1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
4 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
5 *
6 * This code is *strongly* based on EHCI-HCD code by David Brownell since
7 * the chip is a quasi-EHCI compatible.
8 */
9
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/dmapool.h>
13 #include <linux/kernel.h>
14 #include <linux/delay.h>
15 #include <linux/ioport.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/string_choices.h>
19 #include <linux/errno.h>
20 #include <linux/timer.h>
21 #include <linux/list.h>
22 #include <linux/interrupt.h>
23 #include <linux/usb.h>
24 #include <linux/usb/hcd.h>
25 #include <linux/moduleparam.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/io.h>
28 #include <linux/iopoll.h>
29
30 #include <asm/irq.h>
31 #include <linux/unaligned.h>
32
33 #include <linux/irq.h>
34 #include <linux/platform_device.h>
35
36 #define DRIVER_VERSION "0.0.50"
37
38 #define OXU_DEVICEID 0x00
39 #define OXU_REV_MASK 0xffff0000
40 #define OXU_REV_SHIFT 16
41 #define OXU_REV_2100 0x2100
42 #define OXU_BO_SHIFT 8
43 #define OXU_BO_MASK (0x3 << OXU_BO_SHIFT)
44 #define OXU_MAJ_REV_SHIFT 4
45 #define OXU_MAJ_REV_MASK (0xf << OXU_MAJ_REV_SHIFT)
46 #define OXU_MIN_REV_SHIFT 0
47 #define OXU_MIN_REV_MASK (0xf << OXU_MIN_REV_SHIFT)
48 #define OXU_HOSTIFCONFIG 0x04
49 #define OXU_SOFTRESET 0x08
50 #define OXU_SRESET (1 << 0)
51
52 #define OXU_PIOBURSTREADCTRL 0x0C
53
54 #define OXU_CHIPIRQSTATUS 0x10
55 #define OXU_CHIPIRQEN_SET 0x14
56 #define OXU_CHIPIRQEN_CLR 0x18
57 #define OXU_USBSPHLPWUI 0x00000080
58 #define OXU_USBOTGLPWUI 0x00000040
59 #define OXU_USBSPHI 0x00000002
60 #define OXU_USBOTGI 0x00000001
61
62 #define OXU_CLKCTRL_SET 0x1C
63 #define OXU_SYSCLKEN 0x00000008
64 #define OXU_USBSPHCLKEN 0x00000002
65 #define OXU_USBOTGCLKEN 0x00000001
66
67 #define OXU_ASO 0x68
68 #define OXU_SPHPOEN 0x00000100
69 #define OXU_OVRCCURPUPDEN 0x00000800
70 #define OXU_ASO_OP (1 << 10)
71 #define OXU_COMPARATOR 0x000004000
72
73 #define OXU_USBMODE 0x1A8
74 #define OXU_VBPS 0x00000020
75 #define OXU_ES_LITTLE 0x00000000
76 #define OXU_CM_HOST_ONLY 0x00000003
77
78 /*
79 * Proper EHCI structs & defines
80 */
81
82 /* Magic numbers that can affect system performance */
83 #define EHCI_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
84 #define EHCI_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
85 #define EHCI_TUNE_RL_TT 0
86 #define EHCI_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
87 #define EHCI_TUNE_MULT_TT 1
88 #define EHCI_TUNE_FLS 2 /* (small) 256 frame schedule */
89
90 struct oxu_hcd;
91
92 /* EHCI register interface, corresponds to EHCI Revision 0.95 specification */
93
94 /* Section 2.2 Host Controller Capability Registers */
95 struct ehci_caps {
96 /* these fields are specified as 8 and 16 bit registers,
97 * but some hosts can't perform 8 or 16 bit PCI accesses.
98 */
99 u32 hc_capbase;
100 #define HC_LENGTH(p) (((p)>>00)&0x00ff) /* bits 7:0 */
101 #define HC_VERSION(p) (((p)>>16)&0xffff) /* bits 31:16 */
102 u32 hcs_params; /* HCSPARAMS - offset 0x4 */
103 #define HCS_DEBUG_PORT(p) (((p)>>20)&0xf) /* bits 23:20, debug port? */
104 #define HCS_INDICATOR(p) ((p)&(1 << 16)) /* true: has port indicators */
105 #define HCS_N_CC(p) (((p)>>12)&0xf) /* bits 15:12, #companion HCs */
106 #define HCS_N_PCC(p) (((p)>>8)&0xf) /* bits 11:8, ports per CC */
107 #define HCS_PORTROUTED(p) ((p)&(1 << 7)) /* true: port routing */
108 #define HCS_PPC(p) ((p)&(1 << 4)) /* true: port power control */
109 #define HCS_N_PORTS(p) (((p)>>0)&0xf) /* bits 3:0, ports on HC */
110
111 u32 hcc_params; /* HCCPARAMS - offset 0x8 */
112 #define HCC_EXT_CAPS(p) (((p)>>8)&0xff) /* for pci extended caps */
113 #define HCC_ISOC_CACHE(p) ((p)&(1 << 7)) /* true: can cache isoc frame */
114 #define HCC_ISOC_THRES(p) (((p)>>4)&0x7) /* bits 6:4, uframes cached */
115 #define HCC_CANPARK(p) ((p)&(1 << 2)) /* true: can park on async qh */
116 #define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1)) /* true: periodic_size changes*/
117 #define HCC_64BIT_ADDR(p) ((p)&(1)) /* true: can use 64-bit addr */
118 u8 portroute[8]; /* nibbles for routing - offset 0xC */
119 } __packed;
120
121
122 /* Section 2.3 Host Controller Operational Registers */
123 struct ehci_regs {
124 /* USBCMD: offset 0x00 */
125 u32 command;
126 /* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */
127 #define CMD_PARK (1<<11) /* enable "park" on async qh */
128 #define CMD_PARK_CNT(c) (((c)>>8)&3) /* how many transfers to park for */
129 #define CMD_LRESET (1<<7) /* partial reset (no ports, etc) */
130 #define CMD_IAAD (1<<6) /* "doorbell" interrupt async advance */
131 #define CMD_ASE (1<<5) /* async schedule enable */
132 #define CMD_PSE (1<<4) /* periodic schedule enable */
133 /* 3:2 is periodic frame list size */
134 #define CMD_RESET (1<<1) /* reset HC not bus */
135 #define CMD_RUN (1<<0) /* start/stop HC */
136
137 /* USBSTS: offset 0x04 */
138 u32 status;
139 #define STS_ASS (1<<15) /* Async Schedule Status */
140 #define STS_PSS (1<<14) /* Periodic Schedule Status */
141 #define STS_RECL (1<<13) /* Reclamation */
142 #define STS_HALT (1<<12) /* Not running (any reason) */
143 /* some bits reserved */
144 /* these STS_* flags are also intr_enable bits (USBINTR) */
145 #define STS_IAA (1<<5) /* Interrupted on async advance */
146 #define STS_FATAL (1<<4) /* such as some PCI access errors */
147 #define STS_FLR (1<<3) /* frame list rolled over */
148 #define STS_PCD (1<<2) /* port change detect */
149 #define STS_ERR (1<<1) /* "error" completion (overflow, ...) */
150 #define STS_INT (1<<0) /* "normal" completion (short, ...) */
151
152 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
153
154 /* USBINTR: offset 0x08 */
155 u32 intr_enable;
156
157 /* FRINDEX: offset 0x0C */
158 u32 frame_index; /* current microframe number */
159 /* CTRLDSSEGMENT: offset 0x10 */
160 u32 segment; /* address bits 63:32 if needed */
161 /* PERIODICLISTBASE: offset 0x14 */
162 u32 frame_list; /* points to periodic list */
163 /* ASYNCLISTADDR: offset 0x18 */
164 u32 async_next; /* address of next async queue head */
165
166 u32 reserved[9];
167
168 /* CONFIGFLAG: offset 0x40 */
169 u32 configured_flag;
170 #define FLAG_CF (1<<0) /* true: we'll support "high speed" */
171
172 /* PORTSC: offset 0x44 */
173 u32 port_status[]; /* up to N_PORTS */
174 /* 31:23 reserved */
175 #define PORT_WKOC_E (1<<22) /* wake on overcurrent (enable) */
176 #define PORT_WKDISC_E (1<<21) /* wake on disconnect (enable) */
177 #define PORT_WKCONN_E (1<<20) /* wake on connect (enable) */
178 /* 19:16 for port testing */
179 #define PORT_LED_OFF (0<<14)
180 #define PORT_LED_AMBER (1<<14)
181 #define PORT_LED_GREEN (2<<14)
182 #define PORT_LED_MASK (3<<14)
183 #define PORT_OWNER (1<<13) /* true: companion hc owns this port */
184 #define PORT_POWER (1<<12) /* true: has power (see PPC) */
185 #define PORT_USB11(x) (((x)&(3<<10)) == (1<<10)) /* USB 1.1 device */
186 /* 11:10 for detecting lowspeed devices (reset vs release ownership) */
187 /* 9 reserved */
188 #define PORT_RESET (1<<8) /* reset port */
189 #define PORT_SUSPEND (1<<7) /* suspend port */
190 #define PORT_RESUME (1<<6) /* resume it */
191 #define PORT_OCC (1<<5) /* over current change */
192 #define PORT_OC (1<<4) /* over current active */
193 #define PORT_PEC (1<<3) /* port enable change */
194 #define PORT_PE (1<<2) /* port enable */
195 #define PORT_CSC (1<<1) /* connect status change */
196 #define PORT_CONNECT (1<<0) /* device connected */
197 #define PORT_RWC_BITS (PORT_CSC | PORT_PEC | PORT_OCC)
198 } __packed;
199
200 #define QTD_NEXT(dma) cpu_to_le32((u32)dma)
201
202 /*
203 * EHCI Specification 0.95 Section 3.5
204 * QTD: describe data transfer components (buffer, direction, ...)
205 * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
206 *
207 * These are associated only with "QH" (Queue Head) structures,
208 * used with control, bulk, and interrupt transfers.
209 */
210 struct ehci_qtd {
211 /* first part defined by EHCI spec */
212 __le32 hw_next; /* see EHCI 3.5.1 */
213 __le32 hw_alt_next; /* see EHCI 3.5.2 */
214 __le32 hw_token; /* see EHCI 3.5.3 */
215 #define QTD_TOGGLE (1 << 31) /* data toggle */
216 #define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff)
217 #define QTD_IOC (1 << 15) /* interrupt on complete */
218 #define QTD_CERR(tok) (((tok)>>10) & 0x3)
219 #define QTD_PID(tok) (((tok)>>8) & 0x3)
220 #define QTD_STS_ACTIVE (1 << 7) /* HC may execute this */
221 #define QTD_STS_HALT (1 << 6) /* halted on error */
222 #define QTD_STS_DBE (1 << 5) /* data buffer error (in HC) */
223 #define QTD_STS_BABBLE (1 << 4) /* device was babbling (qtd halted) */
224 #define QTD_STS_XACT (1 << 3) /* device gave illegal response */
225 #define QTD_STS_MMF (1 << 2) /* incomplete split transaction */
226 #define QTD_STS_STS (1 << 1) /* split transaction state */
227 #define QTD_STS_PING (1 << 0) /* issue PING? */
228 __le32 hw_buf[5]; /* see EHCI 3.5.4 */
229 __le32 hw_buf_hi[5]; /* Appendix B */
230
231 /* the rest is HCD-private */
232 dma_addr_t qtd_dma; /* qtd address */
233 struct list_head qtd_list; /* sw qtd list */
234 struct urb *urb; /* qtd's urb */
235 size_t length; /* length of buffer */
236
237 u32 qtd_buffer_len;
238 void *buffer;
239 dma_addr_t buffer_dma;
240 void *transfer_buffer;
241 void *transfer_dma;
242 } __aligned(32);
243
244 /* mask NakCnt+T in qh->hw_alt_next */
245 #define QTD_MASK cpu_to_le32 (~0x1f)
246
247 #define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1)
248
249 /* Type tag from {qh, itd, sitd, fstn}->hw_next */
250 #define Q_NEXT_TYPE(dma) ((dma) & cpu_to_le32 (3 << 1))
251
252 /* values for that type tag */
253 #define Q_TYPE_QH cpu_to_le32 (1 << 1)
254
255 /* next async queue entry, or pointer to interrupt/periodic QH */
256 #define QH_NEXT(dma) (cpu_to_le32(((u32)dma)&~0x01f)|Q_TYPE_QH)
257
258 /* for periodic/async schedules and qtd lists, mark end of list */
259 #define EHCI_LIST_END cpu_to_le32(1) /* "null pointer" to hw */
260
261 /*
262 * Entries in periodic shadow table are pointers to one of four kinds
263 * of data structure. That's dictated by the hardware; a type tag is
264 * encoded in the low bits of the hardware's periodic schedule. Use
265 * Q_NEXT_TYPE to get the tag.
266 *
267 * For entries in the async schedule, the type tag always says "qh".
268 */
269 union ehci_shadow {
270 struct ehci_qh *qh; /* Q_TYPE_QH */
271 __le32 *hw_next; /* (all types) */
272 void *ptr;
273 };
274
275 /*
276 * EHCI Specification 0.95 Section 3.6
277 * QH: describes control/bulk/interrupt endpoints
278 * See Fig 3-7 "Queue Head Structure Layout".
279 *
280 * These appear in both the async and (for interrupt) periodic schedules.
281 */
282
283 struct ehci_qh {
284 /* first part defined by EHCI spec */
285 __le32 hw_next; /* see EHCI 3.6.1 */
286 __le32 hw_info1; /* see EHCI 3.6.2 */
287 #define QH_HEAD 0x00008000
288 __le32 hw_info2; /* see EHCI 3.6.2 */
289 #define QH_SMASK 0x000000ff
290 #define QH_CMASK 0x0000ff00
291 #define QH_HUBADDR 0x007f0000
292 #define QH_HUBPORT 0x3f800000
293 #define QH_MULT 0xc0000000
294 __le32 hw_current; /* qtd list - see EHCI 3.6.4 */
295
296 /* qtd overlay (hardware parts of a struct ehci_qtd) */
297 __le32 hw_qtd_next;
298 __le32 hw_alt_next;
299 __le32 hw_token;
300 __le32 hw_buf[5];
301 __le32 hw_buf_hi[5];
302
303 /* the rest is HCD-private */
304 dma_addr_t qh_dma; /* address of qh */
305 union ehci_shadow qh_next; /* ptr to qh; or periodic */
306 struct list_head qtd_list; /* sw qtd list */
307 struct ehci_qtd *dummy;
308 struct ehci_qh *reclaim; /* next to reclaim */
309
310 struct oxu_hcd *oxu;
311 struct kref kref;
312 unsigned int stamp;
313
314 u8 qh_state;
315 #define QH_STATE_LINKED 1 /* HC sees this */
316 #define QH_STATE_UNLINK 2 /* HC may still see this */
317 #define QH_STATE_IDLE 3 /* HC doesn't see this */
318 #define QH_STATE_UNLINK_WAIT 4 /* LINKED and on reclaim q */
319 #define QH_STATE_COMPLETING 5 /* don't touch token.HALT */
320
321 /* periodic schedule info */
322 u8 usecs; /* intr bandwidth */
323 u8 gap_uf; /* uframes split/csplit gap */
324 u8 c_usecs; /* ... split completion bw */
325 u16 tt_usecs; /* tt downstream bandwidth */
326 unsigned short period; /* polling interval */
327 unsigned short start; /* where polling starts */
328 #define NO_FRAME ((unsigned short)~0) /* pick new start */
329 struct usb_device *dev; /* access to TT */
330 } __aligned(32);
331
332 /*
333 * Proper OXU210HP structs
334 */
335
336 #define OXU_OTG_CORE_OFFSET 0x00400
337 #define OXU_OTG_CAP_OFFSET (OXU_OTG_CORE_OFFSET + 0x100)
338 #define OXU_SPH_CORE_OFFSET 0x00800
339 #define OXU_SPH_CAP_OFFSET (OXU_SPH_CORE_OFFSET + 0x100)
340
341 #define OXU_OTG_MEM 0xE000
342 #define OXU_SPH_MEM 0x16000
343
344 /* Only how many elements & element structure are specifies here. */
345 /* 2 host controllers are enabled - total size <= 28 kbytes */
346 #define DEFAULT_I_TDPS 1024
347 #define QHEAD_NUM 16
348 #define QTD_NUM 32
349 #define SITD_NUM 8
350 #define MURB_NUM 8
351
352 #define BUFFER_NUM 8
353 #define BUFFER_SIZE 512
354
355 struct oxu_info {
356 struct usb_hcd *hcd[2];
357 };
358
359 struct oxu_buf {
360 u8 buffer[BUFFER_SIZE];
361 } __aligned(BUFFER_SIZE);
362
363 struct oxu_onchip_mem {
364 struct oxu_buf db_pool[BUFFER_NUM];
365
366 u32 frame_list[DEFAULT_I_TDPS];
367 struct ehci_qh qh_pool[QHEAD_NUM];
368 struct ehci_qtd qtd_pool[QTD_NUM];
369 } __aligned(4 << 10);
370
371 #define EHCI_MAX_ROOT_PORTS 15 /* see HCS_N_PORTS */
372
373 struct oxu_murb {
374 struct urb urb;
375 struct urb *main;
376 u8 last;
377 };
378
379 struct oxu_hcd { /* one per controller */
380 unsigned int is_otg:1;
381
382 u8 qh_used[QHEAD_NUM];
383 u8 qtd_used[QTD_NUM];
384 u8 db_used[BUFFER_NUM];
385 u8 murb_used[MURB_NUM];
386
387 struct oxu_onchip_mem __iomem *mem;
388 spinlock_t mem_lock;
389
390 struct timer_list urb_timer;
391
392 struct ehci_caps __iomem *caps;
393 struct ehci_regs __iomem *regs;
394
395 u32 hcs_params; /* cached register copy */
396 spinlock_t lock;
397
398 /* async schedule support */
399 struct ehci_qh *async;
400 struct ehci_qh *reclaim;
401 unsigned int reclaim_ready:1;
402 unsigned int scanning:1;
403
404 /* periodic schedule support */
405 unsigned int periodic_size;
406 __le32 *periodic; /* hw periodic table */
407 dma_addr_t periodic_dma;
408 unsigned int i_thresh; /* uframes HC might cache */
409
410 union ehci_shadow *pshadow; /* mirror hw periodic table */
411 int next_uframe; /* scan periodic, start here */
412 unsigned int periodic_sched; /* periodic activity count */
413
414 /* per root hub port */
415 unsigned long reset_done[EHCI_MAX_ROOT_PORTS];
416 /* bit vectors (one bit per port) */
417 unsigned long bus_suspended; /* which ports were
418 * already suspended at the
419 * start of a bus suspend
420 */
421 unsigned long companion_ports;/* which ports are dedicated
422 * to the companion controller
423 */
424
425 struct timer_list watchdog;
426 unsigned long actions;
427 unsigned int stamp;
428 unsigned long next_statechange;
429 u32 command;
430
431 /* SILICON QUIRKS */
432 struct list_head urb_list; /* this is the head to urb
433 * queue that didn't get enough
434 * resources
435 */
436 struct oxu_murb *murb_pool; /* murb per split big urb */
437 unsigned int urb_len;
438
439 u8 sbrn; /* packed release number */
440 };
441
442 #define EHCI_IAA_JIFFIES (HZ/100) /* arbitrary; ~10 msec */
443 #define EHCI_IO_JIFFIES (HZ/10) /* io watchdog > irq_thresh */
444 #define EHCI_ASYNC_JIFFIES (HZ/20) /* async idle timeout */
445 #define EHCI_SHRINK_JIFFIES (HZ/200) /* async qh unlink delay */
446
447 enum ehci_timer_action {
448 TIMER_IO_WATCHDOG,
449 TIMER_IAA_WATCHDOG,
450 TIMER_ASYNC_SHRINK,
451 TIMER_ASYNC_OFF,
452 };
453
454 /*
455 * Main defines
456 */
457
458 #define oxu_dbg(oxu, fmt, args...) \
459 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
460 #define oxu_err(oxu, fmt, args...) \
461 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
462 #define oxu_info(oxu, fmt, args...) \
463 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
464
465 #ifdef CONFIG_DYNAMIC_DEBUG
466 #define DEBUG
467 #endif
468
oxu_to_hcd(struct oxu_hcd * oxu)469 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
470 {
471 return container_of((void *) oxu, struct usb_hcd, hcd_priv);
472 }
473
hcd_to_oxu(struct usb_hcd * hcd)474 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
475 {
476 return (struct oxu_hcd *) (hcd->hcd_priv);
477 }
478
479 /*
480 * Debug stuff
481 */
482
483 #undef OXU_URB_TRACE
484 #undef OXU_VERBOSE_DEBUG
485
486 #ifdef OXU_VERBOSE_DEBUG
487 #define oxu_vdbg oxu_dbg
488 #else
489 #define oxu_vdbg(oxu, fmt, args...) /* Nop */
490 #endif
491
492 #ifdef DEBUG
493
494 static int __attribute__((__unused__))
dbg_status_buf(char * buf,unsigned len,const char * label,u32 status)495 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
496 {
497 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
498 label, label[0] ? " " : "", status,
499 (status & STS_ASS) ? " Async" : "",
500 (status & STS_PSS) ? " Periodic" : "",
501 (status & STS_RECL) ? " Recl" : "",
502 (status & STS_HALT) ? " Halt" : "",
503 (status & STS_IAA) ? " IAA" : "",
504 (status & STS_FATAL) ? " FATAL" : "",
505 (status & STS_FLR) ? " FLR" : "",
506 (status & STS_PCD) ? " PCD" : "",
507 (status & STS_ERR) ? " ERR" : "",
508 (status & STS_INT) ? " INT" : ""
509 );
510 }
511
512 static int __attribute__((__unused__))
dbg_intr_buf(char * buf,unsigned len,const char * label,u32 enable)513 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
514 {
515 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
516 label, label[0] ? " " : "", enable,
517 (enable & STS_IAA) ? " IAA" : "",
518 (enable & STS_FATAL) ? " FATAL" : "",
519 (enable & STS_FLR) ? " FLR" : "",
520 (enable & STS_PCD) ? " PCD" : "",
521 (enable & STS_ERR) ? " ERR" : "",
522 (enable & STS_INT) ? " INT" : ""
523 );
524 }
525
526 static const char *const fls_strings[] =
527 { "1024", "512", "256", "??" };
528
dbg_command_buf(char * buf,unsigned len,const char * label,u32 command)529 static int dbg_command_buf(char *buf, unsigned len,
530 const char *label, u32 command)
531 {
532 return scnprintf(buf, len,
533 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
534 label, label[0] ? " " : "", command,
535 (command & CMD_PARK) ? "park" : "(park)",
536 CMD_PARK_CNT(command),
537 (command >> 16) & 0x3f,
538 (command & CMD_LRESET) ? " LReset" : "",
539 (command & CMD_IAAD) ? " IAAD" : "",
540 (command & CMD_ASE) ? " Async" : "",
541 (command & CMD_PSE) ? " Periodic" : "",
542 fls_strings[(command >> 2) & 0x3],
543 (command & CMD_RESET) ? " Reset" : "",
544 (command & CMD_RUN) ? "RUN" : "HALT"
545 );
546 }
547
dbg_port_buf(char * buf,unsigned len,const char * label,int port,u32 status)548 static int dbg_port_buf(char *buf, unsigned len, const char *label,
549 int port, u32 status)
550 {
551 char *sig;
552
553 /* signaling state */
554 switch (status & (3 << 10)) {
555 case 0 << 10:
556 sig = "se0";
557 break;
558 case 1 << 10:
559 sig = "k"; /* low speed */
560 break;
561 case 2 << 10:
562 sig = "j";
563 break;
564 default:
565 sig = "?";
566 break;
567 }
568
569 return scnprintf(buf, len,
570 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
571 label, label[0] ? " " : "", port, status,
572 (status & PORT_POWER) ? " POWER" : "",
573 (status & PORT_OWNER) ? " OWNER" : "",
574 sig,
575 (status & PORT_RESET) ? " RESET" : "",
576 (status & PORT_SUSPEND) ? " SUSPEND" : "",
577 (status & PORT_RESUME) ? " RESUME" : "",
578 (status & PORT_OCC) ? " OCC" : "",
579 (status & PORT_OC) ? " OC" : "",
580 (status & PORT_PEC) ? " PEC" : "",
581 (status & PORT_PE) ? " PE" : "",
582 (status & PORT_CSC) ? " CSC" : "",
583 (status & PORT_CONNECT) ? " CONNECT" : ""
584 );
585 }
586
587 #else
588
589 static inline int __attribute__((__unused__))
dbg_status_buf(char * buf,unsigned len,const char * label,u32 status)590 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
591 { return 0; }
592
593 static inline int __attribute__((__unused__))
dbg_command_buf(char * buf,unsigned len,const char * label,u32 command)594 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
595 { return 0; }
596
597 static inline int __attribute__((__unused__))
dbg_intr_buf(char * buf,unsigned len,const char * label,u32 enable)598 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
599 { return 0; }
600
601 static inline int __attribute__((__unused__))
dbg_port_buf(char * buf,unsigned len,const char * label,int port,u32 status)602 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
603 { return 0; }
604
605 #endif /* DEBUG */
606
607 /* functions have the "wrong" filename when they're output... */
608 #define dbg_status(oxu, label, status) { \
609 char _buf[80]; \
610 dbg_status_buf(_buf, sizeof _buf, label, status); \
611 oxu_dbg(oxu, "%s\n", _buf); \
612 }
613
614 #define dbg_cmd(oxu, label, command) { \
615 char _buf[80]; \
616 dbg_command_buf(_buf, sizeof _buf, label, command); \
617 oxu_dbg(oxu, "%s\n", _buf); \
618 }
619
620 #define dbg_port(oxu, label, port, status) { \
621 char _buf[80]; \
622 dbg_port_buf(_buf, sizeof _buf, label, port, status); \
623 oxu_dbg(oxu, "%s\n", _buf); \
624 }
625
626 /*
627 * Module parameters
628 */
629
630 /* Initial IRQ latency: faster than hw default */
631 static int log2_irq_thresh; /* 0 to 6 */
632 module_param(log2_irq_thresh, int, S_IRUGO);
633 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
634
635 /* Initial park setting: slower than hw default */
636 static unsigned park;
637 module_param(park, uint, S_IRUGO);
638 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
639
640 /* For flakey hardware, ignore overcurrent indicators */
641 static bool ignore_oc;
642 module_param(ignore_oc, bool, S_IRUGO);
643 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
644
645
646 static void ehci_work(struct oxu_hcd *oxu);
647 static int oxu_hub_control(struct usb_hcd *hcd,
648 u16 typeReq, u16 wValue, u16 wIndex,
649 char *buf, u16 wLength);
650
651 /*
652 * Local functions
653 */
654
655 /* Low level read/write registers functions */
oxu_readl(void __iomem * base,u32 reg)656 static inline u32 oxu_readl(void __iomem *base, u32 reg)
657 {
658 return readl(base + reg);
659 }
660
oxu_writel(void __iomem * base,u32 reg,u32 val)661 static inline void oxu_writel(void __iomem *base, u32 reg, u32 val)
662 {
663 writel(val, base + reg);
664 }
665
timer_action_done(struct oxu_hcd * oxu,enum ehci_timer_action action)666 static inline void timer_action_done(struct oxu_hcd *oxu,
667 enum ehci_timer_action action)
668 {
669 clear_bit(action, &oxu->actions);
670 }
671
timer_action(struct oxu_hcd * oxu,enum ehci_timer_action action)672 static inline void timer_action(struct oxu_hcd *oxu,
673 enum ehci_timer_action action)
674 {
675 if (!test_and_set_bit(action, &oxu->actions)) {
676 unsigned long t;
677
678 switch (action) {
679 case TIMER_IAA_WATCHDOG:
680 t = EHCI_IAA_JIFFIES;
681 break;
682 case TIMER_IO_WATCHDOG:
683 t = EHCI_IO_JIFFIES;
684 break;
685 case TIMER_ASYNC_OFF:
686 t = EHCI_ASYNC_JIFFIES;
687 break;
688 case TIMER_ASYNC_SHRINK:
689 default:
690 t = EHCI_SHRINK_JIFFIES;
691 break;
692 }
693 t += jiffies;
694 /* all timings except IAA watchdog can be overridden.
695 * async queue SHRINK often precedes IAA. while it's ready
696 * to go OFF neither can matter, and afterwards the IO
697 * watchdog stops unless there's still periodic traffic.
698 */
699 if (action != TIMER_IAA_WATCHDOG
700 && t > oxu->watchdog.expires
701 && timer_pending(&oxu->watchdog))
702 return;
703 mod_timer(&oxu->watchdog, t);
704 }
705 }
706
707 /*
708 * handshake - spin reading hc until handshake completes or fails
709 * @ptr: address of hc register to be read
710 * @mask: bits to look at in result of read
711 * @done: value of those bits when handshake succeeds
712 * @usec: timeout in microseconds
713 *
714 * Returns negative errno, or zero on success
715 *
716 * Success happens when the "mask" bits have the specified value (hardware
717 * handshake done). There are two failure modes: "usec" have passed (major
718 * hardware flakeout), or the register reads as all-ones (hardware removed).
719 *
720 * That last failure should_only happen in cases like physical cardbus eject
721 * before driver shutdown. But it also seems to be caused by bugs in cardbus
722 * bridge shutdown: shutting down the bridge before the devices using it.
723 */
handshake(struct oxu_hcd * oxu,void __iomem * ptr,u32 mask,u32 done,int usec)724 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
725 u32 mask, u32 done, int usec)
726 {
727 u32 result;
728 int ret;
729
730 ret = readl_poll_timeout_atomic(ptr, result,
731 ((result & mask) == done ||
732 result == U32_MAX),
733 1, usec);
734 if (result == U32_MAX) /* card removed */
735 return -ENODEV;
736
737 return ret;
738 }
739
740 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
ehci_halt(struct oxu_hcd * oxu)741 static int ehci_halt(struct oxu_hcd *oxu)
742 {
743 u32 temp = readl(&oxu->regs->status);
744
745 /* disable any irqs left enabled by previous code */
746 writel(0, &oxu->regs->intr_enable);
747
748 if ((temp & STS_HALT) != 0)
749 return 0;
750
751 temp = readl(&oxu->regs->command);
752 temp &= ~CMD_RUN;
753 writel(temp, &oxu->regs->command);
754 return handshake(oxu, &oxu->regs->status,
755 STS_HALT, STS_HALT, 16 * 125);
756 }
757
758 /* Put TDI/ARC silicon into EHCI mode */
tdi_reset(struct oxu_hcd * oxu)759 static void tdi_reset(struct oxu_hcd *oxu)
760 {
761 u32 __iomem *reg_ptr;
762 u32 tmp;
763
764 reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
765 tmp = readl(reg_ptr);
766 tmp |= 0x3;
767 writel(tmp, reg_ptr);
768 }
769
770 /* Reset a non-running (STS_HALT == 1) controller */
ehci_reset(struct oxu_hcd * oxu)771 static int ehci_reset(struct oxu_hcd *oxu)
772 {
773 int retval;
774 u32 command = readl(&oxu->regs->command);
775
776 command |= CMD_RESET;
777 dbg_cmd(oxu, "reset", command);
778 writel(command, &oxu->regs->command);
779 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
780 oxu->next_statechange = jiffies;
781 retval = handshake(oxu, &oxu->regs->command,
782 CMD_RESET, 0, 250 * 1000);
783
784 if (retval)
785 return retval;
786
787 tdi_reset(oxu);
788
789 return retval;
790 }
791
792 /* Idle the controller (from running) */
ehci_quiesce(struct oxu_hcd * oxu)793 static void ehci_quiesce(struct oxu_hcd *oxu)
794 {
795 u32 temp;
796
797 #ifdef DEBUG
798 BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state));
799 #endif
800
801 /* wait for any schedule enables/disables to take effect */
802 temp = readl(&oxu->regs->command) << 10;
803 temp &= STS_ASS | STS_PSS;
804 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
805 temp, 16 * 125) != 0) {
806 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
807 return;
808 }
809
810 /* then disable anything that's still active */
811 temp = readl(&oxu->regs->command);
812 temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
813 writel(temp, &oxu->regs->command);
814
815 /* hardware can take 16 microframes to turn off ... */
816 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
817 0, 16 * 125) != 0) {
818 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
819 return;
820 }
821 }
822
check_reset_complete(struct oxu_hcd * oxu,int index,u32 __iomem * status_reg,int port_status)823 static int check_reset_complete(struct oxu_hcd *oxu, int index,
824 u32 __iomem *status_reg, int port_status)
825 {
826 if (!(port_status & PORT_CONNECT)) {
827 oxu->reset_done[index] = 0;
828 return port_status;
829 }
830
831 /* if reset finished and it's still not enabled -- handoff */
832 if (!(port_status & PORT_PE)) {
833 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
834 index+1);
835 return port_status;
836 } else
837 oxu_dbg(oxu, "port %d high speed\n", index + 1);
838
839 return port_status;
840 }
841
ehci_hub_descriptor(struct oxu_hcd * oxu,struct usb_hub_descriptor * desc)842 static void ehci_hub_descriptor(struct oxu_hcd *oxu,
843 struct usb_hub_descriptor *desc)
844 {
845 int ports = HCS_N_PORTS(oxu->hcs_params);
846 u16 temp;
847
848 desc->bDescriptorType = USB_DT_HUB;
849 desc->bPwrOn2PwrGood = 10; /* oxu 1.0, 2.3.9 says 20ms max */
850 desc->bHubContrCurrent = 0;
851
852 desc->bNbrPorts = ports;
853 temp = 1 + (ports / 8);
854 desc->bDescLength = 7 + 2 * temp;
855
856 /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
857 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
858 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
859
860 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
861 if (HCS_PPC(oxu->hcs_params))
862 temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */
863 else
864 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
865 desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
866 }
867
868
869 /* Allocate an OXU210HP on-chip memory data buffer
870 *
871 * An on-chip memory data buffer is required for each OXU210HP USB transfer.
872 * Each transfer descriptor has one or more on-chip memory data buffers.
873 *
874 * Data buffers are allocated from a fix sized pool of data blocks.
875 * To minimise fragmentation and give reasonable memory utlisation,
876 * data buffers are allocated with sizes the power of 2 multiples of
877 * the block size, starting on an address a multiple of the allocated size.
878 *
879 * FIXME: callers of this function require a buffer to be allocated for
880 * len=0. This is a waste of on-chip memory and should be fix. Then this
881 * function should be changed to not allocate a buffer for len=0.
882 */
oxu_buf_alloc(struct oxu_hcd * oxu,struct ehci_qtd * qtd,int len)883 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
884 {
885 int n_blocks; /* minium blocks needed to hold len */
886 int a_blocks; /* blocks allocated */
887 int i, j;
888
889 /* Don't allocate bigger than supported */
890 if (len > BUFFER_SIZE * BUFFER_NUM) {
891 oxu_err(oxu, "buffer too big (%d)\n", len);
892 return -ENOMEM;
893 }
894
895 spin_lock(&oxu->mem_lock);
896
897 /* Number of blocks needed to hold len */
898 n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
899
900 /* Round the number of blocks up to the power of 2 */
901 for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
902 ;
903
904 /* Find a suitable available data buffer */
905 for (i = 0; i < BUFFER_NUM;
906 i += max_t(int, a_blocks, oxu->db_used[i])) {
907
908 /* Check all the required blocks are available */
909 for (j = 0; j < a_blocks; j++)
910 if (oxu->db_used[i + j])
911 break;
912
913 if (j != a_blocks)
914 continue;
915
916 /* Allocate blocks found! */
917 qtd->buffer = (void *) &oxu->mem->db_pool[i];
918 qtd->buffer_dma = virt_to_phys(qtd->buffer);
919
920 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
921 oxu->db_used[i] = a_blocks;
922
923 spin_unlock(&oxu->mem_lock);
924
925 return 0;
926 }
927
928 /* Failed */
929
930 spin_unlock(&oxu->mem_lock);
931
932 return -ENOMEM;
933 }
934
oxu_buf_free(struct oxu_hcd * oxu,struct ehci_qtd * qtd)935 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
936 {
937 int index;
938
939 spin_lock(&oxu->mem_lock);
940
941 index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
942 / BUFFER_SIZE;
943 oxu->db_used[index] = 0;
944 qtd->qtd_buffer_len = 0;
945 qtd->buffer_dma = 0;
946 qtd->buffer = NULL;
947
948 spin_unlock(&oxu->mem_lock);
949 }
950
ehci_qtd_init(struct ehci_qtd * qtd,dma_addr_t dma)951 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
952 {
953 memset(qtd, 0, sizeof *qtd);
954 qtd->qtd_dma = dma;
955 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
956 qtd->hw_next = EHCI_LIST_END;
957 qtd->hw_alt_next = EHCI_LIST_END;
958 INIT_LIST_HEAD(&qtd->qtd_list);
959 }
960
oxu_qtd_free(struct oxu_hcd * oxu,struct ehci_qtd * qtd)961 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
962 {
963 int index;
964
965 if (qtd->buffer)
966 oxu_buf_free(oxu, qtd);
967
968 spin_lock(&oxu->mem_lock);
969
970 index = qtd - &oxu->mem->qtd_pool[0];
971 oxu->qtd_used[index] = 0;
972
973 spin_unlock(&oxu->mem_lock);
974 }
975
ehci_qtd_alloc(struct oxu_hcd * oxu)976 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
977 {
978 int i;
979 struct ehci_qtd *qtd = NULL;
980
981 spin_lock(&oxu->mem_lock);
982
983 for (i = 0; i < QTD_NUM; i++)
984 if (!oxu->qtd_used[i])
985 break;
986
987 if (i < QTD_NUM) {
988 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
989 memset(qtd, 0, sizeof *qtd);
990
991 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
992 qtd->hw_next = EHCI_LIST_END;
993 qtd->hw_alt_next = EHCI_LIST_END;
994 INIT_LIST_HEAD(&qtd->qtd_list);
995
996 qtd->qtd_dma = virt_to_phys(qtd);
997
998 oxu->qtd_used[i] = 1;
999 }
1000
1001 spin_unlock(&oxu->mem_lock);
1002
1003 return qtd;
1004 }
1005
oxu_qh_free(struct oxu_hcd * oxu,struct ehci_qh * qh)1006 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
1007 {
1008 int index;
1009
1010 spin_lock(&oxu->mem_lock);
1011
1012 index = qh - &oxu->mem->qh_pool[0];
1013 oxu->qh_used[index] = 0;
1014
1015 spin_unlock(&oxu->mem_lock);
1016 }
1017
qh_destroy(struct kref * kref)1018 static void qh_destroy(struct kref *kref)
1019 {
1020 struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
1021 struct oxu_hcd *oxu = qh->oxu;
1022
1023 /* clean qtds first, and know this is not linked */
1024 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1025 oxu_dbg(oxu, "unused qh not empty!\n");
1026 BUG();
1027 }
1028 if (qh->dummy)
1029 oxu_qtd_free(oxu, qh->dummy);
1030 oxu_qh_free(oxu, qh);
1031 }
1032
oxu_qh_alloc(struct oxu_hcd * oxu)1033 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
1034 {
1035 int i;
1036 struct ehci_qh *qh = NULL;
1037
1038 spin_lock(&oxu->mem_lock);
1039
1040 for (i = 0; i < QHEAD_NUM; i++)
1041 if (!oxu->qh_used[i])
1042 break;
1043
1044 if (i < QHEAD_NUM) {
1045 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
1046 memset(qh, 0, sizeof *qh);
1047
1048 kref_init(&qh->kref);
1049 qh->oxu = oxu;
1050 qh->qh_dma = virt_to_phys(qh);
1051 INIT_LIST_HEAD(&qh->qtd_list);
1052
1053 /* dummy td enables safe urb queuing */
1054 qh->dummy = ehci_qtd_alloc(oxu);
1055 if (qh->dummy == NULL) {
1056 oxu_dbg(oxu, "no dummy td\n");
1057 oxu->qh_used[i] = 0;
1058 qh = NULL;
1059 goto unlock;
1060 }
1061
1062 oxu->qh_used[i] = 1;
1063 }
1064 unlock:
1065 spin_unlock(&oxu->mem_lock);
1066
1067 return qh;
1068 }
1069
1070 /* to share a qh (cpu threads, or hc) */
qh_get(struct ehci_qh * qh)1071 static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
1072 {
1073 kref_get(&qh->kref);
1074 return qh;
1075 }
1076
qh_put(struct ehci_qh * qh)1077 static inline void qh_put(struct ehci_qh *qh)
1078 {
1079 kref_put(&qh->kref, qh_destroy);
1080 }
1081
oxu_murb_free(struct oxu_hcd * oxu,struct oxu_murb * murb)1082 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
1083 {
1084 int index;
1085
1086 spin_lock(&oxu->mem_lock);
1087
1088 index = murb - &oxu->murb_pool[0];
1089 oxu->murb_used[index] = 0;
1090
1091 spin_unlock(&oxu->mem_lock);
1092 }
1093
oxu_murb_alloc(struct oxu_hcd * oxu)1094 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
1095
1096 {
1097 int i;
1098 struct oxu_murb *murb = NULL;
1099
1100 spin_lock(&oxu->mem_lock);
1101
1102 for (i = 0; i < MURB_NUM; i++)
1103 if (!oxu->murb_used[i])
1104 break;
1105
1106 if (i < MURB_NUM) {
1107 murb = &(oxu->murb_pool)[i];
1108
1109 oxu->murb_used[i] = 1;
1110 }
1111
1112 spin_unlock(&oxu->mem_lock);
1113
1114 return murb;
1115 }
1116
1117 /* The queue heads and transfer descriptors are managed from pools tied
1118 * to each of the "per device" structures.
1119 * This is the initialisation and cleanup code.
1120 */
ehci_mem_cleanup(struct oxu_hcd * oxu)1121 static void ehci_mem_cleanup(struct oxu_hcd *oxu)
1122 {
1123 kfree(oxu->murb_pool);
1124 oxu->murb_pool = NULL;
1125
1126 if (oxu->async)
1127 qh_put(oxu->async);
1128 oxu->async = NULL;
1129
1130 timer_delete(&oxu->urb_timer);
1131
1132 oxu->periodic = NULL;
1133
1134 /* shadow periodic table */
1135 kfree(oxu->pshadow);
1136 oxu->pshadow = NULL;
1137 }
1138
1139 /* Remember to add cleanup code (above) if you add anything here.
1140 */
ehci_mem_init(struct oxu_hcd * oxu,gfp_t flags)1141 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
1142 {
1143 int i;
1144
1145 for (i = 0; i < oxu->periodic_size; i++)
1146 oxu->mem->frame_list[i] = EHCI_LIST_END;
1147 for (i = 0; i < QHEAD_NUM; i++)
1148 oxu->qh_used[i] = 0;
1149 for (i = 0; i < QTD_NUM; i++)
1150 oxu->qtd_used[i] = 0;
1151
1152 oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
1153 if (!oxu->murb_pool)
1154 goto fail;
1155
1156 for (i = 0; i < MURB_NUM; i++)
1157 oxu->murb_used[i] = 0;
1158
1159 oxu->async = oxu_qh_alloc(oxu);
1160 if (!oxu->async)
1161 goto fail;
1162
1163 oxu->periodic = (__le32 *) &oxu->mem->frame_list;
1164 oxu->periodic_dma = virt_to_phys(oxu->periodic);
1165
1166 for (i = 0; i < oxu->periodic_size; i++)
1167 oxu->periodic[i] = EHCI_LIST_END;
1168
1169 /* software shadow of hardware table */
1170 oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
1171 if (oxu->pshadow != NULL)
1172 return 0;
1173
1174 fail:
1175 oxu_dbg(oxu, "couldn't init memory\n");
1176 ehci_mem_cleanup(oxu);
1177 return -ENOMEM;
1178 }
1179
1180 /* Fill a qtd, returning how much of the buffer we were able to queue up.
1181 */
qtd_fill(struct ehci_qtd * qtd,dma_addr_t buf,size_t len,int token,int maxpacket)1182 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
1183 int token, int maxpacket)
1184 {
1185 int i, count;
1186 u64 addr = buf;
1187
1188 /* one buffer entry per 4K ... first might be short or unaligned */
1189 qtd->hw_buf[0] = cpu_to_le32((u32)addr);
1190 qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
1191 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
1192 if (likely(len < count)) /* ... iff needed */
1193 count = len;
1194 else {
1195 buf += 0x1000;
1196 buf &= ~0x0fff;
1197
1198 /* per-qtd limit: from 16K to 20K (best alignment) */
1199 for (i = 1; count < len && i < 5; i++) {
1200 addr = buf;
1201 qtd->hw_buf[i] = cpu_to_le32((u32)addr);
1202 qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
1203 buf += 0x1000;
1204 if ((count + 0x1000) < len)
1205 count += 0x1000;
1206 else
1207 count = len;
1208 }
1209
1210 /* short packets may only terminate transfers */
1211 if (count != len)
1212 count -= (count % maxpacket);
1213 }
1214 qtd->hw_token = cpu_to_le32((count << 16) | token);
1215 qtd->length = count;
1216
1217 return count;
1218 }
1219
qh_update(struct oxu_hcd * oxu,struct ehci_qh * qh,struct ehci_qtd * qtd)1220 static inline void qh_update(struct oxu_hcd *oxu,
1221 struct ehci_qh *qh, struct ehci_qtd *qtd)
1222 {
1223 /* writes to an active overlay are unsafe */
1224 BUG_ON(qh->qh_state != QH_STATE_IDLE);
1225
1226 qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
1227 qh->hw_alt_next = EHCI_LIST_END;
1228
1229 /* Except for control endpoints, we make hardware maintain data
1230 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
1231 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
1232 * ever clear it.
1233 */
1234 if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
1235 unsigned is_out, epnum;
1236
1237 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
1238 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
1239 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
1240 qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
1241 usb_settoggle(qh->dev, epnum, is_out, 1);
1242 }
1243 }
1244
1245 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
1246 wmb();
1247 qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
1248 }
1249
1250 /* If it weren't for a common silicon quirk (writing the dummy into the qh
1251 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
1252 * recovery (including urb dequeue) would need software changes to a QH...
1253 */
qh_refresh(struct oxu_hcd * oxu,struct ehci_qh * qh)1254 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
1255 {
1256 struct ehci_qtd *qtd;
1257
1258 if (list_empty(&qh->qtd_list))
1259 qtd = qh->dummy;
1260 else {
1261 qtd = list_entry(qh->qtd_list.next,
1262 struct ehci_qtd, qtd_list);
1263 /* first qtd may already be partially processed */
1264 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
1265 qtd = NULL;
1266 }
1267
1268 if (qtd)
1269 qh_update(oxu, qh, qtd);
1270 }
1271
qtd_copy_status(struct oxu_hcd * oxu,struct urb * urb,size_t length,u32 token)1272 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
1273 size_t length, u32 token)
1274 {
1275 /* count IN/OUT bytes, not SETUP (even short packets) */
1276 if (likely(QTD_PID(token) != 2))
1277 urb->actual_length += length - QTD_LENGTH(token);
1278
1279 /* don't modify error codes */
1280 if (unlikely(urb->status != -EINPROGRESS))
1281 return;
1282
1283 /* force cleanup after short read; not always an error */
1284 if (unlikely(IS_SHORT_READ(token)))
1285 urb->status = -EREMOTEIO;
1286
1287 /* serious "can't proceed" faults reported by the hardware */
1288 if (token & QTD_STS_HALT) {
1289 if (token & QTD_STS_BABBLE) {
1290 /* FIXME "must" disable babbling device's port too */
1291 urb->status = -EOVERFLOW;
1292 } else if (token & QTD_STS_MMF) {
1293 /* fs/ls interrupt xfer missed the complete-split */
1294 urb->status = -EPROTO;
1295 } else if (token & QTD_STS_DBE) {
1296 urb->status = (QTD_PID(token) == 1) /* IN ? */
1297 ? -ENOSR /* hc couldn't read data */
1298 : -ECOMM; /* hc couldn't write data */
1299 } else if (token & QTD_STS_XACT) {
1300 /* timeout, bad crc, wrong PID, etc; retried */
1301 if (QTD_CERR(token))
1302 urb->status = -EPIPE;
1303 else {
1304 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
1305 urb->dev->devpath,
1306 usb_pipeendpoint(urb->pipe),
1307 usb_pipein(urb->pipe) ? "in" : "out");
1308 urb->status = -EPROTO;
1309 }
1310 /* CERR nonzero + no errors + halt --> stall */
1311 } else if (QTD_CERR(token))
1312 urb->status = -EPIPE;
1313 else /* unknown */
1314 urb->status = -EPROTO;
1315
1316 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
1317 usb_pipedevice(urb->pipe),
1318 usb_pipeendpoint(urb->pipe),
1319 usb_pipein(urb->pipe) ? "in" : "out",
1320 token, urb->status);
1321 }
1322 }
1323
ehci_urb_done(struct oxu_hcd * oxu,struct urb * urb)1324 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
1325 __releases(oxu->lock)
1326 __acquires(oxu->lock)
1327 {
1328 if (likely(urb->hcpriv != NULL)) {
1329 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv;
1330
1331 /* S-mask in a QH means it's an interrupt urb */
1332 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
1333
1334 /* ... update hc-wide periodic stats (for usbfs) */
1335 oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
1336 }
1337 qh_put(qh);
1338 }
1339
1340 urb->hcpriv = NULL;
1341 switch (urb->status) {
1342 case -EINPROGRESS: /* success */
1343 urb->status = 0;
1344 break;
1345 default: /* fault */
1346 break;
1347 case -EREMOTEIO: /* fault or normal */
1348 if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
1349 urb->status = 0;
1350 break;
1351 case -ECONNRESET: /* canceled */
1352 case -ENOENT:
1353 break;
1354 }
1355
1356 #ifdef OXU_URB_TRACE
1357 oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
1358 __func__, urb->dev->devpath, urb,
1359 usb_pipeendpoint(urb->pipe),
1360 usb_pipein(urb->pipe) ? "in" : "out",
1361 urb->status,
1362 urb->actual_length, urb->transfer_buffer_length);
1363 #endif
1364
1365 /* complete() can reenter this HCD */
1366 spin_unlock(&oxu->lock);
1367 usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
1368 spin_lock(&oxu->lock);
1369 }
1370
1371 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1372 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1373
1374 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1375 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1376
1377 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
1378
1379 /* Process and free completed qtds for a qh, returning URBs to drivers.
1380 * Chases up to qh->hw_current. Returns number of completions called,
1381 * indicating how much "real" work we did.
1382 */
qh_completions(struct oxu_hcd * oxu,struct ehci_qh * qh)1383 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
1384 {
1385 struct ehci_qtd *last = NULL, *end = qh->dummy;
1386 struct ehci_qtd *qtd, *tmp;
1387 int stopped;
1388 unsigned count = 0;
1389 int do_status = 0;
1390 u8 state;
1391 struct oxu_murb *murb = NULL;
1392
1393 if (unlikely(list_empty(&qh->qtd_list)))
1394 return count;
1395
1396 /* completions (or tasks on other cpus) must never clobber HALT
1397 * till we've gone through and cleaned everything up, even when
1398 * they add urbs to this qh's queue or mark them for unlinking.
1399 *
1400 * NOTE: unlinking expects to be done in queue order.
1401 */
1402 state = qh->qh_state;
1403 qh->qh_state = QH_STATE_COMPLETING;
1404 stopped = (state == QH_STATE_IDLE);
1405
1406 /* remove de-activated QTDs from front of queue.
1407 * after faults (including short reads), cleanup this urb
1408 * then let the queue advance.
1409 * if queue is stopped, handles unlinks.
1410 */
1411 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
1412 struct urb *urb;
1413 u32 token = 0;
1414
1415 urb = qtd->urb;
1416
1417 /* Clean up any state from previous QTD ...*/
1418 if (last) {
1419 if (likely(last->urb != urb)) {
1420 if (last->urb->complete == NULL) {
1421 murb = (struct oxu_murb *) last->urb;
1422 last->urb = murb->main;
1423 if (murb->last) {
1424 ehci_urb_done(oxu, last->urb);
1425 count++;
1426 }
1427 oxu_murb_free(oxu, murb);
1428 } else {
1429 ehci_urb_done(oxu, last->urb);
1430 count++;
1431 }
1432 }
1433 oxu_qtd_free(oxu, last);
1434 last = NULL;
1435 }
1436
1437 /* ignore urbs submitted during completions we reported */
1438 if (qtd == end)
1439 break;
1440
1441 /* hardware copies qtd out of qh overlay */
1442 rmb();
1443 token = le32_to_cpu(qtd->hw_token);
1444
1445 /* always clean up qtds the hc de-activated */
1446 if ((token & QTD_STS_ACTIVE) == 0) {
1447
1448 if ((token & QTD_STS_HALT) != 0) {
1449 stopped = 1;
1450
1451 /* magic dummy for some short reads; qh won't advance.
1452 * that silicon quirk can kick in with this dummy too.
1453 */
1454 } else if (IS_SHORT_READ(token) &&
1455 !(qtd->hw_alt_next & EHCI_LIST_END)) {
1456 stopped = 1;
1457 goto halt;
1458 }
1459
1460 /* stop scanning when we reach qtds the hc is using */
1461 } else if (likely(!stopped &&
1462 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1463 break;
1464
1465 } else {
1466 stopped = 1;
1467
1468 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1469 urb->status = -ESHUTDOWN;
1470
1471 /* ignore active urbs unless some previous qtd
1472 * for the urb faulted (including short read) or
1473 * its urb was canceled. we may patch qh or qtds.
1474 */
1475 if (likely(urb->status == -EINPROGRESS))
1476 continue;
1477
1478 /* issue status after short control reads */
1479 if (unlikely(do_status != 0)
1480 && QTD_PID(token) == 0 /* OUT */) {
1481 do_status = 0;
1482 continue;
1483 }
1484
1485 /* token in overlay may be most current */
1486 if (state == QH_STATE_IDLE
1487 && cpu_to_le32(qtd->qtd_dma)
1488 == qh->hw_current)
1489 token = le32_to_cpu(qh->hw_token);
1490
1491 /* force halt for unlinked or blocked qh, so we'll
1492 * patch the qh later and so that completions can't
1493 * activate it while we "know" it's stopped.
1494 */
1495 if ((HALT_BIT & qh->hw_token) == 0) {
1496 halt:
1497 qh->hw_token |= HALT_BIT;
1498 wmb();
1499 }
1500 }
1501
1502 /* Remove it from the queue */
1503 qtd_copy_status(oxu, urb->complete ?
1504 urb : ((struct oxu_murb *) urb)->main,
1505 qtd->length, token);
1506 if ((usb_pipein(qtd->urb->pipe)) &&
1507 (NULL != qtd->transfer_buffer))
1508 memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1509 do_status = (urb->status == -EREMOTEIO)
1510 && usb_pipecontrol(urb->pipe);
1511
1512 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1513 last = list_entry(qtd->qtd_list.prev,
1514 struct ehci_qtd, qtd_list);
1515 last->hw_next = qtd->hw_next;
1516 }
1517 list_del(&qtd->qtd_list);
1518 last = qtd;
1519 }
1520
1521 /* last urb's completion might still need calling */
1522 if (likely(last != NULL)) {
1523 if (last->urb->complete == NULL) {
1524 murb = (struct oxu_murb *) last->urb;
1525 last->urb = murb->main;
1526 if (murb->last) {
1527 ehci_urb_done(oxu, last->urb);
1528 count++;
1529 }
1530 oxu_murb_free(oxu, murb);
1531 } else {
1532 ehci_urb_done(oxu, last->urb);
1533 count++;
1534 }
1535 oxu_qtd_free(oxu, last);
1536 }
1537
1538 /* restore original state; caller must unlink or relink */
1539 qh->qh_state = state;
1540
1541 /* be sure the hardware's done with the qh before refreshing
1542 * it after fault cleanup, or recovering from silicon wrongly
1543 * overlaying the dummy qtd (which reduces DMA chatter).
1544 */
1545 if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1546 switch (state) {
1547 case QH_STATE_IDLE:
1548 qh_refresh(oxu, qh);
1549 break;
1550 case QH_STATE_LINKED:
1551 /* should be rare for periodic transfers,
1552 * except maybe high bandwidth ...
1553 */
1554 if ((cpu_to_le32(QH_SMASK)
1555 & qh->hw_info2) != 0) {
1556 intr_deschedule(oxu, qh);
1557 (void) qh_schedule(oxu, qh);
1558 } else
1559 unlink_async(oxu, qh);
1560 break;
1561 /* otherwise, unlink already started */
1562 }
1563 }
1564
1565 return count;
1566 }
1567
1568 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1569 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
1570 /* ... and packet size, for any kind of endpoint descriptor */
1571 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
1572
1573 /* Reverse of qh_urb_transaction: free a list of TDs.
1574 * used for cleanup after errors, before HC sees an URB's TDs.
1575 */
qtd_list_free(struct oxu_hcd * oxu,struct urb * urb,struct list_head * head)1576 static void qtd_list_free(struct oxu_hcd *oxu,
1577 struct urb *urb, struct list_head *head)
1578 {
1579 struct ehci_qtd *qtd, *temp;
1580
1581 list_for_each_entry_safe(qtd, temp, head, qtd_list) {
1582 list_del(&qtd->qtd_list);
1583 oxu_qtd_free(oxu, qtd);
1584 }
1585 }
1586
1587 /* Create a list of filled qtds for this URB; won't link into qh.
1588 */
qh_urb_transaction(struct oxu_hcd * oxu,struct urb * urb,struct list_head * head,gfp_t flags)1589 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1590 struct urb *urb,
1591 struct list_head *head,
1592 gfp_t flags)
1593 {
1594 struct ehci_qtd *qtd, *qtd_prev;
1595 dma_addr_t buf;
1596 int len, maxpacket;
1597 int is_input;
1598 u32 token;
1599 void *transfer_buf = NULL;
1600 int ret;
1601
1602 /*
1603 * URBs map to sequences of QTDs: one logical transaction
1604 */
1605 qtd = ehci_qtd_alloc(oxu);
1606 if (unlikely(!qtd))
1607 return NULL;
1608 list_add_tail(&qtd->qtd_list, head);
1609 qtd->urb = urb;
1610
1611 token = QTD_STS_ACTIVE;
1612 token |= (EHCI_TUNE_CERR << 10);
1613 /* for split transactions, SplitXState initialized to zero */
1614
1615 len = urb->transfer_buffer_length;
1616 is_input = usb_pipein(urb->pipe);
1617 if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1618 urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1619
1620 if (usb_pipecontrol(urb->pipe)) {
1621 /* SETUP pid */
1622 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1623 if (ret)
1624 goto cleanup;
1625
1626 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1627 token | (2 /* "setup" */ << 8), 8);
1628 memcpy(qtd->buffer, qtd->urb->setup_packet,
1629 sizeof(struct usb_ctrlrequest));
1630
1631 /* ... and always at least one more pid */
1632 token ^= QTD_TOGGLE;
1633 qtd_prev = qtd;
1634 qtd = ehci_qtd_alloc(oxu);
1635 if (unlikely(!qtd))
1636 goto cleanup;
1637 qtd->urb = urb;
1638 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1639 list_add_tail(&qtd->qtd_list, head);
1640
1641 /* for zero length DATA stages, STATUS is always IN */
1642 if (len == 0)
1643 token |= (1 /* "in" */ << 8);
1644 }
1645
1646 /*
1647 * Data transfer stage: buffer setup
1648 */
1649
1650 ret = oxu_buf_alloc(oxu, qtd, len);
1651 if (ret)
1652 goto cleanup;
1653
1654 buf = qtd->buffer_dma;
1655 transfer_buf = urb->transfer_buffer;
1656
1657 if (!is_input)
1658 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1659
1660 if (is_input)
1661 token |= (1 /* "in" */ << 8);
1662 /* else it's already initted to "out" pid (0 << 8) */
1663
1664 maxpacket = usb_maxpacket(urb->dev, urb->pipe);
1665
1666 /*
1667 * buffer gets wrapped in one or more qtds;
1668 * last one may be "short" (including zero len)
1669 * and may serve as a control status ack
1670 */
1671 for (;;) {
1672 int this_qtd_len;
1673
1674 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1675 qtd->transfer_buffer = transfer_buf;
1676 len -= this_qtd_len;
1677 buf += this_qtd_len;
1678 transfer_buf += this_qtd_len;
1679 if (is_input)
1680 qtd->hw_alt_next = oxu->async->hw_alt_next;
1681
1682 /* qh makes control packets use qtd toggle; maybe switch it */
1683 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1684 token ^= QTD_TOGGLE;
1685
1686 if (likely(len <= 0))
1687 break;
1688
1689 qtd_prev = qtd;
1690 qtd = ehci_qtd_alloc(oxu);
1691 if (unlikely(!qtd))
1692 goto cleanup;
1693 if (likely(len > 0)) {
1694 ret = oxu_buf_alloc(oxu, qtd, len);
1695 if (ret)
1696 goto cleanup;
1697 }
1698 qtd->urb = urb;
1699 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1700 list_add_tail(&qtd->qtd_list, head);
1701 }
1702
1703 /* unless the bulk/interrupt caller wants a chance to clean
1704 * up after short reads, hc should advance qh past this urb
1705 */
1706 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1707 || usb_pipecontrol(urb->pipe)))
1708 qtd->hw_alt_next = EHCI_LIST_END;
1709
1710 /*
1711 * control requests may need a terminating data "status" ack;
1712 * bulk ones may need a terminating short packet (zero length).
1713 */
1714 if (likely(urb->transfer_buffer_length != 0)) {
1715 int one_more = 0;
1716
1717 if (usb_pipecontrol(urb->pipe)) {
1718 one_more = 1;
1719 token ^= 0x0100; /* "in" <--> "out" */
1720 token |= QTD_TOGGLE; /* force DATA1 */
1721 } else if (usb_pipebulk(urb->pipe)
1722 && (urb->transfer_flags & URB_ZERO_PACKET)
1723 && !(urb->transfer_buffer_length % maxpacket)) {
1724 one_more = 1;
1725 }
1726 if (one_more) {
1727 qtd_prev = qtd;
1728 qtd = ehci_qtd_alloc(oxu);
1729 if (unlikely(!qtd))
1730 goto cleanup;
1731 qtd->urb = urb;
1732 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1733 list_add_tail(&qtd->qtd_list, head);
1734
1735 /* never any data in such packets */
1736 qtd_fill(qtd, 0, 0, token, 0);
1737 }
1738 }
1739
1740 /* by default, enable interrupt on urb completion */
1741 qtd->hw_token |= cpu_to_le32(QTD_IOC);
1742 return head;
1743
1744 cleanup:
1745 qtd_list_free(oxu, urb, head);
1746 return NULL;
1747 }
1748
1749 /* Each QH holds a qtd list; a QH is used for everything except iso.
1750 *
1751 * For interrupt urbs, the scheduler must set the microframe scheduling
1752 * mask(s) each time the QH gets scheduled. For highspeed, that's
1753 * just one microframe in the s-mask. For split interrupt transactions
1754 * there are additional complications: c-mask, maybe FSTNs.
1755 */
qh_make(struct oxu_hcd * oxu,struct urb * urb,gfp_t flags)1756 static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1757 struct urb *urb, gfp_t flags)
1758 {
1759 struct ehci_qh *qh = oxu_qh_alloc(oxu);
1760 u32 info1 = 0, info2 = 0;
1761 int is_input, type;
1762 int maxp = 0;
1763
1764 if (!qh)
1765 return qh;
1766
1767 /*
1768 * init endpoint/device data for this QH
1769 */
1770 info1 |= usb_pipeendpoint(urb->pipe) << 8;
1771 info1 |= usb_pipedevice(urb->pipe) << 0;
1772
1773 is_input = usb_pipein(urb->pipe);
1774 type = usb_pipetype(urb->pipe);
1775 maxp = usb_maxpacket(urb->dev, urb->pipe);
1776
1777 /* Compute interrupt scheduling parameters just once, and save.
1778 * - allowing for high bandwidth, how many nsec/uframe are used?
1779 * - split transactions need a second CSPLIT uframe; same question
1780 * - splits also need a schedule gap (for full/low speed I/O)
1781 * - qh has a polling interval
1782 *
1783 * For control/bulk requests, the HC or TT handles these.
1784 */
1785 if (type == PIPE_INTERRUPT) {
1786 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1787 is_input, 0,
1788 hb_mult(maxp) * max_packet(maxp)));
1789 qh->start = NO_FRAME;
1790
1791 if (urb->dev->speed == USB_SPEED_HIGH) {
1792 qh->c_usecs = 0;
1793 qh->gap_uf = 0;
1794
1795 qh->period = urb->interval >> 3;
1796 if (qh->period == 0 && urb->interval != 1) {
1797 /* NOTE interval 2 or 4 uframes could work.
1798 * But interval 1 scheduling is simpler, and
1799 * includes high bandwidth.
1800 */
1801 oxu_dbg(oxu, "intr period %d uframes, NYET!\n",
1802 urb->interval);
1803 goto done;
1804 }
1805 } else {
1806 struct usb_tt *tt = urb->dev->tt;
1807 int think_time;
1808
1809 /* gap is f(FS/LS transfer times) */
1810 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1811 is_input, 0, maxp) / (125 * 1000);
1812
1813 /* FIXME this just approximates SPLIT/CSPLIT times */
1814 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
1815 qh->c_usecs = qh->usecs + HS_USECS(0);
1816 qh->usecs = HS_USECS(1);
1817 } else { /* SPLIT+DATA, gap, CSPLIT */
1818 qh->usecs += HS_USECS(1);
1819 qh->c_usecs = HS_USECS(0);
1820 }
1821
1822 think_time = tt ? tt->think_time : 0;
1823 qh->tt_usecs = NS_TO_US(think_time +
1824 usb_calc_bus_time(urb->dev->speed,
1825 is_input, 0, max_packet(maxp)));
1826 qh->period = urb->interval;
1827 }
1828 }
1829
1830 /* support for tt scheduling, and access to toggles */
1831 qh->dev = urb->dev;
1832
1833 /* using TT? */
1834 switch (urb->dev->speed) {
1835 case USB_SPEED_LOW:
1836 info1 |= (1 << 12); /* EPS "low" */
1837 fallthrough;
1838
1839 case USB_SPEED_FULL:
1840 /* EPS 0 means "full" */
1841 if (type != PIPE_INTERRUPT)
1842 info1 |= (EHCI_TUNE_RL_TT << 28);
1843 if (type == PIPE_CONTROL) {
1844 info1 |= (1 << 27); /* for TT */
1845 info1 |= 1 << 14; /* toggle from qtd */
1846 }
1847 info1 |= maxp << 16;
1848
1849 info2 |= (EHCI_TUNE_MULT_TT << 30);
1850 info2 |= urb->dev->ttport << 23;
1851
1852 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1853
1854 break;
1855
1856 case USB_SPEED_HIGH: /* no TT involved */
1857 info1 |= (2 << 12); /* EPS "high" */
1858 if (type == PIPE_CONTROL) {
1859 info1 |= (EHCI_TUNE_RL_HS << 28);
1860 info1 |= 64 << 16; /* usb2 fixed maxpacket */
1861 info1 |= 1 << 14; /* toggle from qtd */
1862 info2 |= (EHCI_TUNE_MULT_HS << 30);
1863 } else if (type == PIPE_BULK) {
1864 info1 |= (EHCI_TUNE_RL_HS << 28);
1865 info1 |= 512 << 16; /* usb2 fixed maxpacket */
1866 info2 |= (EHCI_TUNE_MULT_HS << 30);
1867 } else { /* PIPE_INTERRUPT */
1868 info1 |= max_packet(maxp) << 16;
1869 info2 |= hb_mult(maxp) << 30;
1870 }
1871 break;
1872 default:
1873 oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed);
1874 done:
1875 qh_put(qh);
1876 return NULL;
1877 }
1878
1879 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1880
1881 /* init as live, toggle clear, advance to dummy */
1882 qh->qh_state = QH_STATE_IDLE;
1883 qh->hw_info1 = cpu_to_le32(info1);
1884 qh->hw_info2 = cpu_to_le32(info2);
1885 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1886 qh_refresh(oxu, qh);
1887 return qh;
1888 }
1889
1890 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1891 */
qh_link_async(struct oxu_hcd * oxu,struct ehci_qh * qh)1892 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1893 {
1894 __le32 dma = QH_NEXT(qh->qh_dma);
1895 struct ehci_qh *head;
1896
1897 /* (re)start the async schedule? */
1898 head = oxu->async;
1899 timer_action_done(oxu, TIMER_ASYNC_OFF);
1900 if (!head->qh_next.qh) {
1901 u32 cmd = readl(&oxu->regs->command);
1902
1903 if (!(cmd & CMD_ASE)) {
1904 /* in case a clear of CMD_ASE didn't take yet */
1905 (void)handshake(oxu, &oxu->regs->status,
1906 STS_ASS, 0, 150);
1907 cmd |= CMD_ASE | CMD_RUN;
1908 writel(cmd, &oxu->regs->command);
1909 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1910 /* posted write need not be known to HC yet ... */
1911 }
1912 }
1913
1914 /* clear halt and/or toggle; and maybe recover from silicon quirk */
1915 if (qh->qh_state == QH_STATE_IDLE)
1916 qh_refresh(oxu, qh);
1917
1918 /* splice right after start */
1919 qh->qh_next = head->qh_next;
1920 qh->hw_next = head->hw_next;
1921 wmb();
1922
1923 head->qh_next.qh = qh;
1924 head->hw_next = dma;
1925
1926 qh->qh_state = QH_STATE_LINKED;
1927 /* qtd completions reported later by interrupt */
1928 }
1929
1930 #define QH_ADDR_MASK cpu_to_le32(0x7f)
1931
1932 /*
1933 * For control/bulk/interrupt, return QH with these TDs appended.
1934 * Allocates and initializes the QH if necessary.
1935 * Returns null if it can't allocate a QH it needs to.
1936 * If the QH has TDs (urbs) already, that's great.
1937 */
qh_append_tds(struct oxu_hcd * oxu,struct urb * urb,struct list_head * qtd_list,int epnum,void ** ptr)1938 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1939 struct urb *urb, struct list_head *qtd_list,
1940 int epnum, void **ptr)
1941 {
1942 struct ehci_qh *qh = NULL;
1943
1944 qh = (struct ehci_qh *) *ptr;
1945 if (unlikely(qh == NULL)) {
1946 /* can't sleep here, we have oxu->lock... */
1947 qh = qh_make(oxu, urb, GFP_ATOMIC);
1948 *ptr = qh;
1949 }
1950 if (likely(qh != NULL)) {
1951 struct ehci_qtd *qtd;
1952
1953 if (unlikely(list_empty(qtd_list)))
1954 qtd = NULL;
1955 else
1956 qtd = list_entry(qtd_list->next, struct ehci_qtd,
1957 qtd_list);
1958
1959 /* control qh may need patching ... */
1960 if (unlikely(epnum == 0)) {
1961
1962 /* usb_reset_device() briefly reverts to address 0 */
1963 if (usb_pipedevice(urb->pipe) == 0)
1964 qh->hw_info1 &= ~QH_ADDR_MASK;
1965 }
1966
1967 /* just one way to queue requests: swap with the dummy qtd.
1968 * only hc or qh_refresh() ever modify the overlay.
1969 */
1970 if (likely(qtd != NULL)) {
1971 struct ehci_qtd *dummy;
1972 dma_addr_t dma;
1973 __le32 token;
1974
1975 /* to avoid racing the HC, use the dummy td instead of
1976 * the first td of our list (becomes new dummy). both
1977 * tds stay deactivated until we're done, when the
1978 * HC is allowed to fetch the old dummy (4.10.2).
1979 */
1980 token = qtd->hw_token;
1981 qtd->hw_token = HALT_BIT;
1982 wmb();
1983 dummy = qh->dummy;
1984
1985 dma = dummy->qtd_dma;
1986 *dummy = *qtd;
1987 dummy->qtd_dma = dma;
1988
1989 list_del(&qtd->qtd_list);
1990 list_add(&dummy->qtd_list, qtd_list);
1991 list_splice(qtd_list, qh->qtd_list.prev);
1992
1993 ehci_qtd_init(qtd, qtd->qtd_dma);
1994 qh->dummy = qtd;
1995
1996 /* hc must see the new dummy at list end */
1997 dma = qtd->qtd_dma;
1998 qtd = list_entry(qh->qtd_list.prev,
1999 struct ehci_qtd, qtd_list);
2000 qtd->hw_next = QTD_NEXT(dma);
2001
2002 /* let the hc process these next qtds */
2003 dummy->hw_token = (token & ~(0x80));
2004 wmb();
2005 dummy->hw_token = token;
2006
2007 urb->hcpriv = qh_get(qh);
2008 }
2009 }
2010 return qh;
2011 }
2012
submit_async(struct oxu_hcd * oxu,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)2013 static int submit_async(struct oxu_hcd *oxu, struct urb *urb,
2014 struct list_head *qtd_list, gfp_t mem_flags)
2015 {
2016 int epnum = urb->ep->desc.bEndpointAddress;
2017 unsigned long flags;
2018 struct ehci_qh *qh = NULL;
2019 int rc = 0;
2020 #ifdef OXU_URB_TRACE
2021 struct ehci_qtd *qtd;
2022
2023 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
2024
2025 oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2026 __func__, urb->dev->devpath, urb,
2027 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
2028 urb->transfer_buffer_length,
2029 qtd, urb->ep->hcpriv);
2030 #endif
2031
2032 spin_lock_irqsave(&oxu->lock, flags);
2033 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2034 rc = -ESHUTDOWN;
2035 goto done;
2036 }
2037
2038 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2039 if (unlikely(qh == NULL)) {
2040 rc = -ENOMEM;
2041 goto done;
2042 }
2043
2044 /* Control/bulk operations through TTs don't need scheduling,
2045 * the HC and TT handle it when the TT has a buffer ready.
2046 */
2047 if (likely(qh->qh_state == QH_STATE_IDLE))
2048 qh_link_async(oxu, qh_get(qh));
2049 done:
2050 spin_unlock_irqrestore(&oxu->lock, flags);
2051 if (unlikely(qh == NULL))
2052 qtd_list_free(oxu, urb, qtd_list);
2053 return rc;
2054 }
2055
2056 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
2057
end_unlink_async(struct oxu_hcd * oxu)2058 static void end_unlink_async(struct oxu_hcd *oxu)
2059 {
2060 struct ehci_qh *qh = oxu->reclaim;
2061 struct ehci_qh *next;
2062
2063 timer_action_done(oxu, TIMER_IAA_WATCHDOG);
2064
2065 qh->qh_state = QH_STATE_IDLE;
2066 qh->qh_next.qh = NULL;
2067 qh_put(qh); /* refcount from reclaim */
2068
2069 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
2070 next = qh->reclaim;
2071 oxu->reclaim = next;
2072 oxu->reclaim_ready = 0;
2073 qh->reclaim = NULL;
2074
2075 qh_completions(oxu, qh);
2076
2077 if (!list_empty(&qh->qtd_list)
2078 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2079 qh_link_async(oxu, qh);
2080 else {
2081 qh_put(qh); /* refcount from async list */
2082
2083 /* it's not free to turn the async schedule on/off; leave it
2084 * active but idle for a while once it empties.
2085 */
2086 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
2087 && oxu->async->qh_next.qh == NULL)
2088 timer_action(oxu, TIMER_ASYNC_OFF);
2089 }
2090
2091 if (next) {
2092 oxu->reclaim = NULL;
2093 start_unlink_async(oxu, next);
2094 }
2095 }
2096
2097 /* makes sure the async qh will become idle */
2098 /* caller must own oxu->lock */
2099
start_unlink_async(struct oxu_hcd * oxu,struct ehci_qh * qh)2100 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2101 {
2102 int cmd = readl(&oxu->regs->command);
2103 struct ehci_qh *prev;
2104
2105 #ifdef DEBUG
2106 assert_spin_locked(&oxu->lock);
2107 BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
2108 && qh->qh_state != QH_STATE_UNLINK_WAIT));
2109 #endif
2110
2111 /* stop async schedule right now? */
2112 if (unlikely(qh == oxu->async)) {
2113 /* can't get here without STS_ASS set */
2114 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
2115 && !oxu->reclaim) {
2116 /* ... and CMD_IAAD clear */
2117 writel(cmd & ~CMD_ASE, &oxu->regs->command);
2118 wmb();
2119 /* handshake later, if we need to */
2120 timer_action_done(oxu, TIMER_ASYNC_OFF);
2121 }
2122 return;
2123 }
2124
2125 qh->qh_state = QH_STATE_UNLINK;
2126 oxu->reclaim = qh = qh_get(qh);
2127
2128 prev = oxu->async;
2129 while (prev->qh_next.qh != qh)
2130 prev = prev->qh_next.qh;
2131
2132 prev->hw_next = qh->hw_next;
2133 prev->qh_next = qh->qh_next;
2134 wmb();
2135
2136 if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
2137 /* if (unlikely(qh->reclaim != 0))
2138 * this will recurse, probably not much
2139 */
2140 end_unlink_async(oxu);
2141 return;
2142 }
2143
2144 oxu->reclaim_ready = 0;
2145 cmd |= CMD_IAAD;
2146 writel(cmd, &oxu->regs->command);
2147 (void) readl(&oxu->regs->command);
2148 timer_action(oxu, TIMER_IAA_WATCHDOG);
2149 }
2150
scan_async(struct oxu_hcd * oxu)2151 static void scan_async(struct oxu_hcd *oxu)
2152 {
2153 struct ehci_qh *qh;
2154 enum ehci_timer_action action = TIMER_IO_WATCHDOG;
2155
2156 if (!++(oxu->stamp))
2157 oxu->stamp++;
2158 timer_action_done(oxu, TIMER_ASYNC_SHRINK);
2159 rescan:
2160 qh = oxu->async->qh_next.qh;
2161 if (likely(qh != NULL)) {
2162 do {
2163 /* clean any finished work for this qh */
2164 if (!list_empty(&qh->qtd_list)
2165 && qh->stamp != oxu->stamp) {
2166 int temp;
2167
2168 /* unlinks could happen here; completion
2169 * reporting drops the lock. rescan using
2170 * the latest schedule, but don't rescan
2171 * qhs we already finished (no looping).
2172 */
2173 qh = qh_get(qh);
2174 qh->stamp = oxu->stamp;
2175 temp = qh_completions(oxu, qh);
2176 qh_put(qh);
2177 if (temp != 0)
2178 goto rescan;
2179 }
2180
2181 /* unlink idle entries, reducing HC PCI usage as well
2182 * as HCD schedule-scanning costs. delay for any qh
2183 * we just scanned, there's a not-unusual case that it
2184 * doesn't stay idle for long.
2185 * (plus, avoids some kind of re-activation race.)
2186 */
2187 if (list_empty(&qh->qtd_list)) {
2188 if (qh->stamp == oxu->stamp)
2189 action = TIMER_ASYNC_SHRINK;
2190 else if (!oxu->reclaim
2191 && qh->qh_state == QH_STATE_LINKED)
2192 start_unlink_async(oxu, qh);
2193 }
2194
2195 qh = qh->qh_next.qh;
2196 } while (qh);
2197 }
2198 if (action == TIMER_ASYNC_SHRINK)
2199 timer_action(oxu, TIMER_ASYNC_SHRINK);
2200 }
2201
2202 /*
2203 * periodic_next_shadow - return "next" pointer on shadow list
2204 * @periodic: host pointer to qh/itd/sitd
2205 * @tag: hardware tag for type of this record
2206 */
periodic_next_shadow(union ehci_shadow * periodic,__le32 tag)2207 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
2208 __le32 tag)
2209 {
2210 switch (tag) {
2211 default:
2212 case Q_TYPE_QH:
2213 return &periodic->qh->qh_next;
2214 }
2215 }
2216
2217 /* caller must hold oxu->lock */
periodic_unlink(struct oxu_hcd * oxu,unsigned frame,void * ptr)2218 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
2219 {
2220 union ehci_shadow *prev_p = &oxu->pshadow[frame];
2221 __le32 *hw_p = &oxu->periodic[frame];
2222 union ehci_shadow here = *prev_p;
2223
2224 /* find predecessor of "ptr"; hw and shadow lists are in sync */
2225 while (here.ptr && here.ptr != ptr) {
2226 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
2227 hw_p = here.hw_next;
2228 here = *prev_p;
2229 }
2230 /* an interrupt entry (at list end) could have been shared */
2231 if (!here.ptr)
2232 return;
2233
2234 /* update shadow and hardware lists ... the old "next" pointers
2235 * from ptr may still be in use, the caller updates them.
2236 */
2237 *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
2238 *hw_p = *here.hw_next;
2239 }
2240
2241 /* how many of the uframe's 125 usecs are allocated? */
periodic_usecs(struct oxu_hcd * oxu,unsigned frame,unsigned uframe)2242 static unsigned short periodic_usecs(struct oxu_hcd *oxu,
2243 unsigned frame, unsigned uframe)
2244 {
2245 __le32 *hw_p = &oxu->periodic[frame];
2246 union ehci_shadow *q = &oxu->pshadow[frame];
2247 unsigned usecs = 0;
2248
2249 while (q->ptr) {
2250 switch (Q_NEXT_TYPE(*hw_p)) {
2251 case Q_TYPE_QH:
2252 default:
2253 /* is it in the S-mask? */
2254 if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
2255 usecs += q->qh->usecs;
2256 /* ... or C-mask? */
2257 if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
2258 usecs += q->qh->c_usecs;
2259 hw_p = &q->qh->hw_next;
2260 q = &q->qh->qh_next;
2261 break;
2262 }
2263 }
2264 #ifdef DEBUG
2265 if (usecs > 100)
2266 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
2267 frame * 8 + uframe, usecs);
2268 #endif
2269 return usecs;
2270 }
2271
enable_periodic(struct oxu_hcd * oxu)2272 static int enable_periodic(struct oxu_hcd *oxu)
2273 {
2274 u32 cmd;
2275 int status;
2276
2277 /* did clearing PSE did take effect yet?
2278 * takes effect only at frame boundaries...
2279 */
2280 status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
2281 if (status != 0) {
2282 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2283 usb_hc_died(oxu_to_hcd(oxu));
2284 return status;
2285 }
2286
2287 cmd = readl(&oxu->regs->command) | CMD_PSE;
2288 writel(cmd, &oxu->regs->command);
2289 /* posted write ... PSS happens later */
2290 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
2291
2292 /* make sure ehci_work scans these */
2293 oxu->next_uframe = readl(&oxu->regs->frame_index)
2294 % (oxu->periodic_size << 3);
2295 return 0;
2296 }
2297
disable_periodic(struct oxu_hcd * oxu)2298 static int disable_periodic(struct oxu_hcd *oxu)
2299 {
2300 u32 cmd;
2301 int status;
2302
2303 /* did setting PSE not take effect yet?
2304 * takes effect only at frame boundaries...
2305 */
2306 status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
2307 if (status != 0) {
2308 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2309 usb_hc_died(oxu_to_hcd(oxu));
2310 return status;
2311 }
2312
2313 cmd = readl(&oxu->regs->command) & ~CMD_PSE;
2314 writel(cmd, &oxu->regs->command);
2315 /* posted write ... */
2316
2317 oxu->next_uframe = -1;
2318 return 0;
2319 }
2320
2321 /* periodic schedule slots have iso tds (normal or split) first, then a
2322 * sparse tree for active interrupt transfers.
2323 *
2324 * this just links in a qh; caller guarantees uframe masks are set right.
2325 * no FSTN support (yet; oxu 0.96+)
2326 */
qh_link_periodic(struct oxu_hcd * oxu,struct ehci_qh * qh)2327 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2328 {
2329 unsigned i;
2330 unsigned period = qh->period;
2331
2332 dev_dbg(&qh->dev->dev,
2333 "link qh%d-%04x/%p start %d [%d/%d us]\n",
2334 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2335 qh, qh->start, qh->usecs, qh->c_usecs);
2336
2337 /* high bandwidth, or otherwise every microframe */
2338 if (period == 0)
2339 period = 1;
2340
2341 for (i = qh->start; i < oxu->periodic_size; i += period) {
2342 union ehci_shadow *prev = &oxu->pshadow[i];
2343 __le32 *hw_p = &oxu->periodic[i];
2344 union ehci_shadow here = *prev;
2345 __le32 type = 0;
2346
2347 /* skip the iso nodes at list head */
2348 while (here.ptr) {
2349 type = Q_NEXT_TYPE(*hw_p);
2350 if (type == Q_TYPE_QH)
2351 break;
2352 prev = periodic_next_shadow(prev, type);
2353 hw_p = &here.qh->hw_next;
2354 here = *prev;
2355 }
2356
2357 /* sorting each branch by period (slow-->fast)
2358 * enables sharing interior tree nodes
2359 */
2360 while (here.ptr && qh != here.qh) {
2361 if (qh->period > here.qh->period)
2362 break;
2363 prev = &here.qh->qh_next;
2364 hw_p = &here.qh->hw_next;
2365 here = *prev;
2366 }
2367 /* link in this qh, unless some earlier pass did that */
2368 if (qh != here.qh) {
2369 qh->qh_next = here;
2370 if (here.qh)
2371 qh->hw_next = *hw_p;
2372 wmb();
2373 prev->qh = qh;
2374 *hw_p = QH_NEXT(qh->qh_dma);
2375 }
2376 }
2377 qh->qh_state = QH_STATE_LINKED;
2378 qh_get(qh);
2379
2380 /* update per-qh bandwidth for usbfs */
2381 oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
2382 ? ((qh->usecs + qh->c_usecs) / qh->period)
2383 : (qh->usecs * 8);
2384
2385 /* maybe enable periodic schedule processing */
2386 if (!oxu->periodic_sched++)
2387 return enable_periodic(oxu);
2388
2389 return 0;
2390 }
2391
qh_unlink_periodic(struct oxu_hcd * oxu,struct ehci_qh * qh)2392 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2393 {
2394 unsigned i;
2395 unsigned period;
2396
2397 /* FIXME:
2398 * IF this isn't high speed
2399 * and this qh is active in the current uframe
2400 * (and overlay token SplitXstate is false?)
2401 * THEN
2402 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2403 */
2404
2405 /* high bandwidth, or otherwise part of every microframe */
2406 period = qh->period;
2407 if (period == 0)
2408 period = 1;
2409
2410 for (i = qh->start; i < oxu->periodic_size; i += period)
2411 periodic_unlink(oxu, i, qh);
2412
2413 /* update per-qh bandwidth for usbfs */
2414 oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2415 ? ((qh->usecs + qh->c_usecs) / qh->period)
2416 : (qh->usecs * 8);
2417
2418 dev_dbg(&qh->dev->dev,
2419 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2420 qh->period,
2421 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2422 qh, qh->start, qh->usecs, qh->c_usecs);
2423
2424 /* qh->qh_next still "live" to HC */
2425 qh->qh_state = QH_STATE_UNLINK;
2426 qh->qh_next.ptr = NULL;
2427 qh_put(qh);
2428
2429 /* maybe turn off periodic schedule */
2430 oxu->periodic_sched--;
2431 if (!oxu->periodic_sched)
2432 (void) disable_periodic(oxu);
2433 }
2434
intr_deschedule(struct oxu_hcd * oxu,struct ehci_qh * qh)2435 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2436 {
2437 unsigned wait;
2438
2439 qh_unlink_periodic(oxu, qh);
2440
2441 /* simple/paranoid: always delay, expecting the HC needs to read
2442 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2443 * expect hub_wq to clean up after any CSPLITs we won't issue.
2444 * active high speed queues may need bigger delays...
2445 */
2446 if (list_empty(&qh->qtd_list)
2447 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2448 wait = 2;
2449 else
2450 wait = 55; /* worst case: 3 * 1024 */
2451
2452 udelay(wait);
2453 qh->qh_state = QH_STATE_IDLE;
2454 qh->hw_next = EHCI_LIST_END;
2455 wmb();
2456 }
2457
check_period(struct oxu_hcd * oxu,unsigned frame,unsigned uframe,unsigned period,unsigned usecs)2458 static int check_period(struct oxu_hcd *oxu,
2459 unsigned frame, unsigned uframe,
2460 unsigned period, unsigned usecs)
2461 {
2462 int claimed;
2463
2464 /* complete split running into next frame?
2465 * given FSTN support, we could sometimes check...
2466 */
2467 if (uframe >= 8)
2468 return 0;
2469
2470 /*
2471 * 80% periodic == 100 usec/uframe available
2472 * convert "usecs we need" to "max already claimed"
2473 */
2474 usecs = 100 - usecs;
2475
2476 /* we "know" 2 and 4 uframe intervals were rejected; so
2477 * for period 0, check _every_ microframe in the schedule.
2478 */
2479 if (unlikely(period == 0)) {
2480 do {
2481 for (uframe = 0; uframe < 7; uframe++) {
2482 claimed = periodic_usecs(oxu, frame, uframe);
2483 if (claimed > usecs)
2484 return 0;
2485 }
2486 } while ((frame += 1) < oxu->periodic_size);
2487
2488 /* just check the specified uframe, at that period */
2489 } else {
2490 do {
2491 claimed = periodic_usecs(oxu, frame, uframe);
2492 if (claimed > usecs)
2493 return 0;
2494 } while ((frame += period) < oxu->periodic_size);
2495 }
2496
2497 return 1;
2498 }
2499
check_intr_schedule(struct oxu_hcd * oxu,unsigned frame,unsigned uframe,const struct ehci_qh * qh,__le32 * c_maskp)2500 static int check_intr_schedule(struct oxu_hcd *oxu,
2501 unsigned frame, unsigned uframe,
2502 const struct ehci_qh *qh, __le32 *c_maskp)
2503 {
2504 int retval = -ENOSPC;
2505
2506 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
2507 goto done;
2508
2509 if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2510 goto done;
2511 if (!qh->c_usecs) {
2512 retval = 0;
2513 *c_maskp = 0;
2514 goto done;
2515 }
2516
2517 done:
2518 return retval;
2519 }
2520
2521 /* "first fit" scheduling policy used the first time through,
2522 * or when the previous schedule slot can't be re-used.
2523 */
qh_schedule(struct oxu_hcd * oxu,struct ehci_qh * qh)2524 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2525 {
2526 int status;
2527 unsigned uframe;
2528 __le32 c_mask;
2529 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
2530
2531 qh_refresh(oxu, qh);
2532 qh->hw_next = EHCI_LIST_END;
2533 frame = qh->start;
2534
2535 /* reuse the previous schedule slots, if we can */
2536 if (frame < qh->period) {
2537 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2538 status = check_intr_schedule(oxu, frame, --uframe,
2539 qh, &c_mask);
2540 } else {
2541 uframe = 0;
2542 c_mask = 0;
2543 status = -ENOSPC;
2544 }
2545
2546 /* else scan the schedule to find a group of slots such that all
2547 * uframes have enough periodic bandwidth available.
2548 */
2549 if (status) {
2550 /* "normal" case, uframing flexible except with splits */
2551 if (qh->period) {
2552 frame = qh->period - 1;
2553 do {
2554 for (uframe = 0; uframe < 8; uframe++) {
2555 status = check_intr_schedule(oxu,
2556 frame, uframe, qh,
2557 &c_mask);
2558 if (status == 0)
2559 break;
2560 }
2561 } while (status && frame--);
2562
2563 /* qh->period == 0 means every uframe */
2564 } else {
2565 frame = 0;
2566 status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2567 }
2568 if (status)
2569 goto done;
2570 qh->start = frame;
2571
2572 /* reset S-frame and (maybe) C-frame masks */
2573 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2574 qh->hw_info2 |= qh->period
2575 ? cpu_to_le32(1 << uframe)
2576 : cpu_to_le32(QH_SMASK);
2577 qh->hw_info2 |= c_mask;
2578 } else
2579 oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2580
2581 /* stuff into the periodic schedule */
2582 status = qh_link_periodic(oxu, qh);
2583 done:
2584 return status;
2585 }
2586
intr_submit(struct oxu_hcd * oxu,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)2587 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2588 struct list_head *qtd_list, gfp_t mem_flags)
2589 {
2590 unsigned epnum;
2591 unsigned long flags;
2592 struct ehci_qh *qh;
2593 int status = 0;
2594 struct list_head empty;
2595
2596 /* get endpoint and transfer/schedule data */
2597 epnum = urb->ep->desc.bEndpointAddress;
2598
2599 spin_lock_irqsave(&oxu->lock, flags);
2600
2601 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2602 status = -ESHUTDOWN;
2603 goto done;
2604 }
2605
2606 /* get qh and force any scheduling errors */
2607 INIT_LIST_HEAD(&empty);
2608 qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2609 if (qh == NULL) {
2610 status = -ENOMEM;
2611 goto done;
2612 }
2613 if (qh->qh_state == QH_STATE_IDLE) {
2614 status = qh_schedule(oxu, qh);
2615 if (status != 0)
2616 goto done;
2617 }
2618
2619 /* then queue the urb's tds to the qh */
2620 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2621 BUG_ON(qh == NULL);
2622
2623 /* ... update usbfs periodic stats */
2624 oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2625
2626 done:
2627 spin_unlock_irqrestore(&oxu->lock, flags);
2628 if (status)
2629 qtd_list_free(oxu, urb, qtd_list);
2630
2631 return status;
2632 }
2633
itd_submit(struct oxu_hcd * oxu,struct urb * urb,gfp_t mem_flags)2634 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2635 gfp_t mem_flags)
2636 {
2637 oxu_dbg(oxu, "iso support is missing!\n");
2638 return -ENOSYS;
2639 }
2640
sitd_submit(struct oxu_hcd * oxu,struct urb * urb,gfp_t mem_flags)2641 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2642 gfp_t mem_flags)
2643 {
2644 oxu_dbg(oxu, "split iso support is missing!\n");
2645 return -ENOSYS;
2646 }
2647
scan_periodic(struct oxu_hcd * oxu)2648 static void scan_periodic(struct oxu_hcd *oxu)
2649 {
2650 unsigned frame, clock, now_uframe, mod;
2651 unsigned modified;
2652
2653 mod = oxu->periodic_size << 3;
2654
2655 /*
2656 * When running, scan from last scan point up to "now"
2657 * else clean up by scanning everything that's left.
2658 * Touches as few pages as possible: cache-friendly.
2659 */
2660 now_uframe = oxu->next_uframe;
2661 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2662 clock = readl(&oxu->regs->frame_index);
2663 else
2664 clock = now_uframe + mod - 1;
2665 clock %= mod;
2666
2667 for (;;) {
2668 union ehci_shadow q, *q_p;
2669 __le32 type, *hw_p;
2670
2671 /* don't scan past the live uframe */
2672 frame = now_uframe >> 3;
2673 if (frame != (clock >> 3)) {
2674 /* safe to scan the whole frame at once */
2675 now_uframe |= 0x07;
2676 }
2677
2678 restart:
2679 /* scan each element in frame's queue for completions */
2680 q_p = &oxu->pshadow[frame];
2681 hw_p = &oxu->periodic[frame];
2682 q.ptr = q_p->ptr;
2683 type = Q_NEXT_TYPE(*hw_p);
2684 modified = 0;
2685
2686 while (q.ptr != NULL) {
2687 union ehci_shadow temp;
2688
2689 switch (type) {
2690 case Q_TYPE_QH:
2691 /* handle any completions */
2692 temp.qh = qh_get(q.qh);
2693 type = Q_NEXT_TYPE(q.qh->hw_next);
2694 q = q.qh->qh_next;
2695 modified = qh_completions(oxu, temp.qh);
2696 if (unlikely(list_empty(&temp.qh->qtd_list)))
2697 intr_deschedule(oxu, temp.qh);
2698 qh_put(temp.qh);
2699 break;
2700 default:
2701 oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n",
2702 type, frame, q.ptr);
2703 q.ptr = NULL;
2704 }
2705
2706 /* assume completion callbacks modify the queue */
2707 if (unlikely(modified))
2708 goto restart;
2709 }
2710
2711 /* Stop when we catch up to the HC */
2712
2713 /* FIXME: this assumes we won't get lapped when
2714 * latencies climb; that should be rare, but...
2715 * detect it, and just go all the way around.
2716 * FLR might help detect this case, so long as latencies
2717 * don't exceed periodic_size msec (default 1.024 sec).
2718 */
2719
2720 /* FIXME: likewise assumes HC doesn't halt mid-scan */
2721
2722 if (now_uframe == clock) {
2723 unsigned now;
2724
2725 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2726 break;
2727 oxu->next_uframe = now_uframe;
2728 now = readl(&oxu->regs->frame_index) % mod;
2729 if (now_uframe == now)
2730 break;
2731
2732 /* rescan the rest of this frame, then ... */
2733 clock = now;
2734 } else {
2735 now_uframe++;
2736 now_uframe %= mod;
2737 }
2738 }
2739 }
2740
2741 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2742 * The firmware seems to think that powering off is a wakeup event!
2743 * This routine turns off remote wakeup and everything else, on all ports.
2744 */
ehci_turn_off_all_ports(struct oxu_hcd * oxu)2745 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2746 {
2747 int port = HCS_N_PORTS(oxu->hcs_params);
2748
2749 while (port--)
2750 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2751 }
2752
ehci_port_power(struct oxu_hcd * oxu,int is_on)2753 static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2754 {
2755 unsigned port;
2756
2757 if (!HCS_PPC(oxu->hcs_params))
2758 return;
2759
2760 oxu_dbg(oxu, "...power%s ports...\n", str_up_down(is_on));
2761 for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; ) {
2762 if (is_on)
2763 oxu_hub_control(oxu_to_hcd(oxu), SetPortFeature,
2764 USB_PORT_FEAT_POWER, port--, NULL, 0);
2765 else
2766 oxu_hub_control(oxu_to_hcd(oxu), ClearPortFeature,
2767 USB_PORT_FEAT_POWER, port--, NULL, 0);
2768 }
2769
2770 msleep(20);
2771 }
2772
2773 /* Called from some interrupts, timers, and so on.
2774 * It calls driver completion functions, after dropping oxu->lock.
2775 */
ehci_work(struct oxu_hcd * oxu)2776 static void ehci_work(struct oxu_hcd *oxu)
2777 {
2778 timer_action_done(oxu, TIMER_IO_WATCHDOG);
2779 if (oxu->reclaim_ready)
2780 end_unlink_async(oxu);
2781
2782 /* another CPU may drop oxu->lock during a schedule scan while
2783 * it reports urb completions. this flag guards against bogus
2784 * attempts at re-entrant schedule scanning.
2785 */
2786 if (oxu->scanning)
2787 return;
2788 oxu->scanning = 1;
2789 scan_async(oxu);
2790 if (oxu->next_uframe != -1)
2791 scan_periodic(oxu);
2792 oxu->scanning = 0;
2793
2794 /* the IO watchdog guards against hardware or driver bugs that
2795 * misplace IRQs, and should let us run completely without IRQs.
2796 * such lossage has been observed on both VT6202 and VT8235.
2797 */
2798 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2799 (oxu->async->qh_next.ptr != NULL ||
2800 oxu->periodic_sched != 0))
2801 timer_action(oxu, TIMER_IO_WATCHDOG);
2802 }
2803
unlink_async(struct oxu_hcd * oxu,struct ehci_qh * qh)2804 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2805 {
2806 /* if we need to use IAA and it's busy, defer */
2807 if (qh->qh_state == QH_STATE_LINKED
2808 && oxu->reclaim
2809 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2810 struct ehci_qh *last;
2811
2812 for (last = oxu->reclaim;
2813 last->reclaim;
2814 last = last->reclaim)
2815 continue;
2816 qh->qh_state = QH_STATE_UNLINK_WAIT;
2817 last->reclaim = qh;
2818
2819 /* bypass IAA if the hc can't care */
2820 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2821 end_unlink_async(oxu);
2822
2823 /* something else might have unlinked the qh by now */
2824 if (qh->qh_state == QH_STATE_LINKED)
2825 start_unlink_async(oxu, qh);
2826 }
2827
2828 /*
2829 * USB host controller methods
2830 */
2831
oxu210_hcd_irq(struct usb_hcd * hcd)2832 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2833 {
2834 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2835 u32 status, pcd_status = 0;
2836 int bh;
2837
2838 spin_lock(&oxu->lock);
2839
2840 status = readl(&oxu->regs->status);
2841
2842 /* e.g. cardbus physical eject */
2843 if (status == ~(u32) 0) {
2844 oxu_dbg(oxu, "device removed\n");
2845 goto dead;
2846 }
2847
2848 /* Shared IRQ? */
2849 status &= INTR_MASK;
2850 if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2851 spin_unlock(&oxu->lock);
2852 return IRQ_NONE;
2853 }
2854
2855 /* clear (just) interrupts */
2856 writel(status, &oxu->regs->status);
2857 readl(&oxu->regs->command); /* unblock posted write */
2858 bh = 0;
2859
2860 #ifdef OXU_VERBOSE_DEBUG
2861 /* unrequested/ignored: Frame List Rollover */
2862 dbg_status(oxu, "irq", status);
2863 #endif
2864
2865 /* INT, ERR, and IAA interrupt rates can be throttled */
2866
2867 /* normal [4.15.1.2] or error [4.15.1.1] completion */
2868 if (likely((status & (STS_INT|STS_ERR)) != 0))
2869 bh = 1;
2870
2871 /* complete the unlinking of some qh [4.15.2.3] */
2872 if (status & STS_IAA) {
2873 oxu->reclaim_ready = 1;
2874 bh = 1;
2875 }
2876
2877 /* remote wakeup [4.3.1] */
2878 if (status & STS_PCD) {
2879 unsigned i = HCS_N_PORTS(oxu->hcs_params);
2880 pcd_status = status;
2881
2882 /* resume root hub? */
2883 if (!(readl(&oxu->regs->command) & CMD_RUN))
2884 usb_hcd_resume_root_hub(hcd);
2885
2886 while (i--) {
2887 int pstatus = readl(&oxu->regs->port_status[i]);
2888
2889 if (pstatus & PORT_OWNER)
2890 continue;
2891 if (!(pstatus & PORT_RESUME)
2892 || oxu->reset_done[i] != 0)
2893 continue;
2894
2895 /* start USB_RESUME_TIMEOUT resume signaling from this
2896 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
2897 * stop that signaling.
2898 */
2899 oxu->reset_done[i] = jiffies +
2900 msecs_to_jiffies(USB_RESUME_TIMEOUT);
2901 oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2902 mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2903 }
2904 }
2905
2906 /* PCI errors [4.15.2.4] */
2907 if (unlikely((status & STS_FATAL) != 0)) {
2908 /* bogus "fatal" IRQs appear on some chips... why? */
2909 status = readl(&oxu->regs->status);
2910 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2911 dbg_status(oxu, "fatal", status);
2912 if (status & STS_HALT) {
2913 oxu_err(oxu, "fatal error\n");
2914 dead:
2915 ehci_reset(oxu);
2916 writel(0, &oxu->regs->configured_flag);
2917 usb_hc_died(hcd);
2918 /* generic layer kills/unlinks all urbs, then
2919 * uses oxu_stop to clean up the rest
2920 */
2921 bh = 1;
2922 }
2923 }
2924
2925 if (bh)
2926 ehci_work(oxu);
2927 spin_unlock(&oxu->lock);
2928 if (pcd_status & STS_PCD)
2929 usb_hcd_poll_rh_status(hcd);
2930 return IRQ_HANDLED;
2931 }
2932
oxu_irq(struct usb_hcd * hcd)2933 static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2934 {
2935 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2936 int ret = IRQ_HANDLED;
2937
2938 u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2939 u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2940
2941 /* Disable all interrupt */
2942 oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2943
2944 if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2945 (!oxu->is_otg && (status & OXU_USBSPHI)))
2946 oxu210_hcd_irq(hcd);
2947 else
2948 ret = IRQ_NONE;
2949
2950 /* Enable all interrupt back */
2951 oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2952
2953 return ret;
2954 }
2955
oxu_watchdog(struct timer_list * t)2956 static void oxu_watchdog(struct timer_list *t)
2957 {
2958 struct oxu_hcd *oxu = from_timer(oxu, t, watchdog);
2959 unsigned long flags;
2960
2961 spin_lock_irqsave(&oxu->lock, flags);
2962
2963 /* lost IAA irqs wedge things badly; seen with a vt8235 */
2964 if (oxu->reclaim) {
2965 u32 status = readl(&oxu->regs->status);
2966 if (status & STS_IAA) {
2967 oxu_vdbg(oxu, "lost IAA\n");
2968 writel(STS_IAA, &oxu->regs->status);
2969 oxu->reclaim_ready = 1;
2970 }
2971 }
2972
2973 /* stop async processing after it's idled a bit */
2974 if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2975 start_unlink_async(oxu, oxu->async);
2976
2977 /* oxu could run by timer, without IRQs ... */
2978 ehci_work(oxu);
2979
2980 spin_unlock_irqrestore(&oxu->lock, flags);
2981 }
2982
2983 /* One-time init, only for memory state.
2984 */
oxu_hcd_init(struct usb_hcd * hcd)2985 static int oxu_hcd_init(struct usb_hcd *hcd)
2986 {
2987 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2988 u32 temp;
2989 int retval;
2990 u32 hcc_params;
2991
2992 spin_lock_init(&oxu->lock);
2993
2994 timer_setup(&oxu->watchdog, oxu_watchdog, 0);
2995
2996 /*
2997 * hw default: 1K periodic list heads, one per frame.
2998 * periodic_size can shrink by USBCMD update if hcc_params allows.
2999 */
3000 oxu->periodic_size = DEFAULT_I_TDPS;
3001 retval = ehci_mem_init(oxu, GFP_KERNEL);
3002 if (retval < 0)
3003 return retval;
3004
3005 /* controllers may cache some of the periodic schedule ... */
3006 hcc_params = readl(&oxu->caps->hcc_params);
3007 if (HCC_ISOC_CACHE(hcc_params)) /* full frame cache */
3008 oxu->i_thresh = 8;
3009 else /* N microframes cached */
3010 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
3011
3012 oxu->reclaim = NULL;
3013 oxu->reclaim_ready = 0;
3014 oxu->next_uframe = -1;
3015
3016 /*
3017 * dedicate a qh for the async ring head, since we couldn't unlink
3018 * a 'real' qh without stopping the async schedule [4.8]. use it
3019 * as the 'reclamation list head' too.
3020 * its dummy is used in hw_alt_next of many tds, to prevent the qh
3021 * from automatically advancing to the next td after short reads.
3022 */
3023 oxu->async->qh_next.qh = NULL;
3024 oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
3025 oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
3026 oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
3027 oxu->async->hw_qtd_next = EHCI_LIST_END;
3028 oxu->async->qh_state = QH_STATE_LINKED;
3029 oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
3030
3031 /* clear interrupt enables, set irq latency */
3032 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
3033 log2_irq_thresh = 0;
3034 temp = 1 << (16 + log2_irq_thresh);
3035 if (HCC_CANPARK(hcc_params)) {
3036 /* HW default park == 3, on hardware that supports it (like
3037 * NVidia and ALI silicon), maximizes throughput on the async
3038 * schedule by avoiding QH fetches between transfers.
3039 *
3040 * With fast usb storage devices and NForce2, "park" seems to
3041 * make problems: throughput reduction (!), data errors...
3042 */
3043 if (park) {
3044 park = min_t(unsigned int, park, 3);
3045 temp |= CMD_PARK;
3046 temp |= park << 8;
3047 }
3048 oxu_dbg(oxu, "park %d\n", park);
3049 }
3050 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
3051 /* periodic schedule size can be smaller than default */
3052 temp &= ~(3 << 2);
3053 temp |= (EHCI_TUNE_FLS << 2);
3054 }
3055 oxu->command = temp;
3056
3057 return 0;
3058 }
3059
3060 /* Called during probe() after chip reset completes.
3061 */
oxu_reset(struct usb_hcd * hcd)3062 static int oxu_reset(struct usb_hcd *hcd)
3063 {
3064 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3065
3066 spin_lock_init(&oxu->mem_lock);
3067 INIT_LIST_HEAD(&oxu->urb_list);
3068 oxu->urb_len = 0;
3069
3070 if (oxu->is_otg) {
3071 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
3072 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
3073 HC_LENGTH(readl(&oxu->caps->hc_capbase));
3074
3075 oxu->mem = hcd->regs + OXU_SPH_MEM;
3076 } else {
3077 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
3078 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
3079 HC_LENGTH(readl(&oxu->caps->hc_capbase));
3080
3081 oxu->mem = hcd->regs + OXU_OTG_MEM;
3082 }
3083
3084 oxu->hcs_params = readl(&oxu->caps->hcs_params);
3085 oxu->sbrn = 0x20;
3086
3087 return oxu_hcd_init(hcd);
3088 }
3089
oxu_run(struct usb_hcd * hcd)3090 static int oxu_run(struct usb_hcd *hcd)
3091 {
3092 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3093 int retval;
3094 u32 temp, hcc_params;
3095
3096 hcd->uses_new_polling = 1;
3097
3098 /* EHCI spec section 4.1 */
3099 retval = ehci_reset(oxu);
3100 if (retval != 0) {
3101 ehci_mem_cleanup(oxu);
3102 return retval;
3103 }
3104 writel(oxu->periodic_dma, &oxu->regs->frame_list);
3105 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3106
3107 /* hcc_params controls whether oxu->regs->segment must (!!!)
3108 * be used; it constrains QH/ITD/SITD and QTD locations.
3109 * dma_pool consistent memory always uses segment zero.
3110 * streaming mappings for I/O buffers, like dma_map_single(),
3111 * can return segments above 4GB, if the device allows.
3112 *
3113 * NOTE: the dma mask is visible through dev->dma_mask, so
3114 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
3115 * Scsi_Host.highmem_io, and so forth. It's readonly to all
3116 * host side drivers though.
3117 */
3118 hcc_params = readl(&oxu->caps->hcc_params);
3119 if (HCC_64BIT_ADDR(hcc_params))
3120 writel(0, &oxu->regs->segment);
3121
3122 oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
3123 CMD_ASE | CMD_RESET);
3124 oxu->command |= CMD_RUN;
3125 writel(oxu->command, &oxu->regs->command);
3126 dbg_cmd(oxu, "init", oxu->command);
3127
3128 /*
3129 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
3130 * are explicitly handed to companion controller(s), so no TT is
3131 * involved with the root hub. (Except where one is integrated,
3132 * and there's no companion controller unless maybe for USB OTG.)
3133 */
3134 hcd->state = HC_STATE_RUNNING;
3135 writel(FLAG_CF, &oxu->regs->configured_flag);
3136 readl(&oxu->regs->command); /* unblock posted writes */
3137
3138 temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
3139 oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
3140 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
3141 temp >> 8, temp & 0xff, DRIVER_VERSION,
3142 ignore_oc ? ", overcurrent ignored" : "");
3143
3144 writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
3145
3146 return 0;
3147 }
3148
oxu_stop(struct usb_hcd * hcd)3149 static void oxu_stop(struct usb_hcd *hcd)
3150 {
3151 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3152
3153 /* Turn off port power on all root hub ports. */
3154 ehci_port_power(oxu, 0);
3155
3156 /* no more interrupts ... */
3157 timer_delete_sync(&oxu->watchdog);
3158
3159 spin_lock_irq(&oxu->lock);
3160 if (HC_IS_RUNNING(hcd->state))
3161 ehci_quiesce(oxu);
3162
3163 ehci_reset(oxu);
3164 writel(0, &oxu->regs->intr_enable);
3165 spin_unlock_irq(&oxu->lock);
3166
3167 /* let companion controllers work when we aren't */
3168 writel(0, &oxu->regs->configured_flag);
3169
3170 /* root hub is shut down separately (first, when possible) */
3171 spin_lock_irq(&oxu->lock);
3172 if (oxu->async)
3173 ehci_work(oxu);
3174 spin_unlock_irq(&oxu->lock);
3175 ehci_mem_cleanup(oxu);
3176
3177 dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
3178 }
3179
3180 /* Kick in for silicon on any bus (not just pci, etc).
3181 * This forcibly disables dma and IRQs, helping kexec and other cases
3182 * where the next system software may expect clean state.
3183 */
oxu_shutdown(struct usb_hcd * hcd)3184 static void oxu_shutdown(struct usb_hcd *hcd)
3185 {
3186 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3187
3188 (void) ehci_halt(oxu);
3189 ehci_turn_off_all_ports(oxu);
3190
3191 /* make BIOS/etc use companion controller during reboot */
3192 writel(0, &oxu->regs->configured_flag);
3193
3194 /* unblock posted writes */
3195 readl(&oxu->regs->configured_flag);
3196 }
3197
3198 /* Non-error returns are a promise to giveback() the urb later
3199 * we drop ownership so next owner (or urb unlink) can get it
3200 *
3201 * urb + dev is in hcd.self.controller.urb_list
3202 * we're queueing TDs onto software and hardware lists
3203 *
3204 * hcd-specific init for hcpriv hasn't been done yet
3205 *
3206 * NOTE: control, bulk, and interrupt share the same code to append TDs
3207 * to a (possibly active) QH, and the same QH scanning code.
3208 */
__oxu_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)3209 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3210 gfp_t mem_flags)
3211 {
3212 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3213 struct list_head qtd_list;
3214
3215 INIT_LIST_HEAD(&qtd_list);
3216
3217 switch (usb_pipetype(urb->pipe)) {
3218 case PIPE_CONTROL:
3219 case PIPE_BULK:
3220 default:
3221 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3222 return -ENOMEM;
3223 return submit_async(oxu, urb, &qtd_list, mem_flags);
3224
3225 case PIPE_INTERRUPT:
3226 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3227 return -ENOMEM;
3228 return intr_submit(oxu, urb, &qtd_list, mem_flags);
3229
3230 case PIPE_ISOCHRONOUS:
3231 if (urb->dev->speed == USB_SPEED_HIGH)
3232 return itd_submit(oxu, urb, mem_flags);
3233 else
3234 return sitd_submit(oxu, urb, mem_flags);
3235 }
3236 }
3237
3238 /* This function is responsible for breaking URBs with big data size
3239 * into smaller size and processing small urbs in sequence.
3240 */
oxu_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)3241 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3242 gfp_t mem_flags)
3243 {
3244 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3245 int num, rem;
3246 void *transfer_buffer;
3247 struct urb *murb;
3248 int i, ret;
3249
3250 /* If not bulk pipe just enqueue the URB */
3251 if (!usb_pipebulk(urb->pipe))
3252 return __oxu_urb_enqueue(hcd, urb, mem_flags);
3253
3254 /* Otherwise we should verify the USB transfer buffer size! */
3255 transfer_buffer = urb->transfer_buffer;
3256
3257 num = urb->transfer_buffer_length / 4096;
3258 rem = urb->transfer_buffer_length % 4096;
3259 if (rem != 0)
3260 num++;
3261
3262 /* If URB is smaller than 4096 bytes just enqueue it! */
3263 if (num == 1)
3264 return __oxu_urb_enqueue(hcd, urb, mem_flags);
3265
3266 /* Ok, we have more job to do! :) */
3267
3268 for (i = 0; i < num - 1; i++) {
3269 /* Get free micro URB poll till a free urb is received */
3270
3271 do {
3272 murb = (struct urb *) oxu_murb_alloc(oxu);
3273 if (!murb)
3274 schedule();
3275 } while (!murb);
3276
3277 /* Coping the urb */
3278 memcpy(murb, urb, sizeof(struct urb));
3279
3280 murb->transfer_buffer_length = 4096;
3281 murb->transfer_buffer = transfer_buffer + i * 4096;
3282
3283 /* Null pointer for the encodes that this is a micro urb */
3284 murb->complete = NULL;
3285
3286 ((struct oxu_murb *) murb)->main = urb;
3287 ((struct oxu_murb *) murb)->last = 0;
3288
3289 /* This loop is to guarantee urb to be processed when there's
3290 * not enough resources at a particular time by retrying.
3291 */
3292 do {
3293 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
3294 if (ret)
3295 schedule();
3296 } while (ret);
3297 }
3298
3299 /* Last urb requires special handling */
3300
3301 /* Get free micro URB poll till a free urb is received */
3302 do {
3303 murb = (struct urb *) oxu_murb_alloc(oxu);
3304 if (!murb)
3305 schedule();
3306 } while (!murb);
3307
3308 /* Coping the urb */
3309 memcpy(murb, urb, sizeof(struct urb));
3310
3311 murb->transfer_buffer_length = rem > 0 ? rem : 4096;
3312 murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
3313
3314 /* Null pointer for the encodes that this is a micro urb */
3315 murb->complete = NULL;
3316
3317 ((struct oxu_murb *) murb)->main = urb;
3318 ((struct oxu_murb *) murb)->last = 1;
3319
3320 do {
3321 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
3322 if (ret)
3323 schedule();
3324 } while (ret);
3325
3326 return ret;
3327 }
3328
3329 /* Remove from hardware lists.
3330 * Completions normally happen asynchronously
3331 */
oxu_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)3332 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
3333 {
3334 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3335 struct ehci_qh *qh;
3336 unsigned long flags;
3337
3338 spin_lock_irqsave(&oxu->lock, flags);
3339 switch (usb_pipetype(urb->pipe)) {
3340 case PIPE_CONTROL:
3341 case PIPE_BULK:
3342 default:
3343 qh = (struct ehci_qh *) urb->hcpriv;
3344 if (!qh)
3345 break;
3346 unlink_async(oxu, qh);
3347 break;
3348
3349 case PIPE_INTERRUPT:
3350 qh = (struct ehci_qh *) urb->hcpriv;
3351 if (!qh)
3352 break;
3353 switch (qh->qh_state) {
3354 case QH_STATE_LINKED:
3355 intr_deschedule(oxu, qh);
3356 fallthrough;
3357 case QH_STATE_IDLE:
3358 qh_completions(oxu, qh);
3359 break;
3360 default:
3361 oxu_dbg(oxu, "bogus qh %p state %d\n",
3362 qh, qh->qh_state);
3363 goto done;
3364 }
3365
3366 /* reschedule QH iff another request is queued */
3367 if (!list_empty(&qh->qtd_list)
3368 && HC_IS_RUNNING(hcd->state)) {
3369 int status;
3370
3371 status = qh_schedule(oxu, qh);
3372 spin_unlock_irqrestore(&oxu->lock, flags);
3373
3374 if (status != 0) {
3375 /* shouldn't happen often, but ...
3376 * FIXME kill those tds' urbs
3377 */
3378 dev_err(hcd->self.controller,
3379 "can't reschedule qh %p, err %d\n", qh,
3380 status);
3381 }
3382 return status;
3383 }
3384 break;
3385 }
3386 done:
3387 spin_unlock_irqrestore(&oxu->lock, flags);
3388 return 0;
3389 }
3390
3391 /* Bulk qh holds the data toggle */
oxu_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)3392 static void oxu_endpoint_disable(struct usb_hcd *hcd,
3393 struct usb_host_endpoint *ep)
3394 {
3395 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3396 unsigned long flags;
3397 struct ehci_qh *qh, *tmp;
3398
3399 /* ASSERT: any requests/urbs are being unlinked */
3400 /* ASSERT: nobody can be submitting urbs for this any more */
3401
3402 rescan:
3403 spin_lock_irqsave(&oxu->lock, flags);
3404 qh = ep->hcpriv;
3405 if (!qh)
3406 goto done;
3407
3408 /* endpoints can be iso streams. for now, we don't
3409 * accelerate iso completions ... so spin a while.
3410 */
3411 if (qh->hw_info1 == 0) {
3412 oxu_vdbg(oxu, "iso delay\n");
3413 goto idle_timeout;
3414 }
3415
3416 if (!HC_IS_RUNNING(hcd->state))
3417 qh->qh_state = QH_STATE_IDLE;
3418 switch (qh->qh_state) {
3419 case QH_STATE_LINKED:
3420 for (tmp = oxu->async->qh_next.qh;
3421 tmp && tmp != qh;
3422 tmp = tmp->qh_next.qh)
3423 continue;
3424 /* periodic qh self-unlinks on empty */
3425 if (!tmp)
3426 goto nogood;
3427 unlink_async(oxu, qh);
3428 fallthrough;
3429 case QH_STATE_UNLINK: /* wait for hw to finish? */
3430 idle_timeout:
3431 spin_unlock_irqrestore(&oxu->lock, flags);
3432 schedule_timeout_uninterruptible(1);
3433 goto rescan;
3434 case QH_STATE_IDLE: /* fully unlinked */
3435 if (list_empty(&qh->qtd_list)) {
3436 qh_put(qh);
3437 break;
3438 }
3439 fallthrough;
3440 default:
3441 nogood:
3442 /* caller was supposed to have unlinked any requests;
3443 * that's not our job. just leak this memory.
3444 */
3445 oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3446 qh, ep->desc.bEndpointAddress, qh->qh_state,
3447 list_empty(&qh->qtd_list) ? "" : "(has tds)");
3448 break;
3449 }
3450 ep->hcpriv = NULL;
3451 done:
3452 spin_unlock_irqrestore(&oxu->lock, flags);
3453 }
3454
oxu_get_frame(struct usb_hcd * hcd)3455 static int oxu_get_frame(struct usb_hcd *hcd)
3456 {
3457 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3458
3459 return (readl(&oxu->regs->frame_index) >> 3) %
3460 oxu->periodic_size;
3461 }
3462
3463 /* Build "status change" packet (one or two bytes) from HC registers */
oxu_hub_status_data(struct usb_hcd * hcd,char * buf)3464 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3465 {
3466 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3467 u32 temp, mask, status = 0;
3468 int ports, i, retval = 1;
3469 unsigned long flags;
3470
3471 /* if !PM, root hub timers won't get shut down ... */
3472 if (!HC_IS_RUNNING(hcd->state))
3473 return 0;
3474
3475 /* init status to no-changes */
3476 buf[0] = 0;
3477 ports = HCS_N_PORTS(oxu->hcs_params);
3478 if (ports > 7) {
3479 buf[1] = 0;
3480 retval++;
3481 }
3482
3483 /* Some boards (mostly VIA?) report bogus overcurrent indications,
3484 * causing massive log spam unless we completely ignore them. It
3485 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3486 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3487 * PORT_POWER; that's surprising, but maybe within-spec.
3488 */
3489 if (!ignore_oc)
3490 mask = PORT_CSC | PORT_PEC | PORT_OCC;
3491 else
3492 mask = PORT_CSC | PORT_PEC;
3493
3494 /* no hub change reports (bit 0) for now (power, ...) */
3495
3496 /* port N changes (bit N)? */
3497 spin_lock_irqsave(&oxu->lock, flags);
3498 for (i = 0; i < ports; i++) {
3499 temp = readl(&oxu->regs->port_status[i]);
3500
3501 /*
3502 * Return status information even for ports with OWNER set.
3503 * Otherwise hub_wq wouldn't see the disconnect event when a
3504 * high-speed device is switched over to the companion
3505 * controller by the user.
3506 */
3507
3508 if (!(temp & PORT_CONNECT))
3509 oxu->reset_done[i] = 0;
3510 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3511 time_after_eq(jiffies, oxu->reset_done[i]))) {
3512 if (i < 7)
3513 buf[0] |= 1 << (i + 1);
3514 else
3515 buf[1] |= 1 << (i - 7);
3516 status = STS_PCD;
3517 }
3518 }
3519 /* FIXME autosuspend idle root hubs */
3520 spin_unlock_irqrestore(&oxu->lock, flags);
3521 return status ? retval : 0;
3522 }
3523
3524 /* Returns the speed of a device attached to a port on the root hub. */
oxu_port_speed(struct oxu_hcd * oxu,unsigned int portsc)3525 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3526 unsigned int portsc)
3527 {
3528 switch ((portsc >> 26) & 3) {
3529 case 0:
3530 return 0;
3531 case 1:
3532 return USB_PORT_STAT_LOW_SPEED;
3533 case 2:
3534 default:
3535 return USB_PORT_STAT_HIGH_SPEED;
3536 }
3537 }
3538
3539 #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
oxu_hub_control(struct usb_hcd * hcd,u16 typeReq,u16 wValue,u16 wIndex,char * buf,u16 wLength)3540 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3541 u16 wValue, u16 wIndex, char *buf, u16 wLength)
3542 {
3543 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3544 int ports = HCS_N_PORTS(oxu->hcs_params);
3545 u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3546 u32 temp, status;
3547 unsigned long flags;
3548 int retval = 0;
3549 unsigned selector;
3550
3551 /*
3552 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3553 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3554 * (track current state ourselves) ... blink for diagnostics,
3555 * power, "this is the one", etc. EHCI spec supports this.
3556 */
3557
3558 spin_lock_irqsave(&oxu->lock, flags);
3559 switch (typeReq) {
3560 case ClearHubFeature:
3561 switch (wValue) {
3562 case C_HUB_LOCAL_POWER:
3563 case C_HUB_OVER_CURRENT:
3564 /* no hub-wide feature/status flags */
3565 break;
3566 default:
3567 goto error;
3568 }
3569 break;
3570 case ClearPortFeature:
3571 if (!wIndex || wIndex > ports)
3572 goto error;
3573 wIndex--;
3574 temp = readl(status_reg);
3575
3576 /*
3577 * Even if OWNER is set, so the port is owned by the
3578 * companion controller, hub_wq needs to be able to clear
3579 * the port-change status bits (especially
3580 * USB_PORT_STAT_C_CONNECTION).
3581 */
3582
3583 switch (wValue) {
3584 case USB_PORT_FEAT_ENABLE:
3585 writel(temp & ~PORT_PE, status_reg);
3586 break;
3587 case USB_PORT_FEAT_C_ENABLE:
3588 writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3589 break;
3590 case USB_PORT_FEAT_SUSPEND:
3591 if (temp & PORT_RESET)
3592 goto error;
3593 if (temp & PORT_SUSPEND) {
3594 if ((temp & PORT_PE) == 0)
3595 goto error;
3596 /* resume signaling for 20 msec */
3597 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3598 writel(temp | PORT_RESUME, status_reg);
3599 oxu->reset_done[wIndex] = jiffies
3600 + msecs_to_jiffies(20);
3601 }
3602 break;
3603 case USB_PORT_FEAT_C_SUSPEND:
3604 /* we auto-clear this feature */
3605 break;
3606 case USB_PORT_FEAT_POWER:
3607 if (HCS_PPC(oxu->hcs_params))
3608 writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3609 status_reg);
3610 break;
3611 case USB_PORT_FEAT_C_CONNECTION:
3612 writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3613 break;
3614 case USB_PORT_FEAT_C_OVER_CURRENT:
3615 writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3616 break;
3617 case USB_PORT_FEAT_C_RESET:
3618 /* GetPortStatus clears reset */
3619 break;
3620 default:
3621 goto error;
3622 }
3623 readl(&oxu->regs->command); /* unblock posted write */
3624 break;
3625 case GetHubDescriptor:
3626 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3627 buf);
3628 break;
3629 case GetHubStatus:
3630 /* no hub-wide feature/status flags */
3631 memset(buf, 0, 4);
3632 break;
3633 case GetPortStatus:
3634 if (!wIndex || wIndex > ports)
3635 goto error;
3636 wIndex--;
3637 status = 0;
3638 temp = readl(status_reg);
3639
3640 /* wPortChange bits */
3641 if (temp & PORT_CSC)
3642 status |= USB_PORT_STAT_C_CONNECTION << 16;
3643 if (temp & PORT_PEC)
3644 status |= USB_PORT_STAT_C_ENABLE << 16;
3645 if ((temp & PORT_OCC) && !ignore_oc)
3646 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3647
3648 /* whoever resumes must GetPortStatus to complete it!! */
3649 if (temp & PORT_RESUME) {
3650
3651 /* Remote Wakeup received? */
3652 if (!oxu->reset_done[wIndex]) {
3653 /* resume signaling for 20 msec */
3654 oxu->reset_done[wIndex] = jiffies
3655 + msecs_to_jiffies(20);
3656 /* check the port again */
3657 mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3658 oxu->reset_done[wIndex]);
3659 }
3660
3661 /* resume completed? */
3662 else if (time_after_eq(jiffies,
3663 oxu->reset_done[wIndex])) {
3664 status |= USB_PORT_STAT_C_SUSPEND << 16;
3665 oxu->reset_done[wIndex] = 0;
3666
3667 /* stop resume signaling */
3668 temp = readl(status_reg);
3669 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3670 status_reg);
3671 retval = handshake(oxu, status_reg,
3672 PORT_RESUME, 0, 2000 /* 2msec */);
3673 if (retval != 0) {
3674 oxu_err(oxu,
3675 "port %d resume error %d\n",
3676 wIndex + 1, retval);
3677 goto error;
3678 }
3679 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3680 }
3681 }
3682
3683 /* whoever resets must GetPortStatus to complete it!! */
3684 if ((temp & PORT_RESET)
3685 && time_after_eq(jiffies,
3686 oxu->reset_done[wIndex])) {
3687 status |= USB_PORT_STAT_C_RESET << 16;
3688 oxu->reset_done[wIndex] = 0;
3689
3690 /* force reset to complete */
3691 writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3692 status_reg);
3693 /* REVISIT: some hardware needs 550+ usec to clear
3694 * this bit; seems too long to spin routinely...
3695 */
3696 retval = handshake(oxu, status_reg,
3697 PORT_RESET, 0, 750);
3698 if (retval != 0) {
3699 oxu_err(oxu, "port %d reset error %d\n",
3700 wIndex + 1, retval);
3701 goto error;
3702 }
3703
3704 /* see what we found out */
3705 temp = check_reset_complete(oxu, wIndex, status_reg,
3706 readl(status_reg));
3707 }
3708
3709 /* transfer dedicated ports to the companion hc */
3710 if ((temp & PORT_CONNECT) &&
3711 test_bit(wIndex, &oxu->companion_ports)) {
3712 temp &= ~PORT_RWC_BITS;
3713 temp |= PORT_OWNER;
3714 writel(temp, status_reg);
3715 oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3716 temp = readl(status_reg);
3717 }
3718
3719 /*
3720 * Even if OWNER is set, there's no harm letting hub_wq
3721 * see the wPortStatus values (they should all be 0 except
3722 * for PORT_POWER anyway).
3723 */
3724
3725 if (temp & PORT_CONNECT) {
3726 status |= USB_PORT_STAT_CONNECTION;
3727 /* status may be from integrated TT */
3728 status |= oxu_port_speed(oxu, temp);
3729 }
3730 if (temp & PORT_PE)
3731 status |= USB_PORT_STAT_ENABLE;
3732 if (temp & (PORT_SUSPEND|PORT_RESUME))
3733 status |= USB_PORT_STAT_SUSPEND;
3734 if (temp & PORT_OC)
3735 status |= USB_PORT_STAT_OVERCURRENT;
3736 if (temp & PORT_RESET)
3737 status |= USB_PORT_STAT_RESET;
3738 if (temp & PORT_POWER)
3739 status |= USB_PORT_STAT_POWER;
3740
3741 #ifndef OXU_VERBOSE_DEBUG
3742 if (status & ~0xffff) /* only if wPortChange is interesting */
3743 #endif
3744 dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3745 put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3746 break;
3747 case SetHubFeature:
3748 switch (wValue) {
3749 case C_HUB_LOCAL_POWER:
3750 case C_HUB_OVER_CURRENT:
3751 /* no hub-wide feature/status flags */
3752 break;
3753 default:
3754 goto error;
3755 }
3756 break;
3757 case SetPortFeature:
3758 selector = wIndex >> 8;
3759 wIndex &= 0xff;
3760 if (!wIndex || wIndex > ports)
3761 goto error;
3762 wIndex--;
3763 temp = readl(status_reg);
3764 if (temp & PORT_OWNER)
3765 break;
3766
3767 temp &= ~PORT_RWC_BITS;
3768 switch (wValue) {
3769 case USB_PORT_FEAT_SUSPEND:
3770 if ((temp & PORT_PE) == 0
3771 || (temp & PORT_RESET) != 0)
3772 goto error;
3773 if (device_may_wakeup(&hcd->self.root_hub->dev))
3774 temp |= PORT_WAKE_BITS;
3775 writel(temp | PORT_SUSPEND, status_reg);
3776 break;
3777 case USB_PORT_FEAT_POWER:
3778 if (HCS_PPC(oxu->hcs_params))
3779 writel(temp | PORT_POWER, status_reg);
3780 break;
3781 case USB_PORT_FEAT_RESET:
3782 if (temp & PORT_RESUME)
3783 goto error;
3784 /* line status bits may report this as low speed,
3785 * which can be fine if this root hub has a
3786 * transaction translator built in.
3787 */
3788 oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3789 temp |= PORT_RESET;
3790 temp &= ~PORT_PE;
3791
3792 /*
3793 * caller must wait, then call GetPortStatus
3794 * usb 2.0 spec says 50 ms resets on root
3795 */
3796 oxu->reset_done[wIndex] = jiffies
3797 + msecs_to_jiffies(50);
3798 writel(temp, status_reg);
3799 break;
3800
3801 /* For downstream facing ports (these): one hub port is put
3802 * into test mode according to USB2 11.24.2.13, then the hub
3803 * must be reset (which for root hub now means rmmod+modprobe,
3804 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
3805 * about the EHCI-specific stuff.
3806 */
3807 case USB_PORT_FEAT_TEST:
3808 if (!selector || selector > 5)
3809 goto error;
3810 ehci_quiesce(oxu);
3811 ehci_halt(oxu);
3812 temp |= selector << 16;
3813 writel(temp, status_reg);
3814 break;
3815
3816 default:
3817 goto error;
3818 }
3819 readl(&oxu->regs->command); /* unblock posted writes */
3820 break;
3821
3822 default:
3823 error:
3824 /* "stall" on error */
3825 retval = -EPIPE;
3826 }
3827 spin_unlock_irqrestore(&oxu->lock, flags);
3828 return retval;
3829 }
3830
3831 #ifdef CONFIG_PM
3832
oxu_bus_suspend(struct usb_hcd * hcd)3833 static int oxu_bus_suspend(struct usb_hcd *hcd)
3834 {
3835 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3836 int port;
3837 int mask;
3838
3839 oxu_dbg(oxu, "suspend root hub\n");
3840
3841 if (time_before(jiffies, oxu->next_statechange))
3842 msleep(5);
3843
3844 port = HCS_N_PORTS(oxu->hcs_params);
3845 spin_lock_irq(&oxu->lock);
3846
3847 /* stop schedules, clean any completed work */
3848 if (HC_IS_RUNNING(hcd->state)) {
3849 ehci_quiesce(oxu);
3850 hcd->state = HC_STATE_QUIESCING;
3851 }
3852 oxu->command = readl(&oxu->regs->command);
3853 if (oxu->reclaim)
3854 oxu->reclaim_ready = 1;
3855 ehci_work(oxu);
3856
3857 /* Unlike other USB host controller types, EHCI doesn't have
3858 * any notion of "global" or bus-wide suspend. The driver has
3859 * to manually suspend all the active unsuspended ports, and
3860 * then manually resume them in the bus_resume() routine.
3861 */
3862 oxu->bus_suspended = 0;
3863 while (port--) {
3864 u32 __iomem *reg = &oxu->regs->port_status[port];
3865 u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3866 u32 t2 = t1;
3867
3868 /* keep track of which ports we suspend */
3869 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3870 !(t1 & PORT_SUSPEND)) {
3871 t2 |= PORT_SUSPEND;
3872 set_bit(port, &oxu->bus_suspended);
3873 }
3874
3875 /* enable remote wakeup on all ports */
3876 if (device_may_wakeup(&hcd->self.root_hub->dev))
3877 t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3878 else
3879 t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3880
3881 if (t1 != t2) {
3882 oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3883 port + 1, t1, t2);
3884 writel(t2, reg);
3885 }
3886 }
3887
3888 spin_unlock_irq(&oxu->lock);
3889 /* turn off now-idle HC */
3890 timer_delete_sync(&oxu->watchdog);
3891 spin_lock_irq(&oxu->lock);
3892 ehci_halt(oxu);
3893 hcd->state = HC_STATE_SUSPENDED;
3894
3895 /* allow remote wakeup */
3896 mask = INTR_MASK;
3897 if (!device_may_wakeup(&hcd->self.root_hub->dev))
3898 mask &= ~STS_PCD;
3899 writel(mask, &oxu->regs->intr_enable);
3900 readl(&oxu->regs->intr_enable);
3901
3902 oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3903 spin_unlock_irq(&oxu->lock);
3904 return 0;
3905 }
3906
3907 /* Caller has locked the root hub, and should reset/reinit on error */
oxu_bus_resume(struct usb_hcd * hcd)3908 static int oxu_bus_resume(struct usb_hcd *hcd)
3909 {
3910 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3911 u32 temp;
3912 int i;
3913
3914 if (time_before(jiffies, oxu->next_statechange))
3915 msleep(5);
3916 spin_lock_irq(&oxu->lock);
3917
3918 /* Ideally and we've got a real resume here, and no port's power
3919 * was lost. (For PCI, that means Vaux was maintained.) But we
3920 * could instead be restoring a swsusp snapshot -- so that BIOS was
3921 * the last user of the controller, not reset/pm hardware keeping
3922 * state we gave to it.
3923 */
3924 temp = readl(&oxu->regs->intr_enable);
3925 oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3926
3927 /* at least some APM implementations will try to deliver
3928 * IRQs right away, so delay them until we're ready.
3929 */
3930 writel(0, &oxu->regs->intr_enable);
3931
3932 /* re-init operational registers */
3933 writel(0, &oxu->regs->segment);
3934 writel(oxu->periodic_dma, &oxu->regs->frame_list);
3935 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3936
3937 /* restore CMD_RUN, framelist size, and irq threshold */
3938 writel(oxu->command, &oxu->regs->command);
3939
3940 /* Some controller/firmware combinations need a delay during which
3941 * they set up the port statuses. See Bugzilla #8190. */
3942 mdelay(8);
3943
3944 /* manually resume the ports we suspended during bus_suspend() */
3945 i = HCS_N_PORTS(oxu->hcs_params);
3946 while (i--) {
3947 temp = readl(&oxu->regs->port_status[i]);
3948 temp &= ~(PORT_RWC_BITS
3949 | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3950 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3951 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3952 temp |= PORT_RESUME;
3953 }
3954 writel(temp, &oxu->regs->port_status[i]);
3955 }
3956 i = HCS_N_PORTS(oxu->hcs_params);
3957 mdelay(20);
3958 while (i--) {
3959 temp = readl(&oxu->regs->port_status[i]);
3960 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3961 temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3962 writel(temp, &oxu->regs->port_status[i]);
3963 oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3964 }
3965 }
3966 (void) readl(&oxu->regs->command);
3967
3968 /* maybe re-activate the schedule(s) */
3969 temp = 0;
3970 if (oxu->async->qh_next.qh)
3971 temp |= CMD_ASE;
3972 if (oxu->periodic_sched)
3973 temp |= CMD_PSE;
3974 if (temp) {
3975 oxu->command |= temp;
3976 writel(oxu->command, &oxu->regs->command);
3977 }
3978
3979 oxu->next_statechange = jiffies + msecs_to_jiffies(5);
3980 hcd->state = HC_STATE_RUNNING;
3981
3982 /* Now we can safely re-enable irqs */
3983 writel(INTR_MASK, &oxu->regs->intr_enable);
3984
3985 spin_unlock_irq(&oxu->lock);
3986 return 0;
3987 }
3988
3989 #else
3990
oxu_bus_suspend(struct usb_hcd * hcd)3991 static int oxu_bus_suspend(struct usb_hcd *hcd)
3992 {
3993 return 0;
3994 }
3995
oxu_bus_resume(struct usb_hcd * hcd)3996 static int oxu_bus_resume(struct usb_hcd *hcd)
3997 {
3998 return 0;
3999 }
4000
4001 #endif /* CONFIG_PM */
4002
4003 static const struct hc_driver oxu_hc_driver = {
4004 .description = "oxu210hp_hcd",
4005 .product_desc = "oxu210hp HCD",
4006 .hcd_priv_size = sizeof(struct oxu_hcd),
4007
4008 /*
4009 * Generic hardware linkage
4010 */
4011 .irq = oxu_irq,
4012 .flags = HCD_MEMORY | HCD_USB2,
4013
4014 /*
4015 * Basic lifecycle operations
4016 */
4017 .reset = oxu_reset,
4018 .start = oxu_run,
4019 .stop = oxu_stop,
4020 .shutdown = oxu_shutdown,
4021
4022 /*
4023 * Managing i/o requests and associated device resources
4024 */
4025 .urb_enqueue = oxu_urb_enqueue,
4026 .urb_dequeue = oxu_urb_dequeue,
4027 .endpoint_disable = oxu_endpoint_disable,
4028
4029 /*
4030 * Scheduling support
4031 */
4032 .get_frame_number = oxu_get_frame,
4033
4034 /*
4035 * Root hub support
4036 */
4037 .hub_status_data = oxu_hub_status_data,
4038 .hub_control = oxu_hub_control,
4039 .bus_suspend = oxu_bus_suspend,
4040 .bus_resume = oxu_bus_resume,
4041 };
4042
4043 /*
4044 * Module stuff
4045 */
4046
oxu_configuration(struct platform_device * pdev,void __iomem * base)4047 static void oxu_configuration(struct platform_device *pdev, void __iomem *base)
4048 {
4049 u32 tmp;
4050
4051 /* Initialize top level registers.
4052 * First write ever
4053 */
4054 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4055 oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
4056 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4057
4058 tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
4059 oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
4060
4061 oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
4062 OXU_COMPARATOR | OXU_ASO_OP);
4063
4064 tmp = oxu_readl(base, OXU_CLKCTRL_SET);
4065 oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
4066
4067 /* Clear all top interrupt enable */
4068 oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
4069
4070 /* Clear all top interrupt status */
4071 oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
4072
4073 /* Enable all needed top interrupt except OTG SPH core */
4074 oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
4075 }
4076
oxu_verify_id(struct platform_device * pdev,void __iomem * base)4077 static int oxu_verify_id(struct platform_device *pdev, void __iomem *base)
4078 {
4079 u32 id;
4080 static const char * const bo[] = {
4081 "reserved",
4082 "128-pin LQFP",
4083 "84-pin TFBGA",
4084 "reserved",
4085 };
4086
4087 /* Read controller signature register to find a match */
4088 id = oxu_readl(base, OXU_DEVICEID);
4089 dev_info(&pdev->dev, "device ID %x\n", id);
4090 if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
4091 return -1;
4092
4093 dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
4094 id >> OXU_REV_SHIFT,
4095 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
4096 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
4097 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
4098
4099 return 0;
4100 }
4101
4102 static const struct hc_driver oxu_hc_driver;
oxu_create(struct platform_device * pdev,unsigned long memstart,unsigned long memlen,void __iomem * base,int irq,int otg)4103 static struct usb_hcd *oxu_create(struct platform_device *pdev,
4104 unsigned long memstart, unsigned long memlen,
4105 void __iomem *base, int irq, int otg)
4106 {
4107 struct device *dev = &pdev->dev;
4108
4109 struct usb_hcd *hcd;
4110 struct oxu_hcd *oxu;
4111 int ret;
4112
4113 /* Set endian mode and host mode */
4114 oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
4115 OXU_USBMODE,
4116 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
4117
4118 hcd = usb_create_hcd(&oxu_hc_driver, dev,
4119 otg ? "oxu210hp_otg" : "oxu210hp_sph");
4120 if (!hcd)
4121 return ERR_PTR(-ENOMEM);
4122
4123 hcd->rsrc_start = memstart;
4124 hcd->rsrc_len = memlen;
4125 hcd->regs = base;
4126 hcd->irq = irq;
4127 hcd->state = HC_STATE_HALT;
4128
4129 oxu = hcd_to_oxu(hcd);
4130 oxu->is_otg = otg;
4131
4132 ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
4133 if (ret < 0) {
4134 usb_put_hcd(hcd);
4135 return ERR_PTR(ret);
4136 }
4137
4138 device_wakeup_enable(hcd->self.controller);
4139 return hcd;
4140 }
4141
oxu_init(struct platform_device * pdev,unsigned long memstart,unsigned long memlen,void __iomem * base,int irq)4142 static int oxu_init(struct platform_device *pdev,
4143 unsigned long memstart, unsigned long memlen,
4144 void __iomem *base, int irq)
4145 {
4146 struct oxu_info *info = platform_get_drvdata(pdev);
4147 struct usb_hcd *hcd;
4148 int ret;
4149
4150 /* First time configuration at start up */
4151 oxu_configuration(pdev, base);
4152
4153 ret = oxu_verify_id(pdev, base);
4154 if (ret) {
4155 dev_err(&pdev->dev, "no devices found!\n");
4156 return -ENODEV;
4157 }
4158
4159 /* Create the OTG controller */
4160 hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
4161 if (IS_ERR(hcd)) {
4162 dev_err(&pdev->dev, "cannot create OTG controller!\n");
4163 ret = PTR_ERR(hcd);
4164 goto error_create_otg;
4165 }
4166 info->hcd[0] = hcd;
4167
4168 /* Create the SPH host controller */
4169 hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
4170 if (IS_ERR(hcd)) {
4171 dev_err(&pdev->dev, "cannot create SPH controller!\n");
4172 ret = PTR_ERR(hcd);
4173 goto error_create_sph;
4174 }
4175 info->hcd[1] = hcd;
4176
4177 oxu_writel(base, OXU_CHIPIRQEN_SET,
4178 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
4179
4180 return 0;
4181
4182 error_create_sph:
4183 usb_remove_hcd(info->hcd[0]);
4184 usb_put_hcd(info->hcd[0]);
4185
4186 error_create_otg:
4187 return ret;
4188 }
4189
oxu_drv_probe(struct platform_device * pdev)4190 static int oxu_drv_probe(struct platform_device *pdev)
4191 {
4192 struct resource *res;
4193 void __iomem *base;
4194 unsigned long memstart, memlen;
4195 int irq, ret;
4196 struct oxu_info *info;
4197
4198 if (usb_disabled())
4199 return -ENODEV;
4200
4201 /*
4202 * Get the platform resources
4203 */
4204 irq = platform_get_irq(pdev, 0);
4205 if (irq < 0)
4206 return irq;
4207 dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
4208
4209 base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
4210 if (IS_ERR(base)) {
4211 ret = PTR_ERR(base);
4212 goto error;
4213 }
4214 memstart = res->start;
4215 memlen = resource_size(res);
4216
4217 ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
4218 if (ret) {
4219 dev_err(&pdev->dev, "error setting irq type\n");
4220 ret = -EFAULT;
4221 goto error;
4222 }
4223
4224 /* Allocate a driver data struct to hold useful info for both
4225 * SPH & OTG devices
4226 */
4227 info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL);
4228 if (!info) {
4229 ret = -EFAULT;
4230 goto error;
4231 }
4232 platform_set_drvdata(pdev, info);
4233
4234 ret = oxu_init(pdev, memstart, memlen, base, irq);
4235 if (ret < 0) {
4236 dev_dbg(&pdev->dev, "cannot init USB devices\n");
4237 goto error;
4238 }
4239
4240 dev_info(&pdev->dev, "devices enabled and running\n");
4241 platform_set_drvdata(pdev, info);
4242
4243 return 0;
4244
4245 error:
4246 dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
4247 return ret;
4248 }
4249
oxu_remove(struct platform_device * pdev,struct usb_hcd * hcd)4250 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
4251 {
4252 usb_remove_hcd(hcd);
4253 usb_put_hcd(hcd);
4254 }
4255
oxu_drv_remove(struct platform_device * pdev)4256 static void oxu_drv_remove(struct platform_device *pdev)
4257 {
4258 struct oxu_info *info = platform_get_drvdata(pdev);
4259
4260 oxu_remove(pdev, info->hcd[0]);
4261 oxu_remove(pdev, info->hcd[1]);
4262 }
4263
oxu_drv_shutdown(struct platform_device * pdev)4264 static void oxu_drv_shutdown(struct platform_device *pdev)
4265 {
4266 oxu_drv_remove(pdev);
4267 }
4268
4269 #if 0
4270 /* FIXME: TODO */
4271 static int oxu_drv_suspend(struct device *dev)
4272 {
4273 struct platform_device *pdev = to_platform_device(dev);
4274 struct usb_hcd *hcd = dev_get_drvdata(dev);
4275
4276 return 0;
4277 }
4278
4279 static int oxu_drv_resume(struct device *dev)
4280 {
4281 struct platform_device *pdev = to_platform_device(dev);
4282 struct usb_hcd *hcd = dev_get_drvdata(dev);
4283
4284 return 0;
4285 }
4286 #else
4287 #define oxu_drv_suspend NULL
4288 #define oxu_drv_resume NULL
4289 #endif
4290
4291 static struct platform_driver oxu_driver = {
4292 .probe = oxu_drv_probe,
4293 .remove = oxu_drv_remove,
4294 .shutdown = oxu_drv_shutdown,
4295 .suspend = oxu_drv_suspend,
4296 .resume = oxu_drv_resume,
4297 .driver = {
4298 .name = "oxu210hp-hcd",
4299 .bus = &platform_bus_type
4300 }
4301 };
4302
4303 module_platform_driver(oxu_driver);
4304
4305 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
4306 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
4307 MODULE_LICENSE("GPL");
4308