1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 */
8
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/highmem.h>
15 #include <linux/memcontrol.h>
16 #include <linux/mm.h>
17 #include <linux/mutex.h>
18 #include <linux/pagevec.h>
19 #include <linux/sched.h>
20 #include <linux/sched/signal.h>
21 #include <linux/uio.h>
22 #include <linux/vmstat.h>
23 #include <linux/pfn_t.h>
24 #include <linux/sizes.h>
25 #include <linux/mmu_notifier.h>
26 #include <linux/iomap.h>
27 #include <linux/rmap.h>
28 #include <asm/pgalloc.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32
33 /* We choose 4096 entries - same as per-zone page wait tables */
34 #define DAX_WAIT_TABLE_BITS 12
35 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
36
37 /* The 'colour' (ie low bits) within a PMD of a page offset. */
38 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
39 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
40
41 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
42
init_dax_wait_table(void)43 static int __init init_dax_wait_table(void)
44 {
45 int i;
46
47 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
48 init_waitqueue_head(wait_table + i);
49 return 0;
50 }
51 fs_initcall(init_dax_wait_table);
52
53 /*
54 * DAX pagecache entries use XArray value entries so they can't be mistaken
55 * for pages. We use one bit for locking, one bit for the entry size (PMD)
56 * and two more to tell us if the entry is a zero page or an empty entry that
57 * is just used for locking. In total four special bits.
58 *
59 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
60 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
61 * block allocation.
62 */
63 #define DAX_SHIFT (4)
64 #define DAX_LOCKED (1UL << 0)
65 #define DAX_PMD (1UL << 1)
66 #define DAX_ZERO_PAGE (1UL << 2)
67 #define DAX_EMPTY (1UL << 3)
68
dax_to_pfn(void * entry)69 static unsigned long dax_to_pfn(void *entry)
70 {
71 return xa_to_value(entry) >> DAX_SHIFT;
72 }
73
dax_to_folio(void * entry)74 static struct folio *dax_to_folio(void *entry)
75 {
76 return page_folio(pfn_to_page(dax_to_pfn(entry)));
77 }
78
dax_make_entry(pfn_t pfn,unsigned long flags)79 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
80 {
81 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
82 }
83
dax_is_locked(void * entry)84 static bool dax_is_locked(void *entry)
85 {
86 return xa_to_value(entry) & DAX_LOCKED;
87 }
88
dax_entry_order(void * entry)89 static unsigned int dax_entry_order(void *entry)
90 {
91 if (xa_to_value(entry) & DAX_PMD)
92 return PMD_ORDER;
93 return 0;
94 }
95
dax_is_pmd_entry(void * entry)96 static unsigned long dax_is_pmd_entry(void *entry)
97 {
98 return xa_to_value(entry) & DAX_PMD;
99 }
100
dax_is_pte_entry(void * entry)101 static bool dax_is_pte_entry(void *entry)
102 {
103 return !(xa_to_value(entry) & DAX_PMD);
104 }
105
dax_is_zero_entry(void * entry)106 static int dax_is_zero_entry(void *entry)
107 {
108 return xa_to_value(entry) & DAX_ZERO_PAGE;
109 }
110
dax_is_empty_entry(void * entry)111 static int dax_is_empty_entry(void *entry)
112 {
113 return xa_to_value(entry) & DAX_EMPTY;
114 }
115
116 /*
117 * true if the entry that was found is of a smaller order than the entry
118 * we were looking for
119 */
dax_is_conflict(void * entry)120 static bool dax_is_conflict(void *entry)
121 {
122 return entry == XA_RETRY_ENTRY;
123 }
124
125 /*
126 * DAX page cache entry locking
127 */
128 struct exceptional_entry_key {
129 struct xarray *xa;
130 pgoff_t entry_start;
131 };
132
133 struct wait_exceptional_entry_queue {
134 wait_queue_entry_t wait;
135 struct exceptional_entry_key key;
136 };
137
138 /**
139 * enum dax_wake_mode: waitqueue wakeup behaviour
140 * @WAKE_ALL: wake all waiters in the waitqueue
141 * @WAKE_NEXT: wake only the first waiter in the waitqueue
142 */
143 enum dax_wake_mode {
144 WAKE_ALL,
145 WAKE_NEXT,
146 };
147
dax_entry_waitqueue(struct xa_state * xas,void * entry,struct exceptional_entry_key * key)148 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
149 void *entry, struct exceptional_entry_key *key)
150 {
151 unsigned long hash;
152 unsigned long index = xas->xa_index;
153
154 /*
155 * If 'entry' is a PMD, align the 'index' that we use for the wait
156 * queue to the start of that PMD. This ensures that all offsets in
157 * the range covered by the PMD map to the same bit lock.
158 */
159 if (dax_is_pmd_entry(entry))
160 index &= ~PG_PMD_COLOUR;
161 key->xa = xas->xa;
162 key->entry_start = index;
163
164 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
165 return wait_table + hash;
166 }
167
wake_exceptional_entry_func(wait_queue_entry_t * wait,unsigned int mode,int sync,void * keyp)168 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
169 unsigned int mode, int sync, void *keyp)
170 {
171 struct exceptional_entry_key *key = keyp;
172 struct wait_exceptional_entry_queue *ewait =
173 container_of(wait, struct wait_exceptional_entry_queue, wait);
174
175 if (key->xa != ewait->key.xa ||
176 key->entry_start != ewait->key.entry_start)
177 return 0;
178 return autoremove_wake_function(wait, mode, sync, NULL);
179 }
180
181 /*
182 * @entry may no longer be the entry at the index in the mapping.
183 * The important information it's conveying is whether the entry at
184 * this index used to be a PMD entry.
185 */
dax_wake_entry(struct xa_state * xas,void * entry,enum dax_wake_mode mode)186 static void dax_wake_entry(struct xa_state *xas, void *entry,
187 enum dax_wake_mode mode)
188 {
189 struct exceptional_entry_key key;
190 wait_queue_head_t *wq;
191
192 wq = dax_entry_waitqueue(xas, entry, &key);
193
194 /*
195 * Checking for locked entry and prepare_to_wait_exclusive() happens
196 * under the i_pages lock, ditto for entry handling in our callers.
197 * So at this point all tasks that could have seen our entry locked
198 * must be in the waitqueue and the following check will see them.
199 */
200 if (waitqueue_active(wq))
201 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
202 }
203
204 /*
205 * Look up entry in page cache, wait for it to become unlocked if it
206 * is a DAX entry and return it. The caller must subsequently call
207 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
208 * if it did. The entry returned may have a larger order than @order.
209 * If @order is larger than the order of the entry found in i_pages, this
210 * function returns a dax_is_conflict entry.
211 *
212 * Must be called with the i_pages lock held.
213 */
get_next_unlocked_entry(struct xa_state * xas,unsigned int order)214 static void *get_next_unlocked_entry(struct xa_state *xas, unsigned int order)
215 {
216 void *entry;
217 struct wait_exceptional_entry_queue ewait;
218 wait_queue_head_t *wq;
219
220 init_wait(&ewait.wait);
221 ewait.wait.func = wake_exceptional_entry_func;
222
223 for (;;) {
224 entry = xas_find_conflict(xas);
225 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
226 return entry;
227 if (dax_entry_order(entry) < order)
228 return XA_RETRY_ENTRY;
229 if (!dax_is_locked(entry))
230 return entry;
231
232 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
233 prepare_to_wait_exclusive(wq, &ewait.wait,
234 TASK_UNINTERRUPTIBLE);
235 xas_unlock_irq(xas);
236 xas_reset(xas);
237 schedule();
238 finish_wait(wq, &ewait.wait);
239 xas_lock_irq(xas);
240 }
241 }
242
243 /*
244 * Wait for the given entry to become unlocked. Caller must hold the i_pages
245 * lock and call either put_unlocked_entry() if it did not lock the entry or
246 * dax_unlock_entry() if it did. Returns an unlocked entry if still present.
247 */
wait_entry_unlocked_exclusive(struct xa_state * xas,void * entry)248 static void *wait_entry_unlocked_exclusive(struct xa_state *xas, void *entry)
249 {
250 struct wait_exceptional_entry_queue ewait;
251 wait_queue_head_t *wq;
252
253 init_wait(&ewait.wait);
254 ewait.wait.func = wake_exceptional_entry_func;
255
256 while (unlikely(dax_is_locked(entry))) {
257 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
258 prepare_to_wait_exclusive(wq, &ewait.wait,
259 TASK_UNINTERRUPTIBLE);
260 xas_reset(xas);
261 xas_unlock_irq(xas);
262 schedule();
263 finish_wait(wq, &ewait.wait);
264 xas_lock_irq(xas);
265 entry = xas_load(xas);
266 }
267
268 if (xa_is_internal(entry))
269 return NULL;
270
271 return entry;
272 }
273
274 /*
275 * The only thing keeping the address space around is the i_pages lock
276 * (it's cycled in clear_inode() after removing the entries from i_pages)
277 * After we call xas_unlock_irq(), we cannot touch xas->xa.
278 */
wait_entry_unlocked(struct xa_state * xas,void * entry)279 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
280 {
281 struct wait_exceptional_entry_queue ewait;
282 wait_queue_head_t *wq;
283
284 init_wait(&ewait.wait);
285 ewait.wait.func = wake_exceptional_entry_func;
286
287 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
288 /*
289 * Unlike get_next_unlocked_entry() there is no guarantee that this
290 * path ever successfully retrieves an unlocked entry before an
291 * inode dies. Perform a non-exclusive wait in case this path
292 * never successfully performs its own wake up.
293 */
294 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
295 xas_unlock_irq(xas);
296 schedule();
297 finish_wait(wq, &ewait.wait);
298 }
299
put_unlocked_entry(struct xa_state * xas,void * entry,enum dax_wake_mode mode)300 static void put_unlocked_entry(struct xa_state *xas, void *entry,
301 enum dax_wake_mode mode)
302 {
303 if (entry && !dax_is_conflict(entry))
304 dax_wake_entry(xas, entry, mode);
305 }
306
307 /*
308 * We used the xa_state to get the entry, but then we locked the entry and
309 * dropped the xa_lock, so we know the xa_state is stale and must be reset
310 * before use.
311 */
dax_unlock_entry(struct xa_state * xas,void * entry)312 static void dax_unlock_entry(struct xa_state *xas, void *entry)
313 {
314 void *old;
315
316 BUG_ON(dax_is_locked(entry));
317 xas_reset(xas);
318 xas_lock_irq(xas);
319 old = xas_store(xas, entry);
320 xas_unlock_irq(xas);
321 BUG_ON(!dax_is_locked(old));
322 dax_wake_entry(xas, entry, WAKE_NEXT);
323 }
324
325 /*
326 * Return: The entry stored at this location before it was locked.
327 */
dax_lock_entry(struct xa_state * xas,void * entry)328 static void *dax_lock_entry(struct xa_state *xas, void *entry)
329 {
330 unsigned long v = xa_to_value(entry);
331 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
332 }
333
dax_entry_size(void * entry)334 static unsigned long dax_entry_size(void *entry)
335 {
336 if (dax_is_zero_entry(entry))
337 return 0;
338 else if (dax_is_empty_entry(entry))
339 return 0;
340 else if (dax_is_pmd_entry(entry))
341 return PMD_SIZE;
342 else
343 return PAGE_SIZE;
344 }
345
346 /*
347 * A DAX folio is considered shared if it has no mapping set and ->share (which
348 * shares the ->index field) is non-zero. Note this may return false even if the
349 * page is shared between multiple files but has not yet actually been mapped
350 * into multiple address spaces.
351 */
dax_folio_is_shared(struct folio * folio)352 static inline bool dax_folio_is_shared(struct folio *folio)
353 {
354 return !folio->mapping && folio->share;
355 }
356
357 /*
358 * When it is called by dax_insert_entry(), the shared flag will indicate
359 * whether this entry is shared by multiple files. If the page has not
360 * previously been associated with any mappings the ->mapping and ->index
361 * fields will be set. If it has already been associated with a mapping
362 * the mapping will be cleared and the share count set. It's then up to
363 * reverse map users like memory_failure() to call back into the filesystem to
364 * recover ->mapping and ->index information. For example by implementing
365 * dax_holder_operations.
366 */
dax_folio_make_shared(struct folio * folio)367 static void dax_folio_make_shared(struct folio *folio)
368 {
369 /*
370 * folio is not currently shared so mark it as shared by clearing
371 * folio->mapping.
372 */
373 folio->mapping = NULL;
374
375 /*
376 * folio has previously been mapped into one address space so set the
377 * share count.
378 */
379 folio->share = 1;
380 }
381
dax_folio_put(struct folio * folio)382 static inline unsigned long dax_folio_put(struct folio *folio)
383 {
384 unsigned long ref;
385 int order, i;
386
387 if (!dax_folio_is_shared(folio))
388 ref = 0;
389 else
390 ref = --folio->share;
391
392 if (ref)
393 return ref;
394
395 folio->mapping = NULL;
396 order = folio_order(folio);
397 if (!order)
398 return 0;
399 folio_reset_order(folio);
400
401 for (i = 0; i < (1UL << order); i++) {
402 struct dev_pagemap *pgmap = page_pgmap(&folio->page);
403 struct page *page = folio_page(folio, i);
404 struct folio *new_folio = (struct folio *)page;
405
406 ClearPageHead(page);
407 clear_compound_head(page);
408
409 new_folio->mapping = NULL;
410 /*
411 * Reset pgmap which was over-written by
412 * prep_compound_page().
413 */
414 new_folio->pgmap = pgmap;
415 new_folio->share = 0;
416 WARN_ON_ONCE(folio_ref_count(new_folio));
417 }
418
419 return ref;
420 }
421
dax_folio_init(void * entry)422 static void dax_folio_init(void *entry)
423 {
424 struct folio *folio = dax_to_folio(entry);
425 int order = dax_entry_order(entry);
426
427 /*
428 * Folio should have been split back to order-0 pages in
429 * dax_folio_put() when they were removed from their
430 * final mapping.
431 */
432 WARN_ON_ONCE(folio_order(folio));
433
434 if (order > 0) {
435 prep_compound_page(&folio->page, order);
436 if (order > 1)
437 INIT_LIST_HEAD(&folio->_deferred_list);
438 WARN_ON_ONCE(folio_ref_count(folio));
439 }
440 }
441
dax_associate_entry(void * entry,struct address_space * mapping,struct vm_area_struct * vma,unsigned long address,bool shared)442 static void dax_associate_entry(void *entry, struct address_space *mapping,
443 struct vm_area_struct *vma,
444 unsigned long address, bool shared)
445 {
446 unsigned long size = dax_entry_size(entry), index;
447 struct folio *folio = dax_to_folio(entry);
448
449 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry))
450 return;
451
452 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
453 return;
454
455 index = linear_page_index(vma, address & ~(size - 1));
456 if (shared && (folio->mapping || dax_folio_is_shared(folio))) {
457 if (folio->mapping)
458 dax_folio_make_shared(folio);
459
460 WARN_ON_ONCE(!folio->share);
461 WARN_ON_ONCE(dax_entry_order(entry) != folio_order(folio));
462 folio->share++;
463 } else {
464 WARN_ON_ONCE(folio->mapping);
465 dax_folio_init(entry);
466 folio = dax_to_folio(entry);
467 folio->mapping = mapping;
468 folio->index = index;
469 }
470 }
471
dax_disassociate_entry(void * entry,struct address_space * mapping,bool trunc)472 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
473 bool trunc)
474 {
475 struct folio *folio = dax_to_folio(entry);
476
477 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
478 return;
479
480 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry))
481 return;
482
483 dax_folio_put(folio);
484 }
485
dax_busy_page(void * entry)486 static struct page *dax_busy_page(void *entry)
487 {
488 struct folio *folio = dax_to_folio(entry);
489
490 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry))
491 return NULL;
492
493 if (folio_ref_count(folio) - folio_mapcount(folio))
494 return &folio->page;
495 else
496 return NULL;
497 }
498
499 /**
500 * dax_lock_folio - Lock the DAX entry corresponding to a folio
501 * @folio: The folio whose entry we want to lock
502 *
503 * Context: Process context.
504 * Return: A cookie to pass to dax_unlock_folio() or 0 if the entry could
505 * not be locked.
506 */
dax_lock_folio(struct folio * folio)507 dax_entry_t dax_lock_folio(struct folio *folio)
508 {
509 XA_STATE(xas, NULL, 0);
510 void *entry;
511
512 /* Ensure folio->mapping isn't freed while we look at it */
513 rcu_read_lock();
514 for (;;) {
515 struct address_space *mapping = READ_ONCE(folio->mapping);
516
517 entry = NULL;
518 if (!mapping || !dax_mapping(mapping))
519 break;
520
521 /*
522 * In the device-dax case there's no need to lock, a
523 * struct dev_pagemap pin is sufficient to keep the
524 * inode alive, and we assume we have dev_pagemap pin
525 * otherwise we would not have a valid pfn_to_page()
526 * translation.
527 */
528 entry = (void *)~0UL;
529 if (S_ISCHR(mapping->host->i_mode))
530 break;
531
532 xas.xa = &mapping->i_pages;
533 xas_lock_irq(&xas);
534 if (mapping != folio->mapping) {
535 xas_unlock_irq(&xas);
536 continue;
537 }
538 xas_set(&xas, folio->index);
539 entry = xas_load(&xas);
540 if (dax_is_locked(entry)) {
541 rcu_read_unlock();
542 wait_entry_unlocked(&xas, entry);
543 rcu_read_lock();
544 continue;
545 }
546 dax_lock_entry(&xas, entry);
547 xas_unlock_irq(&xas);
548 break;
549 }
550 rcu_read_unlock();
551 return (dax_entry_t)entry;
552 }
553
dax_unlock_folio(struct folio * folio,dax_entry_t cookie)554 void dax_unlock_folio(struct folio *folio, dax_entry_t cookie)
555 {
556 struct address_space *mapping = folio->mapping;
557 XA_STATE(xas, &mapping->i_pages, folio->index);
558
559 if (S_ISCHR(mapping->host->i_mode))
560 return;
561
562 dax_unlock_entry(&xas, (void *)cookie);
563 }
564
565 /*
566 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping
567 * @mapping: the file's mapping whose entry we want to lock
568 * @index: the offset within this file
569 * @page: output the dax page corresponding to this dax entry
570 *
571 * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry
572 * could not be locked.
573 */
dax_lock_mapping_entry(struct address_space * mapping,pgoff_t index,struct page ** page)574 dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index,
575 struct page **page)
576 {
577 XA_STATE(xas, NULL, 0);
578 void *entry;
579
580 rcu_read_lock();
581 for (;;) {
582 entry = NULL;
583 if (!dax_mapping(mapping))
584 break;
585
586 xas.xa = &mapping->i_pages;
587 xas_lock_irq(&xas);
588 xas_set(&xas, index);
589 entry = xas_load(&xas);
590 if (dax_is_locked(entry)) {
591 rcu_read_unlock();
592 wait_entry_unlocked(&xas, entry);
593 rcu_read_lock();
594 continue;
595 }
596 if (!entry ||
597 dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
598 /*
599 * Because we are looking for entry from file's mapping
600 * and index, so the entry may not be inserted for now,
601 * or even a zero/empty entry. We don't think this is
602 * an error case. So, return a special value and do
603 * not output @page.
604 */
605 entry = (void *)~0UL;
606 } else {
607 *page = pfn_to_page(dax_to_pfn(entry));
608 dax_lock_entry(&xas, entry);
609 }
610 xas_unlock_irq(&xas);
611 break;
612 }
613 rcu_read_unlock();
614 return (dax_entry_t)entry;
615 }
616
dax_unlock_mapping_entry(struct address_space * mapping,pgoff_t index,dax_entry_t cookie)617 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index,
618 dax_entry_t cookie)
619 {
620 XA_STATE(xas, &mapping->i_pages, index);
621
622 if (cookie == ~0UL)
623 return;
624
625 dax_unlock_entry(&xas, (void *)cookie);
626 }
627
628 /*
629 * Find page cache entry at given index. If it is a DAX entry, return it
630 * with the entry locked. If the page cache doesn't contain an entry at
631 * that index, add a locked empty entry.
632 *
633 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
634 * either return that locked entry or will return VM_FAULT_FALLBACK.
635 * This will happen if there are any PTE entries within the PMD range
636 * that we are requesting.
637 *
638 * We always favor PTE entries over PMD entries. There isn't a flow where we
639 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
640 * insertion will fail if it finds any PTE entries already in the tree, and a
641 * PTE insertion will cause an existing PMD entry to be unmapped and
642 * downgraded to PTE entries. This happens for both PMD zero pages as
643 * well as PMD empty entries.
644 *
645 * The exception to this downgrade path is for PMD entries that have
646 * real storage backing them. We will leave these real PMD entries in
647 * the tree, and PTE writes will simply dirty the entire PMD entry.
648 *
649 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
650 * persistent memory the benefit is doubtful. We can add that later if we can
651 * show it helps.
652 *
653 * On error, this function does not return an ERR_PTR. Instead it returns
654 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
655 * overlap with xarray value entries.
656 */
grab_mapping_entry(struct xa_state * xas,struct address_space * mapping,unsigned int order)657 static void *grab_mapping_entry(struct xa_state *xas,
658 struct address_space *mapping, unsigned int order)
659 {
660 unsigned long index = xas->xa_index;
661 bool pmd_downgrade; /* splitting PMD entry into PTE entries? */
662 void *entry;
663
664 retry:
665 pmd_downgrade = false;
666 xas_lock_irq(xas);
667 entry = get_next_unlocked_entry(xas, order);
668
669 if (entry) {
670 if (dax_is_conflict(entry))
671 goto fallback;
672 if (!xa_is_value(entry)) {
673 xas_set_err(xas, -EIO);
674 goto out_unlock;
675 }
676
677 if (order == 0) {
678 if (dax_is_pmd_entry(entry) &&
679 (dax_is_zero_entry(entry) ||
680 dax_is_empty_entry(entry))) {
681 pmd_downgrade = true;
682 }
683 }
684 }
685
686 if (pmd_downgrade) {
687 /*
688 * Make sure 'entry' remains valid while we drop
689 * the i_pages lock.
690 */
691 dax_lock_entry(xas, entry);
692
693 /*
694 * Besides huge zero pages the only other thing that gets
695 * downgraded are empty entries which don't need to be
696 * unmapped.
697 */
698 if (dax_is_zero_entry(entry)) {
699 xas_unlock_irq(xas);
700 unmap_mapping_pages(mapping,
701 xas->xa_index & ~PG_PMD_COLOUR,
702 PG_PMD_NR, false);
703 xas_reset(xas);
704 xas_lock_irq(xas);
705 }
706
707 dax_disassociate_entry(entry, mapping, false);
708 xas_store(xas, NULL); /* undo the PMD join */
709 dax_wake_entry(xas, entry, WAKE_ALL);
710 mapping->nrpages -= PG_PMD_NR;
711 entry = NULL;
712 xas_set(xas, index);
713 }
714
715 if (entry) {
716 dax_lock_entry(xas, entry);
717 } else {
718 unsigned long flags = DAX_EMPTY;
719
720 if (order > 0)
721 flags |= DAX_PMD;
722 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
723 dax_lock_entry(xas, entry);
724 if (xas_error(xas))
725 goto out_unlock;
726 mapping->nrpages += 1UL << order;
727 }
728
729 out_unlock:
730 xas_unlock_irq(xas);
731 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
732 goto retry;
733 if (xas->xa_node == XA_ERROR(-ENOMEM))
734 return xa_mk_internal(VM_FAULT_OOM);
735 if (xas_error(xas))
736 return xa_mk_internal(VM_FAULT_SIGBUS);
737 return entry;
738 fallback:
739 xas_unlock_irq(xas);
740 return xa_mk_internal(VM_FAULT_FALLBACK);
741 }
742
743 /**
744 * dax_layout_busy_page_range - find first pinned page in @mapping
745 * @mapping: address space to scan for a page with ref count > 1
746 * @start: Starting offset. Page containing 'start' is included.
747 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
748 * pages from 'start' till the end of file are included.
749 *
750 * DAX requires ZONE_DEVICE mapped pages. These pages are never
751 * 'onlined' to the page allocator so they are considered idle when
752 * page->count == 1. A filesystem uses this interface to determine if
753 * any page in the mapping is busy, i.e. for DMA, or other
754 * get_user_pages() usages.
755 *
756 * It is expected that the filesystem is holding locks to block the
757 * establishment of new mappings in this address_space. I.e. it expects
758 * to be able to run unmap_mapping_range() and subsequently not race
759 * mapping_mapped() becoming true.
760 */
dax_layout_busy_page_range(struct address_space * mapping,loff_t start,loff_t end)761 struct page *dax_layout_busy_page_range(struct address_space *mapping,
762 loff_t start, loff_t end)
763 {
764 void *entry;
765 unsigned int scanned = 0;
766 struct page *page = NULL;
767 pgoff_t start_idx = start >> PAGE_SHIFT;
768 pgoff_t end_idx;
769 XA_STATE(xas, &mapping->i_pages, start_idx);
770
771 /*
772 * In the 'limited' case get_user_pages() for dax is disabled.
773 */
774 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
775 return NULL;
776
777 if (!dax_mapping(mapping))
778 return NULL;
779
780 /* If end == LLONG_MAX, all pages from start to till end of file */
781 if (end == LLONG_MAX)
782 end_idx = ULONG_MAX;
783 else
784 end_idx = end >> PAGE_SHIFT;
785 /*
786 * If we race get_user_pages_fast() here either we'll see the
787 * elevated page count in the iteration and wait, or
788 * get_user_pages_fast() will see that the page it took a reference
789 * against is no longer mapped in the page tables and bail to the
790 * get_user_pages() slow path. The slow path is protected by
791 * pte_lock() and pmd_lock(). New references are not taken without
792 * holding those locks, and unmap_mapping_pages() will not zero the
793 * pte or pmd without holding the respective lock, so we are
794 * guaranteed to either see new references or prevent new
795 * references from being established.
796 */
797 unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
798
799 xas_lock_irq(&xas);
800 xas_for_each(&xas, entry, end_idx) {
801 if (WARN_ON_ONCE(!xa_is_value(entry)))
802 continue;
803 entry = wait_entry_unlocked_exclusive(&xas, entry);
804 if (entry)
805 page = dax_busy_page(entry);
806 put_unlocked_entry(&xas, entry, WAKE_NEXT);
807 if (page)
808 break;
809 if (++scanned % XA_CHECK_SCHED)
810 continue;
811
812 xas_pause(&xas);
813 xas_unlock_irq(&xas);
814 cond_resched();
815 xas_lock_irq(&xas);
816 }
817 xas_unlock_irq(&xas);
818 return page;
819 }
820 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
821
dax_layout_busy_page(struct address_space * mapping)822 struct page *dax_layout_busy_page(struct address_space *mapping)
823 {
824 return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
825 }
826 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
827
__dax_invalidate_entry(struct address_space * mapping,pgoff_t index,bool trunc)828 static int __dax_invalidate_entry(struct address_space *mapping,
829 pgoff_t index, bool trunc)
830 {
831 XA_STATE(xas, &mapping->i_pages, index);
832 int ret = 0;
833 void *entry;
834
835 xas_lock_irq(&xas);
836 entry = get_next_unlocked_entry(&xas, 0);
837 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
838 goto out;
839 if (!trunc &&
840 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
841 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
842 goto out;
843 dax_disassociate_entry(entry, mapping, trunc);
844 xas_store(&xas, NULL);
845 mapping->nrpages -= 1UL << dax_entry_order(entry);
846 ret = 1;
847 out:
848 put_unlocked_entry(&xas, entry, WAKE_ALL);
849 xas_unlock_irq(&xas);
850 return ret;
851 }
852
__dax_clear_dirty_range(struct address_space * mapping,pgoff_t start,pgoff_t end)853 static int __dax_clear_dirty_range(struct address_space *mapping,
854 pgoff_t start, pgoff_t end)
855 {
856 XA_STATE(xas, &mapping->i_pages, start);
857 unsigned int scanned = 0;
858 void *entry;
859
860 xas_lock_irq(&xas);
861 xas_for_each(&xas, entry, end) {
862 entry = wait_entry_unlocked_exclusive(&xas, entry);
863 if (!entry)
864 continue;
865 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
866 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
867 put_unlocked_entry(&xas, entry, WAKE_NEXT);
868
869 if (++scanned % XA_CHECK_SCHED)
870 continue;
871
872 xas_pause(&xas);
873 xas_unlock_irq(&xas);
874 cond_resched();
875 xas_lock_irq(&xas);
876 }
877 xas_unlock_irq(&xas);
878
879 return 0;
880 }
881
882 /*
883 * Delete DAX entry at @index from @mapping. Wait for it
884 * to be unlocked before deleting it.
885 */
dax_delete_mapping_entry(struct address_space * mapping,pgoff_t index)886 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
887 {
888 int ret = __dax_invalidate_entry(mapping, index, true);
889
890 /*
891 * This gets called from truncate / punch_hole path. As such, the caller
892 * must hold locks protecting against concurrent modifications of the
893 * page cache (usually fs-private i_mmap_sem for writing). Since the
894 * caller has seen a DAX entry for this index, we better find it
895 * at that index as well...
896 */
897 WARN_ON_ONCE(!ret);
898 return ret;
899 }
900
dax_delete_mapping_range(struct address_space * mapping,loff_t start,loff_t end)901 void dax_delete_mapping_range(struct address_space *mapping,
902 loff_t start, loff_t end)
903 {
904 void *entry;
905 pgoff_t start_idx = start >> PAGE_SHIFT;
906 pgoff_t end_idx;
907 XA_STATE(xas, &mapping->i_pages, start_idx);
908
909 /* If end == LLONG_MAX, all pages from start to till end of file */
910 if (end == LLONG_MAX)
911 end_idx = ULONG_MAX;
912 else
913 end_idx = end >> PAGE_SHIFT;
914
915 xas_lock_irq(&xas);
916 xas_for_each(&xas, entry, end_idx) {
917 if (!xa_is_value(entry))
918 continue;
919 entry = wait_entry_unlocked_exclusive(&xas, entry);
920 if (!entry)
921 continue;
922 dax_disassociate_entry(entry, mapping, true);
923 xas_store(&xas, NULL);
924 mapping->nrpages -= 1UL << dax_entry_order(entry);
925 put_unlocked_entry(&xas, entry, WAKE_ALL);
926 }
927 xas_unlock_irq(&xas);
928 }
929 EXPORT_SYMBOL_GPL(dax_delete_mapping_range);
930
wait_page_idle(struct page * page,void (cb)(struct inode *),struct inode * inode)931 static int wait_page_idle(struct page *page,
932 void (cb)(struct inode *),
933 struct inode *inode)
934 {
935 return ___wait_var_event(page, dax_page_is_idle(page),
936 TASK_INTERRUPTIBLE, 0, 0, cb(inode));
937 }
938
wait_page_idle_uninterruptible(struct page * page,struct inode * inode)939 static void wait_page_idle_uninterruptible(struct page *page,
940 struct inode *inode)
941 {
942 ___wait_var_event(page, dax_page_is_idle(page),
943 TASK_UNINTERRUPTIBLE, 0, 0, schedule());
944 }
945
946 /*
947 * Unmaps the inode and waits for any DMA to complete prior to deleting the
948 * DAX mapping entries for the range.
949 *
950 * For NOWAIT behavior, pass @cb as NULL to early-exit on first found
951 * busy page
952 */
dax_break_layout(struct inode * inode,loff_t start,loff_t end,void (cb)(struct inode *))953 int dax_break_layout(struct inode *inode, loff_t start, loff_t end,
954 void (cb)(struct inode *))
955 {
956 struct page *page;
957 int error = 0;
958
959 if (!dax_mapping(inode->i_mapping))
960 return 0;
961
962 do {
963 page = dax_layout_busy_page_range(inode->i_mapping, start, end);
964 if (!page)
965 break;
966 if (!cb) {
967 error = -ERESTARTSYS;
968 break;
969 }
970
971 error = wait_page_idle(page, cb, inode);
972 } while (error == 0);
973
974 if (!page)
975 dax_delete_mapping_range(inode->i_mapping, start, end);
976
977 return error;
978 }
979 EXPORT_SYMBOL_GPL(dax_break_layout);
980
dax_break_layout_final(struct inode * inode)981 void dax_break_layout_final(struct inode *inode)
982 {
983 struct page *page;
984
985 if (!dax_mapping(inode->i_mapping))
986 return;
987
988 do {
989 page = dax_layout_busy_page_range(inode->i_mapping, 0,
990 LLONG_MAX);
991 if (!page)
992 break;
993
994 wait_page_idle_uninterruptible(page, inode);
995 } while (true);
996
997 if (!page)
998 dax_delete_mapping_range(inode->i_mapping, 0, LLONG_MAX);
999 }
1000 EXPORT_SYMBOL_GPL(dax_break_layout_final);
1001
1002 /*
1003 * Invalidate DAX entry if it is clean.
1004 */
dax_invalidate_mapping_entry_sync(struct address_space * mapping,pgoff_t index)1005 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
1006 pgoff_t index)
1007 {
1008 return __dax_invalidate_entry(mapping, index, false);
1009 }
1010
dax_iomap_pgoff(const struct iomap * iomap,loff_t pos)1011 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
1012 {
1013 return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
1014 }
1015
copy_cow_page_dax(struct vm_fault * vmf,const struct iomap_iter * iter)1016 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
1017 {
1018 pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
1019 void *vto, *kaddr;
1020 long rc;
1021 int id;
1022
1023 id = dax_read_lock();
1024 rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
1025 &kaddr, NULL);
1026 if (rc < 0) {
1027 dax_read_unlock(id);
1028 return rc;
1029 }
1030 vto = kmap_atomic(vmf->cow_page);
1031 copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
1032 kunmap_atomic(vto);
1033 dax_read_unlock(id);
1034 return 0;
1035 }
1036
1037 /*
1038 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1039 * flushed on write-faults (non-cow), but not read-faults.
1040 */
dax_fault_is_synchronous(const struct iomap_iter * iter,struct vm_area_struct * vma)1041 static bool dax_fault_is_synchronous(const struct iomap_iter *iter,
1042 struct vm_area_struct *vma)
1043 {
1044 return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) &&
1045 (iter->iomap.flags & IOMAP_F_DIRTY);
1046 }
1047
1048 /*
1049 * By this point grab_mapping_entry() has ensured that we have a locked entry
1050 * of the appropriate size so we don't have to worry about downgrading PMDs to
1051 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
1052 * already in the tree, we will skip the insertion and just dirty the PMD as
1053 * appropriate.
1054 */
dax_insert_entry(struct xa_state * xas,struct vm_fault * vmf,const struct iomap_iter * iter,void * entry,pfn_t pfn,unsigned long flags)1055 static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf,
1056 const struct iomap_iter *iter, void *entry, pfn_t pfn,
1057 unsigned long flags)
1058 {
1059 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1060 void *new_entry = dax_make_entry(pfn, flags);
1061 bool write = iter->flags & IOMAP_WRITE;
1062 bool dirty = write && !dax_fault_is_synchronous(iter, vmf->vma);
1063 bool shared = iter->iomap.flags & IOMAP_F_SHARED;
1064
1065 if (dirty)
1066 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1067
1068 if (shared || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) {
1069 unsigned long index = xas->xa_index;
1070 /* we are replacing a zero page with block mapping */
1071 if (dax_is_pmd_entry(entry))
1072 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
1073 PG_PMD_NR, false);
1074 else /* pte entry */
1075 unmap_mapping_pages(mapping, index, 1, false);
1076 }
1077
1078 xas_reset(xas);
1079 xas_lock_irq(xas);
1080 if (shared || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
1081 void *old;
1082
1083 dax_disassociate_entry(entry, mapping, false);
1084 dax_associate_entry(new_entry, mapping, vmf->vma,
1085 vmf->address, shared);
1086
1087 /*
1088 * Only swap our new entry into the page cache if the current
1089 * entry is a zero page or an empty entry. If a normal PTE or
1090 * PMD entry is already in the cache, we leave it alone. This
1091 * means that if we are trying to insert a PTE and the
1092 * existing entry is a PMD, we will just leave the PMD in the
1093 * tree and dirty it if necessary.
1094 */
1095 old = dax_lock_entry(xas, new_entry);
1096 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
1097 DAX_LOCKED));
1098 entry = new_entry;
1099 } else {
1100 xas_load(xas); /* Walk the xa_state */
1101 }
1102
1103 if (dirty)
1104 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
1105
1106 if (write && shared)
1107 xas_set_mark(xas, PAGECACHE_TAG_TOWRITE);
1108
1109 xas_unlock_irq(xas);
1110 return entry;
1111 }
1112
dax_writeback_one(struct xa_state * xas,struct dax_device * dax_dev,struct address_space * mapping,void * entry)1113 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
1114 struct address_space *mapping, void *entry)
1115 {
1116 unsigned long pfn, index, count, end;
1117 long ret = 0;
1118 struct vm_area_struct *vma;
1119
1120 /*
1121 * A page got tagged dirty in DAX mapping? Something is seriously
1122 * wrong.
1123 */
1124 if (WARN_ON(!xa_is_value(entry)))
1125 return -EIO;
1126
1127 if (unlikely(dax_is_locked(entry))) {
1128 void *old_entry = entry;
1129
1130 entry = get_next_unlocked_entry(xas, 0);
1131
1132 /* Entry got punched out / reallocated? */
1133 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
1134 goto put_unlocked;
1135 /*
1136 * Entry got reallocated elsewhere? No need to writeback.
1137 * We have to compare pfns as we must not bail out due to
1138 * difference in lockbit or entry type.
1139 */
1140 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
1141 goto put_unlocked;
1142 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
1143 dax_is_zero_entry(entry))) {
1144 ret = -EIO;
1145 goto put_unlocked;
1146 }
1147
1148 /* Another fsync thread may have already done this entry */
1149 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
1150 goto put_unlocked;
1151 }
1152
1153 /* Lock the entry to serialize with page faults */
1154 dax_lock_entry(xas, entry);
1155
1156 /*
1157 * We can clear the tag now but we have to be careful so that concurrent
1158 * dax_writeback_one() calls for the same index cannot finish before we
1159 * actually flush the caches. This is achieved as the calls will look
1160 * at the entry only under the i_pages lock and once they do that
1161 * they will see the entry locked and wait for it to unlock.
1162 */
1163 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
1164 xas_unlock_irq(xas);
1165
1166 /*
1167 * If dax_writeback_mapping_range() was given a wbc->range_start
1168 * in the middle of a PMD, the 'index' we use needs to be
1169 * aligned to the start of the PMD.
1170 * This allows us to flush for PMD_SIZE and not have to worry about
1171 * partial PMD writebacks.
1172 */
1173 pfn = dax_to_pfn(entry);
1174 count = 1UL << dax_entry_order(entry);
1175 index = xas->xa_index & ~(count - 1);
1176 end = index + count - 1;
1177
1178 /* Walk all mappings of a given index of a file and writeprotect them */
1179 i_mmap_lock_read(mapping);
1180 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
1181 pfn_mkclean_range(pfn, count, index, vma);
1182 cond_resched();
1183 }
1184 i_mmap_unlock_read(mapping);
1185
1186 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
1187 /*
1188 * After we have flushed the cache, we can clear the dirty tag. There
1189 * cannot be new dirty data in the pfn after the flush has completed as
1190 * the pfn mappings are writeprotected and fault waits for mapping
1191 * entry lock.
1192 */
1193 xas_reset(xas);
1194 xas_lock_irq(xas);
1195 xas_store(xas, entry);
1196 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
1197 dax_wake_entry(xas, entry, WAKE_NEXT);
1198
1199 trace_dax_writeback_one(mapping->host, index, count);
1200 return ret;
1201
1202 put_unlocked:
1203 put_unlocked_entry(xas, entry, WAKE_NEXT);
1204 return ret;
1205 }
1206
1207 /*
1208 * Flush the mapping to the persistent domain within the byte range of [start,
1209 * end]. This is required by data integrity operations to ensure file data is
1210 * on persistent storage prior to completion of the operation.
1211 */
dax_writeback_mapping_range(struct address_space * mapping,struct dax_device * dax_dev,struct writeback_control * wbc)1212 int dax_writeback_mapping_range(struct address_space *mapping,
1213 struct dax_device *dax_dev, struct writeback_control *wbc)
1214 {
1215 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
1216 struct inode *inode = mapping->host;
1217 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
1218 void *entry;
1219 int ret = 0;
1220 unsigned int scanned = 0;
1221
1222 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1223 return -EIO;
1224
1225 if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
1226 return 0;
1227
1228 trace_dax_writeback_range(inode, xas.xa_index, end_index);
1229
1230 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
1231
1232 xas_lock_irq(&xas);
1233 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
1234 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
1235 if (ret < 0) {
1236 mapping_set_error(mapping, ret);
1237 break;
1238 }
1239 if (++scanned % XA_CHECK_SCHED)
1240 continue;
1241
1242 xas_pause(&xas);
1243 xas_unlock_irq(&xas);
1244 cond_resched();
1245 xas_lock_irq(&xas);
1246 }
1247 xas_unlock_irq(&xas);
1248 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1249 return ret;
1250 }
1251 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1252
dax_iomap_direct_access(const struct iomap * iomap,loff_t pos,size_t size,void ** kaddr,pfn_t * pfnp)1253 static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos,
1254 size_t size, void **kaddr, pfn_t *pfnp)
1255 {
1256 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1257 int id, rc = 0;
1258 long length;
1259
1260 id = dax_read_lock();
1261 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1262 DAX_ACCESS, kaddr, pfnp);
1263 if (length < 0) {
1264 rc = length;
1265 goto out;
1266 }
1267 if (!pfnp)
1268 goto out_check_addr;
1269 rc = -EINVAL;
1270 if (PFN_PHYS(length) < size)
1271 goto out;
1272 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1273 goto out;
1274
1275 rc = 0;
1276
1277 out_check_addr:
1278 if (!kaddr)
1279 goto out;
1280 if (!*kaddr)
1281 rc = -EFAULT;
1282 out:
1283 dax_read_unlock(id);
1284 return rc;
1285 }
1286
1287 /**
1288 * dax_iomap_copy_around - Prepare for an unaligned write to a shared/cow page
1289 * by copying the data before and after the range to be written.
1290 * @pos: address to do copy from.
1291 * @length: size of copy operation.
1292 * @align_size: aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE)
1293 * @srcmap: iomap srcmap
1294 * @daddr: destination address to copy to.
1295 *
1296 * This can be called from two places. Either during DAX write fault (page
1297 * aligned), to copy the length size data to daddr. Or, while doing normal DAX
1298 * write operation, dax_iomap_iter() might call this to do the copy of either
1299 * start or end unaligned address. In the latter case the rest of the copy of
1300 * aligned ranges is taken care by dax_iomap_iter() itself.
1301 * If the srcmap contains invalid data, such as HOLE and UNWRITTEN, zero the
1302 * area to make sure no old data remains.
1303 */
dax_iomap_copy_around(loff_t pos,uint64_t length,size_t align_size,const struct iomap * srcmap,void * daddr)1304 static int dax_iomap_copy_around(loff_t pos, uint64_t length, size_t align_size,
1305 const struct iomap *srcmap, void *daddr)
1306 {
1307 loff_t head_off = pos & (align_size - 1);
1308 size_t size = ALIGN(head_off + length, align_size);
1309 loff_t end = pos + length;
1310 loff_t pg_end = round_up(end, align_size);
1311 /* copy_all is usually in page fault case */
1312 bool copy_all = head_off == 0 && end == pg_end;
1313 /* zero the edges if srcmap is a HOLE or IOMAP_UNWRITTEN */
1314 bool zero_edge = srcmap->flags & IOMAP_F_SHARED ||
1315 srcmap->type == IOMAP_UNWRITTEN;
1316 void *saddr = NULL;
1317 int ret = 0;
1318
1319 if (!zero_edge) {
1320 ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL);
1321 if (ret)
1322 return dax_mem2blk_err(ret);
1323 }
1324
1325 if (copy_all) {
1326 if (zero_edge)
1327 memset(daddr, 0, size);
1328 else
1329 ret = copy_mc_to_kernel(daddr, saddr, length);
1330 goto out;
1331 }
1332
1333 /* Copy the head part of the range */
1334 if (head_off) {
1335 if (zero_edge)
1336 memset(daddr, 0, head_off);
1337 else {
1338 ret = copy_mc_to_kernel(daddr, saddr, head_off);
1339 if (ret)
1340 return -EIO;
1341 }
1342 }
1343
1344 /* Copy the tail part of the range */
1345 if (end < pg_end) {
1346 loff_t tail_off = head_off + length;
1347 loff_t tail_len = pg_end - end;
1348
1349 if (zero_edge)
1350 memset(daddr + tail_off, 0, tail_len);
1351 else {
1352 ret = copy_mc_to_kernel(daddr + tail_off,
1353 saddr + tail_off, tail_len);
1354 if (ret)
1355 return -EIO;
1356 }
1357 }
1358 out:
1359 if (zero_edge)
1360 dax_flush(srcmap->dax_dev, daddr, size);
1361 return ret ? -EIO : 0;
1362 }
1363
1364 /*
1365 * The user has performed a load from a hole in the file. Allocating a new
1366 * page in the file would cause excessive storage usage for workloads with
1367 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1368 * If this page is ever written to we will re-fault and change the mapping to
1369 * point to real DAX storage instead.
1370 */
dax_load_hole(struct xa_state * xas,struct vm_fault * vmf,const struct iomap_iter * iter,void ** entry)1371 static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1372 const struct iomap_iter *iter, void **entry)
1373 {
1374 struct inode *inode = iter->inode;
1375 unsigned long vaddr = vmf->address;
1376 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1377 vm_fault_t ret;
1378
1379 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE);
1380
1381 ret = vmf_insert_page_mkwrite(vmf, pfn_t_to_page(pfn), false);
1382 trace_dax_load_hole(inode, vmf, ret);
1383 return ret;
1384 }
1385
1386 #ifdef CONFIG_FS_DAX_PMD
dax_pmd_load_hole(struct xa_state * xas,struct vm_fault * vmf,const struct iomap_iter * iter,void ** entry)1387 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1388 const struct iomap_iter *iter, void **entry)
1389 {
1390 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1391 unsigned long pmd_addr = vmf->address & PMD_MASK;
1392 struct vm_area_struct *vma = vmf->vma;
1393 struct inode *inode = mapping->host;
1394 pgtable_t pgtable = NULL;
1395 struct folio *zero_folio;
1396 spinlock_t *ptl;
1397 pmd_t pmd_entry;
1398 pfn_t pfn;
1399
1400 zero_folio = mm_get_huge_zero_folio(vmf->vma->vm_mm);
1401
1402 if (unlikely(!zero_folio))
1403 goto fallback;
1404
1405 pfn = page_to_pfn_t(&zero_folio->page);
1406 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn,
1407 DAX_PMD | DAX_ZERO_PAGE);
1408
1409 if (arch_needs_pgtable_deposit()) {
1410 pgtable = pte_alloc_one(vma->vm_mm);
1411 if (!pgtable)
1412 return VM_FAULT_OOM;
1413 }
1414
1415 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1416 if (!pmd_none(*(vmf->pmd))) {
1417 spin_unlock(ptl);
1418 goto fallback;
1419 }
1420
1421 if (pgtable) {
1422 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1423 mm_inc_nr_ptes(vma->vm_mm);
1424 }
1425 pmd_entry = folio_mk_pmd(zero_folio, vmf->vma->vm_page_prot);
1426 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1427 spin_unlock(ptl);
1428 trace_dax_pmd_load_hole(inode, vmf, zero_folio, *entry);
1429 return VM_FAULT_NOPAGE;
1430
1431 fallback:
1432 if (pgtable)
1433 pte_free(vma->vm_mm, pgtable);
1434 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_folio, *entry);
1435 return VM_FAULT_FALLBACK;
1436 }
1437 #else
dax_pmd_load_hole(struct xa_state * xas,struct vm_fault * vmf,const struct iomap_iter * iter,void ** entry)1438 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1439 const struct iomap_iter *iter, void **entry)
1440 {
1441 return VM_FAULT_FALLBACK;
1442 }
1443 #endif /* CONFIG_FS_DAX_PMD */
1444
dax_unshare_iter(struct iomap_iter * iter)1445 static int dax_unshare_iter(struct iomap_iter *iter)
1446 {
1447 struct iomap *iomap = &iter->iomap;
1448 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1449 loff_t copy_pos = iter->pos;
1450 u64 copy_len = iomap_length(iter);
1451 u32 mod;
1452 int id = 0;
1453 s64 ret;
1454 void *daddr = NULL, *saddr = NULL;
1455
1456 if (!iomap_want_unshare_iter(iter))
1457 return iomap_iter_advance_full(iter);
1458
1459 /*
1460 * Extend the file range to be aligned to fsblock/pagesize, because
1461 * we need to copy entire blocks, not just the byte range specified.
1462 * Invalidate the mapping because we're about to CoW.
1463 */
1464 mod = offset_in_page(copy_pos);
1465 if (mod) {
1466 copy_len += mod;
1467 copy_pos -= mod;
1468 }
1469
1470 mod = offset_in_page(copy_pos + copy_len);
1471 if (mod)
1472 copy_len += PAGE_SIZE - mod;
1473
1474 invalidate_inode_pages2_range(iter->inode->i_mapping,
1475 copy_pos >> PAGE_SHIFT,
1476 (copy_pos + copy_len - 1) >> PAGE_SHIFT);
1477
1478 id = dax_read_lock();
1479 ret = dax_iomap_direct_access(iomap, copy_pos, copy_len, &daddr, NULL);
1480 if (ret < 0)
1481 goto out_unlock;
1482
1483 ret = dax_iomap_direct_access(srcmap, copy_pos, copy_len, &saddr, NULL);
1484 if (ret < 0)
1485 goto out_unlock;
1486
1487 if (copy_mc_to_kernel(daddr, saddr, copy_len) != 0)
1488 ret = -EIO;
1489
1490 out_unlock:
1491 dax_read_unlock(id);
1492 if (ret < 0)
1493 return dax_mem2blk_err(ret);
1494 return iomap_iter_advance_full(iter);
1495 }
1496
dax_file_unshare(struct inode * inode,loff_t pos,loff_t len,const struct iomap_ops * ops)1497 int dax_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1498 const struct iomap_ops *ops)
1499 {
1500 struct iomap_iter iter = {
1501 .inode = inode,
1502 .pos = pos,
1503 .flags = IOMAP_WRITE | IOMAP_UNSHARE | IOMAP_DAX,
1504 };
1505 loff_t size = i_size_read(inode);
1506 int ret;
1507
1508 if (pos < 0 || pos >= size)
1509 return 0;
1510
1511 iter.len = min(len, size - pos);
1512 while ((ret = iomap_iter(&iter, ops)) > 0)
1513 iter.status = dax_unshare_iter(&iter);
1514 return ret;
1515 }
1516 EXPORT_SYMBOL_GPL(dax_file_unshare);
1517
dax_memzero(struct iomap_iter * iter,loff_t pos,size_t size)1518 static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size)
1519 {
1520 const struct iomap *iomap = &iter->iomap;
1521 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1522 unsigned offset = offset_in_page(pos);
1523 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1524 void *kaddr;
1525 long ret;
1526
1527 ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr,
1528 NULL);
1529 if (ret < 0)
1530 return dax_mem2blk_err(ret);
1531
1532 memset(kaddr + offset, 0, size);
1533 if (iomap->flags & IOMAP_F_SHARED)
1534 ret = dax_iomap_copy_around(pos, size, PAGE_SIZE, srcmap,
1535 kaddr);
1536 else
1537 dax_flush(iomap->dax_dev, kaddr + offset, size);
1538 return ret;
1539 }
1540
dax_zero_iter(struct iomap_iter * iter,bool * did_zero)1541 static int dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
1542 {
1543 const struct iomap *iomap = &iter->iomap;
1544 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1545 u64 length = iomap_length(iter);
1546 int ret;
1547
1548 /* already zeroed? we're done. */
1549 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1550 return iomap_iter_advance(iter, &length);
1551
1552 /*
1553 * invalidate the pages whose sharing state is to be changed
1554 * because of CoW.
1555 */
1556 if (iomap->flags & IOMAP_F_SHARED)
1557 invalidate_inode_pages2_range(iter->inode->i_mapping,
1558 iter->pos >> PAGE_SHIFT,
1559 (iter->pos + length - 1) >> PAGE_SHIFT);
1560
1561 do {
1562 loff_t pos = iter->pos;
1563 unsigned offset = offset_in_page(pos);
1564 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1565 int id;
1566
1567 length = min_t(u64, PAGE_SIZE - offset, length);
1568
1569 id = dax_read_lock();
1570 if (IS_ALIGNED(pos, PAGE_SIZE) && length == PAGE_SIZE)
1571 ret = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1572 else
1573 ret = dax_memzero(iter, pos, length);
1574 dax_read_unlock(id);
1575
1576 if (ret < 0)
1577 return ret;
1578
1579 ret = iomap_iter_advance(iter, &length);
1580 if (ret)
1581 return ret;
1582 } while (length > 0);
1583
1584 if (did_zero)
1585 *did_zero = true;
1586 return ret;
1587 }
1588
dax_zero_range(struct inode * inode,loff_t pos,loff_t len,bool * did_zero,const struct iomap_ops * ops)1589 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1590 const struct iomap_ops *ops)
1591 {
1592 struct iomap_iter iter = {
1593 .inode = inode,
1594 .pos = pos,
1595 .len = len,
1596 .flags = IOMAP_DAX | IOMAP_ZERO,
1597 };
1598 int ret;
1599
1600 while ((ret = iomap_iter(&iter, ops)) > 0)
1601 iter.status = dax_zero_iter(&iter, did_zero);
1602 return ret;
1603 }
1604 EXPORT_SYMBOL_GPL(dax_zero_range);
1605
dax_truncate_page(struct inode * inode,loff_t pos,bool * did_zero,const struct iomap_ops * ops)1606 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1607 const struct iomap_ops *ops)
1608 {
1609 unsigned int blocksize = i_blocksize(inode);
1610 unsigned int off = pos & (blocksize - 1);
1611
1612 /* Block boundary? Nothing to do */
1613 if (!off)
1614 return 0;
1615 return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
1616 }
1617 EXPORT_SYMBOL_GPL(dax_truncate_page);
1618
dax_iomap_iter(struct iomap_iter * iomi,struct iov_iter * iter)1619 static int dax_iomap_iter(struct iomap_iter *iomi, struct iov_iter *iter)
1620 {
1621 const struct iomap *iomap = &iomi->iomap;
1622 const struct iomap *srcmap = iomap_iter_srcmap(iomi);
1623 loff_t length = iomap_length(iomi);
1624 loff_t pos = iomi->pos;
1625 struct dax_device *dax_dev = iomap->dax_dev;
1626 loff_t end = pos + length, done = 0;
1627 bool write = iov_iter_rw(iter) == WRITE;
1628 bool cow = write && iomap->flags & IOMAP_F_SHARED;
1629 ssize_t ret = 0;
1630 size_t xfer;
1631 int id;
1632
1633 if (!write) {
1634 end = min(end, i_size_read(iomi->inode));
1635 if (pos >= end)
1636 return 0;
1637
1638 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) {
1639 done = iov_iter_zero(min(length, end - pos), iter);
1640 return iomap_iter_advance(iomi, &done);
1641 }
1642 }
1643
1644 /*
1645 * In DAX mode, enforce either pure overwrites of written extents, or
1646 * writes to unwritten extents as part of a copy-on-write operation.
1647 */
1648 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED &&
1649 !(iomap->flags & IOMAP_F_SHARED)))
1650 return -EIO;
1651
1652 /*
1653 * Write can allocate block for an area which has a hole page mapped
1654 * into page tables. We have to tear down these mappings so that data
1655 * written by write(2) is visible in mmap.
1656 */
1657 if (iomap->flags & IOMAP_F_NEW || cow) {
1658 /*
1659 * Filesystem allows CoW on non-shared extents. The src extents
1660 * may have been mmapped with dirty mark before. To be able to
1661 * invalidate its dax entries, we need to clear the dirty mark
1662 * in advance.
1663 */
1664 if (cow)
1665 __dax_clear_dirty_range(iomi->inode->i_mapping,
1666 pos >> PAGE_SHIFT,
1667 (end - 1) >> PAGE_SHIFT);
1668 invalidate_inode_pages2_range(iomi->inode->i_mapping,
1669 pos >> PAGE_SHIFT,
1670 (end - 1) >> PAGE_SHIFT);
1671 }
1672
1673 id = dax_read_lock();
1674 while ((pos = iomi->pos) < end) {
1675 unsigned offset = pos & (PAGE_SIZE - 1);
1676 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1677 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1678 ssize_t map_len;
1679 bool recovery = false;
1680 void *kaddr;
1681
1682 if (fatal_signal_pending(current)) {
1683 ret = -EINTR;
1684 break;
1685 }
1686
1687 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1688 DAX_ACCESS, &kaddr, NULL);
1689 if (map_len == -EHWPOISON && iov_iter_rw(iter) == WRITE) {
1690 map_len = dax_direct_access(dax_dev, pgoff,
1691 PHYS_PFN(size), DAX_RECOVERY_WRITE,
1692 &kaddr, NULL);
1693 if (map_len > 0)
1694 recovery = true;
1695 }
1696 if (map_len < 0) {
1697 ret = dax_mem2blk_err(map_len);
1698 break;
1699 }
1700
1701 if (cow) {
1702 ret = dax_iomap_copy_around(pos, length, PAGE_SIZE,
1703 srcmap, kaddr);
1704 if (ret)
1705 break;
1706 }
1707
1708 map_len = PFN_PHYS(map_len);
1709 kaddr += offset;
1710 map_len -= offset;
1711 if (map_len > end - pos)
1712 map_len = end - pos;
1713
1714 if (recovery)
1715 xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
1716 map_len, iter);
1717 else if (write)
1718 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1719 map_len, iter);
1720 else
1721 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1722 map_len, iter);
1723
1724 length = xfer;
1725 ret = iomap_iter_advance(iomi, &length);
1726 if (!ret && xfer == 0)
1727 ret = -EFAULT;
1728 if (xfer < map_len)
1729 break;
1730 }
1731 dax_read_unlock(id);
1732
1733 return ret;
1734 }
1735
1736 /**
1737 * dax_iomap_rw - Perform I/O to a DAX file
1738 * @iocb: The control block for this I/O
1739 * @iter: The addresses to do I/O from or to
1740 * @ops: iomap ops passed from the file system
1741 *
1742 * This function performs read and write operations to directly mapped
1743 * persistent memory. The callers needs to take care of read/write exclusion
1744 * and evicting any page cache pages in the region under I/O.
1745 */
1746 ssize_t
dax_iomap_rw(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops)1747 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1748 const struct iomap_ops *ops)
1749 {
1750 struct iomap_iter iomi = {
1751 .inode = iocb->ki_filp->f_mapping->host,
1752 .pos = iocb->ki_pos,
1753 .len = iov_iter_count(iter),
1754 .flags = IOMAP_DAX,
1755 };
1756 loff_t done = 0;
1757 int ret;
1758
1759 if (!iomi.len)
1760 return 0;
1761
1762 if (iov_iter_rw(iter) == WRITE) {
1763 lockdep_assert_held_write(&iomi.inode->i_rwsem);
1764 iomi.flags |= IOMAP_WRITE;
1765 } else {
1766 lockdep_assert_held(&iomi.inode->i_rwsem);
1767 }
1768
1769 if (iocb->ki_flags & IOCB_NOWAIT)
1770 iomi.flags |= IOMAP_NOWAIT;
1771
1772 while ((ret = iomap_iter(&iomi, ops)) > 0)
1773 iomi.status = dax_iomap_iter(&iomi, iter);
1774
1775 done = iomi.pos - iocb->ki_pos;
1776 iocb->ki_pos = iomi.pos;
1777 return done ? done : ret;
1778 }
1779 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1780
dax_fault_return(int error)1781 static vm_fault_t dax_fault_return(int error)
1782 {
1783 if (error == 0)
1784 return VM_FAULT_NOPAGE;
1785 return vmf_error(error);
1786 }
1787
1788 /*
1789 * When handling a synchronous page fault and the inode need a fsync, we can
1790 * insert the PTE/PMD into page tables only after that fsync happened. Skip
1791 * insertion for now and return the pfn so that caller can insert it after the
1792 * fsync is done.
1793 */
dax_fault_synchronous_pfnp(pfn_t * pfnp,pfn_t pfn)1794 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1795 {
1796 if (WARN_ON_ONCE(!pfnp))
1797 return VM_FAULT_SIGBUS;
1798 *pfnp = pfn;
1799 return VM_FAULT_NEEDDSYNC;
1800 }
1801
dax_fault_cow_page(struct vm_fault * vmf,const struct iomap_iter * iter)1802 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1803 const struct iomap_iter *iter)
1804 {
1805 vm_fault_t ret;
1806 int error = 0;
1807
1808 switch (iter->iomap.type) {
1809 case IOMAP_HOLE:
1810 case IOMAP_UNWRITTEN:
1811 clear_user_highpage(vmf->cow_page, vmf->address);
1812 break;
1813 case IOMAP_MAPPED:
1814 error = copy_cow_page_dax(vmf, iter);
1815 break;
1816 default:
1817 WARN_ON_ONCE(1);
1818 error = -EIO;
1819 break;
1820 }
1821
1822 if (error)
1823 return dax_fault_return(error);
1824
1825 __SetPageUptodate(vmf->cow_page);
1826 ret = finish_fault(vmf);
1827 if (!ret)
1828 return VM_FAULT_DONE_COW;
1829 return ret;
1830 }
1831
1832 /**
1833 * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1834 * @vmf: vm fault instance
1835 * @iter: iomap iter
1836 * @pfnp: pfn to be returned
1837 * @xas: the dax mapping tree of a file
1838 * @entry: an unlocked dax entry to be inserted
1839 * @pmd: distinguish whether it is a pmd fault
1840 */
dax_fault_iter(struct vm_fault * vmf,const struct iomap_iter * iter,pfn_t * pfnp,struct xa_state * xas,void ** entry,bool pmd)1841 static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1842 const struct iomap_iter *iter, pfn_t *pfnp,
1843 struct xa_state *xas, void **entry, bool pmd)
1844 {
1845 const struct iomap *iomap = &iter->iomap;
1846 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1847 size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1848 loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1849 bool write = iter->flags & IOMAP_WRITE;
1850 unsigned long entry_flags = pmd ? DAX_PMD : 0;
1851 struct folio *folio;
1852 int ret, err = 0;
1853 pfn_t pfn;
1854 void *kaddr;
1855
1856 if (!pmd && vmf->cow_page)
1857 return dax_fault_cow_page(vmf, iter);
1858
1859 /* if we are reading UNWRITTEN and HOLE, return a hole. */
1860 if (!write &&
1861 (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1862 if (!pmd)
1863 return dax_load_hole(xas, vmf, iter, entry);
1864 return dax_pmd_load_hole(xas, vmf, iter, entry);
1865 }
1866
1867 if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) {
1868 WARN_ON_ONCE(1);
1869 return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1870 }
1871
1872 err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn);
1873 if (err)
1874 return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1875
1876 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags);
1877
1878 if (write && iomap->flags & IOMAP_F_SHARED) {
1879 err = dax_iomap_copy_around(pos, size, size, srcmap, kaddr);
1880 if (err)
1881 return dax_fault_return(err);
1882 }
1883
1884 folio = dax_to_folio(*entry);
1885 if (dax_fault_is_synchronous(iter, vmf->vma))
1886 return dax_fault_synchronous_pfnp(pfnp, pfn);
1887
1888 folio_ref_inc(folio);
1889 if (pmd)
1890 ret = vmf_insert_folio_pmd(vmf, pfn_folio(pfn_t_to_pfn(pfn)),
1891 write);
1892 else
1893 ret = vmf_insert_page_mkwrite(vmf, pfn_t_to_page(pfn), write);
1894 folio_put(folio);
1895
1896 return ret;
1897 }
1898
dax_iomap_pte_fault(struct vm_fault * vmf,pfn_t * pfnp,int * iomap_errp,const struct iomap_ops * ops)1899 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1900 int *iomap_errp, const struct iomap_ops *ops)
1901 {
1902 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1903 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1904 struct iomap_iter iter = {
1905 .inode = mapping->host,
1906 .pos = (loff_t)vmf->pgoff << PAGE_SHIFT,
1907 .len = PAGE_SIZE,
1908 .flags = IOMAP_DAX | IOMAP_FAULT,
1909 };
1910 vm_fault_t ret = 0;
1911 void *entry;
1912 int error;
1913
1914 trace_dax_pte_fault(iter.inode, vmf, ret);
1915 /*
1916 * Check whether offset isn't beyond end of file now. Caller is supposed
1917 * to hold locks serializing us with truncate / punch hole so this is
1918 * a reliable test.
1919 */
1920 if (iter.pos >= i_size_read(iter.inode)) {
1921 ret = VM_FAULT_SIGBUS;
1922 goto out;
1923 }
1924
1925 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1926 iter.flags |= IOMAP_WRITE;
1927
1928 entry = grab_mapping_entry(&xas, mapping, 0);
1929 if (xa_is_internal(entry)) {
1930 ret = xa_to_internal(entry);
1931 goto out;
1932 }
1933
1934 /*
1935 * It is possible, particularly with mixed reads & writes to private
1936 * mappings, that we have raced with a PMD fault that overlaps with
1937 * the PTE we need to set up. If so just return and the fault will be
1938 * retried.
1939 */
1940 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1941 ret = VM_FAULT_NOPAGE;
1942 goto unlock_entry;
1943 }
1944
1945 while ((error = iomap_iter(&iter, ops)) > 0) {
1946 if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1947 iter.status = -EIO; /* fs corruption? */
1948 continue;
1949 }
1950
1951 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1952 if (ret != VM_FAULT_SIGBUS &&
1953 (iter.iomap.flags & IOMAP_F_NEW)) {
1954 count_vm_event(PGMAJFAULT);
1955 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1956 ret |= VM_FAULT_MAJOR;
1957 }
1958
1959 if (!(ret & VM_FAULT_ERROR)) {
1960 u64 length = PAGE_SIZE;
1961 iter.status = iomap_iter_advance(&iter, &length);
1962 }
1963 }
1964
1965 if (iomap_errp)
1966 *iomap_errp = error;
1967 if (!ret && error)
1968 ret = dax_fault_return(error);
1969
1970 unlock_entry:
1971 dax_unlock_entry(&xas, entry);
1972 out:
1973 trace_dax_pte_fault_done(iter.inode, vmf, ret);
1974 return ret;
1975 }
1976
1977 #ifdef CONFIG_FS_DAX_PMD
dax_fault_check_fallback(struct vm_fault * vmf,struct xa_state * xas,pgoff_t max_pgoff)1978 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1979 pgoff_t max_pgoff)
1980 {
1981 unsigned long pmd_addr = vmf->address & PMD_MASK;
1982 bool write = vmf->flags & FAULT_FLAG_WRITE;
1983
1984 /*
1985 * Make sure that the faulting address's PMD offset (color) matches
1986 * the PMD offset from the start of the file. This is necessary so
1987 * that a PMD range in the page table overlaps exactly with a PMD
1988 * range in the page cache.
1989 */
1990 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1991 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1992 return true;
1993
1994 /* Fall back to PTEs if we're going to COW */
1995 if (write && !(vmf->vma->vm_flags & VM_SHARED))
1996 return true;
1997
1998 /* If the PMD would extend outside the VMA */
1999 if (pmd_addr < vmf->vma->vm_start)
2000 return true;
2001 if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
2002 return true;
2003
2004 /* If the PMD would extend beyond the file size */
2005 if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
2006 return true;
2007
2008 return false;
2009 }
2010
dax_iomap_pmd_fault(struct vm_fault * vmf,pfn_t * pfnp,const struct iomap_ops * ops)2011 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
2012 const struct iomap_ops *ops)
2013 {
2014 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
2015 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
2016 struct iomap_iter iter = {
2017 .inode = mapping->host,
2018 .len = PMD_SIZE,
2019 .flags = IOMAP_DAX | IOMAP_FAULT,
2020 };
2021 vm_fault_t ret = VM_FAULT_FALLBACK;
2022 pgoff_t max_pgoff;
2023 void *entry;
2024
2025 if (vmf->flags & FAULT_FLAG_WRITE)
2026 iter.flags |= IOMAP_WRITE;
2027
2028 /*
2029 * Check whether offset isn't beyond end of file now. Caller is
2030 * supposed to hold locks serializing us with truncate / punch hole so
2031 * this is a reliable test.
2032 */
2033 max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
2034
2035 trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
2036
2037 if (xas.xa_index >= max_pgoff) {
2038 ret = VM_FAULT_SIGBUS;
2039 goto out;
2040 }
2041
2042 if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
2043 goto fallback;
2044
2045 /*
2046 * grab_mapping_entry() will make sure we get an empty PMD entry,
2047 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
2048 * entry is already in the array, for instance), it will return
2049 * VM_FAULT_FALLBACK.
2050 */
2051 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
2052 if (xa_is_internal(entry)) {
2053 ret = xa_to_internal(entry);
2054 goto fallback;
2055 }
2056
2057 /*
2058 * It is possible, particularly with mixed reads & writes to private
2059 * mappings, that we have raced with a PTE fault that overlaps with
2060 * the PMD we need to set up. If so just return and the fault will be
2061 * retried.
2062 */
2063 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
2064 !pmd_devmap(*vmf->pmd)) {
2065 ret = 0;
2066 goto unlock_entry;
2067 }
2068
2069 iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
2070 while (iomap_iter(&iter, ops) > 0) {
2071 if (iomap_length(&iter) < PMD_SIZE)
2072 continue; /* actually breaks out of the loop */
2073
2074 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
2075 if (ret != VM_FAULT_FALLBACK) {
2076 u64 length = PMD_SIZE;
2077 iter.status = iomap_iter_advance(&iter, &length);
2078 }
2079 }
2080
2081 unlock_entry:
2082 dax_unlock_entry(&xas, entry);
2083 fallback:
2084 if (ret == VM_FAULT_FALLBACK) {
2085 split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
2086 count_vm_event(THP_FAULT_FALLBACK);
2087 }
2088 out:
2089 trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
2090 return ret;
2091 }
2092 #else
dax_iomap_pmd_fault(struct vm_fault * vmf,pfn_t * pfnp,const struct iomap_ops * ops)2093 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
2094 const struct iomap_ops *ops)
2095 {
2096 return VM_FAULT_FALLBACK;
2097 }
2098 #endif /* CONFIG_FS_DAX_PMD */
2099
2100 /**
2101 * dax_iomap_fault - handle a page fault on a DAX file
2102 * @vmf: The description of the fault
2103 * @order: Order of the page to fault in
2104 * @pfnp: PFN to insert for synchronous faults if fsync is required
2105 * @iomap_errp: Storage for detailed error code in case of error
2106 * @ops: Iomap ops passed from the file system
2107 *
2108 * When a page fault occurs, filesystems may call this helper in
2109 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
2110 * has done all the necessary locking for page fault to proceed
2111 * successfully.
2112 */
dax_iomap_fault(struct vm_fault * vmf,unsigned int order,pfn_t * pfnp,int * iomap_errp,const struct iomap_ops * ops)2113 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, unsigned int order,
2114 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
2115 {
2116 if (order == 0)
2117 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
2118 else if (order == PMD_ORDER)
2119 return dax_iomap_pmd_fault(vmf, pfnp, ops);
2120 else
2121 return VM_FAULT_FALLBACK;
2122 }
2123 EXPORT_SYMBOL_GPL(dax_iomap_fault);
2124
2125 /*
2126 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
2127 * @vmf: The description of the fault
2128 * @pfn: PFN to insert
2129 * @order: Order of entry to insert.
2130 *
2131 * This function inserts a writeable PTE or PMD entry into the page tables
2132 * for an mmaped DAX file. It also marks the page cache entry as dirty.
2133 */
2134 static vm_fault_t
dax_insert_pfn_mkwrite(struct vm_fault * vmf,pfn_t pfn,unsigned int order)2135 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
2136 {
2137 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
2138 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
2139 struct folio *folio;
2140 void *entry;
2141 vm_fault_t ret;
2142
2143 xas_lock_irq(&xas);
2144 entry = get_next_unlocked_entry(&xas, order);
2145 /* Did we race with someone splitting entry or so? */
2146 if (!entry || dax_is_conflict(entry) ||
2147 (order == 0 && !dax_is_pte_entry(entry))) {
2148 put_unlocked_entry(&xas, entry, WAKE_NEXT);
2149 xas_unlock_irq(&xas);
2150 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
2151 VM_FAULT_NOPAGE);
2152 return VM_FAULT_NOPAGE;
2153 }
2154 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
2155 dax_lock_entry(&xas, entry);
2156 xas_unlock_irq(&xas);
2157 folio = pfn_folio(pfn_t_to_pfn(pfn));
2158 folio_ref_inc(folio);
2159 if (order == 0)
2160 ret = vmf_insert_page_mkwrite(vmf, &folio->page, true);
2161 #ifdef CONFIG_FS_DAX_PMD
2162 else if (order == PMD_ORDER)
2163 ret = vmf_insert_folio_pmd(vmf, folio, FAULT_FLAG_WRITE);
2164 #endif
2165 else
2166 ret = VM_FAULT_FALLBACK;
2167 folio_put(folio);
2168 dax_unlock_entry(&xas, entry);
2169 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
2170 return ret;
2171 }
2172
2173 /**
2174 * dax_finish_sync_fault - finish synchronous page fault
2175 * @vmf: The description of the fault
2176 * @order: Order of entry to be inserted
2177 * @pfn: PFN to insert
2178 *
2179 * This function ensures that the file range touched by the page fault is
2180 * stored persistently on the media and handles inserting of appropriate page
2181 * table entry.
2182 */
dax_finish_sync_fault(struct vm_fault * vmf,unsigned int order,pfn_t pfn)2183 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, unsigned int order,
2184 pfn_t pfn)
2185 {
2186 int err;
2187 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
2188 size_t len = PAGE_SIZE << order;
2189
2190 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
2191 if (err)
2192 return VM_FAULT_SIGBUS;
2193 return dax_insert_pfn_mkwrite(vmf, pfn, order);
2194 }
2195 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
2196
dax_range_compare_iter(struct iomap_iter * it_src,struct iomap_iter * it_dest,u64 len,bool * same)2197 static int dax_range_compare_iter(struct iomap_iter *it_src,
2198 struct iomap_iter *it_dest, u64 len, bool *same)
2199 {
2200 const struct iomap *smap = &it_src->iomap;
2201 const struct iomap *dmap = &it_dest->iomap;
2202 loff_t pos1 = it_src->pos, pos2 = it_dest->pos;
2203 u64 dest_len;
2204 void *saddr, *daddr;
2205 int id, ret;
2206
2207 len = min(len, min(smap->length, dmap->length));
2208
2209 if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) {
2210 *same = true;
2211 goto advance;
2212 }
2213
2214 if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) {
2215 *same = false;
2216 return 0;
2217 }
2218
2219 id = dax_read_lock();
2220 ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE),
2221 &saddr, NULL);
2222 if (ret < 0)
2223 goto out_unlock;
2224
2225 ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE),
2226 &daddr, NULL);
2227 if (ret < 0)
2228 goto out_unlock;
2229
2230 *same = !memcmp(saddr, daddr, len);
2231 if (!*same)
2232 len = 0;
2233 dax_read_unlock(id);
2234
2235 advance:
2236 dest_len = len;
2237 ret = iomap_iter_advance(it_src, &len);
2238 if (!ret)
2239 ret = iomap_iter_advance(it_dest, &dest_len);
2240 return ret;
2241
2242 out_unlock:
2243 dax_read_unlock(id);
2244 return -EIO;
2245 }
2246
dax_dedupe_file_range_compare(struct inode * src,loff_t srcoff,struct inode * dst,loff_t dstoff,loff_t len,bool * same,const struct iomap_ops * ops)2247 int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff,
2248 struct inode *dst, loff_t dstoff, loff_t len, bool *same,
2249 const struct iomap_ops *ops)
2250 {
2251 struct iomap_iter src_iter = {
2252 .inode = src,
2253 .pos = srcoff,
2254 .len = len,
2255 .flags = IOMAP_DAX,
2256 };
2257 struct iomap_iter dst_iter = {
2258 .inode = dst,
2259 .pos = dstoff,
2260 .len = len,
2261 .flags = IOMAP_DAX,
2262 };
2263 int ret, status;
2264
2265 while ((ret = iomap_iter(&src_iter, ops)) > 0 &&
2266 (ret = iomap_iter(&dst_iter, ops)) > 0) {
2267 status = dax_range_compare_iter(&src_iter, &dst_iter,
2268 min(src_iter.len, dst_iter.len), same);
2269 if (status < 0)
2270 return ret;
2271 src_iter.status = dst_iter.status = status;
2272 }
2273 return ret;
2274 }
2275
dax_remap_file_range_prep(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t * len,unsigned int remap_flags,const struct iomap_ops * ops)2276 int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2277 struct file *file_out, loff_t pos_out,
2278 loff_t *len, unsigned int remap_flags,
2279 const struct iomap_ops *ops)
2280 {
2281 return __generic_remap_file_range_prep(file_in, pos_in, file_out,
2282 pos_out, len, remap_flags, ops);
2283 }
2284 EXPORT_SYMBOL_GPL(dax_remap_file_range_prep);
2285