 1425 1426 if (!dc) 1427 return NULL; 1428 1429 if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) { 1430 dc->caps.linear_pitch_alignment = 64; 1431 if (!dc_construct_ctx(dc, init_params)) 1432 goto destruct_dc; 1433 } else { 1434 if (!dc_construct(dc, init_params)) 1435 goto destruct_dc; 1436 1437 full_pipe_count = dc->res_pool->pipe_count; 1438 if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE) 1439 full_pipe_count--; 1440 dc->caps.max_streams = min( 1441 full_pipe_count, 1442 dc->res_pool->stream_enc_count); 1443 1444 dc->caps.max_links = dc->link_count; 1445 dc->caps.max_audios = dc->res_pool->audio_count; 1446 dc->caps.linear_pitch_alignment = 64; 1447 1448 dc->caps.max_dp_protocol_version = DP_VERSION_1_4; 1449 1450 dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator; 1451 1452 if (dc->res_pool->dmcu != NULL) 1453 dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version; 1454 } 1455 1456 dc->dcn_reg_offsets = init_params->dcn_reg_offsets; 1457 dc->nbio_reg_offsets = init_params->nbio_reg_offsets; 1458 dc->clk_reg_offsets = init_params->clk_reg_offsets; 1459 1460 /* Populate versioning information */ 1461 dc->versions.dc_ver = DC_VER; 1462 1463 dc->build_id = DC_BUILD_ID; 1464 1465 DC_LOG_DC("Display Core initialized\n"); 1466 1467 return dc; 1468 1469 destruct_dc: 1470 dc_destruct(dc); 1471 kfree(dc); 1472 return NULL; 1473 } 1474 detect_edp_presence(struct dc * dc)1475 static void detect_edp_presence(struct dc *dc) 1476 { 1477 struct dc_link *edp_links[MAX_NUM_EDP]; 1478 struct dc_link *edp_link = NULL; 1479 enum dc_connection_type type; 1480 int i; 1481 int edp_num; 1482 1483 dc_get_edp_links(dc, edp_links, &edp_num); 1484 if (!edp_num) 1485 return; 1486 1487 for (i = 0; i < edp_num; i++) { 1488 edp_link = edp_links[i]; 1489 if (dc->config.edp_not_connected) { 1490 edp_link->edp_sink_present = false; 1491 } else { 1492 dc_link_detect_connection_type(edp_link, &type); 1493 edp_link->edp_sink_present = (type != dc_connection_none); 1494 } 1495 } 1496 } 1497 dc_hardware_init(struct dc * dc)1498 void dc_hardware_init(struct dc *dc) 1499 { 1500 1501 detect_edp_presence(dc); 1502 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW) 1503 dc->hwss.init_hw(dc); 1504 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, DC_ACPI_CM_POWER_STATE_D0); 1505 } 1506 dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1507 void dc_init_callbacks(struct dc *dc, 1508 const struct dc_callback_init *init_params) 1509 { 1510 dc->ctx->cp_psp = init_params->cp_psp; 1511 } 1512 dc_deinit_callbacks(struct dc * dc)1513 void dc_deinit_callbacks(struct dc *dc) 1514 { 1515 memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp)); 1516 } 1517 dc_destroy(struct dc ** dc)1518 void dc_destroy(struct dc **dc) 1519 { 1520 dc_destruct(*dc); 1521 kfree(*dc); 1522 *dc = NULL; 1523 } 1524 enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1525 static void enable_timing_multisync( 1526 struct dc *dc, 1527 struct dc_state *ctx) 1528 { 1529 int i, multisync_count = 0; 1530 int pipe_count = dc->res_pool->pipe_count; 1531 struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL }; 1532 1533 for (i = 0; i < pipe_count; i++) { 1534 if (!ctx->res_ctx.pipe_ctx[i].stream || 1535 !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled) 1536 continue; 1537 if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source) 1538 continue; 1539 multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i]; 1540 multisync_count++; 1541 } 1542 1543 if (multisync_count > 0) { 1544 dc->hwss.enable_per_frame_crtc_position_reset( 1545 dc, multisync_count, multisync_pipes); 1546 } 1547 } 1548 program_timing_sync(struct dc * dc,struct dc_state * ctx)1549 static void program_timing_sync( 1550 struct dc *dc, 1551 struct dc_state *ctx) 1552 { 1553 int i, j, k; 1554 int group_index = 0; 1555 int num_group = 0; 1556 int pipe_count = dc->res_pool->pipe_count; 1557 struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL }; 1558 1559 for (i = 0; i < pipe_count; i++) { 1560 if (!ctx->res_ctx.pipe_ctx[i].stream 1561 || ctx->res_ctx.pipe_ctx[i].top_pipe 1562 || ctx->res_ctx.pipe_ctx[i].prev_odm_pipe) 1563 continue; 1564 1565 unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i]; 1566 } 1567 1568 for (i = 0; i < pipe_count; i++) { 1569 int group_size = 1; 1570 enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE; 1571 struct pipe_ctx *pipe_set[MAX_PIPES]; 1572 1573 if (!unsynced_pipes[i]) 1574 continue; 1575 1576 pipe_set[0] = unsynced_pipes[i]; 1577 unsynced_pipes[i] = NULL; 1578 1579 /* Add tg to the set, search rest of the tg's for ones with 1580 * same timing, add all tgs with same timing to the group 1581 */ 1582 for (j = i + 1; j < pipe_count; j++) { 1583 if (!unsynced_pipes[j]) 1584 continue; 1585 if (sync_type != TIMING_SYNCHRONIZABLE && 1586 dc->hwss.enable_vblanks_synchronization && 1587 unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks && 1588 resource_are_vblanks_synchronizable( 1589 unsynced_pipes[j]->stream, 1590 pipe_set[0]->stream)) { 1591 sync_type = VBLANK_SYNCHRONIZABLE; 1592 pipe_set[group_size] = unsynced_pipes[j]; 1593 unsynced_pipes[j] = NULL; 1594 group_size++; 1595 } else 1596 if (sync_type != VBLANK_SYNCHRONIZABLE && 1597 resource_are_streams_timing_synchronizable( 1598 unsynced_pipes[j]->stream, 1599 pipe_set[0]->stream)) { 1600 sync_type = TIMING_SYNCHRONIZABLE; 1601 pipe_set[group_size] = unsynced_pipes[j]; 1602 unsynced_pipes[j] = NULL; 1603 group_size++; 1604 } 1605 } 1606 1607 /* set first unblanked pipe as master */ 1608 for (j = 0; j < group_size; j++) { 1609 bool is_blanked; 1610 1611 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked) 1612 is_blanked = 1613 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp); 1614 else 1615 is_blanked = 1616 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg); 1617 if (!is_blanked) { 1618 if (j == 0) 1619 break; 1620 1621 swap(pipe_set[0], pipe_set[j]); 1622 break; 1623 } 1624 } 1625 1626 for (k = 0; k < group_size; k++) { 1627 struct dc_stream_status *status = dc_state_get_stream_status(ctx, pipe_set[k]->stream); 1628 1629 if (!status) 1630 continue; 1631 1632 status->timing_sync_info.group_id = num_group; 1633 status->timing_sync_info.group_size = group_size; 1634 if (k == 0) 1635 status->timing_sync_info.master = true; 1636 else 1637 status->timing_sync_info.master = false; 1638 1639 } 1640 1641 /* remove any other unblanked pipes as they have already been synced */ 1642 if (dc->config.use_pipe_ctx_sync_logic) { 1643 /* check pipe's syncd to decide which pipe to be removed */ 1644 for (j = 1; j < group_size; j++) { 1645 if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) { 1646 group_size--; 1647 pipe_set[j] = pipe_set[group_size]; 1648 j--; 1649 } else 1650 /* link slave pipe's syncd with master pipe */ 1651 pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd; 1652 } 1653 } else { 1654 /* remove any other pipes by checking valid plane */ 1655 for (j = j + 1; j < group_size; j++) { 1656 bool is_blanked; 1657 1658 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked) 1659 is_blanked = 1660 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp); 1661 else 1662 is_blanked = 1663 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg); 1664 if (!is_blanked) { 1665 group_size--; 1666 pipe_set[j] = pipe_set[group_size]; 1667 j--; 1668 } 1669 } 1670 } 1671 1672 if (group_size > 1) { 1673 if (sync_type == TIMING_SYNCHRONIZABLE) { 1674 dc->hwss.enable_timing_synchronization( 1675 dc, ctx, group_index, group_size, pipe_set); 1676 } else 1677 if (sync_type == VBLANK_SYNCHRONIZABLE) { 1678 dc->hwss.enable_vblanks_synchronization( 1679 dc, group_index, group_size, pipe_set); 1680 } 1681 group_index++; 1682 } 1683 num_group++; 1684 } 1685 } 1686 streams_changed(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)1687 static bool streams_changed(struct dc *dc, 1688 struct dc_stream_state *streams[], 1689 uint8_t stream_count) 1690 { 1691 uint8_t i; 1692 1693 if (stream_count != dc->current_state->stream_count) 1694 return true; 1695 1696 for (i = 0; i < dc->current_state->stream_count; i++) { 1697 if (dc->current_state->streams[i] != streams[i]) 1698 return true; 1699 if (!streams[i]->link->link_state_valid) 1700 return true; 1701 } 1702 1703 return false; 1704 } 1705 dc_validate_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1706 bool dc_validate_boot_timing(const struct dc *dc, 1707 const struct dc_sink *sink, 1708 struct dc_crtc_timing *crtc_timing) 1709 { 1710 struct timing_generator *tg; 1711 struct stream_encoder *se = NULL; 1712 1713 struct dc_crtc_timing hw_crtc_timing = {0}; 1714 1715 struct dc_link *link = sink->link; 1716 unsigned int i, enc_inst, tg_inst = 0; 1717 1718 /* Support seamless boot on EDP displays only */ 1719 if (sink->sink_signal != SIGNAL_TYPE_EDP) { 1720 return false; 1721 } 1722 1723 if (dc->debug.force_odm_combine) 1724 return false; 1725 1726 /* Check for enabled DIG to identify enabled display */ 1727 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc)) 1728 return false; 1729 1730 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc); 1731 1732 if (enc_inst == ENGINE_ID_UNKNOWN) 1733 return false; 1734 1735 for (i = 0; i < dc->res_pool->stream_enc_count; i++) { 1736 if (dc->res_pool->stream_enc[i]->id == enc_inst) { 1737 1738 se = dc->res_pool->stream_enc[i]; 1739 1740 tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg( 1741 dc->res_pool->stream_enc[i]); 1742 break; 1743 } 1744 } 1745 1746 // tg_inst not found 1747 if (i == dc->res_pool->stream_enc_count) 1748 return false; 1749 1750 if (tg_inst >= dc->res_pool->timing_generator_count) 1751 return false; 1752 1753 if (tg_inst != link->link_enc->preferred_engine) 1754 return false; 1755 1756 tg = dc->res_pool->timing_generators[tg_inst]; 1757 1758 if (!tg->funcs->get_hw_timing) 1759 return false; 1760 1761 if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing)) 1762 return false; 1763 1764 if (crtc_timing->h_total != hw_crtc_timing.h_total) 1765 return false; 1766 1767 if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left) 1768 return false; 1769 1770 if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable) 1771 return false; 1772 1773 if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right) 1774 return false; 1775 1776 if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch) 1777 return false; 1778 1779 if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width) 1780 return false; 1781 1782 if (crtc_timing->v_total != hw_crtc_timing.v_total) 1783 return false; 1784 1785 if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top) 1786 return false; 1787 1788 if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable) 1789 return false; 1790 1791 if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom) 1792 return false; 1793 1794 if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch) 1795 return false; 1796 1797 if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width) 1798 return false; 1799 1800 /* block DSC for now, as VBIOS does not currently support DSC timings */ 1801 if (crtc_timing->flags.DSC) 1802 return false; 1803 1804 if (dc_is_dp_signal(link->connector_signal)) { 1805 unsigned int pix_clk_100hz = 0; 1806 uint32_t numOdmPipes = 1; 1807 uint32_t id_src[4] = {0}; 1808 1809 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz( 1810 dc->res_pool->dp_clock_source, 1811 tg_inst, &pix_clk_100hz); 1812 1813 if (tg->funcs->get_optc_source) 1814 tg->funcs->get_optc_source(tg, 1815 &numOdmPipes, &id_src[0], &id_src[1]); 1816 1817 if (numOdmPipes == 2) { 1818 pix_clk_100hz *= 2; 1819 } else if (numOdmPipes == 4) { 1820 pix_clk_100hz *= 4; 1821 } else if (se && se->funcs->get_pixels_per_cycle) { 1822 uint32_t pixels_per_cycle = se->funcs->get_pixels_per_cycle(se); 1823 1824 if (pixels_per_cycle != 1 && !dc->debug.enable_dp_dig_pixel_rate_div_policy) 1825 return false; 1826 1827 pix_clk_100hz *= pixels_per_cycle; 1828 } 1829 1830 // Note: In rare cases, HW pixclk may differ from crtc's pixclk 1831 // slightly due to rounding issues in 10 kHz units. 1832 if (crtc_timing->pix_clk_100hz != pix_clk_100hz) 1833 return false; 1834 1835 if (!se || !se->funcs->dp_get_pixel_format) 1836 return false; 1837 1838 if (!se->funcs->dp_get_pixel_format( 1839 se, 1840 &hw_crtc_timing.pixel_encoding, 1841 &hw_crtc_timing.display_color_depth)) 1842 return false; 1843 1844 if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth) 1845 return false; 1846 1847 if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding) 1848 return false; 1849 } 1850 1851 if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) { 1852 return false; 1853 } 1854 1855 if (link->dpcd_caps.channel_coding_cap.bits.DP_128b_132b_SUPPORTED) 1856 return false; 1857 1858 if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) { 1859 DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n"); 1860 return false; 1861 } 1862 1863 return true; 1864 } 1865 should_update_pipe_for_stream(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)1866 static inline bool should_update_pipe_for_stream( 1867 struct dc_state *context, 1868 struct pipe_ctx *pipe_ctx, 1869 struct dc_stream_state *stream) 1870 { 1871 return (pipe_ctx->stream && pipe_ctx->stream == stream); 1872 } 1873 should_update_pipe_for_plane(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_plane_state * plane_state)1874 static inline bool should_update_pipe_for_plane( 1875 struct dc_state *context, 1876 struct pipe_ctx *pipe_ctx, 1877 struct dc_plane_state *plane_state) 1878 { 1879 return (pipe_ctx->plane_state == plane_state); 1880 } 1881 dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1882 void dc_enable_stereo( 1883 struct dc *dc, 1884 struct dc_state *context, 1885 struct dc_stream_state *streams[], 1886 uint8_t stream_count) 1887 { 1888 int i, j; 1889 struct pipe_ctx *pipe; 1890 1891 dc_exit_ips_for_hw_access(dc); 1892 1893 for (i = 0; i < MAX_PIPES; i++) { 1894 if (context != NULL) { 1895 pipe = &context->res_ctx.pipe_ctx[i]; 1896 } else { 1897 context = dc->current_state; 1898 pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 1899 } 1900 1901 for (j = 0; pipe && j < stream_count; j++) { 1902 if (should_update_pipe_for_stream(context, pipe, streams[j]) && 1903 dc->hwss.setup_stereo) 1904 dc->hwss.setup_stereo(pipe, dc); 1905 } 1906 } 1907 } 1908 dc_trigger_sync(struct dc * dc,struct dc_state * context)1909 void dc_trigger_sync(struct dc *dc, struct dc_state *context) 1910 { 1911 if (context->stream_count > 1 && !dc->debug.disable_timing_sync) { 1912 dc_exit_ips_for_hw_access(dc); 1913 1914 enable_timing_multisync(dc, context); 1915 program_timing_sync(dc, context); 1916 } 1917 } 1918 get_stream_mask(struct dc * dc,struct dc_state * context)1919 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context) 1920 { 1921 int i; 1922 unsigned int stream_mask = 0; 1923 1924 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1925 if (context->res_ctx.pipe_ctx[i].stream) 1926 stream_mask |= 1 << i; 1927 } 1928 1929 return stream_mask; 1930 } 1931 dc_z10_restore(const struct dc * dc)1932 void dc_z10_restore(const struct dc *dc) 1933 { 1934 if (dc->hwss.z10_restore) 1935 dc->hwss.z10_restore(dc); 1936 } 1937 dc_z10_save_init(struct dc * dc)1938 void dc_z10_save_init(struct dc *dc) 1939 { 1940 if (dc->hwss.z10_save_init) 1941 dc->hwss.z10_save_init(dc); 1942 } 1943 1944 /* Set a pipe unlock order based on the change in DET allocation and stores it in dc scratch memory 1945 * Prevents over allocation of DET during unlock process 1946 * e.g. 2 pipe config with different streams with a max of 20 DET segments 1947 * Before: After: 1948 * - Pipe0: 10 DET segments - Pipe0: 12 DET segments 1949 * - Pipe1: 10 DET segments - Pipe1: 8 DET segments 1950 * If Pipe0 gets updated first, 22 DET segments will be allocated 1951 */ determine_pipe_unlock_order(struct dc * dc,struct dc_state * context)1952 static void determine_pipe_unlock_order(struct dc *dc, struct dc_state *context) 1953 { 1954 unsigned int i = 0; 1955 struct pipe_ctx *pipe = NULL; 1956 struct timing_generator *tg = NULL; 1957 1958 if (!dc->config.set_pipe_unlock_order) 1959 return; 1960 1961 memset(dc->scratch.pipes_to_unlock_first, 0, sizeof(dc->scratch.pipes_to_unlock_first)); 1962 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1963 pipe = &context->res_ctx.pipe_ctx[i]; 1964 tg = pipe->stream_res.tg; 1965 1966 if (!resource_is_pipe_type(pipe, OTG_MASTER) || 1967 !tg->funcs->is_tg_enabled(tg) || 1968 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) { 1969 continue; 1970 } 1971 1972 if (resource_calculate_det_for_stream(context, pipe) < 1973 resource_calculate_det_for_stream(dc->current_state, &dc->current_state->res_ctx.pipe_ctx[i])) { 1974 dc->scratch.pipes_to_unlock_first[i] = true; 1975 } 1976 } 1977 } 1978 1979 /** 1980 * dc_commit_state_no_check - Apply context to the hardware 1981 * 1982 * @dc: DC object with the current status to be updated 1983 * @context: New state that will become the current status at the end of this function 1984 * 1985 * Applies given context to the hardware and copy it into current context. 1986 * It's up to the user to release the src context afterwards. 1987 * 1988 * Return: an enum dc_status result code for the operation 1989 */ dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1990 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context) 1991 { 1992 struct dc_bios *dcb = dc->ctx->dc_bios; 1993 enum dc_status result = DC_ERROR_UNEXPECTED; 1994 struct pipe_ctx *pipe; 1995 int i, k, l; 1996 struct dc_stream_state *dc_streams[MAX_STREAMS] = {0}; 1997 struct dc_state *old_state; 1998 bool subvp_prev_use = false; 1999 2000 dc_z10_restore(dc); 2001 dc_allow_idle_optimizations(dc, false); 2002 2003 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2004 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 2005 2006 /* Check old context for SubVP */ 2007 subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM); 2008 if (subvp_prev_use) 2009 break; 2010 } 2011 2012 for (i = 0; i < context->stream_count; i++) 2013 dc_streams[i] = context->streams[i]; 2014 2015 if (!dcb->funcs->is_accelerated_mode(dcb)) { 2016 disable_vbios_mode_if_required(dc, context); 2017 dc->hwss.enable_accelerated_mode(dc, context); 2018 } 2019 2020 if (context->stream_count > get_seamless_boot_stream_count(context) || 2021 context->stream_count == 0) 2022 dc->hwss.prepare_bandwidth(dc, context); 2023 2024 /* When SubVP is active, all HW programming must be done while 2025 * SubVP lock is acquired 2026 */ 2027 if (dc->hwss.subvp_pipe_control_lock) 2028 dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use); 2029 if (dc->hwss.fams2_global_control_lock) 2030 dc->hwss.fams2_global_control_lock(dc, context, true); 2031 2032 if (dc->hwss.update_dsc_pg) 2033 dc->hwss.update_dsc_pg(dc, context, false); 2034 2035 disable_dangling_plane(dc, context); 2036 /* re-program planes for existing stream, in case we need to 2037 * free up plane resource for later use 2038 */ 2039 if (dc->hwss.apply_ctx_for_surface) { 2040 for (i = 0; i < context->stream_count; i++) { 2041 if (context->streams[i]->mode_changed) 2042 continue; 2043 apply_ctx_interdependent_lock(dc, context, context->streams[i], true); 2044 dc->hwss.apply_ctx_for_surface( 2045 dc, context->streams[i], 2046 context->stream_status[i].plane_count, 2047 context); /* use new pipe config in new context */ 2048 apply_ctx_interdependent_lock(dc, context, context->streams[i], false); 2049 dc->hwss.post_unlock_program_front_end(dc, context); 2050 } 2051 } 2052 2053 /* Program hardware */ 2054 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2055 pipe = &context->res_ctx.pipe_ctx[i]; 2056 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe); 2057 } 2058 2059 result = dc->hwss.apply_ctx_to_hw(dc, context); 2060 2061 if (result != DC_OK) { 2062 /* Application of dc_state to hardware stopped. */ 2063 dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY; 2064 return result; 2065 } 2066 2067 dc_trigger_sync(dc, context); 2068 2069 /* Full update should unconditionally be triggered when dc_commit_state_no_check is called */ 2070 for (i = 0; i < context->stream_count; i++) { 2071 uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed; 2072 2073 context->streams[i]->update_flags.raw = 0xFFFFFFFF; 2074 context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed; 2075 } 2076 2077 determine_pipe_unlock_order(dc, context); 2078 /* Program all planes within new context*/ 2079 if (dc->res_pool->funcs->prepare_mcache_programming) 2080 dc->res_pool->funcs->prepare_mcache_programming(dc, context); 2081 if (dc->hwss.program_front_end_for_ctx) { 2082 dc->hwss.interdependent_update_lock(dc, context, true); 2083 dc->hwss.program_front_end_for_ctx(dc, context); 2084 dc->hwss.interdependent_update_lock(dc, context, false); 2085 dc->hwss.post_unlock_program_front_end(dc, context); 2086 } 2087 2088 if (dc->hwss.commit_subvp_config) 2089 dc->hwss.commit_subvp_config(dc, context); 2090 if (dc->hwss.subvp_pipe_control_lock) 2091 dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use); 2092 if (dc->hwss.fams2_global_control_lock) 2093 dc->hwss.fams2_global_control_lock(dc, context, false); 2094 2095 for (i = 0; i < context->stream_count; i++) { 2096 const struct dc_link *link = context->streams[i]->link; 2097 2098 if (!context->streams[i]->mode_changed) 2099 continue; 2100 2101 if (dc->hwss.apply_ctx_for_surface) { 2102 apply_ctx_interdependent_lock(dc, context, context->streams[i], true); 2103 dc->hwss.apply_ctx_for_surface( 2104 dc, context->streams[i], 2105 context->stream_status[i].plane_count, 2106 context); 2107 apply_ctx_interdependent_lock(dc, context, context->streams[i], false); 2108 dc->hwss.post_unlock_program_front_end(dc, context); 2109 } 2110 2111 /* 2112 * enable stereo 2113 * TODO rework dc_enable_stereo call to work with validation sets? 2114 */ 2115 for (k = 0; k < MAX_PIPES; k++) { 2116 pipe = &context->res_ctx.pipe_ctx[k]; 2117 2118 for (l = 0 ; pipe && l < context->stream_count; l++) { 2119 if (context->streams[l] && 2120 context->streams[l] == pipe->stream && 2121 dc->hwss.setup_stereo) 2122 dc->hwss.setup_stereo(pipe, dc); 2123 } 2124 } 2125 2126 CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}", 2127 context->streams[i]->timing.h_addressable, 2128 context->streams[i]->timing.v_addressable, 2129 context->streams[i]->timing.h_total, 2130 context->streams[i]->timing.v_total, 2131 context->streams[i]->timing.pix_clk_100hz / 10); 2132 } 2133 2134 dc_enable_stereo(dc, context, dc_streams, context->stream_count); 2135 2136 if (get_seamless_boot_stream_count(context) == 0 || 2137 context->stream_count == 0) { 2138 /* Must wait for no flips to be pending before doing optimize bw */ 2139 hwss_wait_for_no_pipes_pending(dc, context); 2140 /* 2141 * optimized dispclk depends on ODM setup. Need to wait for ODM 2142 * update pending complete before optimizing bandwidth. 2143 */ 2144 hwss_wait_for_odm_update_pending_complete(dc, context); 2145 /* pplib is notified if disp_num changed */ 2146 dc->hwss.optimize_bandwidth(dc, context); 2147 /* Need to do otg sync again as otg could be out of sync due to otg 2148 * workaround applied during clock update 2149 */ 2150 dc_trigger_sync(dc, context); 2151 } 2152 2153 if (dc->hwss.update_dsc_pg) 2154 dc->hwss.update_dsc_pg(dc, context, true); 2155 2156 if (dc->ctx->dce_version >= DCE_VERSION_MAX) 2157 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk); 2158 else 2159 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce); 2160 2161 context->stream_mask = get_stream_mask(dc, context); 2162 2163 if (context->stream_mask != dc->current_state->stream_mask) 2164 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask); 2165 2166 for (i = 0; i < context->stream_count; i++) 2167 context->streams[i]->mode_changed = false; 2168 2169 /* Clear update flags that were set earlier to avoid redundant programming */ 2170 for (i = 0; i < context->stream_count; i++) { 2171 context->streams[i]->update_flags.raw = 0x0; 2172 } 2173 2174 old_state = dc->current_state; 2175 dc->current_state = context; 2176 2177 dc_state_release(old_state); 2178 2179 dc_state_retain(dc->current_state); 2180 2181 return result; 2182 } 2183 2184 static bool commit_minimal_transition_state(struct dc *dc, 2185 struct dc_state *transition_base_context); 2186 2187 /** 2188 * dc_commit_streams - Commit current stream state 2189 * 2190 * @dc: DC object with the commit state to be configured in the hardware 2191 * @params: Parameters for the commit, including the streams to be committed 2192 * 2193 * Function responsible for commit streams change to the hardware. 2194 * 2195 * Return: 2196 * Return DC_OK if everything work as expected, otherwise, return a dc_status 2197 * code. 2198 */ dc_commit_streams(struct dc * dc,struct dc_commit_streams_params * params)2199 enum dc_status dc_commit_streams(struct dc *dc, struct dc_commit_streams_params *params) 2200 { 2201 int i, j; 2202 struct dc_state *context; 2203 enum dc_status res = DC_OK; 2204 struct dc_validation_set set[MAX_STREAMS] = {0}; 2205 struct pipe_ctx *pipe; 2206 bool handle_exit_odm2to1 = false; 2207 2208 if (!params) 2209 return DC_ERROR_UNEXPECTED; 2210 2211 if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW) 2212 return res; 2213 2214 if (!streams_changed(dc, params->streams, params->stream_count) && 2215 dc->current_state->power_source == params->power_source) 2216 return res; 2217 2218 dc_exit_ips_for_hw_access(dc); 2219 2220 DC_LOG_DC("%s: %d streams\n", __func__, params->stream_count); 2221 2222 for (i = 0; i < params->stream_count; i++) { 2223 struct dc_stream_state *stream = params->streams[i]; 2224 struct dc_stream_status *status = dc_stream_get_status(stream); 2225 2226 /* revalidate streams */ 2227 res = dc_validate_stream(dc, stream); 2228 if (res != DC_OK) 2229 return res; 2230 2231 dc_stream_log(dc, stream); 2232 2233 set[i].stream = stream; 2234 2235 if (status) { 2236 set[i].plane_count = status->plane_count; 2237 for (j = 0; j < status->plane_count; j++) 2238 set[i].plane_states[j] = status->plane_states[j]; 2239 } 2240 } 2241 2242 /* ODM Combine 2:1 power optimization is only applied for single stream 2243 * scenario, it uses extra pipes than needed to reduce power consumption 2244 * We need to switch off this feature to make room for new streams. 2245 */ 2246 if (params->stream_count > dc->current_state->stream_count && 2247 dc->current_state->stream_count == 1) { 2248 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2249 pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 2250 if (pipe->next_odm_pipe) 2251 handle_exit_odm2to1 = true; 2252 } 2253 } 2254 2255 if (handle_exit_odm2to1) 2256 res = commit_minimal_transition_state(dc, dc->current_state); 2257 2258 context = dc_state_create_current_copy(dc); 2259 if (!context) 2260 goto context_alloc_fail; 2261 2262 context->power_source = params->power_source; 2263 2264 res = dc_validate_with_context(dc, set, params->stream_count, context, false); 2265 2266 /* 2267 * Only update link encoder to stream assignment after bandwidth validation passed. 2268 */ 2269 if (res == DC_OK && dc->res_pool->funcs->link_encs_assign) 2270 dc->res_pool->funcs->link_encs_assign( 2271 dc, context, context->streams, context->stream_count); 2272 2273 if (res != DC_OK) { 2274 BREAK_TO_DEBUGGER(); 2275 goto fail; 2276 } 2277 2278 res = dc_commit_state_no_check(dc, context); 2279 2280 for (i = 0; i < params->stream_count; i++) { 2281 for (j = 0; j < context->stream_count; j++) { 2282 if (params->streams[i]->stream_id == context->streams[j]->stream_id) 2283 params->streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst; 2284 2285 if (dc_is_embedded_signal(params->streams[i]->signal)) { 2286 struct dc_stream_status *status = dc_state_get_stream_status(context, params->streams[i]); 2287 2288 if (!status) 2289 continue; 2290 2291 if (dc->hwss.is_abm_supported) 2292 status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, params->streams[i]); 2293 else 2294 status->is_abm_supported = true; 2295 } 2296 } 2297 } 2298 2299 fail: 2300 dc_state_release(context); 2301 2302 context_alloc_fail: 2303 2304 DC_LOG_DC("%s Finished.\n", __func__); 2305 2306 return res; 2307 } 2308 dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)2309 bool dc_acquire_release_mpc_3dlut( 2310 struct dc *dc, bool acquire, 2311 struct dc_stream_state *stream, 2312 struct dc_3dlut **lut, 2313 struct dc_transfer_func **shaper) 2314 { 2315 int pipe_idx; 2316 bool ret = false; 2317 bool found_pipe_idx = false; 2318 const struct resource_pool *pool = dc->res_pool; 2319 struct resource_context *res_ctx = &dc->current_state->res_ctx; 2320 int mpcc_id = 0; 2321 2322 if (pool && res_ctx) { 2323 if (acquire) { 2324 /*find pipe idx for the given stream*/ 2325 for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) { 2326 if (res_ctx->pipe_ctx[pipe_idx].stream == stream) { 2327 found_pipe_idx = true; 2328 mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst; 2329 break; 2330 } 2331 } 2332 } else 2333 found_pipe_idx = true;/*for release pipe_idx is not required*/ 2334 2335 if (found_pipe_idx) { 2336 if (acquire && pool->funcs->acquire_post_bldn_3dlut) 2337 ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper); 2338 else if (!acquire && pool->funcs->release_post_bldn_3dlut) 2339 ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper); 2340 } 2341 } 2342 return ret; 2343 } 2344 is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)2345 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context) 2346 { 2347 int i; 2348 struct pipe_ctx *pipe; 2349 2350 for (i = 0; i < MAX_PIPES; i++) { 2351 pipe = &context->res_ctx.pipe_ctx[i]; 2352 2353 // Don't check flip pending on phantom pipes 2354 if (!pipe->plane_state || (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM)) 2355 continue; 2356 2357 /* Must set to false to start with, due to OR in update function */ 2358 pipe->plane_state->status.is_flip_pending = false; 2359 dc->hwss.update_pending_status(pipe); 2360 if (pipe->plane_state->status.is_flip_pending) 2361 return true; 2362 } 2363 return false; 2364 } 2365 2366 /* Perform updates here which need to be deferred until next vupdate 2367 * 2368 * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered 2369 * but forcing lut memory to shutdown state is immediate. This causes 2370 * single frame corruption as lut gets disabled mid-frame unless shutdown 2371 * is deferred until after entering bypass. 2372 */ process_deferred_updates(struct dc * dc)2373 static void process_deferred_updates(struct dc *dc) 2374 { 2375 int i = 0; 2376 2377 if (dc->debug.enable_mem_low_power.bits.cm) { 2378 ASSERT(dc->dcn_ip->max_num_dpp); 2379 for (i = 0; i < dc->dcn_ip->max_num_dpp; i++) 2380 if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update) 2381 dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]); 2382 } 2383 } 2384 dc_post_update_surfaces_to_stream(struct dc * dc)2385 void dc_post_update_surfaces_to_stream(struct dc *dc) 2386 { 2387 int i; 2388 struct dc_state *context = dc->current_state; 2389 2390 if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0) 2391 return; 2392 2393 post_surface_trace(dc); 2394 2395 /* 2396 * Only relevant for DCN behavior where we can guarantee the optimization 2397 * is safe to apply - retain the legacy behavior for DCE. 2398 */ 2399 2400 if (dc->ctx->dce_version < DCE_VERSION_MAX) 2401 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce); 2402 else { 2403 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk); 2404 2405 if (is_flip_pending_in_pipes(dc, context)) 2406 return; 2407 2408 for (i = 0; i < dc->res_pool->pipe_count; i++) 2409 if (context->res_ctx.pipe_ctx[i].stream == NULL || 2410 context->res_ctx.pipe_ctx[i].plane_state == NULL) { 2411 context->res_ctx.pipe_ctx[i].pipe_idx = i; 2412 dc->hwss.disable_plane(dc, context, &context->res_ctx.pipe_ctx[i]); 2413 } 2414 2415 process_deferred_updates(dc); 2416 2417 dc->hwss.optimize_bandwidth(dc, context); 2418 2419 if (dc->hwss.update_dsc_pg) 2420 dc->hwss.update_dsc_pg(dc, context, true); 2421 } 2422 2423 dc->optimized_required = false; 2424 dc->wm_optimized_required = false; 2425 } 2426 dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)2427 bool dc_set_generic_gpio_for_stereo(bool enable, 2428 struct gpio_service *gpio_service) 2429 { 2430 enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR; 2431 struct gpio_pin_info pin_info; 2432 struct gpio *generic; 2433 struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config), 2434 GFP_KERNEL); 2435 2436 if (!config) 2437 return false; 2438 pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0); 2439 2440 if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) { 2441 kfree(config); 2442 return false; 2443 } else { 2444 generic = dal_gpio_service_create_generic_mux( 2445 gpio_service, 2446 pin_info.offset, 2447 pin_info.mask); 2448 } 2449 2450 if (!generic) { 2451 kfree(config); 2452 return false; 2453 } 2454 2455 gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT); 2456 2457 config->enable_output_from_mux = enable; 2458 config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC; 2459 2460 if (gpio_result == GPIO_RESULT_OK) 2461 gpio_result = dal_mux_setup_config(generic, config); 2462 2463 if (gpio_result == GPIO_RESULT_OK) { 2464 dal_gpio_close(generic); 2465 dal_gpio_destroy_generic_mux(&generic); 2466 kfree(config); 2467 return true; 2468 } else { 2469 dal_gpio_close(generic); 2470 dal_gpio_destroy_generic_mux(&generic); 2471 kfree(config); 2472 return false; 2473 } 2474 } 2475 is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)2476 static bool is_surface_in_context( 2477 const struct dc_state *context, 2478 const struct dc_plane_state *plane_state) 2479 { 2480 int j; 2481 2482 for (j = 0; j < MAX_PIPES; j++) { 2483 const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; 2484 2485 if (plane_state == pipe_ctx->plane_state) { 2486 return true; 2487 } 2488 } 2489 2490 return false; 2491 } 2492 get_plane_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2493 static enum surface_update_type get_plane_info_update_type(const struct dc *dc, const struct dc_surface_update *u) 2494 { 2495 union surface_update_flags *update_flags = &u->surface->update_flags; 2496 enum surface_update_type update_type = UPDATE_TYPE_FAST; 2497 2498 if (!u->plane_info) 2499 return UPDATE_TYPE_FAST; 2500 2501 if (u->plane_info->color_space != u->surface->color_space) { 2502 update_flags->bits.color_space_change = 1; 2503 elevate_update_type(&update_type, UPDATE_TYPE_MED); 2504 } 2505 2506 if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) { 2507 update_flags->bits.horizontal_mirror_change = 1; 2508 elevate_update_type(&update_type, UPDATE_TYPE_MED); 2509 } 2510 2511 if (u->plane_info->rotation != u->surface->rotation) { 2512 update_flags->bits.rotation_change = 1; 2513 elevate_update_type(&update_type, UPDATE_TYPE_FULL); 2514 } 2515 2516 if (u->plane_info->format != u->surface->format) { 2517 update_flags->bits.pixel_format_change = 1; 2518 elevate_update_type(&update_type, UPDATE_TYPE_FULL); 2519 } 2520 2521 if (u->plane_info->stereo_format != u->surface->stereo_format) { 2522 update_flags->bits.stereo_format_change = 1; 2523 elevate_update_type(&update_type, UPDATE_TYPE_FULL); 2524 } 2525 2526 if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) { 2527 update_flags->bits.per_pixel_alpha_change = 1; 2528 elevate_update_type(&update_type, UPDATE_TYPE_MED); 2529 } 2530 2531 if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) { 2532 update_flags->bits.global_alpha_change = 1; 2533 elevate_update_type(&update_type, UPDATE_TYPE_MED); 2534 } 2535 2536 if (u->plane_info->dcc.enable != u->surface->dcc.enable 2537 || u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk 2538 || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) { 2539 /* During DCC on/off, stutter period is calculated before 2540 * DCC has fully transitioned. This results in incorrect 2541 * stutter period calculation. Triggering a full update will 2542 * recalculate stutter period. 2543 */ 2544 update_flags->bits.dcc_change = 1; 2545 elevate_update_type(&update_type, UPDATE_TYPE_FULL); 2546 } 2547 2548 if (resource_pixel_format_to_bpp(u->plane_info->format) != 2549 resource_pixel_format_to_bpp(u->surface->format)) { 2550 /* different bytes per element will require full bandwidth 2551 * and DML calculation 2552 */ 2553 update_flags->bits.bpp_change = 1; 2554 elevate_update_type(&update_type, UPDATE_TYPE_FULL); 2555 } 2556 2557 if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch 2558 || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) { 2559 update_flags->bits.plane_size_change = 1; 2560 elevate_update_type(&update_type, UPDATE_TYPE_MED); 2561 } 2562 2563 2564 if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info, 2565 sizeof(struct dc_tiling_info)) != 0) { 2566 update_flags->bits.swizzle_change = 1; 2567 elevate_update_type(&update_type, UPDATE_TYPE_MED); 2568 2569 /* todo: below are HW dependent, we should add a hook to 2570 * DCE/N resource and validated there. 2571 */ 2572 if (!dc->debug.skip_full_updated_if_possible) { 2573 /* swizzled mode requires RQ to be setup properly, 2574 * thus need to run DML to calculate RQ settings 2575 */ 2576 update_flags->bits.bandwidth_change = 1; 2577 elevate_update_type(&update_type, UPDATE_TYPE_FULL); 2578 } 2579 } 2580 2581 /* This should be UPDATE_TYPE_FAST if nothing has changed. */ 2582 return update_type; 2583 } 2584 get_scaling_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2585 static enum surface_update_type get_scaling_info_update_type( 2586 const struct dc *dc, 2587 const struct dc_surface_update *u) 2588 { 2589 union surface_update_flags *update_flags = &u->surface->update_flags; 2590 2591 if (!u->scaling_info) 2592 return UPDATE_TYPE_FAST; 2593 2594 if (u->scaling_info->src_rect.width != u->surface->src_rect.width 2595 || u->scaling_info->src_rect.height != u->surface->src_rect.height 2596 || u->scaling_info->dst_rect.width != u->surface->dst_rect.width 2597 || u->scaling_info->dst_rect.height != u->surface->dst_rect.height 2598 || u->scaling_info->clip_rect.width != u->surface->clip_rect.width 2599 || u->scaling_info->clip_rect.height != u->surface->clip_rect.height 2600 || u->scaling_info->scaling_quality.integer_scaling != 2601 u->surface->scaling_quality.integer_scaling) { 2602 update_flags->bits.scaling_change = 1; 2603 2604 if (u->scaling_info->src_rect.width > u->surface->src_rect.width 2605 || u->scaling_info->src_rect.height > u->surface->src_rect.height) 2606 /* Making src rect bigger requires a bandwidth change */ 2607 update_flags->bits.clock_change = 1; 2608 2609 if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width 2610 || u->scaling_info->dst_rect.height < u->surface->dst_rect.height) 2611 && (u->scaling_info->dst_rect.width < u->surface->src_rect.width 2612 || u->scaling_info->dst_rect.height < u->surface->src_rect.height)) 2613 /* Making dst rect smaller requires a bandwidth change */ 2614 update_flags->bits.bandwidth_change = 1; 2615 2616 if (u->scaling_info->src_rect.width > dc->caps.max_optimizable_video_width && 2617 (u->scaling_info->clip_rect.width > u->surface->clip_rect.width || 2618 u->scaling_info->clip_rect.height > u->surface->clip_rect.height)) 2619 /* Changing clip size of a large surface may result in MPC slice count change */ 2620 update_flags->bits.bandwidth_change = 1; 2621 } 2622 2623 if (u->scaling_info->src_rect.x != u->surface->src_rect.x 2624 || u->scaling_info->src_rect.y != u->surface->src_rect.y 2625 || u->scaling_info->clip_rect.x != u->surface->clip_rect.x 2626 || u->scaling_info->clip_rect.y != u->surface->clip_rect.y 2627 || u->scaling_info->dst_rect.x != u->surface->dst_rect.x 2628 || u->scaling_info->dst_rect.y != u->surface->dst_rect.y) 2629 update_flags->bits.position_change = 1; 2630 2631 /* process every update flag before returning */ 2632 if (update_flags->bits.clock_change 2633 || update_flags->bits.bandwidth_change 2634 || update_flags->bits.scaling_change) 2635 return UPDATE_TYPE_FULL; 2636 2637 if (update_flags->bits.position_change) 2638 return UPDATE_TYPE_MED; 2639 2640 return UPDATE_TYPE_FAST; 2641 } 2642 det_surface_update(const struct dc * dc,const struct dc_surface_update * u)2643 static enum surface_update_type det_surface_update(const struct dc *dc, 2644 const struct dc_surface_update *u) 2645 { 2646 const struct dc_state *context = dc->current_state; 2647 enum surface_update_type type; 2648 enum surface_update_type overall_type = UPDATE_TYPE_FAST; 2649 union surface_update_flags *update_flags = &u->surface->update_flags; 2650 2651 if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) { 2652 update_flags->raw = 0xFFFFFFFF; 2653 return UPDATE_TYPE_FULL; 2654 } 2655 2656 update_flags->raw = 0; // Reset all flags 2657 2658 type = get_plane_info_update_type(dc, u); 2659 elevate_update_type(&overall_type, type); 2660 2661 type = get_scaling_info_update_type(dc, u); 2662 elevate_update_type(&overall_type, type); 2663 2664 if (u->flip_addr) { 2665 update_flags->bits.addr_update = 1; 2666 if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) { 2667 update_flags->bits.tmz_changed = 1; 2668 elevate_update_type(&overall_type, UPDATE_TYPE_FULL); 2669 } 2670 } 2671 if (u->in_transfer_func) 2672 update_flags->bits.in_transfer_func_change = 1; 2673 2674 if (u->input_csc_color_matrix) 2675 update_flags->bits.input_csc_change = 1; 2676 2677 if (u->coeff_reduction_factor) 2678 update_flags->bits.coeff_reduction_change = 1; 2679 2680 if (u->gamut_remap_matrix) 2681 update_flags->bits.gamut_remap_change = 1; 2682 2683 if (u->blend_tf) 2684 update_flags->bits.gamma_change = 1; 2685 2686 if (u->gamma) { 2687 enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN; 2688 2689 if (u->plane_info) 2690 format = u->plane_info->format; 2691 else 2692 format = u->surface->format; 2693 2694 if (dce_use_lut(format)) 2695 update_flags->bits.gamma_change = 1; 2696 } 2697 2698 if (u->lut3d_func || u->func_shaper) 2699 update_flags->bits.lut_3d = 1; 2700 2701 if (u->hdr_mult.value) 2702 if (u->hdr_mult.value != u->surface->hdr_mult.value) { 2703 update_flags->bits.hdr_mult = 1; 2704 elevate_update_type(&overall_type, UPDATE_TYPE_MED); 2705 } 2706 2707 if (u->sdr_white_level_nits) 2708 if (u->sdr_white_level_nits != u->surface->sdr_white_level_nits) { 2709 update_flags->bits.sdr_white_level_nits = 1; 2710 elevate_update_type(&overall_type, UPDATE_TYPE_FULL); 2711 } 2712 2713 if (u->cm2_params) { 2714 if ((u->cm2_params->component_settings.shaper_3dlut_setting 2715 != u->surface->mcm_shaper_3dlut_setting) 2716 || (u->cm2_params->component_settings.lut1d_enable 2717 != u->surface->mcm_lut1d_enable)) 2718 update_flags->bits.mcm_transfer_function_enable_change = 1; 2719 if (u->cm2_params->cm2_luts.lut3d_data.lut3d_src 2720 != u->surface->mcm_luts.lut3d_data.lut3d_src) 2721 update_flags->bits.mcm_transfer_function_enable_change = 1; 2722 } 2723 if (update_flags->bits.in_transfer_func_change) { 2724 type = UPDATE_TYPE_MED; 2725 elevate_update_type(&overall_type, type); 2726 } 2727 2728 if (update_flags->bits.lut_3d && 2729 u->surface->mcm_luts.lut3d_data.lut3d_src != DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM) { 2730 type = UPDATE_TYPE_FULL; 2731 elevate_update_type(&overall_type, type); 2732 } 2733 if (update_flags->bits.mcm_transfer_function_enable_change) { 2734 type = UPDATE_TYPE_FULL; 2735 elevate_update_type(&overall_type, type); 2736 } 2737 2738 if (dc->debug.enable_legacy_fast_update && 2739 (update_flags->bits.gamma_change || 2740 update_flags->bits.gamut_remap_change || 2741 update_flags->bits.input_csc_change || 2742 update_flags->bits.coeff_reduction_change)) { 2743 type = UPDATE_TYPE_FULL; 2744 elevate_update_type(&overall_type, type); 2745 } 2746 return overall_type; 2747 } 2748 2749 /* May need to flip the desktop plane in cases where MPO plane receives a flip but desktop plane doesn't 2750 * while both planes are flip_immediate 2751 */ force_immediate_gsl_plane_flip(struct dc * dc,struct dc_surface_update * updates,int surface_count)2752 static void force_immediate_gsl_plane_flip(struct dc *dc, struct dc_surface_update *updates, int surface_count) 2753 { 2754 bool has_flip_immediate_plane = false; 2755 int i; 2756 2757 for (i = 0; i < surface_count; i++) { 2758 if (updates[i].surface->flip_immediate) { 2759 has_flip_immediate_plane = true; 2760 break; 2761 } 2762 } 2763 2764 if (has_flip_immediate_plane && surface_count > 1) { 2765 for (i = 0; i < surface_count; i++) { 2766 if (updates[i].surface->flip_immediate) 2767 updates[i].surface->update_flags.bits.addr_update = 1; 2768 } 2769 } 2770 } 2771 check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2772 static enum surface_update_type check_update_surfaces_for_stream( 2773 struct dc *dc, 2774 struct dc_surface_update *updates, 2775 int surface_count, 2776 struct dc_stream_update *stream_update, 2777 const struct dc_stream_status *stream_status) 2778 { 2779 int i; 2780 enum surface_update_type overall_type = UPDATE_TYPE_FAST; 2781 2782 if (dc->idle_optimizations_allowed) 2783 overall_type = UPDATE_TYPE_FULL; 2784 2785 if (stream_status == NULL || stream_status->plane_count != surface_count) 2786 overall_type = UPDATE_TYPE_FULL; 2787 2788 if (stream_update && stream_update->pending_test_pattern) { 2789 overall_type = UPDATE_TYPE_FULL; 2790 } 2791 2792 if (stream_update && stream_update->hw_cursor_req) { 2793 overall_type = UPDATE_TYPE_FULL; 2794 } 2795 2796 /* some stream updates require passive update */ 2797 if (stream_update) { 2798 union stream_update_flags *su_flags = &stream_update->stream->update_flags; 2799 2800 if ((stream_update->src.height != 0 && stream_update->src.width != 0) || 2801 (stream_update->dst.height != 0 && stream_update->dst.width != 0) || 2802 stream_update->integer_scaling_update) 2803 su_flags->bits.scaling = 1; 2804 2805 if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func) 2806 su_flags->bits.out_tf = 1; 2807 2808 if (stream_update->abm_level) 2809 su_flags->bits.abm_level = 1; 2810 2811 if (stream_update->dpms_off) 2812 su_flags->bits.dpms_off = 1; 2813 2814 if (stream_update->gamut_remap) 2815 su_flags->bits.gamut_remap = 1; 2816 2817 if (stream_update->wb_update) 2818 su_flags->bits.wb_update = 1; 2819 2820 if (stream_update->dsc_config) 2821 su_flags->bits.dsc_changed = 1; 2822 2823 if (stream_update->mst_bw_update) 2824 su_flags->bits.mst_bw = 1; 2825 2826 if (stream_update->stream->freesync_on_desktop && 2827 (stream_update->vrr_infopacket || stream_update->allow_freesync || 2828 stream_update->vrr_active_variable || stream_update->vrr_active_fixed)) 2829 su_flags->bits.fams_changed = 1; 2830 2831 if (stream_update->scaler_sharpener_update) 2832 su_flags->bits.scaler_sharpener = 1; 2833 2834 if (stream_update->sharpening_required) 2835 su_flags->bits.sharpening_required = 1; 2836 2837 if (su_flags->raw != 0) 2838 overall_type = UPDATE_TYPE_FULL; 2839 2840 if (stream_update->output_csc_transform || stream_update->output_color_space) 2841 su_flags->bits.out_csc = 1; 2842 2843 /* Output transfer function changes do not require bandwidth recalculation, 2844 * so don't trigger a full update 2845 */ 2846 if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func) 2847 su_flags->bits.out_tf = 1; 2848 } 2849 2850 for (i = 0 ; i < surface_count; i++) { 2851 enum surface_update_type type = 2852 det_surface_update(dc, &updates[i]); 2853 2854 elevate_update_type(&overall_type, type); 2855 } 2856 2857 return overall_type; 2858 } 2859 2860 /* 2861 * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full) 2862 * 2863 * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types 2864 */ dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2865 enum surface_update_type dc_check_update_surfaces_for_stream( 2866 struct dc *dc, 2867 struct dc_surface_update *updates, 2868 int surface_count, 2869 struct dc_stream_update *stream_update, 2870 const struct dc_stream_status *stream_status) 2871 { 2872 int i; 2873 enum surface_update_type type; 2874 2875 if (stream_update) 2876 stream_update->stream->update_flags.raw = 0; 2877 for (i = 0; i < surface_count; i++) 2878 updates[i].surface->update_flags.raw = 0; 2879 2880 type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status); 2881 if (type == UPDATE_TYPE_FULL) { 2882 if (stream_update) { 2883 uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed; 2884 stream_update->stream->update_flags.raw = 0xFFFFFFFF; 2885 stream_update->stream->update_flags.bits.dsc_changed = dsc_changed; 2886 } 2887 for (i = 0; i < surface_count; i++) 2888 updates[i].surface->update_flags.raw = 0xFFFFFFFF; 2889 } 2890 2891 if (type == UPDATE_TYPE_FAST) { 2892 // If there's an available clock comparator, we use that. 2893 if (dc->clk_mgr->funcs->are_clock_states_equal) { 2894 if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk)) 2895 dc->optimized_required = true; 2896 // Else we fallback to mem compare. 2897 } else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) { 2898 dc->optimized_required = true; 2899 } 2900 2901 dc->optimized_required |= dc->wm_optimized_required; 2902 } 2903 2904 return type; 2905 } 2906 stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2907 static struct dc_stream_status *stream_get_status( 2908 struct dc_state *ctx, 2909 struct dc_stream_state *stream) 2910 { 2911 uint8_t i; 2912 2913 for (i = 0; i < ctx->stream_count; i++) { 2914 if (stream == ctx->streams[i]) { 2915 return &ctx->stream_status[i]; 2916 } 2917 } 2918 2919 return NULL; 2920 } 2921 2922 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL; 2923 copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2924 static void copy_surface_update_to_plane( 2925 struct dc_plane_state *surface, 2926 struct dc_surface_update *srf_update) 2927 { 2928 if (srf_update->flip_addr) { 2929 surface->address = srf_update->flip_addr->address; 2930 surface->flip_immediate = 2931 srf_update->flip_addr->flip_immediate; 2932 surface->time.time_elapsed_in_us[surface->time.index] = 2933 srf_update->flip_addr->flip_timestamp_in_us - 2934 surface->time.prev_update_time_in_us; 2935 surface->time.prev_update_time_in_us = 2936 srf_update->flip_addr->flip_timestamp_in_us; 2937 surface->time.index++; 2938 if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX) 2939 surface->time.index = 0; 2940 2941 surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips; 2942 } 2943 2944 if (srf_update->scaling_info) { 2945 surface->scaling_quality = 2946 srf_update->scaling_info->scaling_quality; 2947 surface->dst_rect = 2948 srf_update->scaling_info->dst_rect; 2949 surface->src_rect = 2950 srf_update->scaling_info->src_rect; 2951 surface->clip_rect = 2952 srf_update->scaling_info->clip_rect; 2953 } 2954 2955 if (srf_update->plane_info) { 2956 surface->color_space = 2957 srf_update->plane_info->color_space; 2958 surface->format = 2959 srf_update->plane_info->format; 2960 surface->plane_size = 2961 srf_update->plane_info->plane_size; 2962 surface->rotation = 2963 srf_update->plane_info->rotation; 2964 surface->horizontal_mirror = 2965 srf_update->plane_info->horizontal_mirror; 2966 surface->stereo_format = 2967 srf_update->plane_info->stereo_format; 2968 surface->tiling_info = 2969 srf_update->plane_info->tiling_info; 2970 surface->visible = 2971 srf_update->plane_info->visible; 2972 surface->per_pixel_alpha = 2973 srf_update->plane_info->per_pixel_alpha; 2974 surface->global_alpha = 2975 srf_update->plane_info->global_alpha; 2976 surface->global_alpha_value = 2977 srf_update->plane_info->global_alpha_value; 2978 surface->dcc = 2979 srf_update->plane_info->dcc; 2980 surface->layer_index = 2981 srf_update->plane_info->layer_index; 2982 } 2983 2984 if (srf_update->gamma) { 2985 memcpy(&surface->gamma_correction.entries, 2986 &srf_update->gamma->entries, 2987 sizeof(struct dc_gamma_entries)); 2988 surface->gamma_correction.is_identity = 2989 srf_update->gamma->is_identity; 2990 surface->gamma_correction.num_entries = 2991 srf_update->gamma->num_entries; 2992 surface->gamma_correction.type = 2993 srf_update->gamma->type; 2994 } 2995 2996 if (srf_update->in_transfer_func) { 2997 surface->in_transfer_func.sdr_ref_white_level = 2998 srf_update->in_transfer_func->sdr_ref_white_level; 2999 surface->in_transfer_func.tf = 3000 srf_update->in_transfer_func->tf; 3001 surface->in_transfer_func.type = 3002 srf_update->in_transfer_func->type; 3003 memcpy(&surface->in_transfer_func.tf_pts, 3004 &srf_update->in_transfer_func->tf_pts, 3005 sizeof(struct dc_transfer_func_distributed_points)); 3006 } 3007 3008 if (srf_update->cm2_params) { 3009 surface->mcm_shaper_3dlut_setting = srf_update->cm2_params->component_settings.shaper_3dlut_setting; 3010 surface->mcm_lut1d_enable = srf_update->cm2_params->component_settings.lut1d_enable; 3011 surface->mcm_luts = srf_update->cm2_params->cm2_luts; 3012 } 3013 3014 if (srf_update->func_shaper) { 3015 memcpy(&surface->in_shaper_func, srf_update->func_shaper, 3016 sizeof(surface->in_shaper_func)); 3017 3018 if (surface->mcm_shaper_3dlut_setting >= DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER) 3019 surface->mcm_luts.shaper = &surface->in_shaper_func; 3020 } 3021 3022 if (srf_update->lut3d_func) 3023 memcpy(&surface->lut3d_func, srf_update->lut3d_func, 3024 sizeof(surface->lut3d_func)); 3025 3026 if (srf_update->hdr_mult.value) 3027 surface->hdr_mult = 3028 srf_update->hdr_mult; 3029 3030 if (srf_update->sdr_white_level_nits) 3031 surface->sdr_white_level_nits = 3032 srf_update->sdr_white_level_nits; 3033 3034 if (srf_update->blend_tf) { 3035 memcpy(&surface->blend_tf, srf_update->blend_tf, 3036 sizeof(surface->blend_tf)); 3037 3038 if (surface->mcm_lut1d_enable) 3039 surface->mcm_luts.lut1d_func = &surface->blend_tf; 3040 } 3041 3042 if (srf_update->cm2_params || srf_update->blend_tf) 3043 surface->lut_bank_a = !surface->lut_bank_a; 3044 3045 if (srf_update->input_csc_color_matrix) 3046 surface->input_csc_color_matrix = 3047 *srf_update->input_csc_color_matrix; 3048 3049 if (srf_update->coeff_reduction_factor) 3050 surface->coeff_reduction_factor = 3051 *srf_update->coeff_reduction_factor; 3052 3053 if (srf_update->gamut_remap_matrix) 3054 surface->gamut_remap_matrix = 3055 *srf_update->gamut_remap_matrix; 3056 3057 if (srf_update->cursor_csc_color_matrix) 3058 surface->cursor_csc_color_matrix = 3059 *srf_update->cursor_csc_color_matrix; 3060 3061 if (srf_update->bias_and_scale.bias_and_scale_valid) 3062 surface->bias_and_scale = 3063 srf_update->bias_and_scale; 3064 } 3065 copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)3066 static void copy_stream_update_to_stream(struct dc *dc, 3067 struct dc_state *context, 3068 struct dc_stream_state *stream, 3069 struct dc_stream_update *update) 3070 { 3071 struct dc_context *dc_ctx = dc->ctx; 3072 3073 if (update == NULL || stream == NULL) 3074 return; 3075 3076 if (update->src.height && update->src.width) 3077 stream->src = update->src; 3078 3079 if (update->dst.height && update->dst.width) 3080 stream->dst = update->dst; 3081 3082 if (update->out_transfer_func) { 3083 stream->out_transfer_func.sdr_ref_white_level = 3084 update->out_transfer_func->sdr_ref_white_level; 3085 stream->out_transfer_func.tf = update->out_transfer_func->tf; 3086 stream->out_transfer_func.type = 3087 update->out_transfer_func->type; 3088 memcpy(&stream->out_transfer_func.tf_pts, 3089 &update->out_transfer_func->tf_pts, 3090 sizeof(struct dc_transfer_func_distributed_points)); 3091 } 3092 3093 if (update->hdr_static_metadata) 3094 stream->hdr_static_metadata = *update->hdr_static_metadata; 3095 3096 if (update->abm_level) 3097 stream->abm_level = *update->abm_level; 3098 3099 if (update->periodic_interrupt) 3100 stream->periodic_interrupt = *update->periodic_interrupt; 3101 3102 if (update->gamut_remap) 3103 stream->gamut_remap_matrix = *update->gamut_remap; 3104 3105 /* Note: this being updated after mode set is currently not a use case 3106 * however if it arises OCSC would need to be reprogrammed at the 3107 * minimum 3108 */ 3109 if (update->output_color_space) 3110 stream->output_color_space = *update->output_color_space; 3111 3112 if (update->output_csc_transform) 3113 stream->csc_color_matrix = *update->output_csc_transform; 3114 3115 if (update->vrr_infopacket) 3116 stream->vrr_infopacket = *update->vrr_infopacket; 3117 3118 if (update->hw_cursor_req) 3119 stream->hw_cursor_req = *update->hw_cursor_req; 3120 3121 if (update->allow_freesync) 3122 stream->allow_freesync = *update->allow_freesync; 3123 3124 if (update->vrr_active_variable) 3125 stream->vrr_active_variable = *update->vrr_active_variable; 3126 3127 if (update->vrr_active_fixed) 3128 stream->vrr_active_fixed = *update->vrr_active_fixed; 3129 3130 if (update->crtc_timing_adjust) 3131 stream->adjust = *update->crtc_timing_adjust; 3132 3133 if (update->dpms_off) 3134 stream->dpms_off = *update->dpms_off; 3135 3136 if (update->hfvsif_infopacket) 3137 stream->hfvsif_infopacket = *update->hfvsif_infopacket; 3138 3139 if (update->vtem_infopacket) 3140 stream->vtem_infopacket = *update->vtem_infopacket; 3141 3142 if (update->vsc_infopacket) 3143 stream->vsc_infopacket = *update->vsc_infopacket; 3144 3145 if (update->vsp_infopacket) 3146 stream->vsp_infopacket = *update->vsp_infopacket; 3147 3148 if (update->adaptive_sync_infopacket) 3149 stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket; 3150 3151 if (update->dither_option) 3152 stream->dither_option = *update->dither_option; 3153 3154 if (update->pending_test_pattern) 3155 stream->test_pattern = *update->pending_test_pattern; 3156 /* update current stream with writeback info */ 3157 if (update->wb_update) { 3158 int i; 3159 3160 stream->num_wb_info = update->wb_update->num_wb_info; 3161 ASSERT(stream->num_wb_info <= MAX_DWB_PIPES); 3162 for (i = 0; i < stream->num_wb_info; i++) 3163 stream->writeback_info[i] = 3164 update->wb_update->writeback_info[i]; 3165 } 3166 if (update->dsc_config) { 3167 struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg; 3168 uint32_t old_dsc_enabled = stream->timing.flags.DSC; 3169 uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 && 3170 update->dsc_config->num_slices_v != 0); 3171 3172 /* Use temporarry context for validating new DSC config */ 3173 struct dc_state *dsc_validate_context = dc_state_create_copy(dc->current_state); 3174 3175 if (dsc_validate_context) { 3176 stream->timing.dsc_cfg = *update->dsc_config; 3177 stream->timing.flags.DSC = enable_dsc; 3178 if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) { 3179 stream->timing.dsc_cfg = old_dsc_cfg; 3180 stream->timing.flags.DSC = old_dsc_enabled; 3181 update->dsc_config = NULL; 3182 } 3183 3184 dc_state_release(dsc_validate_context); 3185 } else { 3186 DC_ERROR("Failed to allocate new validate context for DSC change\n"); 3187 update->dsc_config = NULL; 3188 } 3189 } 3190 if (update->scaler_sharpener_update) 3191 stream->scaler_sharpener_update = *update->scaler_sharpener_update; 3192 if (update->sharpening_required) 3193 stream->sharpening_required = *update->sharpening_required; 3194 } 3195 backup_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3196 static void backup_planes_and_stream_state( 3197 struct dc_scratch_space *scratch, 3198 struct dc_stream_state *stream) 3199 { 3200 int i; 3201 struct dc_stream_status *status = dc_stream_get_status(stream); 3202 3203 if (!status) 3204 return; 3205 3206 for (i = 0; i < status->plane_count; i++) { 3207 scratch->plane_states[i] = *status->plane_states[i]; 3208 } 3209 scratch->stream_state = *stream; 3210 } 3211 restore_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3212 static void restore_planes_and_stream_state( 3213 struct dc_scratch_space *scratch, 3214 struct dc_stream_state *stream) 3215 { 3216 int i; 3217 struct dc_stream_status *status = dc_stream_get_status(stream); 3218 3219 if (!status) 3220 return; 3221 3222 for (i = 0; i < status->plane_count; i++) { 3223 /* refcount will always be valid, restore everything else */ 3224 struct kref refcount = status->plane_states[i]->refcount; 3225 *status->plane_states[i] = scratch->plane_states[i]; 3226 status->plane_states[i]->refcount = refcount; 3227 } 3228 *stream = scratch->stream_state; 3229 } 3230 3231 /** 3232 * update_seamless_boot_flags() - Helper function for updating seamless boot flags 3233 * 3234 * @dc: Current DC state 3235 * @context: New DC state to be programmed 3236 * @surface_count: Number of surfaces that have an updated 3237 * @stream: Corresponding stream to be updated in the current flip 3238 * 3239 * Updating seamless boot flags do not need to be part of the commit sequence. This 3240 * helper function will update the seamless boot flags on each flip (if required) 3241 * outside of the HW commit sequence (fast or slow). 3242 * 3243 * Return: void 3244 */ update_seamless_boot_flags(struct dc * dc,struct dc_state * context,int surface_count,struct dc_stream_state * stream)3245 static void update_seamless_boot_flags(struct dc *dc, 3246 struct dc_state *context, 3247 int surface_count, 3248 struct dc_stream_state *stream) 3249 { 3250 if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) { 3251 /* Optimize seamless boot flag keeps clocks and watermarks high until 3252 * first flip. After first flip, optimization is required to lower 3253 * bandwidth. Important to note that it is expected UEFI will 3254 * only light up a single display on POST, therefore we only expect 3255 * one stream with seamless boot flag set. 3256 */ 3257 if (stream->apply_seamless_boot_optimization) { 3258 stream->apply_seamless_boot_optimization = false; 3259 3260 if (get_seamless_boot_stream_count(context) == 0) 3261 dc->optimized_required = true; 3262 } 3263 } 3264 } 3265 3266 /** 3267 * update_planes_and_stream_state() - The function takes planes and stream 3268 * updates as inputs and determines the appropriate update type. If update type 3269 * is FULL, the function allocates a new context, populates and validates it. 3270 * Otherwise, it updates current dc context. The function will return both 3271 * new_context and new_update_type back to the caller. The function also backs 3272 * up both current and new contexts into corresponding dc state scratch memory. 3273 * TODO: The function does too many things, and even conditionally allocates dc 3274 * context memory implicitly. We should consider to break it down. 3275 * 3276 * @dc: Current DC state 3277 * @srf_updates: an array of surface updates 3278 * @surface_count: surface update count 3279 * @stream: Corresponding stream to be updated 3280 * @stream_update: stream update 3281 * @new_update_type: [out] determined update type by the function 3282 * @new_context: [out] new context allocated and validated if update type is 3283 * FULL, reference to current context if update type is less than FULL. 3284 * 3285 * Return: true if a valid update is populated into new_context, false 3286 * otherwise. 3287 */ update_planes_and_stream_state(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type * new_update_type,struct dc_state ** new_context)3288 static bool update_planes_and_stream_state(struct dc *dc, 3289 struct dc_surface_update *srf_updates, int surface_count, 3290 struct dc_stream_state *stream, 3291 struct dc_stream_update *stream_update, 3292 enum surface_update_type *new_update_type, 3293 struct dc_state **new_context) 3294 { 3295 struct dc_state *context; 3296 int i, j; 3297 enum surface_update_type update_type; 3298 const struct dc_stream_status *stream_status; 3299 struct dc_context *dc_ctx = dc->ctx; 3300 3301 stream_status = dc_stream_get_status(stream); 3302 3303 if (!stream_status) { 3304 if (surface_count) /* Only an error condition if surf_count non-zero*/ 3305 ASSERT(false); 3306 3307 return false; /* Cannot commit surface to stream that is not committed */ 3308 } 3309 3310 context = dc->current_state; 3311 update_type = dc_check_update_surfaces_for_stream( 3312 dc, srf_updates, surface_count, stream_update, stream_status); 3313 /* It is possible to receive a flip for one plane while there are multiple flip_immediate planes in the same stream. 3314 * E.g. Desktop and MPO plane are flip_immediate but only the MPO plane received a flip 3315 * Force the other flip_immediate planes to flip so GSL doesn't wait for a flip that won't come. 3316 */ 3317 force_immediate_gsl_plane_flip(dc, srf_updates, surface_count); 3318 if (update_type == UPDATE_TYPE_FULL) 3319 backup_planes_and_stream_state(&dc->scratch.current_state, stream); 3320 3321 /* update current stream with the new updates */ 3322 copy_stream_update_to_stream(dc, context, stream, stream_update); 3323 3324 /* do not perform surface update if surface has invalid dimensions 3325 * (all zero) and no scaling_info is provided 3326 */ 3327 if (surface_count > 0) { 3328 for (i = 0; i < surface_count; i++) { 3329 if ((srf_updates[i].surface->src_rect.width == 0 || 3330 srf_updates[i].surface->src_rect.height == 0 || 3331 srf_updates[i].surface->dst_rect.width == 0 || 3332 srf_updates[i].surface->dst_rect.height == 0) && 3333 (!srf_updates[i].scaling_info || 3334 srf_updates[i].scaling_info->src_rect.width == 0 || 3335 srf_updates[i].scaling_info->src_rect.height == 0 || 3336 srf_updates[i].scaling_info->dst_rect.width == 0 || 3337 srf_updates[i].scaling_info->dst_rect.height == 0)) { 3338 DC_ERROR("Invalid src/dst rects in surface update!\n"); 3339 return false; 3340 } 3341 } 3342 } 3343 3344 if (update_type >= update_surface_trace_level) 3345 update_surface_trace(dc, srf_updates, surface_count); 3346 3347 for (i = 0; i < surface_count; i++) 3348 copy_surface_update_to_plane(srf_updates[i].surface, &srf_updates[i]); 3349 3350 if (update_type >= UPDATE_TYPE_FULL) { 3351 struct dc_plane_state *new_planes[MAX_SURFACES] = {0}; 3352 3353 for (i = 0; i < surface_count; i++) 3354 new_planes[i] = srf_updates[i].surface; 3355 3356 /* initialize scratch memory for building context */ 3357 context = dc_state_create_copy(dc->current_state); 3358 if (context == NULL) { 3359 DC_ERROR("Failed to allocate new validate context!\n"); 3360 return false; 3361 } 3362 3363 /* For each full update, remove all existing phantom pipes first. 3364 * Ensures that we have enough pipes for newly added MPO planes 3365 */ 3366 dc_state_remove_phantom_streams_and_planes(dc, context); 3367 dc_state_release_phantom_streams_and_planes(dc, context); 3368 3369 /*remove old surfaces from context */ 3370 if (!dc_state_rem_all_planes_for_stream(dc, stream, context)) { 3371 3372 BREAK_TO_DEBUGGER(); 3373 goto fail; 3374 } 3375 3376 /* add surface to context */ 3377 if (!dc_state_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) { 3378 3379 BREAK_TO_DEBUGGER(); 3380 goto fail; 3381 } 3382 } 3383 3384 /* save update parameters into surface */ 3385 for (i = 0; i < surface_count; i++) { 3386 struct dc_plane_state *surface = srf_updates[i].surface; 3387 3388 if (update_type != UPDATE_TYPE_MED) 3389 continue; 3390 if (surface->update_flags.bits.position_change) { 3391 for (j = 0; j < dc->res_pool->pipe_count; j++) { 3392 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; 3393 3394 if (pipe_ctx->plane_state != surface) 3395 continue; 3396 3397 resource_build_scaling_params(pipe_ctx); 3398 } 3399 } 3400 } 3401 3402 if (update_type == UPDATE_TYPE_FULL) { 3403 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) { 3404 BREAK_TO_DEBUGGER(); 3405 goto fail; 3406 } 3407 } 3408 update_seamless_boot_flags(dc, context, surface_count, stream); 3409 3410 *new_context = context; 3411 *new_update_type = update_type; 3412 if (update_type == UPDATE_TYPE_FULL) 3413 backup_planes_and_stream_state(&dc->scratch.new_state, stream); 3414 3415 return true; 3416 3417 fail: 3418 dc_state_release(context); 3419 3420 return false; 3421 3422 } 3423 commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3424 static void commit_planes_do_stream_update(struct dc *dc, 3425 struct dc_stream_state *stream, 3426 struct dc_stream_update *stream_update, 3427 enum surface_update_type update_type, 3428 struct dc_state *context) 3429 { 3430 int j; 3431 3432 // Stream updates 3433 for (j = 0; j < dc->res_pool->pipe_count; j++) { 3434 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; 3435 3436 if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) { 3437 3438 if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt) 3439 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx); 3440 3441 if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) || 3442 stream_update->vrr_infopacket || 3443 stream_update->vsc_infopacket || 3444 stream_update->vsp_infopacket || 3445 stream_update->hfvsif_infopacket || 3446 stream_update->adaptive_sync_infopacket || 3447 stream_update->vtem_infopacket) { 3448 resource_build_info_frame(pipe_ctx); 3449 dc->hwss.update_info_frame(pipe_ctx); 3450 3451 if (dc_is_dp_signal(pipe_ctx->stream->signal)) 3452 dc->link_srv->dp_trace_source_sequence( 3453 pipe_ctx->stream->link, 3454 DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME); 3455 } 3456 3457 if (stream_update->hdr_static_metadata && 3458 stream->use_dynamic_meta && 3459 dc->hwss.set_dmdata_attributes && 3460 pipe_ctx->stream->dmdata_address.quad_part != 0) 3461 dc->hwss.set_dmdata_attributes(pipe_ctx); 3462 3463 if (stream_update->gamut_remap) 3464 dc_stream_set_gamut_remap(dc, stream); 3465 3466 if (stream_update->output_csc_transform) 3467 dc_stream_program_csc_matrix(dc, stream); 3468 3469 if (stream_update->dither_option) { 3470 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe; 3471 resource_build_bit_depth_reduction_params(pipe_ctx->stream, 3472 &pipe_ctx->stream->bit_depth_params); 3473 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp, 3474 &stream->bit_depth_params, 3475 &stream->clamping); 3476 while (odm_pipe) { 3477 odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp, 3478 &stream->bit_depth_params, 3479 &stream->clamping); 3480 odm_pipe = odm_pipe->next_odm_pipe; 3481 } 3482 } 3483 3484 if (stream_update->cursor_attributes) 3485 program_cursor_attributes(dc, stream); 3486 3487 if (stream_update->cursor_position) 3488 program_cursor_position(dc, stream); 3489 3490 /* Full fe update*/ 3491 if (update_type == UPDATE_TYPE_FAST) 3492 continue; 3493 3494 if (stream_update->dsc_config) 3495 dc->link_srv->update_dsc_config(pipe_ctx); 3496 3497 if (stream_update->mst_bw_update) { 3498 if (stream_update->mst_bw_update->is_increase) 3499 dc->link_srv->increase_mst_payload(pipe_ctx, 3500 stream_update->mst_bw_update->mst_stream_bw); 3501 else 3502 dc->link_srv->reduce_mst_payload(pipe_ctx, 3503 stream_update->mst_bw_update->mst_stream_bw); 3504 } 3505 3506 if (stream_update->pending_test_pattern) { 3507 /* 3508 * test pattern params depends on ODM topology 3509 * changes that we could be applying to front 3510 * end. Since at the current stage front end 3511 * changes are not yet applied. We can only 3512 * apply test pattern in hw based on current 3513 * state and populate the final test pattern 3514 * params in new state. If current and new test 3515 * pattern params are different as result of 3516 * different ODM topology being used, it will be 3517 * detected and handle during front end 3518 * programming update. 3519 */ 3520 dc->link_srv->dp_set_test_pattern(stream->link, 3521 stream->test_pattern.type, 3522 stream->test_pattern.color_space, 3523 stream->test_pattern.p_link_settings, 3524 stream->test_pattern.p_custom_pattern, 3525 stream->test_pattern.cust_pattern_size); 3526 resource_build_test_pattern_params(&context->res_ctx, pipe_ctx); 3527 } 3528 3529 if (stream_update->dpms_off) { 3530 if (*stream_update->dpms_off) { 3531 dc->link_srv->set_dpms_off(pipe_ctx); 3532 /* for dpms, keep acquired resources*/ 3533 if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only) 3534 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio); 3535 3536 dc->optimized_required = true; 3537 3538 } else { 3539 if (get_seamless_boot_stream_count(context) == 0) 3540 dc->hwss.prepare_bandwidth(dc, dc->current_state); 3541 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx); 3542 } 3543 } else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space 3544 && !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) { 3545 /* 3546 * Workaround for firmware issue in some receivers where they don't pick up 3547 * correct output color space unless DP link is disabled/re-enabled 3548 */ 3549 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx); 3550 } 3551 3552 if (stream_update->abm_level && pipe_ctx->stream_res.abm) { 3553 bool should_program_abm = true; 3554 3555 // if otg funcs defined check if blanked before programming 3556 if (pipe_ctx->stream_res.tg->funcs->is_blanked) 3557 if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg)) 3558 should_program_abm = false; 3559 3560 if (should_program_abm) { 3561 if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) { 3562 dc->hwss.set_abm_immediate_disable(pipe_ctx); 3563 } else { 3564 pipe_ctx->stream_res.abm->funcs->set_abm_level( 3565 pipe_ctx->stream_res.abm, stream->abm_level); 3566 } 3567 } 3568 } 3569 } 3570 } 3571 } 3572 dc_dmub_should_send_dirty_rect_cmd(struct dc * dc,struct dc_stream_state * stream)3573 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream) 3574 { 3575 if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1 3576 || stream->link->psr_settings.psr_version == DC_PSR_VERSION_1) 3577 && stream->ctx->dce_version >= DCN_VERSION_3_1) 3578 return true; 3579 3580 if (stream->link->replay_settings.config.replay_supported) 3581 return true; 3582 3583 if (stream->ctx->dce_version >= DCN_VERSION_3_5 && stream->abm_level) 3584 return true; 3585 3586 return false; 3587 } 3588 dc_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context)3589 void dc_dmub_update_dirty_rect(struct dc *dc, 3590 int surface_count, 3591 struct dc_stream_state *stream, 3592 struct dc_surface_update *srf_updates, 3593 struct dc_state *context) 3594 { 3595 union dmub_rb_cmd cmd; 3596 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect; 3597 unsigned int i, j; 3598 unsigned int panel_inst = 0; 3599 3600 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream)) 3601 return; 3602 3603 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst)) 3604 return; 3605 3606 memset(&cmd, 0x0, sizeof(cmd)); 3607 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT; 3608 cmd.update_dirty_rect.header.sub_type = 0; 3609 cmd.update_dirty_rect.header.payload_bytes = 3610 sizeof(cmd.update_dirty_rect) - 3611 sizeof(cmd.update_dirty_rect.header); 3612 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data; 3613 for (i = 0; i < surface_count; i++) { 3614 struct dc_plane_state *plane_state = srf_updates[i].surface; 3615 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr; 3616 3617 if (!srf_updates[i].surface || !flip_addr) 3618 continue; 3619 /* Do not send in immediate flip mode */ 3620 if (srf_updates[i].surface->flip_immediate) 3621 continue; 3622 3623 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1; 3624 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count; 3625 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects, 3626 sizeof(flip_addr->dirty_rects)); 3627 for (j = 0; j < dc->res_pool->pipe_count; j++) { 3628 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; 3629 3630 if (pipe_ctx->stream != stream) 3631 continue; 3632 if (pipe_ctx->plane_state != plane_state) 3633 continue; 3634 3635 update_dirty_rect->panel_inst = panel_inst; 3636 update_dirty_rect->pipe_idx = j; 3637 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT); 3638 } 3639 } 3640 } 3641 build_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3642 static void build_dmub_update_dirty_rect( 3643 struct dc *dc, 3644 int surface_count, 3645 struct dc_stream_state *stream, 3646 struct dc_surface_update *srf_updates, 3647 struct dc_state *context, 3648 struct dc_dmub_cmd dc_dmub_cmd[], 3649 unsigned int *dmub_cmd_count) 3650 { 3651 union dmub_rb_cmd cmd; 3652 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect; 3653 unsigned int i, j; 3654 unsigned int panel_inst = 0; 3655 3656 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream)) 3657 return; 3658 3659 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst)) 3660 return; 3661 3662 memset(&cmd, 0x0, sizeof(cmd)); 3663 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT; 3664 cmd.update_dirty_rect.header.sub_type = 0; 3665 cmd.update_dirty_rect.header.payload_bytes = 3666 sizeof(cmd.update_dirty_rect) - 3667 sizeof(cmd.update_dirty_rect.header); 3668 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data; 3669 for (i = 0; i < surface_count; i++) { 3670 struct dc_plane_state *plane_state = srf_updates[i].surface; 3671 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr; 3672 3673 if (!srf_updates[i].surface || !flip_addr) 3674 continue; 3675 /* Do not send in immediate flip mode */ 3676 if (srf_updates[i].surface->flip_immediate) 3677 continue; 3678 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1; 3679 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count; 3680 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects, 3681 sizeof(flip_addr->dirty_rects)); 3682 for (j = 0; j < dc->res_pool->pipe_count; j++) { 3683 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; 3684 3685 if (pipe_ctx->stream != stream) 3686 continue; 3687 if (pipe_ctx->plane_state != plane_state) 3688 continue; 3689 update_dirty_rect->panel_inst = panel_inst; 3690 update_dirty_rect->pipe_idx = j; 3691 dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd; 3692 dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT; 3693 (*dmub_cmd_count)++; 3694 } 3695 } 3696 } 3697 check_address_only_update(union surface_update_flags update_flags)3698 static bool check_address_only_update(union surface_update_flags update_flags) 3699 { 3700 union surface_update_flags addr_only_update_flags; 3701 addr_only_update_flags.raw = 0; 3702 addr_only_update_flags.bits.addr_update = 1; 3703 3704 return update_flags.bits.addr_update && 3705 !(update_flags.raw & ~addr_only_update_flags.raw); 3706 } 3707 3708 /** 3709 * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB 3710 * 3711 * @dc: Current DC state 3712 * @srf_updates: Array of surface updates 3713 * @surface_count: Number of surfaces that have an updated 3714 * @stream: Corresponding stream to be updated in the current flip 3715 * @context: New DC state to be programmed 3716 * 3717 * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB 3718 * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array 3719 * 3720 * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required 3721 * to build an array of commands and have them sent while the OTG lock is acquired. 3722 * 3723 * Return: void 3724 */ build_dmub_cmd_list(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3725 static void build_dmub_cmd_list(struct dc *dc, 3726 struct dc_surface_update *srf_updates, 3727 int surface_count, 3728 struct dc_stream_state *stream, 3729 struct dc_state *context, 3730 struct dc_dmub_cmd dc_dmub_cmd[], 3731 unsigned int *dmub_cmd_count) 3732 { 3733 // Initialize cmd count to 0 3734 *dmub_cmd_count = 0; 3735 build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count); 3736 } 3737 commit_plane_for_stream_offload_fams2_flip(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context)3738 static void commit_plane_for_stream_offload_fams2_flip(struct dc *dc, 3739 struct dc_surface_update *srf_updates, 3740 int surface_count, 3741 struct dc_stream_state *stream, 3742 struct dc_state *context) 3743 { 3744 int i, j; 3745 3746 /* update dirty rect for PSR */ 3747 dc_dmub_update_dirty_rect(dc, surface_count, stream, 3748 srf_updates, context); 3749 3750 /* Perform requested Updates */ 3751 for (i = 0; i < surface_count; i++) { 3752 struct dc_plane_state *plane_state = srf_updates[i].surface; 3753 3754 for (j = 0; j < dc->res_pool->pipe_count; j++) { 3755 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; 3756 3757 if (!should_update_pipe_for_stream(context, pipe_ctx, stream)) 3758 continue; 3759 3760 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state)) 3761 continue; 3762 3763 /* update pipe context for plane */ 3764 if (pipe_ctx->plane_state->update_flags.bits.addr_update) 3765 dc->hwss.update_plane_addr(dc, pipe_ctx); 3766 } 3767 } 3768 3769 /* Send commands to DMCUB */ 3770 dc_dmub_srv_fams2_passthrough_flip(dc, 3771 context, 3772 stream, 3773 srf_updates, 3774 surface_count); 3775 } 3776 commit_planes_for_stream_fast(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3777 static void commit_planes_for_stream_fast(struct dc *dc, 3778 struct dc_surface_update *srf_updates, 3779 int surface_count, 3780 struct dc_stream_state *stream, 3781 struct dc_stream_update *stream_update, 3782 enum surface_update_type update_type, 3783 struct dc_state *context) 3784 { 3785 int i, j; 3786 struct pipe_ctx *top_pipe_to_program = NULL; 3787 struct dc_stream_status *stream_status = NULL; 3788 bool should_offload_fams2_flip = false; 3789 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST); 3790 3791 if (should_lock_all_pipes) 3792 determine_pipe_unlock_order(dc, context); 3793 3794 if (dc->debug.fams2_config.bits.enable && 3795 dc->debug.fams2_config.bits.enable_offload_flip && 3796 dc_state_is_fams2_in_use(dc, context)) { 3797 /* if not offloading to HWFQ, offload to FAMS2 if needed */ 3798 should_offload_fams2_flip = true; 3799 for (i = 0; i < surface_count; i++) { 3800 if (srf_updates[i].surface && 3801 srf_updates[i].surface->update_flags.raw && 3802 !check_address_only_update(srf_updates[i].surface->update_flags)) { 3803 /* more than address update, need to acquire FAMS2 lock */ 3804 should_offload_fams2_flip = false; 3805 break; 3806 } 3807 } 3808 if (stream_update) { 3809 /* more than address update, need to acquire FAMS2 lock */ 3810 should_offload_fams2_flip = false; 3811 } 3812 } 3813 3814 dc_exit_ips_for_hw_access(dc); 3815 3816 dc_z10_restore(dc); 3817 3818 top_pipe_to_program = resource_get_otg_master_for_stream( 3819 &context->res_ctx, 3820 stream); 3821 3822 if (!top_pipe_to_program) 3823 return; 3824 3825 for (i = 0; i < dc->res_pool->pipe_count; i++) { 3826 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 3827 3828 if (pipe->stream && pipe->plane_state) { 3829 if (!dc->debug.using_dml2) 3830 set_p_state_switch_method(dc, context, pipe); 3831 3832 if (dc->debug.visual_confirm) 3833 dc_update_visual_confirm_color(dc, context, pipe); 3834 } 3835 } 3836 3837 for (i = 0; i < surface_count; i++) { 3838 struct dc_plane_state *plane_state = srf_updates[i].surface; 3839 /*set logical flag for lock/unlock use*/ 3840 for (j = 0; j < dc->res_pool->pipe_count; j++) { 3841 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; 3842 3843 if (!pipe_ctx->plane_state) 3844 continue; 3845 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state)) 3846 continue; 3847 3848 pipe_ctx->plane_state->triplebuffer_flips = false; 3849 if (update_type == UPDATE_TYPE_FAST && 3850 dc->hwss.program_triplebuffer != NULL && 3851 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) { 3852 /*triple buffer for VUpdate only*/ 3853 pipe_ctx->plane_state->triplebuffer_flips = true; 3854 } 3855 } 3856 } 3857 3858 stream_status = dc_state_get_stream_status(context, stream); 3859 3860 if (should_offload_fams2_flip) { 3861 commit_plane_for_stream_offload_fams2_flip(dc, 3862 srf_updates, 3863 surface_count, 3864 stream, 3865 context); 3866 } else if (stream_status) { 3867 build_dmub_cmd_list(dc, 3868 srf_updates, 3869 surface_count, 3870 stream, 3871 context, 3872 context->dc_dmub_cmd, 3873 &(context->dmub_cmd_count)); 3874 hwss_build_fast_sequence(dc, 3875 context->dc_dmub_cmd, 3876 context->dmub_cmd_count, 3877 context->block_sequence, 3878 &(context->block_sequence_steps), 3879 top_pipe_to_program, 3880 stream_status, 3881 context); 3882 hwss_execute_sequence(dc, 3883 context->block_sequence, 3884 context->block_sequence_steps); 3885 } 3886 3887 /* Clear update flags so next flip doesn't have redundant programming 3888 * (if there's no stream update, the update flags are not cleared). 3889 * Surface updates are cleared unconditionally at the beginning of each flip, 3890 * so no need to clear here. 3891 */ 3892 if (top_pipe_to_program->stream) 3893 top_pipe_to_program->stream->update_flags.raw = 0; 3894 } 3895 commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3896 static void commit_planes_for_stream(struct dc *dc, 3897 struct dc_surface_update *srf_updates, 3898 int surface_count, 3899 struct dc_stream_state *stream, 3900 struct dc_stream_update *stream_update, 3901 enum surface_update_type update_type, 3902 struct dc_state *context) 3903 { 3904 int i, j; 3905 struct pipe_ctx *top_pipe_to_program = NULL; 3906 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST); 3907 bool subvp_prev_use = false; 3908 bool subvp_curr_use = false; 3909 uint8_t current_stream_mask = 0; 3910 3911 if (should_lock_all_pipes) 3912 determine_pipe_unlock_order(dc, context); 3913 // Once we apply the new subvp context to hardware it won't be in the 3914 // dc->current_state anymore, so we have to cache it before we apply 3915 // the new SubVP context 3916 subvp_prev_use = false; 3917 dc_exit_ips_for_hw_access(dc); 3918 3919 dc_z10_restore(dc); 3920 if (update_type == UPDATE_TYPE_FULL && dc->optimized_required) 3921 hwss_process_outstanding_hw_updates(dc, dc->current_state); 3922 3923 for (i = 0; i < dc->res_pool->pipe_count; i++) { 3924 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 3925 3926 if (pipe->stream && pipe->plane_state) { 3927 if (!dc->debug.using_dml2) 3928 set_p_state_switch_method(dc, context, pipe); 3929 3930 if (dc->debug.visual_confirm) 3931 dc_update_visual_confirm_color(dc, context, pipe); 3932 } 3933 } 3934 3935 if (update_type == UPDATE_TYPE_FULL) { 3936 dc_allow_idle_optimizations(dc, false); 3937 3938 if (get_seamless_boot_stream_count(context) == 0) 3939 dc->hwss.prepare_bandwidth(dc, context); 3940 3941 if (dc->hwss.update_dsc_pg) 3942 dc->hwss.update_dsc_pg(dc, context, false); 3943 3944 context_clock_trace(dc, context); 3945 } 3946 3947 if (update_type == UPDATE_TYPE_FULL) 3948 hwss_wait_for_outstanding_hw_updates(dc, dc->current_state); 3949 3950 top_pipe_to_program = resource_get_otg_master_for_stream( 3951 &context->res_ctx, 3952 stream); 3953 ASSERT(top_pipe_to_program != NULL); 3954 for (i = 0; i < dc->res_pool->pipe_count; i++) { 3955 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 3956 3957 // Check old context for SubVP 3958 subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM); 3959 if (subvp_prev_use) 3960 break; 3961 } 3962 3963 for (i = 0; i < dc->res_pool->pipe_count; i++) { 3964 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 3965 3966 if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) { 3967 subvp_curr_use = true; 3968 break; 3969 } 3970 } 3971 3972 if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) { 3973 struct pipe_ctx *mpcc_pipe; 3974 struct pipe_ctx *odm_pipe; 3975 3976 for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe) 3977 for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) 3978 odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU; 3979 } 3980 3981 if (update_type != UPDATE_TYPE_FAST && dc->res_pool->funcs->prepare_mcache_programming) 3982 dc->res_pool->funcs->prepare_mcache_programming(dc, context); 3983 3984 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed) 3985 if (top_pipe_to_program && 3986 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) { 3987 if (should_use_dmub_lock(stream->link)) { 3988 union dmub_hw_lock_flags hw_locks = { 0 }; 3989 struct dmub_hw_lock_inst_flags inst_flags = { 0 }; 3990 3991 hw_locks.bits.lock_dig = 1; 3992 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst; 3993 3994 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv, 3995 true, 3996 &hw_locks, 3997 &inst_flags); 3998 } else 3999 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable( 4000 top_pipe_to_program->stream_res.tg); 4001 } 4002 4003 if (dc->hwss.wait_for_dcc_meta_propagation) { 4004 dc->hwss.wait_for_dcc_meta_propagation(dc, top_pipe_to_program); 4005 } 4006 4007 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) { 4008 if (dc->hwss.subvp_pipe_control_lock) 4009 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use); 4010 4011 if (dc->hwss.fams2_global_control_lock) 4012 dc->hwss.fams2_global_control_lock(dc, context, true); 4013 4014 dc->hwss.interdependent_update_lock(dc, context, true); 4015 } else { 4016 if (dc->hwss.subvp_pipe_control_lock) 4017 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use); 4018 4019 if (dc->hwss.fams2_global_control_lock) 4020 dc->hwss.fams2_global_control_lock(dc, context, true); 4021 4022 /* Lock the top pipe while updating plane addrs, since freesync requires 4023 * plane addr update event triggers to be synchronized. 4024 * top_pipe_to_program is expected to never be NULL 4025 */ 4026 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true); 4027 } 4028 4029 dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context); 4030 4031 // Stream updates 4032 if (stream_update) 4033 commit_planes_do_stream_update(dc, stream, stream_update, update_type, context); 4034 4035 if (surface_count == 0) { 4036 /* 4037 * In case of turning off screen, no need to program front end a second time. 4038 * just return after program blank. 4039 */ 4040 if (dc->hwss.apply_ctx_for_surface) 4041 dc->hwss.apply_ctx_for_surface(dc, stream, 0, context); 4042 if (dc->hwss.program_front_end_for_ctx) 4043 dc->hwss.program_front_end_for_ctx(dc, context); 4044 4045 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) { 4046 dc->hwss.interdependent_update_lock(dc, context, false); 4047 } else { 4048 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false); 4049 } 4050 dc->hwss.post_unlock_program_front_end(dc, context); 4051 4052 if (update_type != UPDATE_TYPE_FAST) 4053 if (dc->hwss.commit_subvp_config) 4054 dc->hwss.commit_subvp_config(dc, context); 4055 4056 /* Since phantom pipe programming is moved to post_unlock_program_front_end, 4057 * move the SubVP lock to after the phantom pipes have been setup 4058 */ 4059 if (dc->hwss.subvp_pipe_control_lock) 4060 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, 4061 NULL, subvp_prev_use); 4062 4063 if (dc->hwss.fams2_global_control_lock) 4064 dc->hwss.fams2_global_control_lock(dc, context, false); 4065 4066 return; 4067 } 4068 4069 if (update_type != UPDATE_TYPE_FAST) { 4070 for (j = 0; j < dc->res_pool->pipe_count; j++) { 4071 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; 4072 4073 if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP || 4074 dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) && 4075 pipe_ctx->stream && pipe_ctx->plane_state) { 4076 /* Only update visual confirm for SUBVP and Mclk switching here. 4077 * The bar appears on all pipes, so we need to update the bar on all displays, 4078 * so the information doesn't get stale. 4079 */ 4080 dc->hwss.update_visual_confirm_color(dc, pipe_ctx, 4081 pipe_ctx->plane_res.hubp->inst); 4082 } 4083 } 4084 } 4085 4086 for (i = 0; i < surface_count; i++) { 4087 struct dc_plane_state *plane_state = srf_updates[i].surface; 4088 4089 /*set logical flag for lock/unlock use*/ 4090 for (j = 0; j < dc->res_pool->pipe_count; j++) { 4091 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; 4092 if (!pipe_ctx->plane_state) 4093 continue; 4094 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state)) 4095 continue; 4096 pipe_ctx->plane_state->triplebuffer_flips = false; 4097 if (update_type == UPDATE_TYPE_FAST && 4098 dc->hwss.program_triplebuffer != NULL && 4099 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) { 4100 /*triple buffer for VUpdate only*/ 4101 pipe_ctx->plane_state->triplebuffer_flips = true; 4102 } 4103 } 4104 if (update_type == UPDATE_TYPE_FULL) { 4105 /* force vsync flip when reconfiguring pipes to prevent underflow */ 4106 plane_state->flip_immediate = false; 4107 plane_state->triplebuffer_flips = false; 4108 } 4109 } 4110 4111 // Update Type FULL, Surface updates 4112 for (j = 0; j < dc->res_pool->pipe_count; j++) { 4113 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; 4114 4115 if (!pipe_ctx->top_pipe && 4116 !pipe_ctx->prev_odm_pipe && 4117 should_update_pipe_for_stream(context, pipe_ctx, stream)) { 4118 struct dc_stream_status *stream_status = NULL; 4119 4120 if (!pipe_ctx->plane_state) 4121 continue; 4122 4123 /* Full fe update*/ 4124 if (update_type == UPDATE_TYPE_FAST) 4125 continue; 4126 4127 ASSERT(!pipe_ctx->plane_state->triplebuffer_flips); 4128 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) { 4129 /*turn off triple buffer for full update*/ 4130 dc->hwss.program_triplebuffer( 4131 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips); 4132 } 4133 stream_status = 4134 stream_get_status(context, pipe_ctx->stream); 4135 4136 if (dc->hwss.apply_ctx_for_surface && stream_status) 4137 dc->hwss.apply_ctx_for_surface( 4138 dc, pipe_ctx->stream, stream_status->plane_count, context); 4139 } 4140 } 4141 if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) { 4142 dc->hwss.program_front_end_for_ctx(dc, context); 4143 if (dc->debug.validate_dml_output) { 4144 for (i = 0; i < dc->res_pool->pipe_count; i++) { 4145 struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i]; 4146 if (cur_pipe->stream == NULL) 4147 continue; 4148 4149 cur_pipe->plane_res.hubp->funcs->validate_dml_output( 4150 cur_pipe->plane_res.hubp, dc->ctx, 4151 &context->res_ctx.pipe_ctx[i].rq_regs, 4152 &context->res_ctx.pipe_ctx[i].dlg_regs, 4153 &context->res_ctx.pipe_ctx[i].ttu_regs); 4154 } 4155 } 4156 } 4157 4158 // Update Type FAST, Surface updates 4159 if (update_type == UPDATE_TYPE_FAST) { 4160 if (dc->hwss.set_flip_control_gsl) 4161 for (i = 0; i < surface_count; i++) { 4162 struct dc_plane_state *plane_state = srf_updates[i].surface; 4163 4164 for (j = 0; j < dc->res_pool->pipe_count; j++) { 4165 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; 4166 4167 if (!should_update_pipe_for_stream(context, pipe_ctx, stream)) 4168 continue; 4169 4170 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state)) 4171 continue; 4172 4173 // GSL has to be used for flip immediate 4174 dc->hwss.set_flip_control_gsl(pipe_ctx, 4175 pipe_ctx->plane_state->flip_immediate); 4176 } 4177 } 4178 4179 /* Perform requested Updates */ 4180 for (i = 0; i < surface_count; i++) { 4181 struct dc_plane_state *plane_state = srf_updates[i].surface; 4182 4183 for (j = 0; j < dc->res_pool->pipe_count; j++) { 4184 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; 4185 4186 if (!should_update_pipe_for_stream(context, pipe_ctx, stream)) 4187 continue; 4188 4189 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state)) 4190 continue; 4191 4192 if (srf_updates[i].cm2_params && 4193 srf_updates[i].cm2_params->cm2_luts.lut3d_data.lut3d_src == 4194 DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM && 4195 srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting == 4196 DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER_3DLUT && 4197 dc->hwss.trigger_3dlut_dma_load) 4198 dc->hwss.trigger_3dlut_dma_load(dc, pipe_ctx); 4199 4200 /*program triple buffer after lock based on flip type*/ 4201 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) { 4202 /*only enable triplebuffer for fast_update*/ 4203 dc->hwss.program_triplebuffer( 4204 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips); 4205 } 4206 if (pipe_ctx->plane_state->update_flags.bits.addr_update) 4207 dc->hwss.update_plane_addr(dc, pipe_ctx); 4208 } 4209 } 4210 } 4211 4212 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) { 4213 dc->hwss.interdependent_update_lock(dc, context, false); 4214 } else { 4215 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false); 4216 } 4217 4218 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed) 4219 if (top_pipe_to_program && 4220 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) { 4221 top_pipe_to_program->stream_res.tg->funcs->wait_for_state( 4222 top_pipe_to_program->stream_res.tg, 4223 CRTC_STATE_VACTIVE); 4224 top_pipe_to_program->stream_res.tg->funcs->wait_for_state( 4225 top_pipe_to_program->stream_res.tg, 4226 CRTC_STATE_VBLANK); 4227 top_pipe_to_program->stream_res.tg->funcs->wait_for_state( 4228 top_pipe_to_program->stream_res.tg, 4229 CRTC_STATE_VACTIVE); 4230 4231 if (should_use_dmub_lock(stream->link)) { 4232 union dmub_hw_lock_flags hw_locks = { 0 }; 4233 struct dmub_hw_lock_inst_flags inst_flags = { 0 }; 4234 4235 hw_locks.bits.lock_dig = 1; 4236 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst; 4237 4238 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv, 4239 false, 4240 &hw_locks, 4241 &inst_flags); 4242 } else 4243 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable( 4244 top_pipe_to_program->stream_res.tg); 4245 } 4246 4247 if (subvp_curr_use) { 4248 /* If enabling subvp or transitioning from subvp->subvp, enable the 4249 * phantom streams before we program front end for the phantom pipes. 4250 */ 4251 if (update_type != UPDATE_TYPE_FAST) { 4252 if (dc->hwss.enable_phantom_streams) 4253 dc->hwss.enable_phantom_streams(dc, context); 4254 } 4255 } 4256 4257 if (update_type != UPDATE_TYPE_FAST) 4258 dc->hwss.post_unlock_program_front_end(dc, context); 4259 4260 if (subvp_prev_use && !subvp_curr_use) { 4261 /* If disabling subvp, disable phantom streams after front end 4262 * programming has completed (we turn on phantom OTG in order 4263 * to complete the plane disable for phantom pipes). 4264 */ 4265 4266 if (dc->hwss.disable_phantom_streams) 4267 dc->hwss.disable_phantom_streams(dc, context); 4268 } 4269 4270 if (update_type != UPDATE_TYPE_FAST) 4271 if (dc->hwss.commit_subvp_config) 4272 dc->hwss.commit_subvp_config(dc, context); 4273 /* Since phantom pipe programming is moved to post_unlock_program_front_end, 4274 * move the SubVP lock to after the phantom pipes have been setup 4275 */ 4276 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) { 4277 if (dc->hwss.subvp_pipe_control_lock) 4278 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use); 4279 if (dc->hwss.fams2_global_control_lock) 4280 dc->hwss.fams2_global_control_lock(dc, context, false); 4281 } else { 4282 if (dc->hwss.subvp_pipe_control_lock) 4283 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use); 4284 if (dc->hwss.fams2_global_control_lock) 4285 dc->hwss.fams2_global_control_lock(dc, context, false); 4286 } 4287 4288 // Fire manual trigger only when bottom plane is flipped 4289 for (j = 0; j < dc->res_pool->pipe_count; j++) { 4290 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; 4291 4292 if (!pipe_ctx->plane_state) 4293 continue; 4294 4295 if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe || 4296 !pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) || 4297 !pipe_ctx->plane_state->update_flags.bits.addr_update || 4298 pipe_ctx->plane_state->skip_manual_trigger) 4299 continue; 4300 4301 if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger) 4302 pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg); 4303 } 4304 4305 current_stream_mask = get_stream_mask(dc, context); 4306 if (current_stream_mask != context->stream_mask) { 4307 context->stream_mask = current_stream_mask; 4308 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, current_stream_mask); 4309 } 4310 } 4311 4312 /** 4313 * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change 4314 * 4315 * @dc: Used to get the current state status 4316 * @stream: Target stream, which we want to remove the attached planes 4317 * @srf_updates: Array of surface updates 4318 * @surface_count: Number of surface update 4319 * @is_plane_addition: [in] Fill out with true if it is a plane addition case 4320 * 4321 * DCN32x and newer support a feature named Dynamic ODM which can conflict with 4322 * the MPO if used simultaneously in some specific configurations (e.g., 4323 * 4k@144). This function checks if the incoming context requires applying a 4324 * transition state with unnecessary pipe splitting and ODM disabled to 4325 * circumvent our hardware limitations to prevent this edge case. If the OPP 4326 * associated with an MPCC might change due to plane additions, this function 4327 * returns true. 4328 * 4329 * Return: 4330 * Return true if OPP and MPCC might change, otherwise, return false. 4331 */ could_mpcc_tree_change_for_active_pipes(struct dc * dc,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count,bool * is_plane_addition)4332 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc, 4333 struct dc_stream_state *stream, 4334 struct dc_surface_update *srf_updates, 4335 int surface_count, 4336 bool *is_plane_addition) 4337 { 4338 4339 struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream); 4340 bool force_minimal_pipe_splitting = false; 4341 bool subvp_active = false; 4342 uint32_t i; 4343 4344 *is_plane_addition = false; 4345 4346 if (cur_stream_status && 4347 dc->current_state->stream_count > 0 && 4348 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) { 4349 /* determine if minimal transition is required due to MPC*/ 4350 if (surface_count > 0) { 4351 if (cur_stream_status->plane_count > surface_count) { 4352 force_minimal_pipe_splitting = true; 4353 } else if (cur_stream_status->plane_count < surface_count) { 4354 force_minimal_pipe_splitting = true; 4355 *is_plane_addition = true; 4356 } 4357 } 4358 } 4359 4360 if (cur_stream_status && 4361 dc->current_state->stream_count == 1 && 4362 dc->debug.enable_single_display_2to1_odm_policy) { 4363 /* determine if minimal transition is required due to dynamic ODM*/ 4364 if (surface_count > 0) { 4365 if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) { 4366 force_minimal_pipe_splitting = true; 4367 } else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) { 4368 force_minimal_pipe_splitting = true; 4369 *is_plane_addition = true; 4370 } 4371 } 4372 } 4373 4374 for (i = 0; i < dc->res_pool->pipe_count; i++) { 4375 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 4376 4377 if (dc_state_get_pipe_subvp_type(dc->current_state, pipe) != SUBVP_NONE) { 4378 subvp_active = true; 4379 break; 4380 } 4381 } 4382 4383 /* For SubVP when adding or removing planes we need to add a minimal transition 4384 * (even when disabling all planes). Whenever disabling a phantom pipe, we 4385 * must use the minimal transition path to disable the pipe correctly. 4386 * 4387 * We want to use the minimal transition whenever subvp is active, not only if 4388 * a plane is being added / removed from a subvp stream (MPO plane can be added 4389 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through 4390 * a min transition to disable subvp. 4391 */ 4392 if (cur_stream_status && subvp_active) { 4393 /* determine if minimal transition is required due to SubVP*/ 4394 if (cur_stream_status->plane_count > surface_count) { 4395 force_minimal_pipe_splitting = true; 4396 } else if (cur_stream_status->plane_count < surface_count) { 4397 force_minimal_pipe_splitting = true; 4398 *is_plane_addition = true; 4399 } 4400 } 4401 4402 return force_minimal_pipe_splitting; 4403 } 4404 4405 struct pipe_split_policy_backup { 4406 bool dynamic_odm_policy; 4407 bool subvp_policy; 4408 enum pipe_split_policy mpc_policy; 4409 char force_odm[MAX_PIPES]; 4410 }; 4411 backup_and_set_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4412 static void backup_and_set_minimal_pipe_split_policy(struct dc *dc, 4413 struct dc_state *context, 4414 struct pipe_split_policy_backup *policy) 4415 { 4416 int i; 4417 4418 if (!dc->config.is_vmin_only_asic) { 4419 policy->mpc_policy = dc->debug.pipe_split_policy; 4420 dc->debug.pipe_split_policy = MPC_SPLIT_AVOID; 4421 } 4422 policy->dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy; 4423 dc->debug.enable_single_display_2to1_odm_policy = false; 4424 policy->subvp_policy = dc->debug.force_disable_subvp; 4425 dc->debug.force_disable_subvp = true; 4426 for (i = 0; i < context->stream_count; i++) { 4427 policy->force_odm[i] = context->streams[i]->debug.force_odm_combine_segments; 4428 if (context->streams[i]->debug.allow_transition_for_forced_odm) 4429 context->streams[i]->debug.force_odm_combine_segments = 0; 4430 } 4431 } 4432 restore_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4433 static void restore_minimal_pipe_split_policy(struct dc *dc, 4434 struct dc_state *context, 4435 struct pipe_split_policy_backup *policy) 4436 { 4437 uint8_t i; 4438 4439 if (!dc->config.is_vmin_only_asic) 4440 dc->debug.pipe_split_policy = policy->mpc_policy; 4441 dc->debug.enable_single_display_2to1_odm_policy = 4442 policy->dynamic_odm_policy; 4443 dc->debug.force_disable_subvp = policy->subvp_policy; 4444 for (i = 0; i < context->stream_count; i++) 4445 context->streams[i]->debug.force_odm_combine_segments = policy->force_odm[i]; 4446 } 4447 release_minimal_transition_state(struct dc * dc,struct dc_state * minimal_transition_context,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4448 static void release_minimal_transition_state(struct dc *dc, 4449 struct dc_state *minimal_transition_context, 4450 struct dc_state *base_context, 4451 struct pipe_split_policy_backup *policy) 4452 { 4453 restore_minimal_pipe_split_policy(dc, base_context, policy); 4454 dc_state_release(minimal_transition_context); 4455 } 4456 force_vsync_flip_in_minimal_transition_context(struct dc_state * context)4457 static void force_vsync_flip_in_minimal_transition_context(struct dc_state *context) 4458 { 4459 uint8_t i; 4460 int j; 4461 struct dc_stream_status *stream_status; 4462 4463 for (i = 0; i < context->stream_count; i++) { 4464 stream_status = &context->stream_status[i]; 4465 4466 for (j = 0; j < stream_status->plane_count; j++) 4467 stream_status->plane_states[j]->flip_immediate = false; 4468 } 4469 } 4470 create_minimal_transition_state(struct dc * dc,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4471 static struct dc_state *create_minimal_transition_state(struct dc *dc, 4472 struct dc_state *base_context, struct pipe_split_policy_backup *policy) 4473 { 4474 struct dc_state *minimal_transition_context = NULL; 4475 4476 minimal_transition_context = dc_state_create_copy(base_context); 4477 if (!minimal_transition_context) 4478 return NULL; 4479 4480 backup_and_set_minimal_pipe_split_policy(dc, base_context, policy); 4481 /* commit minimal state */ 4482 if (dc->res_pool->funcs->validate_bandwidth(dc, minimal_transition_context, false)) { 4483 /* prevent underflow and corruption when reconfiguring pipes */ 4484 force_vsync_flip_in_minimal_transition_context(minimal_transition_context); 4485 } else { 4486 /* 4487 * This should never happen, minimal transition state should 4488 * always be validated first before adding pipe split features. 4489 */ 4490 release_minimal_transition_state(dc, minimal_transition_context, base_context, policy); 4491 BREAK_TO_DEBUGGER(); 4492 minimal_transition_context = NULL; 4493 } 4494 return minimal_transition_context; 4495 } 4496 is_pipe_topology_transition_seamless_with_intermediate_step(struct dc * dc,struct dc_state * initial_state,struct dc_state * intermediate_state,struct dc_state * final_state)4497 static bool is_pipe_topology_transition_seamless_with_intermediate_step( 4498 struct dc *dc, 4499 struct dc_state *initial_state, 4500 struct dc_state *intermediate_state, 4501 struct dc_state *final_state) 4502 { 4503 return dc->hwss.is_pipe_topology_transition_seamless(dc, initial_state, 4504 intermediate_state) && 4505 dc->hwss.is_pipe_topology_transition_seamless(dc, 4506 intermediate_state, final_state); 4507 } 4508 swap_and_release_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4509 static void swap_and_release_current_context(struct dc *dc, 4510 struct dc_state *new_context, struct dc_stream_state *stream) 4511 { 4512 4513 int i; 4514 struct dc_state *old = dc->current_state; 4515 struct pipe_ctx *pipe_ctx; 4516 4517 /* Since memory free requires elevated IRQ, an interrupt 4518 * request is generated by mem free. If this happens 4519 * between freeing and reassigning the context, our vsync 4520 * interrupt will call into dc and cause a memory 4521 * corruption. Hence, we first reassign the context, 4522 * then free the old context. 4523 */ 4524 dc->current_state = new_context; 4525 dc_state_release(old); 4526 4527 // clear any forced full updates 4528 for (i = 0; i < dc->res_pool->pipe_count; i++) { 4529 pipe_ctx = &new_context->res_ctx.pipe_ctx[i]; 4530 4531 if (pipe_ctx->plane_state && pipe_ctx->stream == stream) 4532 pipe_ctx->plane_state->force_full_update = false; 4533 } 4534 } 4535 initialize_empty_surface_updates(struct dc_stream_state * stream,struct dc_surface_update * srf_updates)4536 static int initialize_empty_surface_updates( 4537 struct dc_stream_state *stream, 4538 struct dc_surface_update *srf_updates) 4539 { 4540 struct dc_stream_status *status = dc_stream_get_status(stream); 4541 int i; 4542 4543 if (!status) 4544 return 0; 4545 4546 for (i = 0; i < status->plane_count; i++) 4547 srf_updates[i].surface = status->plane_states[i]; 4548 4549 return status->plane_count; 4550 } 4551 commit_minimal_transition_based_on_new_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4552 static bool commit_minimal_transition_based_on_new_context(struct dc *dc, 4553 struct dc_state *new_context, 4554 struct dc_stream_state *stream, 4555 struct dc_surface_update *srf_updates, 4556 int surface_count) 4557 { 4558 bool success = false; 4559 struct pipe_split_policy_backup policy; 4560 struct dc_state *intermediate_context = 4561 create_minimal_transition_state(dc, new_context, 4562 &policy); 4563 4564 if (intermediate_context) { 4565 if (is_pipe_topology_transition_seamless_with_intermediate_step( 4566 dc, 4567 dc->current_state, 4568 intermediate_context, 4569 new_context)) { 4570 DC_LOG_DC("commit minimal transition state: base = new state\n"); 4571 commit_planes_for_stream(dc, srf_updates, 4572 surface_count, stream, NULL, 4573 UPDATE_TYPE_FULL, intermediate_context); 4574 swap_and_release_current_context( 4575 dc, intermediate_context, stream); 4576 dc_state_retain(dc->current_state); 4577 success = true; 4578 } 4579 release_minimal_transition_state( 4580 dc, intermediate_context, new_context, &policy); 4581 } 4582 return success; 4583 } 4584 commit_minimal_transition_based_on_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4585 static bool commit_minimal_transition_based_on_current_context(struct dc *dc, 4586 struct dc_state *new_context, struct dc_stream_state *stream) 4587 { 4588 bool success = false; 4589 struct pipe_split_policy_backup policy; 4590 struct dc_state *intermediate_context; 4591 struct dc_state *old_current_state = dc->current_state; 4592 struct dc_surface_update srf_updates[MAX_SURFACES] = {0}; 4593 int surface_count; 4594 4595 /* 4596 * Both current and new contexts share the same stream and plane state 4597 * pointers. When new context is validated, stream and planes get 4598 * populated with new updates such as new plane addresses. This makes 4599 * the current context no longer valid because stream and planes are 4600 * modified from the original. We backup current stream and plane states 4601 * into scratch space whenever we are populating new context. So we can 4602 * restore the original values back by calling the restore function now. 4603 * This restores back the original stream and plane states associated 4604 * with the current state. 4605 */ 4606 restore_planes_and_stream_state(&dc->scratch.current_state, stream); 4607 dc_state_retain(old_current_state); 4608 intermediate_context = create_minimal_transition_state(dc, 4609 old_current_state, &policy); 4610 4611 if (intermediate_context) { 4612 if (is_pipe_topology_transition_seamless_with_intermediate_step( 4613 dc, 4614 dc->current_state, 4615 intermediate_context, 4616 new_context)) { 4617 DC_LOG_DC("commit minimal transition state: base = current state\n"); 4618 surface_count = initialize_empty_surface_updates( 4619 stream, srf_updates); 4620 commit_planes_for_stream(dc, srf_updates, 4621 surface_count, stream, NULL, 4622 UPDATE_TYPE_FULL, intermediate_context); 4623 swap_and_release_current_context( 4624 dc, intermediate_context, stream); 4625 dc_state_retain(dc->current_state); 4626 success = true; 4627 } 4628 release_minimal_transition_state(dc, intermediate_context, 4629 old_current_state, &policy); 4630 } 4631 dc_state_release(old_current_state); 4632 /* 4633 * Restore stream and plane states back to the values associated with 4634 * new context. 4635 */ 4636 restore_planes_and_stream_state(&dc->scratch.new_state, stream); 4637 return success; 4638 } 4639 4640 /** 4641 * commit_minimal_transition_state_in_dc_update - Commit a minimal state based 4642 * on current or new context 4643 * 4644 * @dc: DC structure, used to get the current state 4645 * @new_context: New context 4646 * @stream: Stream getting the update for the flip 4647 * @srf_updates: Surface updates 4648 * @surface_count: Number of surfaces 4649 * 4650 * The function takes in current state and new state and determine a minimal 4651 * transition state as the intermediate step which could make the transition 4652 * between current and new states seamless. If found, it will commit the minimal 4653 * transition state and update current state to this minimal transition state 4654 * and return true, if not, it will return false. 4655 * 4656 * Return: 4657 * Return True if the minimal transition succeeded, false otherwise 4658 */ commit_minimal_transition_state_in_dc_update(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4659 static bool commit_minimal_transition_state_in_dc_update(struct dc *dc, 4660 struct dc_state *new_context, 4661 struct dc_stream_state *stream, 4662 struct dc_surface_update *srf_updates, 4663 int surface_count) 4664 { 4665 bool success = commit_minimal_transition_based_on_new_context( 4666 dc, new_context, stream, srf_updates, 4667 surface_count); 4668 if (!success) 4669 success = commit_minimal_transition_based_on_current_context(dc, 4670 new_context, stream); 4671 if (!success) 4672 DC_LOG_ERROR("Fail to commit a seamless minimal transition state between current and new states.\nThis pipe topology update is non-seamless!\n"); 4673 return success; 4674 } 4675 4676 /** 4677 * commit_minimal_transition_state - Create a transition pipe split state 4678 * 4679 * @dc: Used to get the current state status 4680 * @transition_base_context: New transition state 4681 * 4682 * In some specific configurations, such as pipe split on multi-display with 4683 * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe 4684 * programming when moving to new planes. To mitigate those types of problems, 4685 * this function adds a transition state that minimizes pipe usage before 4686 * programming the new configuration. When adding a new plane, the current 4687 * state requires the least pipes, so it is applied without splitting. When 4688 * removing a plane, the new state requires the least pipes, so it is applied 4689 * without splitting. 4690 * 4691 * Return: 4692 * Return false if something is wrong in the transition state. 4693 */ commit_minimal_transition_state(struct dc * dc,struct dc_state * transition_base_context)4694 static bool commit_minimal_transition_state(struct dc *dc, 4695 struct dc_state *transition_base_context) 4696 { 4697 struct dc_state *transition_context; 4698 struct pipe_split_policy_backup policy; 4699 enum dc_status ret = DC_ERROR_UNEXPECTED; 4700 unsigned int i, j; 4701 unsigned int pipe_in_use = 0; 4702 bool subvp_in_use = false; 4703 bool odm_in_use = false; 4704 4705 /* check current pipes in use*/ 4706 for (i = 0; i < dc->res_pool->pipe_count; i++) { 4707 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i]; 4708 4709 if (pipe->plane_state) 4710 pipe_in_use++; 4711 } 4712 4713 /* If SubVP is enabled and we are adding or removing planes from any main subvp 4714 * pipe, we must use the minimal transition. 4715 */ 4716 for (i = 0; i < dc->res_pool->pipe_count; i++) { 4717 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 4718 4719 if (pipe->stream && dc_state_get_pipe_subvp_type(dc->current_state, pipe) == SUBVP_PHANTOM) { 4720 subvp_in_use = true; 4721 break; 4722 } 4723 } 4724 4725 /* If ODM is enabled and we are adding or removing planes from any ODM 4726 * pipe, we must use the minimal transition. 4727 */ 4728 for (i = 0; i < dc->res_pool->pipe_count; i++) { 4729 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i]; 4730 4731 if (resource_is_pipe_type(pipe, OTG_MASTER)) { 4732 odm_in_use = resource_get_odm_slice_count(pipe) > 1; 4733 break; 4734 } 4735 } 4736 4737 /* When the OS add a new surface if we have been used all of pipes with odm combine 4738 * and mpc split feature, it need use commit_minimal_transition_state to transition safely. 4739 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need 4740 * call it again. Otherwise return true to skip. 4741 * 4742 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially 4743 * enter/exit MPO when DCN still have enough resources. 4744 */ 4745 if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use) 4746 return true; 4747 4748 DC_LOG_DC("%s base = %s state, reason = %s\n", __func__, 4749 dc->current_state == transition_base_context ? "current" : "new", 4750 subvp_in_use ? "Subvp In Use" : 4751 odm_in_use ? "ODM in Use" : 4752 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID ? "MPC in Use" : 4753 "Unknown"); 4754 4755 dc_state_retain(transition_base_context); 4756 transition_context = create_minimal_transition_state(dc, 4757 transition_base_context, &policy); 4758 if (transition_context) { 4759 ret = dc_commit_state_no_check(dc, transition_context); 4760 release_minimal_transition_state(dc, transition_context, transition_base_context, &policy); 4761 } 4762 dc_state_release(transition_base_context); 4763 4764 if (ret != DC_OK) { 4765 /* this should never happen */ 4766 BREAK_TO_DEBUGGER(); 4767 return false; 4768 } 4769 4770 /* force full surface update */ 4771 for (i = 0; i < dc->current_state->stream_count; i++) { 4772 for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) { 4773 dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF; 4774 } 4775 } 4776 4777 return true; 4778 } 4779 populate_fast_updates(struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update)4780 void populate_fast_updates(struct dc_fast_update *fast_update, 4781 struct dc_surface_update *srf_updates, 4782 int surface_count, 4783 struct dc_stream_update *stream_update) 4784 { 4785 int i = 0; 4786 4787 if (stream_update) { 4788 fast_update[0].out_transfer_func = stream_update->out_transfer_func; 4789 fast_update[0].output_csc_transform = stream_update->output_csc_transform; 4790 } else { 4791 fast_update[0].out_transfer_func = NULL; 4792 fast_update[0].output_csc_transform = NULL; 4793 } 4794 4795 for (i = 0; i < surface_count; i++) { 4796 fast_update[i].flip_addr = srf_updates[i].flip_addr; 4797 fast_update[i].gamma = srf_updates[i].gamma; 4798 fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix; 4799 fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix; 4800 fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor; 4801 fast_update[i].cursor_csc_color_matrix = srf_updates[i].cursor_csc_color_matrix; 4802 } 4803 } 4804 fast_updates_exist(struct dc_fast_update * fast_update,int surface_count)4805 static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count) 4806 { 4807 int i; 4808 4809 if (fast_update[0].out_transfer_func || 4810 fast_update[0].output_csc_transform) 4811 return true; 4812 4813 for (i = 0; i < surface_count; i++) { 4814 if (fast_update[i].flip_addr || 4815 fast_update[i].gamma || 4816 fast_update[i].gamut_remap_matrix || 4817 fast_update[i].input_csc_color_matrix || 4818 fast_update[i].cursor_csc_color_matrix || 4819 fast_update[i].coeff_reduction_factor) 4820 return true; 4821 } 4822 4823 return false; 4824 } 4825 fast_nonaddr_updates_exist(struct dc_fast_update * fast_update,int surface_count)4826 bool fast_nonaddr_updates_exist(struct dc_fast_update *fast_update, int surface_count) 4827 { 4828 int i; 4829 4830 if (fast_update[0].out_transfer_func || 4831 fast_update[0].output_csc_transform) 4832 return true; 4833 4834 for (i = 0; i < surface_count; i++) { 4835 if (fast_update[i].input_csc_color_matrix || 4836 fast_update[i].gamma || 4837 fast_update[i].gamut_remap_matrix || 4838 fast_update[i].coeff_reduction_factor || 4839 fast_update[i].cursor_csc_color_matrix) 4840 return true; 4841 } 4842 4843 return false; 4844 } 4845 full_update_required(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4846 static bool full_update_required(struct dc *dc, 4847 struct dc_surface_update *srf_updates, 4848 int surface_count, 4849 struct dc_stream_update *stream_update, 4850 struct dc_stream_state *stream) 4851 { 4852 4853 int i; 4854 struct dc_stream_status *stream_status; 4855 const struct dc_state *context = dc->current_state; 4856 4857 for (i = 0; i < surface_count; i++) { 4858 if (srf_updates && 4859 (srf_updates[i].plane_info || 4860 srf_updates[i].scaling_info || 4861 (srf_updates[i].hdr_mult.value && 4862 srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) || 4863 (srf_updates[i].sdr_white_level_nits && 4864 srf_updates[i].sdr_white_level_nits != srf_updates->surface->sdr_white_level_nits) || 4865 srf_updates[i].in_transfer_func || 4866 srf_updates[i].func_shaper || 4867 srf_updates[i].lut3d_func || 4868 srf_updates[i].surface->force_full_update || 4869 (srf_updates[i].flip_addr && 4870 srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) || 4871 (srf_updates[i].cm2_params && 4872 (srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting != srf_updates[i].surface->mcm_shaper_3dlut_setting || 4873 srf_updates[i].cm2_params->component_settings.lut1d_enable != srf_updates[i].surface->mcm_lut1d_enable)) || 4874 !is_surface_in_context(context, srf_updates[i].surface))) 4875 return true; 4876 } 4877 4878 if (stream_update && 4879 (((stream_update->src.height != 0 && stream_update->src.width != 0) || 4880 (stream_update->dst.height != 0 && stream_update->dst.width != 0) || 4881 stream_update->integer_scaling_update) || 4882 stream_update->hdr_static_metadata || 4883 stream_update->abm_level || 4884 stream_update->periodic_interrupt || 4885 stream_update->vrr_infopacket || 4886 stream_update->vsc_infopacket || 4887 stream_update->vsp_infopacket || 4888 stream_update->hfvsif_infopacket || 4889 stream_update->vtem_infopacket || 4890 stream_update->adaptive_sync_infopacket || 4891 stream_update->dpms_off || 4892 stream_update->allow_freesync || 4893 stream_update->vrr_active_variable || 4894 stream_update->vrr_active_fixed || 4895 stream_update->gamut_remap || 4896 stream_update->output_color_space || 4897 stream_update->dither_option || 4898 stream_update->wb_update || 4899 stream_update->dsc_config || 4900 stream_update->mst_bw_update || 4901 stream_update->func_shaper || 4902 stream_update->lut3d_func || 4903 stream_update->pending_test_pattern || 4904 stream_update->crtc_timing_adjust || 4905 stream_update->scaler_sharpener_update)) 4906 return true; 4907 4908 if (stream) { 4909 stream_status = dc_stream_get_status(stream); 4910 if (stream_status == NULL || stream_status->plane_count != surface_count) 4911 return true; 4912 } 4913 if (dc->idle_optimizations_allowed) 4914 return true; 4915 4916 return false; 4917 } 4918 fast_update_only(struct dc * dc,struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4919 static bool fast_update_only(struct dc *dc, 4920 struct dc_fast_update *fast_update, 4921 struct dc_surface_update *srf_updates, 4922 int surface_count, 4923 struct dc_stream_update *stream_update, 4924 struct dc_stream_state *stream) 4925 { 4926 return fast_updates_exist(fast_update, surface_count) 4927 && !full_update_required(dc, srf_updates, surface_count, stream_update, stream); 4928 } 4929 update_planes_and_stream_v1(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)4930 static bool update_planes_and_stream_v1(struct dc *dc, 4931 struct dc_surface_update *srf_updates, int surface_count, 4932 struct dc_stream_state *stream, 4933 struct dc_stream_update *stream_update, 4934 struct dc_state *state) 4935 { 4936 const struct dc_stream_status *stream_status; 4937 enum surface_update_type update_type; 4938 struct dc_state *context; 4939 struct dc_context *dc_ctx = dc->ctx; 4940 int i, j; 4941 struct dc_fast_update fast_update[MAX_SURFACES] = {0}; 4942 4943 dc_exit_ips_for_hw_access(dc); 4944 4945 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update); 4946 stream_status = dc_stream_get_status(stream); 4947 context = dc->current_state; 4948 4949 update_type = dc_check_update_surfaces_for_stream( 4950 dc, srf_updates, surface_count, stream_update, stream_status); 4951 /* It is possible to receive a flip for one plane while there are multiple flip_immediate planes in the same stream. 4952 * E.g. Desktop and MPO plane are flip_immediate but only the MPO plane received a flip 4953 * Force the other flip_immediate planes to flip so GSL doesn't wait for a flip that won't come. 4954 */ 4955 force_immediate_gsl_plane_flip(dc, srf_updates, surface_count); 4956 4957 if (update_type >= UPDATE_TYPE_FULL) { 4958 4959 /* initialize scratch memory for building context */ 4960 context = dc_state_create_copy(state); 4961 if (context == NULL) { 4962 DC_ERROR("Failed to allocate new validate context!\n"); 4963 return false; 4964 } 4965 4966 for (i = 0; i < dc->res_pool->pipe_count; i++) { 4967 struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i]; 4968 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 4969 4970 if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state) 4971 new_pipe->plane_state->force_full_update = true; 4972 } 4973 } else if (update_type == UPDATE_TYPE_FAST) { 4974 /* 4975 * Previous frame finished and HW is ready for optimization. 4976 */ 4977 dc_post_update_surfaces_to_stream(dc); 4978 } 4979 4980 for (i = 0; i < surface_count; i++) { 4981 struct dc_plane_state *surface = srf_updates[i].surface; 4982 4983 copy_surface_update_to_plane(surface, &srf_updates[i]); 4984 4985 if (update_type >= UPDATE_TYPE_MED) { 4986 for (j = 0; j < dc->res_pool->pipe_count; j++) { 4987 struct pipe_ctx *pipe_ctx = 4988 &context->res_ctx.pipe_ctx[j]; 4989 4990 if (pipe_ctx->plane_state != surface) 4991 continue; 4992 4993 resource_build_scaling_params(pipe_ctx); 4994 } 4995 } 4996 } 4997 4998 copy_stream_update_to_stream(dc, context, stream, stream_update); 4999 5000 if (update_type >= UPDATE_TYPE_FULL) { 5001 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) { 5002 DC_ERROR("Mode validation failed for stream update!\n"); 5003 dc_state_release(context); 5004 return false; 5005 } 5006 } 5007 5008 TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES); 5009 5010 if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) && 5011 !dc->debug.enable_legacy_fast_update) { 5012 commit_planes_for_stream_fast(dc, 5013 srf_updates, 5014 surface_count, 5015 stream, 5016 stream_update, 5017 update_type, 5018 context); 5019 } else { 5020 commit_planes_for_stream( 5021 dc, 5022 srf_updates, 5023 surface_count, 5024 stream, 5025 stream_update, 5026 update_type, 5027 context); 5028 } 5029 /*update current_State*/ 5030 if (dc->current_state != context) { 5031 5032 struct dc_state *old = dc->current_state; 5033 5034 dc->current_state = context; 5035 dc_state_release(old); 5036 5037 for (i = 0; i < dc->res_pool->pipe_count; i++) { 5038 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; 5039 5040 if (pipe_ctx->plane_state && pipe_ctx->stream == stream) 5041 pipe_ctx->plane_state->force_full_update = false; 5042 } 5043 } 5044 5045 /* Legacy optimization path for DCE. */ 5046 if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) { 5047 dc_post_update_surfaces_to_stream(dc); 5048 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce); 5049 } 5050 return true; 5051 } 5052 update_planes_and_stream_v2(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5053 static bool update_planes_and_stream_v2(struct dc *dc, 5054 struct dc_surface_update *srf_updates, int surface_count, 5055 struct dc_stream_state *stream, 5056 struct dc_stream_update *stream_update) 5057 { 5058 struct dc_state *context; 5059 enum surface_update_type update_type; 5060 struct dc_fast_update fast_update[MAX_SURFACES] = {0}; 5061 5062 /* In cases where MPO and split or ODM are used transitions can 5063 * cause underflow. Apply stream configuration with minimal pipe 5064 * split first to avoid unsupported transitions for active pipes. 5065 */ 5066 bool force_minimal_pipe_splitting = 0; 5067 bool is_plane_addition = 0; 5068 bool is_fast_update_only; 5069 5070 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update); 5071 is_fast_update_only = fast_update_only(dc, fast_update, srf_updates, 5072 surface_count, stream_update, stream); 5073 force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes( 5074 dc, 5075 stream, 5076 srf_updates, 5077 surface_count, 5078 &is_plane_addition); 5079 5080 /* on plane addition, minimal state is the current one */ 5081 if (force_minimal_pipe_splitting && is_plane_addition && 5082 !commit_minimal_transition_state(dc, dc->current_state)) 5083 return false; 5084 5085 if (!update_planes_and_stream_state( 5086 dc, 5087 srf_updates, 5088 surface_count, 5089 stream, 5090 stream_update, 5091 &update_type, 5092 &context)) 5093 return false; 5094 5095 /* on plane removal, minimal state is the new one */ 5096 if (force_minimal_pipe_splitting && !is_plane_addition) { 5097 if (!commit_minimal_transition_state(dc, context)) { 5098 dc_state_release(context); 5099 return false; 5100 } 5101 update_type = UPDATE_TYPE_FULL; 5102 } 5103 5104 if (dc->hwss.is_pipe_topology_transition_seamless && 5105 !dc->hwss.is_pipe_topology_transition_seamless( 5106 dc, dc->current_state, context)) 5107 commit_minimal_transition_state_in_dc_update(dc, context, stream, 5108 srf_updates, surface_count); 5109 5110 if (is_fast_update_only && !dc->debug.enable_legacy_fast_update) { 5111 commit_planes_for_stream_fast(dc, 5112 srf_updates, 5113 surface_count, 5114 stream, 5115 stream_update, 5116 update_type, 5117 context); 5118 } else { 5119 if (!stream_update && 5120 dc->hwss.is_pipe_topology_transition_seamless && 5121 !dc->hwss.is_pipe_topology_transition_seamless( 5122 dc, dc->current_state, context)) { 5123 DC_LOG_ERROR("performing non-seamless pipe topology transition with surface only update!\n"); 5124 BREAK_TO_DEBUGGER(); 5125 } 5126 commit_planes_for_stream( 5127 dc, 5128 srf_updates, 5129 surface_count, 5130 stream, 5131 stream_update, 5132 update_type, 5133 context); 5134 } 5135 if (dc->current_state != context) 5136 swap_and_release_current_context(dc, context, stream); 5137 return true; 5138 } 5139 commit_planes_and_stream_update_on_current_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type)5140 static void commit_planes_and_stream_update_on_current_context(struct dc *dc, 5141 struct dc_surface_update *srf_updates, int surface_count, 5142 struct dc_stream_state *stream, 5143 struct dc_stream_update *stream_update, 5144 enum surface_update_type update_type) 5145 { 5146 struct dc_fast_update fast_update[MAX_SURFACES] = {0}; 5147 5148 ASSERT(update_type < UPDATE_TYPE_FULL); 5149 populate_fast_updates(fast_update, srf_updates, surface_count, 5150 stream_update); 5151 if (fast_update_only(dc, fast_update, srf_updates, surface_count, 5152 stream_update, stream) && 5153 !dc->debug.enable_legacy_fast_update) 5154 commit_planes_for_stream_fast(dc, 5155 srf_updates, 5156 surface_count, 5157 stream, 5158 stream_update, 5159 update_type, 5160 dc->current_state); 5161 else 5162 commit_planes_for_stream( 5163 dc, 5164 srf_updates, 5165 surface_count, 5166 stream, 5167 stream_update, 5168 update_type, 5169 dc->current_state); 5170 } 5171 commit_planes_and_stream_update_with_new_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * new_context)5172 static void commit_planes_and_stream_update_with_new_context(struct dc *dc, 5173 struct dc_surface_update *srf_updates, int surface_count, 5174 struct dc_stream_state *stream, 5175 struct dc_stream_update *stream_update, 5176 enum surface_update_type update_type, 5177 struct dc_state *new_context) 5178 { 5179 ASSERT(update_type >= UPDATE_TYPE_FULL); 5180 if (!dc->hwss.is_pipe_topology_transition_seamless(dc, 5181 dc->current_state, new_context)) 5182 /* 5183 * It is required by the feature design that all pipe topologies 5184 * using extra free pipes for power saving purposes such as 5185 * dynamic ODM or SubVp shall only be enabled when it can be 5186 * transitioned seamlessly to AND from its minimal transition 5187 * state. A minimal transition state is defined as the same dc 5188 * state but with all power saving features disabled. So it uses 5189 * the minimum pipe topology. When we can't seamlessly 5190 * transition from state A to state B, we will insert the 5191 * minimal transition state A' or B' in between so seamless 5192 * transition between A and B can be made possible. 5193 */ 5194 commit_minimal_transition_state_in_dc_update(dc, new_context, 5195 stream, srf_updates, surface_count); 5196 5197 commit_planes_for_stream( 5198 dc, 5199 srf_updates, 5200 surface_count, 5201 stream, 5202 stream_update, 5203 update_type, 5204 new_context); 5205 } 5206 update_planes_and_stream_v3(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5207 static bool update_planes_and_stream_v3(struct dc *dc, 5208 struct dc_surface_update *srf_updates, int surface_count, 5209 struct dc_stream_state *stream, 5210 struct dc_stream_update *stream_update) 5211 { 5212 struct dc_state *new_context; 5213 enum surface_update_type update_type; 5214 5215 /* 5216 * When this function returns true and new_context is not equal to 5217 * current state, the function allocates and validates a new dc state 5218 * and assigns it to new_context. The function expects that the caller 5219 * is responsible to free this memory when new_context is no longer 5220 * used. We swap current with new context and free current instead. So 5221 * new_context's memory will live until the next full update after it is 5222 * replaced by a newer context. Refer to the use of 5223 * swap_and_free_current_context below. 5224 */ 5225 if (!update_planes_and_stream_state(dc, srf_updates, surface_count, 5226 stream, stream_update, &update_type, 5227 &new_context)) 5228 return false; 5229 5230 if (new_context == dc->current_state) { 5231 commit_planes_and_stream_update_on_current_context(dc, 5232 srf_updates, surface_count, stream, 5233 stream_update, update_type); 5234 } else { 5235 commit_planes_and_stream_update_with_new_context(dc, 5236 srf_updates, surface_count, stream, 5237 stream_update, update_type, new_context); 5238 swap_and_release_current_context(dc, new_context, stream); 5239 } 5240 5241 return true; 5242 } 5243 clear_update_flags(struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream)5244 static void clear_update_flags(struct dc_surface_update *srf_updates, 5245 int surface_count, struct dc_stream_state *stream) 5246 { 5247 int i; 5248 5249 if (stream) 5250 stream->update_flags.raw = 0; 5251 5252 for (i = 0; i < surface_count; i++) 5253 if (srf_updates[i].surface) 5254 srf_updates[i].surface->update_flags.raw = 0; 5255 } 5256 dc_update_planes_and_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5257 bool dc_update_planes_and_stream(struct dc *dc, 5258 struct dc_surface_update *srf_updates, int surface_count, 5259 struct dc_stream_state *stream, 5260 struct dc_stream_update *stream_update) 5261 { 5262 bool ret = false; 5263 5264 dc_exit_ips_for_hw_access(dc); 5265 /* 5266 * update planes and stream version 3 separates FULL and FAST updates 5267 * to their own sequences. It aims to clean up frequent checks for 5268 * update type resulting unnecessary branching in logic flow. It also 5269 * adds a new commit minimal transition sequence, which detects the need 5270 * for minimal transition based on the actual comparison of current and 5271 * new states instead of "predicting" it based on per feature software 5272 * policy.i.e could_mpcc_tree_change_for_active_pipes. The new commit 5273 * minimal transition sequence is made universal to any power saving 5274 * features that would use extra free pipes such as Dynamic ODM/MPC 5275 * Combine, MPO or SubVp. Therefore there is no longer a need to 5276 * specially handle compatibility problems with transitions among those 5277 * features as they are now transparent to the new sequence. 5278 */ 5279 if (dc->ctx->dce_version >= DCN_VERSION_4_01) 5280 ret = update_planes_and_stream_v3(dc, srf_updates, 5281 surface_count, stream, stream_update); 5282 else 5283 ret = update_planes_and_stream_v2(dc, srf_updates, 5284 surface_count, stream, stream_update); 5285 5286 if (ret) 5287 clear_update_flags(srf_updates, surface_count, stream); 5288 5289 return ret; 5290 } 5291 dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)5292 void dc_commit_updates_for_stream(struct dc *dc, 5293 struct dc_surface_update *srf_updates, 5294 int surface_count, 5295 struct dc_stream_state *stream, 5296 struct dc_stream_update *stream_update, 5297 struct dc_state *state) 5298 { 5299 bool ret = false; 5300 5301 dc_exit_ips_for_hw_access(dc); 5302 /* TODO: Since change commit sequence can have a huge impact, 5303 * we decided to only enable it for DCN3x. However, as soon as 5304 * we get more confident about this change we'll need to enable 5305 * the new sequence for all ASICs. 5306 */ 5307 if (dc->ctx->dce_version >= DCN_VERSION_4_01) { 5308 ret = update_planes_and_stream_v3(dc, srf_updates, surface_count, 5309 stream, stream_update); 5310 } else if (dc->ctx->dce_version >= DCN_VERSION_3_2) { 5311 ret = update_planes_and_stream_v2(dc, srf_updates, surface_count, 5312 stream, stream_update); 5313 } else 5314 ret = update_planes_and_stream_v1(dc, srf_updates, surface_count, stream, 5315 stream_update, state); 5316 5317 if (ret) 5318 clear_update_flags(srf_updates, surface_count, stream); 5319 } 5320 dc_get_current_stream_count(struct dc * dc)5321 uint8_t dc_get_current_stream_count(struct dc *dc) 5322 { 5323 return dc->current_state->stream_count; 5324 } 5325 dc_get_stream_at_index(struct dc * dc,uint8_t i)5326 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i) 5327 { 5328 if (i < dc->current_state->stream_count) 5329 return dc->current_state->streams[i]; 5330 return NULL; 5331 } 5332 dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)5333 enum dc_irq_source dc_interrupt_to_irq_source( 5334 struct dc *dc, 5335 uint32_t src_id, 5336 uint32_t ext_id) 5337 { 5338 return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id); 5339 } 5340 5341 /* 5342 * dc_interrupt_set() - Enable/disable an AMD hw interrupt source 5343 */ dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)5344 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable) 5345 { 5346 5347 if (dc == NULL) 5348 return false; 5349 5350 return dal_irq_service_set(dc->res_pool->irqs, src, enable); 5351 } 5352 dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)5353 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src) 5354 { 5355 dal_irq_service_ack(dc->res_pool->irqs, src); 5356 } 5357 dc_power_down_on_boot(struct dc * dc)5358 void dc_power_down_on_boot(struct dc *dc) 5359 { 5360 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW && 5361 dc->hwss.power_down_on_boot) { 5362 if (dc->caps.ips_support) 5363 dc_exit_ips_for_hw_access(dc); 5364 dc->hwss.power_down_on_boot(dc); 5365 } 5366 } 5367 dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)5368 void dc_set_power_state(struct dc *dc, enum dc_acpi_cm_power_state power_state) 5369 { 5370 if (!dc->current_state) 5371 return; 5372 5373 switch (power_state) { 5374 case DC_ACPI_CM_POWER_STATE_D0: 5375 dc_state_construct(dc, dc->current_state); 5376 5377 dc_exit_ips_for_hw_access(dc); 5378 5379 dc_z10_restore(dc); 5380 5381 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state); 5382 5383 dc->hwss.init_hw(dc); 5384 5385 if (dc->hwss.init_sys_ctx != NULL && 5386 dc->vm_pa_config.valid) { 5387 dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config); 5388 } 5389 break; 5390 default: 5391 ASSERT(dc->current_state->stream_count == 0); 5392 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state); 5393 5394 dc_state_destruct(dc->current_state); 5395 5396 break; 5397 } 5398 } 5399 dc_resume(struct dc * dc)5400 void dc_resume(struct dc *dc) 5401 { 5402 uint32_t i; 5403 5404 for (i = 0; i < dc->link_count; i++) 5405 dc->link_srv->resume(dc->links[i]); 5406 } 5407 dc_is_dmcu_initialized(struct dc * dc)5408 bool dc_is_dmcu_initialized(struct dc *dc) 5409 { 5410 struct dmcu *dmcu = dc->res_pool->dmcu; 5411 5412 if (dmcu) 5413 return dmcu->funcs->is_dmcu_initialized(dmcu); 5414 return false; 5415 } 5416 get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)5417 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info) 5418 { 5419 info->displayClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz; 5420 info->engineClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz; 5421 info->memoryClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz; 5422 info->maxSupportedDppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz; 5423 info->dppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz; 5424 info->socClock = (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz; 5425 info->dcfClockDeepSleep = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz; 5426 info->fClock = (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz; 5427 info->phyClock = (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz; 5428 } dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)5429 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping) 5430 { 5431 if (dc->hwss.set_clock) 5432 return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping); 5433 return DC_ERROR_UNEXPECTED; 5434 } dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)5435 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg) 5436 { 5437 if (dc->hwss.get_clock) 5438 dc->hwss.get_clock(dc, clock_type, clock_cfg); 5439 } 5440 5441 /* enable/disable eDP PSR without specify stream for eDP */ dc_set_psr_allow_active(struct dc * dc,bool enable)5442 bool dc_set_psr_allow_active(struct dc *dc, bool enable) 5443 { 5444 int i; 5445 bool allow_active; 5446 5447 for (i = 0; i < dc->current_state->stream_count ; i++) { 5448 struct dc_link *link; 5449 struct dc_stream_state *stream = dc->current_state->streams[i]; 5450 5451 link = stream->link; 5452 if (!link) 5453 continue; 5454 5455 if (link->psr_settings.psr_feature_enabled) { 5456 if (enable && !link->psr_settings.psr_allow_active) { 5457 allow_active = true; 5458 if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL)) 5459 return false; 5460 } else if (!enable && link->psr_settings.psr_allow_active) { 5461 allow_active = false; 5462 if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL)) 5463 return false; 5464 } 5465 } 5466 } 5467 5468 return true; 5469 } 5470 5471 /* enable/disable eDP Replay without specify stream for eDP */ dc_set_replay_allow_active(struct dc * dc,bool active)5472 bool dc_set_replay_allow_active(struct dc *dc, bool active) 5473 { 5474 int i; 5475 bool allow_active; 5476 5477 for (i = 0; i < dc->current_state->stream_count; i++) { 5478 struct dc_link *link; 5479 struct dc_stream_state *stream = dc->current_state->streams[i]; 5480 5481 link = stream->link; 5482 if (!link) 5483 continue; 5484 5485 if (link->replay_settings.replay_feature_enabled) { 5486 if (active && !link->replay_settings.replay_allow_active) { 5487 allow_active = true; 5488 if (!dc_link_set_replay_allow_active(link, &allow_active, 5489 false, false, NULL)) 5490 return false; 5491 } else if (!active && link->replay_settings.replay_allow_active) { 5492 allow_active = false; 5493 if (!dc_link_set_replay_allow_active(link, &allow_active, 5494 true, false, NULL)) 5495 return false; 5496 } 5497 } 5498 } 5499 5500 return true; 5501 } 5502 5503 /* set IPS disable state */ dc_set_ips_disable(struct dc * dc,unsigned int disable_ips)5504 bool dc_set_ips_disable(struct dc *dc, unsigned int disable_ips) 5505 { 5506 dc_exit_ips_for_hw_access(dc); 5507 5508 dc->config.disable_ips = disable_ips; 5509 5510 return true; 5511 } 5512 dc_allow_idle_optimizations_internal(struct dc * dc,bool allow,char const * caller_name)5513 void dc_allow_idle_optimizations_internal(struct dc *dc, bool allow, char const *caller_name) 5514 { 5515 int idle_fclk_khz = 0, idle_dramclk_khz = 0, i = 0; 5516 enum mall_stream_type subvp_pipe_type[MAX_PIPES] = {0}; 5517 struct pipe_ctx *pipe = NULL; 5518 struct dc_state *context = dc->current_state; 5519 5520 if (dc->debug.disable_idle_power_optimizations) { 5521 DC_LOG_DEBUG("%s: disabled\n", __func__); 5522 return; 5523 } 5524 5525 if (allow != dc->idle_optimizations_allowed) 5526 DC_LOG_IPS("%s: allow_idle old=%d new=%d (caller=%s)\n", __func__, 5527 dc->idle_optimizations_allowed, allow, caller_name); 5528 5529 if (dc->caps.ips_support && (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL)) 5530 return; 5531 5532 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present) 5533 if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr)) 5534 return; 5535 5536 if (allow == dc->idle_optimizations_allowed) 5537 return; 5538 5539 if (dc->hwss.apply_idle_power_optimizations && dc->clk_mgr != NULL && 5540 dc->hwss.apply_idle_power_optimizations(dc, allow)) { 5541 dc->idle_optimizations_allowed = allow; 5542 DC_LOG_DEBUG("%s: %s\n", __func__, allow ? "enabled" : "disabled"); 5543 } 5544 5545 // log idle clocks and sub vp pipe types at idle optimization time 5546 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->get_hard_min_fclk) 5547 idle_fclk_khz = dc->clk_mgr->funcs->get_hard_min_fclk(dc->clk_mgr); 5548 5549 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->get_hard_min_memclk) 5550 idle_dramclk_khz = dc->clk_mgr->funcs->get_hard_min_memclk(dc->clk_mgr); 5551 5552 for (i = 0; i < dc->res_pool->pipe_count; i++) { 5553 pipe = &context->res_ctx.pipe_ctx[i]; 5554 subvp_pipe_type[i] = dc_state_get_pipe_subvp_type(context, pipe); 5555 } 5556 5557 DC_LOG_DC("%s: allow_idle=%d\n HardMinUClk_Khz=%d HardMinDramclk_Khz=%d\n Pipe_0=%d Pipe_1=%d Pipe_2=%d Pipe_3=%d Pipe_4=%d Pipe_5=%d (caller=%s)\n", 5558 __func__, allow, idle_fclk_khz, idle_dramclk_khz, subvp_pipe_type[0], subvp_pipe_type[1], subvp_pipe_type[2], 5559 subvp_pipe_type[3], subvp_pipe_type[4], subvp_pipe_type[5], caller_name); 5560 5561 } 5562 dc_exit_ips_for_hw_access_internal(struct dc * dc,const char * caller_name)5563 void dc_exit_ips_for_hw_access_internal(struct dc *dc, const char *caller_name) 5564 { 5565 if (dc->caps.ips_support) 5566 dc_allow_idle_optimizations_internal(dc, false, caller_name); 5567 } 5568 dc_dmub_is_ips_idle_state(struct dc * dc)5569 bool dc_dmub_is_ips_idle_state(struct dc *dc) 5570 { 5571 if (dc->debug.disable_idle_power_optimizations) 5572 return false; 5573 5574 if (!dc->caps.ips_support || (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL)) 5575 return false; 5576 5577 if (!dc->ctx->dmub_srv) 5578 return false; 5579 5580 return dc->ctx->dmub_srv->idle_allowed; 5581 } 5582 5583 /* set min and max memory clock to lowest and highest DPM level, respectively */ dc_unlock_memory_clock_frequency(struct dc * dc)5584 void dc_unlock_memory_clock_frequency(struct dc *dc) 5585 { 5586 if (dc->clk_mgr->funcs->set_hard_min_memclk) 5587 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false); 5588 5589 if (dc->clk_mgr->funcs->set_hard_max_memclk) 5590 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr); 5591 } 5592 5593 /* set min memory clock to the min required for current mode, max to maxDPM */ dc_lock_memory_clock_frequency(struct dc * dc)5594 void dc_lock_memory_clock_frequency(struct dc *dc) 5595 { 5596 if (dc->clk_mgr->funcs->get_memclk_states_from_smu) 5597 dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr); 5598 5599 if (dc->clk_mgr->funcs->set_hard_min_memclk) 5600 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true); 5601 5602 if (dc->clk_mgr->funcs->set_hard_max_memclk) 5603 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr); 5604 } 5605 blank_and_force_memclk(struct dc * dc,bool apply,unsigned int memclk_mhz)5606 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz) 5607 { 5608 struct dc_state *context = dc->current_state; 5609 struct hubp *hubp; 5610 struct pipe_ctx *pipe; 5611 int i; 5612 5613 for (i = 0; i < dc->res_pool->pipe_count; i++) { 5614 pipe = &context->res_ctx.pipe_ctx[i]; 5615 5616 if (pipe->stream != NULL) { 5617 dc->hwss.disable_pixel_data(dc, pipe, true); 5618 5619 // wait for double buffer 5620 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE); 5621 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK); 5622 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE); 5623 5624 hubp = pipe->plane_res.hubp; 5625 hubp->funcs->set_blank_regs(hubp, true); 5626 } 5627 } 5628 if (dc->clk_mgr->funcs->set_max_memclk) 5629 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz); 5630 if (dc->clk_mgr->funcs->set_min_memclk) 5631 dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz); 5632 5633 for (i = 0; i < dc->res_pool->pipe_count; i++) { 5634 pipe = &context->res_ctx.pipe_ctx[i]; 5635 5636 if (pipe->stream != NULL) { 5637 dc->hwss.disable_pixel_data(dc, pipe, false); 5638 5639 hubp = pipe->plane_res.hubp; 5640 hubp->funcs->set_blank_regs(hubp, false); 5641 } 5642 } 5643 } 5644 5645 5646 /** 5647 * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode 5648 * @dc: pointer to dc of the dm calling this 5649 * @enable: True = transition to DC mode, false = transition back to AC mode 5650 * 5651 * Some SoCs define additional clock limits when in DC mode, DM should 5652 * invoke this function when the platform undergoes a power source transition 5653 * so DC can apply/unapply the limit. This interface may be disruptive to 5654 * the onscreen content. 5655 * 5656 * Context: Triggered by OS through DM interface, or manually by escape calls. 5657 * Need to hold a dclock when doing so. 5658 * 5659 * Return: none (void function) 5660 * 5661 */ dc_enable_dcmode_clk_limit(struct dc * dc,bool enable)5662 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable) 5663 { 5664 unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i; 5665 bool p_state_change_support; 5666 5667 if (!dc->config.dc_mode_clk_limit_support) 5668 return; 5669 5670 softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk; 5671 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) { 5672 if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM) 5673 maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz; 5674 } 5675 funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000; 5676 p_state_change_support = dc->clk_mgr->clks.p_state_change_support; 5677 5678 if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) { 5679 if (p_state_change_support) { 5680 if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk) 5681 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax); 5682 // else: No-Op 5683 } else { 5684 if (funcMin <= softMax) 5685 blank_and_force_memclk(dc, true, softMax); 5686 // else: No-Op 5687 } 5688 } else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) { 5689 if (p_state_change_support) { 5690 if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk) 5691 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM); 5692 // else: No-Op 5693 } else { 5694 if (funcMin <= softMax) 5695 blank_and_force_memclk(dc, true, maxDPM); 5696 // else: No-Op 5697 } 5698 } 5699 dc->clk_mgr->dc_mode_softmax_enabled = enable; 5700 } dc_is_plane_eligible_for_idle_optimizations(struct dc * dc,unsigned int pitch,unsigned int height,enum surface_pixel_format format,struct dc_cursor_attributes * cursor_attr)5701 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc, 5702 unsigned int pitch, 5703 unsigned int height, 5704 enum surface_pixel_format format, 5705 struct dc_cursor_attributes *cursor_attr) 5706 { 5707 if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, pitch, height, format, cursor_attr)) 5708 return true; 5709 return false; 5710 } 5711 5712 /* cleanup on driver unload */ dc_hardware_release(struct dc * dc)5713 void dc_hardware_release(struct dc *dc) 5714 { 5715 dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc); 5716 5717 if (dc->hwss.hardware_release) 5718 dc->hwss.hardware_release(dc); 5719 } 5720 dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc * dc)5721 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc) 5722 { 5723 if (dc->current_state) 5724 dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true; 5725 } 5726 5727 /** 5728 * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification 5729 * 5730 * @dc: [in] dc structure 5731 * 5732 * Checks whether DMUB FW supports outbox notifications, if supported DM 5733 * should register outbox interrupt prior to actually enabling interrupts 5734 * via dc_enable_dmub_outbox 5735 * 5736 * Return: 5737 * True if DMUB FW supports outbox notifications, False otherwise 5738 */ dc_is_dmub_outbox_supported(struct dc * dc)5739 bool dc_is_dmub_outbox_supported(struct dc *dc) 5740 { 5741 if (!dc->caps.dmcub_support) 5742 return false; 5743 5744 switch (dc->ctx->asic_id.chip_family) { 5745 5746 case FAMILY_YELLOW_CARP: 5747 /* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */ 5748 if (dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 && 5749 !dc->debug.dpia_debug.bits.disable_dpia) 5750 return true; 5751 break; 5752 5753 case AMDGPU_FAMILY_GC_11_0_1: 5754 case AMDGPU_FAMILY_GC_11_5_0: 5755 if (!dc->debug.dpia_debug.bits.disable_dpia) 5756 return true; 5757 break; 5758 5759 default: 5760 break; 5761 } 5762 5763 /* dmub aux needs dmub notifications to be enabled */ 5764 return dc->debug.enable_dmub_aux_for_legacy_ddc; 5765 5766 } 5767 5768 /** 5769 * dc_enable_dmub_notifications - Check if dmub fw supports outbox 5770 * 5771 * @dc: [in] dc structure 5772 * 5773 * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox 5774 * notifications. All DMs shall switch to dc_is_dmub_outbox_supported. This 5775 * API shall be removed after switching. 5776 * 5777 * Return: 5778 * True if DMUB FW supports outbox notifications, False otherwise 5779 */ dc_enable_dmub_notifications(struct dc * dc)5780 bool dc_enable_dmub_notifications(struct dc *dc) 5781 { 5782 return dc_is_dmub_outbox_supported(dc); 5783 } 5784 5785 /** 5786 * dc_enable_dmub_outbox - Enables DMUB unsolicited notification 5787 * 5788 * @dc: [in] dc structure 5789 * 5790 * Enables DMUB unsolicited notifications to x86 via outbox. 5791 */ dc_enable_dmub_outbox(struct dc * dc)5792 void dc_enable_dmub_outbox(struct dc *dc) 5793 { 5794 struct dc_context *dc_ctx = dc->ctx; 5795 5796 dmub_enable_outbox_notification(dc_ctx->dmub_srv); 5797 DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__); 5798 } 5799 5800 /** 5801 * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message 5802 * Sets port index appropriately for legacy DDC 5803 * @dc: dc structure 5804 * @link_index: link index 5805 * @payload: aux payload 5806 * 5807 * Returns: True if successful, False if failure 5808 */ dc_process_dmub_aux_transfer_async(struct dc * dc,uint32_t link_index,struct aux_payload * payload)5809 bool dc_process_dmub_aux_transfer_async(struct dc *dc, 5810 uint32_t link_index, 5811 struct aux_payload *payload) 5812 { 5813 uint8_t action; 5814 union dmub_rb_cmd cmd = {0}; 5815 5816 ASSERT(payload->length <= 16); 5817 5818 cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS; 5819 cmd.dp_aux_access.header.payload_bytes = 0; 5820 /* For dpia, ddc_pin is set to NULL */ 5821 if (!dc->links[link_index]->ddc->ddc_pin) 5822 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA; 5823 else 5824 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC; 5825 5826 cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst; 5827 cmd.dp_aux_access.aux_control.sw_crc_enabled = 0; 5828 cmd.dp_aux_access.aux_control.timeout = 0; 5829 cmd.dp_aux_access.aux_control.dpaux.address = payload->address; 5830 cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux; 5831 cmd.dp_aux_access.aux_control.dpaux.length = payload->length; 5832 5833 /* set aux action */ 5834 if (payload->i2c_over_aux) { 5835 if (payload->write) { 5836 if (payload->mot) 5837 action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT; 5838 else 5839 action = DP_AUX_REQ_ACTION_I2C_WRITE; 5840 } else { 5841 if (payload->mot) 5842 action = DP_AUX_REQ_ACTION_I2C_READ_MOT; 5843 else 5844 action = DP_AUX_REQ_ACTION_I2C_READ; 5845 } 5846 } else { 5847 if (payload->write) 5848 action = DP_AUX_REQ_ACTION_DPCD_WRITE; 5849 else 5850 action = DP_AUX_REQ_ACTION_DPCD_READ; 5851 } 5852 5853 cmd.dp_aux_access.aux_control.dpaux.action = action; 5854 5855 if (payload->length && payload->write) { 5856 memcpy(cmd.dp_aux_access.aux_control.dpaux.data, 5857 payload->data, 5858 payload->length 5859 ); 5860 } 5861 5862 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT); 5863 5864 return true; 5865 } 5866 get_link_index_from_dpia_port_index(const struct dc * dc,uint8_t dpia_port_index)5867 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc, 5868 uint8_t dpia_port_index) 5869 { 5870 uint8_t index, link_index = 0xFF; 5871 5872 for (index = 0; index < dc->link_count; index++) { 5873 /* ddc_hw_inst has dpia port index for dpia links 5874 * and ddc instance for legacy links 5875 */ 5876 if (!dc->links[index]->ddc->ddc_pin) { 5877 if (dc->links[index]->ddc_hw_inst == dpia_port_index) { 5878 link_index = index; 5879 break; 5880 } 5881 } 5882 } 5883 ASSERT(link_index != 0xFF); 5884 return link_index; 5885 } 5886 5887 /** 5888 * dc_process_dmub_set_config_async - Submits set_config command 5889 * 5890 * @dc: [in] dc structure 5891 * @link_index: [in] link_index: link index 5892 * @payload: [in] aux payload 5893 * @notify: [out] set_config immediate reply 5894 * 5895 * Submits set_config command to dmub via inbox message. 5896 * 5897 * Return: 5898 * True if successful, False if failure 5899 */ dc_process_dmub_set_config_async(struct dc * dc,uint32_t link_index,struct set_config_cmd_payload * payload,struct dmub_notification * notify)5900 bool dc_process_dmub_set_config_async(struct dc *dc, 5901 uint32_t link_index, 5902 struct set_config_cmd_payload *payload, 5903 struct dmub_notification *notify) 5904 { 5905 union dmub_rb_cmd cmd = {0}; 5906 bool is_cmd_complete = true; 5907 5908 /* prepare SET_CONFIG command */ 5909 cmd.set_config_access.header.type = DMUB_CMD__DPIA; 5910 cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS; 5911 5912 cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst; 5913 cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type; 5914 cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data; 5915 5916 if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) { 5917 /* command is not processed by dmub */ 5918 notify->sc_status = SET_CONFIG_UNKNOWN_ERROR; 5919 return is_cmd_complete; 5920 } 5921 5922 /* command processed by dmub, if ret_status is 1, it is completed instantly */ 5923 if (cmd.set_config_access.header.ret_status == 1) 5924 notify->sc_status = cmd.set_config_access.set_config_control.immed_status; 5925 else 5926 /* cmd pending, will receive notification via outbox */ 5927 is_cmd_complete = false; 5928 5929 return is_cmd_complete; 5930 } 5931 5932 /** 5933 * dc_process_dmub_set_mst_slots - Submits MST solt allocation 5934 * 5935 * @dc: [in] dc structure 5936 * @link_index: [in] link index 5937 * @mst_alloc_slots: [in] mst slots to be allotted 5938 * @mst_slots_in_use: [out] mst slots in use returned in failure case 5939 * 5940 * Submits mst slot allocation command to dmub via inbox message 5941 * 5942 * Return: 5943 * DC_OK if successful, DC_ERROR if failure 5944 */ dc_process_dmub_set_mst_slots(const struct dc * dc,uint32_t link_index,uint8_t mst_alloc_slots,uint8_t * mst_slots_in_use)5945 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc, 5946 uint32_t link_index, 5947 uint8_t mst_alloc_slots, 5948 uint8_t *mst_slots_in_use) 5949 { 5950 union dmub_rb_cmd cmd = {0}; 5951 5952 /* prepare MST_ALLOC_SLOTS command */ 5953 cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA; 5954 cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS; 5955 5956 cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst; 5957 cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots; 5958 5959 if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) 5960 /* command is not processed by dmub */ 5961 return DC_ERROR_UNEXPECTED; 5962 5963 /* command processed by dmub, if ret_status is 1 */ 5964 if (cmd.set_config_access.header.ret_status != 1) 5965 /* command processing error */ 5966 return DC_ERROR_UNEXPECTED; 5967 5968 /* command processed and we have a status of 2, mst not enabled in dpia */ 5969 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2) 5970 return DC_FAIL_UNSUPPORTED_1; 5971 5972 /* previously configured mst alloc and used slots did not match */ 5973 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) { 5974 *mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use; 5975 return DC_NOT_SUPPORTED; 5976 } 5977 5978 return DC_OK; 5979 } 5980 5981 /** 5982 * dc_process_dmub_dpia_set_tps_notification - Submits tps notification 5983 * 5984 * @dc: [in] dc structure 5985 * @link_index: [in] link index 5986 * @tps: [in] request tps 5987 * 5988 * Submits set_tps_notification command to dmub via inbox message 5989 */ dc_process_dmub_dpia_set_tps_notification(const struct dc * dc,uint32_t link_index,uint8_t tps)5990 void dc_process_dmub_dpia_set_tps_notification(const struct dc *dc, uint32_t link_index, uint8_t tps) 5991 { 5992 union dmub_rb_cmd cmd = {0}; 5993 5994 cmd.set_tps_notification.header.type = DMUB_CMD__DPIA; 5995 cmd.set_tps_notification.header.sub_type = DMUB_CMD__DPIA_SET_TPS_NOTIFICATION; 5996 cmd.set_tps_notification.tps_notification.instance = dc->links[link_index]->ddc_hw_inst; 5997 cmd.set_tps_notification.tps_notification.tps = tps; 5998 5999 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT); 6000 } 6001 6002 /** 6003 * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption 6004 * 6005 * @dc: [in] dc structure 6006 * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable 6007 * 6008 * Submits dpia hpd int enable command to dmub via inbox message 6009 */ dc_process_dmub_dpia_hpd_int_enable(const struct dc * dc,uint32_t hpd_int_enable)6010 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc, 6011 uint32_t hpd_int_enable) 6012 { 6013 union dmub_rb_cmd cmd = {0}; 6014 6015 cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE; 6016 cmd.dpia_hpd_int_enable.enable = hpd_int_enable; 6017 6018 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT); 6019 6020 DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable); 6021 } 6022 6023 /** 6024 * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging 6025 * 6026 * @dc: [in] dc structure 6027 * 6028 * 6029 */ dc_print_dmub_diagnostic_data(const struct dc * dc)6030 void dc_print_dmub_diagnostic_data(const struct dc *dc) 6031 { 6032 dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv); 6033 } 6034 6035 /** 6036 * dc_disable_accelerated_mode - disable accelerated mode 6037 * @dc: dc structure 6038 */ dc_disable_accelerated_mode(struct dc * dc)6039 void dc_disable_accelerated_mode(struct dc *dc) 6040 { 6041 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0); 6042 } 6043 6044 6045 /** 6046 * dc_notify_vsync_int_state - notifies vsync enable/disable state 6047 * @dc: dc structure 6048 * @stream: stream where vsync int state changed 6049 * @enable: whether vsync is enabled or disabled 6050 * 6051 * Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM 6052 * interrupts after steady state is reached. 6053 */ dc_notify_vsync_int_state(struct dc * dc,struct dc_stream_state * stream,bool enable)6054 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable) 6055 { 6056 int i; 6057 int edp_num; 6058 struct pipe_ctx *pipe = NULL; 6059 struct dc_link *link = stream->sink->link; 6060 struct dc_link *edp_links[MAX_NUM_EDP]; 6061 6062 6063 if (link->psr_settings.psr_feature_enabled) 6064 return; 6065 6066 if (link->replay_settings.replay_feature_enabled) 6067 return; 6068 6069 /*find primary pipe associated with stream*/ 6070 for (i = 0; i < MAX_PIPES; i++) { 6071 pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 6072 6073 if (pipe->stream == stream && pipe->stream_res.tg) 6074 break; 6075 } 6076 6077 if (i == MAX_PIPES) { 6078 ASSERT(0); 6079 return; 6080 } 6081 6082 dc_get_edp_links(dc, edp_links, &edp_num); 6083 6084 /* Determine panel inst */ 6085 for (i = 0; i < edp_num; i++) { 6086 if (edp_links[i] == link) 6087 break; 6088 } 6089 6090 if (i == edp_num) { 6091 return; 6092 } 6093 6094 if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause) 6095 pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst); 6096 } 6097 6098 /***************************************************************************** 6099 * dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause 6100 * ABM 6101 * @dc: dc structure 6102 * @stream: stream where vsync int state changed 6103 * @pData: abm hw states 6104 * 6105 ****************************************************************************/ dc_abm_save_restore(struct dc * dc,struct dc_stream_state * stream,struct abm_save_restore * pData)6106 bool dc_abm_save_restore( 6107 struct dc *dc, 6108 struct dc_stream_state *stream, 6109 struct abm_save_restore *pData) 6110 { 6111 int i; 6112 int edp_num; 6113 struct pipe_ctx *pipe = NULL; 6114 struct dc_link *link = stream->sink->link; 6115 struct dc_link *edp_links[MAX_NUM_EDP]; 6116 6117 if (link->replay_settings.replay_feature_enabled) 6118 return false; 6119 6120 /*find primary pipe associated with stream*/ 6121 for (i = 0; i < MAX_PIPES; i++) { 6122 pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 6123 6124 if (pipe->stream == stream && pipe->stream_res.tg) 6125 break; 6126 } 6127 6128 if (i == MAX_PIPES) { 6129 ASSERT(0); 6130 return false; 6131 } 6132 6133 dc_get_edp_links(dc, edp_links, &edp_num); 6134 6135 /* Determine panel inst */ 6136 for (i = 0; i < edp_num; i++) 6137 if (edp_links[i] == link) 6138 break; 6139 6140 if (i == edp_num) 6141 return false; 6142 6143 if (pipe->stream_res.abm && 6144 pipe->stream_res.abm->funcs->save_restore) 6145 return pipe->stream_res.abm->funcs->save_restore( 6146 pipe->stream_res.abm, 6147 i, 6148 pData); 6149 return false; 6150 } 6151 dc_query_current_properties(struct dc * dc,struct dc_current_properties * properties)6152 void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties) 6153 { 6154 unsigned int i; 6155 bool subvp_sw_cursor_req = false; 6156 6157 for (i = 0; i < dc->current_state->stream_count; i++) { 6158 if (check_subvp_sw_cursor_fallback_req(dc, dc->current_state->streams[i]) && !dc->current_state->streams[i]->hw_cursor_req) { 6159 subvp_sw_cursor_req = true; 6160 break; 6161 } 6162 } 6163 properties->cursor_size_limit = subvp_sw_cursor_req ? 64 : dc->caps.max_cursor_size; 6164 } 6165 6166 /** 6167 * dc_set_edp_power() - DM controls eDP power to be ON/OFF 6168 * 6169 * Called when DM wants to power on/off eDP. 6170 * Only work on links with flag skip_implict_edp_power_control is set. 6171 * 6172 * @dc: Current DC state 6173 * @edp_link: a link with eDP connector signal type 6174 * @powerOn: power on/off eDP 6175 * 6176 * Return: void 6177 */ dc_set_edp_power(const struct dc * dc,struct dc_link * edp_link,bool powerOn)6178 void dc_set_edp_power(const struct dc *dc, struct dc_link *edp_link, 6179 bool powerOn) 6180 { 6181 if (edp_link->connector_signal != SIGNAL_TYPE_EDP) 6182 return; 6183 6184 if (edp_link->skip_implict_edp_power_control == false) 6185 return; 6186 6187 edp_link->dc->link_srv->edp_set_panel_power(edp_link, powerOn); 6188 } 6189 6190 /* 6191 ***************************************************************************** 6192 * dc_get_power_profile_for_dc_state() - extracts power profile from dc state 6193 * 6194 * Called when DM wants to make power policy decisions based on dc_state 6195 * 6196 ***************************************************************************** 6197 */ dc_get_power_profile_for_dc_state(const struct dc_state * context)6198 struct dc_power_profile dc_get_power_profile_for_dc_state(const struct dc_state *context) 6199 { 6200 struct dc_power_profile profile = { 0 }; 6201 6202 profile.power_level = !context->bw_ctx.bw.dcn.clk.p_state_change_support; 6203 if (!context->clk_mgr || !context->clk_mgr->ctx || !context->clk_mgr->ctx->dc) 6204 return profile; 6205 struct dc *dc = context->clk_mgr->ctx->dc; 6206 6207 if (dc->res_pool->funcs->get_power_profile) 6208 profile.power_level = dc->res_pool->funcs->get_power_profile(context); 6209 return profile; 6210 } 6211 6212 /* 6213 ********************************************************************************** 6214 * dc_get_det_buffer_size_from_state() - extracts detile buffer size from dc state 6215 * 6216 * Called when DM wants to log detile buffer size from dc_state 6217 * 6218 ********************************************************************************** 6219 */ dc_get_det_buffer_size_from_state(const struct dc_state * context)6220 unsigned int dc_get_det_buffer_size_from_state(const struct dc_state *context) 6221 { 6222 struct dc *dc = context->clk_mgr->ctx->dc; 6223 6224 if (dc->res_pool->funcs->get_det_buffer_size) 6225 return dc->res_pool->funcs->get_det_buffer_size(context); 6226 else 6227 return 0; 6228 } 6229