xref: /linux/fs/ubifs/debug.c (revision ba6ec09911b805778a2fed6d626bfe77b011a717)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements most of the debugging stuff which is compiled in only
13  * when it is enabled. But some debugging check functions are implemented in
14  * corresponding subsystem, just because they are closely related and utilize
15  * various local functions of those subsystems.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/debugfs.h>
20 #include <linux/math64.h>
21 #include <linux/uaccess.h>
22 #include <linux/random.h>
23 #include <linux/ctype.h>
24 #include "ubifs.h"
25 
26 static DEFINE_SPINLOCK(dbg_lock);
27 
get_key_fmt(int fmt)28 static const char *get_key_fmt(int fmt)
29 {
30 	switch (fmt) {
31 	case UBIFS_SIMPLE_KEY_FMT:
32 		return "simple";
33 	default:
34 		return "unknown/invalid format";
35 	}
36 }
37 
get_key_hash(int hash)38 static const char *get_key_hash(int hash)
39 {
40 	switch (hash) {
41 	case UBIFS_KEY_HASH_R5:
42 		return "R5";
43 	case UBIFS_KEY_HASH_TEST:
44 		return "test";
45 	default:
46 		return "unknown/invalid name hash";
47 	}
48 }
49 
get_key_type(int type)50 static const char *get_key_type(int type)
51 {
52 	switch (type) {
53 	case UBIFS_INO_KEY:
54 		return "inode";
55 	case UBIFS_DENT_KEY:
56 		return "direntry";
57 	case UBIFS_XENT_KEY:
58 		return "xentry";
59 	case UBIFS_DATA_KEY:
60 		return "data";
61 	case UBIFS_TRUN_KEY:
62 		return "truncate";
63 	default:
64 		return "unknown/invalid key";
65 	}
66 }
67 
get_dent_type(int type)68 static const char *get_dent_type(int type)
69 {
70 	switch (type) {
71 	case UBIFS_ITYPE_REG:
72 		return "file";
73 	case UBIFS_ITYPE_DIR:
74 		return "dir";
75 	case UBIFS_ITYPE_LNK:
76 		return "symlink";
77 	case UBIFS_ITYPE_BLK:
78 		return "blkdev";
79 	case UBIFS_ITYPE_CHR:
80 		return "char dev";
81 	case UBIFS_ITYPE_FIFO:
82 		return "fifo";
83 	case UBIFS_ITYPE_SOCK:
84 		return "socket";
85 	default:
86 		return "unknown/invalid type";
87 	}
88 }
89 
dbg_snprintf_key(const struct ubifs_info * c,const union ubifs_key * key,char * buffer,int len)90 const char *dbg_snprintf_key(const struct ubifs_info *c,
91 			     const union ubifs_key *key, char *buffer, int len)
92 {
93 	char *p = buffer;
94 	int type = key_type(c, key);
95 
96 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
97 		switch (type) {
98 		case UBIFS_INO_KEY:
99 			len -= snprintf(p, len, "(%lu, %s)",
100 					(unsigned long)key_inum(c, key),
101 					get_key_type(type));
102 			break;
103 		case UBIFS_DENT_KEY:
104 		case UBIFS_XENT_KEY:
105 			len -= snprintf(p, len, "(%lu, %s, %#08x)",
106 					(unsigned long)key_inum(c, key),
107 					get_key_type(type), key_hash(c, key));
108 			break;
109 		case UBIFS_DATA_KEY:
110 			len -= snprintf(p, len, "(%lu, %s, %u)",
111 					(unsigned long)key_inum(c, key),
112 					get_key_type(type), key_block(c, key));
113 			break;
114 		case UBIFS_TRUN_KEY:
115 			len -= snprintf(p, len, "(%lu, %s)",
116 					(unsigned long)key_inum(c, key),
117 					get_key_type(type));
118 			break;
119 		default:
120 			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
121 					key->u32[0], key->u32[1]);
122 		}
123 	} else
124 		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
125 	ubifs_assert(c, len > 0);
126 	return p;
127 }
128 
dbg_ntype(int type)129 const char *dbg_ntype(int type)
130 {
131 	switch (type) {
132 	case UBIFS_PAD_NODE:
133 		return "padding node";
134 	case UBIFS_SB_NODE:
135 		return "superblock node";
136 	case UBIFS_MST_NODE:
137 		return "master node";
138 	case UBIFS_REF_NODE:
139 		return "reference node";
140 	case UBIFS_INO_NODE:
141 		return "inode node";
142 	case UBIFS_DENT_NODE:
143 		return "direntry node";
144 	case UBIFS_XENT_NODE:
145 		return "xentry node";
146 	case UBIFS_DATA_NODE:
147 		return "data node";
148 	case UBIFS_TRUN_NODE:
149 		return "truncate node";
150 	case UBIFS_IDX_NODE:
151 		return "indexing node";
152 	case UBIFS_CS_NODE:
153 		return "commit start node";
154 	case UBIFS_ORPH_NODE:
155 		return "orphan node";
156 	case UBIFS_AUTH_NODE:
157 		return "auth node";
158 	default:
159 		return "unknown node";
160 	}
161 }
162 
dbg_gtype(int type)163 static const char *dbg_gtype(int type)
164 {
165 	switch (type) {
166 	case UBIFS_NO_NODE_GROUP:
167 		return "no node group";
168 	case UBIFS_IN_NODE_GROUP:
169 		return "in node group";
170 	case UBIFS_LAST_OF_NODE_GROUP:
171 		return "last of node group";
172 	default:
173 		return "unknown";
174 	}
175 }
176 
dbg_cstate(int cmt_state)177 const char *dbg_cstate(int cmt_state)
178 {
179 	switch (cmt_state) {
180 	case COMMIT_RESTING:
181 		return "commit resting";
182 	case COMMIT_BACKGROUND:
183 		return "background commit requested";
184 	case COMMIT_REQUIRED:
185 		return "commit required";
186 	case COMMIT_RUNNING_BACKGROUND:
187 		return "BACKGROUND commit running";
188 	case COMMIT_RUNNING_REQUIRED:
189 		return "commit running and required";
190 	case COMMIT_BROKEN:
191 		return "broken commit";
192 	default:
193 		return "unknown commit state";
194 	}
195 }
196 
dbg_jhead(int jhead)197 const char *dbg_jhead(int jhead)
198 {
199 	switch (jhead) {
200 	case GCHD:
201 		return "0 (GC)";
202 	case BASEHD:
203 		return "1 (base)";
204 	case DATAHD:
205 		return "2 (data)";
206 	default:
207 		return "unknown journal head";
208 	}
209 }
210 
dump_ch(const struct ubifs_ch * ch)211 static void dump_ch(const struct ubifs_ch *ch)
212 {
213 	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
214 	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
215 	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
216 	       dbg_ntype(ch->node_type));
217 	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
218 	       dbg_gtype(ch->group_type));
219 	pr_err("\tsqnum          %llu\n",
220 	       (unsigned long long)le64_to_cpu(ch->sqnum));
221 	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
222 }
223 
ubifs_dump_inode(struct ubifs_info * c,const struct inode * inode)224 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
225 {
226 	const struct ubifs_inode *ui = ubifs_inode(inode);
227 	struct fscrypt_name nm = {0};
228 	union ubifs_key key;
229 	struct ubifs_dent_node *dent, *pdent = NULL;
230 	int count = 2;
231 
232 	pr_err("Dump in-memory inode:");
233 	pr_err("\tinode          %lu\n", inode->i_ino);
234 	pr_err("\tsize           %llu\n",
235 	       (unsigned long long)i_size_read(inode));
236 	pr_err("\tnlink          %u\n", inode->i_nlink);
237 	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
238 	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
239 	pr_err("\tatime          %u.%u\n",
240 	       (unsigned int) inode_get_atime_sec(inode),
241 	       (unsigned int) inode_get_atime_nsec(inode));
242 	pr_err("\tmtime          %u.%u\n",
243 	       (unsigned int) inode_get_mtime_sec(inode),
244 	       (unsigned int) inode_get_mtime_nsec(inode));
245 	pr_err("\tctime          %u.%u\n",
246 	       (unsigned int) inode_get_ctime_sec(inode),
247 	       (unsigned int) inode_get_ctime_nsec(inode));
248 	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
249 	pr_err("\txattr_size     %u\n", ui->xattr_size);
250 	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
251 	pr_err("\txattr_names    %u\n", ui->xattr_names);
252 	pr_err("\tdirty          %u\n", ui->dirty);
253 	pr_err("\txattr          %u\n", ui->xattr);
254 	pr_err("\tbulk_read      %u\n", ui->bulk_read);
255 	pr_err("\tsynced_i_size  %llu\n",
256 	       (unsigned long long)ui->synced_i_size);
257 	pr_err("\tui_size        %llu\n",
258 	       (unsigned long long)ui->ui_size);
259 	pr_err("\tflags          %d\n", ui->flags);
260 	pr_err("\tcompr_type     %d\n", ui->compr_type);
261 	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
262 	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
263 	pr_err("\tdata_len       %d\n", ui->data_len);
264 
265 	if (!S_ISDIR(inode->i_mode))
266 		return;
267 
268 	pr_err("List of directory entries:\n");
269 	ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
270 
271 	lowest_dent_key(c, &key, inode->i_ino);
272 	while (1) {
273 		dent = ubifs_tnc_next_ent(c, &key, &nm);
274 		if (IS_ERR(dent)) {
275 			if (PTR_ERR(dent) != -ENOENT)
276 				pr_err("error %ld\n", PTR_ERR(dent));
277 			break;
278 		}
279 
280 		pr_err("\t%d: inode %llu, type %s, len %d\n",
281 		       count++, (unsigned long long) le64_to_cpu(dent->inum),
282 		       get_dent_type(dent->type),
283 		       le16_to_cpu(dent->nlen));
284 
285 		fname_name(&nm) = dent->name;
286 		fname_len(&nm) = le16_to_cpu(dent->nlen);
287 		kfree(pdent);
288 		pdent = dent;
289 		key_read(c, &dent->key, &key);
290 	}
291 	kfree(pdent);
292 }
293 
ubifs_dump_node(const struct ubifs_info * c,const void * node,int node_len)294 void ubifs_dump_node(const struct ubifs_info *c, const void *node, int node_len)
295 {
296 	int i, n, type, safe_len, max_node_len, min_node_len;
297 	union ubifs_key key;
298 	const struct ubifs_ch *ch = node;
299 	char key_buf[DBG_KEY_BUF_LEN];
300 
301 	/* If the magic is incorrect, just hexdump the first bytes */
302 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
303 		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
304 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
305 			       (void *)node, UBIFS_CH_SZ, 1);
306 		return;
307 	}
308 
309 	/* Skip dumping unknown type node */
310 	type = ch->node_type;
311 	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
312 		pr_err("node type %d was not recognized\n", type);
313 		return;
314 	}
315 
316 	spin_lock(&dbg_lock);
317 	dump_ch(node);
318 
319 	if (c->ranges[type].max_len == 0) {
320 		max_node_len = min_node_len = c->ranges[type].len;
321 	} else {
322 		max_node_len = c->ranges[type].max_len;
323 		min_node_len = c->ranges[type].min_len;
324 	}
325 	safe_len = le32_to_cpu(ch->len);
326 	safe_len = safe_len > 0 ? safe_len : 0;
327 	safe_len = min3(safe_len, max_node_len, node_len);
328 	if (safe_len < min_node_len) {
329 		pr_err("node len(%d) is too short for %s, left %d bytes:\n",
330 		       safe_len, dbg_ntype(type),
331 		       safe_len > UBIFS_CH_SZ ?
332 		       safe_len - (int)UBIFS_CH_SZ : 0);
333 		if (safe_len > UBIFS_CH_SZ)
334 			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
335 				       (void *)node + UBIFS_CH_SZ,
336 				       safe_len - UBIFS_CH_SZ, 0);
337 		goto out_unlock;
338 	}
339 	if (safe_len != le32_to_cpu(ch->len))
340 		pr_err("\ttruncated node length      %d\n", safe_len);
341 
342 	switch (type) {
343 	case UBIFS_PAD_NODE:
344 	{
345 		const struct ubifs_pad_node *pad = node;
346 
347 		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
348 		break;
349 	}
350 	case UBIFS_SB_NODE:
351 	{
352 		const struct ubifs_sb_node *sup = node;
353 		unsigned int sup_flags = le32_to_cpu(sup->flags);
354 
355 		pr_err("\tkey_hash       %d (%s)\n",
356 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
357 		pr_err("\tkey_fmt        %d (%s)\n",
358 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
359 		pr_err("\tflags          %#x\n", sup_flags);
360 		pr_err("\tbig_lpt        %u\n",
361 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
362 		pr_err("\tspace_fixup    %u\n",
363 		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
364 		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
365 		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
366 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
367 		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
368 		pr_err("\tmax_bud_bytes  %llu\n",
369 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
370 		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
371 		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
372 		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
373 		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
374 		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
375 		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
376 		pr_err("\tdefault_compr  %u\n",
377 		       (int)le16_to_cpu(sup->default_compr));
378 		pr_err("\trp_size        %llu\n",
379 		       (unsigned long long)le64_to_cpu(sup->rp_size));
380 		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
381 		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
382 		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
383 		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
384 		pr_err("\tUUID           %pUB\n", sup->uuid);
385 		break;
386 	}
387 	case UBIFS_MST_NODE:
388 	{
389 		const struct ubifs_mst_node *mst = node;
390 
391 		pr_err("\thighest_inum   %llu\n",
392 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
393 		pr_err("\tcommit number  %llu\n",
394 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
395 		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
396 		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
397 		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
398 		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
399 		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
400 		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
401 		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
402 		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
403 		pr_err("\tindex_size     %llu\n",
404 		       (unsigned long long)le64_to_cpu(mst->index_size));
405 		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
406 		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
407 		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
408 		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
409 		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
410 		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
411 		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
412 		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
413 		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
414 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
415 		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
416 		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
417 		pr_err("\ttotal_free     %llu\n",
418 		       (unsigned long long)le64_to_cpu(mst->total_free));
419 		pr_err("\ttotal_dirty    %llu\n",
420 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
421 		pr_err("\ttotal_used     %llu\n",
422 		       (unsigned long long)le64_to_cpu(mst->total_used));
423 		pr_err("\ttotal_dead     %llu\n",
424 		       (unsigned long long)le64_to_cpu(mst->total_dead));
425 		pr_err("\ttotal_dark     %llu\n",
426 		       (unsigned long long)le64_to_cpu(mst->total_dark));
427 		break;
428 	}
429 	case UBIFS_REF_NODE:
430 	{
431 		const struct ubifs_ref_node *ref = node;
432 
433 		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
434 		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
435 		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
436 		break;
437 	}
438 	case UBIFS_INO_NODE:
439 	{
440 		const struct ubifs_ino_node *ino = node;
441 
442 		key_read(c, &ino->key, &key);
443 		pr_err("\tkey            %s\n",
444 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
445 		pr_err("\tcreat_sqnum    %llu\n",
446 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
447 		pr_err("\tsize           %llu\n",
448 		       (unsigned long long)le64_to_cpu(ino->size));
449 		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
450 		pr_err("\tatime          %lld.%u\n",
451 		       (long long)le64_to_cpu(ino->atime_sec),
452 		       le32_to_cpu(ino->atime_nsec));
453 		pr_err("\tmtime          %lld.%u\n",
454 		       (long long)le64_to_cpu(ino->mtime_sec),
455 		       le32_to_cpu(ino->mtime_nsec));
456 		pr_err("\tctime          %lld.%u\n",
457 		       (long long)le64_to_cpu(ino->ctime_sec),
458 		       le32_to_cpu(ino->ctime_nsec));
459 		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
460 		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
461 		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
462 		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
463 		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
464 		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
465 		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
466 		pr_err("\tcompr_type     %#x\n",
467 		       (int)le16_to_cpu(ino->compr_type));
468 		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
469 		break;
470 	}
471 	case UBIFS_DENT_NODE:
472 	case UBIFS_XENT_NODE:
473 	{
474 		const struct ubifs_dent_node *dent = node;
475 		int nlen = le16_to_cpu(dent->nlen);
476 
477 		key_read(c, &dent->key, &key);
478 		pr_err("\tkey            %s\n",
479 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
480 		pr_err("\tinum           %llu\n",
481 		       (unsigned long long)le64_to_cpu(dent->inum));
482 		pr_err("\ttype           %d\n", (int)dent->type);
483 		pr_err("\tnlen           %d\n", nlen);
484 		pr_err("\tname           ");
485 
486 		if (nlen > UBIFS_MAX_NLEN ||
487 		    nlen > safe_len - UBIFS_DENT_NODE_SZ)
488 			pr_err("(bad name length, not printing, bad or corrupted node)");
489 		else {
490 			for (i = 0; i < nlen && dent->name[i]; i++)
491 				pr_cont("%c", isprint(dent->name[i]) ?
492 					dent->name[i] : '?');
493 		}
494 		pr_cont("\n");
495 
496 		break;
497 	}
498 	case UBIFS_DATA_NODE:
499 	{
500 		const struct ubifs_data_node *dn = node;
501 
502 		key_read(c, &dn->key, &key);
503 		pr_err("\tkey            %s\n",
504 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
505 		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
506 		pr_err("\tcompr_typ      %d\n",
507 		       (int)le16_to_cpu(dn->compr_type));
508 		pr_err("\tdata size      %u\n",
509 		       le32_to_cpu(ch->len) - (unsigned int)UBIFS_DATA_NODE_SZ);
510 		pr_err("\tdata (length = %d):\n",
511 		       safe_len - (int)UBIFS_DATA_NODE_SZ);
512 		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
513 			       (void *)&dn->data,
514 			       safe_len - (int)UBIFS_DATA_NODE_SZ, 0);
515 		break;
516 	}
517 	case UBIFS_TRUN_NODE:
518 	{
519 		const struct ubifs_trun_node *trun = node;
520 
521 		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
522 		pr_err("\told_size       %llu\n",
523 		       (unsigned long long)le64_to_cpu(trun->old_size));
524 		pr_err("\tnew_size       %llu\n",
525 		       (unsigned long long)le64_to_cpu(trun->new_size));
526 		break;
527 	}
528 	case UBIFS_IDX_NODE:
529 	{
530 		const struct ubifs_idx_node *idx = node;
531 		int max_child_cnt = (safe_len - UBIFS_IDX_NODE_SZ) /
532 				    (ubifs_idx_node_sz(c, 1) -
533 				    UBIFS_IDX_NODE_SZ);
534 
535 		n = min_t(int, le16_to_cpu(idx->child_cnt), max_child_cnt);
536 		pr_err("\tchild_cnt      %d\n", (int)le16_to_cpu(idx->child_cnt));
537 		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
538 		pr_err("\tBranches:\n");
539 
540 		for (i = 0; i < n && i < c->fanout; i++) {
541 			const struct ubifs_branch *br;
542 
543 			br = ubifs_idx_branch(c, idx, i);
544 			key_read(c, &br->key, &key);
545 			pr_err("\t%d: LEB %d:%d len %d key %s\n",
546 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
547 			       le32_to_cpu(br->len),
548 			       dbg_snprintf_key(c, &key, key_buf,
549 						DBG_KEY_BUF_LEN));
550 		}
551 		break;
552 	}
553 	case UBIFS_CS_NODE:
554 		break;
555 	case UBIFS_ORPH_NODE:
556 	{
557 		const struct ubifs_orph_node *orph = node;
558 
559 		pr_err("\tcommit number  %llu\n",
560 		       (unsigned long long)
561 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
562 		pr_err("\tlast node flag %llu\n",
563 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
564 		n = (safe_len - UBIFS_ORPH_NODE_SZ) >> 3;
565 		pr_err("\t%d orphan inode numbers:\n", n);
566 		for (i = 0; i < n; i++)
567 			pr_err("\t  ino %llu\n",
568 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
569 		break;
570 	}
571 	case UBIFS_AUTH_NODE:
572 	{
573 		break;
574 	}
575 	default:
576 		pr_err("node type %d was not recognized\n", type);
577 	}
578 
579 out_unlock:
580 	spin_unlock(&dbg_lock);
581 }
582 
ubifs_dump_budget_req(const struct ubifs_budget_req * req)583 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
584 {
585 	spin_lock(&dbg_lock);
586 	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
587 	       req->new_ino, req->dirtied_ino);
588 	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
589 	       req->new_ino_d, req->dirtied_ino_d);
590 	pr_err("\tnew_page    %d, dirtied_page %d\n",
591 	       req->new_page, req->dirtied_page);
592 	pr_err("\tnew_dent    %d, mod_dent     %d\n",
593 	       req->new_dent, req->mod_dent);
594 	pr_err("\tidx_growth  %d\n", req->idx_growth);
595 	pr_err("\tdata_growth %d dd_growth     %d\n",
596 	       req->data_growth, req->dd_growth);
597 	spin_unlock(&dbg_lock);
598 }
599 
ubifs_dump_lstats(const struct ubifs_lp_stats * lst)600 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
601 {
602 	spin_lock(&dbg_lock);
603 	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
604 	       current->pid, lst->empty_lebs, lst->idx_lebs);
605 	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
606 	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
607 	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
608 	       lst->total_used, lst->total_dark, lst->total_dead);
609 	spin_unlock(&dbg_lock);
610 }
611 
ubifs_dump_budg(struct ubifs_info * c,const struct ubifs_budg_info * bi)612 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
613 {
614 	int i;
615 	struct rb_node *rb;
616 	struct ubifs_bud *bud;
617 	struct ubifs_gced_idx_leb *idx_gc;
618 	long long available, outstanding, free;
619 
620 	spin_lock(&c->space_lock);
621 	spin_lock(&dbg_lock);
622 	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
623 	       current->pid, bi->data_growth + bi->dd_growth,
624 	       bi->data_growth + bi->dd_growth + bi->idx_growth);
625 	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
626 	       bi->data_growth, bi->dd_growth, bi->idx_growth);
627 	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
628 	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
629 	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
630 	       bi->page_budget, bi->inode_budget, bi->dent_budget);
631 	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
632 	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
633 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
634 
635 	if (bi != &c->bi)
636 		/*
637 		 * If we are dumping saved budgeting data, do not print
638 		 * additional information which is about the current state, not
639 		 * the old one which corresponded to the saved budgeting data.
640 		 */
641 		goto out_unlock;
642 
643 	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
644 	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
645 	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
646 	       atomic_long_read(&c->dirty_pg_cnt),
647 	       atomic_long_read(&c->dirty_zn_cnt),
648 	       atomic_long_read(&c->clean_zn_cnt));
649 	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
650 
651 	/* If we are in R/O mode, journal heads do not exist */
652 	if (c->jheads)
653 		for (i = 0; i < c->jhead_cnt; i++)
654 			pr_err("\tjhead %s\t LEB %d\n",
655 			       dbg_jhead(c->jheads[i].wbuf.jhead),
656 			       c->jheads[i].wbuf.lnum);
657 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
658 		bud = rb_entry(rb, struct ubifs_bud, rb);
659 		pr_err("\tbud LEB %d\n", bud->lnum);
660 	}
661 	list_for_each_entry(bud, &c->old_buds, list)
662 		pr_err("\told bud LEB %d\n", bud->lnum);
663 	list_for_each_entry(idx_gc, &c->idx_gc, list)
664 		pr_err("\tGC'ed idx LEB %d unmap %d\n",
665 		       idx_gc->lnum, idx_gc->unmap);
666 	pr_err("\tcommit state %d\n", c->cmt_state);
667 
668 	/* Print budgeting predictions */
669 	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
670 	outstanding = c->bi.data_growth + c->bi.dd_growth;
671 	free = ubifs_get_free_space_nolock(c);
672 	pr_err("Budgeting predictions:\n");
673 	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
674 	       available, outstanding, free);
675 out_unlock:
676 	spin_unlock(&dbg_lock);
677 	spin_unlock(&c->space_lock);
678 }
679 
ubifs_dump_lprop(const struct ubifs_info * c,const struct ubifs_lprops * lp)680 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
681 {
682 	int i, spc, dark = 0, dead = 0;
683 	struct rb_node *rb;
684 	struct ubifs_bud *bud;
685 
686 	spc = lp->free + lp->dirty;
687 	if (spc < c->dead_wm)
688 		dead = spc;
689 	else
690 		dark = ubifs_calc_dark(c, spc);
691 
692 	if (lp->flags & LPROPS_INDEX)
693 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
694 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
695 		       lp->flags);
696 	else
697 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
698 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
699 		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
700 
701 	if (lp->flags & LPROPS_TAKEN) {
702 		if (lp->flags & LPROPS_INDEX)
703 			pr_cont("index, taken");
704 		else
705 			pr_cont("taken");
706 	} else {
707 		const char *s;
708 
709 		if (lp->flags & LPROPS_INDEX) {
710 			switch (lp->flags & LPROPS_CAT_MASK) {
711 			case LPROPS_DIRTY_IDX:
712 				s = "dirty index";
713 				break;
714 			case LPROPS_FRDI_IDX:
715 				s = "freeable index";
716 				break;
717 			default:
718 				s = "index";
719 			}
720 		} else {
721 			switch (lp->flags & LPROPS_CAT_MASK) {
722 			case LPROPS_UNCAT:
723 				s = "not categorized";
724 				break;
725 			case LPROPS_DIRTY:
726 				s = "dirty";
727 				break;
728 			case LPROPS_FREE:
729 				s = "free";
730 				break;
731 			case LPROPS_EMPTY:
732 				s = "empty";
733 				break;
734 			case LPROPS_FREEABLE:
735 				s = "freeable";
736 				break;
737 			default:
738 				s = NULL;
739 				break;
740 			}
741 		}
742 		pr_cont("%s", s);
743 	}
744 
745 	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
746 		bud = rb_entry(rb, struct ubifs_bud, rb);
747 		if (bud->lnum == lp->lnum) {
748 			int head = 0;
749 			for (i = 0; i < c->jhead_cnt; i++) {
750 				/*
751 				 * Note, if we are in R/O mode or in the middle
752 				 * of mounting/re-mounting, the write-buffers do
753 				 * not exist.
754 				 */
755 				if (c->jheads &&
756 				    lp->lnum == c->jheads[i].wbuf.lnum) {
757 					pr_cont(", jhead %s", dbg_jhead(i));
758 					head = 1;
759 				}
760 			}
761 			if (!head)
762 				pr_cont(", bud of jhead %s",
763 				       dbg_jhead(bud->jhead));
764 		}
765 	}
766 	if (lp->lnum == c->gc_lnum)
767 		pr_cont(", GC LEB");
768 	pr_cont(")\n");
769 }
770 
ubifs_dump_lprops(struct ubifs_info * c)771 void ubifs_dump_lprops(struct ubifs_info *c)
772 {
773 	int lnum, err;
774 	struct ubifs_lprops lp;
775 	struct ubifs_lp_stats lst;
776 
777 	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
778 	ubifs_get_lp_stats(c, &lst);
779 	ubifs_dump_lstats(&lst);
780 
781 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
782 		err = ubifs_read_one_lp(c, lnum, &lp);
783 		if (err) {
784 			ubifs_err(c, "cannot read lprops for LEB %d", lnum);
785 			continue;
786 		}
787 
788 		ubifs_dump_lprop(c, &lp);
789 	}
790 	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
791 }
792 
ubifs_dump_lpt_info(struct ubifs_info * c)793 void ubifs_dump_lpt_info(struct ubifs_info *c)
794 {
795 	int i;
796 
797 	spin_lock(&dbg_lock);
798 	pr_err("(pid %d) dumping LPT information\n", current->pid);
799 	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
800 	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
801 	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
802 	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
803 	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
804 	pr_err("\tbig_lpt:       %u\n", c->big_lpt);
805 	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
806 	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
807 	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
808 	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
809 	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
810 	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
811 	pr_err("\tspace_bits:    %d\n", c->space_bits);
812 	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
813 	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
814 	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
815 	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
816 	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
817 	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
818 	pr_err("\tLPT head is at %d:%d\n",
819 	       c->nhead_lnum, c->nhead_offs);
820 	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
821 	if (c->big_lpt)
822 		pr_err("\tLPT lsave is at %d:%d\n",
823 		       c->lsave_lnum, c->lsave_offs);
824 	for (i = 0; i < c->lpt_lebs; i++)
825 		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
826 		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
827 		       c->ltab[i].tgc, c->ltab[i].cmt);
828 	spin_unlock(&dbg_lock);
829 }
830 
ubifs_dump_leb(const struct ubifs_info * c,int lnum)831 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
832 {
833 	struct ubifs_scan_leb *sleb;
834 	struct ubifs_scan_node *snod;
835 	void *buf;
836 
837 	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
838 
839 	buf = __vmalloc(c->leb_size, GFP_NOFS);
840 	if (!buf) {
841 		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
842 		return;
843 	}
844 
845 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
846 	if (IS_ERR(sleb)) {
847 		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
848 		goto out;
849 	}
850 
851 	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
852 	       sleb->nodes_cnt, sleb->endpt);
853 
854 	list_for_each_entry(snod, &sleb->nodes, list) {
855 		cond_resched();
856 		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
857 		       snod->offs, snod->len);
858 		ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
859 	}
860 
861 	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
862 	ubifs_scan_destroy(sleb);
863 
864 out:
865 	vfree(buf);
866 }
867 
ubifs_dump_znode(const struct ubifs_info * c,const struct ubifs_znode * znode)868 void ubifs_dump_znode(const struct ubifs_info *c,
869 		      const struct ubifs_znode *znode)
870 {
871 	int n;
872 	const struct ubifs_zbranch *zbr;
873 	char key_buf[DBG_KEY_BUF_LEN];
874 
875 	spin_lock(&dbg_lock);
876 	if (znode->parent)
877 		zbr = &znode->parent->zbranch[znode->iip];
878 	else
879 		zbr = &c->zroot;
880 
881 	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
882 	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
883 	       znode->level, znode->child_cnt, znode->flags);
884 
885 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
886 		spin_unlock(&dbg_lock);
887 		return;
888 	}
889 
890 	pr_err("zbranches:\n");
891 	for (n = 0; n < znode->child_cnt; n++) {
892 		zbr = &znode->zbranch[n];
893 		if (znode->level > 0)
894 			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
895 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
896 			       dbg_snprintf_key(c, &zbr->key, key_buf,
897 						DBG_KEY_BUF_LEN));
898 		else
899 			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
900 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
901 			       dbg_snprintf_key(c, &zbr->key, key_buf,
902 						DBG_KEY_BUF_LEN));
903 	}
904 	spin_unlock(&dbg_lock);
905 }
906 
ubifs_dump_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,int cat)907 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
908 {
909 	int i;
910 
911 	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
912 	       current->pid, cat, heap->cnt);
913 	for (i = 0; i < heap->cnt; i++) {
914 		struct ubifs_lprops *lprops = heap->arr[i];
915 
916 		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
917 		       i, lprops->lnum, lprops->hpos, lprops->free,
918 		       lprops->dirty, lprops->flags);
919 	}
920 	pr_err("(pid %d) finish dumping heap\n", current->pid);
921 }
922 
ubifs_dump_pnode(struct ubifs_info * c,struct ubifs_pnode * pnode,struct ubifs_nnode * parent,int iip)923 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
924 		      struct ubifs_nnode *parent, int iip)
925 {
926 	int i;
927 
928 	pr_err("(pid %d) dumping pnode:\n", current->pid);
929 	pr_err("\taddress %zx parent %zx cnext %zx\n",
930 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
931 	pr_err("\tflags %lu iip %d level %d num %d\n",
932 	       pnode->flags, iip, pnode->level, pnode->num);
933 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
934 		struct ubifs_lprops *lp = &pnode->lprops[i];
935 
936 		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
937 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
938 	}
939 }
940 
ubifs_dump_tnc(struct ubifs_info * c)941 void ubifs_dump_tnc(struct ubifs_info *c)
942 {
943 	struct ubifs_znode *znode;
944 	int level;
945 
946 	pr_err("\n");
947 	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
948 	if (c->zroot.znode) {
949 		znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
950 		level = znode->level;
951 		pr_err("== Level %d ==\n", level);
952 		while (znode) {
953 			if (level != znode->level) {
954 				level = znode->level;
955 				pr_err("== Level %d ==\n", level);
956 			}
957 			ubifs_dump_znode(c, znode);
958 			znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
959 		}
960 	} else {
961 		pr_err("empty TNC tree in memory\n");
962 	}
963 	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
964 }
965 
dump_znode(struct ubifs_info * c,struct ubifs_znode * znode,void * priv)966 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
967 		      void *priv)
968 {
969 	ubifs_dump_znode(c, znode);
970 	return 0;
971 }
972 
973 /**
974  * ubifs_dump_index - dump the on-flash index.
975  * @c: UBIFS file-system description object
976  *
977  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
978  * which dumps only in-memory znodes and does not read znodes which from flash.
979  */
ubifs_dump_index(struct ubifs_info * c)980 void ubifs_dump_index(struct ubifs_info *c)
981 {
982 	dbg_walk_index(c, NULL, dump_znode, NULL);
983 }
984 
985 /**
986  * dbg_save_space_info - save information about flash space.
987  * @c: UBIFS file-system description object
988  *
989  * This function saves information about UBIFS free space, dirty space, etc, in
990  * order to check it later.
991  */
dbg_save_space_info(struct ubifs_info * c)992 void dbg_save_space_info(struct ubifs_info *c)
993 {
994 	struct ubifs_debug_info *d = c->dbg;
995 	int freeable_cnt;
996 
997 	spin_lock(&c->space_lock);
998 	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
999 	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1000 	d->saved_idx_gc_cnt = c->idx_gc_cnt;
1001 
1002 	/*
1003 	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1004 	 * affects the free space calculations, and UBIFS might not know about
1005 	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1006 	 * only when we read their lprops, and we do this only lazily, upon the
1007 	 * need. So at any given point of time @c->freeable_cnt might be not
1008 	 * exactly accurate.
1009 	 *
1010 	 * Just one example about the issue we hit when we did not zero
1011 	 * @c->freeable_cnt.
1012 	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1013 	 *    amount of free space in @d->saved_free
1014 	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1015 	 *    information from flash, where we cache LEBs from various
1016 	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1017 	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1018 	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1019 	 *    -> 'ubifs_add_to_cat()').
1020 	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1021 	 *    becomes %1.
1022 	 * 4. We calculate the amount of free space when the re-mount is
1023 	 *    finished in 'dbg_check_space_info()' and it does not match
1024 	 *    @d->saved_free.
1025 	 */
1026 	freeable_cnt = c->freeable_cnt;
1027 	c->freeable_cnt = 0;
1028 	d->saved_free = ubifs_get_free_space_nolock(c);
1029 	c->freeable_cnt = freeable_cnt;
1030 	spin_unlock(&c->space_lock);
1031 }
1032 
1033 /**
1034  * dbg_check_space_info - check flash space information.
1035  * @c: UBIFS file-system description object
1036  *
1037  * This function compares current flash space information with the information
1038  * which was saved when the 'dbg_save_space_info()' function was called.
1039  * Returns zero if the information has not changed, and %-EINVAL if it has
1040  * changed.
1041  */
dbg_check_space_info(struct ubifs_info * c)1042 int dbg_check_space_info(struct ubifs_info *c)
1043 {
1044 	struct ubifs_debug_info *d = c->dbg;
1045 	struct ubifs_lp_stats lst;
1046 	long long free;
1047 	int freeable_cnt;
1048 
1049 	spin_lock(&c->space_lock);
1050 	freeable_cnt = c->freeable_cnt;
1051 	c->freeable_cnt = 0;
1052 	free = ubifs_get_free_space_nolock(c);
1053 	c->freeable_cnt = freeable_cnt;
1054 	spin_unlock(&c->space_lock);
1055 
1056 	if (free != d->saved_free) {
1057 		ubifs_err(c, "free space changed from %lld to %lld",
1058 			  d->saved_free, free);
1059 		goto out;
1060 	}
1061 
1062 	return 0;
1063 
1064 out:
1065 	ubifs_msg(c, "saved lprops statistics dump");
1066 	ubifs_dump_lstats(&d->saved_lst);
1067 	ubifs_msg(c, "saved budgeting info dump");
1068 	ubifs_dump_budg(c, &d->saved_bi);
1069 	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1070 	ubifs_msg(c, "current lprops statistics dump");
1071 	ubifs_get_lp_stats(c, &lst);
1072 	ubifs_dump_lstats(&lst);
1073 	ubifs_msg(c, "current budgeting info dump");
1074 	ubifs_dump_budg(c, &c->bi);
1075 	dump_stack();
1076 	return -EINVAL;
1077 }
1078 
1079 /**
1080  * dbg_check_synced_i_size - check synchronized inode size.
1081  * @c: UBIFS file-system description object
1082  * @inode: inode to check
1083  *
1084  * If inode is clean, synchronized inode size has to be equivalent to current
1085  * inode size. This function has to be called only for locked inodes (@i_mutex
1086  * has to be locked). Returns %0 if synchronized inode size if correct, and
1087  * %-EINVAL if not.
1088  */
dbg_check_synced_i_size(const struct ubifs_info * c,struct inode * inode)1089 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1090 {
1091 	int err = 0;
1092 	struct ubifs_inode *ui = ubifs_inode(inode);
1093 
1094 	if (!dbg_is_chk_gen(c))
1095 		return 0;
1096 	if (!S_ISREG(inode->i_mode))
1097 		return 0;
1098 
1099 	mutex_lock(&ui->ui_mutex);
1100 	spin_lock(&ui->ui_lock);
1101 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1102 		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1103 			  ui->ui_size, ui->synced_i_size);
1104 		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1105 			  inode->i_mode, i_size_read(inode));
1106 		dump_stack();
1107 		err = -EINVAL;
1108 	}
1109 	spin_unlock(&ui->ui_lock);
1110 	mutex_unlock(&ui->ui_mutex);
1111 	return err;
1112 }
1113 
1114 /*
1115  * dbg_check_dir - check directory inode size and link count.
1116  * @c: UBIFS file-system description object
1117  * @dir: the directory to calculate size for
1118  * @size: the result is returned here
1119  *
1120  * This function makes sure that directory size and link count are correct.
1121  * Returns zero in case of success and a negative error code in case of
1122  * failure.
1123  *
1124  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1125  * calling this function.
1126  */
dbg_check_dir(struct ubifs_info * c,const struct inode * dir)1127 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1128 {
1129 	unsigned int nlink = 2;
1130 	union ubifs_key key;
1131 	struct ubifs_dent_node *dent, *pdent = NULL;
1132 	struct fscrypt_name nm = {0};
1133 	loff_t size = UBIFS_INO_NODE_SZ;
1134 
1135 	if (!dbg_is_chk_gen(c))
1136 		return 0;
1137 
1138 	if (!S_ISDIR(dir->i_mode))
1139 		return 0;
1140 
1141 	lowest_dent_key(c, &key, dir->i_ino);
1142 	while (1) {
1143 		int err;
1144 
1145 		dent = ubifs_tnc_next_ent(c, &key, &nm);
1146 		if (IS_ERR(dent)) {
1147 			err = PTR_ERR(dent);
1148 			if (err == -ENOENT)
1149 				break;
1150 			kfree(pdent);
1151 			return err;
1152 		}
1153 
1154 		fname_name(&nm) = dent->name;
1155 		fname_len(&nm) = le16_to_cpu(dent->nlen);
1156 		size += CALC_DENT_SIZE(fname_len(&nm));
1157 		if (dent->type == UBIFS_ITYPE_DIR)
1158 			nlink += 1;
1159 		kfree(pdent);
1160 		pdent = dent;
1161 		key_read(c, &dent->key, &key);
1162 	}
1163 	kfree(pdent);
1164 
1165 	if (i_size_read(dir) != size) {
1166 		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1167 			  dir->i_ino, (unsigned long long)i_size_read(dir),
1168 			  (unsigned long long)size);
1169 		ubifs_dump_inode(c, dir);
1170 		dump_stack();
1171 		return -EINVAL;
1172 	}
1173 	if (dir->i_nlink != nlink) {
1174 		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1175 			  dir->i_ino, dir->i_nlink, nlink);
1176 		ubifs_dump_inode(c, dir);
1177 		dump_stack();
1178 		return -EINVAL;
1179 	}
1180 
1181 	return 0;
1182 }
1183 
1184 /**
1185  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1186  * @c: UBIFS file-system description object
1187  * @zbr1: first zbranch
1188  * @zbr2: following zbranch
1189  *
1190  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1191  * names of the direntries/xentries which are referred by the keys. This
1192  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1193  * sure the name of direntry/xentry referred by @zbr1 is less than
1194  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1195  * and a negative error code in case of failure.
1196  */
dbg_check_key_order(struct ubifs_info * c,struct ubifs_zbranch * zbr1,struct ubifs_zbranch * zbr2)1197 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1198 			       struct ubifs_zbranch *zbr2)
1199 {
1200 	int err, nlen1, nlen2, cmp;
1201 	struct ubifs_dent_node *dent1, *dent2;
1202 	union ubifs_key key;
1203 	char key_buf[DBG_KEY_BUF_LEN];
1204 
1205 	ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1206 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1207 	if (!dent1)
1208 		return -ENOMEM;
1209 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1210 	if (!dent2) {
1211 		err = -ENOMEM;
1212 		goto out_free;
1213 	}
1214 
1215 	err = ubifs_tnc_read_node(c, zbr1, dent1);
1216 	if (err)
1217 		goto out_free;
1218 	err = ubifs_validate_entry(c, dent1);
1219 	if (err)
1220 		goto out_free;
1221 
1222 	err = ubifs_tnc_read_node(c, zbr2, dent2);
1223 	if (err)
1224 		goto out_free;
1225 	err = ubifs_validate_entry(c, dent2);
1226 	if (err)
1227 		goto out_free;
1228 
1229 	/* Make sure node keys are the same as in zbranch */
1230 	err = 1;
1231 	key_read(c, &dent1->key, &key);
1232 	if (keys_cmp(c, &zbr1->key, &key)) {
1233 		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1234 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1235 						       DBG_KEY_BUF_LEN));
1236 		ubifs_err(c, "but it should have key %s according to tnc",
1237 			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1238 					   DBG_KEY_BUF_LEN));
1239 		ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1240 		goto out_free;
1241 	}
1242 
1243 	key_read(c, &dent2->key, &key);
1244 	if (keys_cmp(c, &zbr2->key, &key)) {
1245 		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1246 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1247 						       DBG_KEY_BUF_LEN));
1248 		ubifs_err(c, "but it should have key %s according to tnc",
1249 			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1250 					   DBG_KEY_BUF_LEN));
1251 		ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1252 		goto out_free;
1253 	}
1254 
1255 	nlen1 = le16_to_cpu(dent1->nlen);
1256 	nlen2 = le16_to_cpu(dent2->nlen);
1257 
1258 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1259 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1260 		err = 0;
1261 		goto out_free;
1262 	}
1263 	if (cmp == 0 && nlen1 == nlen2)
1264 		ubifs_err(c, "2 xent/dent nodes with the same name");
1265 	else
1266 		ubifs_err(c, "bad order of colliding key %s",
1267 			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1268 
1269 	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1270 	ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1271 	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1272 	ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1273 
1274 out_free:
1275 	kfree(dent2);
1276 	kfree(dent1);
1277 	return err;
1278 }
1279 
1280 /**
1281  * dbg_check_znode - check if znode is all right.
1282  * @c: UBIFS file-system description object
1283  * @zbr: zbranch which points to this znode
1284  *
1285  * This function makes sure that znode referred to by @zbr is all right.
1286  * Returns zero if it is, and %-EINVAL if it is not.
1287  */
dbg_check_znode(struct ubifs_info * c,struct ubifs_zbranch * zbr)1288 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1289 {
1290 	struct ubifs_znode *znode = zbr->znode;
1291 	struct ubifs_znode *zp = znode->parent;
1292 	int n, err, cmp;
1293 
1294 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1295 		err = 1;
1296 		goto out;
1297 	}
1298 	if (znode->level < 0) {
1299 		err = 2;
1300 		goto out;
1301 	}
1302 	if (znode->iip < 0 || znode->iip >= c->fanout) {
1303 		err = 3;
1304 		goto out;
1305 	}
1306 
1307 	if (zbr->len == 0)
1308 		/* Only dirty zbranch may have no on-flash nodes */
1309 		if (!ubifs_zn_dirty(znode)) {
1310 			err = 4;
1311 			goto out;
1312 		}
1313 
1314 	if (ubifs_zn_dirty(znode)) {
1315 		/*
1316 		 * If znode is dirty, its parent has to be dirty as well. The
1317 		 * order of the operation is important, so we have to have
1318 		 * memory barriers.
1319 		 */
1320 		smp_mb();
1321 		if (zp && !ubifs_zn_dirty(zp)) {
1322 			/*
1323 			 * The dirty flag is atomic and is cleared outside the
1324 			 * TNC mutex, so znode's dirty flag may now have
1325 			 * been cleared. The child is always cleared before the
1326 			 * parent, so we just need to check again.
1327 			 */
1328 			smp_mb();
1329 			if (ubifs_zn_dirty(znode)) {
1330 				err = 5;
1331 				goto out;
1332 			}
1333 		}
1334 	}
1335 
1336 	if (zp) {
1337 		const union ubifs_key *min, *max;
1338 
1339 		if (znode->level != zp->level - 1) {
1340 			err = 6;
1341 			goto out;
1342 		}
1343 
1344 		/* Make sure the 'parent' pointer in our znode is correct */
1345 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1346 		if (!err) {
1347 			/* This zbranch does not exist in the parent */
1348 			err = 7;
1349 			goto out;
1350 		}
1351 
1352 		if (znode->iip >= zp->child_cnt) {
1353 			err = 8;
1354 			goto out;
1355 		}
1356 
1357 		if (znode->iip != n) {
1358 			/* This may happen only in case of collisions */
1359 			if (keys_cmp(c, &zp->zbranch[n].key,
1360 				     &zp->zbranch[znode->iip].key)) {
1361 				err = 9;
1362 				goto out;
1363 			}
1364 			n = znode->iip;
1365 		}
1366 
1367 		/*
1368 		 * Make sure that the first key in our znode is greater than or
1369 		 * equal to the key in the pointing zbranch.
1370 		 */
1371 		min = &zbr->key;
1372 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1373 		if (cmp == 1) {
1374 			err = 10;
1375 			goto out;
1376 		}
1377 
1378 		if (n + 1 < zp->child_cnt) {
1379 			max = &zp->zbranch[n + 1].key;
1380 
1381 			/*
1382 			 * Make sure the last key in our znode is less or
1383 			 * equivalent than the key in the zbranch which goes
1384 			 * after our pointing zbranch.
1385 			 */
1386 			cmp = keys_cmp(c, max,
1387 				&znode->zbranch[znode->child_cnt - 1].key);
1388 			if (cmp == -1) {
1389 				err = 11;
1390 				goto out;
1391 			}
1392 		}
1393 	} else {
1394 		/* This may only be root znode */
1395 		if (zbr != &c->zroot) {
1396 			err = 12;
1397 			goto out;
1398 		}
1399 	}
1400 
1401 	/*
1402 	 * Make sure that next key is greater or equivalent then the previous
1403 	 * one.
1404 	 */
1405 	for (n = 1; n < znode->child_cnt; n++) {
1406 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1407 			       &znode->zbranch[n].key);
1408 		if (cmp > 0) {
1409 			err = 13;
1410 			goto out;
1411 		}
1412 		if (cmp == 0) {
1413 			/* This can only be keys with colliding hash */
1414 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1415 				err = 14;
1416 				goto out;
1417 			}
1418 
1419 			if (znode->level != 0 || c->replaying)
1420 				continue;
1421 
1422 			/*
1423 			 * Colliding keys should follow binary order of
1424 			 * corresponding xentry/dentry names.
1425 			 */
1426 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1427 						  &znode->zbranch[n]);
1428 			if (err < 0)
1429 				return err;
1430 			if (err) {
1431 				err = 15;
1432 				goto out;
1433 			}
1434 		}
1435 	}
1436 
1437 	for (n = 0; n < znode->child_cnt; n++) {
1438 		if (!znode->zbranch[n].znode &&
1439 		    (znode->zbranch[n].lnum == 0 ||
1440 		     znode->zbranch[n].len == 0)) {
1441 			err = 16;
1442 			goto out;
1443 		}
1444 
1445 		if (znode->zbranch[n].lnum != 0 &&
1446 		    znode->zbranch[n].len == 0) {
1447 			err = 17;
1448 			goto out;
1449 		}
1450 
1451 		if (znode->zbranch[n].lnum == 0 &&
1452 		    znode->zbranch[n].len != 0) {
1453 			err = 18;
1454 			goto out;
1455 		}
1456 
1457 		if (znode->zbranch[n].lnum == 0 &&
1458 		    znode->zbranch[n].offs != 0) {
1459 			err = 19;
1460 			goto out;
1461 		}
1462 
1463 		if (znode->level != 0 && znode->zbranch[n].znode)
1464 			if (znode->zbranch[n].znode->parent != znode) {
1465 				err = 20;
1466 				goto out;
1467 			}
1468 	}
1469 
1470 	return 0;
1471 
1472 out:
1473 	ubifs_err(c, "failed, error %d", err);
1474 	ubifs_msg(c, "dump of the znode");
1475 	ubifs_dump_znode(c, znode);
1476 	if (zp) {
1477 		ubifs_msg(c, "dump of the parent znode");
1478 		ubifs_dump_znode(c, zp);
1479 	}
1480 	dump_stack();
1481 	return -EINVAL;
1482 }
1483 
1484 /**
1485  * dbg_check_tnc - check TNC tree.
1486  * @c: UBIFS file-system description object
1487  * @extra: do extra checks that are possible at start commit
1488  *
1489  * This function traverses whole TNC tree and checks every znode. Returns zero
1490  * if everything is all right and %-EINVAL if something is wrong with TNC.
1491  */
dbg_check_tnc(struct ubifs_info * c,int extra)1492 int dbg_check_tnc(struct ubifs_info *c, int extra)
1493 {
1494 	struct ubifs_znode *znode;
1495 	long clean_cnt = 0, dirty_cnt = 0;
1496 	int err, last;
1497 
1498 	if (!dbg_is_chk_index(c))
1499 		return 0;
1500 
1501 	ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1502 	if (!c->zroot.znode)
1503 		return 0;
1504 
1505 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1506 	while (1) {
1507 		struct ubifs_znode *prev;
1508 		struct ubifs_zbranch *zbr;
1509 
1510 		if (!znode->parent)
1511 			zbr = &c->zroot;
1512 		else
1513 			zbr = &znode->parent->zbranch[znode->iip];
1514 
1515 		err = dbg_check_znode(c, zbr);
1516 		if (err)
1517 			return err;
1518 
1519 		if (extra) {
1520 			if (ubifs_zn_dirty(znode))
1521 				dirty_cnt += 1;
1522 			else
1523 				clean_cnt += 1;
1524 		}
1525 
1526 		prev = znode;
1527 		znode = ubifs_tnc_postorder_next(c, znode);
1528 		if (!znode)
1529 			break;
1530 
1531 		/*
1532 		 * If the last key of this znode is equivalent to the first key
1533 		 * of the next znode (collision), then check order of the keys.
1534 		 */
1535 		last = prev->child_cnt - 1;
1536 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1537 		    !keys_cmp(c, &prev->zbranch[last].key,
1538 			      &znode->zbranch[0].key)) {
1539 			err = dbg_check_key_order(c, &prev->zbranch[last],
1540 						  &znode->zbranch[0]);
1541 			if (err < 0)
1542 				return err;
1543 			if (err) {
1544 				ubifs_msg(c, "first znode");
1545 				ubifs_dump_znode(c, prev);
1546 				ubifs_msg(c, "second znode");
1547 				ubifs_dump_znode(c, znode);
1548 				return -EINVAL;
1549 			}
1550 		}
1551 	}
1552 
1553 	if (extra) {
1554 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1555 			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1556 				  atomic_long_read(&c->clean_zn_cnt),
1557 				  clean_cnt);
1558 			return -EINVAL;
1559 		}
1560 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1561 			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1562 				  atomic_long_read(&c->dirty_zn_cnt),
1563 				  dirty_cnt);
1564 			return -EINVAL;
1565 		}
1566 	}
1567 
1568 	return 0;
1569 }
1570 
1571 /**
1572  * dbg_walk_index - walk the on-flash index.
1573  * @c: UBIFS file-system description object
1574  * @leaf_cb: called for each leaf node
1575  * @znode_cb: called for each indexing node
1576  * @priv: private data which is passed to callbacks
1577  *
1578  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1579  * node and @znode_cb for each indexing node. Returns zero in case of success
1580  * and a negative error code in case of failure.
1581  *
1582  * It would be better if this function removed every znode it pulled to into
1583  * the TNC, so that the behavior more closely matched the non-debugging
1584  * behavior.
1585  */
dbg_walk_index(struct ubifs_info * c,dbg_leaf_callback leaf_cb,dbg_znode_callback znode_cb,void * priv)1586 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1587 		   dbg_znode_callback znode_cb, void *priv)
1588 {
1589 	int err;
1590 	struct ubifs_zbranch *zbr;
1591 	struct ubifs_znode *znode, *child;
1592 
1593 	mutex_lock(&c->tnc_mutex);
1594 	/* If the root indexing node is not in TNC - pull it */
1595 	if (!c->zroot.znode) {
1596 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1597 		if (IS_ERR(c->zroot.znode)) {
1598 			err = PTR_ERR(c->zroot.znode);
1599 			c->zroot.znode = NULL;
1600 			goto out_unlock;
1601 		}
1602 	}
1603 
1604 	/*
1605 	 * We are going to traverse the indexing tree in the postorder manner.
1606 	 * Go down and find the leftmost indexing node where we are going to
1607 	 * start from.
1608 	 */
1609 	znode = c->zroot.znode;
1610 	while (znode->level > 0) {
1611 		zbr = &znode->zbranch[0];
1612 		child = zbr->znode;
1613 		if (!child) {
1614 			child = ubifs_load_znode(c, zbr, znode, 0);
1615 			if (IS_ERR(child)) {
1616 				err = PTR_ERR(child);
1617 				goto out_unlock;
1618 			}
1619 		}
1620 
1621 		znode = child;
1622 	}
1623 
1624 	/* Iterate over all indexing nodes */
1625 	while (1) {
1626 		int idx;
1627 
1628 		cond_resched();
1629 
1630 		if (znode_cb) {
1631 			err = znode_cb(c, znode, priv);
1632 			if (err) {
1633 				ubifs_err(c, "znode checking function returned error %d",
1634 					  err);
1635 				ubifs_dump_znode(c, znode);
1636 				goto out_dump;
1637 			}
1638 		}
1639 		if (leaf_cb && znode->level == 0) {
1640 			for (idx = 0; idx < znode->child_cnt; idx++) {
1641 				zbr = &znode->zbranch[idx];
1642 				err = leaf_cb(c, zbr, priv);
1643 				if (err) {
1644 					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1645 						  err, zbr->lnum, zbr->offs);
1646 					goto out_dump;
1647 				}
1648 			}
1649 		}
1650 
1651 		if (!znode->parent)
1652 			break;
1653 
1654 		idx = znode->iip + 1;
1655 		znode = znode->parent;
1656 		if (idx < znode->child_cnt) {
1657 			/* Switch to the next index in the parent */
1658 			zbr = &znode->zbranch[idx];
1659 			child = zbr->znode;
1660 			if (!child) {
1661 				child = ubifs_load_znode(c, zbr, znode, idx);
1662 				if (IS_ERR(child)) {
1663 					err = PTR_ERR(child);
1664 					goto out_unlock;
1665 				}
1666 				zbr->znode = child;
1667 			}
1668 			znode = child;
1669 		} else
1670 			/*
1671 			 * This is the last child, switch to the parent and
1672 			 * continue.
1673 			 */
1674 			continue;
1675 
1676 		/* Go to the lowest leftmost znode in the new sub-tree */
1677 		while (znode->level > 0) {
1678 			zbr = &znode->zbranch[0];
1679 			child = zbr->znode;
1680 			if (!child) {
1681 				child = ubifs_load_znode(c, zbr, znode, 0);
1682 				if (IS_ERR(child)) {
1683 					err = PTR_ERR(child);
1684 					goto out_unlock;
1685 				}
1686 				zbr->znode = child;
1687 			}
1688 			znode = child;
1689 		}
1690 	}
1691 
1692 	mutex_unlock(&c->tnc_mutex);
1693 	return 0;
1694 
1695 out_dump:
1696 	if (znode->parent)
1697 		zbr = &znode->parent->zbranch[znode->iip];
1698 	else
1699 		zbr = &c->zroot;
1700 	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1701 	ubifs_dump_znode(c, znode);
1702 out_unlock:
1703 	mutex_unlock(&c->tnc_mutex);
1704 	return err;
1705 }
1706 
1707 /**
1708  * add_size - add znode size to partially calculated index size.
1709  * @c: UBIFS file-system description object
1710  * @znode: znode to add size for
1711  * @priv: partially calculated index size
1712  *
1713  * This is a helper function for 'dbg_check_idx_size()' which is called for
1714  * every indexing node and adds its size to the 'long long' variable pointed to
1715  * by @priv.
1716  */
add_size(struct ubifs_info * c,struct ubifs_znode * znode,void * priv)1717 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1718 {
1719 	long long *idx_size = priv;
1720 	int add;
1721 
1722 	add = ubifs_idx_node_sz(c, znode->child_cnt);
1723 	add = ALIGN(add, 8);
1724 	*idx_size += add;
1725 	return 0;
1726 }
1727 
1728 /**
1729  * dbg_check_idx_size - check index size.
1730  * @c: UBIFS file-system description object
1731  * @idx_size: size to check
1732  *
1733  * This function walks the UBIFS index, calculates its size and checks that the
1734  * size is equivalent to @idx_size. Returns zero in case of success and a
1735  * negative error code in case of failure.
1736  */
dbg_check_idx_size(struct ubifs_info * c,long long idx_size)1737 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1738 {
1739 	int err;
1740 	long long calc = 0;
1741 
1742 	if (!dbg_is_chk_index(c))
1743 		return 0;
1744 
1745 	err = dbg_walk_index(c, NULL, add_size, &calc);
1746 	if (err) {
1747 		ubifs_err(c, "error %d while walking the index", err);
1748 		goto out_err;
1749 	}
1750 
1751 	if (calc != idx_size) {
1752 		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1753 			  calc, idx_size);
1754 		dump_stack();
1755 		err = -EINVAL;
1756 		goto out_err;
1757 	}
1758 
1759 	return 0;
1760 
1761 out_err:
1762 	ubifs_destroy_tnc_tree(c);
1763 	return err;
1764 }
1765 
1766 /**
1767  * struct fsck_inode - information about an inode used when checking the file-system.
1768  * @rb: link in the RB-tree of inodes
1769  * @inum: inode number
1770  * @mode: inode type, permissions, etc
1771  * @nlink: inode link count
1772  * @xattr_cnt: count of extended attributes
1773  * @references: how many directory/xattr entries refer this inode (calculated
1774  *              while walking the index)
1775  * @calc_cnt: for directory inode count of child directories
1776  * @size: inode size (read from on-flash inode)
1777  * @xattr_sz: summary size of all extended attributes (read from on-flash
1778  *            inode)
1779  * @calc_sz: for directories calculated directory size
1780  * @calc_xcnt: count of extended attributes
1781  * @calc_xsz: calculated summary size of all extended attributes
1782  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1783  *             inode (read from on-flash inode)
1784  * @calc_xnms: calculated sum of lengths of all extended attribute names
1785  */
1786 struct fsck_inode {
1787 	struct rb_node rb;
1788 	ino_t inum;
1789 	umode_t mode;
1790 	unsigned int nlink;
1791 	unsigned int xattr_cnt;
1792 	int references;
1793 	int calc_cnt;
1794 	long long size;
1795 	unsigned int xattr_sz;
1796 	long long calc_sz;
1797 	long long calc_xcnt;
1798 	long long calc_xsz;
1799 	unsigned int xattr_nms;
1800 	long long calc_xnms;
1801 };
1802 
1803 /**
1804  * struct fsck_data - private FS checking information.
1805  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1806  */
1807 struct fsck_data {
1808 	struct rb_root inodes;
1809 };
1810 
1811 /**
1812  * add_inode - add inode information to RB-tree of inodes.
1813  * @c: UBIFS file-system description object
1814  * @fsckd: FS checking information
1815  * @ino: raw UBIFS inode to add
1816  *
1817  * This is a helper function for 'check_leaf()' which adds information about
1818  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1819  * case of success and a negative error code in case of failure.
1820  */
add_inode(struct ubifs_info * c,struct fsck_data * fsckd,struct ubifs_ino_node * ino)1821 static struct fsck_inode *add_inode(struct ubifs_info *c,
1822 				    struct fsck_data *fsckd,
1823 				    struct ubifs_ino_node *ino)
1824 {
1825 	struct rb_node **p, *parent = NULL;
1826 	struct fsck_inode *fscki;
1827 	ino_t inum = key_inum_flash(c, &ino->key);
1828 	struct inode *inode;
1829 	struct ubifs_inode *ui;
1830 
1831 	p = &fsckd->inodes.rb_node;
1832 	while (*p) {
1833 		parent = *p;
1834 		fscki = rb_entry(parent, struct fsck_inode, rb);
1835 		if (inum < fscki->inum)
1836 			p = &(*p)->rb_left;
1837 		else if (inum > fscki->inum)
1838 			p = &(*p)->rb_right;
1839 		else
1840 			return fscki;
1841 	}
1842 
1843 	if (inum > c->highest_inum) {
1844 		ubifs_err(c, "too high inode number, max. is %lu",
1845 			  (unsigned long)c->highest_inum);
1846 		return ERR_PTR(-EINVAL);
1847 	}
1848 
1849 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1850 	if (!fscki)
1851 		return ERR_PTR(-ENOMEM);
1852 
1853 	inode = ilookup(c->vfs_sb, inum);
1854 
1855 	fscki->inum = inum;
1856 	/*
1857 	 * If the inode is present in the VFS inode cache, use it instead of
1858 	 * the on-flash inode which might be out-of-date. E.g., the size might
1859 	 * be out-of-date. If we do not do this, the following may happen, for
1860 	 * example:
1861 	 *   1. A power cut happens
1862 	 *   2. We mount the file-system R/O, the replay process fixes up the
1863 	 *      inode size in the VFS cache, but on on-flash.
1864 	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1865 	 *      size.
1866 	 */
1867 	if (!inode) {
1868 		fscki->nlink = le32_to_cpu(ino->nlink);
1869 		fscki->size = le64_to_cpu(ino->size);
1870 		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1871 		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1872 		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1873 		fscki->mode = le32_to_cpu(ino->mode);
1874 	} else {
1875 		ui = ubifs_inode(inode);
1876 		fscki->nlink = inode->i_nlink;
1877 		fscki->size = inode->i_size;
1878 		fscki->xattr_cnt = ui->xattr_cnt;
1879 		fscki->xattr_sz = ui->xattr_size;
1880 		fscki->xattr_nms = ui->xattr_names;
1881 		fscki->mode = inode->i_mode;
1882 		iput(inode);
1883 	}
1884 
1885 	if (S_ISDIR(fscki->mode)) {
1886 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1887 		fscki->calc_cnt = 2;
1888 	}
1889 
1890 	rb_link_node(&fscki->rb, parent, p);
1891 	rb_insert_color(&fscki->rb, &fsckd->inodes);
1892 
1893 	return fscki;
1894 }
1895 
1896 /**
1897  * search_inode - search inode in the RB-tree of inodes.
1898  * @fsckd: FS checking information
1899  * @inum: inode number to search
1900  *
1901  * This is a helper function for 'check_leaf()' which searches inode @inum in
1902  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1903  * the inode was not found.
1904  */
search_inode(struct fsck_data * fsckd,ino_t inum)1905 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1906 {
1907 	struct rb_node *p;
1908 	struct fsck_inode *fscki;
1909 
1910 	p = fsckd->inodes.rb_node;
1911 	while (p) {
1912 		fscki = rb_entry(p, struct fsck_inode, rb);
1913 		if (inum < fscki->inum)
1914 			p = p->rb_left;
1915 		else if (inum > fscki->inum)
1916 			p = p->rb_right;
1917 		else
1918 			return fscki;
1919 	}
1920 	return NULL;
1921 }
1922 
1923 /**
1924  * read_add_inode - read inode node and add it to RB-tree of inodes.
1925  * @c: UBIFS file-system description object
1926  * @fsckd: FS checking information
1927  * @inum: inode number to read
1928  *
1929  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1930  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1931  * information pointer in case of success and a negative error code in case of
1932  * failure.
1933  */
read_add_inode(struct ubifs_info * c,struct fsck_data * fsckd,ino_t inum)1934 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1935 					 struct fsck_data *fsckd, ino_t inum)
1936 {
1937 	int n, err;
1938 	union ubifs_key key;
1939 	struct ubifs_znode *znode;
1940 	struct ubifs_zbranch *zbr;
1941 	struct ubifs_ino_node *ino;
1942 	struct fsck_inode *fscki;
1943 
1944 	fscki = search_inode(fsckd, inum);
1945 	if (fscki)
1946 		return fscki;
1947 
1948 	ino_key_init(c, &key, inum);
1949 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1950 	if (!err) {
1951 		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1952 		return ERR_PTR(-ENOENT);
1953 	} else if (err < 0) {
1954 		ubifs_err(c, "error %d while looking up inode %lu",
1955 			  err, (unsigned long)inum);
1956 		return ERR_PTR(err);
1957 	}
1958 
1959 	zbr = &znode->zbranch[n];
1960 	if (zbr->len < UBIFS_INO_NODE_SZ) {
1961 		ubifs_err(c, "bad node %lu node length %d",
1962 			  (unsigned long)inum, zbr->len);
1963 		return ERR_PTR(-EINVAL);
1964 	}
1965 
1966 	ino = kmalloc(zbr->len, GFP_NOFS);
1967 	if (!ino)
1968 		return ERR_PTR(-ENOMEM);
1969 
1970 	err = ubifs_tnc_read_node(c, zbr, ino);
1971 	if (err) {
1972 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1973 			  zbr->lnum, zbr->offs, err);
1974 		kfree(ino);
1975 		return ERR_PTR(err);
1976 	}
1977 
1978 	fscki = add_inode(c, fsckd, ino);
1979 	kfree(ino);
1980 	if (IS_ERR(fscki)) {
1981 		ubifs_err(c, "error %ld while adding inode %lu node",
1982 			  PTR_ERR(fscki), (unsigned long)inum);
1983 		return fscki;
1984 	}
1985 
1986 	return fscki;
1987 }
1988 
1989 /**
1990  * check_leaf - check leaf node.
1991  * @c: UBIFS file-system description object
1992  * @zbr: zbranch of the leaf node to check
1993  * @priv: FS checking information
1994  *
1995  * This is a helper function for 'dbg_check_filesystem()' which is called for
1996  * every single leaf node while walking the indexing tree. It checks that the
1997  * leaf node referred from the indexing tree exists, has correct CRC, and does
1998  * some other basic validation. This function is also responsible for building
1999  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2000  * calculates reference count, size, etc for each inode in order to later
2001  * compare them to the information stored inside the inodes and detect possible
2002  * inconsistencies. Returns zero in case of success and a negative error code
2003  * in case of failure.
2004  */
check_leaf(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * priv)2005 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2006 		      void *priv)
2007 {
2008 	ino_t inum;
2009 	void *node;
2010 	struct ubifs_ch *ch;
2011 	int err, type = key_type(c, &zbr->key);
2012 	struct fsck_inode *fscki;
2013 
2014 	if (zbr->len < UBIFS_CH_SZ) {
2015 		ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2016 			  zbr->len, zbr->lnum, zbr->offs);
2017 		return -EINVAL;
2018 	}
2019 
2020 	node = kmalloc(zbr->len, GFP_NOFS);
2021 	if (!node)
2022 		return -ENOMEM;
2023 
2024 	err = ubifs_tnc_read_node(c, zbr, node);
2025 	if (err) {
2026 		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2027 			  zbr->lnum, zbr->offs, err);
2028 		goto out_free;
2029 	}
2030 
2031 	/* If this is an inode node, add it to RB-tree of inodes */
2032 	if (type == UBIFS_INO_KEY) {
2033 		fscki = add_inode(c, priv, node);
2034 		if (IS_ERR(fscki)) {
2035 			err = PTR_ERR(fscki);
2036 			ubifs_err(c, "error %d while adding inode node", err);
2037 			goto out_dump;
2038 		}
2039 		goto out;
2040 	}
2041 
2042 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2043 	    type != UBIFS_DATA_KEY) {
2044 		ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2045 			  type, zbr->lnum, zbr->offs);
2046 		err = -EINVAL;
2047 		goto out_free;
2048 	}
2049 
2050 	ch = node;
2051 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2052 		ubifs_err(c, "too high sequence number, max. is %llu",
2053 			  c->max_sqnum);
2054 		err = -EINVAL;
2055 		goto out_dump;
2056 	}
2057 
2058 	if (type == UBIFS_DATA_KEY) {
2059 		long long blk_offs;
2060 		struct ubifs_data_node *dn = node;
2061 
2062 		ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2063 
2064 		/*
2065 		 * Search the inode node this data node belongs to and insert
2066 		 * it to the RB-tree of inodes.
2067 		 */
2068 		inum = key_inum_flash(c, &dn->key);
2069 		fscki = read_add_inode(c, priv, inum);
2070 		if (IS_ERR(fscki)) {
2071 			err = PTR_ERR(fscki);
2072 			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2073 				  err, (unsigned long)inum);
2074 			goto out_dump;
2075 		}
2076 
2077 		/* Make sure the data node is within inode size */
2078 		blk_offs = key_block_flash(c, &dn->key);
2079 		blk_offs <<= UBIFS_BLOCK_SHIFT;
2080 		blk_offs += le32_to_cpu(dn->size);
2081 		if (blk_offs > fscki->size) {
2082 			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2083 				  zbr->lnum, zbr->offs, fscki->size);
2084 			err = -EINVAL;
2085 			goto out_dump;
2086 		}
2087 	} else {
2088 		int nlen;
2089 		struct ubifs_dent_node *dent = node;
2090 		struct fsck_inode *fscki1;
2091 
2092 		ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2093 
2094 		err = ubifs_validate_entry(c, dent);
2095 		if (err)
2096 			goto out_dump;
2097 
2098 		/*
2099 		 * Search the inode node this entry refers to and the parent
2100 		 * inode node and insert them to the RB-tree of inodes.
2101 		 */
2102 		inum = le64_to_cpu(dent->inum);
2103 		fscki = read_add_inode(c, priv, inum);
2104 		if (IS_ERR(fscki)) {
2105 			err = PTR_ERR(fscki);
2106 			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2107 				  err, (unsigned long)inum);
2108 			goto out_dump;
2109 		}
2110 
2111 		/* Count how many direntries or xentries refers this inode */
2112 		fscki->references += 1;
2113 
2114 		inum = key_inum_flash(c, &dent->key);
2115 		fscki1 = read_add_inode(c, priv, inum);
2116 		if (IS_ERR(fscki1)) {
2117 			err = PTR_ERR(fscki1);
2118 			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2119 				  err, (unsigned long)inum);
2120 			goto out_dump;
2121 		}
2122 
2123 		nlen = le16_to_cpu(dent->nlen);
2124 		if (type == UBIFS_XENT_KEY) {
2125 			fscki1->calc_xcnt += 1;
2126 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2127 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2128 			fscki1->calc_xnms += nlen;
2129 		} else {
2130 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2131 			if (dent->type == UBIFS_ITYPE_DIR)
2132 				fscki1->calc_cnt += 1;
2133 		}
2134 	}
2135 
2136 out:
2137 	kfree(node);
2138 	return 0;
2139 
2140 out_dump:
2141 	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2142 	ubifs_dump_node(c, node, zbr->len);
2143 out_free:
2144 	kfree(node);
2145 	return err;
2146 }
2147 
2148 /**
2149  * free_inodes - free RB-tree of inodes.
2150  * @fsckd: FS checking information
2151  */
free_inodes(struct fsck_data * fsckd)2152 static void free_inodes(struct fsck_data *fsckd)
2153 {
2154 	struct fsck_inode *fscki, *n;
2155 
2156 	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2157 		kfree(fscki);
2158 }
2159 
2160 /**
2161  * check_inodes - checks all inodes.
2162  * @c: UBIFS file-system description object
2163  * @fsckd: FS checking information
2164  *
2165  * This is a helper function for 'dbg_check_filesystem()' which walks the
2166  * RB-tree of inodes after the index scan has been finished, and checks that
2167  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2168  * %-EINVAL if not, and a negative error code in case of failure.
2169  */
check_inodes(struct ubifs_info * c,struct fsck_data * fsckd)2170 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2171 {
2172 	int n, err;
2173 	union ubifs_key key;
2174 	struct ubifs_znode *znode;
2175 	struct ubifs_zbranch *zbr;
2176 	struct ubifs_ino_node *ino;
2177 	struct fsck_inode *fscki;
2178 	struct rb_node *this = rb_first(&fsckd->inodes);
2179 
2180 	while (this) {
2181 		fscki = rb_entry(this, struct fsck_inode, rb);
2182 		this = rb_next(this);
2183 
2184 		if (S_ISDIR(fscki->mode)) {
2185 			/*
2186 			 * Directories have to have exactly one reference (they
2187 			 * cannot have hardlinks), although root inode is an
2188 			 * exception.
2189 			 */
2190 			if (fscki->inum != UBIFS_ROOT_INO &&
2191 			    fscki->references != 1) {
2192 				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2193 					  (unsigned long)fscki->inum,
2194 					  fscki->references);
2195 				goto out_dump;
2196 			}
2197 			if (fscki->inum == UBIFS_ROOT_INO &&
2198 			    fscki->references != 0) {
2199 				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2200 					  (unsigned long)fscki->inum,
2201 					  fscki->references);
2202 				goto out_dump;
2203 			}
2204 			if (fscki->calc_sz != fscki->size) {
2205 				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2206 					  (unsigned long)fscki->inum,
2207 					  fscki->size, fscki->calc_sz);
2208 				goto out_dump;
2209 			}
2210 			if (fscki->calc_cnt != fscki->nlink) {
2211 				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2212 					  (unsigned long)fscki->inum,
2213 					  fscki->nlink, fscki->calc_cnt);
2214 				goto out_dump;
2215 			}
2216 		} else {
2217 			if (fscki->references != fscki->nlink) {
2218 				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2219 					  (unsigned long)fscki->inum,
2220 					  fscki->nlink, fscki->references);
2221 				goto out_dump;
2222 			}
2223 		}
2224 		if (fscki->xattr_sz != fscki->calc_xsz) {
2225 			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2226 				  (unsigned long)fscki->inum, fscki->xattr_sz,
2227 				  fscki->calc_xsz);
2228 			goto out_dump;
2229 		}
2230 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2231 			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2232 				  (unsigned long)fscki->inum,
2233 				  fscki->xattr_cnt, fscki->calc_xcnt);
2234 			goto out_dump;
2235 		}
2236 		if (fscki->xattr_nms != fscki->calc_xnms) {
2237 			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2238 				  (unsigned long)fscki->inum, fscki->xattr_nms,
2239 				  fscki->calc_xnms);
2240 			goto out_dump;
2241 		}
2242 	}
2243 
2244 	return 0;
2245 
2246 out_dump:
2247 	/* Read the bad inode and dump it */
2248 	ino_key_init(c, &key, fscki->inum);
2249 	err = ubifs_lookup_level0(c, &key, &znode, &n);
2250 	if (!err) {
2251 		ubifs_err(c, "inode %lu not found in index",
2252 			  (unsigned long)fscki->inum);
2253 		return -ENOENT;
2254 	} else if (err < 0) {
2255 		ubifs_err(c, "error %d while looking up inode %lu",
2256 			  err, (unsigned long)fscki->inum);
2257 		return err;
2258 	}
2259 
2260 	zbr = &znode->zbranch[n];
2261 	ino = kmalloc(zbr->len, GFP_NOFS);
2262 	if (!ino)
2263 		return -ENOMEM;
2264 
2265 	err = ubifs_tnc_read_node(c, zbr, ino);
2266 	if (err) {
2267 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2268 			  zbr->lnum, zbr->offs, err);
2269 		kfree(ino);
2270 		return err;
2271 	}
2272 
2273 	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2274 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2275 	ubifs_dump_node(c, ino, zbr->len);
2276 	kfree(ino);
2277 	return -EINVAL;
2278 }
2279 
2280 /**
2281  * dbg_check_filesystem - check the file-system.
2282  * @c: UBIFS file-system description object
2283  *
2284  * This function checks the file system, namely:
2285  * o makes sure that all leaf nodes exist and their CRCs are correct;
2286  * o makes sure inode nlink, size, xattr size/count are correct (for all
2287  *   inodes).
2288  *
2289  * The function reads whole indexing tree and all nodes, so it is pretty
2290  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2291  * not, and a negative error code in case of failure.
2292  */
dbg_check_filesystem(struct ubifs_info * c)2293 int dbg_check_filesystem(struct ubifs_info *c)
2294 {
2295 	int err;
2296 	struct fsck_data fsckd;
2297 
2298 	if (!dbg_is_chk_fs(c))
2299 		return 0;
2300 
2301 	fsckd.inodes = RB_ROOT;
2302 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2303 	if (err)
2304 		goto out_free;
2305 
2306 	err = check_inodes(c, &fsckd);
2307 	if (err)
2308 		goto out_free;
2309 
2310 	free_inodes(&fsckd);
2311 	return 0;
2312 
2313 out_free:
2314 	ubifs_err(c, "file-system check failed with error %d", err);
2315 	dump_stack();
2316 	free_inodes(&fsckd);
2317 	return err;
2318 }
2319 
2320 /**
2321  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2322  * @c: UBIFS file-system description object
2323  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2324  *
2325  * This function returns zero if the list of data nodes is sorted correctly,
2326  * and %-EINVAL if not.
2327  */
dbg_check_data_nodes_order(struct ubifs_info * c,struct list_head * head)2328 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2329 {
2330 	struct list_head *cur;
2331 	struct ubifs_scan_node *sa, *sb;
2332 
2333 	if (!dbg_is_chk_gen(c))
2334 		return 0;
2335 
2336 	for (cur = head->next; cur->next != head; cur = cur->next) {
2337 		ino_t inuma, inumb;
2338 		uint32_t blka, blkb;
2339 
2340 		cond_resched();
2341 		sa = container_of(cur, struct ubifs_scan_node, list);
2342 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2343 
2344 		if (sa->type != UBIFS_DATA_NODE) {
2345 			ubifs_err(c, "bad node type %d", sa->type);
2346 			ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2347 			return -EINVAL;
2348 		}
2349 		if (sb->type != UBIFS_DATA_NODE) {
2350 			ubifs_err(c, "bad node type %d", sb->type);
2351 			ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2352 			return -EINVAL;
2353 		}
2354 
2355 		inuma = key_inum(c, &sa->key);
2356 		inumb = key_inum(c, &sb->key);
2357 
2358 		if (inuma < inumb)
2359 			continue;
2360 		if (inuma > inumb) {
2361 			ubifs_err(c, "larger inum %lu goes before inum %lu",
2362 				  (unsigned long)inuma, (unsigned long)inumb);
2363 			goto error_dump;
2364 		}
2365 
2366 		blka = key_block(c, &sa->key);
2367 		blkb = key_block(c, &sb->key);
2368 
2369 		if (blka > blkb) {
2370 			ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2371 			goto error_dump;
2372 		}
2373 		if (blka == blkb) {
2374 			ubifs_err(c, "two data nodes for the same block");
2375 			goto error_dump;
2376 		}
2377 	}
2378 
2379 	return 0;
2380 
2381 error_dump:
2382 	ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2383 	ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2384 	return -EINVAL;
2385 }
2386 
2387 /**
2388  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2389  * @c: UBIFS file-system description object
2390  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2391  *
2392  * This function returns zero if the list of non-data nodes is sorted correctly,
2393  * and %-EINVAL if not.
2394  */
dbg_check_nondata_nodes_order(struct ubifs_info * c,struct list_head * head)2395 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2396 {
2397 	struct list_head *cur;
2398 	struct ubifs_scan_node *sa, *sb;
2399 
2400 	if (!dbg_is_chk_gen(c))
2401 		return 0;
2402 
2403 	for (cur = head->next; cur->next != head; cur = cur->next) {
2404 		ino_t inuma, inumb;
2405 		uint32_t hasha, hashb;
2406 
2407 		cond_resched();
2408 		sa = container_of(cur, struct ubifs_scan_node, list);
2409 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2410 
2411 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2412 		    sa->type != UBIFS_XENT_NODE) {
2413 			ubifs_err(c, "bad node type %d", sa->type);
2414 			ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2415 			return -EINVAL;
2416 		}
2417 		if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2418 		    sb->type != UBIFS_XENT_NODE) {
2419 			ubifs_err(c, "bad node type %d", sb->type);
2420 			ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2421 			return -EINVAL;
2422 		}
2423 
2424 		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2425 			ubifs_err(c, "non-inode node goes before inode node");
2426 			goto error_dump;
2427 		}
2428 
2429 		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2430 			continue;
2431 
2432 		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2433 			/* Inode nodes are sorted in descending size order */
2434 			if (sa->len < sb->len) {
2435 				ubifs_err(c, "smaller inode node goes first");
2436 				goto error_dump;
2437 			}
2438 			continue;
2439 		}
2440 
2441 		/*
2442 		 * This is either a dentry or xentry, which should be sorted in
2443 		 * ascending (parent ino, hash) order.
2444 		 */
2445 		inuma = key_inum(c, &sa->key);
2446 		inumb = key_inum(c, &sb->key);
2447 
2448 		if (inuma < inumb)
2449 			continue;
2450 		if (inuma > inumb) {
2451 			ubifs_err(c, "larger inum %lu goes before inum %lu",
2452 				  (unsigned long)inuma, (unsigned long)inumb);
2453 			goto error_dump;
2454 		}
2455 
2456 		hasha = key_block(c, &sa->key);
2457 		hashb = key_block(c, &sb->key);
2458 
2459 		if (hasha > hashb) {
2460 			ubifs_err(c, "larger hash %u goes before %u",
2461 				  hasha, hashb);
2462 			goto error_dump;
2463 		}
2464 	}
2465 
2466 	return 0;
2467 
2468 error_dump:
2469 	ubifs_msg(c, "dumping first node");
2470 	ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2471 	ubifs_msg(c, "dumping second node");
2472 	ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2473 	return -EINVAL;
2474 }
2475 
chance(unsigned int n,unsigned int out_of)2476 static inline int chance(unsigned int n, unsigned int out_of)
2477 {
2478 	return !!(get_random_u32_below(out_of) + 1 <= n);
2479 
2480 }
2481 
power_cut_emulated(struct ubifs_info * c,int lnum,int write)2482 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2483 {
2484 	struct ubifs_debug_info *d = c->dbg;
2485 
2486 	ubifs_assert(c, dbg_is_tst_rcvry(c));
2487 
2488 	if (!d->pc_cnt) {
2489 		/* First call - decide delay to the power cut */
2490 		if (chance(1, 2)) {
2491 			unsigned long delay;
2492 
2493 			if (chance(1, 2)) {
2494 				d->pc_delay = 1;
2495 				/* Fail within 1 minute */
2496 				delay = get_random_u32_below(60000);
2497 				d->pc_timeout = jiffies;
2498 				d->pc_timeout += msecs_to_jiffies(delay);
2499 				ubifs_warn(c, "failing after %lums", delay);
2500 			} else {
2501 				d->pc_delay = 2;
2502 				delay = get_random_u32_below(10000);
2503 				/* Fail within 10000 operations */
2504 				d->pc_cnt_max = delay;
2505 				ubifs_warn(c, "failing after %lu calls", delay);
2506 			}
2507 		}
2508 
2509 		d->pc_cnt += 1;
2510 	}
2511 
2512 	/* Determine if failure delay has expired */
2513 	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2514 			return 0;
2515 	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2516 			return 0;
2517 
2518 	if (lnum == UBIFS_SB_LNUM) {
2519 		if (write && chance(1, 2))
2520 			return 0;
2521 		if (chance(19, 20))
2522 			return 0;
2523 		ubifs_warn(c, "failing in super block LEB %d", lnum);
2524 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2525 		if (chance(19, 20))
2526 			return 0;
2527 		ubifs_warn(c, "failing in master LEB %d", lnum);
2528 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2529 		if (write && chance(99, 100))
2530 			return 0;
2531 		if (chance(399, 400))
2532 			return 0;
2533 		ubifs_warn(c, "failing in log LEB %d", lnum);
2534 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2535 		if (write && chance(7, 8))
2536 			return 0;
2537 		if (chance(19, 20))
2538 			return 0;
2539 		ubifs_warn(c, "failing in LPT LEB %d", lnum);
2540 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2541 		if (write && chance(1, 2))
2542 			return 0;
2543 		if (chance(9, 10))
2544 			return 0;
2545 		ubifs_warn(c, "failing in orphan LEB %d", lnum);
2546 	} else if (lnum == c->ihead_lnum) {
2547 		if (chance(99, 100))
2548 			return 0;
2549 		ubifs_warn(c, "failing in index head LEB %d", lnum);
2550 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2551 		if (chance(9, 10))
2552 			return 0;
2553 		ubifs_warn(c, "failing in GC head LEB %d", lnum);
2554 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2555 		   !ubifs_search_bud(c, lnum)) {
2556 		if (chance(19, 20))
2557 			return 0;
2558 		ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2559 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2560 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2561 		if (chance(999, 1000))
2562 			return 0;
2563 		ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2564 	} else {
2565 		if (chance(9999, 10000))
2566 			return 0;
2567 		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2568 	}
2569 
2570 	d->pc_happened = 1;
2571 	ubifs_warn(c, "========== Power cut emulated ==========");
2572 	dump_stack();
2573 	return 1;
2574 }
2575 
corrupt_data(const struct ubifs_info * c,const void * buf,unsigned int len)2576 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2577 			unsigned int len)
2578 {
2579 	unsigned int from, to, ffs = chance(1, 2);
2580 	unsigned char *p = (void *)buf;
2581 
2582 	from = get_random_u32_below(len);
2583 	/* Corruption span max to end of write unit */
2584 	to = min(len, ALIGN(from + 1, c->max_write_size));
2585 
2586 	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2587 		   ffs ? "0xFFs" : "random data");
2588 
2589 	if (ffs)
2590 		memset(p + from, 0xFF, to - from);
2591 	else
2592 		get_random_bytes(p + from, to - from);
2593 
2594 	return to;
2595 }
2596 
dbg_leb_write(struct ubifs_info * c,int lnum,const void * buf,int offs,int len)2597 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2598 		  int offs, int len)
2599 {
2600 	int err, failing;
2601 
2602 	if (dbg_is_power_cut(c))
2603 		return -EROFS;
2604 
2605 	failing = power_cut_emulated(c, lnum, 1);
2606 	if (failing) {
2607 		len = corrupt_data(c, buf, len);
2608 		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2609 			   len, lnum, offs);
2610 	}
2611 	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2612 	if (err)
2613 		return err;
2614 	if (failing)
2615 		return -EROFS;
2616 	return 0;
2617 }
2618 
dbg_leb_change(struct ubifs_info * c,int lnum,const void * buf,int len)2619 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2620 		   int len)
2621 {
2622 	int err;
2623 
2624 	if (dbg_is_power_cut(c))
2625 		return -EROFS;
2626 	if (power_cut_emulated(c, lnum, 1))
2627 		return -EROFS;
2628 	err = ubi_leb_change(c->ubi, lnum, buf, len);
2629 	if (err)
2630 		return err;
2631 	if (power_cut_emulated(c, lnum, 1))
2632 		return -EROFS;
2633 	return 0;
2634 }
2635 
dbg_leb_unmap(struct ubifs_info * c,int lnum)2636 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2637 {
2638 	int err;
2639 
2640 	if (dbg_is_power_cut(c))
2641 		return -EROFS;
2642 	if (power_cut_emulated(c, lnum, 0))
2643 		return -EROFS;
2644 	err = ubi_leb_unmap(c->ubi, lnum);
2645 	if (err)
2646 		return err;
2647 	if (power_cut_emulated(c, lnum, 0))
2648 		return -EROFS;
2649 	return 0;
2650 }
2651 
dbg_leb_map(struct ubifs_info * c,int lnum)2652 int dbg_leb_map(struct ubifs_info *c, int lnum)
2653 {
2654 	int err;
2655 
2656 	if (dbg_is_power_cut(c))
2657 		return -EROFS;
2658 	if (power_cut_emulated(c, lnum, 0))
2659 		return -EROFS;
2660 	err = ubi_leb_map(c->ubi, lnum);
2661 	if (err)
2662 		return err;
2663 	if (power_cut_emulated(c, lnum, 0))
2664 		return -EROFS;
2665 	return 0;
2666 }
2667 
2668 /*
2669  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2670  * contain the stuff specific to particular file-system mounts.
2671  */
2672 static struct dentry *dfs_rootdir;
2673 
dfs_file_open(struct inode * inode,struct file * file)2674 static int dfs_file_open(struct inode *inode, struct file *file)
2675 {
2676 	file->private_data = inode->i_private;
2677 	return nonseekable_open(inode, file);
2678 }
2679 
2680 /**
2681  * provide_user_output - provide output to the user reading a debugfs file.
2682  * @val: boolean value for the answer
2683  * @u: the buffer to store the answer at
2684  * @count: size of the buffer
2685  * @ppos: position in the @u output buffer
2686  *
2687  * This is a simple helper function which stores @val boolean value in the user
2688  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2689  * bytes written to @u in case of success and a negative error code in case of
2690  * failure.
2691  */
provide_user_output(int val,char __user * u,size_t count,loff_t * ppos)2692 static int provide_user_output(int val, char __user *u, size_t count,
2693 			       loff_t *ppos)
2694 {
2695 	char buf[3];
2696 
2697 	if (val)
2698 		buf[0] = '1';
2699 	else
2700 		buf[0] = '0';
2701 	buf[1] = '\n';
2702 	buf[2] = 0x00;
2703 
2704 	return simple_read_from_buffer(u, count, ppos, buf, 2);
2705 }
2706 
dfs_file_read(struct file * file,char __user * u,size_t count,loff_t * ppos)2707 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2708 			     loff_t *ppos)
2709 {
2710 	struct dentry *dent = file->f_path.dentry;
2711 	struct ubifs_info *c = file->private_data;
2712 	struct ubifs_debug_info *d = c->dbg;
2713 	int val;
2714 
2715 	if (dent == d->dfs_chk_gen)
2716 		val = d->chk_gen;
2717 	else if (dent == d->dfs_chk_index)
2718 		val = d->chk_index;
2719 	else if (dent == d->dfs_chk_orph)
2720 		val = d->chk_orph;
2721 	else if (dent == d->dfs_chk_lprops)
2722 		val = d->chk_lprops;
2723 	else if (dent == d->dfs_chk_fs)
2724 		val = d->chk_fs;
2725 	else if (dent == d->dfs_tst_rcvry)
2726 		val = d->tst_rcvry;
2727 	else if (dent == d->dfs_ro_error)
2728 		val = c->ro_error;
2729 	else
2730 		return -EINVAL;
2731 
2732 	return provide_user_output(val, u, count, ppos);
2733 }
2734 
2735 /**
2736  * interpret_user_input - interpret user debugfs file input.
2737  * @u: user-provided buffer with the input
2738  * @count: buffer size
2739  *
2740  * This is a helper function which interpret user input to a boolean UBIFS
2741  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2742  * in case of failure.
2743  */
interpret_user_input(const char __user * u,size_t count)2744 static int interpret_user_input(const char __user *u, size_t count)
2745 {
2746 	size_t buf_size;
2747 	char buf[8];
2748 
2749 	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2750 	if (copy_from_user(buf, u, buf_size))
2751 		return -EFAULT;
2752 
2753 	if (buf[0] == '1')
2754 		return 1;
2755 	else if (buf[0] == '0')
2756 		return 0;
2757 
2758 	return -EINVAL;
2759 }
2760 
dfs_file_write(struct file * file,const char __user * u,size_t count,loff_t * ppos)2761 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2762 			      size_t count, loff_t *ppos)
2763 {
2764 	struct ubifs_info *c = file->private_data;
2765 	struct ubifs_debug_info *d = c->dbg;
2766 	struct dentry *dent = file->f_path.dentry;
2767 	int val;
2768 
2769 	if (file->f_path.dentry == d->dfs_dump_lprops) {
2770 		ubifs_dump_lprops(c);
2771 		return count;
2772 	}
2773 	if (file->f_path.dentry == d->dfs_dump_budg) {
2774 		ubifs_dump_budg(c, &c->bi);
2775 		return count;
2776 	}
2777 	if (file->f_path.dentry == d->dfs_dump_tnc) {
2778 		mutex_lock(&c->tnc_mutex);
2779 		ubifs_dump_tnc(c);
2780 		mutex_unlock(&c->tnc_mutex);
2781 		return count;
2782 	}
2783 
2784 	val = interpret_user_input(u, count);
2785 	if (val < 0)
2786 		return val;
2787 
2788 	if (dent == d->dfs_chk_gen)
2789 		d->chk_gen = val;
2790 	else if (dent == d->dfs_chk_index)
2791 		d->chk_index = val;
2792 	else if (dent == d->dfs_chk_orph)
2793 		d->chk_orph = val;
2794 	else if (dent == d->dfs_chk_lprops)
2795 		d->chk_lprops = val;
2796 	else if (dent == d->dfs_chk_fs)
2797 		d->chk_fs = val;
2798 	else if (dent == d->dfs_tst_rcvry)
2799 		d->tst_rcvry = val;
2800 	else if (dent == d->dfs_ro_error)
2801 		c->ro_error = !!val;
2802 	else
2803 		return -EINVAL;
2804 
2805 	return count;
2806 }
2807 
2808 static const struct file_operations dfs_fops = {
2809 	.open = dfs_file_open,
2810 	.read = dfs_file_read,
2811 	.write = dfs_file_write,
2812 	.owner = THIS_MODULE,
2813 };
2814 
2815 /**
2816  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2817  * @c: UBIFS file-system description object
2818  *
2819  * This function creates all debugfs files for this instance of UBIFS.
2820  *
2821  * Note, the only reason we have not merged this function with the
2822  * 'ubifs_debugging_init()' function is because it is better to initialize
2823  * debugfs interfaces at the very end of the mount process, and remove them at
2824  * the very beginning of the mount process.
2825  */
dbg_debugfs_init_fs(struct ubifs_info * c)2826 void dbg_debugfs_init_fs(struct ubifs_info *c)
2827 {
2828 	int n;
2829 	const char *fname;
2830 	struct ubifs_debug_info *d = c->dbg;
2831 
2832 	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN, UBIFS_DFS_DIR_NAME,
2833 		     c->vi.ubi_num, c->vi.vol_id);
2834 	if (n >= UBIFS_DFS_DIR_LEN) {
2835 		/* The array size is too small */
2836 		return;
2837 	}
2838 
2839 	fname = d->dfs_dir_name;
2840 	d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
2841 
2842 	fname = "dump_lprops";
2843 	d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2844 						 &dfs_fops);
2845 
2846 	fname = "dump_budg";
2847 	d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2848 					       &dfs_fops);
2849 
2850 	fname = "dump_tnc";
2851 	d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2852 					      &dfs_fops);
2853 
2854 	fname = "chk_general";
2855 	d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2856 					     d->dfs_dir, c, &dfs_fops);
2857 
2858 	fname = "chk_index";
2859 	d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2860 					       d->dfs_dir, c, &dfs_fops);
2861 
2862 	fname = "chk_orphans";
2863 	d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2864 					      d->dfs_dir, c, &dfs_fops);
2865 
2866 	fname = "chk_lprops";
2867 	d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2868 						d->dfs_dir, c, &dfs_fops);
2869 
2870 	fname = "chk_fs";
2871 	d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2872 					    d->dfs_dir, c, &dfs_fops);
2873 
2874 	fname = "tst_recovery";
2875 	d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2876 					       d->dfs_dir, c, &dfs_fops);
2877 
2878 	fname = "ro_error";
2879 	d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2880 					      d->dfs_dir, c, &dfs_fops);
2881 }
2882 
2883 /**
2884  * dbg_debugfs_exit_fs - remove all debugfs files.
2885  * @c: UBIFS file-system description object
2886  */
dbg_debugfs_exit_fs(struct ubifs_info * c)2887 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2888 {
2889 	debugfs_remove_recursive(c->dbg->dfs_dir);
2890 }
2891 
2892 struct ubifs_global_debug_info ubifs_dbg;
2893 
2894 static struct dentry *dfs_chk_gen;
2895 static struct dentry *dfs_chk_index;
2896 static struct dentry *dfs_chk_orph;
2897 static struct dentry *dfs_chk_lprops;
2898 static struct dentry *dfs_chk_fs;
2899 static struct dentry *dfs_tst_rcvry;
2900 
dfs_global_file_read(struct file * file,char __user * u,size_t count,loff_t * ppos)2901 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2902 				    size_t count, loff_t *ppos)
2903 {
2904 	struct dentry *dent = file->f_path.dentry;
2905 	int val;
2906 
2907 	if (dent == dfs_chk_gen)
2908 		val = ubifs_dbg.chk_gen;
2909 	else if (dent == dfs_chk_index)
2910 		val = ubifs_dbg.chk_index;
2911 	else if (dent == dfs_chk_orph)
2912 		val = ubifs_dbg.chk_orph;
2913 	else if (dent == dfs_chk_lprops)
2914 		val = ubifs_dbg.chk_lprops;
2915 	else if (dent == dfs_chk_fs)
2916 		val = ubifs_dbg.chk_fs;
2917 	else if (dent == dfs_tst_rcvry)
2918 		val = ubifs_dbg.tst_rcvry;
2919 	else
2920 		return -EINVAL;
2921 
2922 	return provide_user_output(val, u, count, ppos);
2923 }
2924 
dfs_global_file_write(struct file * file,const char __user * u,size_t count,loff_t * ppos)2925 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2926 				     size_t count, loff_t *ppos)
2927 {
2928 	struct dentry *dent = file->f_path.dentry;
2929 	int val;
2930 
2931 	val = interpret_user_input(u, count);
2932 	if (val < 0)
2933 		return val;
2934 
2935 	if (dent == dfs_chk_gen)
2936 		ubifs_dbg.chk_gen = val;
2937 	else if (dent == dfs_chk_index)
2938 		ubifs_dbg.chk_index = val;
2939 	else if (dent == dfs_chk_orph)
2940 		ubifs_dbg.chk_orph = val;
2941 	else if (dent == dfs_chk_lprops)
2942 		ubifs_dbg.chk_lprops = val;
2943 	else if (dent == dfs_chk_fs)
2944 		ubifs_dbg.chk_fs = val;
2945 	else if (dent == dfs_tst_rcvry)
2946 		ubifs_dbg.tst_rcvry = val;
2947 	else
2948 		return -EINVAL;
2949 
2950 	return count;
2951 }
2952 
2953 static const struct file_operations dfs_global_fops = {
2954 	.read = dfs_global_file_read,
2955 	.write = dfs_global_file_write,
2956 	.owner = THIS_MODULE,
2957 };
2958 
2959 /**
2960  * dbg_debugfs_init - initialize debugfs file-system.
2961  *
2962  * UBIFS uses debugfs file-system to expose various debugging knobs to
2963  * user-space. This function creates "ubifs" directory in the debugfs
2964  * file-system.
2965  */
dbg_debugfs_init(void)2966 void dbg_debugfs_init(void)
2967 {
2968 	const char *fname;
2969 
2970 	fname = "ubifs";
2971 	dfs_rootdir = debugfs_create_dir(fname, NULL);
2972 
2973 	fname = "chk_general";
2974 	dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2975 					  NULL, &dfs_global_fops);
2976 
2977 	fname = "chk_index";
2978 	dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2979 					    dfs_rootdir, NULL, &dfs_global_fops);
2980 
2981 	fname = "chk_orphans";
2982 	dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2983 					   dfs_rootdir, NULL, &dfs_global_fops);
2984 
2985 	fname = "chk_lprops";
2986 	dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2987 					     dfs_rootdir, NULL, &dfs_global_fops);
2988 
2989 	fname = "chk_fs";
2990 	dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2991 					 NULL, &dfs_global_fops);
2992 
2993 	fname = "tst_recovery";
2994 	dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2995 					    dfs_rootdir, NULL, &dfs_global_fops);
2996 }
2997 
2998 /**
2999  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3000  */
dbg_debugfs_exit(void)3001 void dbg_debugfs_exit(void)
3002 {
3003 	debugfs_remove_recursive(dfs_rootdir);
3004 }
3005 
ubifs_assert_failed(struct ubifs_info * c,const char * expr,const char * file,int line)3006 void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
3007 			 const char *file, int line)
3008 {
3009 	ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
3010 
3011 	switch (c->assert_action) {
3012 		case ASSACT_PANIC:
3013 		BUG();
3014 		break;
3015 
3016 		case ASSACT_RO:
3017 		ubifs_ro_mode(c, -EINVAL);
3018 		break;
3019 
3020 		case ASSACT_REPORT:
3021 		default:
3022 		dump_stack();
3023 		break;
3024 
3025 	}
3026 }
3027 
3028 /**
3029  * ubifs_debugging_init - initialize UBIFS debugging.
3030  * @c: UBIFS file-system description object
3031  *
3032  * This function initializes debugging-related data for the file system.
3033  * Returns zero in case of success and a negative error code in case of
3034  * failure.
3035  */
ubifs_debugging_init(struct ubifs_info * c)3036 int ubifs_debugging_init(struct ubifs_info *c)
3037 {
3038 	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3039 	if (!c->dbg)
3040 		return -ENOMEM;
3041 
3042 	return 0;
3043 }
3044 
3045 /**
3046  * ubifs_debugging_exit - free debugging data.
3047  * @c: UBIFS file-system description object
3048  */
ubifs_debugging_exit(struct ubifs_info * c)3049 void ubifs_debugging_exit(struct ubifs_info *c)
3050 {
3051 	kfree(c->dbg);
3052 }
3053