1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11 /*
12 * This file implements most of the debugging stuff which is compiled in only
13 * when it is enabled. But some debugging check functions are implemented in
14 * corresponding subsystem, just because they are closely related and utilize
15 * various local functions of those subsystems.
16 */
17
18 #include <linux/module.h>
19 #include <linux/debugfs.h>
20 #include <linux/math64.h>
21 #include <linux/uaccess.h>
22 #include <linux/random.h>
23 #include <linux/ctype.h>
24 #include "ubifs.h"
25
26 static DEFINE_SPINLOCK(dbg_lock);
27
get_key_fmt(int fmt)28 static const char *get_key_fmt(int fmt)
29 {
30 switch (fmt) {
31 case UBIFS_SIMPLE_KEY_FMT:
32 return "simple";
33 default:
34 return "unknown/invalid format";
35 }
36 }
37
get_key_hash(int hash)38 static const char *get_key_hash(int hash)
39 {
40 switch (hash) {
41 case UBIFS_KEY_HASH_R5:
42 return "R5";
43 case UBIFS_KEY_HASH_TEST:
44 return "test";
45 default:
46 return "unknown/invalid name hash";
47 }
48 }
49
get_key_type(int type)50 static const char *get_key_type(int type)
51 {
52 switch (type) {
53 case UBIFS_INO_KEY:
54 return "inode";
55 case UBIFS_DENT_KEY:
56 return "direntry";
57 case UBIFS_XENT_KEY:
58 return "xentry";
59 case UBIFS_DATA_KEY:
60 return "data";
61 case UBIFS_TRUN_KEY:
62 return "truncate";
63 default:
64 return "unknown/invalid key";
65 }
66 }
67
get_dent_type(int type)68 static const char *get_dent_type(int type)
69 {
70 switch (type) {
71 case UBIFS_ITYPE_REG:
72 return "file";
73 case UBIFS_ITYPE_DIR:
74 return "dir";
75 case UBIFS_ITYPE_LNK:
76 return "symlink";
77 case UBIFS_ITYPE_BLK:
78 return "blkdev";
79 case UBIFS_ITYPE_CHR:
80 return "char dev";
81 case UBIFS_ITYPE_FIFO:
82 return "fifo";
83 case UBIFS_ITYPE_SOCK:
84 return "socket";
85 default:
86 return "unknown/invalid type";
87 }
88 }
89
dbg_snprintf_key(const struct ubifs_info * c,const union ubifs_key * key,char * buffer,int len)90 const char *dbg_snprintf_key(const struct ubifs_info *c,
91 const union ubifs_key *key, char *buffer, int len)
92 {
93 char *p = buffer;
94 int type = key_type(c, key);
95
96 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
97 switch (type) {
98 case UBIFS_INO_KEY:
99 len -= snprintf(p, len, "(%lu, %s)",
100 (unsigned long)key_inum(c, key),
101 get_key_type(type));
102 break;
103 case UBIFS_DENT_KEY:
104 case UBIFS_XENT_KEY:
105 len -= snprintf(p, len, "(%lu, %s, %#08x)",
106 (unsigned long)key_inum(c, key),
107 get_key_type(type), key_hash(c, key));
108 break;
109 case UBIFS_DATA_KEY:
110 len -= snprintf(p, len, "(%lu, %s, %u)",
111 (unsigned long)key_inum(c, key),
112 get_key_type(type), key_block(c, key));
113 break;
114 case UBIFS_TRUN_KEY:
115 len -= snprintf(p, len, "(%lu, %s)",
116 (unsigned long)key_inum(c, key),
117 get_key_type(type));
118 break;
119 default:
120 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
121 key->u32[0], key->u32[1]);
122 }
123 } else
124 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
125 ubifs_assert(c, len > 0);
126 return p;
127 }
128
dbg_ntype(int type)129 const char *dbg_ntype(int type)
130 {
131 switch (type) {
132 case UBIFS_PAD_NODE:
133 return "padding node";
134 case UBIFS_SB_NODE:
135 return "superblock node";
136 case UBIFS_MST_NODE:
137 return "master node";
138 case UBIFS_REF_NODE:
139 return "reference node";
140 case UBIFS_INO_NODE:
141 return "inode node";
142 case UBIFS_DENT_NODE:
143 return "direntry node";
144 case UBIFS_XENT_NODE:
145 return "xentry node";
146 case UBIFS_DATA_NODE:
147 return "data node";
148 case UBIFS_TRUN_NODE:
149 return "truncate node";
150 case UBIFS_IDX_NODE:
151 return "indexing node";
152 case UBIFS_CS_NODE:
153 return "commit start node";
154 case UBIFS_ORPH_NODE:
155 return "orphan node";
156 case UBIFS_AUTH_NODE:
157 return "auth node";
158 default:
159 return "unknown node";
160 }
161 }
162
dbg_gtype(int type)163 static const char *dbg_gtype(int type)
164 {
165 switch (type) {
166 case UBIFS_NO_NODE_GROUP:
167 return "no node group";
168 case UBIFS_IN_NODE_GROUP:
169 return "in node group";
170 case UBIFS_LAST_OF_NODE_GROUP:
171 return "last of node group";
172 default:
173 return "unknown";
174 }
175 }
176
dbg_cstate(int cmt_state)177 const char *dbg_cstate(int cmt_state)
178 {
179 switch (cmt_state) {
180 case COMMIT_RESTING:
181 return "commit resting";
182 case COMMIT_BACKGROUND:
183 return "background commit requested";
184 case COMMIT_REQUIRED:
185 return "commit required";
186 case COMMIT_RUNNING_BACKGROUND:
187 return "BACKGROUND commit running";
188 case COMMIT_RUNNING_REQUIRED:
189 return "commit running and required";
190 case COMMIT_BROKEN:
191 return "broken commit";
192 default:
193 return "unknown commit state";
194 }
195 }
196
dbg_jhead(int jhead)197 const char *dbg_jhead(int jhead)
198 {
199 switch (jhead) {
200 case GCHD:
201 return "0 (GC)";
202 case BASEHD:
203 return "1 (base)";
204 case DATAHD:
205 return "2 (data)";
206 default:
207 return "unknown journal head";
208 }
209 }
210
dump_ch(const struct ubifs_ch * ch)211 static void dump_ch(const struct ubifs_ch *ch)
212 {
213 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic));
214 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc));
215 pr_err("\tnode_type %d (%s)\n", ch->node_type,
216 dbg_ntype(ch->node_type));
217 pr_err("\tgroup_type %d (%s)\n", ch->group_type,
218 dbg_gtype(ch->group_type));
219 pr_err("\tsqnum %llu\n",
220 (unsigned long long)le64_to_cpu(ch->sqnum));
221 pr_err("\tlen %u\n", le32_to_cpu(ch->len));
222 }
223
ubifs_dump_inode(struct ubifs_info * c,const struct inode * inode)224 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
225 {
226 const struct ubifs_inode *ui = ubifs_inode(inode);
227 struct fscrypt_name nm = {0};
228 union ubifs_key key;
229 struct ubifs_dent_node *dent, *pdent = NULL;
230 int count = 2;
231
232 pr_err("Dump in-memory inode:");
233 pr_err("\tinode %lu\n", inode->i_ino);
234 pr_err("\tsize %llu\n",
235 (unsigned long long)i_size_read(inode));
236 pr_err("\tnlink %u\n", inode->i_nlink);
237 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode));
238 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode));
239 pr_err("\tatime %u.%u\n",
240 (unsigned int) inode_get_atime_sec(inode),
241 (unsigned int) inode_get_atime_nsec(inode));
242 pr_err("\tmtime %u.%u\n",
243 (unsigned int) inode_get_mtime_sec(inode),
244 (unsigned int) inode_get_mtime_nsec(inode));
245 pr_err("\tctime %u.%u\n",
246 (unsigned int) inode_get_ctime_sec(inode),
247 (unsigned int) inode_get_ctime_nsec(inode));
248 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum);
249 pr_err("\txattr_size %u\n", ui->xattr_size);
250 pr_err("\txattr_cnt %u\n", ui->xattr_cnt);
251 pr_err("\txattr_names %u\n", ui->xattr_names);
252 pr_err("\tdirty %u\n", ui->dirty);
253 pr_err("\txattr %u\n", ui->xattr);
254 pr_err("\tbulk_read %u\n", ui->bulk_read);
255 pr_err("\tsynced_i_size %llu\n",
256 (unsigned long long)ui->synced_i_size);
257 pr_err("\tui_size %llu\n",
258 (unsigned long long)ui->ui_size);
259 pr_err("\tflags %d\n", ui->flags);
260 pr_err("\tcompr_type %d\n", ui->compr_type);
261 pr_err("\tlast_page_read %lu\n", ui->last_page_read);
262 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row);
263 pr_err("\tdata_len %d\n", ui->data_len);
264
265 if (!S_ISDIR(inode->i_mode))
266 return;
267
268 pr_err("List of directory entries:\n");
269 ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
270
271 lowest_dent_key(c, &key, inode->i_ino);
272 while (1) {
273 dent = ubifs_tnc_next_ent(c, &key, &nm);
274 if (IS_ERR(dent)) {
275 if (PTR_ERR(dent) != -ENOENT)
276 pr_err("error %ld\n", PTR_ERR(dent));
277 break;
278 }
279
280 pr_err("\t%d: inode %llu, type %s, len %d\n",
281 count++, (unsigned long long) le64_to_cpu(dent->inum),
282 get_dent_type(dent->type),
283 le16_to_cpu(dent->nlen));
284
285 fname_name(&nm) = dent->name;
286 fname_len(&nm) = le16_to_cpu(dent->nlen);
287 kfree(pdent);
288 pdent = dent;
289 key_read(c, &dent->key, &key);
290 }
291 kfree(pdent);
292 }
293
ubifs_dump_node(const struct ubifs_info * c,const void * node,int node_len)294 void ubifs_dump_node(const struct ubifs_info *c, const void *node, int node_len)
295 {
296 int i, n, type, safe_len, max_node_len, min_node_len;
297 union ubifs_key key;
298 const struct ubifs_ch *ch = node;
299 char key_buf[DBG_KEY_BUF_LEN];
300
301 /* If the magic is incorrect, just hexdump the first bytes */
302 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
303 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
304 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
305 (void *)node, UBIFS_CH_SZ, 1);
306 return;
307 }
308
309 /* Skip dumping unknown type node */
310 type = ch->node_type;
311 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
312 pr_err("node type %d was not recognized\n", type);
313 return;
314 }
315
316 spin_lock(&dbg_lock);
317 dump_ch(node);
318
319 if (c->ranges[type].max_len == 0) {
320 max_node_len = min_node_len = c->ranges[type].len;
321 } else {
322 max_node_len = c->ranges[type].max_len;
323 min_node_len = c->ranges[type].min_len;
324 }
325 safe_len = le32_to_cpu(ch->len);
326 safe_len = safe_len > 0 ? safe_len : 0;
327 safe_len = min3(safe_len, max_node_len, node_len);
328 if (safe_len < min_node_len) {
329 pr_err("node len(%d) is too short for %s, left %d bytes:\n",
330 safe_len, dbg_ntype(type),
331 safe_len > UBIFS_CH_SZ ?
332 safe_len - (int)UBIFS_CH_SZ : 0);
333 if (safe_len > UBIFS_CH_SZ)
334 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
335 (void *)node + UBIFS_CH_SZ,
336 safe_len - UBIFS_CH_SZ, 0);
337 goto out_unlock;
338 }
339 if (safe_len != le32_to_cpu(ch->len))
340 pr_err("\ttruncated node length %d\n", safe_len);
341
342 switch (type) {
343 case UBIFS_PAD_NODE:
344 {
345 const struct ubifs_pad_node *pad = node;
346
347 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len));
348 break;
349 }
350 case UBIFS_SB_NODE:
351 {
352 const struct ubifs_sb_node *sup = node;
353 unsigned int sup_flags = le32_to_cpu(sup->flags);
354
355 pr_err("\tkey_hash %d (%s)\n",
356 (int)sup->key_hash, get_key_hash(sup->key_hash));
357 pr_err("\tkey_fmt %d (%s)\n",
358 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
359 pr_err("\tflags %#x\n", sup_flags);
360 pr_err("\tbig_lpt %u\n",
361 !!(sup_flags & UBIFS_FLG_BIGLPT));
362 pr_err("\tspace_fixup %u\n",
363 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
364 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size));
365 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size));
366 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt));
367 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt));
368 pr_err("\tmax_bud_bytes %llu\n",
369 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
370 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs));
371 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs));
372 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs));
373 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt));
374 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout));
375 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt));
376 pr_err("\tdefault_compr %u\n",
377 (int)le16_to_cpu(sup->default_compr));
378 pr_err("\trp_size %llu\n",
379 (unsigned long long)le64_to_cpu(sup->rp_size));
380 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid));
381 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid));
382 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version));
383 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran));
384 pr_err("\tUUID %pUB\n", sup->uuid);
385 break;
386 }
387 case UBIFS_MST_NODE:
388 {
389 const struct ubifs_mst_node *mst = node;
390
391 pr_err("\thighest_inum %llu\n",
392 (unsigned long long)le64_to_cpu(mst->highest_inum));
393 pr_err("\tcommit number %llu\n",
394 (unsigned long long)le64_to_cpu(mst->cmt_no));
395 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags));
396 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum));
397 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum));
398 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs));
399 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len));
400 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum));
401 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum));
402 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs));
403 pr_err("\tindex_size %llu\n",
404 (unsigned long long)le64_to_cpu(mst->index_size));
405 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum));
406 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs));
407 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum));
408 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs));
409 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum));
410 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs));
411 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum));
412 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs));
413 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum));
414 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt));
415 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs));
416 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs));
417 pr_err("\ttotal_free %llu\n",
418 (unsigned long long)le64_to_cpu(mst->total_free));
419 pr_err("\ttotal_dirty %llu\n",
420 (unsigned long long)le64_to_cpu(mst->total_dirty));
421 pr_err("\ttotal_used %llu\n",
422 (unsigned long long)le64_to_cpu(mst->total_used));
423 pr_err("\ttotal_dead %llu\n",
424 (unsigned long long)le64_to_cpu(mst->total_dead));
425 pr_err("\ttotal_dark %llu\n",
426 (unsigned long long)le64_to_cpu(mst->total_dark));
427 break;
428 }
429 case UBIFS_REF_NODE:
430 {
431 const struct ubifs_ref_node *ref = node;
432
433 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum));
434 pr_err("\toffs %u\n", le32_to_cpu(ref->offs));
435 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead));
436 break;
437 }
438 case UBIFS_INO_NODE:
439 {
440 const struct ubifs_ino_node *ino = node;
441
442 key_read(c, &ino->key, &key);
443 pr_err("\tkey %s\n",
444 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
445 pr_err("\tcreat_sqnum %llu\n",
446 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
447 pr_err("\tsize %llu\n",
448 (unsigned long long)le64_to_cpu(ino->size));
449 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink));
450 pr_err("\tatime %lld.%u\n",
451 (long long)le64_to_cpu(ino->atime_sec),
452 le32_to_cpu(ino->atime_nsec));
453 pr_err("\tmtime %lld.%u\n",
454 (long long)le64_to_cpu(ino->mtime_sec),
455 le32_to_cpu(ino->mtime_nsec));
456 pr_err("\tctime %lld.%u\n",
457 (long long)le64_to_cpu(ino->ctime_sec),
458 le32_to_cpu(ino->ctime_nsec));
459 pr_err("\tuid %u\n", le32_to_cpu(ino->uid));
460 pr_err("\tgid %u\n", le32_to_cpu(ino->gid));
461 pr_err("\tmode %u\n", le32_to_cpu(ino->mode));
462 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags));
463 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt));
464 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size));
465 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names));
466 pr_err("\tcompr_type %#x\n",
467 (int)le16_to_cpu(ino->compr_type));
468 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len));
469 break;
470 }
471 case UBIFS_DENT_NODE:
472 case UBIFS_XENT_NODE:
473 {
474 const struct ubifs_dent_node *dent = node;
475 int nlen = le16_to_cpu(dent->nlen);
476
477 key_read(c, &dent->key, &key);
478 pr_err("\tkey %s\n",
479 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
480 pr_err("\tinum %llu\n",
481 (unsigned long long)le64_to_cpu(dent->inum));
482 pr_err("\ttype %d\n", (int)dent->type);
483 pr_err("\tnlen %d\n", nlen);
484 pr_err("\tname ");
485
486 if (nlen > UBIFS_MAX_NLEN ||
487 nlen > safe_len - UBIFS_DENT_NODE_SZ)
488 pr_err("(bad name length, not printing, bad or corrupted node)");
489 else {
490 for (i = 0; i < nlen && dent->name[i]; i++)
491 pr_cont("%c", isprint(dent->name[i]) ?
492 dent->name[i] : '?');
493 }
494 pr_cont("\n");
495
496 break;
497 }
498 case UBIFS_DATA_NODE:
499 {
500 const struct ubifs_data_node *dn = node;
501
502 key_read(c, &dn->key, &key);
503 pr_err("\tkey %s\n",
504 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
505 pr_err("\tsize %u\n", le32_to_cpu(dn->size));
506 pr_err("\tcompr_typ %d\n",
507 (int)le16_to_cpu(dn->compr_type));
508 pr_err("\tdata size %u\n",
509 le32_to_cpu(ch->len) - (unsigned int)UBIFS_DATA_NODE_SZ);
510 pr_err("\tdata (length = %d):\n",
511 safe_len - (int)UBIFS_DATA_NODE_SZ);
512 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
513 (void *)&dn->data,
514 safe_len - (int)UBIFS_DATA_NODE_SZ, 0);
515 break;
516 }
517 case UBIFS_TRUN_NODE:
518 {
519 const struct ubifs_trun_node *trun = node;
520
521 pr_err("\tinum %u\n", le32_to_cpu(trun->inum));
522 pr_err("\told_size %llu\n",
523 (unsigned long long)le64_to_cpu(trun->old_size));
524 pr_err("\tnew_size %llu\n",
525 (unsigned long long)le64_to_cpu(trun->new_size));
526 break;
527 }
528 case UBIFS_IDX_NODE:
529 {
530 const struct ubifs_idx_node *idx = node;
531 int max_child_cnt = (safe_len - UBIFS_IDX_NODE_SZ) /
532 (ubifs_idx_node_sz(c, 1) -
533 UBIFS_IDX_NODE_SZ);
534
535 n = min_t(int, le16_to_cpu(idx->child_cnt), max_child_cnt);
536 pr_err("\tchild_cnt %d\n", (int)le16_to_cpu(idx->child_cnt));
537 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level));
538 pr_err("\tBranches:\n");
539
540 for (i = 0; i < n && i < c->fanout; i++) {
541 const struct ubifs_branch *br;
542
543 br = ubifs_idx_branch(c, idx, i);
544 key_read(c, &br->key, &key);
545 pr_err("\t%d: LEB %d:%d len %d key %s\n",
546 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
547 le32_to_cpu(br->len),
548 dbg_snprintf_key(c, &key, key_buf,
549 DBG_KEY_BUF_LEN));
550 }
551 break;
552 }
553 case UBIFS_CS_NODE:
554 break;
555 case UBIFS_ORPH_NODE:
556 {
557 const struct ubifs_orph_node *orph = node;
558
559 pr_err("\tcommit number %llu\n",
560 (unsigned long long)
561 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
562 pr_err("\tlast node flag %llu\n",
563 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
564 n = (safe_len - UBIFS_ORPH_NODE_SZ) >> 3;
565 pr_err("\t%d orphan inode numbers:\n", n);
566 for (i = 0; i < n; i++)
567 pr_err("\t ino %llu\n",
568 (unsigned long long)le64_to_cpu(orph->inos[i]));
569 break;
570 }
571 case UBIFS_AUTH_NODE:
572 {
573 break;
574 }
575 default:
576 pr_err("node type %d was not recognized\n", type);
577 }
578
579 out_unlock:
580 spin_unlock(&dbg_lock);
581 }
582
ubifs_dump_budget_req(const struct ubifs_budget_req * req)583 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
584 {
585 spin_lock(&dbg_lock);
586 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
587 req->new_ino, req->dirtied_ino);
588 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n",
589 req->new_ino_d, req->dirtied_ino_d);
590 pr_err("\tnew_page %d, dirtied_page %d\n",
591 req->new_page, req->dirtied_page);
592 pr_err("\tnew_dent %d, mod_dent %d\n",
593 req->new_dent, req->mod_dent);
594 pr_err("\tidx_growth %d\n", req->idx_growth);
595 pr_err("\tdata_growth %d dd_growth %d\n",
596 req->data_growth, req->dd_growth);
597 spin_unlock(&dbg_lock);
598 }
599
ubifs_dump_lstats(const struct ubifs_lp_stats * lst)600 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
601 {
602 spin_lock(&dbg_lock);
603 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n",
604 current->pid, lst->empty_lebs, lst->idx_lebs);
605 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
606 lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
607 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
608 lst->total_used, lst->total_dark, lst->total_dead);
609 spin_unlock(&dbg_lock);
610 }
611
ubifs_dump_budg(struct ubifs_info * c,const struct ubifs_budg_info * bi)612 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
613 {
614 int i;
615 struct rb_node *rb;
616 struct ubifs_bud *bud;
617 struct ubifs_gced_idx_leb *idx_gc;
618 long long available, outstanding, free;
619
620 spin_lock(&c->space_lock);
621 spin_lock(&dbg_lock);
622 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
623 current->pid, bi->data_growth + bi->dd_growth,
624 bi->data_growth + bi->dd_growth + bi->idx_growth);
625 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
626 bi->data_growth, bi->dd_growth, bi->idx_growth);
627 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
628 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
629 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
630 bi->page_budget, bi->inode_budget, bi->dent_budget);
631 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
632 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
633 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
634
635 if (bi != &c->bi)
636 /*
637 * If we are dumping saved budgeting data, do not print
638 * additional information which is about the current state, not
639 * the old one which corresponded to the saved budgeting data.
640 */
641 goto out_unlock;
642
643 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
644 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
645 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
646 atomic_long_read(&c->dirty_pg_cnt),
647 atomic_long_read(&c->dirty_zn_cnt),
648 atomic_long_read(&c->clean_zn_cnt));
649 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
650
651 /* If we are in R/O mode, journal heads do not exist */
652 if (c->jheads)
653 for (i = 0; i < c->jhead_cnt; i++)
654 pr_err("\tjhead %s\t LEB %d\n",
655 dbg_jhead(c->jheads[i].wbuf.jhead),
656 c->jheads[i].wbuf.lnum);
657 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
658 bud = rb_entry(rb, struct ubifs_bud, rb);
659 pr_err("\tbud LEB %d\n", bud->lnum);
660 }
661 list_for_each_entry(bud, &c->old_buds, list)
662 pr_err("\told bud LEB %d\n", bud->lnum);
663 list_for_each_entry(idx_gc, &c->idx_gc, list)
664 pr_err("\tGC'ed idx LEB %d unmap %d\n",
665 idx_gc->lnum, idx_gc->unmap);
666 pr_err("\tcommit state %d\n", c->cmt_state);
667
668 /* Print budgeting predictions */
669 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
670 outstanding = c->bi.data_growth + c->bi.dd_growth;
671 free = ubifs_get_free_space_nolock(c);
672 pr_err("Budgeting predictions:\n");
673 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
674 available, outstanding, free);
675 out_unlock:
676 spin_unlock(&dbg_lock);
677 spin_unlock(&c->space_lock);
678 }
679
ubifs_dump_lprop(const struct ubifs_info * c,const struct ubifs_lprops * lp)680 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
681 {
682 int i, spc, dark = 0, dead = 0;
683 struct rb_node *rb;
684 struct ubifs_bud *bud;
685
686 spc = lp->free + lp->dirty;
687 if (spc < c->dead_wm)
688 dead = spc;
689 else
690 dark = ubifs_calc_dark(c, spc);
691
692 if (lp->flags & LPROPS_INDEX)
693 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
694 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
695 lp->flags);
696 else
697 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
698 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
699 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
700
701 if (lp->flags & LPROPS_TAKEN) {
702 if (lp->flags & LPROPS_INDEX)
703 pr_cont("index, taken");
704 else
705 pr_cont("taken");
706 } else {
707 const char *s;
708
709 if (lp->flags & LPROPS_INDEX) {
710 switch (lp->flags & LPROPS_CAT_MASK) {
711 case LPROPS_DIRTY_IDX:
712 s = "dirty index";
713 break;
714 case LPROPS_FRDI_IDX:
715 s = "freeable index";
716 break;
717 default:
718 s = "index";
719 }
720 } else {
721 switch (lp->flags & LPROPS_CAT_MASK) {
722 case LPROPS_UNCAT:
723 s = "not categorized";
724 break;
725 case LPROPS_DIRTY:
726 s = "dirty";
727 break;
728 case LPROPS_FREE:
729 s = "free";
730 break;
731 case LPROPS_EMPTY:
732 s = "empty";
733 break;
734 case LPROPS_FREEABLE:
735 s = "freeable";
736 break;
737 default:
738 s = NULL;
739 break;
740 }
741 }
742 pr_cont("%s", s);
743 }
744
745 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
746 bud = rb_entry(rb, struct ubifs_bud, rb);
747 if (bud->lnum == lp->lnum) {
748 int head = 0;
749 for (i = 0; i < c->jhead_cnt; i++) {
750 /*
751 * Note, if we are in R/O mode or in the middle
752 * of mounting/re-mounting, the write-buffers do
753 * not exist.
754 */
755 if (c->jheads &&
756 lp->lnum == c->jheads[i].wbuf.lnum) {
757 pr_cont(", jhead %s", dbg_jhead(i));
758 head = 1;
759 }
760 }
761 if (!head)
762 pr_cont(", bud of jhead %s",
763 dbg_jhead(bud->jhead));
764 }
765 }
766 if (lp->lnum == c->gc_lnum)
767 pr_cont(", GC LEB");
768 pr_cont(")\n");
769 }
770
ubifs_dump_lprops(struct ubifs_info * c)771 void ubifs_dump_lprops(struct ubifs_info *c)
772 {
773 int lnum, err;
774 struct ubifs_lprops lp;
775 struct ubifs_lp_stats lst;
776
777 pr_err("(pid %d) start dumping LEB properties\n", current->pid);
778 ubifs_get_lp_stats(c, &lst);
779 ubifs_dump_lstats(&lst);
780
781 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
782 err = ubifs_read_one_lp(c, lnum, &lp);
783 if (err) {
784 ubifs_err(c, "cannot read lprops for LEB %d", lnum);
785 continue;
786 }
787
788 ubifs_dump_lprop(c, &lp);
789 }
790 pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
791 }
792
ubifs_dump_lpt_info(struct ubifs_info * c)793 void ubifs_dump_lpt_info(struct ubifs_info *c)
794 {
795 int i;
796
797 spin_lock(&dbg_lock);
798 pr_err("(pid %d) dumping LPT information\n", current->pid);
799 pr_err("\tlpt_sz: %lld\n", c->lpt_sz);
800 pr_err("\tpnode_sz: %d\n", c->pnode_sz);
801 pr_err("\tnnode_sz: %d\n", c->nnode_sz);
802 pr_err("\tltab_sz: %d\n", c->ltab_sz);
803 pr_err("\tlsave_sz: %d\n", c->lsave_sz);
804 pr_err("\tbig_lpt: %u\n", c->big_lpt);
805 pr_err("\tlpt_hght: %d\n", c->lpt_hght);
806 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt);
807 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt);
808 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
809 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
810 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt);
811 pr_err("\tspace_bits: %d\n", c->space_bits);
812 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
813 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
814 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
815 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits);
816 pr_err("\tlnum_bits: %d\n", c->lnum_bits);
817 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
818 pr_err("\tLPT head is at %d:%d\n",
819 c->nhead_lnum, c->nhead_offs);
820 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
821 if (c->big_lpt)
822 pr_err("\tLPT lsave is at %d:%d\n",
823 c->lsave_lnum, c->lsave_offs);
824 for (i = 0; i < c->lpt_lebs; i++)
825 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
826 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
827 c->ltab[i].tgc, c->ltab[i].cmt);
828 spin_unlock(&dbg_lock);
829 }
830
ubifs_dump_leb(const struct ubifs_info * c,int lnum)831 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
832 {
833 struct ubifs_scan_leb *sleb;
834 struct ubifs_scan_node *snod;
835 void *buf;
836
837 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
838
839 buf = __vmalloc(c->leb_size, GFP_NOFS);
840 if (!buf) {
841 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
842 return;
843 }
844
845 sleb = ubifs_scan(c, lnum, 0, buf, 0);
846 if (IS_ERR(sleb)) {
847 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
848 goto out;
849 }
850
851 pr_err("LEB %d has %d nodes ending at %d\n", lnum,
852 sleb->nodes_cnt, sleb->endpt);
853
854 list_for_each_entry(snod, &sleb->nodes, list) {
855 cond_resched();
856 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
857 snod->offs, snod->len);
858 ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
859 }
860
861 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
862 ubifs_scan_destroy(sleb);
863
864 out:
865 vfree(buf);
866 }
867
ubifs_dump_znode(const struct ubifs_info * c,const struct ubifs_znode * znode)868 void ubifs_dump_znode(const struct ubifs_info *c,
869 const struct ubifs_znode *znode)
870 {
871 int n;
872 const struct ubifs_zbranch *zbr;
873 char key_buf[DBG_KEY_BUF_LEN];
874
875 spin_lock(&dbg_lock);
876 if (znode->parent)
877 zbr = &znode->parent->zbranch[znode->iip];
878 else
879 zbr = &c->zroot;
880
881 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
882 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
883 znode->level, znode->child_cnt, znode->flags);
884
885 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
886 spin_unlock(&dbg_lock);
887 return;
888 }
889
890 pr_err("zbranches:\n");
891 for (n = 0; n < znode->child_cnt; n++) {
892 zbr = &znode->zbranch[n];
893 if (znode->level > 0)
894 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
895 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
896 dbg_snprintf_key(c, &zbr->key, key_buf,
897 DBG_KEY_BUF_LEN));
898 else
899 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
900 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
901 dbg_snprintf_key(c, &zbr->key, key_buf,
902 DBG_KEY_BUF_LEN));
903 }
904 spin_unlock(&dbg_lock);
905 }
906
ubifs_dump_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,int cat)907 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
908 {
909 int i;
910
911 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
912 current->pid, cat, heap->cnt);
913 for (i = 0; i < heap->cnt; i++) {
914 struct ubifs_lprops *lprops = heap->arr[i];
915
916 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
917 i, lprops->lnum, lprops->hpos, lprops->free,
918 lprops->dirty, lprops->flags);
919 }
920 pr_err("(pid %d) finish dumping heap\n", current->pid);
921 }
922
ubifs_dump_pnode(struct ubifs_info * c,struct ubifs_pnode * pnode,struct ubifs_nnode * parent,int iip)923 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
924 struct ubifs_nnode *parent, int iip)
925 {
926 int i;
927
928 pr_err("(pid %d) dumping pnode:\n", current->pid);
929 pr_err("\taddress %zx parent %zx cnext %zx\n",
930 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
931 pr_err("\tflags %lu iip %d level %d num %d\n",
932 pnode->flags, iip, pnode->level, pnode->num);
933 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
934 struct ubifs_lprops *lp = &pnode->lprops[i];
935
936 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
937 i, lp->free, lp->dirty, lp->flags, lp->lnum);
938 }
939 }
940
ubifs_dump_tnc(struct ubifs_info * c)941 void ubifs_dump_tnc(struct ubifs_info *c)
942 {
943 struct ubifs_znode *znode;
944 int level;
945
946 pr_err("\n");
947 pr_err("(pid %d) start dumping TNC tree\n", current->pid);
948 if (c->zroot.znode) {
949 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
950 level = znode->level;
951 pr_err("== Level %d ==\n", level);
952 while (znode) {
953 if (level != znode->level) {
954 level = znode->level;
955 pr_err("== Level %d ==\n", level);
956 }
957 ubifs_dump_znode(c, znode);
958 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
959 }
960 } else {
961 pr_err("empty TNC tree in memory\n");
962 }
963 pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
964 }
965
dump_znode(struct ubifs_info * c,struct ubifs_znode * znode,void * priv)966 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
967 void *priv)
968 {
969 ubifs_dump_znode(c, znode);
970 return 0;
971 }
972
973 /**
974 * ubifs_dump_index - dump the on-flash index.
975 * @c: UBIFS file-system description object
976 *
977 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
978 * which dumps only in-memory znodes and does not read znodes which from flash.
979 */
ubifs_dump_index(struct ubifs_info * c)980 void ubifs_dump_index(struct ubifs_info *c)
981 {
982 dbg_walk_index(c, NULL, dump_znode, NULL);
983 }
984
985 /**
986 * dbg_save_space_info - save information about flash space.
987 * @c: UBIFS file-system description object
988 *
989 * This function saves information about UBIFS free space, dirty space, etc, in
990 * order to check it later.
991 */
dbg_save_space_info(struct ubifs_info * c)992 void dbg_save_space_info(struct ubifs_info *c)
993 {
994 struct ubifs_debug_info *d = c->dbg;
995 int freeable_cnt;
996
997 spin_lock(&c->space_lock);
998 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
999 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1000 d->saved_idx_gc_cnt = c->idx_gc_cnt;
1001
1002 /*
1003 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1004 * affects the free space calculations, and UBIFS might not know about
1005 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1006 * only when we read their lprops, and we do this only lazily, upon the
1007 * need. So at any given point of time @c->freeable_cnt might be not
1008 * exactly accurate.
1009 *
1010 * Just one example about the issue we hit when we did not zero
1011 * @c->freeable_cnt.
1012 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1013 * amount of free space in @d->saved_free
1014 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1015 * information from flash, where we cache LEBs from various
1016 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1017 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1018 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1019 * -> 'ubifs_add_to_cat()').
1020 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1021 * becomes %1.
1022 * 4. We calculate the amount of free space when the re-mount is
1023 * finished in 'dbg_check_space_info()' and it does not match
1024 * @d->saved_free.
1025 */
1026 freeable_cnt = c->freeable_cnt;
1027 c->freeable_cnt = 0;
1028 d->saved_free = ubifs_get_free_space_nolock(c);
1029 c->freeable_cnt = freeable_cnt;
1030 spin_unlock(&c->space_lock);
1031 }
1032
1033 /**
1034 * dbg_check_space_info - check flash space information.
1035 * @c: UBIFS file-system description object
1036 *
1037 * This function compares current flash space information with the information
1038 * which was saved when the 'dbg_save_space_info()' function was called.
1039 * Returns zero if the information has not changed, and %-EINVAL if it has
1040 * changed.
1041 */
dbg_check_space_info(struct ubifs_info * c)1042 int dbg_check_space_info(struct ubifs_info *c)
1043 {
1044 struct ubifs_debug_info *d = c->dbg;
1045 struct ubifs_lp_stats lst;
1046 long long free;
1047 int freeable_cnt;
1048
1049 spin_lock(&c->space_lock);
1050 freeable_cnt = c->freeable_cnt;
1051 c->freeable_cnt = 0;
1052 free = ubifs_get_free_space_nolock(c);
1053 c->freeable_cnt = freeable_cnt;
1054 spin_unlock(&c->space_lock);
1055
1056 if (free != d->saved_free) {
1057 ubifs_err(c, "free space changed from %lld to %lld",
1058 d->saved_free, free);
1059 goto out;
1060 }
1061
1062 return 0;
1063
1064 out:
1065 ubifs_msg(c, "saved lprops statistics dump");
1066 ubifs_dump_lstats(&d->saved_lst);
1067 ubifs_msg(c, "saved budgeting info dump");
1068 ubifs_dump_budg(c, &d->saved_bi);
1069 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1070 ubifs_msg(c, "current lprops statistics dump");
1071 ubifs_get_lp_stats(c, &lst);
1072 ubifs_dump_lstats(&lst);
1073 ubifs_msg(c, "current budgeting info dump");
1074 ubifs_dump_budg(c, &c->bi);
1075 dump_stack();
1076 return -EINVAL;
1077 }
1078
1079 /**
1080 * dbg_check_synced_i_size - check synchronized inode size.
1081 * @c: UBIFS file-system description object
1082 * @inode: inode to check
1083 *
1084 * If inode is clean, synchronized inode size has to be equivalent to current
1085 * inode size. This function has to be called only for locked inodes (@i_mutex
1086 * has to be locked). Returns %0 if synchronized inode size if correct, and
1087 * %-EINVAL if not.
1088 */
dbg_check_synced_i_size(const struct ubifs_info * c,struct inode * inode)1089 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1090 {
1091 int err = 0;
1092 struct ubifs_inode *ui = ubifs_inode(inode);
1093
1094 if (!dbg_is_chk_gen(c))
1095 return 0;
1096 if (!S_ISREG(inode->i_mode))
1097 return 0;
1098
1099 mutex_lock(&ui->ui_mutex);
1100 spin_lock(&ui->ui_lock);
1101 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1102 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1103 ui->ui_size, ui->synced_i_size);
1104 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1105 inode->i_mode, i_size_read(inode));
1106 dump_stack();
1107 err = -EINVAL;
1108 }
1109 spin_unlock(&ui->ui_lock);
1110 mutex_unlock(&ui->ui_mutex);
1111 return err;
1112 }
1113
1114 /*
1115 * dbg_check_dir - check directory inode size and link count.
1116 * @c: UBIFS file-system description object
1117 * @dir: the directory to calculate size for
1118 * @size: the result is returned here
1119 *
1120 * This function makes sure that directory size and link count are correct.
1121 * Returns zero in case of success and a negative error code in case of
1122 * failure.
1123 *
1124 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1125 * calling this function.
1126 */
dbg_check_dir(struct ubifs_info * c,const struct inode * dir)1127 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1128 {
1129 unsigned int nlink = 2;
1130 union ubifs_key key;
1131 struct ubifs_dent_node *dent, *pdent = NULL;
1132 struct fscrypt_name nm = {0};
1133 loff_t size = UBIFS_INO_NODE_SZ;
1134
1135 if (!dbg_is_chk_gen(c))
1136 return 0;
1137
1138 if (!S_ISDIR(dir->i_mode))
1139 return 0;
1140
1141 lowest_dent_key(c, &key, dir->i_ino);
1142 while (1) {
1143 int err;
1144
1145 dent = ubifs_tnc_next_ent(c, &key, &nm);
1146 if (IS_ERR(dent)) {
1147 err = PTR_ERR(dent);
1148 if (err == -ENOENT)
1149 break;
1150 kfree(pdent);
1151 return err;
1152 }
1153
1154 fname_name(&nm) = dent->name;
1155 fname_len(&nm) = le16_to_cpu(dent->nlen);
1156 size += CALC_DENT_SIZE(fname_len(&nm));
1157 if (dent->type == UBIFS_ITYPE_DIR)
1158 nlink += 1;
1159 kfree(pdent);
1160 pdent = dent;
1161 key_read(c, &dent->key, &key);
1162 }
1163 kfree(pdent);
1164
1165 if (i_size_read(dir) != size) {
1166 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1167 dir->i_ino, (unsigned long long)i_size_read(dir),
1168 (unsigned long long)size);
1169 ubifs_dump_inode(c, dir);
1170 dump_stack();
1171 return -EINVAL;
1172 }
1173 if (dir->i_nlink != nlink) {
1174 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1175 dir->i_ino, dir->i_nlink, nlink);
1176 ubifs_dump_inode(c, dir);
1177 dump_stack();
1178 return -EINVAL;
1179 }
1180
1181 return 0;
1182 }
1183
1184 /**
1185 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1186 * @c: UBIFS file-system description object
1187 * @zbr1: first zbranch
1188 * @zbr2: following zbranch
1189 *
1190 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1191 * names of the direntries/xentries which are referred by the keys. This
1192 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1193 * sure the name of direntry/xentry referred by @zbr1 is less than
1194 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1195 * and a negative error code in case of failure.
1196 */
dbg_check_key_order(struct ubifs_info * c,struct ubifs_zbranch * zbr1,struct ubifs_zbranch * zbr2)1197 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1198 struct ubifs_zbranch *zbr2)
1199 {
1200 int err, nlen1, nlen2, cmp;
1201 struct ubifs_dent_node *dent1, *dent2;
1202 union ubifs_key key;
1203 char key_buf[DBG_KEY_BUF_LEN];
1204
1205 ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1206 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1207 if (!dent1)
1208 return -ENOMEM;
1209 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1210 if (!dent2) {
1211 err = -ENOMEM;
1212 goto out_free;
1213 }
1214
1215 err = ubifs_tnc_read_node(c, zbr1, dent1);
1216 if (err)
1217 goto out_free;
1218 err = ubifs_validate_entry(c, dent1);
1219 if (err)
1220 goto out_free;
1221
1222 err = ubifs_tnc_read_node(c, zbr2, dent2);
1223 if (err)
1224 goto out_free;
1225 err = ubifs_validate_entry(c, dent2);
1226 if (err)
1227 goto out_free;
1228
1229 /* Make sure node keys are the same as in zbranch */
1230 err = 1;
1231 key_read(c, &dent1->key, &key);
1232 if (keys_cmp(c, &zbr1->key, &key)) {
1233 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1234 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1235 DBG_KEY_BUF_LEN));
1236 ubifs_err(c, "but it should have key %s according to tnc",
1237 dbg_snprintf_key(c, &zbr1->key, key_buf,
1238 DBG_KEY_BUF_LEN));
1239 ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1240 goto out_free;
1241 }
1242
1243 key_read(c, &dent2->key, &key);
1244 if (keys_cmp(c, &zbr2->key, &key)) {
1245 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1246 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1247 DBG_KEY_BUF_LEN));
1248 ubifs_err(c, "but it should have key %s according to tnc",
1249 dbg_snprintf_key(c, &zbr2->key, key_buf,
1250 DBG_KEY_BUF_LEN));
1251 ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1252 goto out_free;
1253 }
1254
1255 nlen1 = le16_to_cpu(dent1->nlen);
1256 nlen2 = le16_to_cpu(dent2->nlen);
1257
1258 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1259 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1260 err = 0;
1261 goto out_free;
1262 }
1263 if (cmp == 0 && nlen1 == nlen2)
1264 ubifs_err(c, "2 xent/dent nodes with the same name");
1265 else
1266 ubifs_err(c, "bad order of colliding key %s",
1267 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1268
1269 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1270 ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1271 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1272 ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1273
1274 out_free:
1275 kfree(dent2);
1276 kfree(dent1);
1277 return err;
1278 }
1279
1280 /**
1281 * dbg_check_znode - check if znode is all right.
1282 * @c: UBIFS file-system description object
1283 * @zbr: zbranch which points to this znode
1284 *
1285 * This function makes sure that znode referred to by @zbr is all right.
1286 * Returns zero if it is, and %-EINVAL if it is not.
1287 */
dbg_check_znode(struct ubifs_info * c,struct ubifs_zbranch * zbr)1288 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1289 {
1290 struct ubifs_znode *znode = zbr->znode;
1291 struct ubifs_znode *zp = znode->parent;
1292 int n, err, cmp;
1293
1294 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1295 err = 1;
1296 goto out;
1297 }
1298 if (znode->level < 0) {
1299 err = 2;
1300 goto out;
1301 }
1302 if (znode->iip < 0 || znode->iip >= c->fanout) {
1303 err = 3;
1304 goto out;
1305 }
1306
1307 if (zbr->len == 0)
1308 /* Only dirty zbranch may have no on-flash nodes */
1309 if (!ubifs_zn_dirty(znode)) {
1310 err = 4;
1311 goto out;
1312 }
1313
1314 if (ubifs_zn_dirty(znode)) {
1315 /*
1316 * If znode is dirty, its parent has to be dirty as well. The
1317 * order of the operation is important, so we have to have
1318 * memory barriers.
1319 */
1320 smp_mb();
1321 if (zp && !ubifs_zn_dirty(zp)) {
1322 /*
1323 * The dirty flag is atomic and is cleared outside the
1324 * TNC mutex, so znode's dirty flag may now have
1325 * been cleared. The child is always cleared before the
1326 * parent, so we just need to check again.
1327 */
1328 smp_mb();
1329 if (ubifs_zn_dirty(znode)) {
1330 err = 5;
1331 goto out;
1332 }
1333 }
1334 }
1335
1336 if (zp) {
1337 const union ubifs_key *min, *max;
1338
1339 if (znode->level != zp->level - 1) {
1340 err = 6;
1341 goto out;
1342 }
1343
1344 /* Make sure the 'parent' pointer in our znode is correct */
1345 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1346 if (!err) {
1347 /* This zbranch does not exist in the parent */
1348 err = 7;
1349 goto out;
1350 }
1351
1352 if (znode->iip >= zp->child_cnt) {
1353 err = 8;
1354 goto out;
1355 }
1356
1357 if (znode->iip != n) {
1358 /* This may happen only in case of collisions */
1359 if (keys_cmp(c, &zp->zbranch[n].key,
1360 &zp->zbranch[znode->iip].key)) {
1361 err = 9;
1362 goto out;
1363 }
1364 n = znode->iip;
1365 }
1366
1367 /*
1368 * Make sure that the first key in our znode is greater than or
1369 * equal to the key in the pointing zbranch.
1370 */
1371 min = &zbr->key;
1372 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1373 if (cmp == 1) {
1374 err = 10;
1375 goto out;
1376 }
1377
1378 if (n + 1 < zp->child_cnt) {
1379 max = &zp->zbranch[n + 1].key;
1380
1381 /*
1382 * Make sure the last key in our znode is less or
1383 * equivalent than the key in the zbranch which goes
1384 * after our pointing zbranch.
1385 */
1386 cmp = keys_cmp(c, max,
1387 &znode->zbranch[znode->child_cnt - 1].key);
1388 if (cmp == -1) {
1389 err = 11;
1390 goto out;
1391 }
1392 }
1393 } else {
1394 /* This may only be root znode */
1395 if (zbr != &c->zroot) {
1396 err = 12;
1397 goto out;
1398 }
1399 }
1400
1401 /*
1402 * Make sure that next key is greater or equivalent then the previous
1403 * one.
1404 */
1405 for (n = 1; n < znode->child_cnt; n++) {
1406 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1407 &znode->zbranch[n].key);
1408 if (cmp > 0) {
1409 err = 13;
1410 goto out;
1411 }
1412 if (cmp == 0) {
1413 /* This can only be keys with colliding hash */
1414 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1415 err = 14;
1416 goto out;
1417 }
1418
1419 if (znode->level != 0 || c->replaying)
1420 continue;
1421
1422 /*
1423 * Colliding keys should follow binary order of
1424 * corresponding xentry/dentry names.
1425 */
1426 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1427 &znode->zbranch[n]);
1428 if (err < 0)
1429 return err;
1430 if (err) {
1431 err = 15;
1432 goto out;
1433 }
1434 }
1435 }
1436
1437 for (n = 0; n < znode->child_cnt; n++) {
1438 if (!znode->zbranch[n].znode &&
1439 (znode->zbranch[n].lnum == 0 ||
1440 znode->zbranch[n].len == 0)) {
1441 err = 16;
1442 goto out;
1443 }
1444
1445 if (znode->zbranch[n].lnum != 0 &&
1446 znode->zbranch[n].len == 0) {
1447 err = 17;
1448 goto out;
1449 }
1450
1451 if (znode->zbranch[n].lnum == 0 &&
1452 znode->zbranch[n].len != 0) {
1453 err = 18;
1454 goto out;
1455 }
1456
1457 if (znode->zbranch[n].lnum == 0 &&
1458 znode->zbranch[n].offs != 0) {
1459 err = 19;
1460 goto out;
1461 }
1462
1463 if (znode->level != 0 && znode->zbranch[n].znode)
1464 if (znode->zbranch[n].znode->parent != znode) {
1465 err = 20;
1466 goto out;
1467 }
1468 }
1469
1470 return 0;
1471
1472 out:
1473 ubifs_err(c, "failed, error %d", err);
1474 ubifs_msg(c, "dump of the znode");
1475 ubifs_dump_znode(c, znode);
1476 if (zp) {
1477 ubifs_msg(c, "dump of the parent znode");
1478 ubifs_dump_znode(c, zp);
1479 }
1480 dump_stack();
1481 return -EINVAL;
1482 }
1483
1484 /**
1485 * dbg_check_tnc - check TNC tree.
1486 * @c: UBIFS file-system description object
1487 * @extra: do extra checks that are possible at start commit
1488 *
1489 * This function traverses whole TNC tree and checks every znode. Returns zero
1490 * if everything is all right and %-EINVAL if something is wrong with TNC.
1491 */
dbg_check_tnc(struct ubifs_info * c,int extra)1492 int dbg_check_tnc(struct ubifs_info *c, int extra)
1493 {
1494 struct ubifs_znode *znode;
1495 long clean_cnt = 0, dirty_cnt = 0;
1496 int err, last;
1497
1498 if (!dbg_is_chk_index(c))
1499 return 0;
1500
1501 ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1502 if (!c->zroot.znode)
1503 return 0;
1504
1505 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1506 while (1) {
1507 struct ubifs_znode *prev;
1508 struct ubifs_zbranch *zbr;
1509
1510 if (!znode->parent)
1511 zbr = &c->zroot;
1512 else
1513 zbr = &znode->parent->zbranch[znode->iip];
1514
1515 err = dbg_check_znode(c, zbr);
1516 if (err)
1517 return err;
1518
1519 if (extra) {
1520 if (ubifs_zn_dirty(znode))
1521 dirty_cnt += 1;
1522 else
1523 clean_cnt += 1;
1524 }
1525
1526 prev = znode;
1527 znode = ubifs_tnc_postorder_next(c, znode);
1528 if (!znode)
1529 break;
1530
1531 /*
1532 * If the last key of this znode is equivalent to the first key
1533 * of the next znode (collision), then check order of the keys.
1534 */
1535 last = prev->child_cnt - 1;
1536 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1537 !keys_cmp(c, &prev->zbranch[last].key,
1538 &znode->zbranch[0].key)) {
1539 err = dbg_check_key_order(c, &prev->zbranch[last],
1540 &znode->zbranch[0]);
1541 if (err < 0)
1542 return err;
1543 if (err) {
1544 ubifs_msg(c, "first znode");
1545 ubifs_dump_znode(c, prev);
1546 ubifs_msg(c, "second znode");
1547 ubifs_dump_znode(c, znode);
1548 return -EINVAL;
1549 }
1550 }
1551 }
1552
1553 if (extra) {
1554 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1555 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1556 atomic_long_read(&c->clean_zn_cnt),
1557 clean_cnt);
1558 return -EINVAL;
1559 }
1560 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1561 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1562 atomic_long_read(&c->dirty_zn_cnt),
1563 dirty_cnt);
1564 return -EINVAL;
1565 }
1566 }
1567
1568 return 0;
1569 }
1570
1571 /**
1572 * dbg_walk_index - walk the on-flash index.
1573 * @c: UBIFS file-system description object
1574 * @leaf_cb: called for each leaf node
1575 * @znode_cb: called for each indexing node
1576 * @priv: private data which is passed to callbacks
1577 *
1578 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1579 * node and @znode_cb for each indexing node. Returns zero in case of success
1580 * and a negative error code in case of failure.
1581 *
1582 * It would be better if this function removed every znode it pulled to into
1583 * the TNC, so that the behavior more closely matched the non-debugging
1584 * behavior.
1585 */
dbg_walk_index(struct ubifs_info * c,dbg_leaf_callback leaf_cb,dbg_znode_callback znode_cb,void * priv)1586 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1587 dbg_znode_callback znode_cb, void *priv)
1588 {
1589 int err;
1590 struct ubifs_zbranch *zbr;
1591 struct ubifs_znode *znode, *child;
1592
1593 mutex_lock(&c->tnc_mutex);
1594 /* If the root indexing node is not in TNC - pull it */
1595 if (!c->zroot.znode) {
1596 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1597 if (IS_ERR(c->zroot.znode)) {
1598 err = PTR_ERR(c->zroot.znode);
1599 c->zroot.znode = NULL;
1600 goto out_unlock;
1601 }
1602 }
1603
1604 /*
1605 * We are going to traverse the indexing tree in the postorder manner.
1606 * Go down and find the leftmost indexing node where we are going to
1607 * start from.
1608 */
1609 znode = c->zroot.znode;
1610 while (znode->level > 0) {
1611 zbr = &znode->zbranch[0];
1612 child = zbr->znode;
1613 if (!child) {
1614 child = ubifs_load_znode(c, zbr, znode, 0);
1615 if (IS_ERR(child)) {
1616 err = PTR_ERR(child);
1617 goto out_unlock;
1618 }
1619 }
1620
1621 znode = child;
1622 }
1623
1624 /* Iterate over all indexing nodes */
1625 while (1) {
1626 int idx;
1627
1628 cond_resched();
1629
1630 if (znode_cb) {
1631 err = znode_cb(c, znode, priv);
1632 if (err) {
1633 ubifs_err(c, "znode checking function returned error %d",
1634 err);
1635 ubifs_dump_znode(c, znode);
1636 goto out_dump;
1637 }
1638 }
1639 if (leaf_cb && znode->level == 0) {
1640 for (idx = 0; idx < znode->child_cnt; idx++) {
1641 zbr = &znode->zbranch[idx];
1642 err = leaf_cb(c, zbr, priv);
1643 if (err) {
1644 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1645 err, zbr->lnum, zbr->offs);
1646 goto out_dump;
1647 }
1648 }
1649 }
1650
1651 if (!znode->parent)
1652 break;
1653
1654 idx = znode->iip + 1;
1655 znode = znode->parent;
1656 if (idx < znode->child_cnt) {
1657 /* Switch to the next index in the parent */
1658 zbr = &znode->zbranch[idx];
1659 child = zbr->znode;
1660 if (!child) {
1661 child = ubifs_load_znode(c, zbr, znode, idx);
1662 if (IS_ERR(child)) {
1663 err = PTR_ERR(child);
1664 goto out_unlock;
1665 }
1666 zbr->znode = child;
1667 }
1668 znode = child;
1669 } else
1670 /*
1671 * This is the last child, switch to the parent and
1672 * continue.
1673 */
1674 continue;
1675
1676 /* Go to the lowest leftmost znode in the new sub-tree */
1677 while (znode->level > 0) {
1678 zbr = &znode->zbranch[0];
1679 child = zbr->znode;
1680 if (!child) {
1681 child = ubifs_load_znode(c, zbr, znode, 0);
1682 if (IS_ERR(child)) {
1683 err = PTR_ERR(child);
1684 goto out_unlock;
1685 }
1686 zbr->znode = child;
1687 }
1688 znode = child;
1689 }
1690 }
1691
1692 mutex_unlock(&c->tnc_mutex);
1693 return 0;
1694
1695 out_dump:
1696 if (znode->parent)
1697 zbr = &znode->parent->zbranch[znode->iip];
1698 else
1699 zbr = &c->zroot;
1700 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1701 ubifs_dump_znode(c, znode);
1702 out_unlock:
1703 mutex_unlock(&c->tnc_mutex);
1704 return err;
1705 }
1706
1707 /**
1708 * add_size - add znode size to partially calculated index size.
1709 * @c: UBIFS file-system description object
1710 * @znode: znode to add size for
1711 * @priv: partially calculated index size
1712 *
1713 * This is a helper function for 'dbg_check_idx_size()' which is called for
1714 * every indexing node and adds its size to the 'long long' variable pointed to
1715 * by @priv.
1716 */
add_size(struct ubifs_info * c,struct ubifs_znode * znode,void * priv)1717 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1718 {
1719 long long *idx_size = priv;
1720 int add;
1721
1722 add = ubifs_idx_node_sz(c, znode->child_cnt);
1723 add = ALIGN(add, 8);
1724 *idx_size += add;
1725 return 0;
1726 }
1727
1728 /**
1729 * dbg_check_idx_size - check index size.
1730 * @c: UBIFS file-system description object
1731 * @idx_size: size to check
1732 *
1733 * This function walks the UBIFS index, calculates its size and checks that the
1734 * size is equivalent to @idx_size. Returns zero in case of success and a
1735 * negative error code in case of failure.
1736 */
dbg_check_idx_size(struct ubifs_info * c,long long idx_size)1737 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1738 {
1739 int err;
1740 long long calc = 0;
1741
1742 if (!dbg_is_chk_index(c))
1743 return 0;
1744
1745 err = dbg_walk_index(c, NULL, add_size, &calc);
1746 if (err) {
1747 ubifs_err(c, "error %d while walking the index", err);
1748 goto out_err;
1749 }
1750
1751 if (calc != idx_size) {
1752 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1753 calc, idx_size);
1754 dump_stack();
1755 err = -EINVAL;
1756 goto out_err;
1757 }
1758
1759 return 0;
1760
1761 out_err:
1762 ubifs_destroy_tnc_tree(c);
1763 return err;
1764 }
1765
1766 /**
1767 * struct fsck_inode - information about an inode used when checking the file-system.
1768 * @rb: link in the RB-tree of inodes
1769 * @inum: inode number
1770 * @mode: inode type, permissions, etc
1771 * @nlink: inode link count
1772 * @xattr_cnt: count of extended attributes
1773 * @references: how many directory/xattr entries refer this inode (calculated
1774 * while walking the index)
1775 * @calc_cnt: for directory inode count of child directories
1776 * @size: inode size (read from on-flash inode)
1777 * @xattr_sz: summary size of all extended attributes (read from on-flash
1778 * inode)
1779 * @calc_sz: for directories calculated directory size
1780 * @calc_xcnt: count of extended attributes
1781 * @calc_xsz: calculated summary size of all extended attributes
1782 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1783 * inode (read from on-flash inode)
1784 * @calc_xnms: calculated sum of lengths of all extended attribute names
1785 */
1786 struct fsck_inode {
1787 struct rb_node rb;
1788 ino_t inum;
1789 umode_t mode;
1790 unsigned int nlink;
1791 unsigned int xattr_cnt;
1792 int references;
1793 int calc_cnt;
1794 long long size;
1795 unsigned int xattr_sz;
1796 long long calc_sz;
1797 long long calc_xcnt;
1798 long long calc_xsz;
1799 unsigned int xattr_nms;
1800 long long calc_xnms;
1801 };
1802
1803 /**
1804 * struct fsck_data - private FS checking information.
1805 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1806 */
1807 struct fsck_data {
1808 struct rb_root inodes;
1809 };
1810
1811 /**
1812 * add_inode - add inode information to RB-tree of inodes.
1813 * @c: UBIFS file-system description object
1814 * @fsckd: FS checking information
1815 * @ino: raw UBIFS inode to add
1816 *
1817 * This is a helper function for 'check_leaf()' which adds information about
1818 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1819 * case of success and a negative error code in case of failure.
1820 */
add_inode(struct ubifs_info * c,struct fsck_data * fsckd,struct ubifs_ino_node * ino)1821 static struct fsck_inode *add_inode(struct ubifs_info *c,
1822 struct fsck_data *fsckd,
1823 struct ubifs_ino_node *ino)
1824 {
1825 struct rb_node **p, *parent = NULL;
1826 struct fsck_inode *fscki;
1827 ino_t inum = key_inum_flash(c, &ino->key);
1828 struct inode *inode;
1829 struct ubifs_inode *ui;
1830
1831 p = &fsckd->inodes.rb_node;
1832 while (*p) {
1833 parent = *p;
1834 fscki = rb_entry(parent, struct fsck_inode, rb);
1835 if (inum < fscki->inum)
1836 p = &(*p)->rb_left;
1837 else if (inum > fscki->inum)
1838 p = &(*p)->rb_right;
1839 else
1840 return fscki;
1841 }
1842
1843 if (inum > c->highest_inum) {
1844 ubifs_err(c, "too high inode number, max. is %lu",
1845 (unsigned long)c->highest_inum);
1846 return ERR_PTR(-EINVAL);
1847 }
1848
1849 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1850 if (!fscki)
1851 return ERR_PTR(-ENOMEM);
1852
1853 inode = ilookup(c->vfs_sb, inum);
1854
1855 fscki->inum = inum;
1856 /*
1857 * If the inode is present in the VFS inode cache, use it instead of
1858 * the on-flash inode which might be out-of-date. E.g., the size might
1859 * be out-of-date. If we do not do this, the following may happen, for
1860 * example:
1861 * 1. A power cut happens
1862 * 2. We mount the file-system R/O, the replay process fixes up the
1863 * inode size in the VFS cache, but on on-flash.
1864 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1865 * size.
1866 */
1867 if (!inode) {
1868 fscki->nlink = le32_to_cpu(ino->nlink);
1869 fscki->size = le64_to_cpu(ino->size);
1870 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1871 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1872 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1873 fscki->mode = le32_to_cpu(ino->mode);
1874 } else {
1875 ui = ubifs_inode(inode);
1876 fscki->nlink = inode->i_nlink;
1877 fscki->size = inode->i_size;
1878 fscki->xattr_cnt = ui->xattr_cnt;
1879 fscki->xattr_sz = ui->xattr_size;
1880 fscki->xattr_nms = ui->xattr_names;
1881 fscki->mode = inode->i_mode;
1882 iput(inode);
1883 }
1884
1885 if (S_ISDIR(fscki->mode)) {
1886 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1887 fscki->calc_cnt = 2;
1888 }
1889
1890 rb_link_node(&fscki->rb, parent, p);
1891 rb_insert_color(&fscki->rb, &fsckd->inodes);
1892
1893 return fscki;
1894 }
1895
1896 /**
1897 * search_inode - search inode in the RB-tree of inodes.
1898 * @fsckd: FS checking information
1899 * @inum: inode number to search
1900 *
1901 * This is a helper function for 'check_leaf()' which searches inode @inum in
1902 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1903 * the inode was not found.
1904 */
search_inode(struct fsck_data * fsckd,ino_t inum)1905 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1906 {
1907 struct rb_node *p;
1908 struct fsck_inode *fscki;
1909
1910 p = fsckd->inodes.rb_node;
1911 while (p) {
1912 fscki = rb_entry(p, struct fsck_inode, rb);
1913 if (inum < fscki->inum)
1914 p = p->rb_left;
1915 else if (inum > fscki->inum)
1916 p = p->rb_right;
1917 else
1918 return fscki;
1919 }
1920 return NULL;
1921 }
1922
1923 /**
1924 * read_add_inode - read inode node and add it to RB-tree of inodes.
1925 * @c: UBIFS file-system description object
1926 * @fsckd: FS checking information
1927 * @inum: inode number to read
1928 *
1929 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1930 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1931 * information pointer in case of success and a negative error code in case of
1932 * failure.
1933 */
read_add_inode(struct ubifs_info * c,struct fsck_data * fsckd,ino_t inum)1934 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1935 struct fsck_data *fsckd, ino_t inum)
1936 {
1937 int n, err;
1938 union ubifs_key key;
1939 struct ubifs_znode *znode;
1940 struct ubifs_zbranch *zbr;
1941 struct ubifs_ino_node *ino;
1942 struct fsck_inode *fscki;
1943
1944 fscki = search_inode(fsckd, inum);
1945 if (fscki)
1946 return fscki;
1947
1948 ino_key_init(c, &key, inum);
1949 err = ubifs_lookup_level0(c, &key, &znode, &n);
1950 if (!err) {
1951 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1952 return ERR_PTR(-ENOENT);
1953 } else if (err < 0) {
1954 ubifs_err(c, "error %d while looking up inode %lu",
1955 err, (unsigned long)inum);
1956 return ERR_PTR(err);
1957 }
1958
1959 zbr = &znode->zbranch[n];
1960 if (zbr->len < UBIFS_INO_NODE_SZ) {
1961 ubifs_err(c, "bad node %lu node length %d",
1962 (unsigned long)inum, zbr->len);
1963 return ERR_PTR(-EINVAL);
1964 }
1965
1966 ino = kmalloc(zbr->len, GFP_NOFS);
1967 if (!ino)
1968 return ERR_PTR(-ENOMEM);
1969
1970 err = ubifs_tnc_read_node(c, zbr, ino);
1971 if (err) {
1972 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1973 zbr->lnum, zbr->offs, err);
1974 kfree(ino);
1975 return ERR_PTR(err);
1976 }
1977
1978 fscki = add_inode(c, fsckd, ino);
1979 kfree(ino);
1980 if (IS_ERR(fscki)) {
1981 ubifs_err(c, "error %ld while adding inode %lu node",
1982 PTR_ERR(fscki), (unsigned long)inum);
1983 return fscki;
1984 }
1985
1986 return fscki;
1987 }
1988
1989 /**
1990 * check_leaf - check leaf node.
1991 * @c: UBIFS file-system description object
1992 * @zbr: zbranch of the leaf node to check
1993 * @priv: FS checking information
1994 *
1995 * This is a helper function for 'dbg_check_filesystem()' which is called for
1996 * every single leaf node while walking the indexing tree. It checks that the
1997 * leaf node referred from the indexing tree exists, has correct CRC, and does
1998 * some other basic validation. This function is also responsible for building
1999 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2000 * calculates reference count, size, etc for each inode in order to later
2001 * compare them to the information stored inside the inodes and detect possible
2002 * inconsistencies. Returns zero in case of success and a negative error code
2003 * in case of failure.
2004 */
check_leaf(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * priv)2005 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2006 void *priv)
2007 {
2008 ino_t inum;
2009 void *node;
2010 struct ubifs_ch *ch;
2011 int err, type = key_type(c, &zbr->key);
2012 struct fsck_inode *fscki;
2013
2014 if (zbr->len < UBIFS_CH_SZ) {
2015 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2016 zbr->len, zbr->lnum, zbr->offs);
2017 return -EINVAL;
2018 }
2019
2020 node = kmalloc(zbr->len, GFP_NOFS);
2021 if (!node)
2022 return -ENOMEM;
2023
2024 err = ubifs_tnc_read_node(c, zbr, node);
2025 if (err) {
2026 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2027 zbr->lnum, zbr->offs, err);
2028 goto out_free;
2029 }
2030
2031 /* If this is an inode node, add it to RB-tree of inodes */
2032 if (type == UBIFS_INO_KEY) {
2033 fscki = add_inode(c, priv, node);
2034 if (IS_ERR(fscki)) {
2035 err = PTR_ERR(fscki);
2036 ubifs_err(c, "error %d while adding inode node", err);
2037 goto out_dump;
2038 }
2039 goto out;
2040 }
2041
2042 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2043 type != UBIFS_DATA_KEY) {
2044 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2045 type, zbr->lnum, zbr->offs);
2046 err = -EINVAL;
2047 goto out_free;
2048 }
2049
2050 ch = node;
2051 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2052 ubifs_err(c, "too high sequence number, max. is %llu",
2053 c->max_sqnum);
2054 err = -EINVAL;
2055 goto out_dump;
2056 }
2057
2058 if (type == UBIFS_DATA_KEY) {
2059 long long blk_offs;
2060 struct ubifs_data_node *dn = node;
2061
2062 ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2063
2064 /*
2065 * Search the inode node this data node belongs to and insert
2066 * it to the RB-tree of inodes.
2067 */
2068 inum = key_inum_flash(c, &dn->key);
2069 fscki = read_add_inode(c, priv, inum);
2070 if (IS_ERR(fscki)) {
2071 err = PTR_ERR(fscki);
2072 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2073 err, (unsigned long)inum);
2074 goto out_dump;
2075 }
2076
2077 /* Make sure the data node is within inode size */
2078 blk_offs = key_block_flash(c, &dn->key);
2079 blk_offs <<= UBIFS_BLOCK_SHIFT;
2080 blk_offs += le32_to_cpu(dn->size);
2081 if (blk_offs > fscki->size) {
2082 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2083 zbr->lnum, zbr->offs, fscki->size);
2084 err = -EINVAL;
2085 goto out_dump;
2086 }
2087 } else {
2088 int nlen;
2089 struct ubifs_dent_node *dent = node;
2090 struct fsck_inode *fscki1;
2091
2092 ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2093
2094 err = ubifs_validate_entry(c, dent);
2095 if (err)
2096 goto out_dump;
2097
2098 /*
2099 * Search the inode node this entry refers to and the parent
2100 * inode node and insert them to the RB-tree of inodes.
2101 */
2102 inum = le64_to_cpu(dent->inum);
2103 fscki = read_add_inode(c, priv, inum);
2104 if (IS_ERR(fscki)) {
2105 err = PTR_ERR(fscki);
2106 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2107 err, (unsigned long)inum);
2108 goto out_dump;
2109 }
2110
2111 /* Count how many direntries or xentries refers this inode */
2112 fscki->references += 1;
2113
2114 inum = key_inum_flash(c, &dent->key);
2115 fscki1 = read_add_inode(c, priv, inum);
2116 if (IS_ERR(fscki1)) {
2117 err = PTR_ERR(fscki1);
2118 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2119 err, (unsigned long)inum);
2120 goto out_dump;
2121 }
2122
2123 nlen = le16_to_cpu(dent->nlen);
2124 if (type == UBIFS_XENT_KEY) {
2125 fscki1->calc_xcnt += 1;
2126 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2127 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2128 fscki1->calc_xnms += nlen;
2129 } else {
2130 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2131 if (dent->type == UBIFS_ITYPE_DIR)
2132 fscki1->calc_cnt += 1;
2133 }
2134 }
2135
2136 out:
2137 kfree(node);
2138 return 0;
2139
2140 out_dump:
2141 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2142 ubifs_dump_node(c, node, zbr->len);
2143 out_free:
2144 kfree(node);
2145 return err;
2146 }
2147
2148 /**
2149 * free_inodes - free RB-tree of inodes.
2150 * @fsckd: FS checking information
2151 */
free_inodes(struct fsck_data * fsckd)2152 static void free_inodes(struct fsck_data *fsckd)
2153 {
2154 struct fsck_inode *fscki, *n;
2155
2156 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2157 kfree(fscki);
2158 }
2159
2160 /**
2161 * check_inodes - checks all inodes.
2162 * @c: UBIFS file-system description object
2163 * @fsckd: FS checking information
2164 *
2165 * This is a helper function for 'dbg_check_filesystem()' which walks the
2166 * RB-tree of inodes after the index scan has been finished, and checks that
2167 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2168 * %-EINVAL if not, and a negative error code in case of failure.
2169 */
check_inodes(struct ubifs_info * c,struct fsck_data * fsckd)2170 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2171 {
2172 int n, err;
2173 union ubifs_key key;
2174 struct ubifs_znode *znode;
2175 struct ubifs_zbranch *zbr;
2176 struct ubifs_ino_node *ino;
2177 struct fsck_inode *fscki;
2178 struct rb_node *this = rb_first(&fsckd->inodes);
2179
2180 while (this) {
2181 fscki = rb_entry(this, struct fsck_inode, rb);
2182 this = rb_next(this);
2183
2184 if (S_ISDIR(fscki->mode)) {
2185 /*
2186 * Directories have to have exactly one reference (they
2187 * cannot have hardlinks), although root inode is an
2188 * exception.
2189 */
2190 if (fscki->inum != UBIFS_ROOT_INO &&
2191 fscki->references != 1) {
2192 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2193 (unsigned long)fscki->inum,
2194 fscki->references);
2195 goto out_dump;
2196 }
2197 if (fscki->inum == UBIFS_ROOT_INO &&
2198 fscki->references != 0) {
2199 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2200 (unsigned long)fscki->inum,
2201 fscki->references);
2202 goto out_dump;
2203 }
2204 if (fscki->calc_sz != fscki->size) {
2205 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2206 (unsigned long)fscki->inum,
2207 fscki->size, fscki->calc_sz);
2208 goto out_dump;
2209 }
2210 if (fscki->calc_cnt != fscki->nlink) {
2211 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2212 (unsigned long)fscki->inum,
2213 fscki->nlink, fscki->calc_cnt);
2214 goto out_dump;
2215 }
2216 } else {
2217 if (fscki->references != fscki->nlink) {
2218 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2219 (unsigned long)fscki->inum,
2220 fscki->nlink, fscki->references);
2221 goto out_dump;
2222 }
2223 }
2224 if (fscki->xattr_sz != fscki->calc_xsz) {
2225 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2226 (unsigned long)fscki->inum, fscki->xattr_sz,
2227 fscki->calc_xsz);
2228 goto out_dump;
2229 }
2230 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2231 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2232 (unsigned long)fscki->inum,
2233 fscki->xattr_cnt, fscki->calc_xcnt);
2234 goto out_dump;
2235 }
2236 if (fscki->xattr_nms != fscki->calc_xnms) {
2237 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2238 (unsigned long)fscki->inum, fscki->xattr_nms,
2239 fscki->calc_xnms);
2240 goto out_dump;
2241 }
2242 }
2243
2244 return 0;
2245
2246 out_dump:
2247 /* Read the bad inode and dump it */
2248 ino_key_init(c, &key, fscki->inum);
2249 err = ubifs_lookup_level0(c, &key, &znode, &n);
2250 if (!err) {
2251 ubifs_err(c, "inode %lu not found in index",
2252 (unsigned long)fscki->inum);
2253 return -ENOENT;
2254 } else if (err < 0) {
2255 ubifs_err(c, "error %d while looking up inode %lu",
2256 err, (unsigned long)fscki->inum);
2257 return err;
2258 }
2259
2260 zbr = &znode->zbranch[n];
2261 ino = kmalloc(zbr->len, GFP_NOFS);
2262 if (!ino)
2263 return -ENOMEM;
2264
2265 err = ubifs_tnc_read_node(c, zbr, ino);
2266 if (err) {
2267 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2268 zbr->lnum, zbr->offs, err);
2269 kfree(ino);
2270 return err;
2271 }
2272
2273 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2274 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2275 ubifs_dump_node(c, ino, zbr->len);
2276 kfree(ino);
2277 return -EINVAL;
2278 }
2279
2280 /**
2281 * dbg_check_filesystem - check the file-system.
2282 * @c: UBIFS file-system description object
2283 *
2284 * This function checks the file system, namely:
2285 * o makes sure that all leaf nodes exist and their CRCs are correct;
2286 * o makes sure inode nlink, size, xattr size/count are correct (for all
2287 * inodes).
2288 *
2289 * The function reads whole indexing tree and all nodes, so it is pretty
2290 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2291 * not, and a negative error code in case of failure.
2292 */
dbg_check_filesystem(struct ubifs_info * c)2293 int dbg_check_filesystem(struct ubifs_info *c)
2294 {
2295 int err;
2296 struct fsck_data fsckd;
2297
2298 if (!dbg_is_chk_fs(c))
2299 return 0;
2300
2301 fsckd.inodes = RB_ROOT;
2302 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2303 if (err)
2304 goto out_free;
2305
2306 err = check_inodes(c, &fsckd);
2307 if (err)
2308 goto out_free;
2309
2310 free_inodes(&fsckd);
2311 return 0;
2312
2313 out_free:
2314 ubifs_err(c, "file-system check failed with error %d", err);
2315 dump_stack();
2316 free_inodes(&fsckd);
2317 return err;
2318 }
2319
2320 /**
2321 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2322 * @c: UBIFS file-system description object
2323 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2324 *
2325 * This function returns zero if the list of data nodes is sorted correctly,
2326 * and %-EINVAL if not.
2327 */
dbg_check_data_nodes_order(struct ubifs_info * c,struct list_head * head)2328 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2329 {
2330 struct list_head *cur;
2331 struct ubifs_scan_node *sa, *sb;
2332
2333 if (!dbg_is_chk_gen(c))
2334 return 0;
2335
2336 for (cur = head->next; cur->next != head; cur = cur->next) {
2337 ino_t inuma, inumb;
2338 uint32_t blka, blkb;
2339
2340 cond_resched();
2341 sa = container_of(cur, struct ubifs_scan_node, list);
2342 sb = container_of(cur->next, struct ubifs_scan_node, list);
2343
2344 if (sa->type != UBIFS_DATA_NODE) {
2345 ubifs_err(c, "bad node type %d", sa->type);
2346 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2347 return -EINVAL;
2348 }
2349 if (sb->type != UBIFS_DATA_NODE) {
2350 ubifs_err(c, "bad node type %d", sb->type);
2351 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2352 return -EINVAL;
2353 }
2354
2355 inuma = key_inum(c, &sa->key);
2356 inumb = key_inum(c, &sb->key);
2357
2358 if (inuma < inumb)
2359 continue;
2360 if (inuma > inumb) {
2361 ubifs_err(c, "larger inum %lu goes before inum %lu",
2362 (unsigned long)inuma, (unsigned long)inumb);
2363 goto error_dump;
2364 }
2365
2366 blka = key_block(c, &sa->key);
2367 blkb = key_block(c, &sb->key);
2368
2369 if (blka > blkb) {
2370 ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2371 goto error_dump;
2372 }
2373 if (blka == blkb) {
2374 ubifs_err(c, "two data nodes for the same block");
2375 goto error_dump;
2376 }
2377 }
2378
2379 return 0;
2380
2381 error_dump:
2382 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2383 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2384 return -EINVAL;
2385 }
2386
2387 /**
2388 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2389 * @c: UBIFS file-system description object
2390 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2391 *
2392 * This function returns zero if the list of non-data nodes is sorted correctly,
2393 * and %-EINVAL if not.
2394 */
dbg_check_nondata_nodes_order(struct ubifs_info * c,struct list_head * head)2395 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2396 {
2397 struct list_head *cur;
2398 struct ubifs_scan_node *sa, *sb;
2399
2400 if (!dbg_is_chk_gen(c))
2401 return 0;
2402
2403 for (cur = head->next; cur->next != head; cur = cur->next) {
2404 ino_t inuma, inumb;
2405 uint32_t hasha, hashb;
2406
2407 cond_resched();
2408 sa = container_of(cur, struct ubifs_scan_node, list);
2409 sb = container_of(cur->next, struct ubifs_scan_node, list);
2410
2411 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2412 sa->type != UBIFS_XENT_NODE) {
2413 ubifs_err(c, "bad node type %d", sa->type);
2414 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2415 return -EINVAL;
2416 }
2417 if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2418 sb->type != UBIFS_XENT_NODE) {
2419 ubifs_err(c, "bad node type %d", sb->type);
2420 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2421 return -EINVAL;
2422 }
2423
2424 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2425 ubifs_err(c, "non-inode node goes before inode node");
2426 goto error_dump;
2427 }
2428
2429 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2430 continue;
2431
2432 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2433 /* Inode nodes are sorted in descending size order */
2434 if (sa->len < sb->len) {
2435 ubifs_err(c, "smaller inode node goes first");
2436 goto error_dump;
2437 }
2438 continue;
2439 }
2440
2441 /*
2442 * This is either a dentry or xentry, which should be sorted in
2443 * ascending (parent ino, hash) order.
2444 */
2445 inuma = key_inum(c, &sa->key);
2446 inumb = key_inum(c, &sb->key);
2447
2448 if (inuma < inumb)
2449 continue;
2450 if (inuma > inumb) {
2451 ubifs_err(c, "larger inum %lu goes before inum %lu",
2452 (unsigned long)inuma, (unsigned long)inumb);
2453 goto error_dump;
2454 }
2455
2456 hasha = key_block(c, &sa->key);
2457 hashb = key_block(c, &sb->key);
2458
2459 if (hasha > hashb) {
2460 ubifs_err(c, "larger hash %u goes before %u",
2461 hasha, hashb);
2462 goto error_dump;
2463 }
2464 }
2465
2466 return 0;
2467
2468 error_dump:
2469 ubifs_msg(c, "dumping first node");
2470 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2471 ubifs_msg(c, "dumping second node");
2472 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2473 return -EINVAL;
2474 }
2475
chance(unsigned int n,unsigned int out_of)2476 static inline int chance(unsigned int n, unsigned int out_of)
2477 {
2478 return !!(get_random_u32_below(out_of) + 1 <= n);
2479
2480 }
2481
power_cut_emulated(struct ubifs_info * c,int lnum,int write)2482 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2483 {
2484 struct ubifs_debug_info *d = c->dbg;
2485
2486 ubifs_assert(c, dbg_is_tst_rcvry(c));
2487
2488 if (!d->pc_cnt) {
2489 /* First call - decide delay to the power cut */
2490 if (chance(1, 2)) {
2491 unsigned long delay;
2492
2493 if (chance(1, 2)) {
2494 d->pc_delay = 1;
2495 /* Fail within 1 minute */
2496 delay = get_random_u32_below(60000);
2497 d->pc_timeout = jiffies;
2498 d->pc_timeout += msecs_to_jiffies(delay);
2499 ubifs_warn(c, "failing after %lums", delay);
2500 } else {
2501 d->pc_delay = 2;
2502 delay = get_random_u32_below(10000);
2503 /* Fail within 10000 operations */
2504 d->pc_cnt_max = delay;
2505 ubifs_warn(c, "failing after %lu calls", delay);
2506 }
2507 }
2508
2509 d->pc_cnt += 1;
2510 }
2511
2512 /* Determine if failure delay has expired */
2513 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2514 return 0;
2515 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2516 return 0;
2517
2518 if (lnum == UBIFS_SB_LNUM) {
2519 if (write && chance(1, 2))
2520 return 0;
2521 if (chance(19, 20))
2522 return 0;
2523 ubifs_warn(c, "failing in super block LEB %d", lnum);
2524 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2525 if (chance(19, 20))
2526 return 0;
2527 ubifs_warn(c, "failing in master LEB %d", lnum);
2528 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2529 if (write && chance(99, 100))
2530 return 0;
2531 if (chance(399, 400))
2532 return 0;
2533 ubifs_warn(c, "failing in log LEB %d", lnum);
2534 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2535 if (write && chance(7, 8))
2536 return 0;
2537 if (chance(19, 20))
2538 return 0;
2539 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2540 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2541 if (write && chance(1, 2))
2542 return 0;
2543 if (chance(9, 10))
2544 return 0;
2545 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2546 } else if (lnum == c->ihead_lnum) {
2547 if (chance(99, 100))
2548 return 0;
2549 ubifs_warn(c, "failing in index head LEB %d", lnum);
2550 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2551 if (chance(9, 10))
2552 return 0;
2553 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2554 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2555 !ubifs_search_bud(c, lnum)) {
2556 if (chance(19, 20))
2557 return 0;
2558 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2559 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2560 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2561 if (chance(999, 1000))
2562 return 0;
2563 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2564 } else {
2565 if (chance(9999, 10000))
2566 return 0;
2567 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2568 }
2569
2570 d->pc_happened = 1;
2571 ubifs_warn(c, "========== Power cut emulated ==========");
2572 dump_stack();
2573 return 1;
2574 }
2575
corrupt_data(const struct ubifs_info * c,const void * buf,unsigned int len)2576 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2577 unsigned int len)
2578 {
2579 unsigned int from, to, ffs = chance(1, 2);
2580 unsigned char *p = (void *)buf;
2581
2582 from = get_random_u32_below(len);
2583 /* Corruption span max to end of write unit */
2584 to = min(len, ALIGN(from + 1, c->max_write_size));
2585
2586 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2587 ffs ? "0xFFs" : "random data");
2588
2589 if (ffs)
2590 memset(p + from, 0xFF, to - from);
2591 else
2592 get_random_bytes(p + from, to - from);
2593
2594 return to;
2595 }
2596
dbg_leb_write(struct ubifs_info * c,int lnum,const void * buf,int offs,int len)2597 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2598 int offs, int len)
2599 {
2600 int err, failing;
2601
2602 if (dbg_is_power_cut(c))
2603 return -EROFS;
2604
2605 failing = power_cut_emulated(c, lnum, 1);
2606 if (failing) {
2607 len = corrupt_data(c, buf, len);
2608 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2609 len, lnum, offs);
2610 }
2611 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2612 if (err)
2613 return err;
2614 if (failing)
2615 return -EROFS;
2616 return 0;
2617 }
2618
dbg_leb_change(struct ubifs_info * c,int lnum,const void * buf,int len)2619 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2620 int len)
2621 {
2622 int err;
2623
2624 if (dbg_is_power_cut(c))
2625 return -EROFS;
2626 if (power_cut_emulated(c, lnum, 1))
2627 return -EROFS;
2628 err = ubi_leb_change(c->ubi, lnum, buf, len);
2629 if (err)
2630 return err;
2631 if (power_cut_emulated(c, lnum, 1))
2632 return -EROFS;
2633 return 0;
2634 }
2635
dbg_leb_unmap(struct ubifs_info * c,int lnum)2636 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2637 {
2638 int err;
2639
2640 if (dbg_is_power_cut(c))
2641 return -EROFS;
2642 if (power_cut_emulated(c, lnum, 0))
2643 return -EROFS;
2644 err = ubi_leb_unmap(c->ubi, lnum);
2645 if (err)
2646 return err;
2647 if (power_cut_emulated(c, lnum, 0))
2648 return -EROFS;
2649 return 0;
2650 }
2651
dbg_leb_map(struct ubifs_info * c,int lnum)2652 int dbg_leb_map(struct ubifs_info *c, int lnum)
2653 {
2654 int err;
2655
2656 if (dbg_is_power_cut(c))
2657 return -EROFS;
2658 if (power_cut_emulated(c, lnum, 0))
2659 return -EROFS;
2660 err = ubi_leb_map(c->ubi, lnum);
2661 if (err)
2662 return err;
2663 if (power_cut_emulated(c, lnum, 0))
2664 return -EROFS;
2665 return 0;
2666 }
2667
2668 /*
2669 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2670 * contain the stuff specific to particular file-system mounts.
2671 */
2672 static struct dentry *dfs_rootdir;
2673
dfs_file_open(struct inode * inode,struct file * file)2674 static int dfs_file_open(struct inode *inode, struct file *file)
2675 {
2676 file->private_data = inode->i_private;
2677 return nonseekable_open(inode, file);
2678 }
2679
2680 /**
2681 * provide_user_output - provide output to the user reading a debugfs file.
2682 * @val: boolean value for the answer
2683 * @u: the buffer to store the answer at
2684 * @count: size of the buffer
2685 * @ppos: position in the @u output buffer
2686 *
2687 * This is a simple helper function which stores @val boolean value in the user
2688 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2689 * bytes written to @u in case of success and a negative error code in case of
2690 * failure.
2691 */
provide_user_output(int val,char __user * u,size_t count,loff_t * ppos)2692 static int provide_user_output(int val, char __user *u, size_t count,
2693 loff_t *ppos)
2694 {
2695 char buf[3];
2696
2697 if (val)
2698 buf[0] = '1';
2699 else
2700 buf[0] = '0';
2701 buf[1] = '\n';
2702 buf[2] = 0x00;
2703
2704 return simple_read_from_buffer(u, count, ppos, buf, 2);
2705 }
2706
dfs_file_read(struct file * file,char __user * u,size_t count,loff_t * ppos)2707 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2708 loff_t *ppos)
2709 {
2710 struct dentry *dent = file->f_path.dentry;
2711 struct ubifs_info *c = file->private_data;
2712 struct ubifs_debug_info *d = c->dbg;
2713 int val;
2714
2715 if (dent == d->dfs_chk_gen)
2716 val = d->chk_gen;
2717 else if (dent == d->dfs_chk_index)
2718 val = d->chk_index;
2719 else if (dent == d->dfs_chk_orph)
2720 val = d->chk_orph;
2721 else if (dent == d->dfs_chk_lprops)
2722 val = d->chk_lprops;
2723 else if (dent == d->dfs_chk_fs)
2724 val = d->chk_fs;
2725 else if (dent == d->dfs_tst_rcvry)
2726 val = d->tst_rcvry;
2727 else if (dent == d->dfs_ro_error)
2728 val = c->ro_error;
2729 else
2730 return -EINVAL;
2731
2732 return provide_user_output(val, u, count, ppos);
2733 }
2734
2735 /**
2736 * interpret_user_input - interpret user debugfs file input.
2737 * @u: user-provided buffer with the input
2738 * @count: buffer size
2739 *
2740 * This is a helper function which interpret user input to a boolean UBIFS
2741 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2742 * in case of failure.
2743 */
interpret_user_input(const char __user * u,size_t count)2744 static int interpret_user_input(const char __user *u, size_t count)
2745 {
2746 size_t buf_size;
2747 char buf[8];
2748
2749 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2750 if (copy_from_user(buf, u, buf_size))
2751 return -EFAULT;
2752
2753 if (buf[0] == '1')
2754 return 1;
2755 else if (buf[0] == '0')
2756 return 0;
2757
2758 return -EINVAL;
2759 }
2760
dfs_file_write(struct file * file,const char __user * u,size_t count,loff_t * ppos)2761 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2762 size_t count, loff_t *ppos)
2763 {
2764 struct ubifs_info *c = file->private_data;
2765 struct ubifs_debug_info *d = c->dbg;
2766 struct dentry *dent = file->f_path.dentry;
2767 int val;
2768
2769 if (file->f_path.dentry == d->dfs_dump_lprops) {
2770 ubifs_dump_lprops(c);
2771 return count;
2772 }
2773 if (file->f_path.dentry == d->dfs_dump_budg) {
2774 ubifs_dump_budg(c, &c->bi);
2775 return count;
2776 }
2777 if (file->f_path.dentry == d->dfs_dump_tnc) {
2778 mutex_lock(&c->tnc_mutex);
2779 ubifs_dump_tnc(c);
2780 mutex_unlock(&c->tnc_mutex);
2781 return count;
2782 }
2783
2784 val = interpret_user_input(u, count);
2785 if (val < 0)
2786 return val;
2787
2788 if (dent == d->dfs_chk_gen)
2789 d->chk_gen = val;
2790 else if (dent == d->dfs_chk_index)
2791 d->chk_index = val;
2792 else if (dent == d->dfs_chk_orph)
2793 d->chk_orph = val;
2794 else if (dent == d->dfs_chk_lprops)
2795 d->chk_lprops = val;
2796 else if (dent == d->dfs_chk_fs)
2797 d->chk_fs = val;
2798 else if (dent == d->dfs_tst_rcvry)
2799 d->tst_rcvry = val;
2800 else if (dent == d->dfs_ro_error)
2801 c->ro_error = !!val;
2802 else
2803 return -EINVAL;
2804
2805 return count;
2806 }
2807
2808 static const struct file_operations dfs_fops = {
2809 .open = dfs_file_open,
2810 .read = dfs_file_read,
2811 .write = dfs_file_write,
2812 .owner = THIS_MODULE,
2813 };
2814
2815 /**
2816 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2817 * @c: UBIFS file-system description object
2818 *
2819 * This function creates all debugfs files for this instance of UBIFS.
2820 *
2821 * Note, the only reason we have not merged this function with the
2822 * 'ubifs_debugging_init()' function is because it is better to initialize
2823 * debugfs interfaces at the very end of the mount process, and remove them at
2824 * the very beginning of the mount process.
2825 */
dbg_debugfs_init_fs(struct ubifs_info * c)2826 void dbg_debugfs_init_fs(struct ubifs_info *c)
2827 {
2828 int n;
2829 const char *fname;
2830 struct ubifs_debug_info *d = c->dbg;
2831
2832 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN, UBIFS_DFS_DIR_NAME,
2833 c->vi.ubi_num, c->vi.vol_id);
2834 if (n >= UBIFS_DFS_DIR_LEN) {
2835 /* The array size is too small */
2836 return;
2837 }
2838
2839 fname = d->dfs_dir_name;
2840 d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
2841
2842 fname = "dump_lprops";
2843 d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2844 &dfs_fops);
2845
2846 fname = "dump_budg";
2847 d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2848 &dfs_fops);
2849
2850 fname = "dump_tnc";
2851 d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2852 &dfs_fops);
2853
2854 fname = "chk_general";
2855 d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2856 d->dfs_dir, c, &dfs_fops);
2857
2858 fname = "chk_index";
2859 d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2860 d->dfs_dir, c, &dfs_fops);
2861
2862 fname = "chk_orphans";
2863 d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2864 d->dfs_dir, c, &dfs_fops);
2865
2866 fname = "chk_lprops";
2867 d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2868 d->dfs_dir, c, &dfs_fops);
2869
2870 fname = "chk_fs";
2871 d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2872 d->dfs_dir, c, &dfs_fops);
2873
2874 fname = "tst_recovery";
2875 d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2876 d->dfs_dir, c, &dfs_fops);
2877
2878 fname = "ro_error";
2879 d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2880 d->dfs_dir, c, &dfs_fops);
2881 }
2882
2883 /**
2884 * dbg_debugfs_exit_fs - remove all debugfs files.
2885 * @c: UBIFS file-system description object
2886 */
dbg_debugfs_exit_fs(struct ubifs_info * c)2887 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2888 {
2889 debugfs_remove_recursive(c->dbg->dfs_dir);
2890 }
2891
2892 struct ubifs_global_debug_info ubifs_dbg;
2893
2894 static struct dentry *dfs_chk_gen;
2895 static struct dentry *dfs_chk_index;
2896 static struct dentry *dfs_chk_orph;
2897 static struct dentry *dfs_chk_lprops;
2898 static struct dentry *dfs_chk_fs;
2899 static struct dentry *dfs_tst_rcvry;
2900
dfs_global_file_read(struct file * file,char __user * u,size_t count,loff_t * ppos)2901 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2902 size_t count, loff_t *ppos)
2903 {
2904 struct dentry *dent = file->f_path.dentry;
2905 int val;
2906
2907 if (dent == dfs_chk_gen)
2908 val = ubifs_dbg.chk_gen;
2909 else if (dent == dfs_chk_index)
2910 val = ubifs_dbg.chk_index;
2911 else if (dent == dfs_chk_orph)
2912 val = ubifs_dbg.chk_orph;
2913 else if (dent == dfs_chk_lprops)
2914 val = ubifs_dbg.chk_lprops;
2915 else if (dent == dfs_chk_fs)
2916 val = ubifs_dbg.chk_fs;
2917 else if (dent == dfs_tst_rcvry)
2918 val = ubifs_dbg.tst_rcvry;
2919 else
2920 return -EINVAL;
2921
2922 return provide_user_output(val, u, count, ppos);
2923 }
2924
dfs_global_file_write(struct file * file,const char __user * u,size_t count,loff_t * ppos)2925 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2926 size_t count, loff_t *ppos)
2927 {
2928 struct dentry *dent = file->f_path.dentry;
2929 int val;
2930
2931 val = interpret_user_input(u, count);
2932 if (val < 0)
2933 return val;
2934
2935 if (dent == dfs_chk_gen)
2936 ubifs_dbg.chk_gen = val;
2937 else if (dent == dfs_chk_index)
2938 ubifs_dbg.chk_index = val;
2939 else if (dent == dfs_chk_orph)
2940 ubifs_dbg.chk_orph = val;
2941 else if (dent == dfs_chk_lprops)
2942 ubifs_dbg.chk_lprops = val;
2943 else if (dent == dfs_chk_fs)
2944 ubifs_dbg.chk_fs = val;
2945 else if (dent == dfs_tst_rcvry)
2946 ubifs_dbg.tst_rcvry = val;
2947 else
2948 return -EINVAL;
2949
2950 return count;
2951 }
2952
2953 static const struct file_operations dfs_global_fops = {
2954 .read = dfs_global_file_read,
2955 .write = dfs_global_file_write,
2956 .owner = THIS_MODULE,
2957 };
2958
2959 /**
2960 * dbg_debugfs_init - initialize debugfs file-system.
2961 *
2962 * UBIFS uses debugfs file-system to expose various debugging knobs to
2963 * user-space. This function creates "ubifs" directory in the debugfs
2964 * file-system.
2965 */
dbg_debugfs_init(void)2966 void dbg_debugfs_init(void)
2967 {
2968 const char *fname;
2969
2970 fname = "ubifs";
2971 dfs_rootdir = debugfs_create_dir(fname, NULL);
2972
2973 fname = "chk_general";
2974 dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2975 NULL, &dfs_global_fops);
2976
2977 fname = "chk_index";
2978 dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2979 dfs_rootdir, NULL, &dfs_global_fops);
2980
2981 fname = "chk_orphans";
2982 dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2983 dfs_rootdir, NULL, &dfs_global_fops);
2984
2985 fname = "chk_lprops";
2986 dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2987 dfs_rootdir, NULL, &dfs_global_fops);
2988
2989 fname = "chk_fs";
2990 dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2991 NULL, &dfs_global_fops);
2992
2993 fname = "tst_recovery";
2994 dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2995 dfs_rootdir, NULL, &dfs_global_fops);
2996 }
2997
2998 /**
2999 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3000 */
dbg_debugfs_exit(void)3001 void dbg_debugfs_exit(void)
3002 {
3003 debugfs_remove_recursive(dfs_rootdir);
3004 }
3005
ubifs_assert_failed(struct ubifs_info * c,const char * expr,const char * file,int line)3006 void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
3007 const char *file, int line)
3008 {
3009 ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
3010
3011 switch (c->assert_action) {
3012 case ASSACT_PANIC:
3013 BUG();
3014 break;
3015
3016 case ASSACT_RO:
3017 ubifs_ro_mode(c, -EINVAL);
3018 break;
3019
3020 case ASSACT_REPORT:
3021 default:
3022 dump_stack();
3023 break;
3024
3025 }
3026 }
3027
3028 /**
3029 * ubifs_debugging_init - initialize UBIFS debugging.
3030 * @c: UBIFS file-system description object
3031 *
3032 * This function initializes debugging-related data for the file system.
3033 * Returns zero in case of success and a negative error code in case of
3034 * failure.
3035 */
ubifs_debugging_init(struct ubifs_info * c)3036 int ubifs_debugging_init(struct ubifs_info *c)
3037 {
3038 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3039 if (!c->dbg)
3040 return -ENOMEM;
3041
3042 return 0;
3043 }
3044
3045 /**
3046 * ubifs_debugging_exit - free debugging data.
3047 * @c: UBIFS file-system description object
3048 */
ubifs_debugging_exit(struct ubifs_info * c)3049 void ubifs_debugging_exit(struct ubifs_info *c)
3050 {
3051 kfree(c->dbg);
3052 }
3053