1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 */
24
25 #include "dm_services.h"
26
27 #include "amdgpu.h"
28
29 #include "dc.h"
30
31 #include "core_status.h"
32 #include "core_types.h"
33 #include "hw_sequencer.h"
34 #include "dce/dce_hwseq.h"
35
36 #include "resource.h"
37 #include "dc_state.h"
38 #include "dc_state_priv.h"
39 #include "dc_plane.h"
40 #include "dc_plane_priv.h"
41 #include "dc_stream_priv.h"
42
43 #include "gpio_service_interface.h"
44 #include "clk_mgr.h"
45 #include "clock_source.h"
46 #include "dc_bios_types.h"
47
48 #include "bios_parser_interface.h"
49 #include "bios/bios_parser_helper.h"
50 #include "include/irq_service_interface.h"
51 #include "transform.h"
52 #include "dmcu.h"
53 #include "dpp.h"
54 #include "timing_generator.h"
55 #include "abm.h"
56 #include "virtual/virtual_link_encoder.h"
57 #include "hubp.h"
58
59 #include "link_hwss.h"
60 #include "link_encoder.h"
61 #include "link_enc_cfg.h"
62
63 #include "link.h"
64 #include "dm_helpers.h"
65 #include "mem_input.h"
66
67 #include "dc_dmub_srv.h"
68
69 #include "dsc.h"
70
71 #include "vm_helper.h"
72
73 #include "dce/dce_i2c.h"
74
75 #include "dmub/dmub_srv.h"
76
77 #include "dce/dmub_psr.h"
78
79 #include "dce/dmub_hw_lock_mgr.h"
80
81 #include "dc_trace.h"
82
83 #include "hw_sequencer_private.h"
84
85 #if defined(CONFIG_DRM_AMD_DC_FP)
86 #include "dml2/dml2_internal_types.h"
87 #endif
88
89 #include "dce/dmub_outbox.h"
90
91 #define CTX \
92 dc->ctx
93
94 #define DC_LOGGER \
95 dc->ctx->logger
96
97 static const char DC_BUILD_ID[] = "production-build";
98
99 /**
100 * DOC: Overview
101 *
102 * DC is the OS-agnostic component of the amdgpu DC driver.
103 *
104 * DC maintains and validates a set of structs representing the state of the
105 * driver and writes that state to AMD hardware
106 *
107 * Main DC HW structs:
108 *
109 * struct dc - The central struct. One per driver. Created on driver load,
110 * destroyed on driver unload.
111 *
112 * struct dc_context - One per driver.
113 * Used as a backpointer by most other structs in dc.
114 *
115 * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
116 * plugpoints). Created on driver load, destroyed on driver unload.
117 *
118 * struct dc_sink - One per display. Created on boot or hotplug.
119 * Destroyed on shutdown or hotunplug. A dc_link can have a local sink
120 * (the display directly attached). It may also have one or more remote
121 * sinks (in the Multi-Stream Transport case)
122 *
123 * struct resource_pool - One per driver. Represents the hw blocks not in the
124 * main pipeline. Not directly accessible by dm.
125 *
126 * Main dc state structs:
127 *
128 * These structs can be created and destroyed as needed. There is a full set of
129 * these structs in dc->current_state representing the currently programmed state.
130 *
131 * struct dc_state - The global DC state to track global state information,
132 * such as bandwidth values.
133 *
134 * struct dc_stream_state - Represents the hw configuration for the pipeline from
135 * a framebuffer to a display. Maps one-to-one with dc_sink.
136 *
137 * struct dc_plane_state - Represents a framebuffer. Each stream has at least one,
138 * and may have more in the Multi-Plane Overlay case.
139 *
140 * struct resource_context - Represents the programmable state of everything in
141 * the resource_pool. Not directly accessible by dm.
142 *
143 * struct pipe_ctx - A member of struct resource_context. Represents the
144 * internal hardware pipeline components. Each dc_plane_state has either
145 * one or two (in the pipe-split case).
146 */
147
148 /* Private functions */
149
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)150 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
151 {
152 if (new > *original)
153 *original = new;
154 }
155
destroy_links(struct dc * dc)156 static void destroy_links(struct dc *dc)
157 {
158 uint32_t i;
159
160 for (i = 0; i < dc->link_count; i++) {
161 if (NULL != dc->links[i])
162 dc->link_srv->destroy_link(&dc->links[i]);
163 }
164 }
165
get_num_of_internal_disp(struct dc_link ** links,uint32_t num_links)166 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
167 {
168 int i;
169 uint32_t count = 0;
170
171 for (i = 0; i < num_links; i++) {
172 if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
173 links[i]->is_internal_display)
174 count++;
175 }
176
177 return count;
178 }
179
get_seamless_boot_stream_count(struct dc_state * ctx)180 static int get_seamless_boot_stream_count(struct dc_state *ctx)
181 {
182 uint8_t i;
183 uint8_t seamless_boot_stream_count = 0;
184
185 for (i = 0; i < ctx->stream_count; i++)
186 if (ctx->streams[i]->apply_seamless_boot_optimization)
187 seamless_boot_stream_count++;
188
189 return seamless_boot_stream_count;
190 }
191
create_links(struct dc * dc,uint32_t num_virtual_links)192 static bool create_links(
193 struct dc *dc,
194 uint32_t num_virtual_links)
195 {
196 int i;
197 int connectors_num;
198 struct dc_bios *bios = dc->ctx->dc_bios;
199
200 dc->link_count = 0;
201
202 connectors_num = bios->funcs->get_connectors_number(bios);
203
204 DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
205
206 if (connectors_num > ENUM_ID_COUNT) {
207 dm_error(
208 "DC: Number of connectors %d exceeds maximum of %d!\n",
209 connectors_num,
210 ENUM_ID_COUNT);
211 return false;
212 }
213
214 dm_output_to_console(
215 "DC: %s: connectors_num: physical:%d, virtual:%d\n",
216 __func__,
217 connectors_num,
218 num_virtual_links);
219
220 // condition loop on link_count to allow skipping invalid indices
221 for (i = 0; dc->link_count < connectors_num && i < MAX_LINKS; i++) {
222 struct link_init_data link_init_params = {0};
223 struct dc_link *link;
224
225 DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
226
227 link_init_params.ctx = dc->ctx;
228 /* next BIOS object table connector */
229 link_init_params.connector_index = i;
230 link_init_params.link_index = dc->link_count;
231 link_init_params.dc = dc;
232 link = dc->link_srv->create_link(&link_init_params);
233
234 if (link) {
235 dc->links[dc->link_count] = link;
236 link->dc = dc;
237 ++dc->link_count;
238 }
239 }
240
241 DC_LOG_DC("BIOS object table - end");
242
243 /* Create a link for each usb4 dpia port */
244 dc->lowest_dpia_link_index = MAX_LINKS;
245 for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
246 struct link_init_data link_init_params = {0};
247 struct dc_link *link;
248
249 link_init_params.ctx = dc->ctx;
250 link_init_params.connector_index = i;
251 link_init_params.link_index = dc->link_count;
252 link_init_params.dc = dc;
253 link_init_params.is_dpia_link = true;
254
255 link = dc->link_srv->create_link(&link_init_params);
256 if (link) {
257 if (dc->lowest_dpia_link_index > dc->link_count)
258 dc->lowest_dpia_link_index = dc->link_count;
259
260 dc->links[dc->link_count] = link;
261 link->dc = dc;
262 ++dc->link_count;
263 }
264 }
265
266 for (i = 0; i < num_virtual_links; i++) {
267 struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
268 struct encoder_init_data enc_init = {0};
269
270 if (link == NULL) {
271 BREAK_TO_DEBUGGER();
272 goto failed_alloc;
273 }
274
275 link->link_index = dc->link_count;
276 dc->links[dc->link_count] = link;
277 dc->link_count++;
278
279 link->ctx = dc->ctx;
280 link->dc = dc;
281 link->connector_signal = SIGNAL_TYPE_VIRTUAL;
282 link->link_id.type = OBJECT_TYPE_CONNECTOR;
283 link->link_id.id = CONNECTOR_ID_VIRTUAL;
284 link->link_id.enum_id = ENUM_ID_1;
285 link->psr_settings.psr_version = DC_PSR_VERSION_UNSUPPORTED;
286 link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
287
288 if (!link->link_enc) {
289 BREAK_TO_DEBUGGER();
290 goto failed_alloc;
291 }
292
293 link->link_status.dpcd_caps = &link->dpcd_caps;
294
295 enc_init.ctx = dc->ctx;
296 enc_init.channel = CHANNEL_ID_UNKNOWN;
297 enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
298 enc_init.transmitter = TRANSMITTER_UNKNOWN;
299 enc_init.connector = link->link_id;
300 enc_init.encoder.type = OBJECT_TYPE_ENCODER;
301 enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
302 enc_init.encoder.enum_id = ENUM_ID_1;
303 virtual_link_encoder_construct(link->link_enc, &enc_init);
304 }
305
306 dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
307
308 return true;
309
310 failed_alloc:
311 return false;
312 }
313
314 /* Create additional DIG link encoder objects if fewer than the platform
315 * supports were created during link construction. This can happen if the
316 * number of physical connectors is less than the number of DIGs.
317 */
create_link_encoders(struct dc * dc)318 static bool create_link_encoders(struct dc *dc)
319 {
320 bool res = true;
321 unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
322 unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
323 int i;
324
325 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
326 * link encoders and physical display endpoints and does not require
327 * additional link encoder objects.
328 */
329 if (num_usb4_dpia == 0)
330 return res;
331
332 /* Create as many link encoder objects as the platform supports. DPIA
333 * endpoints can be programmably mapped to any DIG.
334 */
335 if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
336 for (i = 0; i < num_dig_link_enc; i++) {
337 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
338
339 if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
340 link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
341 (enum engine_id)(ENGINE_ID_DIGA + i));
342 if (link_enc) {
343 dc->res_pool->link_encoders[i] = link_enc;
344 dc->res_pool->dig_link_enc_count++;
345 } else {
346 res = false;
347 }
348 }
349 }
350 }
351
352 return res;
353 }
354
355 /* Destroy any additional DIG link encoder objects created by
356 * create_link_encoders().
357 * NB: Must only be called after destroy_links().
358 */
destroy_link_encoders(struct dc * dc)359 static void destroy_link_encoders(struct dc *dc)
360 {
361 unsigned int num_usb4_dpia;
362 unsigned int num_dig_link_enc;
363 int i;
364
365 if (!dc->res_pool)
366 return;
367
368 num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
369 num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
370
371 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
372 * link encoders and physical display endpoints and does not require
373 * additional link encoder objects.
374 */
375 if (num_usb4_dpia == 0)
376 return;
377
378 for (i = 0; i < num_dig_link_enc; i++) {
379 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
380
381 if (link_enc) {
382 link_enc->funcs->destroy(&link_enc);
383 dc->res_pool->link_encoders[i] = NULL;
384 dc->res_pool->dig_link_enc_count--;
385 }
386 }
387 }
388
dc_perf_trace_create(void)389 static struct dc_perf_trace *dc_perf_trace_create(void)
390 {
391 return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
392 }
393
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)394 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
395 {
396 kfree(*perf_trace);
397 *perf_trace = NULL;
398 }
399
set_long_vtotal(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)400 static bool set_long_vtotal(struct dc *dc, struct dc_stream_state *stream, struct dc_crtc_timing_adjust *adjust)
401 {
402 if (!dc || !stream || !adjust)
403 return false;
404
405 if (!dc->current_state)
406 return false;
407
408 int i;
409
410 for (i = 0; i < MAX_PIPES; i++) {
411 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
412
413 if (pipe->stream == stream && pipe->stream_res.tg) {
414 if (dc->hwss.set_long_vtotal)
415 dc->hwss.set_long_vtotal(&pipe, 1, adjust->v_total_min, adjust->v_total_max);
416
417 return true;
418 }
419 }
420
421 return false;
422 }
423
424 /**
425 * dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
426 * @dc: dc reference
427 * @stream: Initial dc stream state
428 * @adjust: Updated parameters for vertical_total_min and vertical_total_max
429 *
430 * Looks up the pipe context of dc_stream_state and updates the
431 * vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
432 * Rate, which is a power-saving feature that targets reducing panel
433 * refresh rate while the screen is static
434 *
435 * Return: %true if the pipe context is found and adjusted;
436 * %false if the pipe context is not found.
437 */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)438 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
439 struct dc_stream_state *stream,
440 struct dc_crtc_timing_adjust *adjust)
441 {
442 int i;
443
444 /*
445 * Don't adjust DRR while there's bandwidth optimizations pending to
446 * avoid conflicting with firmware updates.
447 */
448 if (dc->ctx->dce_version > DCE_VERSION_MAX) {
449 if (dc->optimized_required || dc->wm_optimized_required) {
450 stream->adjust.timing_adjust_pending = true;
451 return false;
452 }
453 }
454
455 dc_exit_ips_for_hw_access(dc);
456
457 stream->adjust.v_total_max = adjust->v_total_max;
458 stream->adjust.v_total_mid = adjust->v_total_mid;
459 stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
460 stream->adjust.v_total_min = adjust->v_total_min;
461 stream->adjust.allow_otg_v_count_halt = adjust->allow_otg_v_count_halt;
462
463 if (dc->caps.max_v_total != 0 &&
464 (adjust->v_total_max > dc->caps.max_v_total || adjust->v_total_min > dc->caps.max_v_total)) {
465 stream->adjust.timing_adjust_pending = false;
466 if (adjust->allow_otg_v_count_halt)
467 return set_long_vtotal(dc, stream, adjust);
468 else
469 return false;
470 }
471
472 for (i = 0; i < MAX_PIPES; i++) {
473 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
474
475 if (pipe->stream == stream && pipe->stream_res.tg) {
476 dc->hwss.set_drr(&pipe,
477 1,
478 *adjust);
479 stream->adjust.timing_adjust_pending = false;
480 return true;
481 }
482 }
483 return false;
484 }
485
486 /**
487 * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
488 * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
489 *
490 * @dc: [in] dc reference
491 * @stream: [in] Initial dc stream state
492 * @refresh_rate: [in] new refresh_rate
493 *
494 * Return: %true if the pipe context is found and there is an associated
495 * timing_generator for the DC;
496 * %false if the pipe context is not found or there is no
497 * timing_generator for the DC.
498 */
dc_stream_get_last_used_drr_vtotal(struct dc * dc,struct dc_stream_state * stream,uint32_t * refresh_rate)499 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
500 struct dc_stream_state *stream,
501 uint32_t *refresh_rate)
502 {
503 bool status = false;
504
505 int i = 0;
506
507 dc_exit_ips_for_hw_access(dc);
508
509 for (i = 0; i < MAX_PIPES; i++) {
510 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
511
512 if (pipe->stream == stream && pipe->stream_res.tg) {
513 /* Only execute if a function pointer has been defined for
514 * the DC version in question
515 */
516 if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
517 pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
518
519 status = true;
520
521 break;
522 }
523 }
524 }
525
526 return status;
527 }
528
529 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
530 static inline void
dc_stream_forward_dmub_crc_window(struct dc_dmub_srv * dmub_srv,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)531 dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
532 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
533 {
534 union dmub_rb_cmd cmd = {0};
535
536 cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
537 cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
538
539 if (is_stop) {
540 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
541 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
542 } else {
543 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
544 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
545 cmd.secure_display.roi_info.x_start = rect->x;
546 cmd.secure_display.roi_info.y_start = rect->y;
547 cmd.secure_display.roi_info.x_end = rect->x + rect->width;
548 cmd.secure_display.roi_info.y_end = rect->y + rect->height;
549 }
550
551 dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
552 }
553
554 static inline void
dc_stream_forward_dmcu_crc_window(struct dmcu * dmcu,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)555 dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
556 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
557 {
558 if (is_stop)
559 dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
560 else
561 dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
562 }
563
564 bool
dc_stream_forward_crc_window(struct dc_stream_state * stream,struct rect * rect,uint8_t phy_id,bool is_stop)565 dc_stream_forward_crc_window(struct dc_stream_state *stream,
566 struct rect *rect, uint8_t phy_id, bool is_stop)
567 {
568 struct dmcu *dmcu;
569 struct dc_dmub_srv *dmub_srv;
570 struct otg_phy_mux mux_mapping;
571 struct pipe_ctx *pipe;
572 int i;
573 struct dc *dc = stream->ctx->dc;
574
575 for (i = 0; i < MAX_PIPES; i++) {
576 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
577 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
578 break;
579 }
580
581 /* Stream not found */
582 if (i == MAX_PIPES)
583 return false;
584
585 mux_mapping.phy_output_num = phy_id;
586 mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
587
588 dmcu = dc->res_pool->dmcu;
589 dmub_srv = dc->ctx->dmub_srv;
590
591 /* forward to dmub */
592 if (dmub_srv)
593 dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
594 /* forward to dmcu */
595 else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
596 dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
597 else
598 return false;
599
600 return true;
601 }
602
603 static void
dc_stream_forward_dmub_multiple_crc_window(struct dc_dmub_srv * dmub_srv,struct crc_window * window,struct otg_phy_mux * mux_mapping,bool stop)604 dc_stream_forward_dmub_multiple_crc_window(struct dc_dmub_srv *dmub_srv,
605 struct crc_window *window, struct otg_phy_mux *mux_mapping, bool stop)
606 {
607 int i;
608 union dmub_rb_cmd cmd = {0};
609
610 cmd.secure_display.mul_roi_ctl.phy_id = mux_mapping->phy_output_num;
611 cmd.secure_display.mul_roi_ctl.otg_id = mux_mapping->otg_output_num;
612
613 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
614
615 if (stop) {
616 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_MULTIPLE_CRC_STOP_UPDATE;
617 } else {
618 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_MULTIPLE_CRC_WIN_NOTIFY;
619 for (i = 0; i < MAX_CRC_WINDOW_NUM; i++) {
620 cmd.secure_display.mul_roi_ctl.roi_ctl[i].x_start = window[i].rect.x;
621 cmd.secure_display.mul_roi_ctl.roi_ctl[i].y_start = window[i].rect.y;
622 cmd.secure_display.mul_roi_ctl.roi_ctl[i].x_end = window[i].rect.x + window[i].rect.width;
623 cmd.secure_display.mul_roi_ctl.roi_ctl[i].y_end = window[i].rect.y + window[i].rect.height;
624 cmd.secure_display.mul_roi_ctl.roi_ctl[i].enable = window[i].enable;
625 }
626 }
627
628 dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
629 }
630
631 bool
dc_stream_forward_multiple_crc_window(struct dc_stream_state * stream,struct crc_window * window,uint8_t phy_id,bool stop)632 dc_stream_forward_multiple_crc_window(struct dc_stream_state *stream,
633 struct crc_window *window, uint8_t phy_id, bool stop)
634 {
635 struct dc_dmub_srv *dmub_srv;
636 struct otg_phy_mux mux_mapping;
637 struct pipe_ctx *pipe;
638 int i;
639 struct dc *dc = stream->ctx->dc;
640
641 for (i = 0; i < MAX_PIPES; i++) {
642 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
643 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
644 break;
645 }
646
647 /* Stream not found */
648 if (i == MAX_PIPES)
649 return false;
650
651 mux_mapping.phy_output_num = phy_id;
652 mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
653
654 dmub_srv = dc->ctx->dmub_srv;
655
656 /* forward to dmub only. no dmcu support*/
657 if (dmub_srv)
658 dc_stream_forward_dmub_multiple_crc_window(dmub_srv, window, &mux_mapping, stop);
659 else
660 return false;
661
662 return true;
663 }
664 #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
665
666 /**
667 * dc_stream_configure_crc() - Configure CRC capture for the given stream.
668 * @dc: DC Object
669 * @stream: The stream to configure CRC on.
670 * @crc_window: CRC window (x/y start/end) information
671 * @enable: Enable CRC if true, disable otherwise.
672 * @continuous: Capture CRC on every frame if true. Otherwise, only capture
673 * once.
674 * @idx: Capture CRC on which CRC engine instance
675 * @reset: Reset CRC engine before the configuration
676 *
677 * By default, the entire frame is used to calculate the CRC.
678 *
679 * Return: %false if the stream is not found or CRC capture is not supported;
680 * %true if the stream has been configured.
681 */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window,bool enable,bool continuous,uint8_t idx,bool reset)682 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
683 struct crc_params *crc_window, bool enable, bool continuous,
684 uint8_t idx, bool reset)
685 {
686 struct pipe_ctx *pipe;
687 struct crc_params param;
688 struct timing_generator *tg;
689
690 pipe = resource_get_otg_master_for_stream(
691 &dc->current_state->res_ctx, stream);
692
693 /* Stream not found */
694 if (pipe == NULL)
695 return false;
696
697 dc_exit_ips_for_hw_access(dc);
698
699 /* By default, capture the full frame */
700 param.windowa_x_start = 0;
701 param.windowa_y_start = 0;
702 param.windowa_x_end = pipe->stream->timing.h_addressable;
703 param.windowa_y_end = pipe->stream->timing.v_addressable;
704 param.windowb_x_start = 0;
705 param.windowb_y_start = 0;
706 param.windowb_x_end = pipe->stream->timing.h_addressable;
707 param.windowb_y_end = pipe->stream->timing.v_addressable;
708
709 if (crc_window) {
710 param.windowa_x_start = crc_window->windowa_x_start;
711 param.windowa_y_start = crc_window->windowa_y_start;
712 param.windowa_x_end = crc_window->windowa_x_end;
713 param.windowa_y_end = crc_window->windowa_y_end;
714 param.windowb_x_start = crc_window->windowb_x_start;
715 param.windowb_y_start = crc_window->windowb_y_start;
716 param.windowb_x_end = crc_window->windowb_x_end;
717 param.windowb_y_end = crc_window->windowb_y_end;
718 }
719
720 param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
721 param.odm_mode = pipe->next_odm_pipe ? 1:0;
722
723 /* Default to the union of both windows */
724 param.selection = UNION_WINDOW_A_B;
725 param.continuous_mode = continuous;
726 param.enable = enable;
727
728 param.crc_eng_inst = idx;
729 param.reset = reset;
730
731 tg = pipe->stream_res.tg;
732
733 /* Only call if supported */
734 if (tg->funcs->configure_crc)
735 return tg->funcs->configure_crc(tg, ¶m);
736 DC_LOG_WARNING("CRC capture not supported.");
737 return false;
738 }
739
740 /**
741 * dc_stream_get_crc() - Get CRC values for the given stream.
742 *
743 * @dc: DC object.
744 * @stream: The DC stream state of the stream to get CRCs from.
745 * @idx: index of crc engine to get CRC from
746 * @r_cr: CRC value for the red component.
747 * @g_y: CRC value for the green component.
748 * @b_cb: CRC value for the blue component.
749 *
750 * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
751 *
752 * Return:
753 * %false if stream is not found, or if CRCs are not enabled.
754 */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint8_t idx,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)755 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream, uint8_t idx,
756 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
757 {
758 int i;
759 struct pipe_ctx *pipe;
760 struct timing_generator *tg;
761
762 dc_exit_ips_for_hw_access(dc);
763
764 for (i = 0; i < MAX_PIPES; i++) {
765 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
766 if (pipe->stream == stream)
767 break;
768 }
769 /* Stream not found */
770 if (i == MAX_PIPES)
771 return false;
772
773 tg = pipe->stream_res.tg;
774
775 if (tg->funcs->get_crc)
776 return tg->funcs->get_crc(tg, idx, r_cr, g_y, b_cb);
777 DC_LOG_WARNING("CRC capture not supported.");
778 return false;
779 }
780
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)781 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
782 enum dc_dynamic_expansion option)
783 {
784 /* OPP FMT dyn expansion updates*/
785 int i;
786 struct pipe_ctx *pipe_ctx;
787
788 dc_exit_ips_for_hw_access(dc);
789
790 for (i = 0; i < MAX_PIPES; i++) {
791 if (dc->current_state->res_ctx.pipe_ctx[i].stream
792 == stream) {
793 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
794 pipe_ctx->stream_res.opp->dyn_expansion = option;
795 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
796 pipe_ctx->stream_res.opp,
797 COLOR_SPACE_YCBCR601,
798 stream->timing.display_color_depth,
799 stream->signal);
800 }
801 }
802 }
803
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)804 void dc_stream_set_dither_option(struct dc_stream_state *stream,
805 enum dc_dither_option option)
806 {
807 struct bit_depth_reduction_params params;
808 struct dc_link *link = stream->link;
809 struct pipe_ctx *pipes = NULL;
810 int i;
811
812 for (i = 0; i < MAX_PIPES; i++) {
813 if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
814 stream) {
815 pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
816 break;
817 }
818 }
819
820 if (!pipes)
821 return;
822 if (option > DITHER_OPTION_MAX)
823 return;
824
825 dc_exit_ips_for_hw_access(stream->ctx->dc);
826
827 stream->dither_option = option;
828
829 memset(¶ms, 0, sizeof(params));
830 resource_build_bit_depth_reduction_params(stream, ¶ms);
831 stream->bit_depth_params = params;
832
833 if (pipes->plane_res.xfm &&
834 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
835 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
836 pipes->plane_res.xfm,
837 pipes->plane_res.scl_data.lb_params.depth,
838 &stream->bit_depth_params);
839 }
840
841 pipes->stream_res.opp->funcs->
842 opp_program_bit_depth_reduction(pipes->stream_res.opp, ¶ms);
843 }
844
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)845 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
846 {
847 int i;
848 bool ret = false;
849 struct pipe_ctx *pipes;
850
851 dc_exit_ips_for_hw_access(dc);
852
853 for (i = 0; i < MAX_PIPES; i++) {
854 if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
855 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
856 dc->hwss.program_gamut_remap(pipes);
857 ret = true;
858 }
859 }
860
861 return ret;
862 }
863
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)864 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
865 {
866 int i;
867 bool ret = false;
868 struct pipe_ctx *pipes;
869
870 dc_exit_ips_for_hw_access(dc);
871
872 for (i = 0; i < MAX_PIPES; i++) {
873 if (dc->current_state->res_ctx.pipe_ctx[i].stream
874 == stream) {
875
876 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
877 dc->hwss.program_output_csc(dc,
878 pipes,
879 stream->output_color_space,
880 stream->csc_color_matrix.matrix,
881 pipes->stream_res.opp->inst);
882 ret = true;
883 }
884 }
885
886 return ret;
887 }
888
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)889 void dc_stream_set_static_screen_params(struct dc *dc,
890 struct dc_stream_state **streams,
891 int num_streams,
892 const struct dc_static_screen_params *params)
893 {
894 int i, j;
895 struct pipe_ctx *pipes_affected[MAX_PIPES];
896 int num_pipes_affected = 0;
897
898 dc_exit_ips_for_hw_access(dc);
899
900 for (i = 0; i < num_streams; i++) {
901 struct dc_stream_state *stream = streams[i];
902
903 for (j = 0; j < MAX_PIPES; j++) {
904 if (dc->current_state->res_ctx.pipe_ctx[j].stream
905 == stream) {
906 pipes_affected[num_pipes_affected++] =
907 &dc->current_state->res_ctx.pipe_ctx[j];
908 }
909 }
910 }
911
912 dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
913 }
914
dc_destruct(struct dc * dc)915 static void dc_destruct(struct dc *dc)
916 {
917 // reset link encoder assignment table on destruct
918 if (dc->res_pool && dc->res_pool->funcs->link_encs_assign &&
919 !dc->config.unify_link_enc_assignment)
920 link_enc_cfg_init(dc, dc->current_state);
921
922 if (dc->current_state) {
923 dc_state_release(dc->current_state);
924 dc->current_state = NULL;
925 }
926
927 destroy_links(dc);
928
929 destroy_link_encoders(dc);
930
931 if (dc->clk_mgr) {
932 dc_destroy_clk_mgr(dc->clk_mgr);
933 dc->clk_mgr = NULL;
934 }
935
936 dc_destroy_resource_pool(dc);
937
938 if (dc->link_srv)
939 link_destroy_link_service(&dc->link_srv);
940
941 if (dc->ctx->gpio_service)
942 dal_gpio_service_destroy(&dc->ctx->gpio_service);
943
944 if (dc->ctx->created_bios)
945 dal_bios_parser_destroy(&dc->ctx->dc_bios);
946
947 kfree(dc->ctx->logger);
948 dc_perf_trace_destroy(&dc->ctx->perf_trace);
949
950 kfree(dc->ctx);
951 dc->ctx = NULL;
952
953 kfree(dc->bw_vbios);
954 dc->bw_vbios = NULL;
955
956 kfree(dc->bw_dceip);
957 dc->bw_dceip = NULL;
958
959 kfree(dc->dcn_soc);
960 dc->dcn_soc = NULL;
961
962 kfree(dc->dcn_ip);
963 dc->dcn_ip = NULL;
964
965 kfree(dc->vm_helper);
966 dc->vm_helper = NULL;
967
968 }
969
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)970 static bool dc_construct_ctx(struct dc *dc,
971 const struct dc_init_data *init_params)
972 {
973 struct dc_context *dc_ctx;
974
975 dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
976 if (!dc_ctx)
977 return false;
978
979 dc_ctx->cgs_device = init_params->cgs_device;
980 dc_ctx->driver_context = init_params->driver;
981 dc_ctx->dc = dc;
982 dc_ctx->asic_id = init_params->asic_id;
983 dc_ctx->dc_sink_id_count = 0;
984 dc_ctx->dc_stream_id_count = 0;
985 dc_ctx->dce_environment = init_params->dce_environment;
986 dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
987 dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
988 dc_ctx->clk_reg_offsets = init_params->clk_reg_offsets;
989
990 /* Create logger */
991 dc_ctx->logger = kmalloc(sizeof(*dc_ctx->logger), GFP_KERNEL);
992
993 if (!dc_ctx->logger) {
994 kfree(dc_ctx);
995 return false;
996 }
997
998 dc_ctx->logger->dev = adev_to_drm(init_params->driver);
999 dc->dml.logger = dc_ctx->logger;
1000
1001 dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id);
1002
1003 dc_ctx->perf_trace = dc_perf_trace_create();
1004 if (!dc_ctx->perf_trace) {
1005 kfree(dc_ctx);
1006 ASSERT_CRITICAL(false);
1007 return false;
1008 }
1009
1010 dc->ctx = dc_ctx;
1011
1012 dc->link_srv = link_create_link_service();
1013 if (!dc->link_srv)
1014 return false;
1015
1016 return true;
1017 }
1018
dc_construct(struct dc * dc,const struct dc_init_data * init_params)1019 static bool dc_construct(struct dc *dc,
1020 const struct dc_init_data *init_params)
1021 {
1022 struct dc_context *dc_ctx;
1023 struct bw_calcs_dceip *dc_dceip;
1024 struct bw_calcs_vbios *dc_vbios;
1025 struct dcn_soc_bounding_box *dcn_soc;
1026 struct dcn_ip_params *dcn_ip;
1027
1028 dc->config = init_params->flags;
1029
1030 // Allocate memory for the vm_helper
1031 dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
1032 if (!dc->vm_helper) {
1033 dm_error("%s: failed to create dc->vm_helper\n", __func__);
1034 goto fail;
1035 }
1036
1037 memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
1038
1039 dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
1040 if (!dc_dceip) {
1041 dm_error("%s: failed to create dceip\n", __func__);
1042 goto fail;
1043 }
1044
1045 dc->bw_dceip = dc_dceip;
1046
1047 dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
1048 if (!dc_vbios) {
1049 dm_error("%s: failed to create vbios\n", __func__);
1050 goto fail;
1051 }
1052
1053 dc->bw_vbios = dc_vbios;
1054 dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
1055 if (!dcn_soc) {
1056 dm_error("%s: failed to create dcn_soc\n", __func__);
1057 goto fail;
1058 }
1059
1060 dc->dcn_soc = dcn_soc;
1061
1062 dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
1063 if (!dcn_ip) {
1064 dm_error("%s: failed to create dcn_ip\n", __func__);
1065 goto fail;
1066 }
1067
1068 dc->dcn_ip = dcn_ip;
1069
1070 if (init_params->bb_from_dmub)
1071 dc->dml2_options.bb_from_dmub = init_params->bb_from_dmub;
1072 else
1073 dc->dml2_options.bb_from_dmub = NULL;
1074
1075 if (!dc_construct_ctx(dc, init_params)) {
1076 dm_error("%s: failed to create ctx\n", __func__);
1077 goto fail;
1078 }
1079
1080 dc_ctx = dc->ctx;
1081
1082 /* Resource should construct all asic specific resources.
1083 * This should be the only place where we need to parse the asic id
1084 */
1085 if (init_params->vbios_override)
1086 dc_ctx->dc_bios = init_params->vbios_override;
1087 else {
1088 /* Create BIOS parser */
1089 struct bp_init_data bp_init_data;
1090
1091 bp_init_data.ctx = dc_ctx;
1092 bp_init_data.bios = init_params->asic_id.atombios_base_address;
1093
1094 dc_ctx->dc_bios = dal_bios_parser_create(
1095 &bp_init_data, dc_ctx->dce_version);
1096
1097 if (!dc_ctx->dc_bios) {
1098 ASSERT_CRITICAL(false);
1099 goto fail;
1100 }
1101
1102 dc_ctx->created_bios = true;
1103 }
1104
1105 dc->vendor_signature = init_params->vendor_signature;
1106
1107 /* Create GPIO service */
1108 dc_ctx->gpio_service = dal_gpio_service_create(
1109 dc_ctx->dce_version,
1110 dc_ctx->dce_environment,
1111 dc_ctx);
1112
1113 if (!dc_ctx->gpio_service) {
1114 ASSERT_CRITICAL(false);
1115 goto fail;
1116 }
1117
1118 dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
1119 if (!dc->res_pool)
1120 goto fail;
1121
1122 /* set i2c speed if not done by the respective dcnxxx__resource.c */
1123 if (dc->caps.i2c_speed_in_khz_hdcp == 0)
1124 dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
1125 if (dc->caps.max_optimizable_video_width == 0)
1126 dc->caps.max_optimizable_video_width = 5120;
1127 dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
1128 if (!dc->clk_mgr)
1129 goto fail;
1130 #ifdef CONFIG_DRM_AMD_DC_FP
1131 dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
1132
1133 if (dc->res_pool->funcs->update_bw_bounding_box) {
1134 DC_FP_START();
1135 dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1136 DC_FP_END();
1137 }
1138 #endif
1139
1140 if (!create_links(dc, init_params->num_virtual_links))
1141 goto fail;
1142
1143 /* Create additional DIG link encoder objects if fewer than the platform
1144 * supports were created during link construction.
1145 */
1146 if (!create_link_encoders(dc))
1147 goto fail;
1148
1149 /* Creation of current_state must occur after dc->dml
1150 * is initialized in dc_create_resource_pool because
1151 * on creation it copies the contents of dc->dml
1152 */
1153 dc->current_state = dc_state_create(dc, NULL);
1154
1155 if (!dc->current_state) {
1156 dm_error("%s: failed to create validate ctx\n", __func__);
1157 goto fail;
1158 }
1159
1160 return true;
1161
1162 fail:
1163 return false;
1164 }
1165
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1166 static void disable_all_writeback_pipes_for_stream(
1167 const struct dc *dc,
1168 struct dc_stream_state *stream,
1169 struct dc_state *context)
1170 {
1171 int i;
1172
1173 for (i = 0; i < stream->num_wb_info; i++)
1174 stream->writeback_info[i].wb_enabled = false;
1175 }
1176
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)1177 static void apply_ctx_interdependent_lock(struct dc *dc,
1178 struct dc_state *context,
1179 struct dc_stream_state *stream,
1180 bool lock)
1181 {
1182 int i;
1183
1184 /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1185 if (dc->hwss.interdependent_update_lock)
1186 dc->hwss.interdependent_update_lock(dc, context, lock);
1187 else {
1188 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1189 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1190 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1191
1192 // Copied conditions that were previously in dce110_apply_ctx_for_surface
1193 if (stream == pipe_ctx->stream) {
1194 if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) &&
1195 (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1196 dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1197 }
1198 }
1199 }
1200 }
1201
dc_update_visual_confirm_color(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)1202 static void dc_update_visual_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1203 {
1204 if (dc->debug.visual_confirm & VISUAL_CONFIRM_EXPLICIT) {
1205 memcpy(&pipe_ctx->visual_confirm_color, &pipe_ctx->plane_state->visual_confirm_color,
1206 sizeof(pipe_ctx->visual_confirm_color));
1207 return;
1208 }
1209
1210 if (dc->ctx->dce_version >= DCN_VERSION_1_0) {
1211 memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color));
1212
1213 if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
1214 get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1215 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1216 get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1217 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
1218 get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1219 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_HW_CURSOR)
1220 get_cursor_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1221 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_DCC)
1222 get_dcc_visual_confirm_color(dc, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1223 else {
1224 if (dc->ctx->dce_version < DCN_VERSION_2_0)
1225 color_space_to_black_color(
1226 dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color));
1227 }
1228 if (dc->ctx->dce_version >= DCN_VERSION_2_0) {
1229 if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
1230 get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1231 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
1232 get_subvp_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1233 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH)
1234 get_mclk_switch_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1235 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_FAMS2)
1236 get_fams2_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1237 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_VABC)
1238 get_vabc_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1239 }
1240 }
1241 }
1242
dc_get_visual_confirm_for_stream(struct dc * dc,struct dc_stream_state * stream_state,struct tg_color * color)1243 void dc_get_visual_confirm_for_stream(
1244 struct dc *dc,
1245 struct dc_stream_state *stream_state,
1246 struct tg_color *color)
1247 {
1248 struct dc_stream_status *stream_status = dc_stream_get_status(stream_state);
1249 struct pipe_ctx *pipe_ctx;
1250 int i;
1251 struct dc_plane_state *plane_state = NULL;
1252
1253 if (!stream_status)
1254 return;
1255
1256 switch (dc->debug.visual_confirm) {
1257 case VISUAL_CONFIRM_DISABLE:
1258 return;
1259 case VISUAL_CONFIRM_PSR:
1260 case VISUAL_CONFIRM_FAMS:
1261 pipe_ctx = dc_stream_get_pipe_ctx(stream_state);
1262 if (!pipe_ctx)
1263 return;
1264 dc_dmub_srv_get_visual_confirm_color_cmd(dc, pipe_ctx);
1265 memcpy(color, &dc->ctx->dmub_srv->dmub->visual_confirm_color, sizeof(struct tg_color));
1266 return;
1267
1268 default:
1269 /* find plane with highest layer_index */
1270 for (i = 0; i < stream_status->plane_count; i++) {
1271 if (stream_status->plane_states[i]->visible)
1272 plane_state = stream_status->plane_states[i];
1273 }
1274 if (!plane_state)
1275 return;
1276 /* find pipe that contains plane with highest layer index */
1277 for (i = 0; i < MAX_PIPES; i++) {
1278 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1279
1280 if (pipe->plane_state == plane_state) {
1281 memcpy(color, &pipe->visual_confirm_color, sizeof(struct tg_color));
1282 return;
1283 }
1284 }
1285 }
1286 }
1287
disable_dangling_plane(struct dc * dc,struct dc_state * context)1288 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1289 {
1290 int i, j;
1291 struct dc_state *dangling_context = dc_state_create_current_copy(dc);
1292 struct dc_state *current_ctx;
1293 struct pipe_ctx *pipe;
1294 struct timing_generator *tg;
1295
1296 if (dangling_context == NULL)
1297 return;
1298
1299 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1300 struct dc_stream_state *old_stream =
1301 dc->current_state->res_ctx.pipe_ctx[i].stream;
1302 bool should_disable = true;
1303 bool pipe_split_change = false;
1304
1305 if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1306 (dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1307 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1308 dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1309 else
1310 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1311 dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1312
1313 for (j = 0; j < context->stream_count; j++) {
1314 if (old_stream == context->streams[j]) {
1315 should_disable = false;
1316 break;
1317 }
1318 }
1319 if (!should_disable && pipe_split_change &&
1320 dc->current_state->stream_count != context->stream_count)
1321 should_disable = true;
1322
1323 if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1324 !dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1325 struct pipe_ctx *old_pipe, *new_pipe;
1326
1327 old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1328 new_pipe = &context->res_ctx.pipe_ctx[i];
1329
1330 if (old_pipe->plane_state && !new_pipe->plane_state)
1331 should_disable = true;
1332 }
1333
1334 if (should_disable && old_stream) {
1335 bool is_phantom = dc_state_get_stream_subvp_type(dc->current_state, old_stream) == SUBVP_PHANTOM;
1336 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1337 tg = pipe->stream_res.tg;
1338 /* When disabling plane for a phantom pipe, we must turn on the
1339 * phantom OTG so the disable programming gets the double buffer
1340 * update. Otherwise the pipe will be left in a partially disabled
1341 * state that can result in underflow or hang when enabling it
1342 * again for different use.
1343 */
1344 if (is_phantom) {
1345 if (tg->funcs->enable_crtc) {
1346 if (dc->hwseq->funcs.blank_pixel_data)
1347 dc->hwseq->funcs.blank_pixel_data(dc, pipe, true);
1348 tg->funcs->enable_crtc(tg);
1349 }
1350 }
1351
1352 if (is_phantom)
1353 dc_state_rem_all_phantom_planes_for_stream(dc, old_stream, dangling_context, true);
1354 else
1355 dc_state_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1356 disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1357
1358 if (pipe->stream && pipe->plane_state) {
1359 if (!dc->debug.using_dml2)
1360 set_p_state_switch_method(dc, context, pipe);
1361 dc_update_visual_confirm_color(dc, context, pipe);
1362 }
1363
1364 if (dc->hwss.apply_ctx_for_surface) {
1365 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1366 dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1367 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1368 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1369 }
1370
1371 if (dc->res_pool->funcs->prepare_mcache_programming)
1372 dc->res_pool->funcs->prepare_mcache_programming(dc, dangling_context);
1373 if (dc->hwss.program_front_end_for_ctx) {
1374 dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1375 dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1376 dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1377 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1378 }
1379 /* We need to put the phantom OTG back into it's default (disabled) state or we
1380 * can get corruption when transition from one SubVP config to a different one.
1381 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1382 * will still get it's double buffer update.
1383 */
1384 if (is_phantom) {
1385 if (tg->funcs->disable_phantom_crtc)
1386 tg->funcs->disable_phantom_crtc(tg);
1387 }
1388 }
1389 }
1390
1391 current_ctx = dc->current_state;
1392 dc->current_state = dangling_context;
1393 dc_state_release(current_ctx);
1394 }
1395
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)1396 static void disable_vbios_mode_if_required(
1397 struct dc *dc,
1398 struct dc_state *context)
1399 {
1400 unsigned int i, j;
1401
1402 /* check if timing_changed, disable stream*/
1403 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1404 struct dc_stream_state *stream = NULL;
1405 struct dc_link *link = NULL;
1406 struct pipe_ctx *pipe = NULL;
1407
1408 pipe = &context->res_ctx.pipe_ctx[i];
1409 stream = pipe->stream;
1410 if (stream == NULL)
1411 continue;
1412
1413 if (stream->apply_seamless_boot_optimization)
1414 continue;
1415
1416 // only looking for first odm pipe
1417 if (pipe->prev_odm_pipe)
1418 continue;
1419
1420 if (stream->link->local_sink &&
1421 stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1422 link = stream->link;
1423 }
1424
1425 if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1426 unsigned int enc_inst, tg_inst = 0;
1427 unsigned int pix_clk_100hz = 0;
1428
1429 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1430 if (enc_inst != ENGINE_ID_UNKNOWN) {
1431 for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1432 if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1433 tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1434 dc->res_pool->stream_enc[j]);
1435 break;
1436 }
1437 }
1438
1439 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1440 dc->res_pool->dp_clock_source,
1441 tg_inst, &pix_clk_100hz);
1442
1443 if (link->link_status.link_active) {
1444 uint32_t requested_pix_clk_100hz =
1445 pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1446
1447 if (pix_clk_100hz != requested_pix_clk_100hz) {
1448 dc->link_srv->set_dpms_off(pipe);
1449 pipe->stream->dpms_off = false;
1450 }
1451 }
1452 }
1453 }
1454 }
1455 }
1456
1457 /* Public functions */
1458
dc_create(const struct dc_init_data * init_params)1459 struct dc *dc_create(const struct dc_init_data *init_params)
1460 {
1461 struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1462 unsigned int full_pipe_count;
1463
1464 if (!dc)
1465 return NULL;
1466
1467 if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1468 dc->caps.linear_pitch_alignment = 64;
1469 if (!dc_construct_ctx(dc, init_params))
1470 goto destruct_dc;
1471 } else {
1472 if (!dc_construct(dc, init_params))
1473 goto destruct_dc;
1474
1475 full_pipe_count = dc->res_pool->pipe_count;
1476 if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1477 full_pipe_count--;
1478 dc->caps.max_streams = min(
1479 full_pipe_count,
1480 dc->res_pool->stream_enc_count);
1481
1482 dc->caps.max_links = dc->link_count;
1483 dc->caps.max_audios = dc->res_pool->audio_count;
1484 dc->caps.linear_pitch_alignment = 64;
1485
1486 dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1487
1488 dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1489
1490 if (dc->res_pool->dmcu != NULL)
1491 dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1492 }
1493
1494 dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1495 dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1496 dc->clk_reg_offsets = init_params->clk_reg_offsets;
1497
1498 /* Populate versioning information */
1499 dc->versions.dc_ver = DC_VER;
1500
1501 dc->build_id = DC_BUILD_ID;
1502
1503 DC_LOG_DC("Display Core initialized\n");
1504
1505 return dc;
1506
1507 destruct_dc:
1508 dc_destruct(dc);
1509 kfree(dc);
1510 return NULL;
1511 }
1512
detect_edp_presence(struct dc * dc)1513 static void detect_edp_presence(struct dc *dc)
1514 {
1515 struct dc_link *edp_links[MAX_NUM_EDP];
1516 struct dc_link *edp_link = NULL;
1517 enum dc_connection_type type;
1518 int i;
1519 int edp_num;
1520
1521 dc_get_edp_links(dc, edp_links, &edp_num);
1522 if (!edp_num)
1523 return;
1524
1525 for (i = 0; i < edp_num; i++) {
1526 edp_link = edp_links[i];
1527 if (dc->config.edp_not_connected) {
1528 edp_link->edp_sink_present = false;
1529 } else {
1530 dc_link_detect_connection_type(edp_link, &type);
1531 edp_link->edp_sink_present = (type != dc_connection_none);
1532 }
1533 }
1534 }
1535
dc_hardware_init(struct dc * dc)1536 void dc_hardware_init(struct dc *dc)
1537 {
1538
1539 detect_edp_presence(dc);
1540 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1541 dc->hwss.init_hw(dc);
1542 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, DC_ACPI_CM_POWER_STATE_D0);
1543 }
1544
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1545 void dc_init_callbacks(struct dc *dc,
1546 const struct dc_callback_init *init_params)
1547 {
1548 dc->ctx->cp_psp = init_params->cp_psp;
1549 }
1550
dc_deinit_callbacks(struct dc * dc)1551 void dc_deinit_callbacks(struct dc *dc)
1552 {
1553 memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1554 }
1555
dc_destroy(struct dc ** dc)1556 void dc_destroy(struct dc **dc)
1557 {
1558 dc_destruct(*dc);
1559 kfree(*dc);
1560 *dc = NULL;
1561 }
1562
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1563 static void enable_timing_multisync(
1564 struct dc *dc,
1565 struct dc_state *ctx)
1566 {
1567 int i, multisync_count = 0;
1568 int pipe_count = dc->res_pool->pipe_count;
1569 struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1570
1571 for (i = 0; i < pipe_count; i++) {
1572 if (!ctx->res_ctx.pipe_ctx[i].stream ||
1573 !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1574 continue;
1575 if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1576 continue;
1577 multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1578 multisync_count++;
1579 }
1580
1581 if (multisync_count > 0) {
1582 dc->hwss.enable_per_frame_crtc_position_reset(
1583 dc, multisync_count, multisync_pipes);
1584 }
1585 }
1586
program_timing_sync(struct dc * dc,struct dc_state * ctx)1587 static void program_timing_sync(
1588 struct dc *dc,
1589 struct dc_state *ctx)
1590 {
1591 int i, j, k;
1592 int group_index = 0;
1593 int num_group = 0;
1594 int pipe_count = dc->res_pool->pipe_count;
1595 struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1596
1597 for (i = 0; i < pipe_count; i++) {
1598 if (!ctx->res_ctx.pipe_ctx[i].stream
1599 || ctx->res_ctx.pipe_ctx[i].top_pipe
1600 || ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1601 continue;
1602
1603 unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1604 }
1605
1606 for (i = 0; i < pipe_count; i++) {
1607 int group_size = 1;
1608 enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1609 struct pipe_ctx *pipe_set[MAX_PIPES];
1610
1611 if (!unsynced_pipes[i])
1612 continue;
1613
1614 pipe_set[0] = unsynced_pipes[i];
1615 unsynced_pipes[i] = NULL;
1616
1617 /* Add tg to the set, search rest of the tg's for ones with
1618 * same timing, add all tgs with same timing to the group
1619 */
1620 for (j = i + 1; j < pipe_count; j++) {
1621 if (!unsynced_pipes[j])
1622 continue;
1623 if (sync_type != TIMING_SYNCHRONIZABLE &&
1624 dc->hwss.enable_vblanks_synchronization &&
1625 unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1626 resource_are_vblanks_synchronizable(
1627 unsynced_pipes[j]->stream,
1628 pipe_set[0]->stream)) {
1629 sync_type = VBLANK_SYNCHRONIZABLE;
1630 pipe_set[group_size] = unsynced_pipes[j];
1631 unsynced_pipes[j] = NULL;
1632 group_size++;
1633 } else
1634 if (sync_type != VBLANK_SYNCHRONIZABLE &&
1635 resource_are_streams_timing_synchronizable(
1636 unsynced_pipes[j]->stream,
1637 pipe_set[0]->stream)) {
1638 sync_type = TIMING_SYNCHRONIZABLE;
1639 pipe_set[group_size] = unsynced_pipes[j];
1640 unsynced_pipes[j] = NULL;
1641 group_size++;
1642 }
1643 }
1644
1645 /* set first unblanked pipe as master */
1646 for (j = 0; j < group_size; j++) {
1647 bool is_blanked;
1648
1649 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1650 is_blanked =
1651 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1652 else
1653 is_blanked =
1654 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1655 if (!is_blanked) {
1656 if (j == 0)
1657 break;
1658
1659 swap(pipe_set[0], pipe_set[j]);
1660 break;
1661 }
1662 }
1663
1664 for (k = 0; k < group_size; k++) {
1665 struct dc_stream_status *status = dc_state_get_stream_status(ctx, pipe_set[k]->stream);
1666
1667 if (!status)
1668 continue;
1669
1670 status->timing_sync_info.group_id = num_group;
1671 status->timing_sync_info.group_size = group_size;
1672 if (k == 0)
1673 status->timing_sync_info.master = true;
1674 else
1675 status->timing_sync_info.master = false;
1676
1677 }
1678
1679 /* remove any other unblanked pipes as they have already been synced */
1680 if (dc->config.use_pipe_ctx_sync_logic) {
1681 /* check pipe's syncd to decide which pipe to be removed */
1682 for (j = 1; j < group_size; j++) {
1683 if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1684 group_size--;
1685 pipe_set[j] = pipe_set[group_size];
1686 j--;
1687 } else
1688 /* link slave pipe's syncd with master pipe */
1689 pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1690 }
1691 } else {
1692 /* remove any other pipes by checking valid plane */
1693 for (j = j + 1; j < group_size; j++) {
1694 bool is_blanked;
1695
1696 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1697 is_blanked =
1698 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1699 else
1700 is_blanked =
1701 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1702 if (!is_blanked) {
1703 group_size--;
1704 pipe_set[j] = pipe_set[group_size];
1705 j--;
1706 }
1707 }
1708 }
1709
1710 if (group_size > 1) {
1711 if (sync_type == TIMING_SYNCHRONIZABLE) {
1712 dc->hwss.enable_timing_synchronization(
1713 dc, ctx, group_index, group_size, pipe_set);
1714 } else
1715 if (sync_type == VBLANK_SYNCHRONIZABLE) {
1716 dc->hwss.enable_vblanks_synchronization(
1717 dc, group_index, group_size, pipe_set);
1718 }
1719 group_index++;
1720 }
1721 num_group++;
1722 }
1723 }
1724
streams_changed(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)1725 static bool streams_changed(struct dc *dc,
1726 struct dc_stream_state *streams[],
1727 uint8_t stream_count)
1728 {
1729 uint8_t i;
1730
1731 if (stream_count != dc->current_state->stream_count)
1732 return true;
1733
1734 for (i = 0; i < dc->current_state->stream_count; i++) {
1735 if (dc->current_state->streams[i] != streams[i])
1736 return true;
1737 if (!streams[i]->link->link_state_valid)
1738 return true;
1739 }
1740
1741 return false;
1742 }
1743
dc_validate_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1744 bool dc_validate_boot_timing(const struct dc *dc,
1745 const struct dc_sink *sink,
1746 struct dc_crtc_timing *crtc_timing)
1747 {
1748 struct timing_generator *tg;
1749 struct stream_encoder *se = NULL;
1750
1751 struct dc_crtc_timing hw_crtc_timing = {0};
1752
1753 struct dc_link *link = sink->link;
1754 unsigned int i, enc_inst, tg_inst = 0;
1755
1756 /* Support seamless boot on EDP displays only */
1757 if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1758 return false;
1759 }
1760
1761 if (dc->debug.force_odm_combine) {
1762 DC_LOG_DEBUG("boot timing validation failed due to force_odm_combine\n");
1763 return false;
1764 }
1765
1766 /* Check for enabled DIG to identify enabled display */
1767 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1768 DC_LOG_DEBUG("boot timing validation failed due to disabled DIG\n");
1769 return false;
1770 }
1771
1772 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1773
1774 if (enc_inst == ENGINE_ID_UNKNOWN) {
1775 DC_LOG_DEBUG("boot timing validation failed due to unknown DIG engine ID\n");
1776 return false;
1777 }
1778
1779 for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1780 if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1781
1782 se = dc->res_pool->stream_enc[i];
1783
1784 tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1785 dc->res_pool->stream_enc[i]);
1786 break;
1787 }
1788 }
1789
1790 // tg_inst not found
1791 if (i == dc->res_pool->stream_enc_count) {
1792 DC_LOG_DEBUG("boot timing validation failed due to timing generator instance not found\n");
1793 return false;
1794 }
1795
1796 if (tg_inst >= dc->res_pool->timing_generator_count) {
1797 DC_LOG_DEBUG("boot timing validation failed due to invalid timing generator count\n");
1798 return false;
1799 }
1800
1801 if (tg_inst != link->link_enc->preferred_engine) {
1802 DC_LOG_DEBUG("boot timing validation failed due to non-preferred timing generator\n");
1803 return false;
1804 }
1805
1806 tg = dc->res_pool->timing_generators[tg_inst];
1807
1808 if (!tg->funcs->get_hw_timing) {
1809 DC_LOG_DEBUG("boot timing validation failed due to missing get_hw_timing callback\n");
1810 return false;
1811 }
1812
1813 if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing)) {
1814 DC_LOG_DEBUG("boot timing validation failed due to failed get_hw_timing return\n");
1815 return false;
1816 }
1817
1818 if (crtc_timing->h_total != hw_crtc_timing.h_total) {
1819 DC_LOG_DEBUG("boot timing validation failed due to h_total mismatch\n");
1820 return false;
1821 }
1822
1823 if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left) {
1824 DC_LOG_DEBUG("boot timing validation failed due to h_border_left mismatch\n");
1825 return false;
1826 }
1827
1828 if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable) {
1829 DC_LOG_DEBUG("boot timing validation failed due to h_addressable mismatch\n");
1830 return false;
1831 }
1832
1833 if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right) {
1834 DC_LOG_DEBUG("boot timing validation failed due to h_border_right mismatch\n");
1835 return false;
1836 }
1837
1838 if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch) {
1839 DC_LOG_DEBUG("boot timing validation failed due to h_front_porch mismatch\n");
1840 return false;
1841 }
1842
1843 if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width) {
1844 DC_LOG_DEBUG("boot timing validation failed due to h_sync_width mismatch\n");
1845 return false;
1846 }
1847
1848 if (crtc_timing->v_total != hw_crtc_timing.v_total) {
1849 DC_LOG_DEBUG("boot timing validation failed due to v_total mismatch\n");
1850 return false;
1851 }
1852
1853 if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top) {
1854 DC_LOG_DEBUG("boot timing validation failed due to v_border_top mismatch\n");
1855 return false;
1856 }
1857
1858 if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable) {
1859 DC_LOG_DEBUG("boot timing validation failed due to v_addressable mismatch\n");
1860 return false;
1861 }
1862
1863 if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom) {
1864 DC_LOG_DEBUG("boot timing validation failed due to v_border_bottom mismatch\n");
1865 return false;
1866 }
1867
1868 if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch) {
1869 DC_LOG_DEBUG("boot timing validation failed due to v_front_porch mismatch\n");
1870 return false;
1871 }
1872
1873 if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width) {
1874 DC_LOG_DEBUG("boot timing validation failed due to v_sync_width mismatch\n");
1875 return false;
1876 }
1877
1878 /* block DSC for now, as VBIOS does not currently support DSC timings */
1879 if (crtc_timing->flags.DSC) {
1880 DC_LOG_DEBUG("boot timing validation failed due to DSC\n");
1881 return false;
1882 }
1883
1884 if (dc_is_dp_signal(link->connector_signal)) {
1885 unsigned int pix_clk_100hz = 0;
1886 uint32_t numOdmPipes = 1;
1887 uint32_t id_src[4] = {0};
1888
1889 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1890 dc->res_pool->dp_clock_source,
1891 tg_inst, &pix_clk_100hz);
1892
1893 if (tg->funcs->get_optc_source)
1894 tg->funcs->get_optc_source(tg,
1895 &numOdmPipes, &id_src[0], &id_src[1]);
1896
1897 if (numOdmPipes == 2) {
1898 pix_clk_100hz *= 2;
1899 } else if (numOdmPipes == 4) {
1900 pix_clk_100hz *= 4;
1901 } else if (se && se->funcs->get_pixels_per_cycle) {
1902 uint32_t pixels_per_cycle = se->funcs->get_pixels_per_cycle(se);
1903
1904 if (pixels_per_cycle != 1 && !dc->debug.enable_dp_dig_pixel_rate_div_policy) {
1905 DC_LOG_DEBUG("boot timing validation failed due to pixels_per_cycle\n");
1906 return false;
1907 }
1908
1909 pix_clk_100hz *= pixels_per_cycle;
1910 }
1911
1912 // Note: In rare cases, HW pixclk may differ from crtc's pixclk
1913 // slightly due to rounding issues in 10 kHz units.
1914 if (crtc_timing->pix_clk_100hz != pix_clk_100hz) {
1915 DC_LOG_DEBUG("boot timing validation failed due to pix_clk_100hz mismatch\n");
1916 return false;
1917 }
1918
1919 if (!se || !se->funcs->dp_get_pixel_format) {
1920 DC_LOG_DEBUG("boot timing validation failed due to missing dp_get_pixel_format\n");
1921 return false;
1922 }
1923
1924 if (!se->funcs->dp_get_pixel_format(
1925 se,
1926 &hw_crtc_timing.pixel_encoding,
1927 &hw_crtc_timing.display_color_depth)) {
1928 DC_LOG_DEBUG("boot timing validation failed due to dp_get_pixel_format failure\n");
1929 return false;
1930 }
1931
1932 if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth) {
1933 DC_LOG_DEBUG("boot timing validation failed due to display_color_depth mismatch\n");
1934 return false;
1935 }
1936
1937 if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding) {
1938 DC_LOG_DEBUG("boot timing validation failed due to pixel_encoding mismatch\n");
1939 return false;
1940 }
1941 }
1942
1943
1944 if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1945 DC_LOG_DEBUG("boot timing validation failed due to VSC SDP colorimetry\n");
1946 return false;
1947 }
1948
1949 if (link->dpcd_caps.channel_coding_cap.bits.DP_128b_132b_SUPPORTED) {
1950 DC_LOG_DEBUG("boot timing validation failed due to DP 128b/132b\n");
1951 return false;
1952 }
1953
1954 if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1955 DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1956 return false;
1957 }
1958
1959 return true;
1960 }
1961
should_update_pipe_for_stream(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)1962 static inline bool should_update_pipe_for_stream(
1963 struct dc_state *context,
1964 struct pipe_ctx *pipe_ctx,
1965 struct dc_stream_state *stream)
1966 {
1967 return (pipe_ctx->stream && pipe_ctx->stream == stream);
1968 }
1969
should_update_pipe_for_plane(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_plane_state * plane_state)1970 static inline bool should_update_pipe_for_plane(
1971 struct dc_state *context,
1972 struct pipe_ctx *pipe_ctx,
1973 struct dc_plane_state *plane_state)
1974 {
1975 return (pipe_ctx->plane_state == plane_state);
1976 }
1977
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1978 void dc_enable_stereo(
1979 struct dc *dc,
1980 struct dc_state *context,
1981 struct dc_stream_state *streams[],
1982 uint8_t stream_count)
1983 {
1984 int i, j;
1985 struct pipe_ctx *pipe;
1986
1987 dc_exit_ips_for_hw_access(dc);
1988
1989 for (i = 0; i < MAX_PIPES; i++) {
1990 if (context != NULL) {
1991 pipe = &context->res_ctx.pipe_ctx[i];
1992 } else {
1993 context = dc->current_state;
1994 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1995 }
1996
1997 for (j = 0; pipe && j < stream_count; j++) {
1998 if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
1999 dc->hwss.setup_stereo)
2000 dc->hwss.setup_stereo(pipe, dc);
2001 }
2002 }
2003 }
2004
dc_trigger_sync(struct dc * dc,struct dc_state * context)2005 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
2006 {
2007 if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
2008 dc_exit_ips_for_hw_access(dc);
2009
2010 enable_timing_multisync(dc, context);
2011 program_timing_sync(dc, context);
2012 }
2013 }
2014
get_stream_mask(struct dc * dc,struct dc_state * context)2015 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
2016 {
2017 int i;
2018 unsigned int stream_mask = 0;
2019
2020 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2021 if (context->res_ctx.pipe_ctx[i].stream)
2022 stream_mask |= 1 << i;
2023 }
2024
2025 return stream_mask;
2026 }
2027
dc_z10_restore(const struct dc * dc)2028 void dc_z10_restore(const struct dc *dc)
2029 {
2030 if (dc->hwss.z10_restore)
2031 dc->hwss.z10_restore(dc);
2032 }
2033
dc_z10_save_init(struct dc * dc)2034 void dc_z10_save_init(struct dc *dc)
2035 {
2036 if (dc->hwss.z10_save_init)
2037 dc->hwss.z10_save_init(dc);
2038 }
2039
2040 /* Set a pipe unlock order based on the change in DET allocation and stores it in dc scratch memory
2041 * Prevents over allocation of DET during unlock process
2042 * e.g. 2 pipe config with different streams with a max of 20 DET segments
2043 * Before: After:
2044 * - Pipe0: 10 DET segments - Pipe0: 12 DET segments
2045 * - Pipe1: 10 DET segments - Pipe1: 8 DET segments
2046 * If Pipe0 gets updated first, 22 DET segments will be allocated
2047 */
determine_pipe_unlock_order(struct dc * dc,struct dc_state * context)2048 static void determine_pipe_unlock_order(struct dc *dc, struct dc_state *context)
2049 {
2050 unsigned int i = 0;
2051 struct pipe_ctx *pipe = NULL;
2052 struct timing_generator *tg = NULL;
2053
2054 if (!dc->config.set_pipe_unlock_order)
2055 return;
2056
2057 memset(dc->scratch.pipes_to_unlock_first, 0, sizeof(dc->scratch.pipes_to_unlock_first));
2058 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2059 pipe = &context->res_ctx.pipe_ctx[i];
2060 tg = pipe->stream_res.tg;
2061
2062 if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
2063 !tg->funcs->is_tg_enabled(tg) ||
2064 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
2065 continue;
2066 }
2067
2068 if (resource_calculate_det_for_stream(context, pipe) <
2069 resource_calculate_det_for_stream(dc->current_state, &dc->current_state->res_ctx.pipe_ctx[i])) {
2070 dc->scratch.pipes_to_unlock_first[i] = true;
2071 }
2072 }
2073 }
2074
2075 /**
2076 * dc_commit_state_no_check - Apply context to the hardware
2077 *
2078 * @dc: DC object with the current status to be updated
2079 * @context: New state that will become the current status at the end of this function
2080 *
2081 * Applies given context to the hardware and copy it into current context.
2082 * It's up to the user to release the src context afterwards.
2083 *
2084 * Return: an enum dc_status result code for the operation
2085 */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)2086 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
2087 {
2088 struct dc_bios *dcb = dc->ctx->dc_bios;
2089 enum dc_status result = DC_ERROR_UNEXPECTED;
2090 struct pipe_ctx *pipe;
2091 int i, k, l;
2092 struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
2093 struct dc_state *old_state;
2094 bool subvp_prev_use = false;
2095
2096 dc_z10_restore(dc);
2097 dc_allow_idle_optimizations(dc, false);
2098
2099 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2100 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2101
2102 /* Check old context for SubVP */
2103 subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
2104 if (subvp_prev_use)
2105 break;
2106 }
2107
2108 for (i = 0; i < context->stream_count; i++)
2109 dc_streams[i] = context->streams[i];
2110
2111 if (!dcb->funcs->is_accelerated_mode(dcb)) {
2112 disable_vbios_mode_if_required(dc, context);
2113 dc->hwss.enable_accelerated_mode(dc, context);
2114 }
2115
2116 if (dc->hwseq->funcs.wait_for_pipe_update_if_needed) {
2117 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2118 pipe = &context->res_ctx.pipe_ctx[i];
2119 //Only delay otg master for a given config
2120 if (resource_is_pipe_type(pipe, OTG_MASTER)) {
2121 //dc_commit_state_no_check is always a full update
2122 dc->hwseq->funcs.wait_for_pipe_update_if_needed(dc, pipe, false);
2123 break;
2124 }
2125 }
2126 }
2127
2128 if (context->stream_count > get_seamless_boot_stream_count(context) ||
2129 context->stream_count == 0)
2130 dc->hwss.prepare_bandwidth(dc, context);
2131
2132 /* When SubVP is active, all HW programming must be done while
2133 * SubVP lock is acquired
2134 */
2135 if (dc->hwss.subvp_pipe_control_lock)
2136 dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
2137 if (dc->hwss.fams2_global_control_lock)
2138 dc->hwss.fams2_global_control_lock(dc, context, true);
2139
2140 if (dc->hwss.update_dsc_pg)
2141 dc->hwss.update_dsc_pg(dc, context, false);
2142
2143 disable_dangling_plane(dc, context);
2144 /* re-program planes for existing stream, in case we need to
2145 * free up plane resource for later use
2146 */
2147 if (dc->hwss.apply_ctx_for_surface) {
2148 for (i = 0; i < context->stream_count; i++) {
2149 if (context->streams[i]->mode_changed)
2150 continue;
2151 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
2152 dc->hwss.apply_ctx_for_surface(
2153 dc, context->streams[i],
2154 context->stream_status[i].plane_count,
2155 context); /* use new pipe config in new context */
2156 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
2157 dc->hwss.post_unlock_program_front_end(dc, context);
2158 }
2159 }
2160
2161 /* Program hardware */
2162 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2163 pipe = &context->res_ctx.pipe_ctx[i];
2164 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
2165 }
2166
2167 result = dc->hwss.apply_ctx_to_hw(dc, context);
2168
2169 if (result != DC_OK) {
2170 /* Application of dc_state to hardware stopped. */
2171 dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
2172 return result;
2173 }
2174
2175 dc_trigger_sync(dc, context);
2176
2177 /* Full update should unconditionally be triggered when dc_commit_state_no_check is called */
2178 for (i = 0; i < context->stream_count; i++) {
2179 uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed;
2180
2181 context->streams[i]->update_flags.raw = 0xFFFFFFFF;
2182 context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed;
2183 }
2184
2185 determine_pipe_unlock_order(dc, context);
2186 /* Program all planes within new context*/
2187 if (dc->res_pool->funcs->prepare_mcache_programming)
2188 dc->res_pool->funcs->prepare_mcache_programming(dc, context);
2189 if (dc->hwss.program_front_end_for_ctx) {
2190 dc->hwss.interdependent_update_lock(dc, context, true);
2191 dc->hwss.program_front_end_for_ctx(dc, context);
2192
2193 if (dc->hwseq->funcs.set_wait_for_update_needed_for_pipe) {
2194 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2195 pipe = &context->res_ctx.pipe_ctx[i];
2196 dc->hwseq->funcs.set_wait_for_update_needed_for_pipe(dc, pipe);
2197 }
2198 }
2199
2200 dc->hwss.interdependent_update_lock(dc, context, false);
2201 dc->hwss.post_unlock_program_front_end(dc, context);
2202 }
2203
2204 if (dc->hwss.commit_subvp_config)
2205 dc->hwss.commit_subvp_config(dc, context);
2206 if (dc->hwss.subvp_pipe_control_lock)
2207 dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
2208 if (dc->hwss.fams2_global_control_lock)
2209 dc->hwss.fams2_global_control_lock(dc, context, false);
2210
2211 for (i = 0; i < context->stream_count; i++) {
2212 const struct dc_link *link = context->streams[i]->link;
2213
2214 if (!context->streams[i]->mode_changed)
2215 continue;
2216
2217 if (dc->hwss.apply_ctx_for_surface) {
2218 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
2219 dc->hwss.apply_ctx_for_surface(
2220 dc, context->streams[i],
2221 context->stream_status[i].plane_count,
2222 context);
2223 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
2224 dc->hwss.post_unlock_program_front_end(dc, context);
2225 }
2226
2227 /*
2228 * enable stereo
2229 * TODO rework dc_enable_stereo call to work with validation sets?
2230 */
2231 for (k = 0; k < MAX_PIPES; k++) {
2232 pipe = &context->res_ctx.pipe_ctx[k];
2233
2234 for (l = 0 ; pipe && l < context->stream_count; l++) {
2235 if (context->streams[l] &&
2236 context->streams[l] == pipe->stream &&
2237 dc->hwss.setup_stereo)
2238 dc->hwss.setup_stereo(pipe, dc);
2239 }
2240 }
2241
2242 CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
2243 context->streams[i]->timing.h_addressable,
2244 context->streams[i]->timing.v_addressable,
2245 context->streams[i]->timing.h_total,
2246 context->streams[i]->timing.v_total,
2247 context->streams[i]->timing.pix_clk_100hz / 10);
2248 }
2249
2250 dc_enable_stereo(dc, context, dc_streams, context->stream_count);
2251
2252 if (get_seamless_boot_stream_count(context) == 0 ||
2253 context->stream_count == 0) {
2254 /* Must wait for no flips to be pending before doing optimize bw */
2255 hwss_wait_for_no_pipes_pending(dc, context);
2256 /*
2257 * optimized dispclk depends on ODM setup. Need to wait for ODM
2258 * update pending complete before optimizing bandwidth.
2259 */
2260 hwss_wait_for_odm_update_pending_complete(dc, context);
2261 /* pplib is notified if disp_num changed */
2262 dc->hwss.optimize_bandwidth(dc, context);
2263 /* Need to do otg sync again as otg could be out of sync due to otg
2264 * workaround applied during clock update
2265 */
2266 dc_trigger_sync(dc, context);
2267 }
2268
2269 if (dc->hwss.update_dsc_pg)
2270 dc->hwss.update_dsc_pg(dc, context, true);
2271
2272 if (dc->ctx->dce_version >= DCE_VERSION_MAX)
2273 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2274 else
2275 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2276
2277 context->stream_mask = get_stream_mask(dc, context);
2278
2279 if (context->stream_mask != dc->current_state->stream_mask)
2280 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
2281
2282 for (i = 0; i < context->stream_count; i++)
2283 context->streams[i]->mode_changed = false;
2284
2285 /* Clear update flags that were set earlier to avoid redundant programming */
2286 for (i = 0; i < context->stream_count; i++) {
2287 context->streams[i]->update_flags.raw = 0x0;
2288 }
2289
2290 old_state = dc->current_state;
2291 dc->current_state = context;
2292
2293 dc_state_release(old_state);
2294
2295 dc_state_retain(dc->current_state);
2296
2297 return result;
2298 }
2299
2300 static bool commit_minimal_transition_state(struct dc *dc,
2301 struct dc_state *transition_base_context);
2302
2303 /**
2304 * dc_commit_streams - Commit current stream state
2305 *
2306 * @dc: DC object with the commit state to be configured in the hardware
2307 * @params: Parameters for the commit, including the streams to be committed
2308 *
2309 * Function responsible for commit streams change to the hardware.
2310 *
2311 * Return:
2312 * Return DC_OK if everything work as expected, otherwise, return a dc_status
2313 * code.
2314 */
dc_commit_streams(struct dc * dc,struct dc_commit_streams_params * params)2315 enum dc_status dc_commit_streams(struct dc *dc, struct dc_commit_streams_params *params)
2316 {
2317 int i, j;
2318 struct dc_state *context;
2319 enum dc_status res = DC_OK;
2320 struct dc_validation_set set[MAX_STREAMS] = {0};
2321 struct pipe_ctx *pipe;
2322 bool handle_exit_odm2to1 = false;
2323
2324 if (!params)
2325 return DC_ERROR_UNEXPECTED;
2326
2327 if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2328 return res;
2329
2330 if (!streams_changed(dc, params->streams, params->stream_count) &&
2331 dc->current_state->power_source == params->power_source)
2332 return res;
2333
2334 dc_exit_ips_for_hw_access(dc);
2335
2336 DC_LOG_DC("%s: %d streams\n", __func__, params->stream_count);
2337
2338 for (i = 0; i < params->stream_count; i++) {
2339 struct dc_stream_state *stream = params->streams[i];
2340 struct dc_stream_status *status = dc_stream_get_status(stream);
2341 struct dc_sink *sink = stream->sink;
2342
2343 /* revalidate streams */
2344 if (!dc_is_virtual_signal(sink->sink_signal)) {
2345 res = dc_validate_stream(dc, stream);
2346 if (res != DC_OK)
2347 return res;
2348 }
2349
2350
2351 dc_stream_log(dc, stream);
2352
2353 set[i].stream = stream;
2354
2355 if (status) {
2356 set[i].plane_count = status->plane_count;
2357 for (j = 0; j < status->plane_count; j++)
2358 set[i].plane_states[j] = status->plane_states[j];
2359 }
2360 }
2361
2362 /* ODM Combine 2:1 power optimization is only applied for single stream
2363 * scenario, it uses extra pipes than needed to reduce power consumption
2364 * We need to switch off this feature to make room for new streams.
2365 */
2366 if (params->stream_count > dc->current_state->stream_count &&
2367 dc->current_state->stream_count == 1) {
2368 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2369 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2370 if (pipe->next_odm_pipe)
2371 handle_exit_odm2to1 = true;
2372 }
2373 }
2374
2375 if (handle_exit_odm2to1)
2376 res = commit_minimal_transition_state(dc, dc->current_state);
2377
2378 context = dc_state_create_current_copy(dc);
2379 if (!context)
2380 goto context_alloc_fail;
2381
2382 context->power_source = params->power_source;
2383
2384 res = dc_validate_with_context(dc, set, params->stream_count, context, false);
2385
2386 /*
2387 * Only update link encoder to stream assignment after bandwidth validation passed.
2388 */
2389 if (res == DC_OK && dc->res_pool->funcs->link_encs_assign && !dc->config.unify_link_enc_assignment)
2390 dc->res_pool->funcs->link_encs_assign(
2391 dc, context, context->streams, context->stream_count);
2392
2393 if (res != DC_OK) {
2394 BREAK_TO_DEBUGGER();
2395 goto fail;
2396 }
2397
2398 res = dc_commit_state_no_check(dc, context);
2399
2400 for (i = 0; i < params->stream_count; i++) {
2401 for (j = 0; j < context->stream_count; j++) {
2402 if (params->streams[i]->stream_id == context->streams[j]->stream_id)
2403 params->streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2404
2405 if (dc_is_embedded_signal(params->streams[i]->signal)) {
2406 struct dc_stream_status *status = dc_state_get_stream_status(context, params->streams[i]);
2407
2408 if (!status)
2409 continue;
2410
2411 if (dc->hwss.is_abm_supported)
2412 status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, params->streams[i]);
2413 else
2414 status->is_abm_supported = true;
2415 }
2416 }
2417 }
2418
2419 fail:
2420 dc_state_release(context);
2421
2422 context_alloc_fail:
2423
2424 DC_LOG_DC("%s Finished.\n", __func__);
2425
2426 return res;
2427 }
2428
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)2429 bool dc_acquire_release_mpc_3dlut(
2430 struct dc *dc, bool acquire,
2431 struct dc_stream_state *stream,
2432 struct dc_3dlut **lut,
2433 struct dc_transfer_func **shaper)
2434 {
2435 int pipe_idx;
2436 bool ret = false;
2437 bool found_pipe_idx = false;
2438 const struct resource_pool *pool = dc->res_pool;
2439 struct resource_context *res_ctx = &dc->current_state->res_ctx;
2440 int mpcc_id = 0;
2441
2442 if (pool && res_ctx) {
2443 if (acquire) {
2444 /*find pipe idx for the given stream*/
2445 for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2446 if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2447 found_pipe_idx = true;
2448 mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2449 break;
2450 }
2451 }
2452 } else
2453 found_pipe_idx = true;/*for release pipe_idx is not required*/
2454
2455 if (found_pipe_idx) {
2456 if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2457 ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2458 else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2459 ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2460 }
2461 }
2462 return ret;
2463 }
2464
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)2465 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2466 {
2467 int i;
2468 struct pipe_ctx *pipe;
2469
2470 for (i = 0; i < MAX_PIPES; i++) {
2471 pipe = &context->res_ctx.pipe_ctx[i];
2472
2473 // Don't check flip pending on phantom pipes
2474 if (!pipe->plane_state || (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM))
2475 continue;
2476
2477 /* Must set to false to start with, due to OR in update function */
2478 pipe->plane_state->status.is_flip_pending = false;
2479 dc->hwss.update_pending_status(pipe);
2480 if (pipe->plane_state->status.is_flip_pending)
2481 return true;
2482 }
2483 return false;
2484 }
2485
2486 /* Perform updates here which need to be deferred until next vupdate
2487 *
2488 * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2489 * but forcing lut memory to shutdown state is immediate. This causes
2490 * single frame corruption as lut gets disabled mid-frame unless shutdown
2491 * is deferred until after entering bypass.
2492 */
process_deferred_updates(struct dc * dc)2493 static void process_deferred_updates(struct dc *dc)
2494 {
2495 int i = 0;
2496
2497 if (dc->debug.enable_mem_low_power.bits.cm) {
2498 ASSERT(dc->dcn_ip->max_num_dpp);
2499 for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2500 if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2501 dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2502 }
2503 }
2504
dc_post_update_surfaces_to_stream(struct dc * dc)2505 void dc_post_update_surfaces_to_stream(struct dc *dc)
2506 {
2507 int i;
2508 struct dc_state *context = dc->current_state;
2509
2510 if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2511 return;
2512
2513 post_surface_trace(dc);
2514
2515 /*
2516 * Only relevant for DCN behavior where we can guarantee the optimization
2517 * is safe to apply - retain the legacy behavior for DCE.
2518 */
2519
2520 if (dc->ctx->dce_version < DCE_VERSION_MAX)
2521 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2522 else {
2523 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2524
2525 if (is_flip_pending_in_pipes(dc, context))
2526 return;
2527
2528 for (i = 0; i < dc->res_pool->pipe_count; i++)
2529 if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2530 context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2531 context->res_ctx.pipe_ctx[i].pipe_idx = i;
2532 dc->hwss.disable_plane(dc, context, &context->res_ctx.pipe_ctx[i]);
2533 }
2534
2535 process_deferred_updates(dc);
2536
2537 dc->hwss.optimize_bandwidth(dc, context);
2538
2539 if (dc->hwss.update_dsc_pg)
2540 dc->hwss.update_dsc_pg(dc, context, true);
2541 }
2542
2543 dc->optimized_required = false;
2544 dc->wm_optimized_required = false;
2545 }
2546
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)2547 bool dc_set_generic_gpio_for_stereo(bool enable,
2548 struct gpio_service *gpio_service)
2549 {
2550 enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2551 struct gpio_pin_info pin_info;
2552 struct gpio *generic;
2553 struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2554 GFP_KERNEL);
2555
2556 if (!config)
2557 return false;
2558 pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2559
2560 if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2561 kfree(config);
2562 return false;
2563 } else {
2564 generic = dal_gpio_service_create_generic_mux(
2565 gpio_service,
2566 pin_info.offset,
2567 pin_info.mask);
2568 }
2569
2570 if (!generic) {
2571 kfree(config);
2572 return false;
2573 }
2574
2575 gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2576
2577 config->enable_output_from_mux = enable;
2578 config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2579
2580 if (gpio_result == GPIO_RESULT_OK)
2581 gpio_result = dal_mux_setup_config(generic, config);
2582
2583 if (gpio_result == GPIO_RESULT_OK) {
2584 dal_gpio_close(generic);
2585 dal_gpio_destroy_generic_mux(&generic);
2586 kfree(config);
2587 return true;
2588 } else {
2589 dal_gpio_close(generic);
2590 dal_gpio_destroy_generic_mux(&generic);
2591 kfree(config);
2592 return false;
2593 }
2594 }
2595
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)2596 static bool is_surface_in_context(
2597 const struct dc_state *context,
2598 const struct dc_plane_state *plane_state)
2599 {
2600 int j;
2601
2602 for (j = 0; j < MAX_PIPES; j++) {
2603 const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2604
2605 if (plane_state == pipe_ctx->plane_state) {
2606 return true;
2607 }
2608 }
2609
2610 return false;
2611 }
2612
get_plane_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2613 static enum surface_update_type get_plane_info_update_type(const struct dc *dc, const struct dc_surface_update *u)
2614 {
2615 union surface_update_flags *update_flags = &u->surface->update_flags;
2616 enum surface_update_type update_type = UPDATE_TYPE_FAST;
2617
2618 if (!u->plane_info)
2619 return UPDATE_TYPE_FAST;
2620
2621 if (u->plane_info->color_space != u->surface->color_space) {
2622 update_flags->bits.color_space_change = 1;
2623 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2624 }
2625
2626 if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2627 update_flags->bits.horizontal_mirror_change = 1;
2628 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2629 }
2630
2631 if (u->plane_info->rotation != u->surface->rotation) {
2632 update_flags->bits.rotation_change = 1;
2633 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2634 }
2635
2636 if (u->plane_info->format != u->surface->format) {
2637 update_flags->bits.pixel_format_change = 1;
2638 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2639 }
2640
2641 if (u->plane_info->stereo_format != u->surface->stereo_format) {
2642 update_flags->bits.stereo_format_change = 1;
2643 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2644 }
2645
2646 if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2647 update_flags->bits.per_pixel_alpha_change = 1;
2648 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2649 }
2650
2651 if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2652 update_flags->bits.global_alpha_change = 1;
2653 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2654 }
2655
2656 if (u->plane_info->dcc.enable != u->surface->dcc.enable
2657 || u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2658 || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2659 /* During DCC on/off, stutter period is calculated before
2660 * DCC has fully transitioned. This results in incorrect
2661 * stutter period calculation. Triggering a full update will
2662 * recalculate stutter period.
2663 */
2664 update_flags->bits.dcc_change = 1;
2665 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2666 }
2667
2668 if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2669 resource_pixel_format_to_bpp(u->surface->format)) {
2670 /* different bytes per element will require full bandwidth
2671 * and DML calculation
2672 */
2673 update_flags->bits.bpp_change = 1;
2674 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2675 }
2676
2677 if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2678 || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2679 update_flags->bits.plane_size_change = 1;
2680 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2681 }
2682
2683
2684 if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2685 sizeof(struct dc_tiling_info)) != 0) {
2686 update_flags->bits.swizzle_change = 1;
2687 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2688
2689 /* todo: below are HW dependent, we should add a hook to
2690 * DCE/N resource and validated there.
2691 */
2692 if (!dc->debug.skip_full_updated_if_possible) {
2693 /* swizzled mode requires RQ to be setup properly,
2694 * thus need to run DML to calculate RQ settings
2695 */
2696 update_flags->bits.bandwidth_change = 1;
2697 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2698 }
2699 }
2700
2701 /* This should be UPDATE_TYPE_FAST if nothing has changed. */
2702 return update_type;
2703 }
2704
get_scaling_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2705 static enum surface_update_type get_scaling_info_update_type(
2706 const struct dc *dc,
2707 const struct dc_surface_update *u)
2708 {
2709 union surface_update_flags *update_flags = &u->surface->update_flags;
2710
2711 if (!u->scaling_info)
2712 return UPDATE_TYPE_FAST;
2713
2714 if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2715 || u->scaling_info->src_rect.height != u->surface->src_rect.height
2716 || u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2717 || u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2718 || u->scaling_info->clip_rect.width != u->surface->clip_rect.width
2719 || u->scaling_info->clip_rect.height != u->surface->clip_rect.height
2720 || u->scaling_info->scaling_quality.integer_scaling !=
2721 u->surface->scaling_quality.integer_scaling) {
2722 update_flags->bits.scaling_change = 1;
2723
2724 if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2725 || u->scaling_info->src_rect.height > u->surface->src_rect.height)
2726 /* Making src rect bigger requires a bandwidth change */
2727 update_flags->bits.clock_change = 1;
2728
2729 if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2730 || u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2731 && (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2732 || u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2733 /* Making dst rect smaller requires a bandwidth change */
2734 update_flags->bits.bandwidth_change = 1;
2735
2736 if (u->scaling_info->src_rect.width > dc->caps.max_optimizable_video_width &&
2737 (u->scaling_info->clip_rect.width > u->surface->clip_rect.width ||
2738 u->scaling_info->clip_rect.height > u->surface->clip_rect.height))
2739 /* Changing clip size of a large surface may result in MPC slice count change */
2740 update_flags->bits.bandwidth_change = 1;
2741 }
2742
2743 if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2744 || u->scaling_info->src_rect.y != u->surface->src_rect.y
2745 || u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2746 || u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2747 || u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2748 || u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2749 update_flags->bits.position_change = 1;
2750
2751 /* process every update flag before returning */
2752 if (update_flags->bits.clock_change
2753 || update_flags->bits.bandwidth_change
2754 || update_flags->bits.scaling_change)
2755 return UPDATE_TYPE_FULL;
2756
2757 if (update_flags->bits.position_change)
2758 return UPDATE_TYPE_MED;
2759
2760 return UPDATE_TYPE_FAST;
2761 }
2762
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)2763 static enum surface_update_type det_surface_update(const struct dc *dc,
2764 const struct dc_surface_update *u)
2765 {
2766 const struct dc_state *context = dc->current_state;
2767 enum surface_update_type type;
2768 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2769 union surface_update_flags *update_flags = &u->surface->update_flags;
2770
2771 if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2772 update_flags->raw = 0xFFFFFFFF;
2773 return UPDATE_TYPE_FULL;
2774 }
2775
2776 update_flags->raw = 0; // Reset all flags
2777
2778 type = get_plane_info_update_type(dc, u);
2779 elevate_update_type(&overall_type, type);
2780
2781 type = get_scaling_info_update_type(dc, u);
2782 elevate_update_type(&overall_type, type);
2783
2784 if (u->flip_addr) {
2785 update_flags->bits.addr_update = 1;
2786 if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2787 update_flags->bits.tmz_changed = 1;
2788 elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2789 }
2790 }
2791 if (u->in_transfer_func)
2792 update_flags->bits.in_transfer_func_change = 1;
2793
2794 if (u->input_csc_color_matrix)
2795 update_flags->bits.input_csc_change = 1;
2796
2797 if (u->coeff_reduction_factor)
2798 update_flags->bits.coeff_reduction_change = 1;
2799
2800 if (u->gamut_remap_matrix)
2801 update_flags->bits.gamut_remap_change = 1;
2802
2803 if (u->blend_tf)
2804 update_flags->bits.gamma_change = 1;
2805
2806 if (u->gamma) {
2807 enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2808
2809 if (u->plane_info)
2810 format = u->plane_info->format;
2811 else
2812 format = u->surface->format;
2813
2814 if (dce_use_lut(format))
2815 update_flags->bits.gamma_change = 1;
2816 }
2817
2818 if (u->lut3d_func || u->func_shaper)
2819 update_flags->bits.lut_3d = 1;
2820
2821 if (u->hdr_mult.value)
2822 if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2823 update_flags->bits.hdr_mult = 1;
2824 elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2825 }
2826
2827 if (u->sdr_white_level_nits)
2828 if (u->sdr_white_level_nits != u->surface->sdr_white_level_nits) {
2829 update_flags->bits.sdr_white_level_nits = 1;
2830 elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2831 }
2832
2833 if (u->cm2_params) {
2834 if ((u->cm2_params->component_settings.shaper_3dlut_setting
2835 != u->surface->mcm_shaper_3dlut_setting)
2836 || (u->cm2_params->component_settings.lut1d_enable
2837 != u->surface->mcm_lut1d_enable))
2838 update_flags->bits.mcm_transfer_function_enable_change = 1;
2839 if (u->cm2_params->cm2_luts.lut3d_data.lut3d_src
2840 != u->surface->mcm_luts.lut3d_data.lut3d_src)
2841 update_flags->bits.mcm_transfer_function_enable_change = 1;
2842 }
2843 if (update_flags->bits.in_transfer_func_change) {
2844 type = UPDATE_TYPE_MED;
2845 elevate_update_type(&overall_type, type);
2846 }
2847
2848 if (update_flags->bits.lut_3d &&
2849 u->surface->mcm_luts.lut3d_data.lut3d_src != DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM) {
2850 type = UPDATE_TYPE_FULL;
2851 elevate_update_type(&overall_type, type);
2852 }
2853 if (update_flags->bits.mcm_transfer_function_enable_change) {
2854 type = UPDATE_TYPE_FULL;
2855 elevate_update_type(&overall_type, type);
2856 }
2857
2858 if (dc->debug.enable_legacy_fast_update &&
2859 (update_flags->bits.gamma_change ||
2860 update_flags->bits.gamut_remap_change ||
2861 update_flags->bits.input_csc_change ||
2862 update_flags->bits.coeff_reduction_change)) {
2863 type = UPDATE_TYPE_FULL;
2864 elevate_update_type(&overall_type, type);
2865 }
2866 return overall_type;
2867 }
2868
2869 /* May need to flip the desktop plane in cases where MPO plane receives a flip but desktop plane doesn't
2870 * while both planes are flip_immediate
2871 */
force_immediate_gsl_plane_flip(struct dc * dc,struct dc_surface_update * updates,int surface_count)2872 static void force_immediate_gsl_plane_flip(struct dc *dc, struct dc_surface_update *updates, int surface_count)
2873 {
2874 bool has_flip_immediate_plane = false;
2875 int i;
2876
2877 for (i = 0; i < surface_count; i++) {
2878 if (updates[i].surface->flip_immediate) {
2879 has_flip_immediate_plane = true;
2880 break;
2881 }
2882 }
2883
2884 if (has_flip_immediate_plane && surface_count > 1) {
2885 for (i = 0; i < surface_count; i++) {
2886 if (updates[i].surface->flip_immediate)
2887 updates[i].surface->update_flags.bits.addr_update = 1;
2888 }
2889 }
2890 }
2891
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2892 static enum surface_update_type check_update_surfaces_for_stream(
2893 struct dc *dc,
2894 struct dc_surface_update *updates,
2895 int surface_count,
2896 struct dc_stream_update *stream_update,
2897 const struct dc_stream_status *stream_status)
2898 {
2899 int i;
2900 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2901
2902 if (dc->idle_optimizations_allowed || dc_can_clear_cursor_limit(dc))
2903 overall_type = UPDATE_TYPE_FULL;
2904
2905 if (stream_status == NULL || stream_status->plane_count != surface_count)
2906 overall_type = UPDATE_TYPE_FULL;
2907
2908 if (stream_update && stream_update->pending_test_pattern) {
2909 overall_type = UPDATE_TYPE_FULL;
2910 }
2911
2912 if (stream_update && stream_update->hw_cursor_req) {
2913 overall_type = UPDATE_TYPE_FULL;
2914 }
2915
2916 /* some stream updates require passive update */
2917 if (stream_update) {
2918 union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2919
2920 if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2921 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2922 stream_update->integer_scaling_update)
2923 su_flags->bits.scaling = 1;
2924
2925 if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2926 su_flags->bits.out_tf = 1;
2927
2928 if (stream_update->abm_level)
2929 su_flags->bits.abm_level = 1;
2930
2931 if (stream_update->dpms_off)
2932 su_flags->bits.dpms_off = 1;
2933
2934 if (stream_update->gamut_remap)
2935 su_flags->bits.gamut_remap = 1;
2936
2937 if (stream_update->wb_update)
2938 su_flags->bits.wb_update = 1;
2939
2940 if (stream_update->dsc_config)
2941 su_flags->bits.dsc_changed = 1;
2942
2943 if (stream_update->mst_bw_update)
2944 su_flags->bits.mst_bw = 1;
2945
2946 if (stream_update->stream->freesync_on_desktop &&
2947 (stream_update->vrr_infopacket || stream_update->allow_freesync ||
2948 stream_update->vrr_active_variable || stream_update->vrr_active_fixed))
2949 su_flags->bits.fams_changed = 1;
2950
2951 if (stream_update->scaler_sharpener_update)
2952 su_flags->bits.scaler_sharpener = 1;
2953
2954 if (stream_update->sharpening_required)
2955 su_flags->bits.sharpening_required = 1;
2956
2957 if (stream_update->output_color_space)
2958 su_flags->bits.out_csc = 1;
2959
2960 if (su_flags->raw != 0)
2961 overall_type = UPDATE_TYPE_FULL;
2962
2963 if (stream_update->output_csc_transform)
2964 su_flags->bits.out_csc = 1;
2965
2966 /* Output transfer function changes do not require bandwidth recalculation,
2967 * so don't trigger a full update
2968 */
2969 if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2970 su_flags->bits.out_tf = 1;
2971 }
2972
2973 for (i = 0 ; i < surface_count; i++) {
2974 enum surface_update_type type =
2975 det_surface_update(dc, &updates[i]);
2976
2977 elevate_update_type(&overall_type, type);
2978 }
2979
2980 return overall_type;
2981 }
2982
2983 /*
2984 * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2985 *
2986 * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2987 */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2988 enum surface_update_type dc_check_update_surfaces_for_stream(
2989 struct dc *dc,
2990 struct dc_surface_update *updates,
2991 int surface_count,
2992 struct dc_stream_update *stream_update,
2993 const struct dc_stream_status *stream_status)
2994 {
2995 int i;
2996 enum surface_update_type type;
2997
2998 if (stream_update)
2999 stream_update->stream->update_flags.raw = 0;
3000 for (i = 0; i < surface_count; i++)
3001 updates[i].surface->update_flags.raw = 0;
3002
3003 type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
3004 if (type == UPDATE_TYPE_FULL) {
3005 if (stream_update) {
3006 uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
3007 stream_update->stream->update_flags.raw = 0xFFFFFFFF;
3008 stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
3009 }
3010 for (i = 0; i < surface_count; i++)
3011 updates[i].surface->update_flags.raw = 0xFFFFFFFF;
3012 }
3013
3014 if (type == UPDATE_TYPE_FAST) {
3015 // If there's an available clock comparator, we use that.
3016 if (dc->clk_mgr->funcs->are_clock_states_equal) {
3017 if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
3018 dc->optimized_required = true;
3019 // Else we fallback to mem compare.
3020 } else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
3021 dc->optimized_required = true;
3022 }
3023
3024 dc->optimized_required |= dc->wm_optimized_required;
3025 }
3026
3027 return type;
3028 }
3029
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)3030 static struct dc_stream_status *stream_get_status(
3031 struct dc_state *ctx,
3032 struct dc_stream_state *stream)
3033 {
3034 uint8_t i;
3035
3036 for (i = 0; i < ctx->stream_count; i++) {
3037 if (stream == ctx->streams[i]) {
3038 return &ctx->stream_status[i];
3039 }
3040 }
3041
3042 return NULL;
3043 }
3044
3045 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
3046
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)3047 static void copy_surface_update_to_plane(
3048 struct dc_plane_state *surface,
3049 struct dc_surface_update *srf_update)
3050 {
3051 if (srf_update->flip_addr) {
3052 surface->address = srf_update->flip_addr->address;
3053 surface->flip_immediate =
3054 srf_update->flip_addr->flip_immediate;
3055 surface->time.time_elapsed_in_us[surface->time.index] =
3056 srf_update->flip_addr->flip_timestamp_in_us -
3057 surface->time.prev_update_time_in_us;
3058 surface->time.prev_update_time_in_us =
3059 srf_update->flip_addr->flip_timestamp_in_us;
3060 surface->time.index++;
3061 if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
3062 surface->time.index = 0;
3063
3064 surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
3065 }
3066
3067 if (srf_update->scaling_info) {
3068 surface->scaling_quality =
3069 srf_update->scaling_info->scaling_quality;
3070 surface->dst_rect =
3071 srf_update->scaling_info->dst_rect;
3072 surface->src_rect =
3073 srf_update->scaling_info->src_rect;
3074 surface->clip_rect =
3075 srf_update->scaling_info->clip_rect;
3076 }
3077
3078 if (srf_update->plane_info) {
3079 surface->color_space =
3080 srf_update->plane_info->color_space;
3081 surface->format =
3082 srf_update->plane_info->format;
3083 surface->plane_size =
3084 srf_update->plane_info->plane_size;
3085 surface->rotation =
3086 srf_update->plane_info->rotation;
3087 surface->horizontal_mirror =
3088 srf_update->plane_info->horizontal_mirror;
3089 surface->stereo_format =
3090 srf_update->plane_info->stereo_format;
3091 surface->tiling_info =
3092 srf_update->plane_info->tiling_info;
3093 surface->visible =
3094 srf_update->plane_info->visible;
3095 surface->per_pixel_alpha =
3096 srf_update->plane_info->per_pixel_alpha;
3097 surface->global_alpha =
3098 srf_update->plane_info->global_alpha;
3099 surface->global_alpha_value =
3100 srf_update->plane_info->global_alpha_value;
3101 surface->dcc =
3102 srf_update->plane_info->dcc;
3103 surface->layer_index =
3104 srf_update->plane_info->layer_index;
3105 }
3106
3107 if (srf_update->gamma) {
3108 memcpy(&surface->gamma_correction.entries,
3109 &srf_update->gamma->entries,
3110 sizeof(struct dc_gamma_entries));
3111 surface->gamma_correction.is_identity =
3112 srf_update->gamma->is_identity;
3113 surface->gamma_correction.num_entries =
3114 srf_update->gamma->num_entries;
3115 surface->gamma_correction.type =
3116 srf_update->gamma->type;
3117 }
3118
3119 if (srf_update->in_transfer_func) {
3120 surface->in_transfer_func.sdr_ref_white_level =
3121 srf_update->in_transfer_func->sdr_ref_white_level;
3122 surface->in_transfer_func.tf =
3123 srf_update->in_transfer_func->tf;
3124 surface->in_transfer_func.type =
3125 srf_update->in_transfer_func->type;
3126 memcpy(&surface->in_transfer_func.tf_pts,
3127 &srf_update->in_transfer_func->tf_pts,
3128 sizeof(struct dc_transfer_func_distributed_points));
3129 }
3130
3131 if (srf_update->cm2_params) {
3132 surface->mcm_shaper_3dlut_setting = srf_update->cm2_params->component_settings.shaper_3dlut_setting;
3133 surface->mcm_lut1d_enable = srf_update->cm2_params->component_settings.lut1d_enable;
3134 surface->mcm_luts = srf_update->cm2_params->cm2_luts;
3135 }
3136
3137 if (srf_update->func_shaper) {
3138 memcpy(&surface->in_shaper_func, srf_update->func_shaper,
3139 sizeof(surface->in_shaper_func));
3140
3141 if (surface->mcm_shaper_3dlut_setting >= DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER)
3142 surface->mcm_luts.shaper = &surface->in_shaper_func;
3143 }
3144
3145 if (srf_update->lut3d_func)
3146 memcpy(&surface->lut3d_func, srf_update->lut3d_func,
3147 sizeof(surface->lut3d_func));
3148
3149 if (srf_update->hdr_mult.value)
3150 surface->hdr_mult =
3151 srf_update->hdr_mult;
3152
3153 if (srf_update->sdr_white_level_nits)
3154 surface->sdr_white_level_nits =
3155 srf_update->sdr_white_level_nits;
3156
3157 if (srf_update->blend_tf) {
3158 memcpy(&surface->blend_tf, srf_update->blend_tf,
3159 sizeof(surface->blend_tf));
3160
3161 if (surface->mcm_lut1d_enable)
3162 surface->mcm_luts.lut1d_func = &surface->blend_tf;
3163 }
3164
3165 if (srf_update->cm2_params || srf_update->blend_tf)
3166 surface->lut_bank_a = !surface->lut_bank_a;
3167
3168 if (srf_update->input_csc_color_matrix)
3169 surface->input_csc_color_matrix =
3170 *srf_update->input_csc_color_matrix;
3171
3172 if (srf_update->coeff_reduction_factor)
3173 surface->coeff_reduction_factor =
3174 *srf_update->coeff_reduction_factor;
3175
3176 if (srf_update->gamut_remap_matrix)
3177 surface->gamut_remap_matrix =
3178 *srf_update->gamut_remap_matrix;
3179
3180 if (srf_update->cursor_csc_color_matrix)
3181 surface->cursor_csc_color_matrix =
3182 *srf_update->cursor_csc_color_matrix;
3183
3184 if (srf_update->bias_and_scale.bias_and_scale_valid)
3185 surface->bias_and_scale =
3186 srf_update->bias_and_scale;
3187 }
3188
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)3189 static void copy_stream_update_to_stream(struct dc *dc,
3190 struct dc_state *context,
3191 struct dc_stream_state *stream,
3192 struct dc_stream_update *update)
3193 {
3194 struct dc_context *dc_ctx = dc->ctx;
3195
3196 if (update == NULL || stream == NULL)
3197 return;
3198
3199 if (update->src.height && update->src.width)
3200 stream->src = update->src;
3201
3202 if (update->dst.height && update->dst.width)
3203 stream->dst = update->dst;
3204
3205 if (update->out_transfer_func) {
3206 stream->out_transfer_func.sdr_ref_white_level =
3207 update->out_transfer_func->sdr_ref_white_level;
3208 stream->out_transfer_func.tf = update->out_transfer_func->tf;
3209 stream->out_transfer_func.type =
3210 update->out_transfer_func->type;
3211 memcpy(&stream->out_transfer_func.tf_pts,
3212 &update->out_transfer_func->tf_pts,
3213 sizeof(struct dc_transfer_func_distributed_points));
3214 }
3215
3216 if (update->hdr_static_metadata)
3217 stream->hdr_static_metadata = *update->hdr_static_metadata;
3218
3219 if (update->abm_level)
3220 stream->abm_level = *update->abm_level;
3221
3222 if (update->periodic_interrupt)
3223 stream->periodic_interrupt = *update->periodic_interrupt;
3224
3225 if (update->gamut_remap)
3226 stream->gamut_remap_matrix = *update->gamut_remap;
3227
3228 /* Note: this being updated after mode set is currently not a use case
3229 * however if it arises OCSC would need to be reprogrammed at the
3230 * minimum
3231 */
3232 if (update->output_color_space)
3233 stream->output_color_space = *update->output_color_space;
3234
3235 if (update->output_csc_transform)
3236 stream->csc_color_matrix = *update->output_csc_transform;
3237
3238 if (update->vrr_infopacket)
3239 stream->vrr_infopacket = *update->vrr_infopacket;
3240
3241 if (update->hw_cursor_req)
3242 stream->hw_cursor_req = *update->hw_cursor_req;
3243
3244 if (update->allow_freesync)
3245 stream->allow_freesync = *update->allow_freesync;
3246
3247 if (update->vrr_active_variable)
3248 stream->vrr_active_variable = *update->vrr_active_variable;
3249
3250 if (update->vrr_active_fixed)
3251 stream->vrr_active_fixed = *update->vrr_active_fixed;
3252
3253 if (update->crtc_timing_adjust) {
3254 if (stream->adjust.v_total_min != update->crtc_timing_adjust->v_total_min ||
3255 stream->adjust.v_total_max != update->crtc_timing_adjust->v_total_max ||
3256 stream->adjust.timing_adjust_pending)
3257 update->crtc_timing_adjust->timing_adjust_pending = true;
3258 stream->adjust = *update->crtc_timing_adjust;
3259 update->crtc_timing_adjust->timing_adjust_pending = false;
3260 }
3261
3262 if (update->dpms_off)
3263 stream->dpms_off = *update->dpms_off;
3264
3265 if (update->hfvsif_infopacket)
3266 stream->hfvsif_infopacket = *update->hfvsif_infopacket;
3267
3268 if (update->vtem_infopacket)
3269 stream->vtem_infopacket = *update->vtem_infopacket;
3270
3271 if (update->vsc_infopacket)
3272 stream->vsc_infopacket = *update->vsc_infopacket;
3273
3274 if (update->vsp_infopacket)
3275 stream->vsp_infopacket = *update->vsp_infopacket;
3276
3277 if (update->adaptive_sync_infopacket)
3278 stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
3279
3280 if (update->dither_option)
3281 stream->dither_option = *update->dither_option;
3282
3283 if (update->pending_test_pattern)
3284 stream->test_pattern = *update->pending_test_pattern;
3285 /* update current stream with writeback info */
3286 if (update->wb_update) {
3287 int i;
3288
3289 stream->num_wb_info = update->wb_update->num_wb_info;
3290 ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
3291 for (i = 0; i < stream->num_wb_info; i++)
3292 stream->writeback_info[i] =
3293 update->wb_update->writeback_info[i];
3294 }
3295 if (update->dsc_config) {
3296 struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
3297 uint32_t old_dsc_enabled = stream->timing.flags.DSC;
3298 uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
3299 update->dsc_config->num_slices_v != 0);
3300
3301 /* Use temporarry context for validating new DSC config */
3302 struct dc_state *dsc_validate_context = dc_state_create_copy(dc->current_state);
3303
3304 if (dsc_validate_context) {
3305 stream->timing.dsc_cfg = *update->dsc_config;
3306 stream->timing.flags.DSC = enable_dsc;
3307 if (dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true) != DC_OK) {
3308 stream->timing.dsc_cfg = old_dsc_cfg;
3309 stream->timing.flags.DSC = old_dsc_enabled;
3310 update->dsc_config = NULL;
3311 }
3312
3313 dc_state_release(dsc_validate_context);
3314 } else {
3315 DC_ERROR("Failed to allocate new validate context for DSC change\n");
3316 update->dsc_config = NULL;
3317 }
3318 }
3319 if (update->scaler_sharpener_update)
3320 stream->scaler_sharpener_update = *update->scaler_sharpener_update;
3321 if (update->sharpening_required)
3322 stream->sharpening_required = *update->sharpening_required;
3323 }
3324
backup_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3325 static void backup_planes_and_stream_state(
3326 struct dc_scratch_space *scratch,
3327 struct dc_stream_state *stream)
3328 {
3329 int i;
3330 struct dc_stream_status *status = dc_stream_get_status(stream);
3331
3332 if (!status)
3333 return;
3334
3335 for (i = 0; i < status->plane_count; i++) {
3336 dc_plane_copy_config(&scratch->plane_states[i], status->plane_states[i]);
3337 }
3338 scratch->stream_state = *stream;
3339 }
3340
restore_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3341 static void restore_planes_and_stream_state(
3342 struct dc_scratch_space *scratch,
3343 struct dc_stream_state *stream)
3344 {
3345 int i;
3346 struct dc_stream_status *status = dc_stream_get_status(stream);
3347
3348 if (!status)
3349 return;
3350
3351 for (i = 0; i < status->plane_count; i++) {
3352 dc_plane_copy_config(status->plane_states[i], &scratch->plane_states[i]);
3353 }
3354 *stream = scratch->stream_state;
3355 }
3356
3357 /**
3358 * update_seamless_boot_flags() - Helper function for updating seamless boot flags
3359 *
3360 * @dc: Current DC state
3361 * @context: New DC state to be programmed
3362 * @surface_count: Number of surfaces that have an updated
3363 * @stream: Corresponding stream to be updated in the current flip
3364 *
3365 * Updating seamless boot flags do not need to be part of the commit sequence. This
3366 * helper function will update the seamless boot flags on each flip (if required)
3367 * outside of the HW commit sequence (fast or slow).
3368 *
3369 * Return: void
3370 */
update_seamless_boot_flags(struct dc * dc,struct dc_state * context,int surface_count,struct dc_stream_state * stream)3371 static void update_seamless_boot_flags(struct dc *dc,
3372 struct dc_state *context,
3373 int surface_count,
3374 struct dc_stream_state *stream)
3375 {
3376 if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
3377 /* Optimize seamless boot flag keeps clocks and watermarks high until
3378 * first flip. After first flip, optimization is required to lower
3379 * bandwidth. Important to note that it is expected UEFI will
3380 * only light up a single display on POST, therefore we only expect
3381 * one stream with seamless boot flag set.
3382 */
3383 if (stream->apply_seamless_boot_optimization) {
3384 stream->apply_seamless_boot_optimization = false;
3385
3386 if (get_seamless_boot_stream_count(context) == 0)
3387 dc->optimized_required = true;
3388 }
3389 }
3390 }
3391
3392 /**
3393 * update_planes_and_stream_state() - The function takes planes and stream
3394 * updates as inputs and determines the appropriate update type. If update type
3395 * is FULL, the function allocates a new context, populates and validates it.
3396 * Otherwise, it updates current dc context. The function will return both
3397 * new_context and new_update_type back to the caller. The function also backs
3398 * up both current and new contexts into corresponding dc state scratch memory.
3399 * TODO: The function does too many things, and even conditionally allocates dc
3400 * context memory implicitly. We should consider to break it down.
3401 *
3402 * @dc: Current DC state
3403 * @srf_updates: an array of surface updates
3404 * @surface_count: surface update count
3405 * @stream: Corresponding stream to be updated
3406 * @stream_update: stream update
3407 * @new_update_type: [out] determined update type by the function
3408 * @new_context: [out] new context allocated and validated if update type is
3409 * FULL, reference to current context if update type is less than FULL.
3410 *
3411 * Return: true if a valid update is populated into new_context, false
3412 * otherwise.
3413 */
update_planes_and_stream_state(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type * new_update_type,struct dc_state ** new_context)3414 static bool update_planes_and_stream_state(struct dc *dc,
3415 struct dc_surface_update *srf_updates, int surface_count,
3416 struct dc_stream_state *stream,
3417 struct dc_stream_update *stream_update,
3418 enum surface_update_type *new_update_type,
3419 struct dc_state **new_context)
3420 {
3421 struct dc_state *context;
3422 int i, j;
3423 enum surface_update_type update_type;
3424 const struct dc_stream_status *stream_status;
3425 struct dc_context *dc_ctx = dc->ctx;
3426
3427 stream_status = dc_stream_get_status(stream);
3428
3429 if (!stream_status) {
3430 if (surface_count) /* Only an error condition if surf_count non-zero*/
3431 ASSERT(false);
3432
3433 return false; /* Cannot commit surface to stream that is not committed */
3434 }
3435
3436 context = dc->current_state;
3437 update_type = dc_check_update_surfaces_for_stream(
3438 dc, srf_updates, surface_count, stream_update, stream_status);
3439 /* It is possible to receive a flip for one plane while there are multiple flip_immediate planes in the same stream.
3440 * E.g. Desktop and MPO plane are flip_immediate but only the MPO plane received a flip
3441 * Force the other flip_immediate planes to flip so GSL doesn't wait for a flip that won't come.
3442 */
3443 force_immediate_gsl_plane_flip(dc, srf_updates, surface_count);
3444 if (update_type == UPDATE_TYPE_FULL)
3445 backup_planes_and_stream_state(&dc->scratch.current_state, stream);
3446
3447 /* update current stream with the new updates */
3448 copy_stream_update_to_stream(dc, context, stream, stream_update);
3449
3450 /* do not perform surface update if surface has invalid dimensions
3451 * (all zero) and no scaling_info is provided
3452 */
3453 if (surface_count > 0) {
3454 for (i = 0; i < surface_count; i++) {
3455 if ((srf_updates[i].surface->src_rect.width == 0 ||
3456 srf_updates[i].surface->src_rect.height == 0 ||
3457 srf_updates[i].surface->dst_rect.width == 0 ||
3458 srf_updates[i].surface->dst_rect.height == 0) &&
3459 (!srf_updates[i].scaling_info ||
3460 srf_updates[i].scaling_info->src_rect.width == 0 ||
3461 srf_updates[i].scaling_info->src_rect.height == 0 ||
3462 srf_updates[i].scaling_info->dst_rect.width == 0 ||
3463 srf_updates[i].scaling_info->dst_rect.height == 0)) {
3464 DC_ERROR("Invalid src/dst rects in surface update!\n");
3465 return false;
3466 }
3467 }
3468 }
3469
3470 if (update_type >= update_surface_trace_level)
3471 update_surface_trace(dc, srf_updates, surface_count);
3472
3473 for (i = 0; i < surface_count; i++)
3474 copy_surface_update_to_plane(srf_updates[i].surface, &srf_updates[i]);
3475
3476 if (update_type >= UPDATE_TYPE_FULL) {
3477 struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3478
3479 for (i = 0; i < surface_count; i++)
3480 new_planes[i] = srf_updates[i].surface;
3481
3482 /* initialize scratch memory for building context */
3483 context = dc_state_create_copy(dc->current_state);
3484 if (context == NULL) {
3485 DC_ERROR("Failed to allocate new validate context!\n");
3486 return false;
3487 }
3488
3489 /* For each full update, remove all existing phantom pipes first.
3490 * Ensures that we have enough pipes for newly added MPO planes
3491 */
3492 dc_state_remove_phantom_streams_and_planes(dc, context);
3493 dc_state_release_phantom_streams_and_planes(dc, context);
3494
3495 /*remove old surfaces from context */
3496 if (!dc_state_rem_all_planes_for_stream(dc, stream, context)) {
3497
3498 BREAK_TO_DEBUGGER();
3499 goto fail;
3500 }
3501
3502 /* add surface to context */
3503 if (!dc_state_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3504
3505 BREAK_TO_DEBUGGER();
3506 goto fail;
3507 }
3508 }
3509
3510 /* save update parameters into surface */
3511 for (i = 0; i < surface_count; i++) {
3512 struct dc_plane_state *surface = srf_updates[i].surface;
3513
3514 if (update_type != UPDATE_TYPE_MED)
3515 continue;
3516 if (surface->update_flags.bits.position_change) {
3517 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3518 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3519
3520 if (pipe_ctx->plane_state != surface)
3521 continue;
3522
3523 resource_build_scaling_params(pipe_ctx);
3524 }
3525 }
3526 }
3527
3528 if (update_type == UPDATE_TYPE_FULL) {
3529 if (dc->res_pool->funcs->validate_bandwidth(dc, context, false) != DC_OK) {
3530 BREAK_TO_DEBUGGER();
3531 goto fail;
3532 }
3533 }
3534 update_seamless_boot_flags(dc, context, surface_count, stream);
3535
3536 *new_context = context;
3537 *new_update_type = update_type;
3538 if (update_type == UPDATE_TYPE_FULL)
3539 backup_planes_and_stream_state(&dc->scratch.new_state, stream);
3540
3541 return true;
3542
3543 fail:
3544 dc_state_release(context);
3545
3546 return false;
3547
3548 }
3549
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3550 static void commit_planes_do_stream_update(struct dc *dc,
3551 struct dc_stream_state *stream,
3552 struct dc_stream_update *stream_update,
3553 enum surface_update_type update_type,
3554 struct dc_state *context)
3555 {
3556 int j;
3557
3558 // Stream updates
3559 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3560 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3561
3562 if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) {
3563
3564 if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3565 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3566
3567 if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3568 stream_update->vrr_infopacket ||
3569 stream_update->vsc_infopacket ||
3570 stream_update->vsp_infopacket ||
3571 stream_update->hfvsif_infopacket ||
3572 stream_update->adaptive_sync_infopacket ||
3573 stream_update->vtem_infopacket) {
3574 resource_build_info_frame(pipe_ctx);
3575 dc->hwss.update_info_frame(pipe_ctx);
3576
3577 if (dc_is_dp_signal(pipe_ctx->stream->signal))
3578 dc->link_srv->dp_trace_source_sequence(
3579 pipe_ctx->stream->link,
3580 DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3581 }
3582
3583 if (stream_update->hdr_static_metadata &&
3584 stream->use_dynamic_meta &&
3585 dc->hwss.set_dmdata_attributes &&
3586 pipe_ctx->stream->dmdata_address.quad_part != 0)
3587 dc->hwss.set_dmdata_attributes(pipe_ctx);
3588
3589 if (stream_update->gamut_remap)
3590 dc_stream_set_gamut_remap(dc, stream);
3591
3592 if (stream_update->output_csc_transform)
3593 dc_stream_program_csc_matrix(dc, stream);
3594
3595 if (stream_update->dither_option) {
3596 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3597 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3598 &pipe_ctx->stream->bit_depth_params);
3599 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3600 &stream->bit_depth_params,
3601 &stream->clamping);
3602 while (odm_pipe) {
3603 odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3604 &stream->bit_depth_params,
3605 &stream->clamping);
3606 odm_pipe = odm_pipe->next_odm_pipe;
3607 }
3608 }
3609
3610 if (stream_update->cursor_attributes)
3611 program_cursor_attributes(dc, stream);
3612
3613 if (stream_update->cursor_position)
3614 program_cursor_position(dc, stream);
3615
3616 /* Full fe update*/
3617 if (update_type == UPDATE_TYPE_FAST)
3618 continue;
3619
3620 if (stream_update->dsc_config)
3621 dc->link_srv->update_dsc_config(pipe_ctx);
3622
3623 if (stream_update->mst_bw_update) {
3624 if (stream_update->mst_bw_update->is_increase)
3625 dc->link_srv->increase_mst_payload(pipe_ctx,
3626 stream_update->mst_bw_update->mst_stream_bw);
3627 else
3628 dc->link_srv->reduce_mst_payload(pipe_ctx,
3629 stream_update->mst_bw_update->mst_stream_bw);
3630 }
3631
3632 if (stream_update->pending_test_pattern) {
3633 /*
3634 * test pattern params depends on ODM topology
3635 * changes that we could be applying to front
3636 * end. Since at the current stage front end
3637 * changes are not yet applied. We can only
3638 * apply test pattern in hw based on current
3639 * state and populate the final test pattern
3640 * params in new state. If current and new test
3641 * pattern params are different as result of
3642 * different ODM topology being used, it will be
3643 * detected and handle during front end
3644 * programming update.
3645 */
3646 dc->link_srv->dp_set_test_pattern(stream->link,
3647 stream->test_pattern.type,
3648 stream->test_pattern.color_space,
3649 stream->test_pattern.p_link_settings,
3650 stream->test_pattern.p_custom_pattern,
3651 stream->test_pattern.cust_pattern_size);
3652 resource_build_test_pattern_params(&context->res_ctx, pipe_ctx);
3653 }
3654
3655 if (stream_update->dpms_off) {
3656 if (*stream_update->dpms_off) {
3657 dc->link_srv->set_dpms_off(pipe_ctx);
3658 /* for dpms, keep acquired resources*/
3659 if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3660 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3661
3662 dc->optimized_required = true;
3663
3664 } else {
3665 if (get_seamless_boot_stream_count(context) == 0)
3666 dc->hwss.prepare_bandwidth(dc, dc->current_state);
3667 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3668 }
3669 } else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space
3670 && !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) {
3671 /*
3672 * Workaround for firmware issue in some receivers where they don't pick up
3673 * correct output color space unless DP link is disabled/re-enabled
3674 */
3675 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3676 }
3677
3678 if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3679 bool should_program_abm = true;
3680
3681 // if otg funcs defined check if blanked before programming
3682 if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3683 if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3684 should_program_abm = false;
3685
3686 if (should_program_abm) {
3687 if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3688 dc->hwss.set_abm_immediate_disable(pipe_ctx);
3689 } else {
3690 pipe_ctx->stream_res.abm->funcs->set_abm_level(
3691 pipe_ctx->stream_res.abm, stream->abm_level);
3692 }
3693 }
3694 }
3695 }
3696 }
3697 }
3698
dc_dmub_should_send_dirty_rect_cmd(struct dc * dc,struct dc_stream_state * stream)3699 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3700 {
3701 if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3702 || stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3703 && stream->ctx->dce_version >= DCN_VERSION_3_1)
3704 return true;
3705
3706 if (stream->link->replay_settings.config.replay_supported)
3707 return true;
3708
3709 if (stream->ctx->dce_version >= DCN_VERSION_3_5 && stream->abm_level)
3710 return true;
3711
3712 return false;
3713 }
3714
dc_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context)3715 void dc_dmub_update_dirty_rect(struct dc *dc,
3716 int surface_count,
3717 struct dc_stream_state *stream,
3718 struct dc_surface_update *srf_updates,
3719 struct dc_state *context)
3720 {
3721 union dmub_rb_cmd cmd;
3722 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3723 unsigned int i, j;
3724 unsigned int panel_inst = 0;
3725
3726 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3727 return;
3728
3729 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3730 return;
3731
3732 memset(&cmd, 0x0, sizeof(cmd));
3733 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3734 cmd.update_dirty_rect.header.sub_type = 0;
3735 cmd.update_dirty_rect.header.payload_bytes =
3736 sizeof(cmd.update_dirty_rect) -
3737 sizeof(cmd.update_dirty_rect.header);
3738 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3739 for (i = 0; i < surface_count; i++) {
3740 struct dc_plane_state *plane_state = srf_updates[i].surface;
3741 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3742
3743 if (!srf_updates[i].surface || !flip_addr)
3744 continue;
3745 /* Do not send in immediate flip mode */
3746 if (srf_updates[i].surface->flip_immediate)
3747 continue;
3748
3749 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3750 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3751 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3752 sizeof(flip_addr->dirty_rects));
3753 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3754 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3755
3756 if (pipe_ctx->stream != stream)
3757 continue;
3758 if (pipe_ctx->plane_state != plane_state)
3759 continue;
3760
3761 update_dirty_rect->panel_inst = panel_inst;
3762 update_dirty_rect->pipe_idx = j;
3763 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
3764 }
3765 }
3766 }
3767
build_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3768 static void build_dmub_update_dirty_rect(
3769 struct dc *dc,
3770 int surface_count,
3771 struct dc_stream_state *stream,
3772 struct dc_surface_update *srf_updates,
3773 struct dc_state *context,
3774 struct dc_dmub_cmd dc_dmub_cmd[],
3775 unsigned int *dmub_cmd_count)
3776 {
3777 union dmub_rb_cmd cmd;
3778 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3779 unsigned int i, j;
3780 unsigned int panel_inst = 0;
3781
3782 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3783 return;
3784
3785 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3786 return;
3787
3788 memset(&cmd, 0x0, sizeof(cmd));
3789 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3790 cmd.update_dirty_rect.header.sub_type = 0;
3791 cmd.update_dirty_rect.header.payload_bytes =
3792 sizeof(cmd.update_dirty_rect) -
3793 sizeof(cmd.update_dirty_rect.header);
3794 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3795 for (i = 0; i < surface_count; i++) {
3796 struct dc_plane_state *plane_state = srf_updates[i].surface;
3797 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3798
3799 if (!srf_updates[i].surface || !flip_addr)
3800 continue;
3801 /* Do not send in immediate flip mode */
3802 if (srf_updates[i].surface->flip_immediate)
3803 continue;
3804 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3805 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3806 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3807 sizeof(flip_addr->dirty_rects));
3808 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3809 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3810
3811 if (pipe_ctx->stream != stream)
3812 continue;
3813 if (pipe_ctx->plane_state != plane_state)
3814 continue;
3815 update_dirty_rect->panel_inst = panel_inst;
3816 update_dirty_rect->pipe_idx = j;
3817 dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd;
3818 dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT;
3819 (*dmub_cmd_count)++;
3820 }
3821 }
3822 }
3823
check_address_only_update(union surface_update_flags update_flags)3824 static bool check_address_only_update(union surface_update_flags update_flags)
3825 {
3826 union surface_update_flags addr_only_update_flags;
3827 addr_only_update_flags.raw = 0;
3828 addr_only_update_flags.bits.addr_update = 1;
3829
3830 return update_flags.bits.addr_update &&
3831 !(update_flags.raw & ~addr_only_update_flags.raw);
3832 }
3833
3834 /**
3835 * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB
3836 *
3837 * @dc: Current DC state
3838 * @srf_updates: Array of surface updates
3839 * @surface_count: Number of surfaces that have an updated
3840 * @stream: Corresponding stream to be updated in the current flip
3841 * @context: New DC state to be programmed
3842 *
3843 * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB
3844 * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array
3845 *
3846 * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required
3847 * to build an array of commands and have them sent while the OTG lock is acquired.
3848 *
3849 * Return: void
3850 */
build_dmub_cmd_list(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3851 static void build_dmub_cmd_list(struct dc *dc,
3852 struct dc_surface_update *srf_updates,
3853 int surface_count,
3854 struct dc_stream_state *stream,
3855 struct dc_state *context,
3856 struct dc_dmub_cmd dc_dmub_cmd[],
3857 unsigned int *dmub_cmd_count)
3858 {
3859 // Initialize cmd count to 0
3860 *dmub_cmd_count = 0;
3861 build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count);
3862 }
3863
commit_plane_for_stream_offload_fams2_flip(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context)3864 static void commit_plane_for_stream_offload_fams2_flip(struct dc *dc,
3865 struct dc_surface_update *srf_updates,
3866 int surface_count,
3867 struct dc_stream_state *stream,
3868 struct dc_state *context)
3869 {
3870 int i, j;
3871
3872 /* update dirty rect for PSR */
3873 dc_dmub_update_dirty_rect(dc, surface_count, stream,
3874 srf_updates, context);
3875
3876 /* Perform requested Updates */
3877 for (i = 0; i < surface_count; i++) {
3878 struct dc_plane_state *plane_state = srf_updates[i].surface;
3879
3880 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3881 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3882
3883 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3884 continue;
3885
3886 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3887 continue;
3888
3889 /* update pipe context for plane */
3890 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3891 dc->hwss.update_plane_addr(dc, pipe_ctx);
3892 }
3893 }
3894
3895 /* Send commands to DMCUB */
3896 dc_dmub_srv_fams2_passthrough_flip(dc,
3897 context,
3898 stream,
3899 srf_updates,
3900 surface_count);
3901 }
3902
commit_planes_for_stream_fast(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3903 static void commit_planes_for_stream_fast(struct dc *dc,
3904 struct dc_surface_update *srf_updates,
3905 int surface_count,
3906 struct dc_stream_state *stream,
3907 struct dc_stream_update *stream_update,
3908 enum surface_update_type update_type,
3909 struct dc_state *context)
3910 {
3911 int i, j;
3912 struct pipe_ctx *top_pipe_to_program = NULL;
3913 struct dc_stream_status *stream_status = NULL;
3914 bool should_offload_fams2_flip = false;
3915 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3916
3917 if (should_lock_all_pipes)
3918 determine_pipe_unlock_order(dc, context);
3919
3920 if (dc->debug.fams2_config.bits.enable &&
3921 dc->debug.fams2_config.bits.enable_offload_flip &&
3922 dc_state_is_fams2_in_use(dc, context)) {
3923 /* if not offloading to HWFQ, offload to FAMS2 if needed */
3924 should_offload_fams2_flip = true;
3925 for (i = 0; i < surface_count; i++) {
3926 if (srf_updates[i].surface &&
3927 srf_updates[i].surface->update_flags.raw &&
3928 !check_address_only_update(srf_updates[i].surface->update_flags)) {
3929 /* more than address update, need to acquire FAMS2 lock */
3930 should_offload_fams2_flip = false;
3931 break;
3932 }
3933 }
3934 if (stream_update) {
3935 /* more than address update, need to acquire FAMS2 lock */
3936 should_offload_fams2_flip = false;
3937 }
3938 }
3939
3940 dc_exit_ips_for_hw_access(dc);
3941
3942 dc_z10_restore(dc);
3943
3944 top_pipe_to_program = resource_get_otg_master_for_stream(
3945 &context->res_ctx,
3946 stream);
3947
3948 if (!top_pipe_to_program)
3949 return;
3950
3951 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3952 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3953
3954 if (pipe->stream && pipe->plane_state) {
3955 if (!dc->debug.using_dml2)
3956 set_p_state_switch_method(dc, context, pipe);
3957
3958 if (dc->debug.visual_confirm)
3959 dc_update_visual_confirm_color(dc, context, pipe);
3960 }
3961 }
3962
3963 for (i = 0; i < surface_count; i++) {
3964 struct dc_plane_state *plane_state = srf_updates[i].surface;
3965 /*set logical flag for lock/unlock use*/
3966 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3967 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3968
3969 if (!pipe_ctx->plane_state)
3970 continue;
3971 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3972 continue;
3973
3974 pipe_ctx->plane_state->triplebuffer_flips = false;
3975 if (update_type == UPDATE_TYPE_FAST &&
3976 dc->hwss.program_triplebuffer != NULL &&
3977 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3978 /*triple buffer for VUpdate only*/
3979 pipe_ctx->plane_state->triplebuffer_flips = true;
3980 }
3981 }
3982 }
3983
3984 stream_status = dc_state_get_stream_status(context, stream);
3985
3986 if (should_offload_fams2_flip) {
3987 commit_plane_for_stream_offload_fams2_flip(dc,
3988 srf_updates,
3989 surface_count,
3990 stream,
3991 context);
3992 } else if (stream_status) {
3993 build_dmub_cmd_list(dc,
3994 srf_updates,
3995 surface_count,
3996 stream,
3997 context,
3998 context->dc_dmub_cmd,
3999 &(context->dmub_cmd_count));
4000 hwss_build_fast_sequence(dc,
4001 context->dc_dmub_cmd,
4002 context->dmub_cmd_count,
4003 context->block_sequence,
4004 &(context->block_sequence_steps),
4005 top_pipe_to_program,
4006 stream_status,
4007 context);
4008 hwss_execute_sequence(dc,
4009 context->block_sequence,
4010 context->block_sequence_steps);
4011 }
4012
4013 /* Clear update flags so next flip doesn't have redundant programming
4014 * (if there's no stream update, the update flags are not cleared).
4015 * Surface updates are cleared unconditionally at the beginning of each flip,
4016 * so no need to clear here.
4017 */
4018 if (top_pipe_to_program->stream)
4019 top_pipe_to_program->stream->update_flags.raw = 0;
4020 }
4021
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)4022 static void commit_planes_for_stream(struct dc *dc,
4023 struct dc_surface_update *srf_updates,
4024 int surface_count,
4025 struct dc_stream_state *stream,
4026 struct dc_stream_update *stream_update,
4027 enum surface_update_type update_type,
4028 struct dc_state *context)
4029 {
4030 int i, j;
4031 struct pipe_ctx *top_pipe_to_program = NULL;
4032 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
4033 bool subvp_prev_use = false;
4034 bool subvp_curr_use = false;
4035 uint8_t current_stream_mask = 0;
4036
4037 if (should_lock_all_pipes)
4038 determine_pipe_unlock_order(dc, context);
4039 // Once we apply the new subvp context to hardware it won't be in the
4040 // dc->current_state anymore, so we have to cache it before we apply
4041 // the new SubVP context
4042 subvp_prev_use = false;
4043 dc_exit_ips_for_hw_access(dc);
4044
4045 dc_z10_restore(dc);
4046 if (update_type == UPDATE_TYPE_FULL && dc->optimized_required)
4047 hwss_process_outstanding_hw_updates(dc, dc->current_state);
4048
4049 if (update_type != UPDATE_TYPE_FAST && dc->res_pool->funcs->prepare_mcache_programming)
4050 dc->res_pool->funcs->prepare_mcache_programming(dc, context);
4051
4052 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4053 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
4054
4055 if (pipe->stream && pipe->plane_state) {
4056 if (!dc->debug.using_dml2)
4057 set_p_state_switch_method(dc, context, pipe);
4058
4059 if (dc->debug.visual_confirm)
4060 dc_update_visual_confirm_color(dc, context, pipe);
4061 }
4062 }
4063
4064 if (update_type == UPDATE_TYPE_FULL) {
4065 dc_allow_idle_optimizations(dc, false);
4066
4067 if (get_seamless_boot_stream_count(context) == 0)
4068 dc->hwss.prepare_bandwidth(dc, context);
4069
4070 if (dc->hwss.update_dsc_pg)
4071 dc->hwss.update_dsc_pg(dc, context, false);
4072
4073 context_clock_trace(dc, context);
4074 }
4075
4076 if (update_type == UPDATE_TYPE_FULL)
4077 hwss_wait_for_outstanding_hw_updates(dc, dc->current_state);
4078
4079 top_pipe_to_program = resource_get_otg_master_for_stream(
4080 &context->res_ctx,
4081 stream);
4082 ASSERT(top_pipe_to_program != NULL);
4083
4084 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4085 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4086
4087 // Check old context for SubVP
4088 subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
4089 if (subvp_prev_use)
4090 break;
4091 }
4092
4093 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4094 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
4095
4096 if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
4097 subvp_curr_use = true;
4098 break;
4099 }
4100 }
4101
4102 if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
4103 struct pipe_ctx *mpcc_pipe;
4104 struct pipe_ctx *odm_pipe;
4105
4106 for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
4107 for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
4108 odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
4109 }
4110
4111 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
4112 if (top_pipe_to_program &&
4113 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
4114 if (should_use_dmub_lock(stream->link)) {
4115 union dmub_hw_lock_flags hw_locks = { 0 };
4116 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
4117
4118 hw_locks.bits.lock_dig = 1;
4119 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
4120
4121 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
4122 true,
4123 &hw_locks,
4124 &inst_flags);
4125 } else
4126 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
4127 top_pipe_to_program->stream_res.tg);
4128 }
4129
4130 if (dc->hwss.wait_for_dcc_meta_propagation) {
4131 dc->hwss.wait_for_dcc_meta_propagation(dc, top_pipe_to_program);
4132 }
4133
4134 if (dc->hwseq->funcs.wait_for_pipe_update_if_needed)
4135 dc->hwseq->funcs.wait_for_pipe_update_if_needed(dc, top_pipe_to_program, update_type == UPDATE_TYPE_FAST);
4136
4137 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4138 if (dc->hwss.subvp_pipe_control_lock)
4139 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
4140
4141 if (dc->hwss.fams2_global_control_lock)
4142 dc->hwss.fams2_global_control_lock(dc, context, true);
4143
4144 dc->hwss.interdependent_update_lock(dc, context, true);
4145 } else {
4146 if (dc->hwss.subvp_pipe_control_lock)
4147 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
4148
4149 if (dc->hwss.fams2_global_control_lock)
4150 dc->hwss.fams2_global_control_lock(dc, context, true);
4151
4152 /* Lock the top pipe while updating plane addrs, since freesync requires
4153 * plane addr update event triggers to be synchronized.
4154 * top_pipe_to_program is expected to never be NULL
4155 */
4156 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
4157 }
4158
4159 dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
4160
4161 // Stream updates
4162 if (stream_update)
4163 commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
4164
4165 if (surface_count == 0) {
4166 /*
4167 * In case of turning off screen, no need to program front end a second time.
4168 * just return after program blank.
4169 */
4170 if (dc->hwss.apply_ctx_for_surface)
4171 dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
4172 if (dc->hwss.program_front_end_for_ctx)
4173 dc->hwss.program_front_end_for_ctx(dc, context);
4174
4175 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4176 dc->hwss.interdependent_update_lock(dc, context, false);
4177 } else {
4178 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
4179 }
4180 dc->hwss.post_unlock_program_front_end(dc, context);
4181
4182 if (update_type != UPDATE_TYPE_FAST)
4183 if (dc->hwss.commit_subvp_config)
4184 dc->hwss.commit_subvp_config(dc, context);
4185
4186 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
4187 * move the SubVP lock to after the phantom pipes have been setup
4188 */
4189 if (dc->hwss.subvp_pipe_control_lock)
4190 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
4191 NULL, subvp_prev_use);
4192
4193 if (dc->hwss.fams2_global_control_lock)
4194 dc->hwss.fams2_global_control_lock(dc, context, false);
4195
4196 return;
4197 }
4198
4199 if (update_type != UPDATE_TYPE_FAST) {
4200 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4201 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4202
4203 if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP ||
4204 dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) &&
4205 pipe_ctx->stream && pipe_ctx->plane_state) {
4206 /* Only update visual confirm for SUBVP and Mclk switching here.
4207 * The bar appears on all pipes, so we need to update the bar on all displays,
4208 * so the information doesn't get stale.
4209 */
4210 dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
4211 pipe_ctx->plane_res.hubp->inst);
4212 }
4213 }
4214 }
4215
4216 for (i = 0; i < surface_count; i++) {
4217 struct dc_plane_state *plane_state = srf_updates[i].surface;
4218
4219 /*set logical flag for lock/unlock use*/
4220 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4221 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4222 if (!pipe_ctx->plane_state)
4223 continue;
4224 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4225 continue;
4226 pipe_ctx->plane_state->triplebuffer_flips = false;
4227 if (update_type == UPDATE_TYPE_FAST &&
4228 dc->hwss.program_triplebuffer != NULL &&
4229 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
4230 /*triple buffer for VUpdate only*/
4231 pipe_ctx->plane_state->triplebuffer_flips = true;
4232 }
4233 }
4234 if (update_type == UPDATE_TYPE_FULL) {
4235 /* force vsync flip when reconfiguring pipes to prevent underflow */
4236 plane_state->flip_immediate = false;
4237 plane_state->triplebuffer_flips = false;
4238 }
4239 }
4240
4241 // Update Type FULL, Surface updates
4242 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4243 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4244
4245 if (!pipe_ctx->top_pipe &&
4246 !pipe_ctx->prev_odm_pipe &&
4247 should_update_pipe_for_stream(context, pipe_ctx, stream)) {
4248 struct dc_stream_status *stream_status = NULL;
4249
4250 if (!pipe_ctx->plane_state)
4251 continue;
4252
4253 /* Full fe update*/
4254 if (update_type == UPDATE_TYPE_FAST)
4255 continue;
4256
4257 stream_status =
4258 stream_get_status(context, pipe_ctx->stream);
4259
4260 if (dc->hwss.apply_ctx_for_surface && stream_status)
4261 dc->hwss.apply_ctx_for_surface(
4262 dc, pipe_ctx->stream, stream_status->plane_count, context);
4263 }
4264 }
4265
4266 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4267 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4268
4269 if (!pipe_ctx->plane_state)
4270 continue;
4271
4272 /* Full fe update*/
4273 if (update_type == UPDATE_TYPE_FAST)
4274 continue;
4275
4276 ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
4277 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
4278 /*turn off triple buffer for full update*/
4279 dc->hwss.program_triplebuffer(
4280 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
4281 }
4282 }
4283
4284 if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
4285 dc->hwss.program_front_end_for_ctx(dc, context);
4286
4287 //Pipe busy until some frame and line #
4288 if (dc->hwseq->funcs.set_wait_for_update_needed_for_pipe && update_type == UPDATE_TYPE_FULL) {
4289 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4290 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4291
4292 dc->hwseq->funcs.set_wait_for_update_needed_for_pipe(dc, pipe_ctx);
4293 }
4294 }
4295
4296 if (dc->debug.validate_dml_output) {
4297 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4298 struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
4299 if (cur_pipe->stream == NULL)
4300 continue;
4301
4302 cur_pipe->plane_res.hubp->funcs->validate_dml_output(
4303 cur_pipe->plane_res.hubp, dc->ctx,
4304 &context->res_ctx.pipe_ctx[i].rq_regs,
4305 &context->res_ctx.pipe_ctx[i].dlg_regs,
4306 &context->res_ctx.pipe_ctx[i].ttu_regs);
4307 }
4308 }
4309 }
4310
4311 // Update Type FAST, Surface updates
4312 if (update_type == UPDATE_TYPE_FAST) {
4313 if (dc->hwss.set_flip_control_gsl)
4314 for (i = 0; i < surface_count; i++) {
4315 struct dc_plane_state *plane_state = srf_updates[i].surface;
4316
4317 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4318 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4319
4320 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
4321 continue;
4322
4323 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4324 continue;
4325
4326 // GSL has to be used for flip immediate
4327 dc->hwss.set_flip_control_gsl(pipe_ctx,
4328 pipe_ctx->plane_state->flip_immediate);
4329 }
4330 }
4331
4332 /* Perform requested Updates */
4333 for (i = 0; i < surface_count; i++) {
4334 struct dc_plane_state *plane_state = srf_updates[i].surface;
4335
4336 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4337 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4338
4339 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
4340 continue;
4341
4342 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4343 continue;
4344
4345 if (srf_updates[i].cm2_params &&
4346 srf_updates[i].cm2_params->cm2_luts.lut3d_data.lut3d_src ==
4347 DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM &&
4348 srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting ==
4349 DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER_3DLUT &&
4350 dc->hwss.trigger_3dlut_dma_load)
4351 dc->hwss.trigger_3dlut_dma_load(dc, pipe_ctx);
4352
4353 /*program triple buffer after lock based on flip type*/
4354 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
4355 /*only enable triplebuffer for fast_update*/
4356 dc->hwss.program_triplebuffer(
4357 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
4358 }
4359 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
4360 dc->hwss.update_plane_addr(dc, pipe_ctx);
4361 }
4362 }
4363 }
4364
4365 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4366 dc->hwss.interdependent_update_lock(dc, context, false);
4367 } else {
4368 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
4369 }
4370
4371 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
4372 if (top_pipe_to_program &&
4373 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
4374 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4375 top_pipe_to_program->stream_res.tg,
4376 CRTC_STATE_VACTIVE);
4377 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4378 top_pipe_to_program->stream_res.tg,
4379 CRTC_STATE_VBLANK);
4380 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4381 top_pipe_to_program->stream_res.tg,
4382 CRTC_STATE_VACTIVE);
4383
4384 if (should_use_dmub_lock(stream->link)) {
4385 union dmub_hw_lock_flags hw_locks = { 0 };
4386 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
4387
4388 hw_locks.bits.lock_dig = 1;
4389 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
4390
4391 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
4392 false,
4393 &hw_locks,
4394 &inst_flags);
4395 } else
4396 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
4397 top_pipe_to_program->stream_res.tg);
4398 }
4399
4400 if (subvp_curr_use) {
4401 /* If enabling subvp or transitioning from subvp->subvp, enable the
4402 * phantom streams before we program front end for the phantom pipes.
4403 */
4404 if (update_type != UPDATE_TYPE_FAST) {
4405 if (dc->hwss.enable_phantom_streams)
4406 dc->hwss.enable_phantom_streams(dc, context);
4407 }
4408 }
4409
4410 if (update_type != UPDATE_TYPE_FAST)
4411 dc->hwss.post_unlock_program_front_end(dc, context);
4412
4413 if (subvp_prev_use && !subvp_curr_use) {
4414 /* If disabling subvp, disable phantom streams after front end
4415 * programming has completed (we turn on phantom OTG in order
4416 * to complete the plane disable for phantom pipes).
4417 */
4418
4419 if (dc->hwss.disable_phantom_streams)
4420 dc->hwss.disable_phantom_streams(dc, context);
4421 }
4422
4423 if (update_type != UPDATE_TYPE_FAST)
4424 if (dc->hwss.commit_subvp_config)
4425 dc->hwss.commit_subvp_config(dc, context);
4426 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
4427 * move the SubVP lock to after the phantom pipes have been setup
4428 */
4429 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4430 if (dc->hwss.subvp_pipe_control_lock)
4431 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
4432 if (dc->hwss.fams2_global_control_lock)
4433 dc->hwss.fams2_global_control_lock(dc, context, false);
4434 } else {
4435 if (dc->hwss.subvp_pipe_control_lock)
4436 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
4437 if (dc->hwss.fams2_global_control_lock)
4438 dc->hwss.fams2_global_control_lock(dc, context, false);
4439 }
4440
4441 // Fire manual trigger only when bottom plane is flipped
4442 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4443 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4444
4445 if (!pipe_ctx->plane_state)
4446 continue;
4447
4448 if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
4449 !pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
4450 !pipe_ctx->plane_state->update_flags.bits.addr_update ||
4451 pipe_ctx->plane_state->skip_manual_trigger)
4452 continue;
4453
4454 if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
4455 pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
4456 }
4457
4458 current_stream_mask = get_stream_mask(dc, context);
4459 if (current_stream_mask != context->stream_mask) {
4460 context->stream_mask = current_stream_mask;
4461 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, current_stream_mask);
4462 }
4463 }
4464
4465 /**
4466 * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
4467 *
4468 * @dc: Used to get the current state status
4469 * @stream: Target stream, which we want to remove the attached planes
4470 * @srf_updates: Array of surface updates
4471 * @surface_count: Number of surface update
4472 * @is_plane_addition: [in] Fill out with true if it is a plane addition case
4473 *
4474 * DCN32x and newer support a feature named Dynamic ODM which can conflict with
4475 * the MPO if used simultaneously in some specific configurations (e.g.,
4476 * 4k@144). This function checks if the incoming context requires applying a
4477 * transition state with unnecessary pipe splitting and ODM disabled to
4478 * circumvent our hardware limitations to prevent this edge case. If the OPP
4479 * associated with an MPCC might change due to plane additions, this function
4480 * returns true.
4481 *
4482 * Return:
4483 * Return true if OPP and MPCC might change, otherwise, return false.
4484 */
could_mpcc_tree_change_for_active_pipes(struct dc * dc,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count,bool * is_plane_addition)4485 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
4486 struct dc_stream_state *stream,
4487 struct dc_surface_update *srf_updates,
4488 int surface_count,
4489 bool *is_plane_addition)
4490 {
4491
4492 struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
4493 bool force_minimal_pipe_splitting = false;
4494 bool subvp_active = false;
4495 uint32_t i;
4496
4497 *is_plane_addition = false;
4498
4499 if (cur_stream_status &&
4500 dc->current_state->stream_count > 0 &&
4501 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
4502 /* determine if minimal transition is required due to MPC*/
4503 if (surface_count > 0) {
4504 if (cur_stream_status->plane_count > surface_count) {
4505 force_minimal_pipe_splitting = true;
4506 } else if (cur_stream_status->plane_count < surface_count) {
4507 force_minimal_pipe_splitting = true;
4508 *is_plane_addition = true;
4509 }
4510 }
4511 }
4512
4513 if (cur_stream_status &&
4514 dc->current_state->stream_count == 1 &&
4515 dc->debug.enable_single_display_2to1_odm_policy) {
4516 /* determine if minimal transition is required due to dynamic ODM*/
4517 if (surface_count > 0) {
4518 if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
4519 force_minimal_pipe_splitting = true;
4520 } else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
4521 force_minimal_pipe_splitting = true;
4522 *is_plane_addition = true;
4523 }
4524 }
4525 }
4526
4527 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4528 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4529
4530 if (dc_state_get_pipe_subvp_type(dc->current_state, pipe) != SUBVP_NONE) {
4531 subvp_active = true;
4532 break;
4533 }
4534 }
4535
4536 /* For SubVP when adding or removing planes we need to add a minimal transition
4537 * (even when disabling all planes). Whenever disabling a phantom pipe, we
4538 * must use the minimal transition path to disable the pipe correctly.
4539 *
4540 * We want to use the minimal transition whenever subvp is active, not only if
4541 * a plane is being added / removed from a subvp stream (MPO plane can be added
4542 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
4543 * a min transition to disable subvp.
4544 */
4545 if (cur_stream_status && subvp_active) {
4546 /* determine if minimal transition is required due to SubVP*/
4547 if (cur_stream_status->plane_count > surface_count) {
4548 force_minimal_pipe_splitting = true;
4549 } else if (cur_stream_status->plane_count < surface_count) {
4550 force_minimal_pipe_splitting = true;
4551 *is_plane_addition = true;
4552 }
4553 }
4554
4555 return force_minimal_pipe_splitting;
4556 }
4557
4558 struct pipe_split_policy_backup {
4559 bool dynamic_odm_policy;
4560 bool subvp_policy;
4561 enum pipe_split_policy mpc_policy;
4562 char force_odm[MAX_PIPES];
4563 };
4564
backup_and_set_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4565 static void backup_and_set_minimal_pipe_split_policy(struct dc *dc,
4566 struct dc_state *context,
4567 struct pipe_split_policy_backup *policy)
4568 {
4569 int i;
4570
4571 if (!dc->config.is_vmin_only_asic) {
4572 policy->mpc_policy = dc->debug.pipe_split_policy;
4573 dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
4574 }
4575 policy->dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
4576 dc->debug.enable_single_display_2to1_odm_policy = false;
4577 policy->subvp_policy = dc->debug.force_disable_subvp;
4578 dc->debug.force_disable_subvp = true;
4579 for (i = 0; i < context->stream_count; i++) {
4580 policy->force_odm[i] = context->streams[i]->debug.force_odm_combine_segments;
4581 if (context->streams[i]->debug.allow_transition_for_forced_odm)
4582 context->streams[i]->debug.force_odm_combine_segments = 0;
4583 }
4584 }
4585
restore_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4586 static void restore_minimal_pipe_split_policy(struct dc *dc,
4587 struct dc_state *context,
4588 struct pipe_split_policy_backup *policy)
4589 {
4590 uint8_t i;
4591
4592 if (!dc->config.is_vmin_only_asic)
4593 dc->debug.pipe_split_policy = policy->mpc_policy;
4594 dc->debug.enable_single_display_2to1_odm_policy =
4595 policy->dynamic_odm_policy;
4596 dc->debug.force_disable_subvp = policy->subvp_policy;
4597 for (i = 0; i < context->stream_count; i++)
4598 context->streams[i]->debug.force_odm_combine_segments = policy->force_odm[i];
4599 }
4600
release_minimal_transition_state(struct dc * dc,struct dc_state * minimal_transition_context,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4601 static void release_minimal_transition_state(struct dc *dc,
4602 struct dc_state *minimal_transition_context,
4603 struct dc_state *base_context,
4604 struct pipe_split_policy_backup *policy)
4605 {
4606 restore_minimal_pipe_split_policy(dc, base_context, policy);
4607 dc_state_release(minimal_transition_context);
4608 }
4609
force_vsync_flip_in_minimal_transition_context(struct dc_state * context)4610 static void force_vsync_flip_in_minimal_transition_context(struct dc_state *context)
4611 {
4612 uint8_t i;
4613 int j;
4614 struct dc_stream_status *stream_status;
4615
4616 for (i = 0; i < context->stream_count; i++) {
4617 stream_status = &context->stream_status[i];
4618
4619 for (j = 0; j < stream_status->plane_count; j++)
4620 stream_status->plane_states[j]->flip_immediate = false;
4621 }
4622 }
4623
create_minimal_transition_state(struct dc * dc,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4624 static struct dc_state *create_minimal_transition_state(struct dc *dc,
4625 struct dc_state *base_context, struct pipe_split_policy_backup *policy)
4626 {
4627 struct dc_state *minimal_transition_context = NULL;
4628
4629 minimal_transition_context = dc_state_create_copy(base_context);
4630 if (!minimal_transition_context)
4631 return NULL;
4632
4633 backup_and_set_minimal_pipe_split_policy(dc, base_context, policy);
4634 /* commit minimal state */
4635 if (dc->res_pool->funcs->validate_bandwidth(dc, minimal_transition_context, false) == DC_OK) {
4636 /* prevent underflow and corruption when reconfiguring pipes */
4637 force_vsync_flip_in_minimal_transition_context(minimal_transition_context);
4638 } else {
4639 /*
4640 * This should never happen, minimal transition state should
4641 * always be validated first before adding pipe split features.
4642 */
4643 release_minimal_transition_state(dc, minimal_transition_context, base_context, policy);
4644 BREAK_TO_DEBUGGER();
4645 minimal_transition_context = NULL;
4646 }
4647 return minimal_transition_context;
4648 }
4649
is_pipe_topology_transition_seamless_with_intermediate_step(struct dc * dc,struct dc_state * initial_state,struct dc_state * intermediate_state,struct dc_state * final_state)4650 static bool is_pipe_topology_transition_seamless_with_intermediate_step(
4651 struct dc *dc,
4652 struct dc_state *initial_state,
4653 struct dc_state *intermediate_state,
4654 struct dc_state *final_state)
4655 {
4656 return dc->hwss.is_pipe_topology_transition_seamless(dc, initial_state,
4657 intermediate_state) &&
4658 dc->hwss.is_pipe_topology_transition_seamless(dc,
4659 intermediate_state, final_state);
4660 }
4661
swap_and_release_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4662 static void swap_and_release_current_context(struct dc *dc,
4663 struct dc_state *new_context, struct dc_stream_state *stream)
4664 {
4665
4666 int i;
4667 struct dc_state *old = dc->current_state;
4668 struct pipe_ctx *pipe_ctx;
4669
4670 /* Since memory free requires elevated IRQ, an interrupt
4671 * request is generated by mem free. If this happens
4672 * between freeing and reassigning the context, our vsync
4673 * interrupt will call into dc and cause a memory
4674 * corruption. Hence, we first reassign the context,
4675 * then free the old context.
4676 */
4677 dc->current_state = new_context;
4678 dc_state_release(old);
4679
4680 // clear any forced full updates
4681 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4682 pipe_ctx = &new_context->res_ctx.pipe_ctx[i];
4683
4684 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4685 pipe_ctx->plane_state->force_full_update = false;
4686 }
4687 }
4688
initialize_empty_surface_updates(struct dc_stream_state * stream,struct dc_surface_update * srf_updates)4689 static int initialize_empty_surface_updates(
4690 struct dc_stream_state *stream,
4691 struct dc_surface_update *srf_updates)
4692 {
4693 struct dc_stream_status *status = dc_stream_get_status(stream);
4694 int i;
4695
4696 if (!status)
4697 return 0;
4698
4699 for (i = 0; i < status->plane_count; i++)
4700 srf_updates[i].surface = status->plane_states[i];
4701
4702 return status->plane_count;
4703 }
4704
commit_minimal_transition_based_on_new_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4705 static bool commit_minimal_transition_based_on_new_context(struct dc *dc,
4706 struct dc_state *new_context,
4707 struct dc_stream_state *stream,
4708 struct dc_surface_update *srf_updates,
4709 int surface_count)
4710 {
4711 bool success = false;
4712 struct pipe_split_policy_backup policy;
4713 struct dc_state *intermediate_context =
4714 create_minimal_transition_state(dc, new_context,
4715 &policy);
4716
4717 if (intermediate_context) {
4718 if (is_pipe_topology_transition_seamless_with_intermediate_step(
4719 dc,
4720 dc->current_state,
4721 intermediate_context,
4722 new_context)) {
4723 DC_LOG_DC("commit minimal transition state: base = new state\n");
4724 commit_planes_for_stream(dc, srf_updates,
4725 surface_count, stream, NULL,
4726 UPDATE_TYPE_FULL, intermediate_context);
4727 swap_and_release_current_context(
4728 dc, intermediate_context, stream);
4729 dc_state_retain(dc->current_state);
4730 success = true;
4731 }
4732 release_minimal_transition_state(
4733 dc, intermediate_context, new_context, &policy);
4734 }
4735 return success;
4736 }
4737
commit_minimal_transition_based_on_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4738 static bool commit_minimal_transition_based_on_current_context(struct dc *dc,
4739 struct dc_state *new_context, struct dc_stream_state *stream)
4740 {
4741 bool success = false;
4742 struct pipe_split_policy_backup policy;
4743 struct dc_state *intermediate_context;
4744 struct dc_state *old_current_state = dc->current_state;
4745 struct dc_surface_update srf_updates[MAX_SURFACES] = {0};
4746 int surface_count;
4747
4748 /*
4749 * Both current and new contexts share the same stream and plane state
4750 * pointers. When new context is validated, stream and planes get
4751 * populated with new updates such as new plane addresses. This makes
4752 * the current context no longer valid because stream and planes are
4753 * modified from the original. We backup current stream and plane states
4754 * into scratch space whenever we are populating new context. So we can
4755 * restore the original values back by calling the restore function now.
4756 * This restores back the original stream and plane states associated
4757 * with the current state.
4758 */
4759 restore_planes_and_stream_state(&dc->scratch.current_state, stream);
4760 dc_state_retain(old_current_state);
4761 intermediate_context = create_minimal_transition_state(dc,
4762 old_current_state, &policy);
4763
4764 if (intermediate_context) {
4765 if (is_pipe_topology_transition_seamless_with_intermediate_step(
4766 dc,
4767 dc->current_state,
4768 intermediate_context,
4769 new_context)) {
4770 DC_LOG_DC("commit minimal transition state: base = current state\n");
4771 surface_count = initialize_empty_surface_updates(
4772 stream, srf_updates);
4773 commit_planes_for_stream(dc, srf_updates,
4774 surface_count, stream, NULL,
4775 UPDATE_TYPE_FULL, intermediate_context);
4776 swap_and_release_current_context(
4777 dc, intermediate_context, stream);
4778 dc_state_retain(dc->current_state);
4779 success = true;
4780 }
4781 release_minimal_transition_state(dc, intermediate_context,
4782 old_current_state, &policy);
4783 }
4784 dc_state_release(old_current_state);
4785 /*
4786 * Restore stream and plane states back to the values associated with
4787 * new context.
4788 */
4789 restore_planes_and_stream_state(&dc->scratch.new_state, stream);
4790 return success;
4791 }
4792
4793 /**
4794 * commit_minimal_transition_state_in_dc_update - Commit a minimal state based
4795 * on current or new context
4796 *
4797 * @dc: DC structure, used to get the current state
4798 * @new_context: New context
4799 * @stream: Stream getting the update for the flip
4800 * @srf_updates: Surface updates
4801 * @surface_count: Number of surfaces
4802 *
4803 * The function takes in current state and new state and determine a minimal
4804 * transition state as the intermediate step which could make the transition
4805 * between current and new states seamless. If found, it will commit the minimal
4806 * transition state and update current state to this minimal transition state
4807 * and return true, if not, it will return false.
4808 *
4809 * Return:
4810 * Return True if the minimal transition succeeded, false otherwise
4811 */
commit_minimal_transition_state_in_dc_update(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4812 static bool commit_minimal_transition_state_in_dc_update(struct dc *dc,
4813 struct dc_state *new_context,
4814 struct dc_stream_state *stream,
4815 struct dc_surface_update *srf_updates,
4816 int surface_count)
4817 {
4818 bool success = commit_minimal_transition_based_on_new_context(
4819 dc, new_context, stream, srf_updates,
4820 surface_count);
4821 if (!success)
4822 success = commit_minimal_transition_based_on_current_context(dc,
4823 new_context, stream);
4824 if (!success)
4825 DC_LOG_ERROR("Fail to commit a seamless minimal transition state between current and new states.\nThis pipe topology update is non-seamless!\n");
4826 return success;
4827 }
4828
4829 /**
4830 * commit_minimal_transition_state - Create a transition pipe split state
4831 *
4832 * @dc: Used to get the current state status
4833 * @transition_base_context: New transition state
4834 *
4835 * In some specific configurations, such as pipe split on multi-display with
4836 * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
4837 * programming when moving to new planes. To mitigate those types of problems,
4838 * this function adds a transition state that minimizes pipe usage before
4839 * programming the new configuration. When adding a new plane, the current
4840 * state requires the least pipes, so it is applied without splitting. When
4841 * removing a plane, the new state requires the least pipes, so it is applied
4842 * without splitting.
4843 *
4844 * Return:
4845 * Return false if something is wrong in the transition state.
4846 */
commit_minimal_transition_state(struct dc * dc,struct dc_state * transition_base_context)4847 static bool commit_minimal_transition_state(struct dc *dc,
4848 struct dc_state *transition_base_context)
4849 {
4850 struct dc_state *transition_context;
4851 struct pipe_split_policy_backup policy;
4852 enum dc_status ret = DC_ERROR_UNEXPECTED;
4853 unsigned int i, j;
4854 unsigned int pipe_in_use = 0;
4855 bool subvp_in_use = false;
4856 bool odm_in_use = false;
4857
4858 /* check current pipes in use*/
4859 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4860 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4861
4862 if (pipe->plane_state)
4863 pipe_in_use++;
4864 }
4865
4866 /* If SubVP is enabled and we are adding or removing planes from any main subvp
4867 * pipe, we must use the minimal transition.
4868 */
4869 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4870 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4871
4872 if (pipe->stream && dc_state_get_pipe_subvp_type(dc->current_state, pipe) == SUBVP_PHANTOM) {
4873 subvp_in_use = true;
4874 break;
4875 }
4876 }
4877
4878 /* If ODM is enabled and we are adding or removing planes from any ODM
4879 * pipe, we must use the minimal transition.
4880 */
4881 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4882 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4883
4884 if (resource_is_pipe_type(pipe, OTG_MASTER)) {
4885 odm_in_use = resource_get_odm_slice_count(pipe) > 1;
4886 break;
4887 }
4888 }
4889
4890 /* When the OS add a new surface if we have been used all of pipes with odm combine
4891 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
4892 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
4893 * call it again. Otherwise return true to skip.
4894 *
4895 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
4896 * enter/exit MPO when DCN still have enough resources.
4897 */
4898 if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use)
4899 return true;
4900
4901 DC_LOG_DC("%s base = %s state, reason = %s\n", __func__,
4902 dc->current_state == transition_base_context ? "current" : "new",
4903 subvp_in_use ? "Subvp In Use" :
4904 odm_in_use ? "ODM in Use" :
4905 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID ? "MPC in Use" :
4906 "Unknown");
4907
4908 dc_state_retain(transition_base_context);
4909 transition_context = create_minimal_transition_state(dc,
4910 transition_base_context, &policy);
4911 if (transition_context) {
4912 ret = dc_commit_state_no_check(dc, transition_context);
4913 release_minimal_transition_state(dc, transition_context, transition_base_context, &policy);
4914 }
4915 dc_state_release(transition_base_context);
4916
4917 if (ret != DC_OK) {
4918 /* this should never happen */
4919 BREAK_TO_DEBUGGER();
4920 return false;
4921 }
4922
4923 /* force full surface update */
4924 for (i = 0; i < dc->current_state->stream_count; i++) {
4925 for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
4926 dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
4927 }
4928 }
4929
4930 return true;
4931 }
4932
populate_fast_updates(struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update)4933 void populate_fast_updates(struct dc_fast_update *fast_update,
4934 struct dc_surface_update *srf_updates,
4935 int surface_count,
4936 struct dc_stream_update *stream_update)
4937 {
4938 int i = 0;
4939
4940 if (stream_update) {
4941 fast_update[0].out_transfer_func = stream_update->out_transfer_func;
4942 fast_update[0].output_csc_transform = stream_update->output_csc_transform;
4943 } else {
4944 fast_update[0].out_transfer_func = NULL;
4945 fast_update[0].output_csc_transform = NULL;
4946 }
4947
4948 for (i = 0; i < surface_count; i++) {
4949 fast_update[i].flip_addr = srf_updates[i].flip_addr;
4950 fast_update[i].gamma = srf_updates[i].gamma;
4951 fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix;
4952 fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix;
4953 fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor;
4954 fast_update[i].cursor_csc_color_matrix = srf_updates[i].cursor_csc_color_matrix;
4955 }
4956 }
4957
fast_updates_exist(struct dc_fast_update * fast_update,int surface_count)4958 static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4959 {
4960 int i;
4961
4962 if (fast_update[0].out_transfer_func ||
4963 fast_update[0].output_csc_transform)
4964 return true;
4965
4966 for (i = 0; i < surface_count; i++) {
4967 if (fast_update[i].flip_addr ||
4968 fast_update[i].gamma ||
4969 fast_update[i].gamut_remap_matrix ||
4970 fast_update[i].input_csc_color_matrix ||
4971 fast_update[i].cursor_csc_color_matrix ||
4972 fast_update[i].coeff_reduction_factor)
4973 return true;
4974 }
4975
4976 return false;
4977 }
4978
fast_nonaddr_updates_exist(struct dc_fast_update * fast_update,int surface_count)4979 bool fast_nonaddr_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4980 {
4981 int i;
4982
4983 if (fast_update[0].out_transfer_func ||
4984 fast_update[0].output_csc_transform)
4985 return true;
4986
4987 for (i = 0; i < surface_count; i++) {
4988 if (fast_update[i].input_csc_color_matrix ||
4989 fast_update[i].gamma ||
4990 fast_update[i].gamut_remap_matrix ||
4991 fast_update[i].coeff_reduction_factor ||
4992 fast_update[i].cursor_csc_color_matrix)
4993 return true;
4994 }
4995
4996 return false;
4997 }
4998
full_update_required(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4999 static bool full_update_required(struct dc *dc,
5000 struct dc_surface_update *srf_updates,
5001 int surface_count,
5002 struct dc_stream_update *stream_update,
5003 struct dc_stream_state *stream)
5004 {
5005
5006 int i;
5007 struct dc_stream_status *stream_status;
5008 const struct dc_state *context = dc->current_state;
5009
5010 for (i = 0; i < surface_count; i++) {
5011 if (srf_updates &&
5012 (srf_updates[i].plane_info ||
5013 srf_updates[i].scaling_info ||
5014 (srf_updates[i].hdr_mult.value &&
5015 srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) ||
5016 (srf_updates[i].sdr_white_level_nits &&
5017 srf_updates[i].sdr_white_level_nits != srf_updates->surface->sdr_white_level_nits) ||
5018 srf_updates[i].in_transfer_func ||
5019 srf_updates[i].func_shaper ||
5020 srf_updates[i].lut3d_func ||
5021 srf_updates[i].surface->force_full_update ||
5022 (srf_updates[i].flip_addr &&
5023 srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) ||
5024 (srf_updates[i].cm2_params &&
5025 (srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting != srf_updates[i].surface->mcm_shaper_3dlut_setting ||
5026 srf_updates[i].cm2_params->component_settings.lut1d_enable != srf_updates[i].surface->mcm_lut1d_enable)) ||
5027 !is_surface_in_context(context, srf_updates[i].surface)))
5028 return true;
5029 }
5030
5031 if (stream_update &&
5032 (((stream_update->src.height != 0 && stream_update->src.width != 0) ||
5033 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
5034 stream_update->integer_scaling_update) ||
5035 stream_update->hdr_static_metadata ||
5036 stream_update->abm_level ||
5037 stream_update->periodic_interrupt ||
5038 stream_update->vrr_infopacket ||
5039 stream_update->vsc_infopacket ||
5040 stream_update->vsp_infopacket ||
5041 stream_update->hfvsif_infopacket ||
5042 stream_update->vtem_infopacket ||
5043 stream_update->adaptive_sync_infopacket ||
5044 stream_update->dpms_off ||
5045 stream_update->allow_freesync ||
5046 stream_update->vrr_active_variable ||
5047 stream_update->vrr_active_fixed ||
5048 stream_update->gamut_remap ||
5049 stream_update->output_color_space ||
5050 stream_update->dither_option ||
5051 stream_update->wb_update ||
5052 stream_update->dsc_config ||
5053 stream_update->mst_bw_update ||
5054 stream_update->func_shaper ||
5055 stream_update->lut3d_func ||
5056 stream_update->pending_test_pattern ||
5057 stream_update->crtc_timing_adjust ||
5058 stream_update->scaler_sharpener_update ||
5059 stream_update->hw_cursor_req))
5060 return true;
5061
5062 if (stream) {
5063 stream_status = dc_stream_get_status(stream);
5064 if (stream_status == NULL || stream_status->plane_count != surface_count)
5065 return true;
5066 }
5067 if (dc->idle_optimizations_allowed)
5068 return true;
5069
5070 if (dc_can_clear_cursor_limit(dc))
5071 return true;
5072
5073 return false;
5074 }
5075
fast_update_only(struct dc * dc,struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)5076 static bool fast_update_only(struct dc *dc,
5077 struct dc_fast_update *fast_update,
5078 struct dc_surface_update *srf_updates,
5079 int surface_count,
5080 struct dc_stream_update *stream_update,
5081 struct dc_stream_state *stream)
5082 {
5083 return fast_updates_exist(fast_update, surface_count)
5084 && !full_update_required(dc, srf_updates, surface_count, stream_update, stream);
5085 }
5086
update_planes_and_stream_v1(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)5087 static bool update_planes_and_stream_v1(struct dc *dc,
5088 struct dc_surface_update *srf_updates, int surface_count,
5089 struct dc_stream_state *stream,
5090 struct dc_stream_update *stream_update,
5091 struct dc_state *state)
5092 {
5093 const struct dc_stream_status *stream_status;
5094 enum surface_update_type update_type;
5095 struct dc_state *context;
5096 struct dc_context *dc_ctx = dc->ctx;
5097 int i, j;
5098 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
5099
5100 dc_exit_ips_for_hw_access(dc);
5101
5102 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
5103 stream_status = dc_stream_get_status(stream);
5104 context = dc->current_state;
5105
5106 update_type = dc_check_update_surfaces_for_stream(
5107 dc, srf_updates, surface_count, stream_update, stream_status);
5108 /* It is possible to receive a flip for one plane while there are multiple flip_immediate planes in the same stream.
5109 * E.g. Desktop and MPO plane are flip_immediate but only the MPO plane received a flip
5110 * Force the other flip_immediate planes to flip so GSL doesn't wait for a flip that won't come.
5111 */
5112 force_immediate_gsl_plane_flip(dc, srf_updates, surface_count);
5113
5114 if (update_type >= UPDATE_TYPE_FULL) {
5115
5116 /* initialize scratch memory for building context */
5117 context = dc_state_create_copy(state);
5118 if (context == NULL) {
5119 DC_ERROR("Failed to allocate new validate context!\n");
5120 return false;
5121 }
5122
5123 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5124 struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
5125 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5126
5127 if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
5128 new_pipe->plane_state->force_full_update = true;
5129 }
5130 } else if (update_type == UPDATE_TYPE_FAST) {
5131 /*
5132 * Previous frame finished and HW is ready for optimization.
5133 */
5134 dc_post_update_surfaces_to_stream(dc);
5135 }
5136
5137 for (i = 0; i < surface_count; i++) {
5138 struct dc_plane_state *surface = srf_updates[i].surface;
5139
5140 copy_surface_update_to_plane(surface, &srf_updates[i]);
5141
5142 if (update_type >= UPDATE_TYPE_MED) {
5143 for (j = 0; j < dc->res_pool->pipe_count; j++) {
5144 struct pipe_ctx *pipe_ctx =
5145 &context->res_ctx.pipe_ctx[j];
5146
5147 if (pipe_ctx->plane_state != surface)
5148 continue;
5149
5150 resource_build_scaling_params(pipe_ctx);
5151 }
5152 }
5153 }
5154
5155 copy_stream_update_to_stream(dc, context, stream, stream_update);
5156
5157 if (update_type >= UPDATE_TYPE_FULL) {
5158 if (dc->res_pool->funcs->validate_bandwidth(dc, context, false) != DC_OK) {
5159 DC_ERROR("Mode validation failed for stream update!\n");
5160 dc_state_release(context);
5161 return false;
5162 }
5163 }
5164
5165 TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
5166
5167 if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
5168 !dc->debug.enable_legacy_fast_update) {
5169 commit_planes_for_stream_fast(dc,
5170 srf_updates,
5171 surface_count,
5172 stream,
5173 stream_update,
5174 update_type,
5175 context);
5176 } else {
5177 commit_planes_for_stream(
5178 dc,
5179 srf_updates,
5180 surface_count,
5181 stream,
5182 stream_update,
5183 update_type,
5184 context);
5185 }
5186 /*update current_State*/
5187 if (dc->current_state != context) {
5188
5189 struct dc_state *old = dc->current_state;
5190
5191 dc->current_state = context;
5192 dc_state_release(old);
5193
5194 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5195 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
5196
5197 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
5198 pipe_ctx->plane_state->force_full_update = false;
5199 }
5200 }
5201
5202 /* Legacy optimization path for DCE. */
5203 if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
5204 dc_post_update_surfaces_to_stream(dc);
5205 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
5206 }
5207 return true;
5208 }
5209
update_planes_and_stream_v2(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5210 static bool update_planes_and_stream_v2(struct dc *dc,
5211 struct dc_surface_update *srf_updates, int surface_count,
5212 struct dc_stream_state *stream,
5213 struct dc_stream_update *stream_update)
5214 {
5215 struct dc_state *context;
5216 enum surface_update_type update_type;
5217 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
5218
5219 /* In cases where MPO and split or ODM are used transitions can
5220 * cause underflow. Apply stream configuration with minimal pipe
5221 * split first to avoid unsupported transitions for active pipes.
5222 */
5223 bool force_minimal_pipe_splitting = 0;
5224 bool is_plane_addition = 0;
5225 bool is_fast_update_only;
5226
5227 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
5228 is_fast_update_only = fast_update_only(dc, fast_update, srf_updates,
5229 surface_count, stream_update, stream);
5230 force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
5231 dc,
5232 stream,
5233 srf_updates,
5234 surface_count,
5235 &is_plane_addition);
5236
5237 /* on plane addition, minimal state is the current one */
5238 if (force_minimal_pipe_splitting && is_plane_addition &&
5239 !commit_minimal_transition_state(dc, dc->current_state))
5240 return false;
5241
5242 if (!update_planes_and_stream_state(
5243 dc,
5244 srf_updates,
5245 surface_count,
5246 stream,
5247 stream_update,
5248 &update_type,
5249 &context))
5250 return false;
5251
5252 /* on plane removal, minimal state is the new one */
5253 if (force_minimal_pipe_splitting && !is_plane_addition) {
5254 if (!commit_minimal_transition_state(dc, context)) {
5255 dc_state_release(context);
5256 return false;
5257 }
5258 update_type = UPDATE_TYPE_FULL;
5259 }
5260
5261 if (dc->hwss.is_pipe_topology_transition_seamless &&
5262 !dc->hwss.is_pipe_topology_transition_seamless(
5263 dc, dc->current_state, context))
5264 commit_minimal_transition_state_in_dc_update(dc, context, stream,
5265 srf_updates, surface_count);
5266
5267 if (is_fast_update_only && !dc->debug.enable_legacy_fast_update) {
5268 commit_planes_for_stream_fast(dc,
5269 srf_updates,
5270 surface_count,
5271 stream,
5272 stream_update,
5273 update_type,
5274 context);
5275 } else {
5276 if (!stream_update &&
5277 dc->hwss.is_pipe_topology_transition_seamless &&
5278 !dc->hwss.is_pipe_topology_transition_seamless(
5279 dc, dc->current_state, context)) {
5280 DC_LOG_ERROR("performing non-seamless pipe topology transition with surface only update!\n");
5281 BREAK_TO_DEBUGGER();
5282 }
5283 commit_planes_for_stream(
5284 dc,
5285 srf_updates,
5286 surface_count,
5287 stream,
5288 stream_update,
5289 update_type,
5290 context);
5291 }
5292 if (dc->current_state != context)
5293 swap_and_release_current_context(dc, context, stream);
5294 return true;
5295 }
5296
commit_planes_and_stream_update_on_current_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type)5297 static void commit_planes_and_stream_update_on_current_context(struct dc *dc,
5298 struct dc_surface_update *srf_updates, int surface_count,
5299 struct dc_stream_state *stream,
5300 struct dc_stream_update *stream_update,
5301 enum surface_update_type update_type)
5302 {
5303 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
5304
5305 ASSERT(update_type < UPDATE_TYPE_FULL);
5306 populate_fast_updates(fast_update, srf_updates, surface_count,
5307 stream_update);
5308 if (fast_update_only(dc, fast_update, srf_updates, surface_count,
5309 stream_update, stream) &&
5310 !dc->debug.enable_legacy_fast_update)
5311 commit_planes_for_stream_fast(dc,
5312 srf_updates,
5313 surface_count,
5314 stream,
5315 stream_update,
5316 update_type,
5317 dc->current_state);
5318 else
5319 commit_planes_for_stream(
5320 dc,
5321 srf_updates,
5322 surface_count,
5323 stream,
5324 stream_update,
5325 update_type,
5326 dc->current_state);
5327 }
5328
commit_planes_and_stream_update_with_new_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * new_context)5329 static void commit_planes_and_stream_update_with_new_context(struct dc *dc,
5330 struct dc_surface_update *srf_updates, int surface_count,
5331 struct dc_stream_state *stream,
5332 struct dc_stream_update *stream_update,
5333 enum surface_update_type update_type,
5334 struct dc_state *new_context)
5335 {
5336 ASSERT(update_type >= UPDATE_TYPE_FULL);
5337 if (!dc->hwss.is_pipe_topology_transition_seamless(dc,
5338 dc->current_state, new_context))
5339 /*
5340 * It is required by the feature design that all pipe topologies
5341 * using extra free pipes for power saving purposes such as
5342 * dynamic ODM or SubVp shall only be enabled when it can be
5343 * transitioned seamlessly to AND from its minimal transition
5344 * state. A minimal transition state is defined as the same dc
5345 * state but with all power saving features disabled. So it uses
5346 * the minimum pipe topology. When we can't seamlessly
5347 * transition from state A to state B, we will insert the
5348 * minimal transition state A' or B' in between so seamless
5349 * transition between A and B can be made possible.
5350 */
5351 commit_minimal_transition_state_in_dc_update(dc, new_context,
5352 stream, srf_updates, surface_count);
5353
5354 commit_planes_for_stream(
5355 dc,
5356 srf_updates,
5357 surface_count,
5358 stream,
5359 stream_update,
5360 update_type,
5361 new_context);
5362 }
5363
update_planes_and_stream_v3(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5364 static bool update_planes_and_stream_v3(struct dc *dc,
5365 struct dc_surface_update *srf_updates, int surface_count,
5366 struct dc_stream_state *stream,
5367 struct dc_stream_update *stream_update)
5368 {
5369 struct dc_state *new_context;
5370 enum surface_update_type update_type;
5371
5372 /*
5373 * When this function returns true and new_context is not equal to
5374 * current state, the function allocates and validates a new dc state
5375 * and assigns it to new_context. The function expects that the caller
5376 * is responsible to free this memory when new_context is no longer
5377 * used. We swap current with new context and free current instead. So
5378 * new_context's memory will live until the next full update after it is
5379 * replaced by a newer context. Refer to the use of
5380 * swap_and_free_current_context below.
5381 */
5382 if (!update_planes_and_stream_state(dc, srf_updates, surface_count,
5383 stream, stream_update, &update_type,
5384 &new_context))
5385 return false;
5386
5387 if (new_context == dc->current_state) {
5388 commit_planes_and_stream_update_on_current_context(dc,
5389 srf_updates, surface_count, stream,
5390 stream_update, update_type);
5391 } else {
5392 commit_planes_and_stream_update_with_new_context(dc,
5393 srf_updates, surface_count, stream,
5394 stream_update, update_type, new_context);
5395 swap_and_release_current_context(dc, new_context, stream);
5396 }
5397
5398 return true;
5399 }
5400
clear_update_flags(struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream)5401 static void clear_update_flags(struct dc_surface_update *srf_updates,
5402 int surface_count, struct dc_stream_state *stream)
5403 {
5404 int i;
5405
5406 if (stream)
5407 stream->update_flags.raw = 0;
5408
5409 for (i = 0; i < surface_count; i++)
5410 if (srf_updates[i].surface)
5411 srf_updates[i].surface->update_flags.raw = 0;
5412 }
5413
dc_update_planes_and_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5414 bool dc_update_planes_and_stream(struct dc *dc,
5415 struct dc_surface_update *srf_updates, int surface_count,
5416 struct dc_stream_state *stream,
5417 struct dc_stream_update *stream_update)
5418 {
5419 bool ret = false;
5420
5421 dc_exit_ips_for_hw_access(dc);
5422 /*
5423 * update planes and stream version 3 separates FULL and FAST updates
5424 * to their own sequences. It aims to clean up frequent checks for
5425 * update type resulting unnecessary branching in logic flow. It also
5426 * adds a new commit minimal transition sequence, which detects the need
5427 * for minimal transition based on the actual comparison of current and
5428 * new states instead of "predicting" it based on per feature software
5429 * policy.i.e could_mpcc_tree_change_for_active_pipes. The new commit
5430 * minimal transition sequence is made universal to any power saving
5431 * features that would use extra free pipes such as Dynamic ODM/MPC
5432 * Combine, MPO or SubVp. Therefore there is no longer a need to
5433 * specially handle compatibility problems with transitions among those
5434 * features as they are now transparent to the new sequence.
5435 */
5436 if (dc->ctx->dce_version >= DCN_VERSION_4_01)
5437 ret = update_planes_and_stream_v3(dc, srf_updates,
5438 surface_count, stream, stream_update);
5439 else
5440 ret = update_planes_and_stream_v2(dc, srf_updates,
5441 surface_count, stream, stream_update);
5442
5443 if (ret)
5444 clear_update_flags(srf_updates, surface_count, stream);
5445
5446 return ret;
5447 }
5448
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)5449 void dc_commit_updates_for_stream(struct dc *dc,
5450 struct dc_surface_update *srf_updates,
5451 int surface_count,
5452 struct dc_stream_state *stream,
5453 struct dc_stream_update *stream_update,
5454 struct dc_state *state)
5455 {
5456 bool ret = false;
5457
5458 dc_exit_ips_for_hw_access(dc);
5459 /* TODO: Since change commit sequence can have a huge impact,
5460 * we decided to only enable it for DCN3x. However, as soon as
5461 * we get more confident about this change we'll need to enable
5462 * the new sequence for all ASICs.
5463 */
5464 if (dc->ctx->dce_version >= DCN_VERSION_4_01) {
5465 ret = update_planes_and_stream_v3(dc, srf_updates, surface_count,
5466 stream, stream_update);
5467 } else if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
5468 ret = update_planes_and_stream_v2(dc, srf_updates, surface_count,
5469 stream, stream_update);
5470 } else
5471 ret = update_planes_and_stream_v1(dc, srf_updates, surface_count, stream,
5472 stream_update, state);
5473
5474 if (ret)
5475 clear_update_flags(srf_updates, surface_count, stream);
5476 }
5477
dc_get_current_stream_count(struct dc * dc)5478 uint8_t dc_get_current_stream_count(struct dc *dc)
5479 {
5480 return dc->current_state->stream_count;
5481 }
5482
dc_get_stream_at_index(struct dc * dc,uint8_t i)5483 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
5484 {
5485 if (i < dc->current_state->stream_count)
5486 return dc->current_state->streams[i];
5487 return NULL;
5488 }
5489
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)5490 enum dc_irq_source dc_interrupt_to_irq_source(
5491 struct dc *dc,
5492 uint32_t src_id,
5493 uint32_t ext_id)
5494 {
5495 return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
5496 }
5497
5498 /*
5499 * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
5500 */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)5501 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
5502 {
5503
5504 if (dc == NULL)
5505 return false;
5506
5507 return dal_irq_service_set(dc->res_pool->irqs, src, enable);
5508 }
5509
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)5510 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
5511 {
5512 dal_irq_service_ack(dc->res_pool->irqs, src);
5513 }
5514
dc_power_down_on_boot(struct dc * dc)5515 void dc_power_down_on_boot(struct dc *dc)
5516 {
5517 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
5518 dc->hwss.power_down_on_boot) {
5519 if (dc->caps.ips_support)
5520 dc_exit_ips_for_hw_access(dc);
5521 dc->hwss.power_down_on_boot(dc);
5522 }
5523 }
5524
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)5525 void dc_set_power_state(struct dc *dc, enum dc_acpi_cm_power_state power_state)
5526 {
5527 if (!dc->current_state)
5528 return;
5529
5530 switch (power_state) {
5531 case DC_ACPI_CM_POWER_STATE_D0:
5532 dc_state_construct(dc, dc->current_state);
5533
5534 dc_exit_ips_for_hw_access(dc);
5535
5536 dc_z10_restore(dc);
5537
5538 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5539
5540 dc->hwss.init_hw(dc);
5541
5542 if (dc->hwss.init_sys_ctx != NULL &&
5543 dc->vm_pa_config.valid) {
5544 dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
5545 }
5546 break;
5547 default:
5548 ASSERT(dc->current_state->stream_count == 0);
5549 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5550
5551 dc_state_destruct(dc->current_state);
5552
5553 break;
5554 }
5555 }
5556
dc_resume(struct dc * dc)5557 void dc_resume(struct dc *dc)
5558 {
5559 uint32_t i;
5560
5561 for (i = 0; i < dc->link_count; i++)
5562 dc->link_srv->resume(dc->links[i]);
5563 }
5564
dc_is_dmcu_initialized(struct dc * dc)5565 bool dc_is_dmcu_initialized(struct dc *dc)
5566 {
5567 struct dmcu *dmcu = dc->res_pool->dmcu;
5568
5569 if (dmcu)
5570 return dmcu->funcs->is_dmcu_initialized(dmcu);
5571 return false;
5572 }
5573
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)5574 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
5575 {
5576 if (dc->hwss.set_clock)
5577 return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
5578 return DC_ERROR_UNEXPECTED;
5579 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)5580 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
5581 {
5582 if (dc->hwss.get_clock)
5583 dc->hwss.get_clock(dc, clock_type, clock_cfg);
5584 }
5585
5586 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)5587 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
5588 {
5589 int i;
5590 bool allow_active;
5591
5592 for (i = 0; i < dc->current_state->stream_count ; i++) {
5593 struct dc_link *link;
5594 struct dc_stream_state *stream = dc->current_state->streams[i];
5595
5596 link = stream->link;
5597 if (!link)
5598 continue;
5599
5600 if (link->psr_settings.psr_feature_enabled) {
5601 if (enable && !link->psr_settings.psr_allow_active) {
5602 allow_active = true;
5603 if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
5604 return false;
5605 } else if (!enable && link->psr_settings.psr_allow_active) {
5606 allow_active = false;
5607 if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
5608 return false;
5609 }
5610 }
5611 }
5612
5613 return true;
5614 }
5615
5616 /* enable/disable eDP Replay without specify stream for eDP */
dc_set_replay_allow_active(struct dc * dc,bool active)5617 bool dc_set_replay_allow_active(struct dc *dc, bool active)
5618 {
5619 int i;
5620 bool allow_active;
5621
5622 for (i = 0; i < dc->current_state->stream_count; i++) {
5623 struct dc_link *link;
5624 struct dc_stream_state *stream = dc->current_state->streams[i];
5625
5626 link = stream->link;
5627 if (!link)
5628 continue;
5629
5630 if (link->replay_settings.replay_feature_enabled) {
5631 if (active && !link->replay_settings.replay_allow_active) {
5632 allow_active = true;
5633 if (!dc_link_set_replay_allow_active(link, &allow_active,
5634 false, false, NULL))
5635 return false;
5636 } else if (!active && link->replay_settings.replay_allow_active) {
5637 allow_active = false;
5638 if (!dc_link_set_replay_allow_active(link, &allow_active,
5639 true, false, NULL))
5640 return false;
5641 }
5642 }
5643 }
5644
5645 return true;
5646 }
5647
5648 /* set IPS disable state */
dc_set_ips_disable(struct dc * dc,unsigned int disable_ips)5649 bool dc_set_ips_disable(struct dc *dc, unsigned int disable_ips)
5650 {
5651 dc_exit_ips_for_hw_access(dc);
5652
5653 dc->config.disable_ips = disable_ips;
5654
5655 return true;
5656 }
5657
dc_allow_idle_optimizations_internal(struct dc * dc,bool allow,char const * caller_name)5658 void dc_allow_idle_optimizations_internal(struct dc *dc, bool allow, char const *caller_name)
5659 {
5660 int idle_fclk_khz = 0, idle_dramclk_khz = 0, i = 0;
5661 enum mall_stream_type subvp_pipe_type[MAX_PIPES] = {0};
5662 struct pipe_ctx *pipe = NULL;
5663 struct dc_state *context = dc->current_state;
5664
5665 if (dc->debug.disable_idle_power_optimizations) {
5666 DC_LOG_DEBUG("%s: disabled\n", __func__);
5667 return;
5668 }
5669
5670 if (allow != dc->idle_optimizations_allowed)
5671 DC_LOG_IPS("%s: allow_idle old=%d new=%d (caller=%s)\n", __func__,
5672 dc->idle_optimizations_allowed, allow, caller_name);
5673
5674 if (dc->caps.ips_support && (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5675 return;
5676
5677 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
5678 if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
5679 return;
5680
5681 if (allow == dc->idle_optimizations_allowed)
5682 return;
5683
5684 if (dc->hwss.apply_idle_power_optimizations && dc->clk_mgr != NULL &&
5685 dc->hwss.apply_idle_power_optimizations(dc, allow)) {
5686 dc->idle_optimizations_allowed = allow;
5687 DC_LOG_DEBUG("%s: %s\n", __func__, allow ? "enabled" : "disabled");
5688 }
5689
5690 // log idle clocks and sub vp pipe types at idle optimization time
5691 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->get_hard_min_fclk)
5692 idle_fclk_khz = dc->clk_mgr->funcs->get_hard_min_fclk(dc->clk_mgr);
5693
5694 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->get_hard_min_memclk)
5695 idle_dramclk_khz = dc->clk_mgr->funcs->get_hard_min_memclk(dc->clk_mgr);
5696
5697 if (dc->res_pool && context) {
5698 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5699 pipe = &context->res_ctx.pipe_ctx[i];
5700 subvp_pipe_type[i] = dc_state_get_pipe_subvp_type(context, pipe);
5701 }
5702 }
5703
5704 DC_LOG_DC("%s: allow_idle=%d\n HardMinUClk_Khz=%d HardMinDramclk_Khz=%d\n Pipe_0=%d Pipe_1=%d Pipe_2=%d Pipe_3=%d Pipe_4=%d Pipe_5=%d (caller=%s)\n",
5705 __func__, allow, idle_fclk_khz, idle_dramclk_khz, subvp_pipe_type[0], subvp_pipe_type[1], subvp_pipe_type[2],
5706 subvp_pipe_type[3], subvp_pipe_type[4], subvp_pipe_type[5], caller_name);
5707
5708 }
5709
dc_exit_ips_for_hw_access_internal(struct dc * dc,const char * caller_name)5710 void dc_exit_ips_for_hw_access_internal(struct dc *dc, const char *caller_name)
5711 {
5712 if (dc->caps.ips_support)
5713 dc_allow_idle_optimizations_internal(dc, false, caller_name);
5714 }
5715
dc_dmub_is_ips_idle_state(struct dc * dc)5716 bool dc_dmub_is_ips_idle_state(struct dc *dc)
5717 {
5718 if (dc->debug.disable_idle_power_optimizations)
5719 return false;
5720
5721 if (!dc->caps.ips_support || (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5722 return false;
5723
5724 if (!dc->ctx->dmub_srv)
5725 return false;
5726
5727 return dc->ctx->dmub_srv->idle_allowed;
5728 }
5729
5730 /* set min and max memory clock to lowest and highest DPM level, respectively */
dc_unlock_memory_clock_frequency(struct dc * dc)5731 void dc_unlock_memory_clock_frequency(struct dc *dc)
5732 {
5733 if (dc->clk_mgr->funcs->set_hard_min_memclk)
5734 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
5735
5736 if (dc->clk_mgr->funcs->set_hard_max_memclk)
5737 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5738 }
5739
5740 /* set min memory clock to the min required for current mode, max to maxDPM */
dc_lock_memory_clock_frequency(struct dc * dc)5741 void dc_lock_memory_clock_frequency(struct dc *dc)
5742 {
5743 if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
5744 dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
5745
5746 if (dc->clk_mgr->funcs->set_hard_min_memclk)
5747 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
5748
5749 if (dc->clk_mgr->funcs->set_hard_max_memclk)
5750 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5751 }
5752
blank_and_force_memclk(struct dc * dc,bool apply,unsigned int memclk_mhz)5753 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
5754 {
5755 struct dc_state *context = dc->current_state;
5756 struct hubp *hubp;
5757 struct pipe_ctx *pipe;
5758 int i;
5759
5760 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5761 pipe = &context->res_ctx.pipe_ctx[i];
5762
5763 if (pipe->stream != NULL) {
5764 dc->hwss.disable_pixel_data(dc, pipe, true);
5765
5766 // wait for double buffer
5767 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5768 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
5769 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5770
5771 hubp = pipe->plane_res.hubp;
5772 hubp->funcs->set_blank_regs(hubp, true);
5773 }
5774 }
5775 if (dc->clk_mgr->funcs->set_max_memclk)
5776 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
5777 if (dc->clk_mgr->funcs->set_min_memclk)
5778 dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
5779
5780 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5781 pipe = &context->res_ctx.pipe_ctx[i];
5782
5783 if (pipe->stream != NULL) {
5784 dc->hwss.disable_pixel_data(dc, pipe, false);
5785
5786 hubp = pipe->plane_res.hubp;
5787 hubp->funcs->set_blank_regs(hubp, false);
5788 }
5789 }
5790 }
5791
5792
5793 /**
5794 * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
5795 * @dc: pointer to dc of the dm calling this
5796 * @enable: True = transition to DC mode, false = transition back to AC mode
5797 *
5798 * Some SoCs define additional clock limits when in DC mode, DM should
5799 * invoke this function when the platform undergoes a power source transition
5800 * so DC can apply/unapply the limit. This interface may be disruptive to
5801 * the onscreen content.
5802 *
5803 * Context: Triggered by OS through DM interface, or manually by escape calls.
5804 * Need to hold a dclock when doing so.
5805 *
5806 * Return: none (void function)
5807 *
5808 */
dc_enable_dcmode_clk_limit(struct dc * dc,bool enable)5809 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
5810 {
5811 unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i;
5812 bool p_state_change_support;
5813
5814 if (!dc->config.dc_mode_clk_limit_support)
5815 return;
5816
5817 softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
5818 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) {
5819 if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM)
5820 maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
5821 }
5822 funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
5823 p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
5824
5825 if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
5826 if (p_state_change_support) {
5827 if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5828 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
5829 // else: No-Op
5830 } else {
5831 if (funcMin <= softMax)
5832 blank_and_force_memclk(dc, true, softMax);
5833 // else: No-Op
5834 }
5835 } else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
5836 if (p_state_change_support) {
5837 if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5838 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
5839 // else: No-Op
5840 } else {
5841 if (funcMin <= softMax)
5842 blank_and_force_memclk(dc, true, maxDPM);
5843 // else: No-Op
5844 }
5845 }
5846 dc->clk_mgr->dc_mode_softmax_enabled = enable;
5847 }
dc_is_plane_eligible_for_idle_optimizations(struct dc * dc,unsigned int pitch,unsigned int height,enum surface_pixel_format format,struct dc_cursor_attributes * cursor_attr)5848 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc,
5849 unsigned int pitch,
5850 unsigned int height,
5851 enum surface_pixel_format format,
5852 struct dc_cursor_attributes *cursor_attr)
5853 {
5854 if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, pitch, height, format, cursor_attr))
5855 return true;
5856 return false;
5857 }
5858
5859 /* cleanup on driver unload */
dc_hardware_release(struct dc * dc)5860 void dc_hardware_release(struct dc *dc)
5861 {
5862 dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
5863
5864 if (dc->hwss.hardware_release)
5865 dc->hwss.hardware_release(dc);
5866 }
5867
dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc * dc)5868 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
5869 {
5870 if (dc->current_state)
5871 dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
5872 }
5873
5874 /**
5875 * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
5876 *
5877 * @dc: [in] dc structure
5878 *
5879 * Checks whether DMUB FW supports outbox notifications, if supported DM
5880 * should register outbox interrupt prior to actually enabling interrupts
5881 * via dc_enable_dmub_outbox
5882 *
5883 * Return:
5884 * True if DMUB FW supports outbox notifications, False otherwise
5885 */
dc_is_dmub_outbox_supported(struct dc * dc)5886 bool dc_is_dmub_outbox_supported(struct dc *dc)
5887 {
5888 if (!dc->caps.dmcub_support)
5889 return false;
5890
5891 switch (dc->ctx->asic_id.chip_family) {
5892
5893 case FAMILY_YELLOW_CARP:
5894 /* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
5895 if (dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
5896 !dc->debug.dpia_debug.bits.disable_dpia)
5897 return true;
5898 break;
5899
5900 case AMDGPU_FAMILY_GC_11_0_1:
5901 case AMDGPU_FAMILY_GC_11_5_0:
5902 if (!dc->debug.dpia_debug.bits.disable_dpia)
5903 return true;
5904 break;
5905
5906 default:
5907 break;
5908 }
5909
5910 /* dmub aux needs dmub notifications to be enabled */
5911 return dc->debug.enable_dmub_aux_for_legacy_ddc;
5912
5913 }
5914
5915 /**
5916 * dc_enable_dmub_notifications - Check if dmub fw supports outbox
5917 *
5918 * @dc: [in] dc structure
5919 *
5920 * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
5921 * notifications. All DMs shall switch to dc_is_dmub_outbox_supported. This
5922 * API shall be removed after switching.
5923 *
5924 * Return:
5925 * True if DMUB FW supports outbox notifications, False otherwise
5926 */
dc_enable_dmub_notifications(struct dc * dc)5927 bool dc_enable_dmub_notifications(struct dc *dc)
5928 {
5929 return dc_is_dmub_outbox_supported(dc);
5930 }
5931
5932 /**
5933 * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
5934 *
5935 * @dc: [in] dc structure
5936 *
5937 * Enables DMUB unsolicited notifications to x86 via outbox.
5938 */
dc_enable_dmub_outbox(struct dc * dc)5939 void dc_enable_dmub_outbox(struct dc *dc)
5940 {
5941 struct dc_context *dc_ctx = dc->ctx;
5942
5943 dmub_enable_outbox_notification(dc_ctx->dmub_srv);
5944 DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
5945 }
5946
5947 /**
5948 * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
5949 * Sets port index appropriately for legacy DDC
5950 * @dc: dc structure
5951 * @link_index: link index
5952 * @payload: aux payload
5953 *
5954 * Returns: True if successful, False if failure
5955 */
dc_process_dmub_aux_transfer_async(struct dc * dc,uint32_t link_index,struct aux_payload * payload)5956 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
5957 uint32_t link_index,
5958 struct aux_payload *payload)
5959 {
5960 uint8_t action;
5961 union dmub_rb_cmd cmd = {0};
5962
5963 ASSERT(payload->length <= 16);
5964
5965 cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
5966 cmd.dp_aux_access.header.payload_bytes = 0;
5967 /* For dpia, ddc_pin is set to NULL */
5968 if (!dc->links[link_index]->ddc->ddc_pin)
5969 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
5970 else
5971 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
5972
5973 cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
5974 cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
5975 cmd.dp_aux_access.aux_control.timeout = 0;
5976 cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
5977 cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
5978 cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
5979
5980 /* set aux action */
5981 if (payload->i2c_over_aux) {
5982 if (payload->write) {
5983 if (payload->mot)
5984 action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
5985 else
5986 action = DP_AUX_REQ_ACTION_I2C_WRITE;
5987 } else {
5988 if (payload->mot)
5989 action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
5990 else
5991 action = DP_AUX_REQ_ACTION_I2C_READ;
5992 }
5993 } else {
5994 if (payload->write)
5995 action = DP_AUX_REQ_ACTION_DPCD_WRITE;
5996 else
5997 action = DP_AUX_REQ_ACTION_DPCD_READ;
5998 }
5999
6000 cmd.dp_aux_access.aux_control.dpaux.action = action;
6001
6002 if (payload->length && payload->write) {
6003 memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
6004 payload->data,
6005 payload->length
6006 );
6007 }
6008
6009 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
6010
6011 return true;
6012 }
6013
get_link_index_from_dpia_port_index(const struct dc * dc,uint8_t dpia_port_index)6014 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
6015 uint8_t dpia_port_index)
6016 {
6017 uint8_t index, link_index = 0xFF;
6018
6019 for (index = 0; index < dc->link_count; index++) {
6020 /* ddc_hw_inst has dpia port index for dpia links
6021 * and ddc instance for legacy links
6022 */
6023 if (!dc->links[index]->ddc->ddc_pin) {
6024 if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
6025 link_index = index;
6026 break;
6027 }
6028 }
6029 }
6030 ASSERT(link_index != 0xFF);
6031 return link_index;
6032 }
6033
6034 /**
6035 * dc_process_dmub_set_config_async - Submits set_config command
6036 *
6037 * @dc: [in] dc structure
6038 * @link_index: [in] link_index: link index
6039 * @payload: [in] aux payload
6040 * @notify: [out] set_config immediate reply
6041 *
6042 * Submits set_config command to dmub via inbox message.
6043 *
6044 * Return:
6045 * True if successful, False if failure
6046 */
dc_process_dmub_set_config_async(struct dc * dc,uint32_t link_index,struct set_config_cmd_payload * payload,struct dmub_notification * notify)6047 bool dc_process_dmub_set_config_async(struct dc *dc,
6048 uint32_t link_index,
6049 struct set_config_cmd_payload *payload,
6050 struct dmub_notification *notify)
6051 {
6052 union dmub_rb_cmd cmd = {0};
6053 bool is_cmd_complete = true;
6054
6055 /* prepare SET_CONFIG command */
6056 cmd.set_config_access.header.type = DMUB_CMD__DPIA;
6057 cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
6058
6059 cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
6060 cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
6061 cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
6062
6063 if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) {
6064 /* command is not processed by dmub */
6065 notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
6066 return is_cmd_complete;
6067 }
6068
6069 /* command processed by dmub, if ret_status is 1, it is completed instantly */
6070 if (cmd.set_config_access.header.ret_status == 1)
6071 notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
6072 else
6073 /* cmd pending, will receive notification via outbox */
6074 is_cmd_complete = false;
6075
6076 return is_cmd_complete;
6077 }
6078
6079 /**
6080 * dc_process_dmub_set_mst_slots - Submits MST solt allocation
6081 *
6082 * @dc: [in] dc structure
6083 * @link_index: [in] link index
6084 * @mst_alloc_slots: [in] mst slots to be allotted
6085 * @mst_slots_in_use: [out] mst slots in use returned in failure case
6086 *
6087 * Submits mst slot allocation command to dmub via inbox message
6088 *
6089 * Return:
6090 * DC_OK if successful, DC_ERROR if failure
6091 */
dc_process_dmub_set_mst_slots(const struct dc * dc,uint32_t link_index,uint8_t mst_alloc_slots,uint8_t * mst_slots_in_use)6092 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
6093 uint32_t link_index,
6094 uint8_t mst_alloc_slots,
6095 uint8_t *mst_slots_in_use)
6096 {
6097 union dmub_rb_cmd cmd = {0};
6098
6099 /* prepare MST_ALLOC_SLOTS command */
6100 cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
6101 cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
6102
6103 cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
6104 cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
6105
6106 if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY))
6107 /* command is not processed by dmub */
6108 return DC_ERROR_UNEXPECTED;
6109
6110 /* command processed by dmub, if ret_status is 1 */
6111 if (cmd.set_config_access.header.ret_status != 1)
6112 /* command processing error */
6113 return DC_ERROR_UNEXPECTED;
6114
6115 /* command processed and we have a status of 2, mst not enabled in dpia */
6116 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
6117 return DC_FAIL_UNSUPPORTED_1;
6118
6119 /* previously configured mst alloc and used slots did not match */
6120 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
6121 *mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
6122 return DC_NOT_SUPPORTED;
6123 }
6124
6125 return DC_OK;
6126 }
6127
6128 /**
6129 * dc_process_dmub_dpia_set_tps_notification - Submits tps notification
6130 *
6131 * @dc: [in] dc structure
6132 * @link_index: [in] link index
6133 * @tps: [in] request tps
6134 *
6135 * Submits set_tps_notification command to dmub via inbox message
6136 */
dc_process_dmub_dpia_set_tps_notification(const struct dc * dc,uint32_t link_index,uint8_t tps)6137 void dc_process_dmub_dpia_set_tps_notification(const struct dc *dc, uint32_t link_index, uint8_t tps)
6138 {
6139 union dmub_rb_cmd cmd = {0};
6140
6141 cmd.set_tps_notification.header.type = DMUB_CMD__DPIA;
6142 cmd.set_tps_notification.header.sub_type = DMUB_CMD__DPIA_SET_TPS_NOTIFICATION;
6143 cmd.set_tps_notification.tps_notification.instance = dc->links[link_index]->ddc_hw_inst;
6144 cmd.set_tps_notification.tps_notification.tps = tps;
6145
6146 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
6147 }
6148
6149 /**
6150 * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
6151 *
6152 * @dc: [in] dc structure
6153 * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
6154 *
6155 * Submits dpia hpd int enable command to dmub via inbox message
6156 */
dc_process_dmub_dpia_hpd_int_enable(const struct dc * dc,uint32_t hpd_int_enable)6157 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
6158 uint32_t hpd_int_enable)
6159 {
6160 union dmub_rb_cmd cmd = {0};
6161
6162 cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
6163 cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
6164
6165 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
6166
6167 DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
6168 }
6169
6170 /**
6171 * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging
6172 *
6173 * @dc: [in] dc structure
6174 *
6175 *
6176 */
dc_print_dmub_diagnostic_data(const struct dc * dc)6177 void dc_print_dmub_diagnostic_data(const struct dc *dc)
6178 {
6179 dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv);
6180 }
6181
6182 /**
6183 * dc_disable_accelerated_mode - disable accelerated mode
6184 * @dc: dc structure
6185 */
dc_disable_accelerated_mode(struct dc * dc)6186 void dc_disable_accelerated_mode(struct dc *dc)
6187 {
6188 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
6189 }
6190
6191
6192 /**
6193 * dc_notify_vsync_int_state - notifies vsync enable/disable state
6194 * @dc: dc structure
6195 * @stream: stream where vsync int state changed
6196 * @enable: whether vsync is enabled or disabled
6197 *
6198 * Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
6199 * interrupts after steady state is reached.
6200 */
dc_notify_vsync_int_state(struct dc * dc,struct dc_stream_state * stream,bool enable)6201 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
6202 {
6203 int i;
6204 int edp_num;
6205 struct pipe_ctx *pipe = NULL;
6206 struct dc_link *link = stream->sink->link;
6207 struct dc_link *edp_links[MAX_NUM_EDP];
6208
6209
6210 if (link->psr_settings.psr_feature_enabled)
6211 return;
6212
6213 if (link->replay_settings.replay_feature_enabled)
6214 return;
6215
6216 /*find primary pipe associated with stream*/
6217 for (i = 0; i < MAX_PIPES; i++) {
6218 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
6219
6220 if (pipe->stream == stream && pipe->stream_res.tg)
6221 break;
6222 }
6223
6224 if (i == MAX_PIPES) {
6225 ASSERT(0);
6226 return;
6227 }
6228
6229 dc_get_edp_links(dc, edp_links, &edp_num);
6230
6231 /* Determine panel inst */
6232 for (i = 0; i < edp_num; i++) {
6233 if (edp_links[i] == link)
6234 break;
6235 }
6236
6237 if (i == edp_num) {
6238 return;
6239 }
6240
6241 if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
6242 pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
6243 }
6244
6245 /*****************************************************************************
6246 * dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause
6247 * ABM
6248 * @dc: dc structure
6249 * @stream: stream where vsync int state changed
6250 * @pData: abm hw states
6251 *
6252 ****************************************************************************/
dc_abm_save_restore(struct dc * dc,struct dc_stream_state * stream,struct abm_save_restore * pData)6253 bool dc_abm_save_restore(
6254 struct dc *dc,
6255 struct dc_stream_state *stream,
6256 struct abm_save_restore *pData)
6257 {
6258 int i;
6259 int edp_num;
6260 struct pipe_ctx *pipe = NULL;
6261 struct dc_link *link = stream->sink->link;
6262 struct dc_link *edp_links[MAX_NUM_EDP];
6263
6264 if (link->replay_settings.replay_feature_enabled)
6265 return false;
6266
6267 /*find primary pipe associated with stream*/
6268 for (i = 0; i < MAX_PIPES; i++) {
6269 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
6270
6271 if (pipe->stream == stream && pipe->stream_res.tg)
6272 break;
6273 }
6274
6275 if (i == MAX_PIPES) {
6276 ASSERT(0);
6277 return false;
6278 }
6279
6280 dc_get_edp_links(dc, edp_links, &edp_num);
6281
6282 /* Determine panel inst */
6283 for (i = 0; i < edp_num; i++)
6284 if (edp_links[i] == link)
6285 break;
6286
6287 if (i == edp_num)
6288 return false;
6289
6290 if (pipe->stream_res.abm &&
6291 pipe->stream_res.abm->funcs->save_restore)
6292 return pipe->stream_res.abm->funcs->save_restore(
6293 pipe->stream_res.abm,
6294 i,
6295 pData);
6296 return false;
6297 }
6298
dc_query_current_properties(struct dc * dc,struct dc_current_properties * properties)6299 void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties)
6300 {
6301 unsigned int i;
6302 unsigned int max_cursor_size = dc->caps.max_cursor_size;
6303 unsigned int stream_cursor_size;
6304
6305 if (dc->debug.allow_sw_cursor_fallback && dc->res_pool->funcs->get_max_hw_cursor_size) {
6306 for (i = 0; i < dc->current_state->stream_count; i++) {
6307 stream_cursor_size = dc->res_pool->funcs->get_max_hw_cursor_size(dc,
6308 dc->current_state,
6309 dc->current_state->streams[i]);
6310
6311 if (stream_cursor_size < max_cursor_size) {
6312 max_cursor_size = stream_cursor_size;
6313 }
6314 }
6315 }
6316
6317 properties->cursor_size_limit = max_cursor_size;
6318 }
6319
6320 /**
6321 * dc_set_edp_power() - DM controls eDP power to be ON/OFF
6322 *
6323 * Called when DM wants to power on/off eDP.
6324 * Only work on links with flag skip_implict_edp_power_control is set.
6325 *
6326 * @dc: Current DC state
6327 * @edp_link: a link with eDP connector signal type
6328 * @powerOn: power on/off eDP
6329 *
6330 * Return: void
6331 */
dc_set_edp_power(const struct dc * dc,struct dc_link * edp_link,bool powerOn)6332 void dc_set_edp_power(const struct dc *dc, struct dc_link *edp_link,
6333 bool powerOn)
6334 {
6335 if (edp_link->connector_signal != SIGNAL_TYPE_EDP)
6336 return;
6337
6338 if (edp_link->skip_implict_edp_power_control == false)
6339 return;
6340
6341 edp_link->dc->link_srv->edp_set_panel_power(edp_link, powerOn);
6342 }
6343
6344 /*
6345 *****************************************************************************
6346 * dc_get_power_profile_for_dc_state() - extracts power profile from dc state
6347 *
6348 * Called when DM wants to make power policy decisions based on dc_state
6349 *
6350 *****************************************************************************
6351 */
dc_get_power_profile_for_dc_state(const struct dc_state * context)6352 struct dc_power_profile dc_get_power_profile_for_dc_state(const struct dc_state *context)
6353 {
6354 struct dc_power_profile profile = { 0 };
6355
6356 profile.power_level = !context->bw_ctx.bw.dcn.clk.p_state_change_support;
6357 if (!context->clk_mgr || !context->clk_mgr->ctx || !context->clk_mgr->ctx->dc)
6358 return profile;
6359 struct dc *dc = context->clk_mgr->ctx->dc;
6360
6361 if (dc->res_pool->funcs->get_power_profile)
6362 profile.power_level = dc->res_pool->funcs->get_power_profile(context);
6363 return profile;
6364 }
6365
6366 /*
6367 **********************************************************************************
6368 * dc_get_det_buffer_size_from_state() - extracts detile buffer size from dc state
6369 *
6370 * Called when DM wants to log detile buffer size from dc_state
6371 *
6372 **********************************************************************************
6373 */
dc_get_det_buffer_size_from_state(const struct dc_state * context)6374 unsigned int dc_get_det_buffer_size_from_state(const struct dc_state *context)
6375 {
6376 struct dc *dc = context->clk_mgr->ctx->dc;
6377
6378 if (dc->res_pool->funcs->get_det_buffer_size)
6379 return dc->res_pool->funcs->get_det_buffer_size(context);
6380 else
6381 return 0;
6382 }
6383 /**
6384 ***********************************************************************************************
6385 * dc_get_host_router_index: Get index of host router from a dpia link
6386 *
6387 * This function return a host router index of the target link. If the target link is dpia link.
6388 *
6389 * @param [in] link: target link
6390 * @param [out] host_router_index: host router index of the target link
6391 *
6392 * @return: true if the host router index is found and valid.
6393 *
6394 ***********************************************************************************************
6395 */
dc_get_host_router_index(const struct dc_link * link,unsigned int * host_router_index)6396 bool dc_get_host_router_index(const struct dc_link *link, unsigned int *host_router_index)
6397 {
6398 struct dc *dc = link->ctx->dc;
6399
6400 if (link->ep_type != DISPLAY_ENDPOINT_USB4_DPIA)
6401 return false;
6402
6403 if (link->link_index < dc->lowest_dpia_link_index)
6404 return false;
6405
6406 *host_router_index = (link->link_index - dc->lowest_dpia_link_index) / dc->caps.num_of_dpias_per_host_router;
6407 if (*host_router_index < dc->caps.num_of_host_routers)
6408 return true;
6409 else
6410 return false;
6411 }
6412
dc_is_cursor_limit_pending(struct dc * dc)6413 bool dc_is_cursor_limit_pending(struct dc *dc)
6414 {
6415 uint32_t i;
6416
6417 for (i = 0; i < dc->current_state->stream_count; i++) {
6418 if (dc_stream_is_cursor_limit_pending(dc, dc->current_state->streams[i]))
6419 return true;
6420 }
6421
6422 return false;
6423 }
6424
dc_can_clear_cursor_limit(struct dc * dc)6425 bool dc_can_clear_cursor_limit(struct dc *dc)
6426 {
6427 uint32_t i;
6428
6429 for (i = 0; i < dc->current_state->stream_count; i++) {
6430 if (dc_state_can_clear_stream_cursor_subvp_limit(dc->current_state->streams[i], dc->current_state))
6431 return true;
6432 }
6433
6434 return false;
6435 }
6436