xref: /linux/drivers/usb/host/oxu210hp-hcd.c (revision 16cd1c2657762c62a00ac78eecaa25868f7e601b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
4  * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
5  *
6  * This code is *strongly* based on EHCI-HCD code by David Brownell since
7  * the chip is a quasi-EHCI compatible.
8  */
9 
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/dmapool.h>
13 #include <linux/kernel.h>
14 #include <linux/delay.h>
15 #include <linux/ioport.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/string_choices.h>
19 #include <linux/errno.h>
20 #include <linux/timer.h>
21 #include <linux/list.h>
22 #include <linux/interrupt.h>
23 #include <linux/usb.h>
24 #include <linux/usb/hcd.h>
25 #include <linux/moduleparam.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/io.h>
28 #include <linux/iopoll.h>
29 
30 #include <asm/irq.h>
31 #include <linux/unaligned.h>
32 
33 #include <linux/irq.h>
34 #include <linux/platform_device.h>
35 
36 #define DRIVER_VERSION "0.0.50"
37 
38 #define OXU_DEVICEID			0x00
39 	#define OXU_REV_MASK		0xffff0000
40 	#define OXU_REV_SHIFT		16
41 	#define OXU_REV_2100		0x2100
42 	#define OXU_BO_SHIFT		8
43 	#define OXU_BO_MASK		(0x3 << OXU_BO_SHIFT)
44 	#define OXU_MAJ_REV_SHIFT	4
45 	#define OXU_MAJ_REV_MASK	(0xf << OXU_MAJ_REV_SHIFT)
46 	#define OXU_MIN_REV_SHIFT	0
47 	#define OXU_MIN_REV_MASK	(0xf << OXU_MIN_REV_SHIFT)
48 #define OXU_HOSTIFCONFIG		0x04
49 #define OXU_SOFTRESET			0x08
50 	#define OXU_SRESET		(1 << 0)
51 
52 #define OXU_PIOBURSTREADCTRL		0x0C
53 
54 #define OXU_CHIPIRQSTATUS		0x10
55 #define OXU_CHIPIRQEN_SET		0x14
56 #define OXU_CHIPIRQEN_CLR		0x18
57 	#define OXU_USBSPHLPWUI		0x00000080
58 	#define OXU_USBOTGLPWUI		0x00000040
59 	#define OXU_USBSPHI		0x00000002
60 	#define OXU_USBOTGI		0x00000001
61 
62 #define OXU_CLKCTRL_SET			0x1C
63 	#define OXU_SYSCLKEN		0x00000008
64 	#define OXU_USBSPHCLKEN		0x00000002
65 	#define OXU_USBOTGCLKEN		0x00000001
66 
67 #define OXU_ASO				0x68
68 	#define OXU_SPHPOEN		0x00000100
69 	#define OXU_OVRCCURPUPDEN	0x00000800
70 	#define OXU_ASO_OP		(1 << 10)
71 	#define OXU_COMPARATOR		0x000004000
72 
73 #define OXU_USBMODE			0x1A8
74 	#define OXU_VBPS		0x00000020
75 	#define OXU_ES_LITTLE		0x00000000
76 	#define OXU_CM_HOST_ONLY	0x00000003
77 
78 /*
79  * Proper EHCI structs & defines
80  */
81 
82 /* Magic numbers that can affect system performance */
83 #define EHCI_TUNE_CERR		3	/* 0-3 qtd retries; 0 == don't stop */
84 #define EHCI_TUNE_RL_HS		4	/* nak throttle; see 4.9 */
85 #define EHCI_TUNE_RL_TT		0
86 #define EHCI_TUNE_MULT_HS	1	/* 1-3 transactions/uframe; 4.10.3 */
87 #define EHCI_TUNE_MULT_TT	1
88 #define EHCI_TUNE_FLS		2	/* (small) 256 frame schedule */
89 
90 struct oxu_hcd;
91 
92 /* EHCI register interface, corresponds to EHCI Revision 0.95 specification */
93 
94 /* Section 2.2 Host Controller Capability Registers */
95 struct ehci_caps {
96 	/* these fields are specified as 8 and 16 bit registers,
97 	 * but some hosts can't perform 8 or 16 bit PCI accesses.
98 	 */
99 	u32		hc_capbase;
100 #define HC_LENGTH(p)		(((p)>>00)&0x00ff)	/* bits 7:0 */
101 #define HC_VERSION(p)		(((p)>>16)&0xffff)	/* bits 31:16 */
102 	u32		hcs_params;     /* HCSPARAMS - offset 0x4 */
103 #define HCS_DEBUG_PORT(p)	(((p)>>20)&0xf)	/* bits 23:20, debug port? */
104 #define HCS_INDICATOR(p)	((p)&(1 << 16))	/* true: has port indicators */
105 #define HCS_N_CC(p)		(((p)>>12)&0xf)	/* bits 15:12, #companion HCs */
106 #define HCS_N_PCC(p)		(((p)>>8)&0xf)	/* bits 11:8, ports per CC */
107 #define HCS_PORTROUTED(p)	((p)&(1 << 7))	/* true: port routing */
108 #define HCS_PPC(p)		((p)&(1 << 4))	/* true: port power control */
109 #define HCS_N_PORTS(p)		(((p)>>0)&0xf)	/* bits 3:0, ports on HC */
110 
111 	u32		hcc_params;      /* HCCPARAMS - offset 0x8 */
112 #define HCC_EXT_CAPS(p)		(((p)>>8)&0xff)	/* for pci extended caps */
113 #define HCC_ISOC_CACHE(p)       ((p)&(1 << 7))  /* true: can cache isoc frame */
114 #define HCC_ISOC_THRES(p)       (((p)>>4)&0x7)  /* bits 6:4, uframes cached */
115 #define HCC_CANPARK(p)		((p)&(1 << 2))  /* true: can park on async qh */
116 #define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1))  /* true: periodic_size changes*/
117 #define HCC_64BIT_ADDR(p)       ((p)&(1))       /* true: can use 64-bit addr */
118 	u8		portroute[8];	 /* nibbles for routing - offset 0xC */
119 } __packed;
120 
121 
122 /* Section 2.3 Host Controller Operational Registers */
123 struct ehci_regs {
124 	/* USBCMD: offset 0x00 */
125 	u32		command;
126 /* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */
127 #define CMD_PARK	(1<<11)		/* enable "park" on async qh */
128 #define CMD_PARK_CNT(c)	(((c)>>8)&3)	/* how many transfers to park for */
129 #define CMD_LRESET	(1<<7)		/* partial reset (no ports, etc) */
130 #define CMD_IAAD	(1<<6)		/* "doorbell" interrupt async advance */
131 #define CMD_ASE		(1<<5)		/* async schedule enable */
132 #define CMD_PSE		(1<<4)		/* periodic schedule enable */
133 /* 3:2 is periodic frame list size */
134 #define CMD_RESET	(1<<1)		/* reset HC not bus */
135 #define CMD_RUN		(1<<0)		/* start/stop HC */
136 
137 	/* USBSTS: offset 0x04 */
138 	u32		status;
139 #define STS_ASS		(1<<15)		/* Async Schedule Status */
140 #define STS_PSS		(1<<14)		/* Periodic Schedule Status */
141 #define STS_RECL	(1<<13)		/* Reclamation */
142 #define STS_HALT	(1<<12)		/* Not running (any reason) */
143 /* some bits reserved */
144 	/* these STS_* flags are also intr_enable bits (USBINTR) */
145 #define STS_IAA		(1<<5)		/* Interrupted on async advance */
146 #define STS_FATAL	(1<<4)		/* such as some PCI access errors */
147 #define STS_FLR		(1<<3)		/* frame list rolled over */
148 #define STS_PCD		(1<<2)		/* port change detect */
149 #define STS_ERR		(1<<1)		/* "error" completion (overflow, ...) */
150 #define STS_INT		(1<<0)		/* "normal" completion (short, ...) */
151 
152 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
153 
154 	/* USBINTR: offset 0x08 */
155 	u32		intr_enable;
156 
157 	/* FRINDEX: offset 0x0C */
158 	u32		frame_index;	/* current microframe number */
159 	/* CTRLDSSEGMENT: offset 0x10 */
160 	u32		segment;	/* address bits 63:32 if needed */
161 	/* PERIODICLISTBASE: offset 0x14 */
162 	u32		frame_list;	/* points to periodic list */
163 	/* ASYNCLISTADDR: offset 0x18 */
164 	u32		async_next;	/* address of next async queue head */
165 
166 	u32		reserved[9];
167 
168 	/* CONFIGFLAG: offset 0x40 */
169 	u32		configured_flag;
170 #define FLAG_CF		(1<<0)		/* true: we'll support "high speed" */
171 
172 	/* PORTSC: offset 0x44 */
173 	u32		port_status[];	/* up to N_PORTS */
174 /* 31:23 reserved */
175 #define PORT_WKOC_E	(1<<22)		/* wake on overcurrent (enable) */
176 #define PORT_WKDISC_E	(1<<21)		/* wake on disconnect (enable) */
177 #define PORT_WKCONN_E	(1<<20)		/* wake on connect (enable) */
178 /* 19:16 for port testing */
179 #define PORT_LED_OFF	(0<<14)
180 #define PORT_LED_AMBER	(1<<14)
181 #define PORT_LED_GREEN	(2<<14)
182 #define PORT_LED_MASK	(3<<14)
183 #define PORT_OWNER	(1<<13)		/* true: companion hc owns this port */
184 #define PORT_POWER	(1<<12)		/* true: has power (see PPC) */
185 #define PORT_USB11(x) (((x)&(3<<10)) == (1<<10))	/* USB 1.1 device */
186 /* 11:10 for detecting lowspeed devices (reset vs release ownership) */
187 /* 9 reserved */
188 #define PORT_RESET	(1<<8)		/* reset port */
189 #define PORT_SUSPEND	(1<<7)		/* suspend port */
190 #define PORT_RESUME	(1<<6)		/* resume it */
191 #define PORT_OCC	(1<<5)		/* over current change */
192 #define PORT_OC		(1<<4)		/* over current active */
193 #define PORT_PEC	(1<<3)		/* port enable change */
194 #define PORT_PE		(1<<2)		/* port enable */
195 #define PORT_CSC	(1<<1)		/* connect status change */
196 #define PORT_CONNECT	(1<<0)		/* device connected */
197 #define PORT_RWC_BITS   (PORT_CSC | PORT_PEC | PORT_OCC)
198 } __packed;
199 
200 #define	QTD_NEXT(dma)	cpu_to_le32((u32)dma)
201 
202 /*
203  * EHCI Specification 0.95 Section 3.5
204  * QTD: describe data transfer components (buffer, direction, ...)
205  * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
206  *
207  * These are associated only with "QH" (Queue Head) structures,
208  * used with control, bulk, and interrupt transfers.
209  */
210 struct ehci_qtd {
211 	/* first part defined by EHCI spec */
212 	__le32			hw_next;		/* see EHCI 3.5.1 */
213 	__le32			hw_alt_next;		/* see EHCI 3.5.2 */
214 	__le32			hw_token;		/* see EHCI 3.5.3 */
215 #define	QTD_TOGGLE	(1 << 31)	/* data toggle */
216 #define	QTD_LENGTH(tok)	(((tok)>>16) & 0x7fff)
217 #define	QTD_IOC		(1 << 15)	/* interrupt on complete */
218 #define	QTD_CERR(tok)	(((tok)>>10) & 0x3)
219 #define	QTD_PID(tok)	(((tok)>>8) & 0x3)
220 #define	QTD_STS_ACTIVE	(1 << 7)	/* HC may execute this */
221 #define	QTD_STS_HALT	(1 << 6)	/* halted on error */
222 #define	QTD_STS_DBE	(1 << 5)	/* data buffer error (in HC) */
223 #define	QTD_STS_BABBLE	(1 << 4)	/* device was babbling (qtd halted) */
224 #define	QTD_STS_XACT	(1 << 3)	/* device gave illegal response */
225 #define	QTD_STS_MMF	(1 << 2)	/* incomplete split transaction */
226 #define	QTD_STS_STS	(1 << 1)	/* split transaction state */
227 #define	QTD_STS_PING	(1 << 0)	/* issue PING? */
228 	__le32			hw_buf[5];		/* see EHCI 3.5.4 */
229 	__le32			hw_buf_hi[5];		/* Appendix B */
230 
231 	/* the rest is HCD-private */
232 	dma_addr_t		qtd_dma;		/* qtd address */
233 	struct list_head	qtd_list;		/* sw qtd list */
234 	struct urb		*urb;			/* qtd's urb */
235 	size_t			length;			/* length of buffer */
236 
237 	u32			qtd_buffer_len;
238 	void			*buffer;
239 	dma_addr_t		buffer_dma;
240 	void			*transfer_buffer;
241 	void			*transfer_dma;
242 } __aligned(32);
243 
244 /* mask NakCnt+T in qh->hw_alt_next */
245 #define QTD_MASK cpu_to_le32 (~0x1f)
246 
247 #define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1)
248 
249 /* Type tag from {qh, itd, sitd, fstn}->hw_next */
250 #define Q_NEXT_TYPE(dma) ((dma) & cpu_to_le32 (3 << 1))
251 
252 /* values for that type tag */
253 #define Q_TYPE_QH	cpu_to_le32 (1 << 1)
254 
255 /* next async queue entry, or pointer to interrupt/periodic QH */
256 #define	QH_NEXT(dma)	(cpu_to_le32(((u32)dma)&~0x01f)|Q_TYPE_QH)
257 
258 /* for periodic/async schedules and qtd lists, mark end of list */
259 #define	EHCI_LIST_END	cpu_to_le32(1) /* "null pointer" to hw */
260 
261 /*
262  * Entries in periodic shadow table are pointers to one of four kinds
263  * of data structure.  That's dictated by the hardware; a type tag is
264  * encoded in the low bits of the hardware's periodic schedule.  Use
265  * Q_NEXT_TYPE to get the tag.
266  *
267  * For entries in the async schedule, the type tag always says "qh".
268  */
269 union ehci_shadow {
270 	struct ehci_qh		*qh;		/* Q_TYPE_QH */
271 	__le32			*hw_next;	/* (all types) */
272 	void			*ptr;
273 };
274 
275 /*
276  * EHCI Specification 0.95 Section 3.6
277  * QH: describes control/bulk/interrupt endpoints
278  * See Fig 3-7 "Queue Head Structure Layout".
279  *
280  * These appear in both the async and (for interrupt) periodic schedules.
281  */
282 
283 struct ehci_qh {
284 	/* first part defined by EHCI spec */
285 	__le32			hw_next;	 /* see EHCI 3.6.1 */
286 	__le32			hw_info1;	/* see EHCI 3.6.2 */
287 #define	QH_HEAD		0x00008000
288 	__le32			hw_info2;	/* see EHCI 3.6.2 */
289 #define	QH_SMASK	0x000000ff
290 #define	QH_CMASK	0x0000ff00
291 #define	QH_HUBADDR	0x007f0000
292 #define	QH_HUBPORT	0x3f800000
293 #define	QH_MULT		0xc0000000
294 	__le32			hw_current;	 /* qtd list - see EHCI 3.6.4 */
295 
296 	/* qtd overlay (hardware parts of a struct ehci_qtd) */
297 	__le32			hw_qtd_next;
298 	__le32			hw_alt_next;
299 	__le32			hw_token;
300 	__le32			hw_buf[5];
301 	__le32			hw_buf_hi[5];
302 
303 	/* the rest is HCD-private */
304 	dma_addr_t		qh_dma;		/* address of qh */
305 	union ehci_shadow	qh_next;	/* ptr to qh; or periodic */
306 	struct list_head	qtd_list;	/* sw qtd list */
307 	struct ehci_qtd		*dummy;
308 	struct ehci_qh		*reclaim;	/* next to reclaim */
309 
310 	struct oxu_hcd		*oxu;
311 	struct kref		kref;
312 	unsigned int		stamp;
313 
314 	u8			qh_state;
315 #define	QH_STATE_LINKED		1		/* HC sees this */
316 #define	QH_STATE_UNLINK		2		/* HC may still see this */
317 #define	QH_STATE_IDLE		3		/* HC doesn't see this */
318 #define	QH_STATE_UNLINK_WAIT	4		/* LINKED and on reclaim q */
319 #define	QH_STATE_COMPLETING	5		/* don't touch token.HALT */
320 
321 	/* periodic schedule info */
322 	u8			usecs;		/* intr bandwidth */
323 	u8			gap_uf;		/* uframes split/csplit gap */
324 	u8			c_usecs;	/* ... split completion bw */
325 	u16			tt_usecs;	/* tt downstream bandwidth */
326 	unsigned short		period;		/* polling interval */
327 	unsigned short		start;		/* where polling starts */
328 #define NO_FRAME ((unsigned short)~0)			/* pick new start */
329 	struct usb_device	*dev;		/* access to TT */
330 } __aligned(32);
331 
332 /*
333  * Proper OXU210HP structs
334  */
335 
336 #define OXU_OTG_CORE_OFFSET	0x00400
337 #define OXU_OTG_CAP_OFFSET	(OXU_OTG_CORE_OFFSET + 0x100)
338 #define OXU_SPH_CORE_OFFSET	0x00800
339 #define OXU_SPH_CAP_OFFSET	(OXU_SPH_CORE_OFFSET + 0x100)
340 
341 #define OXU_OTG_MEM		0xE000
342 #define OXU_SPH_MEM		0x16000
343 
344 /* Only how many elements & element structure are specifies here. */
345 /* 2 host controllers are enabled - total size <= 28 kbytes */
346 #define	DEFAULT_I_TDPS		1024
347 #define QHEAD_NUM		16
348 #define QTD_NUM			32
349 #define SITD_NUM		8
350 #define MURB_NUM		8
351 
352 #define BUFFER_NUM		8
353 #define BUFFER_SIZE		512
354 
355 struct oxu_info {
356 	struct usb_hcd *hcd[2];
357 };
358 
359 struct oxu_buf {
360 	u8			buffer[BUFFER_SIZE];
361 } __aligned(BUFFER_SIZE);
362 
363 struct oxu_onchip_mem {
364 	struct oxu_buf		db_pool[BUFFER_NUM];
365 
366 	u32			frame_list[DEFAULT_I_TDPS];
367 	struct ehci_qh		qh_pool[QHEAD_NUM];
368 	struct ehci_qtd		qtd_pool[QTD_NUM];
369 } __aligned(4 << 10);
370 
371 #define	EHCI_MAX_ROOT_PORTS	15		/* see HCS_N_PORTS */
372 
373 struct oxu_murb {
374 	struct urb		urb;
375 	struct urb		*main;
376 	u8			last;
377 };
378 
379 struct oxu_hcd {				/* one per controller */
380 	unsigned int		is_otg:1;
381 
382 	u8			qh_used[QHEAD_NUM];
383 	u8			qtd_used[QTD_NUM];
384 	u8			db_used[BUFFER_NUM];
385 	u8			murb_used[MURB_NUM];
386 
387 	struct oxu_onchip_mem	__iomem *mem;
388 	spinlock_t		mem_lock;
389 
390 	struct timer_list	urb_timer;
391 
392 	struct ehci_caps __iomem *caps;
393 	struct ehci_regs __iomem *regs;
394 
395 	u32			hcs_params;	/* cached register copy */
396 	spinlock_t		lock;
397 
398 	/* async schedule support */
399 	struct ehci_qh		*async;
400 	struct ehci_qh		*reclaim;
401 	unsigned int		reclaim_ready:1;
402 	unsigned int		scanning:1;
403 
404 	/* periodic schedule support */
405 	unsigned int		periodic_size;
406 	__le32			*periodic;	/* hw periodic table */
407 	dma_addr_t		periodic_dma;
408 	unsigned int		i_thresh;	/* uframes HC might cache */
409 
410 	union ehci_shadow	*pshadow;	/* mirror hw periodic table */
411 	int			next_uframe;	/* scan periodic, start here */
412 	unsigned int		periodic_sched;	/* periodic activity count */
413 
414 	/* per root hub port */
415 	unsigned long		reset_done[EHCI_MAX_ROOT_PORTS];
416 	/* bit vectors (one bit per port) */
417 	unsigned long		bus_suspended;	/* which ports were
418 						 * already suspended at the
419 						 * start of a bus suspend
420 						 */
421 	unsigned long		companion_ports;/* which ports are dedicated
422 						 * to the companion controller
423 						 */
424 
425 	struct timer_list	watchdog;
426 	unsigned long		actions;
427 	unsigned int		stamp;
428 	unsigned long		next_statechange;
429 	u32			command;
430 
431 	/* SILICON QUIRKS */
432 	struct list_head	urb_list;	/* this is the head to urb
433 						 * queue that didn't get enough
434 						 * resources
435 						 */
436 	struct oxu_murb		*murb_pool;	/* murb per split big urb */
437 	unsigned int		urb_len;
438 
439 	u8			sbrn;		/* packed release number */
440 };
441 
442 #define EHCI_IAA_JIFFIES	(HZ/100)	/* arbitrary; ~10 msec */
443 #define EHCI_IO_JIFFIES		(HZ/10)		/* io watchdog > irq_thresh */
444 #define EHCI_ASYNC_JIFFIES      (HZ/20)		/* async idle timeout */
445 #define EHCI_SHRINK_JIFFIES     (HZ/200)	/* async qh unlink delay */
446 
447 enum ehci_timer_action {
448 	TIMER_IO_WATCHDOG,
449 	TIMER_IAA_WATCHDOG,
450 	TIMER_ASYNC_SHRINK,
451 	TIMER_ASYNC_OFF,
452 };
453 
454 /*
455  * Main defines
456  */
457 
458 #define oxu_dbg(oxu, fmt, args...) \
459 		dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
460 #define oxu_err(oxu, fmt, args...) \
461 		dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
462 #define oxu_info(oxu, fmt, args...) \
463 		dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
464 
465 #ifdef CONFIG_DYNAMIC_DEBUG
466 #define DEBUG
467 #endif
468 
oxu_to_hcd(struct oxu_hcd * oxu)469 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
470 {
471 	return container_of((void *) oxu, struct usb_hcd, hcd_priv);
472 }
473 
hcd_to_oxu(struct usb_hcd * hcd)474 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
475 {
476 	return (struct oxu_hcd *) (hcd->hcd_priv);
477 }
478 
479 /*
480  * Debug stuff
481  */
482 
483 #undef OXU_URB_TRACE
484 #undef OXU_VERBOSE_DEBUG
485 
486 #ifdef OXU_VERBOSE_DEBUG
487 #define oxu_vdbg			oxu_dbg
488 #else
489 #define oxu_vdbg(oxu, fmt, args...)	/* Nop */
490 #endif
491 
492 #ifdef DEBUG
493 
494 static int __attribute__((__unused__))
dbg_status_buf(char * buf,unsigned len,const char * label,u32 status)495 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
496 {
497 	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
498 		label, label[0] ? " " : "", status,
499 		(status & STS_ASS) ? " Async" : "",
500 		(status & STS_PSS) ? " Periodic" : "",
501 		(status & STS_RECL) ? " Recl" : "",
502 		(status & STS_HALT) ? " Halt" : "",
503 		(status & STS_IAA) ? " IAA" : "",
504 		(status & STS_FATAL) ? " FATAL" : "",
505 		(status & STS_FLR) ? " FLR" : "",
506 		(status & STS_PCD) ? " PCD" : "",
507 		(status & STS_ERR) ? " ERR" : "",
508 		(status & STS_INT) ? " INT" : ""
509 		);
510 }
511 
512 static int __attribute__((__unused__))
dbg_intr_buf(char * buf,unsigned len,const char * label,u32 enable)513 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
514 {
515 	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
516 		label, label[0] ? " " : "", enable,
517 		(enable & STS_IAA) ? " IAA" : "",
518 		(enable & STS_FATAL) ? " FATAL" : "",
519 		(enable & STS_FLR) ? " FLR" : "",
520 		(enable & STS_PCD) ? " PCD" : "",
521 		(enable & STS_ERR) ? " ERR" : "",
522 		(enable & STS_INT) ? " INT" : ""
523 		);
524 }
525 
526 static const char *const fls_strings[] =
527     { "1024", "512", "256", "??" };
528 
dbg_command_buf(char * buf,unsigned len,const char * label,u32 command)529 static int dbg_command_buf(char *buf, unsigned len,
530 				const char *label, u32 command)
531 {
532 	return scnprintf(buf, len,
533 		"%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
534 		label, label[0] ? " " : "", command,
535 		(command & CMD_PARK) ? "park" : "(park)",
536 		CMD_PARK_CNT(command),
537 		(command >> 16) & 0x3f,
538 		(command & CMD_LRESET) ? " LReset" : "",
539 		(command & CMD_IAAD) ? " IAAD" : "",
540 		(command & CMD_ASE) ? " Async" : "",
541 		(command & CMD_PSE) ? " Periodic" : "",
542 		fls_strings[(command >> 2) & 0x3],
543 		(command & CMD_RESET) ? " Reset" : "",
544 		(command & CMD_RUN) ? "RUN" : "HALT"
545 		);
546 }
547 
dbg_port_buf(char * buf,unsigned len,const char * label,int port,u32 status)548 static int dbg_port_buf(char *buf, unsigned len, const char *label,
549 				int port, u32 status)
550 {
551 	char	*sig;
552 
553 	/* signaling state */
554 	switch (status & (3 << 10)) {
555 	case 0 << 10:
556 		sig = "se0";
557 		break;
558 	case 1 << 10:
559 		sig = "k";	/* low speed */
560 		break;
561 	case 2 << 10:
562 		sig = "j";
563 		break;
564 	default:
565 		sig = "?";
566 		break;
567 	}
568 
569 	return scnprintf(buf, len,
570 		"%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
571 		label, label[0] ? " " : "", port, status,
572 		(status & PORT_POWER) ? " POWER" : "",
573 		(status & PORT_OWNER) ? " OWNER" : "",
574 		sig,
575 		(status & PORT_RESET) ? " RESET" : "",
576 		(status & PORT_SUSPEND) ? " SUSPEND" : "",
577 		(status & PORT_RESUME) ? " RESUME" : "",
578 		(status & PORT_OCC) ? " OCC" : "",
579 		(status & PORT_OC) ? " OC" : "",
580 		(status & PORT_PEC) ? " PEC" : "",
581 		(status & PORT_PE) ? " PE" : "",
582 		(status & PORT_CSC) ? " CSC" : "",
583 		(status & PORT_CONNECT) ? " CONNECT" : ""
584 	    );
585 }
586 
587 #else
588 
589 static inline int __attribute__((__unused__))
dbg_status_buf(char * buf,unsigned len,const char * label,u32 status)590 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
591 { return 0; }
592 
593 static inline int __attribute__((__unused__))
dbg_command_buf(char * buf,unsigned len,const char * label,u32 command)594 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
595 { return 0; }
596 
597 static inline int __attribute__((__unused__))
dbg_intr_buf(char * buf,unsigned len,const char * label,u32 enable)598 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
599 { return 0; }
600 
601 static inline int __attribute__((__unused__))
dbg_port_buf(char * buf,unsigned len,const char * label,int port,u32 status)602 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
603 { return 0; }
604 
605 #endif /* DEBUG */
606 
607 /* functions have the "wrong" filename when they're output... */
608 #define dbg_status(oxu, label, status) { \
609 	char _buf[80]; \
610 	dbg_status_buf(_buf, sizeof _buf, label, status); \
611 	oxu_dbg(oxu, "%s\n", _buf); \
612 }
613 
614 #define dbg_cmd(oxu, label, command) { \
615 	char _buf[80]; \
616 	dbg_command_buf(_buf, sizeof _buf, label, command); \
617 	oxu_dbg(oxu, "%s\n", _buf); \
618 }
619 
620 #define dbg_port(oxu, label, port, status) { \
621 	char _buf[80]; \
622 	dbg_port_buf(_buf, sizeof _buf, label, port, status); \
623 	oxu_dbg(oxu, "%s\n", _buf); \
624 }
625 
626 /*
627  * Module parameters
628  */
629 
630 /* Initial IRQ latency: faster than hw default */
631 static int log2_irq_thresh;			/* 0 to 6 */
632 module_param(log2_irq_thresh, int, S_IRUGO);
633 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
634 
635 /* Initial park setting: slower than hw default */
636 static unsigned park;
637 module_param(park, uint, S_IRUGO);
638 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
639 
640 /* For flakey hardware, ignore overcurrent indicators */
641 static bool ignore_oc;
642 module_param(ignore_oc, bool, S_IRUGO);
643 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
644 
645 
646 static void ehci_work(struct oxu_hcd *oxu);
647 static int oxu_hub_control(struct usb_hcd *hcd,
648 				u16 typeReq, u16 wValue, u16 wIndex,
649 				char *buf, u16 wLength);
650 
651 /*
652  * Local functions
653  */
654 
655 /* Low level read/write registers functions */
oxu_readl(void __iomem * base,u32 reg)656 static inline u32 oxu_readl(void __iomem *base, u32 reg)
657 {
658 	return readl(base + reg);
659 }
660 
oxu_writel(void __iomem * base,u32 reg,u32 val)661 static inline void oxu_writel(void __iomem *base, u32 reg, u32 val)
662 {
663 	writel(val, base + reg);
664 }
665 
timer_action_done(struct oxu_hcd * oxu,enum ehci_timer_action action)666 static inline void timer_action_done(struct oxu_hcd *oxu,
667 					enum ehci_timer_action action)
668 {
669 	clear_bit(action, &oxu->actions);
670 }
671 
timer_action(struct oxu_hcd * oxu,enum ehci_timer_action action)672 static inline void timer_action(struct oxu_hcd *oxu,
673 					enum ehci_timer_action action)
674 {
675 	if (!test_and_set_bit(action, &oxu->actions)) {
676 		unsigned long t;
677 
678 		switch (action) {
679 		case TIMER_IAA_WATCHDOG:
680 			t = EHCI_IAA_JIFFIES;
681 			break;
682 		case TIMER_IO_WATCHDOG:
683 			t = EHCI_IO_JIFFIES;
684 			break;
685 		case TIMER_ASYNC_OFF:
686 			t = EHCI_ASYNC_JIFFIES;
687 			break;
688 		case TIMER_ASYNC_SHRINK:
689 		default:
690 			t = EHCI_SHRINK_JIFFIES;
691 			break;
692 		}
693 		t += jiffies;
694 		/* all timings except IAA watchdog can be overridden.
695 		 * async queue SHRINK often precedes IAA.  while it's ready
696 		 * to go OFF neither can matter, and afterwards the IO
697 		 * watchdog stops unless there's still periodic traffic.
698 		 */
699 		if (action != TIMER_IAA_WATCHDOG
700 				&& t > oxu->watchdog.expires
701 				&& timer_pending(&oxu->watchdog))
702 			return;
703 		mod_timer(&oxu->watchdog, t);
704 	}
705 }
706 
707 /*
708  * handshake - spin reading hc until handshake completes or fails
709  * @ptr: address of hc register to be read
710  * @mask: bits to look at in result of read
711  * @done: value of those bits when handshake succeeds
712  * @usec: timeout in microseconds
713  *
714  * Returns negative errno, or zero on success
715  *
716  * Success happens when the "mask" bits have the specified value (hardware
717  * handshake done).  There are two failure modes:  "usec" have passed (major
718  * hardware flakeout), or the register reads as all-ones (hardware removed).
719  *
720  * That last failure should_only happen in cases like physical cardbus eject
721  * before driver shutdown. But it also seems to be caused by bugs in cardbus
722  * bridge shutdown:  shutting down the bridge before the devices using it.
723  */
handshake(struct oxu_hcd * oxu,void __iomem * ptr,u32 mask,u32 done,int usec)724 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
725 					u32 mask, u32 done, int usec)
726 {
727 	u32 result;
728 	int ret;
729 
730 	ret = readl_poll_timeout_atomic(ptr, result,
731 					((result & mask) == done ||
732 					 result == U32_MAX),
733 					1, usec);
734 	if (result == U32_MAX)		/* card removed */
735 		return -ENODEV;
736 
737 	return ret;
738 }
739 
740 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
ehci_halt(struct oxu_hcd * oxu)741 static int ehci_halt(struct oxu_hcd *oxu)
742 {
743 	u32	temp = readl(&oxu->regs->status);
744 
745 	/* disable any irqs left enabled by previous code */
746 	writel(0, &oxu->regs->intr_enable);
747 
748 	if ((temp & STS_HALT) != 0)
749 		return 0;
750 
751 	temp = readl(&oxu->regs->command);
752 	temp &= ~CMD_RUN;
753 	writel(temp, &oxu->regs->command);
754 	return handshake(oxu, &oxu->regs->status,
755 			  STS_HALT, STS_HALT, 16 * 125);
756 }
757 
758 /* Put TDI/ARC silicon into EHCI mode */
tdi_reset(struct oxu_hcd * oxu)759 static void tdi_reset(struct oxu_hcd *oxu)
760 {
761 	u32 __iomem *reg_ptr;
762 	u32 tmp;
763 
764 	reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
765 	tmp = readl(reg_ptr);
766 	tmp |= 0x3;
767 	writel(tmp, reg_ptr);
768 }
769 
770 /* Reset a non-running (STS_HALT == 1) controller */
ehci_reset(struct oxu_hcd * oxu)771 static int ehci_reset(struct oxu_hcd *oxu)
772 {
773 	int	retval;
774 	u32	command = readl(&oxu->regs->command);
775 
776 	command |= CMD_RESET;
777 	dbg_cmd(oxu, "reset", command);
778 	writel(command, &oxu->regs->command);
779 	oxu_to_hcd(oxu)->state = HC_STATE_HALT;
780 	oxu->next_statechange = jiffies;
781 	retval = handshake(oxu, &oxu->regs->command,
782 			    CMD_RESET, 0, 250 * 1000);
783 
784 	if (retval)
785 		return retval;
786 
787 	tdi_reset(oxu);
788 
789 	return retval;
790 }
791 
792 /* Idle the controller (from running) */
ehci_quiesce(struct oxu_hcd * oxu)793 static void ehci_quiesce(struct oxu_hcd *oxu)
794 {
795 	u32	temp;
796 
797 #ifdef DEBUG
798 	BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state));
799 #endif
800 
801 	/* wait for any schedule enables/disables to take effect */
802 	temp = readl(&oxu->regs->command) << 10;
803 	temp &= STS_ASS | STS_PSS;
804 	if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
805 				temp, 16 * 125) != 0) {
806 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
807 		return;
808 	}
809 
810 	/* then disable anything that's still active */
811 	temp = readl(&oxu->regs->command);
812 	temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
813 	writel(temp, &oxu->regs->command);
814 
815 	/* hardware can take 16 microframes to turn off ... */
816 	if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
817 				0, 16 * 125) != 0) {
818 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
819 		return;
820 	}
821 }
822 
check_reset_complete(struct oxu_hcd * oxu,int index,u32 __iomem * status_reg,int port_status)823 static int check_reset_complete(struct oxu_hcd *oxu, int index,
824 				u32 __iomem *status_reg, int port_status)
825 {
826 	if (!(port_status & PORT_CONNECT)) {
827 		oxu->reset_done[index] = 0;
828 		return port_status;
829 	}
830 
831 	/* if reset finished and it's still not enabled -- handoff */
832 	if (!(port_status & PORT_PE)) {
833 		oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
834 				index+1);
835 		return port_status;
836 	} else
837 		oxu_dbg(oxu, "port %d high speed\n", index + 1);
838 
839 	return port_status;
840 }
841 
ehci_hub_descriptor(struct oxu_hcd * oxu,struct usb_hub_descriptor * desc)842 static void ehci_hub_descriptor(struct oxu_hcd *oxu,
843 				struct usb_hub_descriptor *desc)
844 {
845 	int ports = HCS_N_PORTS(oxu->hcs_params);
846 	u16 temp;
847 
848 	desc->bDescriptorType = USB_DT_HUB;
849 	desc->bPwrOn2PwrGood = 10;	/* oxu 1.0, 2.3.9 says 20ms max */
850 	desc->bHubContrCurrent = 0;
851 
852 	desc->bNbrPorts = ports;
853 	temp = 1 + (ports / 8);
854 	desc->bDescLength = 7 + 2 * temp;
855 
856 	/* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
857 	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
858 	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
859 
860 	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
861 	if (HCS_PPC(oxu->hcs_params))
862 		temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */
863 	else
864 		temp |= HUB_CHAR_NO_LPSM; /* no power switching */
865 	desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
866 }
867 
868 
869 /* Allocate an OXU210HP on-chip memory data buffer
870  *
871  * An on-chip memory data buffer is required for each OXU210HP USB transfer.
872  * Each transfer descriptor has one or more on-chip memory data buffers.
873  *
874  * Data buffers are allocated from a fix sized pool of data blocks.
875  * To minimise fragmentation and give reasonable memory utlisation,
876  * data buffers are allocated with sizes the power of 2 multiples of
877  * the block size, starting on an address a multiple of the allocated size.
878  *
879  * FIXME: callers of this function require a buffer to be allocated for
880  * len=0. This is a waste of on-chip memory and should be fix. Then this
881  * function should be changed to not allocate a buffer for len=0.
882  */
oxu_buf_alloc(struct oxu_hcd * oxu,struct ehci_qtd * qtd,int len)883 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
884 {
885 	int n_blocks;	/* minium blocks needed to hold len */
886 	int a_blocks;	/* blocks allocated */
887 	int i, j;
888 
889 	/* Don't allocate bigger than supported */
890 	if (len > BUFFER_SIZE * BUFFER_NUM) {
891 		oxu_err(oxu, "buffer too big (%d)\n", len);
892 		return -ENOMEM;
893 	}
894 
895 	spin_lock(&oxu->mem_lock);
896 
897 	/* Number of blocks needed to hold len */
898 	n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
899 
900 	/* Round the number of blocks up to the power of 2 */
901 	for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
902 		;
903 
904 	/* Find a suitable available data buffer */
905 	for (i = 0; i < BUFFER_NUM;
906 			i += max_t(int, a_blocks, oxu->db_used[i])) {
907 
908 		/* Check all the required blocks are available */
909 		for (j = 0; j < a_blocks; j++)
910 			if (oxu->db_used[i + j])
911 				break;
912 
913 		if (j != a_blocks)
914 			continue;
915 
916 		/* Allocate blocks found! */
917 		qtd->buffer = (void *) &oxu->mem->db_pool[i];
918 		qtd->buffer_dma = virt_to_phys(qtd->buffer);
919 
920 		qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
921 		oxu->db_used[i] = a_blocks;
922 
923 		spin_unlock(&oxu->mem_lock);
924 
925 		return 0;
926 	}
927 
928 	/* Failed */
929 
930 	spin_unlock(&oxu->mem_lock);
931 
932 	return -ENOMEM;
933 }
934 
oxu_buf_free(struct oxu_hcd * oxu,struct ehci_qtd * qtd)935 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
936 {
937 	int index;
938 
939 	spin_lock(&oxu->mem_lock);
940 
941 	index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
942 							 / BUFFER_SIZE;
943 	oxu->db_used[index] = 0;
944 	qtd->qtd_buffer_len = 0;
945 	qtd->buffer_dma = 0;
946 	qtd->buffer = NULL;
947 
948 	spin_unlock(&oxu->mem_lock);
949 }
950 
ehci_qtd_init(struct ehci_qtd * qtd,dma_addr_t dma)951 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
952 {
953 	memset(qtd, 0, sizeof *qtd);
954 	qtd->qtd_dma = dma;
955 	qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
956 	qtd->hw_next = EHCI_LIST_END;
957 	qtd->hw_alt_next = EHCI_LIST_END;
958 	INIT_LIST_HEAD(&qtd->qtd_list);
959 }
960 
oxu_qtd_free(struct oxu_hcd * oxu,struct ehci_qtd * qtd)961 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
962 {
963 	int index;
964 
965 	if (qtd->buffer)
966 		oxu_buf_free(oxu, qtd);
967 
968 	spin_lock(&oxu->mem_lock);
969 
970 	index = qtd - &oxu->mem->qtd_pool[0];
971 	oxu->qtd_used[index] = 0;
972 
973 	spin_unlock(&oxu->mem_lock);
974 }
975 
ehci_qtd_alloc(struct oxu_hcd * oxu)976 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
977 {
978 	int i;
979 	struct ehci_qtd *qtd = NULL;
980 
981 	spin_lock(&oxu->mem_lock);
982 
983 	for (i = 0; i < QTD_NUM; i++)
984 		if (!oxu->qtd_used[i])
985 			break;
986 
987 	if (i < QTD_NUM) {
988 		qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
989 		memset(qtd, 0, sizeof *qtd);
990 
991 		qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
992 		qtd->hw_next = EHCI_LIST_END;
993 		qtd->hw_alt_next = EHCI_LIST_END;
994 		INIT_LIST_HEAD(&qtd->qtd_list);
995 
996 		qtd->qtd_dma = virt_to_phys(qtd);
997 
998 		oxu->qtd_used[i] = 1;
999 	}
1000 
1001 	spin_unlock(&oxu->mem_lock);
1002 
1003 	return qtd;
1004 }
1005 
oxu_qh_free(struct oxu_hcd * oxu,struct ehci_qh * qh)1006 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
1007 {
1008 	int index;
1009 
1010 	spin_lock(&oxu->mem_lock);
1011 
1012 	index = qh - &oxu->mem->qh_pool[0];
1013 	oxu->qh_used[index] = 0;
1014 
1015 	spin_unlock(&oxu->mem_lock);
1016 }
1017 
qh_destroy(struct kref * kref)1018 static void qh_destroy(struct kref *kref)
1019 {
1020 	struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
1021 	struct oxu_hcd *oxu = qh->oxu;
1022 
1023 	/* clean qtds first, and know this is not linked */
1024 	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1025 		oxu_dbg(oxu, "unused qh not empty!\n");
1026 		BUG();
1027 	}
1028 	if (qh->dummy)
1029 		oxu_qtd_free(oxu, qh->dummy);
1030 	oxu_qh_free(oxu, qh);
1031 }
1032 
oxu_qh_alloc(struct oxu_hcd * oxu)1033 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
1034 {
1035 	int i;
1036 	struct ehci_qh *qh = NULL;
1037 
1038 	spin_lock(&oxu->mem_lock);
1039 
1040 	for (i = 0; i < QHEAD_NUM; i++)
1041 		if (!oxu->qh_used[i])
1042 			break;
1043 
1044 	if (i < QHEAD_NUM) {
1045 		qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
1046 		memset(qh, 0, sizeof *qh);
1047 
1048 		kref_init(&qh->kref);
1049 		qh->oxu = oxu;
1050 		qh->qh_dma = virt_to_phys(qh);
1051 		INIT_LIST_HEAD(&qh->qtd_list);
1052 
1053 		/* dummy td enables safe urb queuing */
1054 		qh->dummy = ehci_qtd_alloc(oxu);
1055 		if (qh->dummy == NULL) {
1056 			oxu_dbg(oxu, "no dummy td\n");
1057 			oxu->qh_used[i] = 0;
1058 			qh = NULL;
1059 			goto unlock;
1060 		}
1061 
1062 		oxu->qh_used[i] = 1;
1063 	}
1064 unlock:
1065 	spin_unlock(&oxu->mem_lock);
1066 
1067 	return qh;
1068 }
1069 
1070 /* to share a qh (cpu threads, or hc) */
qh_get(struct ehci_qh * qh)1071 static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
1072 {
1073 	kref_get(&qh->kref);
1074 	return qh;
1075 }
1076 
qh_put(struct ehci_qh * qh)1077 static inline void qh_put(struct ehci_qh *qh)
1078 {
1079 	kref_put(&qh->kref, qh_destroy);
1080 }
1081 
oxu_murb_free(struct oxu_hcd * oxu,struct oxu_murb * murb)1082 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
1083 {
1084 	int index;
1085 
1086 	spin_lock(&oxu->mem_lock);
1087 
1088 	index = murb - &oxu->murb_pool[0];
1089 	oxu->murb_used[index] = 0;
1090 
1091 	spin_unlock(&oxu->mem_lock);
1092 }
1093 
oxu_murb_alloc(struct oxu_hcd * oxu)1094 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
1095 
1096 {
1097 	int i;
1098 	struct oxu_murb *murb = NULL;
1099 
1100 	spin_lock(&oxu->mem_lock);
1101 
1102 	for (i = 0; i < MURB_NUM; i++)
1103 		if (!oxu->murb_used[i])
1104 			break;
1105 
1106 	if (i < MURB_NUM) {
1107 		murb = &(oxu->murb_pool)[i];
1108 
1109 		oxu->murb_used[i] = 1;
1110 	}
1111 
1112 	spin_unlock(&oxu->mem_lock);
1113 
1114 	return murb;
1115 }
1116 
1117 /* The queue heads and transfer descriptors are managed from pools tied
1118  * to each of the "per device" structures.
1119  * This is the initialisation and cleanup code.
1120  */
ehci_mem_cleanup(struct oxu_hcd * oxu)1121 static void ehci_mem_cleanup(struct oxu_hcd *oxu)
1122 {
1123 	kfree(oxu->murb_pool);
1124 	oxu->murb_pool = NULL;
1125 
1126 	if (oxu->async)
1127 		qh_put(oxu->async);
1128 	oxu->async = NULL;
1129 
1130 	timer_delete(&oxu->urb_timer);
1131 
1132 	oxu->periodic = NULL;
1133 
1134 	/* shadow periodic table */
1135 	kfree(oxu->pshadow);
1136 	oxu->pshadow = NULL;
1137 }
1138 
1139 /* Remember to add cleanup code (above) if you add anything here.
1140  */
ehci_mem_init(struct oxu_hcd * oxu,gfp_t flags)1141 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
1142 {
1143 	int i;
1144 
1145 	for (i = 0; i < oxu->periodic_size; i++)
1146 		oxu->mem->frame_list[i] = EHCI_LIST_END;
1147 	for (i = 0; i < QHEAD_NUM; i++)
1148 		oxu->qh_used[i] = 0;
1149 	for (i = 0; i < QTD_NUM; i++)
1150 		oxu->qtd_used[i] = 0;
1151 
1152 	oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
1153 	if (!oxu->murb_pool)
1154 		goto fail;
1155 
1156 	for (i = 0; i < MURB_NUM; i++)
1157 		oxu->murb_used[i] = 0;
1158 
1159 	oxu->async = oxu_qh_alloc(oxu);
1160 	if (!oxu->async)
1161 		goto fail;
1162 
1163 	oxu->periodic = (__le32 *) &oxu->mem->frame_list;
1164 	oxu->periodic_dma = virt_to_phys(oxu->periodic);
1165 
1166 	for (i = 0; i < oxu->periodic_size; i++)
1167 		oxu->periodic[i] = EHCI_LIST_END;
1168 
1169 	/* software shadow of hardware table */
1170 	oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
1171 	if (oxu->pshadow != NULL)
1172 		return 0;
1173 
1174 fail:
1175 	oxu_dbg(oxu, "couldn't init memory\n");
1176 	ehci_mem_cleanup(oxu);
1177 	return -ENOMEM;
1178 }
1179 
1180 /* Fill a qtd, returning how much of the buffer we were able to queue up.
1181  */
qtd_fill(struct ehci_qtd * qtd,dma_addr_t buf,size_t len,int token,int maxpacket)1182 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
1183 				int token, int maxpacket)
1184 {
1185 	int i, count;
1186 	u64 addr = buf;
1187 
1188 	/* one buffer entry per 4K ... first might be short or unaligned */
1189 	qtd->hw_buf[0] = cpu_to_le32((u32)addr);
1190 	qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
1191 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
1192 	if (likely(len < count))		/* ... iff needed */
1193 		count = len;
1194 	else {
1195 		buf +=  0x1000;
1196 		buf &= ~0x0fff;
1197 
1198 		/* per-qtd limit: from 16K to 20K (best alignment) */
1199 		for (i = 1; count < len && i < 5; i++) {
1200 			addr = buf;
1201 			qtd->hw_buf[i] = cpu_to_le32((u32)addr);
1202 			qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
1203 			buf += 0x1000;
1204 			if ((count + 0x1000) < len)
1205 				count += 0x1000;
1206 			else
1207 				count = len;
1208 		}
1209 
1210 		/* short packets may only terminate transfers */
1211 		if (count != len)
1212 			count -= (count % maxpacket);
1213 	}
1214 	qtd->hw_token = cpu_to_le32((count << 16) | token);
1215 	qtd->length = count;
1216 
1217 	return count;
1218 }
1219 
qh_update(struct oxu_hcd * oxu,struct ehci_qh * qh,struct ehci_qtd * qtd)1220 static inline void qh_update(struct oxu_hcd *oxu,
1221 				struct ehci_qh *qh, struct ehci_qtd *qtd)
1222 {
1223 	/* writes to an active overlay are unsafe */
1224 	BUG_ON(qh->qh_state != QH_STATE_IDLE);
1225 
1226 	qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
1227 	qh->hw_alt_next = EHCI_LIST_END;
1228 
1229 	/* Except for control endpoints, we make hardware maintain data
1230 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
1231 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
1232 	 * ever clear it.
1233 	 */
1234 	if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
1235 		unsigned	is_out, epnum;
1236 
1237 		is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
1238 		epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
1239 		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
1240 			qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
1241 			usb_settoggle(qh->dev, epnum, is_out, 1);
1242 		}
1243 	}
1244 
1245 	/* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
1246 	wmb();
1247 	qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
1248 }
1249 
1250 /* If it weren't for a common silicon quirk (writing the dummy into the qh
1251  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
1252  * recovery (including urb dequeue) would need software changes to a QH...
1253  */
qh_refresh(struct oxu_hcd * oxu,struct ehci_qh * qh)1254 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
1255 {
1256 	struct ehci_qtd *qtd;
1257 
1258 	if (list_empty(&qh->qtd_list))
1259 		qtd = qh->dummy;
1260 	else {
1261 		qtd = list_entry(qh->qtd_list.next,
1262 				struct ehci_qtd, qtd_list);
1263 		/* first qtd may already be partially processed */
1264 		if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
1265 			qtd = NULL;
1266 	}
1267 
1268 	if (qtd)
1269 		qh_update(oxu, qh, qtd);
1270 }
1271 
qtd_copy_status(struct oxu_hcd * oxu,struct urb * urb,size_t length,u32 token)1272 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
1273 				size_t length, u32 token)
1274 {
1275 	/* count IN/OUT bytes, not SETUP (even short packets) */
1276 	if (likely(QTD_PID(token) != 2))
1277 		urb->actual_length += length - QTD_LENGTH(token);
1278 
1279 	/* don't modify error codes */
1280 	if (unlikely(urb->status != -EINPROGRESS))
1281 		return;
1282 
1283 	/* force cleanup after short read; not always an error */
1284 	if (unlikely(IS_SHORT_READ(token)))
1285 		urb->status = -EREMOTEIO;
1286 
1287 	/* serious "can't proceed" faults reported by the hardware */
1288 	if (token & QTD_STS_HALT) {
1289 		if (token & QTD_STS_BABBLE) {
1290 			/* FIXME "must" disable babbling device's port too */
1291 			urb->status = -EOVERFLOW;
1292 		} else if (token & QTD_STS_MMF) {
1293 			/* fs/ls interrupt xfer missed the complete-split */
1294 			urb->status = -EPROTO;
1295 		} else if (token & QTD_STS_DBE) {
1296 			urb->status = (QTD_PID(token) == 1) /* IN ? */
1297 				? -ENOSR  /* hc couldn't read data */
1298 				: -ECOMM; /* hc couldn't write data */
1299 		} else if (token & QTD_STS_XACT) {
1300 			/* timeout, bad crc, wrong PID, etc; retried */
1301 			if (QTD_CERR(token))
1302 				urb->status = -EPIPE;
1303 			else {
1304 				oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
1305 					urb->dev->devpath,
1306 					usb_pipeendpoint(urb->pipe),
1307 					usb_pipein(urb->pipe) ? "in" : "out");
1308 				urb->status = -EPROTO;
1309 			}
1310 		/* CERR nonzero + no errors + halt --> stall */
1311 		} else if (QTD_CERR(token))
1312 			urb->status = -EPIPE;
1313 		else	/* unknown */
1314 			urb->status = -EPROTO;
1315 
1316 		oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
1317 			usb_pipedevice(urb->pipe),
1318 			usb_pipeendpoint(urb->pipe),
1319 			usb_pipein(urb->pipe) ? "in" : "out",
1320 			token, urb->status);
1321 	}
1322 }
1323 
ehci_urb_done(struct oxu_hcd * oxu,struct urb * urb)1324 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
1325 __releases(oxu->lock)
1326 __acquires(oxu->lock)
1327 {
1328 	if (likely(urb->hcpriv != NULL)) {
1329 		struct ehci_qh	*qh = (struct ehci_qh *) urb->hcpriv;
1330 
1331 		/* S-mask in a QH means it's an interrupt urb */
1332 		if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
1333 
1334 			/* ... update hc-wide periodic stats (for usbfs) */
1335 			oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
1336 		}
1337 		qh_put(qh);
1338 	}
1339 
1340 	urb->hcpriv = NULL;
1341 	switch (urb->status) {
1342 	case -EINPROGRESS:		/* success */
1343 		urb->status = 0;
1344 		break;
1345 	default:			/* fault */
1346 		break;
1347 	case -EREMOTEIO:		/* fault or normal */
1348 		if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
1349 			urb->status = 0;
1350 		break;
1351 	case -ECONNRESET:		/* canceled */
1352 	case -ENOENT:
1353 		break;
1354 	}
1355 
1356 #ifdef OXU_URB_TRACE
1357 	oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
1358 		__func__, urb->dev->devpath, urb,
1359 		usb_pipeendpoint(urb->pipe),
1360 		usb_pipein(urb->pipe) ? "in" : "out",
1361 		urb->status,
1362 		urb->actual_length, urb->transfer_buffer_length);
1363 #endif
1364 
1365 	/* complete() can reenter this HCD */
1366 	spin_unlock(&oxu->lock);
1367 	usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
1368 	spin_lock(&oxu->lock);
1369 }
1370 
1371 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1372 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1373 
1374 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1375 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1376 
1377 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
1378 
1379 /* Process and free completed qtds for a qh, returning URBs to drivers.
1380  * Chases up to qh->hw_current.  Returns number of completions called,
1381  * indicating how much "real" work we did.
1382  */
qh_completions(struct oxu_hcd * oxu,struct ehci_qh * qh)1383 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
1384 {
1385 	struct ehci_qtd *last = NULL, *end = qh->dummy;
1386 	struct ehci_qtd	*qtd, *tmp;
1387 	int stopped;
1388 	unsigned count = 0;
1389 	int do_status = 0;
1390 	u8 state;
1391 	struct oxu_murb *murb = NULL;
1392 
1393 	if (unlikely(list_empty(&qh->qtd_list)))
1394 		return count;
1395 
1396 	/* completions (or tasks on other cpus) must never clobber HALT
1397 	 * till we've gone through and cleaned everything up, even when
1398 	 * they add urbs to this qh's queue or mark them for unlinking.
1399 	 *
1400 	 * NOTE:  unlinking expects to be done in queue order.
1401 	 */
1402 	state = qh->qh_state;
1403 	qh->qh_state = QH_STATE_COMPLETING;
1404 	stopped = (state == QH_STATE_IDLE);
1405 
1406 	/* remove de-activated QTDs from front of queue.
1407 	 * after faults (including short reads), cleanup this urb
1408 	 * then let the queue advance.
1409 	 * if queue is stopped, handles unlinks.
1410 	 */
1411 	list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
1412 		struct urb *urb;
1413 		u32 token = 0;
1414 
1415 		urb = qtd->urb;
1416 
1417 		/* Clean up any state from previous QTD ...*/
1418 		if (last) {
1419 			if (likely(last->urb != urb)) {
1420 				if (last->urb->complete == NULL) {
1421 					murb = (struct oxu_murb *) last->urb;
1422 					last->urb = murb->main;
1423 					if (murb->last) {
1424 						ehci_urb_done(oxu, last->urb);
1425 						count++;
1426 					}
1427 					oxu_murb_free(oxu, murb);
1428 				} else {
1429 					ehci_urb_done(oxu, last->urb);
1430 					count++;
1431 				}
1432 			}
1433 			oxu_qtd_free(oxu, last);
1434 			last = NULL;
1435 		}
1436 
1437 		/* ignore urbs submitted during completions we reported */
1438 		if (qtd == end)
1439 			break;
1440 
1441 		/* hardware copies qtd out of qh overlay */
1442 		rmb();
1443 		token = le32_to_cpu(qtd->hw_token);
1444 
1445 		/* always clean up qtds the hc de-activated */
1446 		if ((token & QTD_STS_ACTIVE) == 0) {
1447 
1448 			if ((token & QTD_STS_HALT) != 0) {
1449 				stopped = 1;
1450 
1451 			/* magic dummy for some short reads; qh won't advance.
1452 			 * that silicon quirk can kick in with this dummy too.
1453 			 */
1454 			} else if (IS_SHORT_READ(token) &&
1455 					!(qtd->hw_alt_next & EHCI_LIST_END)) {
1456 				stopped = 1;
1457 				goto halt;
1458 			}
1459 
1460 		/* stop scanning when we reach qtds the hc is using */
1461 		} else if (likely(!stopped &&
1462 				HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1463 			break;
1464 
1465 		} else {
1466 			stopped = 1;
1467 
1468 			if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1469 				urb->status = -ESHUTDOWN;
1470 
1471 			/* ignore active urbs unless some previous qtd
1472 			 * for the urb faulted (including short read) or
1473 			 * its urb was canceled.  we may patch qh or qtds.
1474 			 */
1475 			if (likely(urb->status == -EINPROGRESS))
1476 				continue;
1477 
1478 			/* issue status after short control reads */
1479 			if (unlikely(do_status != 0)
1480 					&& QTD_PID(token) == 0 /* OUT */) {
1481 				do_status = 0;
1482 				continue;
1483 			}
1484 
1485 			/* token in overlay may be most current */
1486 			if (state == QH_STATE_IDLE
1487 					&& cpu_to_le32(qtd->qtd_dma)
1488 						== qh->hw_current)
1489 				token = le32_to_cpu(qh->hw_token);
1490 
1491 			/* force halt for unlinked or blocked qh, so we'll
1492 			 * patch the qh later and so that completions can't
1493 			 * activate it while we "know" it's stopped.
1494 			 */
1495 			if ((HALT_BIT & qh->hw_token) == 0) {
1496 halt:
1497 				qh->hw_token |= HALT_BIT;
1498 				wmb();
1499 			}
1500 		}
1501 
1502 		/* Remove it from the queue */
1503 		qtd_copy_status(oxu, urb->complete ?
1504 					urb : ((struct oxu_murb *) urb)->main,
1505 				qtd->length, token);
1506 		if ((usb_pipein(qtd->urb->pipe)) &&
1507 				(NULL != qtd->transfer_buffer))
1508 			memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1509 		do_status = (urb->status == -EREMOTEIO)
1510 				&& usb_pipecontrol(urb->pipe);
1511 
1512 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1513 			last = list_entry(qtd->qtd_list.prev,
1514 					struct ehci_qtd, qtd_list);
1515 			last->hw_next = qtd->hw_next;
1516 		}
1517 		list_del(&qtd->qtd_list);
1518 		last = qtd;
1519 	}
1520 
1521 	/* last urb's completion might still need calling */
1522 	if (likely(last != NULL)) {
1523 		if (last->urb->complete == NULL) {
1524 			murb = (struct oxu_murb *) last->urb;
1525 			last->urb = murb->main;
1526 			if (murb->last) {
1527 				ehci_urb_done(oxu, last->urb);
1528 				count++;
1529 			}
1530 			oxu_murb_free(oxu, murb);
1531 		} else {
1532 			ehci_urb_done(oxu, last->urb);
1533 			count++;
1534 		}
1535 		oxu_qtd_free(oxu, last);
1536 	}
1537 
1538 	/* restore original state; caller must unlink or relink */
1539 	qh->qh_state = state;
1540 
1541 	/* be sure the hardware's done with the qh before refreshing
1542 	 * it after fault cleanup, or recovering from silicon wrongly
1543 	 * overlaying the dummy qtd (which reduces DMA chatter).
1544 	 */
1545 	if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1546 		switch (state) {
1547 		case QH_STATE_IDLE:
1548 			qh_refresh(oxu, qh);
1549 			break;
1550 		case QH_STATE_LINKED:
1551 			/* should be rare for periodic transfers,
1552 			 * except maybe high bandwidth ...
1553 			 */
1554 			if ((cpu_to_le32(QH_SMASK)
1555 					& qh->hw_info2) != 0) {
1556 				intr_deschedule(oxu, qh);
1557 				(void) qh_schedule(oxu, qh);
1558 			} else
1559 				unlink_async(oxu, qh);
1560 			break;
1561 		/* otherwise, unlink already started */
1562 		}
1563 	}
1564 
1565 	return count;
1566 }
1567 
1568 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1569 #define hb_mult(wMaxPacketSize)		(1 + (((wMaxPacketSize) >> 11) & 0x03))
1570 /* ... and packet size, for any kind of endpoint descriptor */
1571 #define max_packet(wMaxPacketSize)	((wMaxPacketSize) & 0x07ff)
1572 
1573 /* Reverse of qh_urb_transaction: free a list of TDs.
1574  * used for cleanup after errors, before HC sees an URB's TDs.
1575  */
qtd_list_free(struct oxu_hcd * oxu,struct urb * urb,struct list_head * head)1576 static void qtd_list_free(struct oxu_hcd *oxu,
1577 				struct urb *urb, struct list_head *head)
1578 {
1579 	struct ehci_qtd	*qtd, *temp;
1580 
1581 	list_for_each_entry_safe(qtd, temp, head, qtd_list) {
1582 		list_del(&qtd->qtd_list);
1583 		oxu_qtd_free(oxu, qtd);
1584 	}
1585 }
1586 
1587 /* Create a list of filled qtds for this URB; won't link into qh.
1588  */
qh_urb_transaction(struct oxu_hcd * oxu,struct urb * urb,struct list_head * head,gfp_t flags)1589 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1590 						struct urb *urb,
1591 						struct list_head *head,
1592 						gfp_t flags)
1593 {
1594 	struct ehci_qtd	*qtd, *qtd_prev;
1595 	dma_addr_t buf;
1596 	int len, maxpacket;
1597 	int is_input;
1598 	u32 token;
1599 	void *transfer_buf = NULL;
1600 	int ret;
1601 
1602 	/*
1603 	 * URBs map to sequences of QTDs: one logical transaction
1604 	 */
1605 	qtd = ehci_qtd_alloc(oxu);
1606 	if (unlikely(!qtd))
1607 		return NULL;
1608 	list_add_tail(&qtd->qtd_list, head);
1609 	qtd->urb = urb;
1610 
1611 	token = QTD_STS_ACTIVE;
1612 	token |= (EHCI_TUNE_CERR << 10);
1613 	/* for split transactions, SplitXState initialized to zero */
1614 
1615 	len = urb->transfer_buffer_length;
1616 	is_input = usb_pipein(urb->pipe);
1617 	if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1618 		urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1619 
1620 	if (usb_pipecontrol(urb->pipe)) {
1621 		/* SETUP pid */
1622 		ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1623 		if (ret)
1624 			goto cleanup;
1625 
1626 		qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1627 				token | (2 /* "setup" */ << 8), 8);
1628 		memcpy(qtd->buffer, qtd->urb->setup_packet,
1629 				sizeof(struct usb_ctrlrequest));
1630 
1631 		/* ... and always at least one more pid */
1632 		token ^= QTD_TOGGLE;
1633 		qtd_prev = qtd;
1634 		qtd = ehci_qtd_alloc(oxu);
1635 		if (unlikely(!qtd))
1636 			goto cleanup;
1637 		qtd->urb = urb;
1638 		qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1639 		list_add_tail(&qtd->qtd_list, head);
1640 
1641 		/* for zero length DATA stages, STATUS is always IN */
1642 		if (len == 0)
1643 			token |= (1 /* "in" */ << 8);
1644 	}
1645 
1646 	/*
1647 	 * Data transfer stage: buffer setup
1648 	 */
1649 
1650 	ret = oxu_buf_alloc(oxu, qtd, len);
1651 	if (ret)
1652 		goto cleanup;
1653 
1654 	buf = qtd->buffer_dma;
1655 	transfer_buf = urb->transfer_buffer;
1656 
1657 	if (!is_input)
1658 		memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1659 
1660 	if (is_input)
1661 		token |= (1 /* "in" */ << 8);
1662 	/* else it's already initted to "out" pid (0 << 8) */
1663 
1664 	maxpacket = usb_maxpacket(urb->dev, urb->pipe);
1665 
1666 	/*
1667 	 * buffer gets wrapped in one or more qtds;
1668 	 * last one may be "short" (including zero len)
1669 	 * and may serve as a control status ack
1670 	 */
1671 	for (;;) {
1672 		int this_qtd_len;
1673 
1674 		this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1675 		qtd->transfer_buffer = transfer_buf;
1676 		len -= this_qtd_len;
1677 		buf += this_qtd_len;
1678 		transfer_buf += this_qtd_len;
1679 		if (is_input)
1680 			qtd->hw_alt_next = oxu->async->hw_alt_next;
1681 
1682 		/* qh makes control packets use qtd toggle; maybe switch it */
1683 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1684 			token ^= QTD_TOGGLE;
1685 
1686 		if (likely(len <= 0))
1687 			break;
1688 
1689 		qtd_prev = qtd;
1690 		qtd = ehci_qtd_alloc(oxu);
1691 		if (unlikely(!qtd))
1692 			goto cleanup;
1693 		if (likely(len > 0)) {
1694 			ret = oxu_buf_alloc(oxu, qtd, len);
1695 			if (ret)
1696 				goto cleanup;
1697 		}
1698 		qtd->urb = urb;
1699 		qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1700 		list_add_tail(&qtd->qtd_list, head);
1701 	}
1702 
1703 	/* unless the bulk/interrupt caller wants a chance to clean
1704 	 * up after short reads, hc should advance qh past this urb
1705 	 */
1706 	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1707 				|| usb_pipecontrol(urb->pipe)))
1708 		qtd->hw_alt_next = EHCI_LIST_END;
1709 
1710 	/*
1711 	 * control requests may need a terminating data "status" ack;
1712 	 * bulk ones may need a terminating short packet (zero length).
1713 	 */
1714 	if (likely(urb->transfer_buffer_length != 0)) {
1715 		int	one_more = 0;
1716 
1717 		if (usb_pipecontrol(urb->pipe)) {
1718 			one_more = 1;
1719 			token ^= 0x0100;	/* "in" <--> "out"  */
1720 			token |= QTD_TOGGLE;	/* force DATA1 */
1721 		} else if (usb_pipebulk(urb->pipe)
1722 				&& (urb->transfer_flags & URB_ZERO_PACKET)
1723 				&& !(urb->transfer_buffer_length % maxpacket)) {
1724 			one_more = 1;
1725 		}
1726 		if (one_more) {
1727 			qtd_prev = qtd;
1728 			qtd = ehci_qtd_alloc(oxu);
1729 			if (unlikely(!qtd))
1730 				goto cleanup;
1731 			qtd->urb = urb;
1732 			qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1733 			list_add_tail(&qtd->qtd_list, head);
1734 
1735 			/* never any data in such packets */
1736 			qtd_fill(qtd, 0, 0, token, 0);
1737 		}
1738 	}
1739 
1740 	/* by default, enable interrupt on urb completion */
1741 	qtd->hw_token |= cpu_to_le32(QTD_IOC);
1742 	return head;
1743 
1744 cleanup:
1745 	qtd_list_free(oxu, urb, head);
1746 	return NULL;
1747 }
1748 
1749 /* Each QH holds a qtd list; a QH is used for everything except iso.
1750  *
1751  * For interrupt urbs, the scheduler must set the microframe scheduling
1752  * mask(s) each time the QH gets scheduled.  For highspeed, that's
1753  * just one microframe in the s-mask.  For split interrupt transactions
1754  * there are additional complications: c-mask, maybe FSTNs.
1755  */
qh_make(struct oxu_hcd * oxu,struct urb * urb,gfp_t flags)1756 static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1757 				struct urb *urb, gfp_t flags)
1758 {
1759 	struct ehci_qh *qh = oxu_qh_alloc(oxu);
1760 	u32 info1 = 0, info2 = 0;
1761 	int is_input, type;
1762 	int maxp = 0;
1763 
1764 	if (!qh)
1765 		return qh;
1766 
1767 	/*
1768 	 * init endpoint/device data for this QH
1769 	 */
1770 	info1 |= usb_pipeendpoint(urb->pipe) << 8;
1771 	info1 |= usb_pipedevice(urb->pipe) << 0;
1772 
1773 	is_input = usb_pipein(urb->pipe);
1774 	type = usb_pipetype(urb->pipe);
1775 	maxp = usb_maxpacket(urb->dev, urb->pipe);
1776 
1777 	/* Compute interrupt scheduling parameters just once, and save.
1778 	 * - allowing for high bandwidth, how many nsec/uframe are used?
1779 	 * - split transactions need a second CSPLIT uframe; same question
1780 	 * - splits also need a schedule gap (for full/low speed I/O)
1781 	 * - qh has a polling interval
1782 	 *
1783 	 * For control/bulk requests, the HC or TT handles these.
1784 	 */
1785 	if (type == PIPE_INTERRUPT) {
1786 		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1787 								is_input, 0,
1788 				hb_mult(maxp) * max_packet(maxp)));
1789 		qh->start = NO_FRAME;
1790 
1791 		if (urb->dev->speed == USB_SPEED_HIGH) {
1792 			qh->c_usecs = 0;
1793 			qh->gap_uf = 0;
1794 
1795 			qh->period = urb->interval >> 3;
1796 			if (qh->period == 0 && urb->interval != 1) {
1797 				/* NOTE interval 2 or 4 uframes could work.
1798 				 * But interval 1 scheduling is simpler, and
1799 				 * includes high bandwidth.
1800 				 */
1801 				oxu_dbg(oxu, "intr period %d uframes, NYET!\n",
1802 					urb->interval);
1803 				goto done;
1804 			}
1805 		} else {
1806 			struct usb_tt	*tt = urb->dev->tt;
1807 			int		think_time;
1808 
1809 			/* gap is f(FS/LS transfer times) */
1810 			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1811 					is_input, 0, maxp) / (125 * 1000);
1812 
1813 			/* FIXME this just approximates SPLIT/CSPLIT times */
1814 			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
1815 				qh->c_usecs = qh->usecs + HS_USECS(0);
1816 				qh->usecs = HS_USECS(1);
1817 			} else {		/* SPLIT+DATA, gap, CSPLIT */
1818 				qh->usecs += HS_USECS(1);
1819 				qh->c_usecs = HS_USECS(0);
1820 			}
1821 
1822 			think_time = tt ? tt->think_time : 0;
1823 			qh->tt_usecs = NS_TO_US(think_time +
1824 					usb_calc_bus_time(urb->dev->speed,
1825 					is_input, 0, max_packet(maxp)));
1826 			qh->period = urb->interval;
1827 		}
1828 	}
1829 
1830 	/* support for tt scheduling, and access to toggles */
1831 	qh->dev = urb->dev;
1832 
1833 	/* using TT? */
1834 	switch (urb->dev->speed) {
1835 	case USB_SPEED_LOW:
1836 		info1 |= (1 << 12);	/* EPS "low" */
1837 		fallthrough;
1838 
1839 	case USB_SPEED_FULL:
1840 		/* EPS 0 means "full" */
1841 		if (type != PIPE_INTERRUPT)
1842 			info1 |= (EHCI_TUNE_RL_TT << 28);
1843 		if (type == PIPE_CONTROL) {
1844 			info1 |= (1 << 27);	/* for TT */
1845 			info1 |= 1 << 14;	/* toggle from qtd */
1846 		}
1847 		info1 |= maxp << 16;
1848 
1849 		info2 |= (EHCI_TUNE_MULT_TT << 30);
1850 		info2 |= urb->dev->ttport << 23;
1851 
1852 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1853 
1854 		break;
1855 
1856 	case USB_SPEED_HIGH:		/* no TT involved */
1857 		info1 |= (2 << 12);	/* EPS "high" */
1858 		if (type == PIPE_CONTROL) {
1859 			info1 |= (EHCI_TUNE_RL_HS << 28);
1860 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
1861 			info1 |= 1 << 14;	/* toggle from qtd */
1862 			info2 |= (EHCI_TUNE_MULT_HS << 30);
1863 		} else if (type == PIPE_BULK) {
1864 			info1 |= (EHCI_TUNE_RL_HS << 28);
1865 			info1 |= 512 << 16;	/* usb2 fixed maxpacket */
1866 			info2 |= (EHCI_TUNE_MULT_HS << 30);
1867 		} else {		/* PIPE_INTERRUPT */
1868 			info1 |= max_packet(maxp) << 16;
1869 			info2 |= hb_mult(maxp) << 30;
1870 		}
1871 		break;
1872 	default:
1873 		oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed);
1874 done:
1875 		qh_put(qh);
1876 		return NULL;
1877 	}
1878 
1879 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1880 
1881 	/* init as live, toggle clear, advance to dummy */
1882 	qh->qh_state = QH_STATE_IDLE;
1883 	qh->hw_info1 = cpu_to_le32(info1);
1884 	qh->hw_info2 = cpu_to_le32(info2);
1885 	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1886 	qh_refresh(oxu, qh);
1887 	return qh;
1888 }
1889 
1890 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1891  */
qh_link_async(struct oxu_hcd * oxu,struct ehci_qh * qh)1892 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1893 {
1894 	__le32 dma = QH_NEXT(qh->qh_dma);
1895 	struct ehci_qh *head;
1896 
1897 	/* (re)start the async schedule? */
1898 	head = oxu->async;
1899 	timer_action_done(oxu, TIMER_ASYNC_OFF);
1900 	if (!head->qh_next.qh) {
1901 		u32	cmd = readl(&oxu->regs->command);
1902 
1903 		if (!(cmd & CMD_ASE)) {
1904 			/* in case a clear of CMD_ASE didn't take yet */
1905 			(void)handshake(oxu, &oxu->regs->status,
1906 					STS_ASS, 0, 150);
1907 			cmd |= CMD_ASE | CMD_RUN;
1908 			writel(cmd, &oxu->regs->command);
1909 			oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1910 			/* posted write need not be known to HC yet ... */
1911 		}
1912 	}
1913 
1914 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
1915 	if (qh->qh_state == QH_STATE_IDLE)
1916 		qh_refresh(oxu, qh);
1917 
1918 	/* splice right after start */
1919 	qh->qh_next = head->qh_next;
1920 	qh->hw_next = head->hw_next;
1921 	wmb();
1922 
1923 	head->qh_next.qh = qh;
1924 	head->hw_next = dma;
1925 
1926 	qh->qh_state = QH_STATE_LINKED;
1927 	/* qtd completions reported later by interrupt */
1928 }
1929 
1930 #define	QH_ADDR_MASK	cpu_to_le32(0x7f)
1931 
1932 /*
1933  * For control/bulk/interrupt, return QH with these TDs appended.
1934  * Allocates and initializes the QH if necessary.
1935  * Returns null if it can't allocate a QH it needs to.
1936  * If the QH has TDs (urbs) already, that's great.
1937  */
qh_append_tds(struct oxu_hcd * oxu,struct urb * urb,struct list_head * qtd_list,int epnum,void ** ptr)1938 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1939 				struct urb *urb, struct list_head *qtd_list,
1940 				int epnum, void	**ptr)
1941 {
1942 	struct ehci_qh *qh = NULL;
1943 
1944 	qh = (struct ehci_qh *) *ptr;
1945 	if (unlikely(qh == NULL)) {
1946 		/* can't sleep here, we have oxu->lock... */
1947 		qh = qh_make(oxu, urb, GFP_ATOMIC);
1948 		*ptr = qh;
1949 	}
1950 	if (likely(qh != NULL)) {
1951 		struct ehci_qtd	*qtd;
1952 
1953 		if (unlikely(list_empty(qtd_list)))
1954 			qtd = NULL;
1955 		else
1956 			qtd = list_entry(qtd_list->next, struct ehci_qtd,
1957 					qtd_list);
1958 
1959 		/* control qh may need patching ... */
1960 		if (unlikely(epnum == 0)) {
1961 
1962 			/* usb_reset_device() briefly reverts to address 0 */
1963 			if (usb_pipedevice(urb->pipe) == 0)
1964 				qh->hw_info1 &= ~QH_ADDR_MASK;
1965 		}
1966 
1967 		/* just one way to queue requests: swap with the dummy qtd.
1968 		 * only hc or qh_refresh() ever modify the overlay.
1969 		 */
1970 		if (likely(qtd != NULL)) {
1971 			struct ehci_qtd	*dummy;
1972 			dma_addr_t dma;
1973 			__le32 token;
1974 
1975 			/* to avoid racing the HC, use the dummy td instead of
1976 			 * the first td of our list (becomes new dummy).  both
1977 			 * tds stay deactivated until we're done, when the
1978 			 * HC is allowed to fetch the old dummy (4.10.2).
1979 			 */
1980 			token = qtd->hw_token;
1981 			qtd->hw_token = HALT_BIT;
1982 			wmb();
1983 			dummy = qh->dummy;
1984 
1985 			dma = dummy->qtd_dma;
1986 			*dummy = *qtd;
1987 			dummy->qtd_dma = dma;
1988 
1989 			list_del(&qtd->qtd_list);
1990 			list_add(&dummy->qtd_list, qtd_list);
1991 			list_splice(qtd_list, qh->qtd_list.prev);
1992 
1993 			ehci_qtd_init(qtd, qtd->qtd_dma);
1994 			qh->dummy = qtd;
1995 
1996 			/* hc must see the new dummy at list end */
1997 			dma = qtd->qtd_dma;
1998 			qtd = list_entry(qh->qtd_list.prev,
1999 					struct ehci_qtd, qtd_list);
2000 			qtd->hw_next = QTD_NEXT(dma);
2001 
2002 			/* let the hc process these next qtds */
2003 			dummy->hw_token = (token & ~(0x80));
2004 			wmb();
2005 			dummy->hw_token = token;
2006 
2007 			urb->hcpriv = qh_get(qh);
2008 		}
2009 	}
2010 	return qh;
2011 }
2012 
submit_async(struct oxu_hcd * oxu,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)2013 static int submit_async(struct oxu_hcd	*oxu, struct urb *urb,
2014 			struct list_head *qtd_list, gfp_t mem_flags)
2015 {
2016 	int epnum = urb->ep->desc.bEndpointAddress;
2017 	unsigned long flags;
2018 	struct ehci_qh *qh = NULL;
2019 	int rc = 0;
2020 #ifdef OXU_URB_TRACE
2021 	struct ehci_qtd	*qtd;
2022 
2023 	qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
2024 
2025 	oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2026 		__func__, urb->dev->devpath, urb,
2027 		epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
2028 		urb->transfer_buffer_length,
2029 		qtd, urb->ep->hcpriv);
2030 #endif
2031 
2032 	spin_lock_irqsave(&oxu->lock, flags);
2033 	if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2034 		rc = -ESHUTDOWN;
2035 		goto done;
2036 	}
2037 
2038 	qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2039 	if (unlikely(qh == NULL)) {
2040 		rc = -ENOMEM;
2041 		goto done;
2042 	}
2043 
2044 	/* Control/bulk operations through TTs don't need scheduling,
2045 	 * the HC and TT handle it when the TT has a buffer ready.
2046 	 */
2047 	if (likely(qh->qh_state == QH_STATE_IDLE))
2048 		qh_link_async(oxu, qh_get(qh));
2049 done:
2050 	spin_unlock_irqrestore(&oxu->lock, flags);
2051 	if (unlikely(qh == NULL))
2052 		qtd_list_free(oxu, urb, qtd_list);
2053 	return rc;
2054 }
2055 
2056 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
2057 
end_unlink_async(struct oxu_hcd * oxu)2058 static void end_unlink_async(struct oxu_hcd *oxu)
2059 {
2060 	struct ehci_qh *qh = oxu->reclaim;
2061 	struct ehci_qh *next;
2062 
2063 	timer_action_done(oxu, TIMER_IAA_WATCHDOG);
2064 
2065 	qh->qh_state = QH_STATE_IDLE;
2066 	qh->qh_next.qh = NULL;
2067 	qh_put(qh);			/* refcount from reclaim */
2068 
2069 	/* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
2070 	next = qh->reclaim;
2071 	oxu->reclaim = next;
2072 	oxu->reclaim_ready = 0;
2073 	qh->reclaim = NULL;
2074 
2075 	qh_completions(oxu, qh);
2076 
2077 	if (!list_empty(&qh->qtd_list)
2078 			&& HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2079 		qh_link_async(oxu, qh);
2080 	else {
2081 		qh_put(qh);		/* refcount from async list */
2082 
2083 		/* it's not free to turn the async schedule on/off; leave it
2084 		 * active but idle for a while once it empties.
2085 		 */
2086 		if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
2087 				&& oxu->async->qh_next.qh == NULL)
2088 			timer_action(oxu, TIMER_ASYNC_OFF);
2089 	}
2090 
2091 	if (next) {
2092 		oxu->reclaim = NULL;
2093 		start_unlink_async(oxu, next);
2094 	}
2095 }
2096 
2097 /* makes sure the async qh will become idle */
2098 /* caller must own oxu->lock */
2099 
start_unlink_async(struct oxu_hcd * oxu,struct ehci_qh * qh)2100 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2101 {
2102 	int cmd = readl(&oxu->regs->command);
2103 	struct ehci_qh *prev;
2104 
2105 #ifdef DEBUG
2106 	assert_spin_locked(&oxu->lock);
2107 	BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
2108 				&& qh->qh_state != QH_STATE_UNLINK_WAIT));
2109 #endif
2110 
2111 	/* stop async schedule right now? */
2112 	if (unlikely(qh == oxu->async)) {
2113 		/* can't get here without STS_ASS set */
2114 		if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
2115 				&& !oxu->reclaim) {
2116 			/* ... and CMD_IAAD clear */
2117 			writel(cmd & ~CMD_ASE, &oxu->regs->command);
2118 			wmb();
2119 			/* handshake later, if we need to */
2120 			timer_action_done(oxu, TIMER_ASYNC_OFF);
2121 		}
2122 		return;
2123 	}
2124 
2125 	qh->qh_state = QH_STATE_UNLINK;
2126 	oxu->reclaim = qh = qh_get(qh);
2127 
2128 	prev = oxu->async;
2129 	while (prev->qh_next.qh != qh)
2130 		prev = prev->qh_next.qh;
2131 
2132 	prev->hw_next = qh->hw_next;
2133 	prev->qh_next = qh->qh_next;
2134 	wmb();
2135 
2136 	if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
2137 		/* if (unlikely(qh->reclaim != 0))
2138 		 *	this will recurse, probably not much
2139 		 */
2140 		end_unlink_async(oxu);
2141 		return;
2142 	}
2143 
2144 	oxu->reclaim_ready = 0;
2145 	cmd |= CMD_IAAD;
2146 	writel(cmd, &oxu->regs->command);
2147 	(void) readl(&oxu->regs->command);
2148 	timer_action(oxu, TIMER_IAA_WATCHDOG);
2149 }
2150 
scan_async(struct oxu_hcd * oxu)2151 static void scan_async(struct oxu_hcd *oxu)
2152 {
2153 	struct ehci_qh *qh;
2154 	enum ehci_timer_action action = TIMER_IO_WATCHDOG;
2155 
2156 	if (!++(oxu->stamp))
2157 		oxu->stamp++;
2158 	timer_action_done(oxu, TIMER_ASYNC_SHRINK);
2159 rescan:
2160 	qh = oxu->async->qh_next.qh;
2161 	if (likely(qh != NULL)) {
2162 		do {
2163 			/* clean any finished work for this qh */
2164 			if (!list_empty(&qh->qtd_list)
2165 					&& qh->stamp != oxu->stamp) {
2166 				int temp;
2167 
2168 				/* unlinks could happen here; completion
2169 				 * reporting drops the lock.  rescan using
2170 				 * the latest schedule, but don't rescan
2171 				 * qhs we already finished (no looping).
2172 				 */
2173 				qh = qh_get(qh);
2174 				qh->stamp = oxu->stamp;
2175 				temp = qh_completions(oxu, qh);
2176 				qh_put(qh);
2177 				if (temp != 0)
2178 					goto rescan;
2179 			}
2180 
2181 			/* unlink idle entries, reducing HC PCI usage as well
2182 			 * as HCD schedule-scanning costs.  delay for any qh
2183 			 * we just scanned, there's a not-unusual case that it
2184 			 * doesn't stay idle for long.
2185 			 * (plus, avoids some kind of re-activation race.)
2186 			 */
2187 			if (list_empty(&qh->qtd_list)) {
2188 				if (qh->stamp == oxu->stamp)
2189 					action = TIMER_ASYNC_SHRINK;
2190 				else if (!oxu->reclaim
2191 					    && qh->qh_state == QH_STATE_LINKED)
2192 					start_unlink_async(oxu, qh);
2193 			}
2194 
2195 			qh = qh->qh_next.qh;
2196 		} while (qh);
2197 	}
2198 	if (action == TIMER_ASYNC_SHRINK)
2199 		timer_action(oxu, TIMER_ASYNC_SHRINK);
2200 }
2201 
2202 /*
2203  * periodic_next_shadow - return "next" pointer on shadow list
2204  * @periodic: host pointer to qh/itd/sitd
2205  * @tag: hardware tag for type of this record
2206  */
periodic_next_shadow(union ehci_shadow * periodic,__le32 tag)2207 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
2208 						__le32 tag)
2209 {
2210 	switch (tag) {
2211 	default:
2212 	case Q_TYPE_QH:
2213 		return &periodic->qh->qh_next;
2214 	}
2215 }
2216 
2217 /* caller must hold oxu->lock */
periodic_unlink(struct oxu_hcd * oxu,unsigned frame,void * ptr)2218 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
2219 {
2220 	union ehci_shadow *prev_p = &oxu->pshadow[frame];
2221 	__le32 *hw_p = &oxu->periodic[frame];
2222 	union ehci_shadow here = *prev_p;
2223 
2224 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
2225 	while (here.ptr && here.ptr != ptr) {
2226 		prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
2227 		hw_p = here.hw_next;
2228 		here = *prev_p;
2229 	}
2230 	/* an interrupt entry (at list end) could have been shared */
2231 	if (!here.ptr)
2232 		return;
2233 
2234 	/* update shadow and hardware lists ... the old "next" pointers
2235 	 * from ptr may still be in use, the caller updates them.
2236 	 */
2237 	*prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
2238 	*hw_p = *here.hw_next;
2239 }
2240 
2241 /* how many of the uframe's 125 usecs are allocated? */
periodic_usecs(struct oxu_hcd * oxu,unsigned frame,unsigned uframe)2242 static unsigned short periodic_usecs(struct oxu_hcd *oxu,
2243 					unsigned frame, unsigned uframe)
2244 {
2245 	__le32 *hw_p = &oxu->periodic[frame];
2246 	union ehci_shadow *q = &oxu->pshadow[frame];
2247 	unsigned usecs = 0;
2248 
2249 	while (q->ptr) {
2250 		switch (Q_NEXT_TYPE(*hw_p)) {
2251 		case Q_TYPE_QH:
2252 		default:
2253 			/* is it in the S-mask? */
2254 			if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
2255 				usecs += q->qh->usecs;
2256 			/* ... or C-mask? */
2257 			if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
2258 				usecs += q->qh->c_usecs;
2259 			hw_p = &q->qh->hw_next;
2260 			q = &q->qh->qh_next;
2261 			break;
2262 		}
2263 	}
2264 #ifdef DEBUG
2265 	if (usecs > 100)
2266 		oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
2267 						frame * 8 + uframe, usecs);
2268 #endif
2269 	return usecs;
2270 }
2271 
enable_periodic(struct oxu_hcd * oxu)2272 static int enable_periodic(struct oxu_hcd *oxu)
2273 {
2274 	u32 cmd;
2275 	int status;
2276 
2277 	/* did clearing PSE did take effect yet?
2278 	 * takes effect only at frame boundaries...
2279 	 */
2280 	status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
2281 	if (status != 0) {
2282 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2283 		usb_hc_died(oxu_to_hcd(oxu));
2284 		return status;
2285 	}
2286 
2287 	cmd = readl(&oxu->regs->command) | CMD_PSE;
2288 	writel(cmd, &oxu->regs->command);
2289 	/* posted write ... PSS happens later */
2290 	oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
2291 
2292 	/* make sure ehci_work scans these */
2293 	oxu->next_uframe = readl(&oxu->regs->frame_index)
2294 		% (oxu->periodic_size << 3);
2295 	return 0;
2296 }
2297 
disable_periodic(struct oxu_hcd * oxu)2298 static int disable_periodic(struct oxu_hcd *oxu)
2299 {
2300 	u32 cmd;
2301 	int status;
2302 
2303 	/* did setting PSE not take effect yet?
2304 	 * takes effect only at frame boundaries...
2305 	 */
2306 	status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
2307 	if (status != 0) {
2308 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2309 		usb_hc_died(oxu_to_hcd(oxu));
2310 		return status;
2311 	}
2312 
2313 	cmd = readl(&oxu->regs->command) & ~CMD_PSE;
2314 	writel(cmd, &oxu->regs->command);
2315 	/* posted write ... */
2316 
2317 	oxu->next_uframe = -1;
2318 	return 0;
2319 }
2320 
2321 /* periodic schedule slots have iso tds (normal or split) first, then a
2322  * sparse tree for active interrupt transfers.
2323  *
2324  * this just links in a qh; caller guarantees uframe masks are set right.
2325  * no FSTN support (yet; oxu 0.96+)
2326  */
qh_link_periodic(struct oxu_hcd * oxu,struct ehci_qh * qh)2327 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2328 {
2329 	unsigned i;
2330 	unsigned period = qh->period;
2331 
2332 	dev_dbg(&qh->dev->dev,
2333 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
2334 		period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2335 		qh, qh->start, qh->usecs, qh->c_usecs);
2336 
2337 	/* high bandwidth, or otherwise every microframe */
2338 	if (period == 0)
2339 		period = 1;
2340 
2341 	for (i = qh->start; i < oxu->periodic_size; i += period) {
2342 		union ehci_shadow	*prev = &oxu->pshadow[i];
2343 		__le32			*hw_p = &oxu->periodic[i];
2344 		union ehci_shadow	here = *prev;
2345 		__le32			type = 0;
2346 
2347 		/* skip the iso nodes at list head */
2348 		while (here.ptr) {
2349 			type = Q_NEXT_TYPE(*hw_p);
2350 			if (type == Q_TYPE_QH)
2351 				break;
2352 			prev = periodic_next_shadow(prev, type);
2353 			hw_p = &here.qh->hw_next;
2354 			here = *prev;
2355 		}
2356 
2357 		/* sorting each branch by period (slow-->fast)
2358 		 * enables sharing interior tree nodes
2359 		 */
2360 		while (here.ptr && qh != here.qh) {
2361 			if (qh->period > here.qh->period)
2362 				break;
2363 			prev = &here.qh->qh_next;
2364 			hw_p = &here.qh->hw_next;
2365 			here = *prev;
2366 		}
2367 		/* link in this qh, unless some earlier pass did that */
2368 		if (qh != here.qh) {
2369 			qh->qh_next = here;
2370 			if (here.qh)
2371 				qh->hw_next = *hw_p;
2372 			wmb();
2373 			prev->qh = qh;
2374 			*hw_p = QH_NEXT(qh->qh_dma);
2375 		}
2376 	}
2377 	qh->qh_state = QH_STATE_LINKED;
2378 	qh_get(qh);
2379 
2380 	/* update per-qh bandwidth for usbfs */
2381 	oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
2382 		? ((qh->usecs + qh->c_usecs) / qh->period)
2383 		: (qh->usecs * 8);
2384 
2385 	/* maybe enable periodic schedule processing */
2386 	if (!oxu->periodic_sched++)
2387 		return enable_periodic(oxu);
2388 
2389 	return 0;
2390 }
2391 
qh_unlink_periodic(struct oxu_hcd * oxu,struct ehci_qh * qh)2392 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2393 {
2394 	unsigned i;
2395 	unsigned period;
2396 
2397 	/* FIXME:
2398 	 *   IF this isn't high speed
2399 	 *   and this qh is active in the current uframe
2400 	 *   (and overlay token SplitXstate is false?)
2401 	 * THEN
2402 	 *   qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2403 	 */
2404 
2405 	/* high bandwidth, or otherwise part of every microframe */
2406 	period = qh->period;
2407 	if (period == 0)
2408 		period = 1;
2409 
2410 	for (i = qh->start; i < oxu->periodic_size; i += period)
2411 		periodic_unlink(oxu, i, qh);
2412 
2413 	/* update per-qh bandwidth for usbfs */
2414 	oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2415 		? ((qh->usecs + qh->c_usecs) / qh->period)
2416 		: (qh->usecs * 8);
2417 
2418 	dev_dbg(&qh->dev->dev,
2419 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2420 		qh->period,
2421 		le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2422 		qh, qh->start, qh->usecs, qh->c_usecs);
2423 
2424 	/* qh->qh_next still "live" to HC */
2425 	qh->qh_state = QH_STATE_UNLINK;
2426 	qh->qh_next.ptr = NULL;
2427 	qh_put(qh);
2428 
2429 	/* maybe turn off periodic schedule */
2430 	oxu->periodic_sched--;
2431 	if (!oxu->periodic_sched)
2432 		(void) disable_periodic(oxu);
2433 }
2434 
intr_deschedule(struct oxu_hcd * oxu,struct ehci_qh * qh)2435 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2436 {
2437 	unsigned wait;
2438 
2439 	qh_unlink_periodic(oxu, qh);
2440 
2441 	/* simple/paranoid:  always delay, expecting the HC needs to read
2442 	 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2443 	 * expect hub_wq to clean up after any CSPLITs we won't issue.
2444 	 * active high speed queues may need bigger delays...
2445 	 */
2446 	if (list_empty(&qh->qtd_list)
2447 		|| (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2448 		wait = 2;
2449 	else
2450 		wait = 55;	/* worst case: 3 * 1024 */
2451 
2452 	udelay(wait);
2453 	qh->qh_state = QH_STATE_IDLE;
2454 	qh->hw_next = EHCI_LIST_END;
2455 	wmb();
2456 }
2457 
check_period(struct oxu_hcd * oxu,unsigned frame,unsigned uframe,unsigned period,unsigned usecs)2458 static int check_period(struct oxu_hcd *oxu,
2459 			unsigned frame, unsigned uframe,
2460 			unsigned period, unsigned usecs)
2461 {
2462 	int claimed;
2463 
2464 	/* complete split running into next frame?
2465 	 * given FSTN support, we could sometimes check...
2466 	 */
2467 	if (uframe >= 8)
2468 		return 0;
2469 
2470 	/*
2471 	 * 80% periodic == 100 usec/uframe available
2472 	 * convert "usecs we need" to "max already claimed"
2473 	 */
2474 	usecs = 100 - usecs;
2475 
2476 	/* we "know" 2 and 4 uframe intervals were rejected; so
2477 	 * for period 0, check _every_ microframe in the schedule.
2478 	 */
2479 	if (unlikely(period == 0)) {
2480 		do {
2481 			for (uframe = 0; uframe < 7; uframe++) {
2482 				claimed = periodic_usecs(oxu, frame, uframe);
2483 				if (claimed > usecs)
2484 					return 0;
2485 			}
2486 		} while ((frame += 1) < oxu->periodic_size);
2487 
2488 	/* just check the specified uframe, at that period */
2489 	} else {
2490 		do {
2491 			claimed = periodic_usecs(oxu, frame, uframe);
2492 			if (claimed > usecs)
2493 				return 0;
2494 		} while ((frame += period) < oxu->periodic_size);
2495 	}
2496 
2497 	return 1;
2498 }
2499 
check_intr_schedule(struct oxu_hcd * oxu,unsigned frame,unsigned uframe,const struct ehci_qh * qh,__le32 * c_maskp)2500 static int check_intr_schedule(struct oxu_hcd	*oxu,
2501 				unsigned frame, unsigned uframe,
2502 				const struct ehci_qh *qh, __le32 *c_maskp)
2503 {
2504 	int retval = -ENOSPC;
2505 
2506 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
2507 		goto done;
2508 
2509 	if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2510 		goto done;
2511 	if (!qh->c_usecs) {
2512 		retval = 0;
2513 		*c_maskp = 0;
2514 		goto done;
2515 	}
2516 
2517 done:
2518 	return retval;
2519 }
2520 
2521 /* "first fit" scheduling policy used the first time through,
2522  * or when the previous schedule slot can't be re-used.
2523  */
qh_schedule(struct oxu_hcd * oxu,struct ehci_qh * qh)2524 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2525 {
2526 	int		status;
2527 	unsigned	uframe;
2528 	__le32		c_mask;
2529 	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
2530 
2531 	qh_refresh(oxu, qh);
2532 	qh->hw_next = EHCI_LIST_END;
2533 	frame = qh->start;
2534 
2535 	/* reuse the previous schedule slots, if we can */
2536 	if (frame < qh->period) {
2537 		uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2538 		status = check_intr_schedule(oxu, frame, --uframe,
2539 				qh, &c_mask);
2540 	} else {
2541 		uframe = 0;
2542 		c_mask = 0;
2543 		status = -ENOSPC;
2544 	}
2545 
2546 	/* else scan the schedule to find a group of slots such that all
2547 	 * uframes have enough periodic bandwidth available.
2548 	 */
2549 	if (status) {
2550 		/* "normal" case, uframing flexible except with splits */
2551 		if (qh->period) {
2552 			frame = qh->period - 1;
2553 			do {
2554 				for (uframe = 0; uframe < 8; uframe++) {
2555 					status = check_intr_schedule(oxu,
2556 							frame, uframe, qh,
2557 							&c_mask);
2558 					if (status == 0)
2559 						break;
2560 				}
2561 			} while (status && frame--);
2562 
2563 		/* qh->period == 0 means every uframe */
2564 		} else {
2565 			frame = 0;
2566 			status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2567 		}
2568 		if (status)
2569 			goto done;
2570 		qh->start = frame;
2571 
2572 		/* reset S-frame and (maybe) C-frame masks */
2573 		qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2574 		qh->hw_info2 |= qh->period
2575 			? cpu_to_le32(1 << uframe)
2576 			: cpu_to_le32(QH_SMASK);
2577 		qh->hw_info2 |= c_mask;
2578 	} else
2579 		oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2580 
2581 	/* stuff into the periodic schedule */
2582 	status = qh_link_periodic(oxu, qh);
2583 done:
2584 	return status;
2585 }
2586 
intr_submit(struct oxu_hcd * oxu,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)2587 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2588 			struct list_head *qtd_list, gfp_t mem_flags)
2589 {
2590 	unsigned epnum;
2591 	unsigned long flags;
2592 	struct ehci_qh *qh;
2593 	int status = 0;
2594 	struct list_head	empty;
2595 
2596 	/* get endpoint and transfer/schedule data */
2597 	epnum = urb->ep->desc.bEndpointAddress;
2598 
2599 	spin_lock_irqsave(&oxu->lock, flags);
2600 
2601 	if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2602 		status = -ESHUTDOWN;
2603 		goto done;
2604 	}
2605 
2606 	/* get qh and force any scheduling errors */
2607 	INIT_LIST_HEAD(&empty);
2608 	qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2609 	if (qh == NULL) {
2610 		status = -ENOMEM;
2611 		goto done;
2612 	}
2613 	if (qh->qh_state == QH_STATE_IDLE) {
2614 		status = qh_schedule(oxu, qh);
2615 		if (status != 0)
2616 			goto done;
2617 	}
2618 
2619 	/* then queue the urb's tds to the qh */
2620 	qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2621 	BUG_ON(qh == NULL);
2622 
2623 	/* ... update usbfs periodic stats */
2624 	oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2625 
2626 done:
2627 	spin_unlock_irqrestore(&oxu->lock, flags);
2628 	if (status)
2629 		qtd_list_free(oxu, urb, qtd_list);
2630 
2631 	return status;
2632 }
2633 
itd_submit(struct oxu_hcd * oxu,struct urb * urb,gfp_t mem_flags)2634 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2635 						gfp_t mem_flags)
2636 {
2637 	oxu_dbg(oxu, "iso support is missing!\n");
2638 	return -ENOSYS;
2639 }
2640 
sitd_submit(struct oxu_hcd * oxu,struct urb * urb,gfp_t mem_flags)2641 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2642 						gfp_t mem_flags)
2643 {
2644 	oxu_dbg(oxu, "split iso support is missing!\n");
2645 	return -ENOSYS;
2646 }
2647 
scan_periodic(struct oxu_hcd * oxu)2648 static void scan_periodic(struct oxu_hcd *oxu)
2649 {
2650 	unsigned frame, clock, now_uframe, mod;
2651 	unsigned modified;
2652 
2653 	mod = oxu->periodic_size << 3;
2654 
2655 	/*
2656 	 * When running, scan from last scan point up to "now"
2657 	 * else clean up by scanning everything that's left.
2658 	 * Touches as few pages as possible:  cache-friendly.
2659 	 */
2660 	now_uframe = oxu->next_uframe;
2661 	if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2662 		clock = readl(&oxu->regs->frame_index);
2663 	else
2664 		clock = now_uframe + mod - 1;
2665 	clock %= mod;
2666 
2667 	for (;;) {
2668 		union ehci_shadow	q, *q_p;
2669 		__le32			type, *hw_p;
2670 
2671 		/* don't scan past the live uframe */
2672 		frame = now_uframe >> 3;
2673 		if (frame != (clock >> 3)) {
2674 			/* safe to scan the whole frame at once */
2675 			now_uframe |= 0x07;
2676 		}
2677 
2678 restart:
2679 		/* scan each element in frame's queue for completions */
2680 		q_p = &oxu->pshadow[frame];
2681 		hw_p = &oxu->periodic[frame];
2682 		q.ptr = q_p->ptr;
2683 		type = Q_NEXT_TYPE(*hw_p);
2684 		modified = 0;
2685 
2686 		while (q.ptr != NULL) {
2687 			union ehci_shadow temp;
2688 
2689 			switch (type) {
2690 			case Q_TYPE_QH:
2691 				/* handle any completions */
2692 				temp.qh = qh_get(q.qh);
2693 				type = Q_NEXT_TYPE(q.qh->hw_next);
2694 				q = q.qh->qh_next;
2695 				modified = qh_completions(oxu, temp.qh);
2696 				if (unlikely(list_empty(&temp.qh->qtd_list)))
2697 					intr_deschedule(oxu, temp.qh);
2698 				qh_put(temp.qh);
2699 				break;
2700 			default:
2701 				oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n",
2702 					type, frame, q.ptr);
2703 				q.ptr = NULL;
2704 			}
2705 
2706 			/* assume completion callbacks modify the queue */
2707 			if (unlikely(modified))
2708 				goto restart;
2709 		}
2710 
2711 		/* Stop when we catch up to the HC */
2712 
2713 		/* FIXME:  this assumes we won't get lapped when
2714 		 * latencies climb; that should be rare, but...
2715 		 * detect it, and just go all the way around.
2716 		 * FLR might help detect this case, so long as latencies
2717 		 * don't exceed periodic_size msec (default 1.024 sec).
2718 		 */
2719 
2720 		/* FIXME: likewise assumes HC doesn't halt mid-scan */
2721 
2722 		if (now_uframe == clock) {
2723 			unsigned	now;
2724 
2725 			if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2726 				break;
2727 			oxu->next_uframe = now_uframe;
2728 			now = readl(&oxu->regs->frame_index) % mod;
2729 			if (now_uframe == now)
2730 				break;
2731 
2732 			/* rescan the rest of this frame, then ... */
2733 			clock = now;
2734 		} else {
2735 			now_uframe++;
2736 			now_uframe %= mod;
2737 		}
2738 	}
2739 }
2740 
2741 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2742  * The firmware seems to think that powering off is a wakeup event!
2743  * This routine turns off remote wakeup and everything else, on all ports.
2744  */
ehci_turn_off_all_ports(struct oxu_hcd * oxu)2745 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2746 {
2747 	int port = HCS_N_PORTS(oxu->hcs_params);
2748 
2749 	while (port--)
2750 		writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2751 }
2752 
ehci_port_power(struct oxu_hcd * oxu,int is_on)2753 static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2754 {
2755 	unsigned port;
2756 
2757 	if (!HCS_PPC(oxu->hcs_params))
2758 		return;
2759 
2760 	oxu_dbg(oxu, "...power%s ports...\n", str_up_down(is_on));
2761 	for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; ) {
2762 		if (is_on)
2763 			oxu_hub_control(oxu_to_hcd(oxu), SetPortFeature,
2764 				USB_PORT_FEAT_POWER, port--, NULL, 0);
2765 		else
2766 			oxu_hub_control(oxu_to_hcd(oxu), ClearPortFeature,
2767 				USB_PORT_FEAT_POWER, port--, NULL, 0);
2768 	}
2769 
2770 	msleep(20);
2771 }
2772 
2773 /* Called from some interrupts, timers, and so on.
2774  * It calls driver completion functions, after dropping oxu->lock.
2775  */
ehci_work(struct oxu_hcd * oxu)2776 static void ehci_work(struct oxu_hcd *oxu)
2777 {
2778 	timer_action_done(oxu, TIMER_IO_WATCHDOG);
2779 	if (oxu->reclaim_ready)
2780 		end_unlink_async(oxu);
2781 
2782 	/* another CPU may drop oxu->lock during a schedule scan while
2783 	 * it reports urb completions.  this flag guards against bogus
2784 	 * attempts at re-entrant schedule scanning.
2785 	 */
2786 	if (oxu->scanning)
2787 		return;
2788 	oxu->scanning = 1;
2789 	scan_async(oxu);
2790 	if (oxu->next_uframe != -1)
2791 		scan_periodic(oxu);
2792 	oxu->scanning = 0;
2793 
2794 	/* the IO watchdog guards against hardware or driver bugs that
2795 	 * misplace IRQs, and should let us run completely without IRQs.
2796 	 * such lossage has been observed on both VT6202 and VT8235.
2797 	 */
2798 	if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2799 			(oxu->async->qh_next.ptr != NULL ||
2800 			 oxu->periodic_sched != 0))
2801 		timer_action(oxu, TIMER_IO_WATCHDOG);
2802 }
2803 
unlink_async(struct oxu_hcd * oxu,struct ehci_qh * qh)2804 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2805 {
2806 	/* if we need to use IAA and it's busy, defer */
2807 	if (qh->qh_state == QH_STATE_LINKED
2808 			&& oxu->reclaim
2809 			&& HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2810 		struct ehci_qh		*last;
2811 
2812 		for (last = oxu->reclaim;
2813 				last->reclaim;
2814 				last = last->reclaim)
2815 			continue;
2816 		qh->qh_state = QH_STATE_UNLINK_WAIT;
2817 		last->reclaim = qh;
2818 
2819 	/* bypass IAA if the hc can't care */
2820 	} else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2821 		end_unlink_async(oxu);
2822 
2823 	/* something else might have unlinked the qh by now */
2824 	if (qh->qh_state == QH_STATE_LINKED)
2825 		start_unlink_async(oxu, qh);
2826 }
2827 
2828 /*
2829  * USB host controller methods
2830  */
2831 
oxu210_hcd_irq(struct usb_hcd * hcd)2832 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2833 {
2834 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2835 	u32 status, pcd_status = 0;
2836 	int bh;
2837 
2838 	spin_lock(&oxu->lock);
2839 
2840 	status = readl(&oxu->regs->status);
2841 
2842 	/* e.g. cardbus physical eject */
2843 	if (status == ~(u32) 0) {
2844 		oxu_dbg(oxu, "device removed\n");
2845 		goto dead;
2846 	}
2847 
2848 	/* Shared IRQ? */
2849 	status &= INTR_MASK;
2850 	if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2851 		spin_unlock(&oxu->lock);
2852 		return IRQ_NONE;
2853 	}
2854 
2855 	/* clear (just) interrupts */
2856 	writel(status, &oxu->regs->status);
2857 	readl(&oxu->regs->command);	/* unblock posted write */
2858 	bh = 0;
2859 
2860 #ifdef OXU_VERBOSE_DEBUG
2861 	/* unrequested/ignored: Frame List Rollover */
2862 	dbg_status(oxu, "irq", status);
2863 #endif
2864 
2865 	/* INT, ERR, and IAA interrupt rates can be throttled */
2866 
2867 	/* normal [4.15.1.2] or error [4.15.1.1] completion */
2868 	if (likely((status & (STS_INT|STS_ERR)) != 0))
2869 		bh = 1;
2870 
2871 	/* complete the unlinking of some qh [4.15.2.3] */
2872 	if (status & STS_IAA) {
2873 		oxu->reclaim_ready = 1;
2874 		bh = 1;
2875 	}
2876 
2877 	/* remote wakeup [4.3.1] */
2878 	if (status & STS_PCD) {
2879 		unsigned i = HCS_N_PORTS(oxu->hcs_params);
2880 		pcd_status = status;
2881 
2882 		/* resume root hub? */
2883 		if (!(readl(&oxu->regs->command) & CMD_RUN))
2884 			usb_hcd_resume_root_hub(hcd);
2885 
2886 		while (i--) {
2887 			int pstatus = readl(&oxu->regs->port_status[i]);
2888 
2889 			if (pstatus & PORT_OWNER)
2890 				continue;
2891 			if (!(pstatus & PORT_RESUME)
2892 					|| oxu->reset_done[i] != 0)
2893 				continue;
2894 
2895 			/* start USB_RESUME_TIMEOUT resume signaling from this
2896 			 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
2897 			 * stop that signaling.
2898 			 */
2899 			oxu->reset_done[i] = jiffies +
2900 				msecs_to_jiffies(USB_RESUME_TIMEOUT);
2901 			oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2902 			mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2903 		}
2904 	}
2905 
2906 	/* PCI errors [4.15.2.4] */
2907 	if (unlikely((status & STS_FATAL) != 0)) {
2908 		/* bogus "fatal" IRQs appear on some chips... why?  */
2909 		status = readl(&oxu->regs->status);
2910 		dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2911 		dbg_status(oxu, "fatal", status);
2912 		if (status & STS_HALT) {
2913 			oxu_err(oxu, "fatal error\n");
2914 dead:
2915 			ehci_reset(oxu);
2916 			writel(0, &oxu->regs->configured_flag);
2917 			usb_hc_died(hcd);
2918 			/* generic layer kills/unlinks all urbs, then
2919 			 * uses oxu_stop to clean up the rest
2920 			 */
2921 			bh = 1;
2922 		}
2923 	}
2924 
2925 	if (bh)
2926 		ehci_work(oxu);
2927 	spin_unlock(&oxu->lock);
2928 	if (pcd_status & STS_PCD)
2929 		usb_hcd_poll_rh_status(hcd);
2930 	return IRQ_HANDLED;
2931 }
2932 
oxu_irq(struct usb_hcd * hcd)2933 static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2934 {
2935 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2936 	int ret = IRQ_HANDLED;
2937 
2938 	u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2939 	u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2940 
2941 	/* Disable all interrupt */
2942 	oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2943 
2944 	if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2945 		(!oxu->is_otg && (status & OXU_USBSPHI)))
2946 		oxu210_hcd_irq(hcd);
2947 	else
2948 		ret = IRQ_NONE;
2949 
2950 	/* Enable all interrupt back */
2951 	oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2952 
2953 	return ret;
2954 }
2955 
oxu_watchdog(struct timer_list * t)2956 static void oxu_watchdog(struct timer_list *t)
2957 {
2958 	struct oxu_hcd	*oxu = from_timer(oxu, t, watchdog);
2959 	unsigned long flags;
2960 
2961 	spin_lock_irqsave(&oxu->lock, flags);
2962 
2963 	/* lost IAA irqs wedge things badly; seen with a vt8235 */
2964 	if (oxu->reclaim) {
2965 		u32 status = readl(&oxu->regs->status);
2966 		if (status & STS_IAA) {
2967 			oxu_vdbg(oxu, "lost IAA\n");
2968 			writel(STS_IAA, &oxu->regs->status);
2969 			oxu->reclaim_ready = 1;
2970 		}
2971 	}
2972 
2973 	/* stop async processing after it's idled a bit */
2974 	if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2975 		start_unlink_async(oxu, oxu->async);
2976 
2977 	/* oxu could run by timer, without IRQs ... */
2978 	ehci_work(oxu);
2979 
2980 	spin_unlock_irqrestore(&oxu->lock, flags);
2981 }
2982 
2983 /* One-time init, only for memory state.
2984  */
oxu_hcd_init(struct usb_hcd * hcd)2985 static int oxu_hcd_init(struct usb_hcd *hcd)
2986 {
2987 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2988 	u32 temp;
2989 	int retval;
2990 	u32 hcc_params;
2991 
2992 	spin_lock_init(&oxu->lock);
2993 
2994 	timer_setup(&oxu->watchdog, oxu_watchdog, 0);
2995 
2996 	/*
2997 	 * hw default: 1K periodic list heads, one per frame.
2998 	 * periodic_size can shrink by USBCMD update if hcc_params allows.
2999 	 */
3000 	oxu->periodic_size = DEFAULT_I_TDPS;
3001 	retval = ehci_mem_init(oxu, GFP_KERNEL);
3002 	if (retval < 0)
3003 		return retval;
3004 
3005 	/* controllers may cache some of the periodic schedule ... */
3006 	hcc_params = readl(&oxu->caps->hcc_params);
3007 	if (HCC_ISOC_CACHE(hcc_params))		/* full frame cache */
3008 		oxu->i_thresh = 8;
3009 	else					/* N microframes cached */
3010 		oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
3011 
3012 	oxu->reclaim = NULL;
3013 	oxu->reclaim_ready = 0;
3014 	oxu->next_uframe = -1;
3015 
3016 	/*
3017 	 * dedicate a qh for the async ring head, since we couldn't unlink
3018 	 * a 'real' qh without stopping the async schedule [4.8].  use it
3019 	 * as the 'reclamation list head' too.
3020 	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
3021 	 * from automatically advancing to the next td after short reads.
3022 	 */
3023 	oxu->async->qh_next.qh = NULL;
3024 	oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
3025 	oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
3026 	oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
3027 	oxu->async->hw_qtd_next = EHCI_LIST_END;
3028 	oxu->async->qh_state = QH_STATE_LINKED;
3029 	oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
3030 
3031 	/* clear interrupt enables, set irq latency */
3032 	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
3033 		log2_irq_thresh = 0;
3034 	temp = 1 << (16 + log2_irq_thresh);
3035 	if (HCC_CANPARK(hcc_params)) {
3036 		/* HW default park == 3, on hardware that supports it (like
3037 		 * NVidia and ALI silicon), maximizes throughput on the async
3038 		 * schedule by avoiding QH fetches between transfers.
3039 		 *
3040 		 * With fast usb storage devices and NForce2, "park" seems to
3041 		 * make problems:  throughput reduction (!), data errors...
3042 		 */
3043 		if (park) {
3044 			park = min_t(unsigned int, park, 3);
3045 			temp |= CMD_PARK;
3046 			temp |= park << 8;
3047 		}
3048 		oxu_dbg(oxu, "park %d\n", park);
3049 	}
3050 	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
3051 		/* periodic schedule size can be smaller than default */
3052 		temp &= ~(3 << 2);
3053 		temp |= (EHCI_TUNE_FLS << 2);
3054 	}
3055 	oxu->command = temp;
3056 
3057 	return 0;
3058 }
3059 
3060 /* Called during probe() after chip reset completes.
3061  */
oxu_reset(struct usb_hcd * hcd)3062 static int oxu_reset(struct usb_hcd *hcd)
3063 {
3064 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3065 
3066 	spin_lock_init(&oxu->mem_lock);
3067 	INIT_LIST_HEAD(&oxu->urb_list);
3068 	oxu->urb_len = 0;
3069 
3070 	if (oxu->is_otg) {
3071 		oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
3072 		oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
3073 			HC_LENGTH(readl(&oxu->caps->hc_capbase));
3074 
3075 		oxu->mem = hcd->regs + OXU_SPH_MEM;
3076 	} else {
3077 		oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
3078 		oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
3079 			HC_LENGTH(readl(&oxu->caps->hc_capbase));
3080 
3081 		oxu->mem = hcd->regs + OXU_OTG_MEM;
3082 	}
3083 
3084 	oxu->hcs_params = readl(&oxu->caps->hcs_params);
3085 	oxu->sbrn = 0x20;
3086 
3087 	return oxu_hcd_init(hcd);
3088 }
3089 
oxu_run(struct usb_hcd * hcd)3090 static int oxu_run(struct usb_hcd *hcd)
3091 {
3092 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3093 	int retval;
3094 	u32 temp, hcc_params;
3095 
3096 	hcd->uses_new_polling = 1;
3097 
3098 	/* EHCI spec section 4.1 */
3099 	retval = ehci_reset(oxu);
3100 	if (retval != 0) {
3101 		ehci_mem_cleanup(oxu);
3102 		return retval;
3103 	}
3104 	writel(oxu->periodic_dma, &oxu->regs->frame_list);
3105 	writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3106 
3107 	/* hcc_params controls whether oxu->regs->segment must (!!!)
3108 	 * be used; it constrains QH/ITD/SITD and QTD locations.
3109 	 * dma_pool consistent memory always uses segment zero.
3110 	 * streaming mappings for I/O buffers, like dma_map_single(),
3111 	 * can return segments above 4GB, if the device allows.
3112 	 *
3113 	 * NOTE:  the dma mask is visible through dev->dma_mask, so
3114 	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
3115 	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
3116 	 * host side drivers though.
3117 	 */
3118 	hcc_params = readl(&oxu->caps->hcc_params);
3119 	if (HCC_64BIT_ADDR(hcc_params))
3120 		writel(0, &oxu->regs->segment);
3121 
3122 	oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
3123 				CMD_ASE | CMD_RESET);
3124 	oxu->command |= CMD_RUN;
3125 	writel(oxu->command, &oxu->regs->command);
3126 	dbg_cmd(oxu, "init", oxu->command);
3127 
3128 	/*
3129 	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
3130 	 * are explicitly handed to companion controller(s), so no TT is
3131 	 * involved with the root hub.  (Except where one is integrated,
3132 	 * and there's no companion controller unless maybe for USB OTG.)
3133 	 */
3134 	hcd->state = HC_STATE_RUNNING;
3135 	writel(FLAG_CF, &oxu->regs->configured_flag);
3136 	readl(&oxu->regs->command);	/* unblock posted writes */
3137 
3138 	temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
3139 	oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
3140 		((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
3141 		temp >> 8, temp & 0xff, DRIVER_VERSION,
3142 		ignore_oc ? ", overcurrent ignored" : "");
3143 
3144 	writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
3145 
3146 	return 0;
3147 }
3148 
oxu_stop(struct usb_hcd * hcd)3149 static void oxu_stop(struct usb_hcd *hcd)
3150 {
3151 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3152 
3153 	/* Turn off port power on all root hub ports. */
3154 	ehci_port_power(oxu, 0);
3155 
3156 	/* no more interrupts ... */
3157 	timer_delete_sync(&oxu->watchdog);
3158 
3159 	spin_lock_irq(&oxu->lock);
3160 	if (HC_IS_RUNNING(hcd->state))
3161 		ehci_quiesce(oxu);
3162 
3163 	ehci_reset(oxu);
3164 	writel(0, &oxu->regs->intr_enable);
3165 	spin_unlock_irq(&oxu->lock);
3166 
3167 	/* let companion controllers work when we aren't */
3168 	writel(0, &oxu->regs->configured_flag);
3169 
3170 	/* root hub is shut down separately (first, when possible) */
3171 	spin_lock_irq(&oxu->lock);
3172 	if (oxu->async)
3173 		ehci_work(oxu);
3174 	spin_unlock_irq(&oxu->lock);
3175 	ehci_mem_cleanup(oxu);
3176 
3177 	dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
3178 }
3179 
3180 /* Kick in for silicon on any bus (not just pci, etc).
3181  * This forcibly disables dma and IRQs, helping kexec and other cases
3182  * where the next system software may expect clean state.
3183  */
oxu_shutdown(struct usb_hcd * hcd)3184 static void oxu_shutdown(struct usb_hcd *hcd)
3185 {
3186 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3187 
3188 	(void) ehci_halt(oxu);
3189 	ehci_turn_off_all_ports(oxu);
3190 
3191 	/* make BIOS/etc use companion controller during reboot */
3192 	writel(0, &oxu->regs->configured_flag);
3193 
3194 	/* unblock posted writes */
3195 	readl(&oxu->regs->configured_flag);
3196 }
3197 
3198 /* Non-error returns are a promise to giveback() the urb later
3199  * we drop ownership so next owner (or urb unlink) can get it
3200  *
3201  * urb + dev is in hcd.self.controller.urb_list
3202  * we're queueing TDs onto software and hardware lists
3203  *
3204  * hcd-specific init for hcpriv hasn't been done yet
3205  *
3206  * NOTE:  control, bulk, and interrupt share the same code to append TDs
3207  * to a (possibly active) QH, and the same QH scanning code.
3208  */
__oxu_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)3209 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3210 				gfp_t mem_flags)
3211 {
3212 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3213 	struct list_head qtd_list;
3214 
3215 	INIT_LIST_HEAD(&qtd_list);
3216 
3217 	switch (usb_pipetype(urb->pipe)) {
3218 	case PIPE_CONTROL:
3219 	case PIPE_BULK:
3220 	default:
3221 		if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3222 			return -ENOMEM;
3223 		return submit_async(oxu, urb, &qtd_list, mem_flags);
3224 
3225 	case PIPE_INTERRUPT:
3226 		if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3227 			return -ENOMEM;
3228 		return intr_submit(oxu, urb, &qtd_list, mem_flags);
3229 
3230 	case PIPE_ISOCHRONOUS:
3231 		if (urb->dev->speed == USB_SPEED_HIGH)
3232 			return itd_submit(oxu, urb, mem_flags);
3233 		else
3234 			return sitd_submit(oxu, urb, mem_flags);
3235 	}
3236 }
3237 
3238 /* This function is responsible for breaking URBs with big data size
3239  * into smaller size and processing small urbs in sequence.
3240  */
oxu_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)3241 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3242 				gfp_t mem_flags)
3243 {
3244 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3245 	int num, rem;
3246 	void *transfer_buffer;
3247 	struct urb *murb;
3248 	int i, ret;
3249 
3250 	/* If not bulk pipe just enqueue the URB */
3251 	if (!usb_pipebulk(urb->pipe))
3252 		return __oxu_urb_enqueue(hcd, urb, mem_flags);
3253 
3254 	/* Otherwise we should verify the USB transfer buffer size! */
3255 	transfer_buffer = urb->transfer_buffer;
3256 
3257 	num = urb->transfer_buffer_length / 4096;
3258 	rem = urb->transfer_buffer_length % 4096;
3259 	if (rem != 0)
3260 		num++;
3261 
3262 	/* If URB is smaller than 4096 bytes just enqueue it! */
3263 	if (num == 1)
3264 		return __oxu_urb_enqueue(hcd, urb, mem_flags);
3265 
3266 	/* Ok, we have more job to do! :) */
3267 
3268 	for (i = 0; i < num - 1; i++) {
3269 		/* Get free micro URB poll till a free urb is received */
3270 
3271 		do {
3272 			murb = (struct urb *) oxu_murb_alloc(oxu);
3273 			if (!murb)
3274 				schedule();
3275 		} while (!murb);
3276 
3277 		/* Coping the urb */
3278 		memcpy(murb, urb, sizeof(struct urb));
3279 
3280 		murb->transfer_buffer_length = 4096;
3281 		murb->transfer_buffer = transfer_buffer + i * 4096;
3282 
3283 		/* Null pointer for the encodes that this is a micro urb */
3284 		murb->complete = NULL;
3285 
3286 		((struct oxu_murb *) murb)->main = urb;
3287 		((struct oxu_murb *) murb)->last = 0;
3288 
3289 		/* This loop is to guarantee urb to be processed when there's
3290 		 * not enough resources at a particular time by retrying.
3291 		 */
3292 		do {
3293 			ret  = __oxu_urb_enqueue(hcd, murb, mem_flags);
3294 			if (ret)
3295 				schedule();
3296 		} while (ret);
3297 	}
3298 
3299 	/* Last urb requires special handling  */
3300 
3301 	/* Get free micro URB poll till a free urb is received */
3302 	do {
3303 		murb = (struct urb *) oxu_murb_alloc(oxu);
3304 		if (!murb)
3305 			schedule();
3306 	} while (!murb);
3307 
3308 	/* Coping the urb */
3309 	memcpy(murb, urb, sizeof(struct urb));
3310 
3311 	murb->transfer_buffer_length = rem > 0 ? rem : 4096;
3312 	murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
3313 
3314 	/* Null pointer for the encodes that this is a micro urb */
3315 	murb->complete = NULL;
3316 
3317 	((struct oxu_murb *) murb)->main = urb;
3318 	((struct oxu_murb *) murb)->last = 1;
3319 
3320 	do {
3321 		ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
3322 		if (ret)
3323 			schedule();
3324 	} while (ret);
3325 
3326 	return ret;
3327 }
3328 
3329 /* Remove from hardware lists.
3330  * Completions normally happen asynchronously
3331  */
oxu_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)3332 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
3333 {
3334 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3335 	struct ehci_qh *qh;
3336 	unsigned long flags;
3337 
3338 	spin_lock_irqsave(&oxu->lock, flags);
3339 	switch (usb_pipetype(urb->pipe)) {
3340 	case PIPE_CONTROL:
3341 	case PIPE_BULK:
3342 	default:
3343 		qh = (struct ehci_qh *) urb->hcpriv;
3344 		if (!qh)
3345 			break;
3346 		unlink_async(oxu, qh);
3347 		break;
3348 
3349 	case PIPE_INTERRUPT:
3350 		qh = (struct ehci_qh *) urb->hcpriv;
3351 		if (!qh)
3352 			break;
3353 		switch (qh->qh_state) {
3354 		case QH_STATE_LINKED:
3355 			intr_deschedule(oxu, qh);
3356 			fallthrough;
3357 		case QH_STATE_IDLE:
3358 			qh_completions(oxu, qh);
3359 			break;
3360 		default:
3361 			oxu_dbg(oxu, "bogus qh %p state %d\n",
3362 					qh, qh->qh_state);
3363 			goto done;
3364 		}
3365 
3366 		/* reschedule QH iff another request is queued */
3367 		if (!list_empty(&qh->qtd_list)
3368 				&& HC_IS_RUNNING(hcd->state)) {
3369 			int status;
3370 
3371 			status = qh_schedule(oxu, qh);
3372 			spin_unlock_irqrestore(&oxu->lock, flags);
3373 
3374 			if (status != 0) {
3375 				/* shouldn't happen often, but ...
3376 				 * FIXME kill those tds' urbs
3377 				 */
3378 				dev_err(hcd->self.controller,
3379 					"can't reschedule qh %p, err %d\n", qh,
3380 					status);
3381 			}
3382 			return status;
3383 		}
3384 		break;
3385 	}
3386 done:
3387 	spin_unlock_irqrestore(&oxu->lock, flags);
3388 	return 0;
3389 }
3390 
3391 /* Bulk qh holds the data toggle */
oxu_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)3392 static void oxu_endpoint_disable(struct usb_hcd *hcd,
3393 					struct usb_host_endpoint *ep)
3394 {
3395 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3396 	unsigned long		flags;
3397 	struct ehci_qh		*qh, *tmp;
3398 
3399 	/* ASSERT:  any requests/urbs are being unlinked */
3400 	/* ASSERT:  nobody can be submitting urbs for this any more */
3401 
3402 rescan:
3403 	spin_lock_irqsave(&oxu->lock, flags);
3404 	qh = ep->hcpriv;
3405 	if (!qh)
3406 		goto done;
3407 
3408 	/* endpoints can be iso streams.  for now, we don't
3409 	 * accelerate iso completions ... so spin a while.
3410 	 */
3411 	if (qh->hw_info1 == 0) {
3412 		oxu_vdbg(oxu, "iso delay\n");
3413 		goto idle_timeout;
3414 	}
3415 
3416 	if (!HC_IS_RUNNING(hcd->state))
3417 		qh->qh_state = QH_STATE_IDLE;
3418 	switch (qh->qh_state) {
3419 	case QH_STATE_LINKED:
3420 		for (tmp = oxu->async->qh_next.qh;
3421 				tmp && tmp != qh;
3422 				tmp = tmp->qh_next.qh)
3423 			continue;
3424 		/* periodic qh self-unlinks on empty */
3425 		if (!tmp)
3426 			goto nogood;
3427 		unlink_async(oxu, qh);
3428 		fallthrough;
3429 	case QH_STATE_UNLINK:		/* wait for hw to finish? */
3430 idle_timeout:
3431 		spin_unlock_irqrestore(&oxu->lock, flags);
3432 		schedule_timeout_uninterruptible(1);
3433 		goto rescan;
3434 	case QH_STATE_IDLE:		/* fully unlinked */
3435 		if (list_empty(&qh->qtd_list)) {
3436 			qh_put(qh);
3437 			break;
3438 		}
3439 		fallthrough;
3440 	default:
3441 nogood:
3442 		/* caller was supposed to have unlinked any requests;
3443 		 * that's not our job.  just leak this memory.
3444 		 */
3445 		oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3446 			qh, ep->desc.bEndpointAddress, qh->qh_state,
3447 			list_empty(&qh->qtd_list) ? "" : "(has tds)");
3448 		break;
3449 	}
3450 	ep->hcpriv = NULL;
3451 done:
3452 	spin_unlock_irqrestore(&oxu->lock, flags);
3453 }
3454 
oxu_get_frame(struct usb_hcd * hcd)3455 static int oxu_get_frame(struct usb_hcd *hcd)
3456 {
3457 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3458 
3459 	return (readl(&oxu->regs->frame_index) >> 3) %
3460 		oxu->periodic_size;
3461 }
3462 
3463 /* Build "status change" packet (one or two bytes) from HC registers */
oxu_hub_status_data(struct usb_hcd * hcd,char * buf)3464 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3465 {
3466 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3467 	u32 temp, mask, status = 0;
3468 	int ports, i, retval = 1;
3469 	unsigned long flags;
3470 
3471 	/* if !PM, root hub timers won't get shut down ... */
3472 	if (!HC_IS_RUNNING(hcd->state))
3473 		return 0;
3474 
3475 	/* init status to no-changes */
3476 	buf[0] = 0;
3477 	ports = HCS_N_PORTS(oxu->hcs_params);
3478 	if (ports > 7) {
3479 		buf[1] = 0;
3480 		retval++;
3481 	}
3482 
3483 	/* Some boards (mostly VIA?) report bogus overcurrent indications,
3484 	 * causing massive log spam unless we completely ignore them.  It
3485 	 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3486 	 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3487 	 * PORT_POWER; that's surprising, but maybe within-spec.
3488 	 */
3489 	if (!ignore_oc)
3490 		mask = PORT_CSC | PORT_PEC | PORT_OCC;
3491 	else
3492 		mask = PORT_CSC | PORT_PEC;
3493 
3494 	/* no hub change reports (bit 0) for now (power, ...) */
3495 
3496 	/* port N changes (bit N)? */
3497 	spin_lock_irqsave(&oxu->lock, flags);
3498 	for (i = 0; i < ports; i++) {
3499 		temp = readl(&oxu->regs->port_status[i]);
3500 
3501 		/*
3502 		 * Return status information even for ports with OWNER set.
3503 		 * Otherwise hub_wq wouldn't see the disconnect event when a
3504 		 * high-speed device is switched over to the companion
3505 		 * controller by the user.
3506 		 */
3507 
3508 		if (!(temp & PORT_CONNECT))
3509 			oxu->reset_done[i] = 0;
3510 		if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3511 				time_after_eq(jiffies, oxu->reset_done[i]))) {
3512 			if (i < 7)
3513 				buf[0] |= 1 << (i + 1);
3514 			else
3515 				buf[1] |= 1 << (i - 7);
3516 			status = STS_PCD;
3517 		}
3518 	}
3519 	/* FIXME autosuspend idle root hubs */
3520 	spin_unlock_irqrestore(&oxu->lock, flags);
3521 	return status ? retval : 0;
3522 }
3523 
3524 /* Returns the speed of a device attached to a port on the root hub. */
oxu_port_speed(struct oxu_hcd * oxu,unsigned int portsc)3525 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3526 						unsigned int portsc)
3527 {
3528 	switch ((portsc >> 26) & 3) {
3529 	case 0:
3530 		return 0;
3531 	case 1:
3532 		return USB_PORT_STAT_LOW_SPEED;
3533 	case 2:
3534 	default:
3535 		return USB_PORT_STAT_HIGH_SPEED;
3536 	}
3537 }
3538 
3539 #define	PORT_WAKE_BITS	(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
oxu_hub_control(struct usb_hcd * hcd,u16 typeReq,u16 wValue,u16 wIndex,char * buf,u16 wLength)3540 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3541 				u16 wValue, u16 wIndex, char *buf, u16 wLength)
3542 {
3543 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3544 	int ports = HCS_N_PORTS(oxu->hcs_params);
3545 	u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3546 	u32 temp, status;
3547 	unsigned long	flags;
3548 	int retval = 0;
3549 	unsigned selector;
3550 
3551 	/*
3552 	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3553 	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3554 	 * (track current state ourselves) ... blink for diagnostics,
3555 	 * power, "this is the one", etc.  EHCI spec supports this.
3556 	 */
3557 
3558 	spin_lock_irqsave(&oxu->lock, flags);
3559 	switch (typeReq) {
3560 	case ClearHubFeature:
3561 		switch (wValue) {
3562 		case C_HUB_LOCAL_POWER:
3563 		case C_HUB_OVER_CURRENT:
3564 			/* no hub-wide feature/status flags */
3565 			break;
3566 		default:
3567 			goto error;
3568 		}
3569 		break;
3570 	case ClearPortFeature:
3571 		if (!wIndex || wIndex > ports)
3572 			goto error;
3573 		wIndex--;
3574 		temp = readl(status_reg);
3575 
3576 		/*
3577 		 * Even if OWNER is set, so the port is owned by the
3578 		 * companion controller, hub_wq needs to be able to clear
3579 		 * the port-change status bits (especially
3580 		 * USB_PORT_STAT_C_CONNECTION).
3581 		 */
3582 
3583 		switch (wValue) {
3584 		case USB_PORT_FEAT_ENABLE:
3585 			writel(temp & ~PORT_PE, status_reg);
3586 			break;
3587 		case USB_PORT_FEAT_C_ENABLE:
3588 			writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3589 			break;
3590 		case USB_PORT_FEAT_SUSPEND:
3591 			if (temp & PORT_RESET)
3592 				goto error;
3593 			if (temp & PORT_SUSPEND) {
3594 				if ((temp & PORT_PE) == 0)
3595 					goto error;
3596 				/* resume signaling for 20 msec */
3597 				temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3598 				writel(temp | PORT_RESUME, status_reg);
3599 				oxu->reset_done[wIndex] = jiffies
3600 						+ msecs_to_jiffies(20);
3601 			}
3602 			break;
3603 		case USB_PORT_FEAT_C_SUSPEND:
3604 			/* we auto-clear this feature */
3605 			break;
3606 		case USB_PORT_FEAT_POWER:
3607 			if (HCS_PPC(oxu->hcs_params))
3608 				writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3609 					  status_reg);
3610 			break;
3611 		case USB_PORT_FEAT_C_CONNECTION:
3612 			writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3613 			break;
3614 		case USB_PORT_FEAT_C_OVER_CURRENT:
3615 			writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3616 			break;
3617 		case USB_PORT_FEAT_C_RESET:
3618 			/* GetPortStatus clears reset */
3619 			break;
3620 		default:
3621 			goto error;
3622 		}
3623 		readl(&oxu->regs->command);	/* unblock posted write */
3624 		break;
3625 	case GetHubDescriptor:
3626 		ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3627 			buf);
3628 		break;
3629 	case GetHubStatus:
3630 		/* no hub-wide feature/status flags */
3631 		memset(buf, 0, 4);
3632 		break;
3633 	case GetPortStatus:
3634 		if (!wIndex || wIndex > ports)
3635 			goto error;
3636 		wIndex--;
3637 		status = 0;
3638 		temp = readl(status_reg);
3639 
3640 		/* wPortChange bits */
3641 		if (temp & PORT_CSC)
3642 			status |= USB_PORT_STAT_C_CONNECTION << 16;
3643 		if (temp & PORT_PEC)
3644 			status |= USB_PORT_STAT_C_ENABLE << 16;
3645 		if ((temp & PORT_OCC) && !ignore_oc)
3646 			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3647 
3648 		/* whoever resumes must GetPortStatus to complete it!! */
3649 		if (temp & PORT_RESUME) {
3650 
3651 			/* Remote Wakeup received? */
3652 			if (!oxu->reset_done[wIndex]) {
3653 				/* resume signaling for 20 msec */
3654 				oxu->reset_done[wIndex] = jiffies
3655 						+ msecs_to_jiffies(20);
3656 				/* check the port again */
3657 				mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3658 						oxu->reset_done[wIndex]);
3659 			}
3660 
3661 			/* resume completed? */
3662 			else if (time_after_eq(jiffies,
3663 					oxu->reset_done[wIndex])) {
3664 				status |= USB_PORT_STAT_C_SUSPEND << 16;
3665 				oxu->reset_done[wIndex] = 0;
3666 
3667 				/* stop resume signaling */
3668 				temp = readl(status_reg);
3669 				writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3670 					status_reg);
3671 				retval = handshake(oxu, status_reg,
3672 					   PORT_RESUME, 0, 2000 /* 2msec */);
3673 				if (retval != 0) {
3674 					oxu_err(oxu,
3675 						"port %d resume error %d\n",
3676 						wIndex + 1, retval);
3677 					goto error;
3678 				}
3679 				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3680 			}
3681 		}
3682 
3683 		/* whoever resets must GetPortStatus to complete it!! */
3684 		if ((temp & PORT_RESET)
3685 				&& time_after_eq(jiffies,
3686 					oxu->reset_done[wIndex])) {
3687 			status |= USB_PORT_STAT_C_RESET << 16;
3688 			oxu->reset_done[wIndex] = 0;
3689 
3690 			/* force reset to complete */
3691 			writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3692 					status_reg);
3693 			/* REVISIT:  some hardware needs 550+ usec to clear
3694 			 * this bit; seems too long to spin routinely...
3695 			 */
3696 			retval = handshake(oxu, status_reg,
3697 					PORT_RESET, 0, 750);
3698 			if (retval != 0) {
3699 				oxu_err(oxu, "port %d reset error %d\n",
3700 					wIndex + 1, retval);
3701 				goto error;
3702 			}
3703 
3704 			/* see what we found out */
3705 			temp = check_reset_complete(oxu, wIndex, status_reg,
3706 					readl(status_reg));
3707 		}
3708 
3709 		/* transfer dedicated ports to the companion hc */
3710 		if ((temp & PORT_CONNECT) &&
3711 				test_bit(wIndex, &oxu->companion_ports)) {
3712 			temp &= ~PORT_RWC_BITS;
3713 			temp |= PORT_OWNER;
3714 			writel(temp, status_reg);
3715 			oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3716 			temp = readl(status_reg);
3717 		}
3718 
3719 		/*
3720 		 * Even if OWNER is set, there's no harm letting hub_wq
3721 		 * see the wPortStatus values (they should all be 0 except
3722 		 * for PORT_POWER anyway).
3723 		 */
3724 
3725 		if (temp & PORT_CONNECT) {
3726 			status |= USB_PORT_STAT_CONNECTION;
3727 			/* status may be from integrated TT */
3728 			status |= oxu_port_speed(oxu, temp);
3729 		}
3730 		if (temp & PORT_PE)
3731 			status |= USB_PORT_STAT_ENABLE;
3732 		if (temp & (PORT_SUSPEND|PORT_RESUME))
3733 			status |= USB_PORT_STAT_SUSPEND;
3734 		if (temp & PORT_OC)
3735 			status |= USB_PORT_STAT_OVERCURRENT;
3736 		if (temp & PORT_RESET)
3737 			status |= USB_PORT_STAT_RESET;
3738 		if (temp & PORT_POWER)
3739 			status |= USB_PORT_STAT_POWER;
3740 
3741 #ifndef	OXU_VERBOSE_DEBUG
3742 	if (status & ~0xffff)	/* only if wPortChange is interesting */
3743 #endif
3744 		dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3745 		put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3746 		break;
3747 	case SetHubFeature:
3748 		switch (wValue) {
3749 		case C_HUB_LOCAL_POWER:
3750 		case C_HUB_OVER_CURRENT:
3751 			/* no hub-wide feature/status flags */
3752 			break;
3753 		default:
3754 			goto error;
3755 		}
3756 		break;
3757 	case SetPortFeature:
3758 		selector = wIndex >> 8;
3759 		wIndex &= 0xff;
3760 		if (!wIndex || wIndex > ports)
3761 			goto error;
3762 		wIndex--;
3763 		temp = readl(status_reg);
3764 		if (temp & PORT_OWNER)
3765 			break;
3766 
3767 		temp &= ~PORT_RWC_BITS;
3768 		switch (wValue) {
3769 		case USB_PORT_FEAT_SUSPEND:
3770 			if ((temp & PORT_PE) == 0
3771 					|| (temp & PORT_RESET) != 0)
3772 				goto error;
3773 			if (device_may_wakeup(&hcd->self.root_hub->dev))
3774 				temp |= PORT_WAKE_BITS;
3775 			writel(temp | PORT_SUSPEND, status_reg);
3776 			break;
3777 		case USB_PORT_FEAT_POWER:
3778 			if (HCS_PPC(oxu->hcs_params))
3779 				writel(temp | PORT_POWER, status_reg);
3780 			break;
3781 		case USB_PORT_FEAT_RESET:
3782 			if (temp & PORT_RESUME)
3783 				goto error;
3784 			/* line status bits may report this as low speed,
3785 			 * which can be fine if this root hub has a
3786 			 * transaction translator built in.
3787 			 */
3788 			oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3789 			temp |= PORT_RESET;
3790 			temp &= ~PORT_PE;
3791 
3792 			/*
3793 			 * caller must wait, then call GetPortStatus
3794 			 * usb 2.0 spec says 50 ms resets on root
3795 			 */
3796 			oxu->reset_done[wIndex] = jiffies
3797 					+ msecs_to_jiffies(50);
3798 			writel(temp, status_reg);
3799 			break;
3800 
3801 		/* For downstream facing ports (these):  one hub port is put
3802 		 * into test mode according to USB2 11.24.2.13, then the hub
3803 		 * must be reset (which for root hub now means rmmod+modprobe,
3804 		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
3805 		 * about the EHCI-specific stuff.
3806 		 */
3807 		case USB_PORT_FEAT_TEST:
3808 			if (!selector || selector > 5)
3809 				goto error;
3810 			ehci_quiesce(oxu);
3811 			ehci_halt(oxu);
3812 			temp |= selector << 16;
3813 			writel(temp, status_reg);
3814 			break;
3815 
3816 		default:
3817 			goto error;
3818 		}
3819 		readl(&oxu->regs->command);	/* unblock posted writes */
3820 		break;
3821 
3822 	default:
3823 error:
3824 		/* "stall" on error */
3825 		retval = -EPIPE;
3826 	}
3827 	spin_unlock_irqrestore(&oxu->lock, flags);
3828 	return retval;
3829 }
3830 
3831 #ifdef CONFIG_PM
3832 
oxu_bus_suspend(struct usb_hcd * hcd)3833 static int oxu_bus_suspend(struct usb_hcd *hcd)
3834 {
3835 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3836 	int port;
3837 	int mask;
3838 
3839 	oxu_dbg(oxu, "suspend root hub\n");
3840 
3841 	if (time_before(jiffies, oxu->next_statechange))
3842 		msleep(5);
3843 
3844 	port = HCS_N_PORTS(oxu->hcs_params);
3845 	spin_lock_irq(&oxu->lock);
3846 
3847 	/* stop schedules, clean any completed work */
3848 	if (HC_IS_RUNNING(hcd->state)) {
3849 		ehci_quiesce(oxu);
3850 		hcd->state = HC_STATE_QUIESCING;
3851 	}
3852 	oxu->command = readl(&oxu->regs->command);
3853 	if (oxu->reclaim)
3854 		oxu->reclaim_ready = 1;
3855 	ehci_work(oxu);
3856 
3857 	/* Unlike other USB host controller types, EHCI doesn't have
3858 	 * any notion of "global" or bus-wide suspend.  The driver has
3859 	 * to manually suspend all the active unsuspended ports, and
3860 	 * then manually resume them in the bus_resume() routine.
3861 	 */
3862 	oxu->bus_suspended = 0;
3863 	while (port--) {
3864 		u32 __iomem *reg = &oxu->regs->port_status[port];
3865 		u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3866 		u32 t2 = t1;
3867 
3868 		/* keep track of which ports we suspend */
3869 		if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3870 				!(t1 & PORT_SUSPEND)) {
3871 			t2 |= PORT_SUSPEND;
3872 			set_bit(port, &oxu->bus_suspended);
3873 		}
3874 
3875 		/* enable remote wakeup on all ports */
3876 		if (device_may_wakeup(&hcd->self.root_hub->dev))
3877 			t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3878 		else
3879 			t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3880 
3881 		if (t1 != t2) {
3882 			oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3883 				port + 1, t1, t2);
3884 			writel(t2, reg);
3885 		}
3886 	}
3887 
3888 	spin_unlock_irq(&oxu->lock);
3889 	/* turn off now-idle HC */
3890 	timer_delete_sync(&oxu->watchdog);
3891 	spin_lock_irq(&oxu->lock);
3892 	ehci_halt(oxu);
3893 	hcd->state = HC_STATE_SUSPENDED;
3894 
3895 	/* allow remote wakeup */
3896 	mask = INTR_MASK;
3897 	if (!device_may_wakeup(&hcd->self.root_hub->dev))
3898 		mask &= ~STS_PCD;
3899 	writel(mask, &oxu->regs->intr_enable);
3900 	readl(&oxu->regs->intr_enable);
3901 
3902 	oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3903 	spin_unlock_irq(&oxu->lock);
3904 	return 0;
3905 }
3906 
3907 /* Caller has locked the root hub, and should reset/reinit on error */
oxu_bus_resume(struct usb_hcd * hcd)3908 static int oxu_bus_resume(struct usb_hcd *hcd)
3909 {
3910 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3911 	u32 temp;
3912 	int i;
3913 
3914 	if (time_before(jiffies, oxu->next_statechange))
3915 		msleep(5);
3916 	spin_lock_irq(&oxu->lock);
3917 
3918 	/* Ideally and we've got a real resume here, and no port's power
3919 	 * was lost.  (For PCI, that means Vaux was maintained.)  But we
3920 	 * could instead be restoring a swsusp snapshot -- so that BIOS was
3921 	 * the last user of the controller, not reset/pm hardware keeping
3922 	 * state we gave to it.
3923 	 */
3924 	temp = readl(&oxu->regs->intr_enable);
3925 	oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3926 
3927 	/* at least some APM implementations will try to deliver
3928 	 * IRQs right away, so delay them until we're ready.
3929 	 */
3930 	writel(0, &oxu->regs->intr_enable);
3931 
3932 	/* re-init operational registers */
3933 	writel(0, &oxu->regs->segment);
3934 	writel(oxu->periodic_dma, &oxu->regs->frame_list);
3935 	writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3936 
3937 	/* restore CMD_RUN, framelist size, and irq threshold */
3938 	writel(oxu->command, &oxu->regs->command);
3939 
3940 	/* Some controller/firmware combinations need a delay during which
3941 	 * they set up the port statuses.  See Bugzilla #8190. */
3942 	mdelay(8);
3943 
3944 	/* manually resume the ports we suspended during bus_suspend() */
3945 	i = HCS_N_PORTS(oxu->hcs_params);
3946 	while (i--) {
3947 		temp = readl(&oxu->regs->port_status[i]);
3948 		temp &= ~(PORT_RWC_BITS
3949 			| PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3950 		if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3951 			oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3952 			temp |= PORT_RESUME;
3953 		}
3954 		writel(temp, &oxu->regs->port_status[i]);
3955 	}
3956 	i = HCS_N_PORTS(oxu->hcs_params);
3957 	mdelay(20);
3958 	while (i--) {
3959 		temp = readl(&oxu->regs->port_status[i]);
3960 		if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3961 			temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3962 			writel(temp, &oxu->regs->port_status[i]);
3963 			oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3964 		}
3965 	}
3966 	(void) readl(&oxu->regs->command);
3967 
3968 	/* maybe re-activate the schedule(s) */
3969 	temp = 0;
3970 	if (oxu->async->qh_next.qh)
3971 		temp |= CMD_ASE;
3972 	if (oxu->periodic_sched)
3973 		temp |= CMD_PSE;
3974 	if (temp) {
3975 		oxu->command |= temp;
3976 		writel(oxu->command, &oxu->regs->command);
3977 	}
3978 
3979 	oxu->next_statechange = jiffies + msecs_to_jiffies(5);
3980 	hcd->state = HC_STATE_RUNNING;
3981 
3982 	/* Now we can safely re-enable irqs */
3983 	writel(INTR_MASK, &oxu->regs->intr_enable);
3984 
3985 	spin_unlock_irq(&oxu->lock);
3986 	return 0;
3987 }
3988 
3989 #else
3990 
oxu_bus_suspend(struct usb_hcd * hcd)3991 static int oxu_bus_suspend(struct usb_hcd *hcd)
3992 {
3993 	return 0;
3994 }
3995 
oxu_bus_resume(struct usb_hcd * hcd)3996 static int oxu_bus_resume(struct usb_hcd *hcd)
3997 {
3998 	return 0;
3999 }
4000 
4001 #endif	/* CONFIG_PM */
4002 
4003 static const struct hc_driver oxu_hc_driver = {
4004 	.description =		"oxu210hp_hcd",
4005 	.product_desc =		"oxu210hp HCD",
4006 	.hcd_priv_size =	sizeof(struct oxu_hcd),
4007 
4008 	/*
4009 	 * Generic hardware linkage
4010 	 */
4011 	.irq =			oxu_irq,
4012 	.flags =		HCD_MEMORY | HCD_USB2,
4013 
4014 	/*
4015 	 * Basic lifecycle operations
4016 	 */
4017 	.reset =		oxu_reset,
4018 	.start =		oxu_run,
4019 	.stop =			oxu_stop,
4020 	.shutdown =		oxu_shutdown,
4021 
4022 	/*
4023 	 * Managing i/o requests and associated device resources
4024 	 */
4025 	.urb_enqueue =		oxu_urb_enqueue,
4026 	.urb_dequeue =		oxu_urb_dequeue,
4027 	.endpoint_disable =	oxu_endpoint_disable,
4028 
4029 	/*
4030 	 * Scheduling support
4031 	 */
4032 	.get_frame_number =	oxu_get_frame,
4033 
4034 	/*
4035 	 * Root hub support
4036 	 */
4037 	.hub_status_data =	oxu_hub_status_data,
4038 	.hub_control =		oxu_hub_control,
4039 	.bus_suspend =		oxu_bus_suspend,
4040 	.bus_resume =		oxu_bus_resume,
4041 };
4042 
4043 /*
4044  * Module stuff
4045  */
4046 
oxu_configuration(struct platform_device * pdev,void __iomem * base)4047 static void oxu_configuration(struct platform_device *pdev, void __iomem *base)
4048 {
4049 	u32 tmp;
4050 
4051 	/* Initialize top level registers.
4052 	 * First write ever
4053 	 */
4054 	oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4055 	oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
4056 	oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4057 
4058 	tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
4059 	oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
4060 
4061 	oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
4062 					OXU_COMPARATOR | OXU_ASO_OP);
4063 
4064 	tmp = oxu_readl(base, OXU_CLKCTRL_SET);
4065 	oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
4066 
4067 	/* Clear all top interrupt enable */
4068 	oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
4069 
4070 	/* Clear all top interrupt status */
4071 	oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
4072 
4073 	/* Enable all needed top interrupt except OTG SPH core */
4074 	oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
4075 }
4076 
oxu_verify_id(struct platform_device * pdev,void __iomem * base)4077 static int oxu_verify_id(struct platform_device *pdev, void __iomem *base)
4078 {
4079 	u32 id;
4080 	static const char * const bo[] = {
4081 		"reserved",
4082 		"128-pin LQFP",
4083 		"84-pin TFBGA",
4084 		"reserved",
4085 	};
4086 
4087 	/* Read controller signature register to find a match */
4088 	id = oxu_readl(base, OXU_DEVICEID);
4089 	dev_info(&pdev->dev, "device ID %x\n", id);
4090 	if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
4091 		return -1;
4092 
4093 	dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
4094 		id >> OXU_REV_SHIFT,
4095 		bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
4096 		(id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
4097 		(id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
4098 
4099 	return 0;
4100 }
4101 
4102 static const struct hc_driver oxu_hc_driver;
oxu_create(struct platform_device * pdev,unsigned long memstart,unsigned long memlen,void __iomem * base,int irq,int otg)4103 static struct usb_hcd *oxu_create(struct platform_device *pdev,
4104 				unsigned long memstart, unsigned long memlen,
4105 				void __iomem *base, int irq, int otg)
4106 {
4107 	struct device *dev = &pdev->dev;
4108 
4109 	struct usb_hcd *hcd;
4110 	struct oxu_hcd *oxu;
4111 	int ret;
4112 
4113 	/* Set endian mode and host mode */
4114 	oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
4115 				OXU_USBMODE,
4116 				OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
4117 
4118 	hcd = usb_create_hcd(&oxu_hc_driver, dev,
4119 				otg ? "oxu210hp_otg" : "oxu210hp_sph");
4120 	if (!hcd)
4121 		return ERR_PTR(-ENOMEM);
4122 
4123 	hcd->rsrc_start = memstart;
4124 	hcd->rsrc_len = memlen;
4125 	hcd->regs = base;
4126 	hcd->irq = irq;
4127 	hcd->state = HC_STATE_HALT;
4128 
4129 	oxu = hcd_to_oxu(hcd);
4130 	oxu->is_otg = otg;
4131 
4132 	ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
4133 	if (ret < 0) {
4134 		usb_put_hcd(hcd);
4135 		return ERR_PTR(ret);
4136 	}
4137 
4138 	device_wakeup_enable(hcd->self.controller);
4139 	return hcd;
4140 }
4141 
oxu_init(struct platform_device * pdev,unsigned long memstart,unsigned long memlen,void __iomem * base,int irq)4142 static int oxu_init(struct platform_device *pdev,
4143 				unsigned long memstart, unsigned long memlen,
4144 				void __iomem *base, int irq)
4145 {
4146 	struct oxu_info *info = platform_get_drvdata(pdev);
4147 	struct usb_hcd *hcd;
4148 	int ret;
4149 
4150 	/* First time configuration at start up */
4151 	oxu_configuration(pdev, base);
4152 
4153 	ret = oxu_verify_id(pdev, base);
4154 	if (ret) {
4155 		dev_err(&pdev->dev, "no devices found!\n");
4156 		return -ENODEV;
4157 	}
4158 
4159 	/* Create the OTG controller */
4160 	hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
4161 	if (IS_ERR(hcd)) {
4162 		dev_err(&pdev->dev, "cannot create OTG controller!\n");
4163 		ret = PTR_ERR(hcd);
4164 		goto error_create_otg;
4165 	}
4166 	info->hcd[0] = hcd;
4167 
4168 	/* Create the SPH host controller */
4169 	hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
4170 	if (IS_ERR(hcd)) {
4171 		dev_err(&pdev->dev, "cannot create SPH controller!\n");
4172 		ret = PTR_ERR(hcd);
4173 		goto error_create_sph;
4174 	}
4175 	info->hcd[1] = hcd;
4176 
4177 	oxu_writel(base, OXU_CHIPIRQEN_SET,
4178 		oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
4179 
4180 	return 0;
4181 
4182 error_create_sph:
4183 	usb_remove_hcd(info->hcd[0]);
4184 	usb_put_hcd(info->hcd[0]);
4185 
4186 error_create_otg:
4187 	return ret;
4188 }
4189 
oxu_drv_probe(struct platform_device * pdev)4190 static int oxu_drv_probe(struct platform_device *pdev)
4191 {
4192 	struct resource *res;
4193 	void __iomem *base;
4194 	unsigned long memstart, memlen;
4195 	int irq, ret;
4196 	struct oxu_info *info;
4197 
4198 	if (usb_disabled())
4199 		return -ENODEV;
4200 
4201 	/*
4202 	 * Get the platform resources
4203 	 */
4204 	irq = platform_get_irq(pdev, 0);
4205 	if (irq < 0)
4206 		return irq;
4207 	dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
4208 
4209 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
4210 	if (IS_ERR(base)) {
4211 		ret = PTR_ERR(base);
4212 		goto error;
4213 	}
4214 	memstart = res->start;
4215 	memlen = resource_size(res);
4216 
4217 	ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
4218 	if (ret) {
4219 		dev_err(&pdev->dev, "error setting irq type\n");
4220 		ret = -EFAULT;
4221 		goto error;
4222 	}
4223 
4224 	/* Allocate a driver data struct to hold useful info for both
4225 	 * SPH & OTG devices
4226 	 */
4227 	info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL);
4228 	if (!info) {
4229 		ret = -EFAULT;
4230 		goto error;
4231 	}
4232 	platform_set_drvdata(pdev, info);
4233 
4234 	ret = oxu_init(pdev, memstart, memlen, base, irq);
4235 	if (ret < 0) {
4236 		dev_dbg(&pdev->dev, "cannot init USB devices\n");
4237 		goto error;
4238 	}
4239 
4240 	dev_info(&pdev->dev, "devices enabled and running\n");
4241 	platform_set_drvdata(pdev, info);
4242 
4243 	return 0;
4244 
4245 error:
4246 	dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
4247 	return ret;
4248 }
4249 
oxu_remove(struct platform_device * pdev,struct usb_hcd * hcd)4250 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
4251 {
4252 	usb_remove_hcd(hcd);
4253 	usb_put_hcd(hcd);
4254 }
4255 
oxu_drv_remove(struct platform_device * pdev)4256 static void oxu_drv_remove(struct platform_device *pdev)
4257 {
4258 	struct oxu_info *info = platform_get_drvdata(pdev);
4259 
4260 	oxu_remove(pdev, info->hcd[0]);
4261 	oxu_remove(pdev, info->hcd[1]);
4262 }
4263 
oxu_drv_shutdown(struct platform_device * pdev)4264 static void oxu_drv_shutdown(struct platform_device *pdev)
4265 {
4266 	oxu_drv_remove(pdev);
4267 }
4268 
4269 #if 0
4270 /* FIXME: TODO */
4271 static int oxu_drv_suspend(struct device *dev)
4272 {
4273 	struct platform_device *pdev = to_platform_device(dev);
4274 	struct usb_hcd *hcd = dev_get_drvdata(dev);
4275 
4276 	return 0;
4277 }
4278 
4279 static int oxu_drv_resume(struct device *dev)
4280 {
4281 	struct platform_device *pdev = to_platform_device(dev);
4282 	struct usb_hcd *hcd = dev_get_drvdata(dev);
4283 
4284 	return 0;
4285 }
4286 #else
4287 #define oxu_drv_suspend	NULL
4288 #define oxu_drv_resume	NULL
4289 #endif
4290 
4291 static struct platform_driver oxu_driver = {
4292 	.probe		= oxu_drv_probe,
4293 	.remove		= oxu_drv_remove,
4294 	.shutdown	= oxu_drv_shutdown,
4295 	.suspend	= oxu_drv_suspend,
4296 	.resume		= oxu_drv_resume,
4297 	.driver = {
4298 		.name = "oxu210hp-hcd",
4299 		.bus = &platform_bus_type
4300 	}
4301 };
4302 
4303 module_platform_driver(oxu_driver);
4304 
4305 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
4306 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
4307 MODULE_LICENSE("GPL");
4308