xref: /linux/mm/damon/vaddr.c (revision e9ef810dfee7a2227da9d423aecb0ced35faddbe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * DAMON Code for Virtual Address Spaces
4  *
5  * Author: SeongJae Park <sj@kernel.org>
6  */
7 
8 #define pr_fmt(fmt) "damon-va: " fmt
9 
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/page_idle.h>
15 #include <linux/pagewalk.h>
16 #include <linux/sched/mm.h>
17 
18 #include "../internal.h"
19 #include "ops-common.h"
20 
21 #ifdef CONFIG_DAMON_VADDR_KUNIT_TEST
22 #undef DAMON_MIN_REGION
23 #define DAMON_MIN_REGION 1
24 #endif
25 
26 /*
27  * 't->pid' should be the pointer to the relevant 'struct pid' having reference
28  * count.  Caller must put the returned task, unless it is NULL.
29  */
damon_get_task_struct(struct damon_target * t)30 static inline struct task_struct *damon_get_task_struct(struct damon_target *t)
31 {
32 	return get_pid_task(t->pid, PIDTYPE_PID);
33 }
34 
35 /*
36  * Get the mm_struct of the given target
37  *
38  * Caller _must_ put the mm_struct after use, unless it is NULL.
39  *
40  * Returns the mm_struct of the target on success, NULL on failure
41  */
damon_get_mm(struct damon_target * t)42 static struct mm_struct *damon_get_mm(struct damon_target *t)
43 {
44 	struct task_struct *task;
45 	struct mm_struct *mm;
46 
47 	task = damon_get_task_struct(t);
48 	if (!task)
49 		return NULL;
50 
51 	mm = get_task_mm(task);
52 	put_task_struct(task);
53 	return mm;
54 }
55 
56 /*
57  * Functions for the initial monitoring target regions construction
58  */
59 
60 /*
61  * Size-evenly split a region into 'nr_pieces' small regions
62  *
63  * Returns 0 on success, or negative error code otherwise.
64  */
damon_va_evenly_split_region(struct damon_target * t,struct damon_region * r,unsigned int nr_pieces)65 static int damon_va_evenly_split_region(struct damon_target *t,
66 		struct damon_region *r, unsigned int nr_pieces)
67 {
68 	unsigned long sz_orig, sz_piece, orig_end;
69 	struct damon_region *n = NULL, *next;
70 	unsigned long start;
71 	unsigned int i;
72 
73 	if (!r || !nr_pieces)
74 		return -EINVAL;
75 
76 	if (nr_pieces == 1)
77 		return 0;
78 
79 	orig_end = r->ar.end;
80 	sz_orig = damon_sz_region(r);
81 	sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
82 
83 	if (!sz_piece)
84 		return -EINVAL;
85 
86 	r->ar.end = r->ar.start + sz_piece;
87 	next = damon_next_region(r);
88 	for (start = r->ar.end, i = 1; i < nr_pieces; start += sz_piece, i++) {
89 		n = damon_new_region(start, start + sz_piece);
90 		if (!n)
91 			return -ENOMEM;
92 		damon_insert_region(n, r, next, t);
93 		r = n;
94 	}
95 	/* complement last region for possible rounding error */
96 	if (n)
97 		n->ar.end = orig_end;
98 
99 	return 0;
100 }
101 
sz_range(struct damon_addr_range * r)102 static unsigned long sz_range(struct damon_addr_range *r)
103 {
104 	return r->end - r->start;
105 }
106 
107 /*
108  * Find three regions separated by two biggest unmapped regions
109  *
110  * vma		the head vma of the target address space
111  * regions	an array of three address ranges that results will be saved
112  *
113  * This function receives an address space and finds three regions in it which
114  * separated by the two biggest unmapped regions in the space.  Please refer to
115  * below comments of '__damon_va_init_regions()' function to know why this is
116  * necessary.
117  *
118  * Returns 0 if success, or negative error code otherwise.
119  */
__damon_va_three_regions(struct mm_struct * mm,struct damon_addr_range regions[3])120 static int __damon_va_three_regions(struct mm_struct *mm,
121 				       struct damon_addr_range regions[3])
122 {
123 	struct damon_addr_range first_gap = {0}, second_gap = {0};
124 	VMA_ITERATOR(vmi, mm, 0);
125 	struct vm_area_struct *vma, *prev = NULL;
126 	unsigned long start;
127 
128 	/*
129 	 * Find the two biggest gaps so that first_gap > second_gap > others.
130 	 * If this is too slow, it can be optimised to examine the maple
131 	 * tree gaps.
132 	 */
133 	rcu_read_lock();
134 	for_each_vma(vmi, vma) {
135 		unsigned long gap;
136 
137 		if (!prev) {
138 			start = vma->vm_start;
139 			goto next;
140 		}
141 		gap = vma->vm_start - prev->vm_end;
142 
143 		if (gap > sz_range(&first_gap)) {
144 			second_gap = first_gap;
145 			first_gap.start = prev->vm_end;
146 			first_gap.end = vma->vm_start;
147 		} else if (gap > sz_range(&second_gap)) {
148 			second_gap.start = prev->vm_end;
149 			second_gap.end = vma->vm_start;
150 		}
151 next:
152 		prev = vma;
153 	}
154 	rcu_read_unlock();
155 
156 	if (!sz_range(&second_gap) || !sz_range(&first_gap))
157 		return -EINVAL;
158 
159 	/* Sort the two biggest gaps by address */
160 	if (first_gap.start > second_gap.start)
161 		swap(first_gap, second_gap);
162 
163 	/* Store the result */
164 	regions[0].start = ALIGN(start, DAMON_MIN_REGION);
165 	regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
166 	regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
167 	regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
168 	regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
169 	regions[2].end = ALIGN(prev->vm_end, DAMON_MIN_REGION);
170 
171 	return 0;
172 }
173 
174 /*
175  * Get the three regions in the given target (task)
176  *
177  * Returns 0 on success, negative error code otherwise.
178  */
damon_va_three_regions(struct damon_target * t,struct damon_addr_range regions[3])179 static int damon_va_three_regions(struct damon_target *t,
180 				struct damon_addr_range regions[3])
181 {
182 	struct mm_struct *mm;
183 	int rc;
184 
185 	mm = damon_get_mm(t);
186 	if (!mm)
187 		return -EINVAL;
188 
189 	mmap_read_lock(mm);
190 	rc = __damon_va_three_regions(mm, regions);
191 	mmap_read_unlock(mm);
192 
193 	mmput(mm);
194 	return rc;
195 }
196 
197 /*
198  * Initialize the monitoring target regions for the given target (task)
199  *
200  * t	the given target
201  *
202  * Because only a number of small portions of the entire address space
203  * is actually mapped to the memory and accessed, monitoring the unmapped
204  * regions is wasteful.  That said, because we can deal with small noises,
205  * tracking every mapping is not strictly required but could even incur a high
206  * overhead if the mapping frequently changes or the number of mappings is
207  * high.  The adaptive regions adjustment mechanism will further help to deal
208  * with the noise by simply identifying the unmapped areas as a region that
209  * has no access.  Moreover, applying the real mappings that would have many
210  * unmapped areas inside will make the adaptive mechanism quite complex.  That
211  * said, too huge unmapped areas inside the monitoring target should be removed
212  * to not take the time for the adaptive mechanism.
213  *
214  * For the reason, we convert the complex mappings to three distinct regions
215  * that cover every mapped area of the address space.  Also the two gaps
216  * between the three regions are the two biggest unmapped areas in the given
217  * address space.  In detail, this function first identifies the start and the
218  * end of the mappings and the two biggest unmapped areas of the address space.
219  * Then, it constructs the three regions as below:
220  *
221  *     [mappings[0]->start, big_two_unmapped_areas[0]->start)
222  *     [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
223  *     [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
224  *
225  * As usual memory map of processes is as below, the gap between the heap and
226  * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
227  * region and the stack will be two biggest unmapped regions.  Because these
228  * gaps are exceptionally huge areas in usual address space, excluding these
229  * two biggest unmapped regions will be sufficient to make a trade-off.
230  *
231  *   <heap>
232  *   <BIG UNMAPPED REGION 1>
233  *   <uppermost mmap()-ed region>
234  *   (other mmap()-ed regions and small unmapped regions)
235  *   <lowermost mmap()-ed region>
236  *   <BIG UNMAPPED REGION 2>
237  *   <stack>
238  */
__damon_va_init_regions(struct damon_ctx * ctx,struct damon_target * t)239 static void __damon_va_init_regions(struct damon_ctx *ctx,
240 				     struct damon_target *t)
241 {
242 	struct damon_target *ti;
243 	struct damon_region *r;
244 	struct damon_addr_range regions[3];
245 	unsigned long sz = 0, nr_pieces;
246 	int i, tidx = 0;
247 
248 	if (damon_va_three_regions(t, regions)) {
249 		damon_for_each_target(ti, ctx) {
250 			if (ti == t)
251 				break;
252 			tidx++;
253 		}
254 		pr_debug("Failed to get three regions of %dth target\n", tidx);
255 		return;
256 	}
257 
258 	for (i = 0; i < 3; i++)
259 		sz += regions[i].end - regions[i].start;
260 	if (ctx->attrs.min_nr_regions)
261 		sz /= ctx->attrs.min_nr_regions;
262 	if (sz < DAMON_MIN_REGION)
263 		sz = DAMON_MIN_REGION;
264 
265 	/* Set the initial three regions of the target */
266 	for (i = 0; i < 3; i++) {
267 		r = damon_new_region(regions[i].start, regions[i].end);
268 		if (!r) {
269 			pr_err("%d'th init region creation failed\n", i);
270 			return;
271 		}
272 		damon_add_region(r, t);
273 
274 		nr_pieces = (regions[i].end - regions[i].start) / sz;
275 		damon_va_evenly_split_region(t, r, nr_pieces);
276 	}
277 }
278 
279 /* Initialize '->regions_list' of every target (task) */
damon_va_init(struct damon_ctx * ctx)280 static void damon_va_init(struct damon_ctx *ctx)
281 {
282 	struct damon_target *t;
283 
284 	damon_for_each_target(t, ctx) {
285 		/* the user may set the target regions as they want */
286 		if (!damon_nr_regions(t))
287 			__damon_va_init_regions(ctx, t);
288 	}
289 }
290 
291 /*
292  * Update regions for current memory mappings
293  */
damon_va_update(struct damon_ctx * ctx)294 static void damon_va_update(struct damon_ctx *ctx)
295 {
296 	struct damon_addr_range three_regions[3];
297 	struct damon_target *t;
298 
299 	damon_for_each_target(t, ctx) {
300 		if (damon_va_three_regions(t, three_regions))
301 			continue;
302 		damon_set_regions(t, three_regions, 3);
303 	}
304 }
305 
damon_mkold_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)306 static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
307 		unsigned long next, struct mm_walk *walk)
308 {
309 	pte_t *pte;
310 	pmd_t pmde;
311 	spinlock_t *ptl;
312 
313 	if (pmd_trans_huge(pmdp_get(pmd))) {
314 		ptl = pmd_lock(walk->mm, pmd);
315 		pmde = pmdp_get(pmd);
316 
317 		if (!pmd_present(pmde)) {
318 			spin_unlock(ptl);
319 			return 0;
320 		}
321 
322 		if (pmd_trans_huge(pmde)) {
323 			damon_pmdp_mkold(pmd, walk->vma, addr);
324 			spin_unlock(ptl);
325 			return 0;
326 		}
327 		spin_unlock(ptl);
328 	}
329 
330 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
331 	if (!pte) {
332 		walk->action = ACTION_AGAIN;
333 		return 0;
334 	}
335 	if (!pte_present(ptep_get(pte)))
336 		goto out;
337 	damon_ptep_mkold(pte, walk->vma, addr);
338 out:
339 	pte_unmap_unlock(pte, ptl);
340 	return 0;
341 }
342 
343 #ifdef CONFIG_HUGETLB_PAGE
damon_hugetlb_mkold(pte_t * pte,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr)344 static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm,
345 				struct vm_area_struct *vma, unsigned long addr)
346 {
347 	bool referenced = false;
348 	pte_t entry = huge_ptep_get(mm, addr, pte);
349 	struct folio *folio = pfn_folio(pte_pfn(entry));
350 	unsigned long psize = huge_page_size(hstate_vma(vma));
351 
352 	folio_get(folio);
353 
354 	if (pte_young(entry)) {
355 		referenced = true;
356 		entry = pte_mkold(entry);
357 		set_huge_pte_at(mm, addr, pte, entry, psize);
358 	}
359 
360 	if (mmu_notifier_clear_young(mm, addr,
361 				     addr + huge_page_size(hstate_vma(vma))))
362 		referenced = true;
363 
364 	if (referenced)
365 		folio_set_young(folio);
366 
367 	folio_set_idle(folio);
368 	folio_put(folio);
369 }
370 
damon_mkold_hugetlb_entry(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)371 static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask,
372 				     unsigned long addr, unsigned long end,
373 				     struct mm_walk *walk)
374 {
375 	struct hstate *h = hstate_vma(walk->vma);
376 	spinlock_t *ptl;
377 	pte_t entry;
378 
379 	ptl = huge_pte_lock(h, walk->mm, pte);
380 	entry = huge_ptep_get(walk->mm, addr, pte);
381 	if (!pte_present(entry))
382 		goto out;
383 
384 	damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr);
385 
386 out:
387 	spin_unlock(ptl);
388 	return 0;
389 }
390 #else
391 #define damon_mkold_hugetlb_entry NULL
392 #endif /* CONFIG_HUGETLB_PAGE */
393 
394 static const struct mm_walk_ops damon_mkold_ops = {
395 	.pmd_entry = damon_mkold_pmd_entry,
396 	.hugetlb_entry = damon_mkold_hugetlb_entry,
397 	.walk_lock = PGWALK_RDLOCK,
398 };
399 
damon_va_mkold(struct mm_struct * mm,unsigned long addr)400 static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
401 {
402 	mmap_read_lock(mm);
403 	walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
404 	mmap_read_unlock(mm);
405 }
406 
407 /*
408  * Functions for the access checking of the regions
409  */
410 
__damon_va_prepare_access_check(struct mm_struct * mm,struct damon_region * r)411 static void __damon_va_prepare_access_check(struct mm_struct *mm,
412 					struct damon_region *r)
413 {
414 	r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
415 
416 	damon_va_mkold(mm, r->sampling_addr);
417 }
418 
damon_va_prepare_access_checks(struct damon_ctx * ctx)419 static void damon_va_prepare_access_checks(struct damon_ctx *ctx)
420 {
421 	struct damon_target *t;
422 	struct mm_struct *mm;
423 	struct damon_region *r;
424 
425 	damon_for_each_target(t, ctx) {
426 		mm = damon_get_mm(t);
427 		if (!mm)
428 			continue;
429 		damon_for_each_region(r, t)
430 			__damon_va_prepare_access_check(mm, r);
431 		mmput(mm);
432 	}
433 }
434 
435 struct damon_young_walk_private {
436 	/* size of the folio for the access checked virtual memory address */
437 	unsigned long *folio_sz;
438 	bool young;
439 };
440 
damon_young_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)441 static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
442 		unsigned long next, struct mm_walk *walk)
443 {
444 	pte_t *pte;
445 	pte_t ptent;
446 	spinlock_t *ptl;
447 	struct folio *folio;
448 	struct damon_young_walk_private *priv = walk->private;
449 
450 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
451 	if (pmd_trans_huge(pmdp_get(pmd))) {
452 		pmd_t pmde;
453 
454 		ptl = pmd_lock(walk->mm, pmd);
455 		pmde = pmdp_get(pmd);
456 
457 		if (!pmd_present(pmde)) {
458 			spin_unlock(ptl);
459 			return 0;
460 		}
461 
462 		if (!pmd_trans_huge(pmde)) {
463 			spin_unlock(ptl);
464 			goto regular_page;
465 		}
466 		folio = damon_get_folio(pmd_pfn(pmde));
467 		if (!folio)
468 			goto huge_out;
469 		if (pmd_young(pmde) || !folio_test_idle(folio) ||
470 					mmu_notifier_test_young(walk->mm,
471 						addr))
472 			priv->young = true;
473 		*priv->folio_sz = HPAGE_PMD_SIZE;
474 		folio_put(folio);
475 huge_out:
476 		spin_unlock(ptl);
477 		return 0;
478 	}
479 
480 regular_page:
481 #endif	/* CONFIG_TRANSPARENT_HUGEPAGE */
482 
483 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
484 	if (!pte) {
485 		walk->action = ACTION_AGAIN;
486 		return 0;
487 	}
488 	ptent = ptep_get(pte);
489 	if (!pte_present(ptent))
490 		goto out;
491 	folio = damon_get_folio(pte_pfn(ptent));
492 	if (!folio)
493 		goto out;
494 	if (pte_young(ptent) || !folio_test_idle(folio) ||
495 			mmu_notifier_test_young(walk->mm, addr))
496 		priv->young = true;
497 	*priv->folio_sz = folio_size(folio);
498 	folio_put(folio);
499 out:
500 	pte_unmap_unlock(pte, ptl);
501 	return 0;
502 }
503 
504 #ifdef CONFIG_HUGETLB_PAGE
damon_young_hugetlb_entry(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)505 static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask,
506 				     unsigned long addr, unsigned long end,
507 				     struct mm_walk *walk)
508 {
509 	struct damon_young_walk_private *priv = walk->private;
510 	struct hstate *h = hstate_vma(walk->vma);
511 	struct folio *folio;
512 	spinlock_t *ptl;
513 	pte_t entry;
514 
515 	ptl = huge_pte_lock(h, walk->mm, pte);
516 	entry = huge_ptep_get(walk->mm, addr, pte);
517 	if (!pte_present(entry))
518 		goto out;
519 
520 	folio = pfn_folio(pte_pfn(entry));
521 	folio_get(folio);
522 
523 	if (pte_young(entry) || !folio_test_idle(folio) ||
524 	    mmu_notifier_test_young(walk->mm, addr))
525 		priv->young = true;
526 	*priv->folio_sz = huge_page_size(h);
527 
528 	folio_put(folio);
529 
530 out:
531 	spin_unlock(ptl);
532 	return 0;
533 }
534 #else
535 #define damon_young_hugetlb_entry NULL
536 #endif /* CONFIG_HUGETLB_PAGE */
537 
538 static const struct mm_walk_ops damon_young_ops = {
539 	.pmd_entry = damon_young_pmd_entry,
540 	.hugetlb_entry = damon_young_hugetlb_entry,
541 	.walk_lock = PGWALK_RDLOCK,
542 };
543 
damon_va_young(struct mm_struct * mm,unsigned long addr,unsigned long * folio_sz)544 static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
545 		unsigned long *folio_sz)
546 {
547 	struct damon_young_walk_private arg = {
548 		.folio_sz = folio_sz,
549 		.young = false,
550 	};
551 
552 	mmap_read_lock(mm);
553 	walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
554 	mmap_read_unlock(mm);
555 	return arg.young;
556 }
557 
558 /*
559  * Check whether the region was accessed after the last preparation
560  *
561  * mm	'mm_struct' for the given virtual address space
562  * r	the region to be checked
563  */
__damon_va_check_access(struct mm_struct * mm,struct damon_region * r,bool same_target,struct damon_attrs * attrs)564 static void __damon_va_check_access(struct mm_struct *mm,
565 				struct damon_region *r, bool same_target,
566 				struct damon_attrs *attrs)
567 {
568 	static unsigned long last_addr;
569 	static unsigned long last_folio_sz = PAGE_SIZE;
570 	static bool last_accessed;
571 
572 	if (!mm) {
573 		damon_update_region_access_rate(r, false, attrs);
574 		return;
575 	}
576 
577 	/* If the region is in the last checked page, reuse the result */
578 	if (same_target && (ALIGN_DOWN(last_addr, last_folio_sz) ==
579 				ALIGN_DOWN(r->sampling_addr, last_folio_sz))) {
580 		damon_update_region_access_rate(r, last_accessed, attrs);
581 		return;
582 	}
583 
584 	last_accessed = damon_va_young(mm, r->sampling_addr, &last_folio_sz);
585 	damon_update_region_access_rate(r, last_accessed, attrs);
586 
587 	last_addr = r->sampling_addr;
588 }
589 
damon_va_check_accesses(struct damon_ctx * ctx)590 static unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
591 {
592 	struct damon_target *t;
593 	struct mm_struct *mm;
594 	struct damon_region *r;
595 	unsigned int max_nr_accesses = 0;
596 	bool same_target;
597 
598 	damon_for_each_target(t, ctx) {
599 		mm = damon_get_mm(t);
600 		same_target = false;
601 		damon_for_each_region(r, t) {
602 			__damon_va_check_access(mm, r, same_target,
603 					&ctx->attrs);
604 			max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
605 			same_target = true;
606 		}
607 		if (mm)
608 			mmput(mm);
609 	}
610 
611 	return max_nr_accesses;
612 }
613 
damos_va_filter_young_match(struct damos_filter * filter,struct folio * folio,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pmd_t * pmdp)614 static bool damos_va_filter_young_match(struct damos_filter *filter,
615 		struct folio *folio, struct vm_area_struct *vma,
616 		unsigned long addr, pte_t *ptep, pmd_t *pmdp)
617 {
618 	bool young = false;
619 
620 	if (ptep)
621 		young = pte_young(ptep_get(ptep));
622 	else if (pmdp)
623 		young = pmd_young(pmdp_get(pmdp));
624 
625 	young = young || !folio_test_idle(folio) ||
626 		mmu_notifier_test_young(vma->vm_mm, addr);
627 
628 	if (young && ptep)
629 		damon_ptep_mkold(ptep, vma, addr);
630 	else if (young && pmdp)
631 		damon_pmdp_mkold(pmdp, vma, addr);
632 
633 	return young == filter->matching;
634 }
635 
damos_va_filter_out(struct damos * scheme,struct folio * folio,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pmd_t * pmdp)636 static bool damos_va_filter_out(struct damos *scheme, struct folio *folio,
637 		struct vm_area_struct *vma, unsigned long addr,
638 		pte_t *ptep, pmd_t *pmdp)
639 {
640 	struct damos_filter *filter;
641 	bool matched;
642 
643 	if (scheme->core_filters_allowed)
644 		return false;
645 
646 	damos_for_each_ops_filter(filter, scheme) {
647 		/*
648 		 * damos_folio_filter_match checks the young filter by doing an
649 		 * rmap on the folio to find its page table. However, being the
650 		 * vaddr scheme, we have direct access to the page tables, so
651 		 * use that instead.
652 		 */
653 		if (filter->type == DAMOS_FILTER_TYPE_YOUNG)
654 			matched = damos_va_filter_young_match(filter, folio,
655 				vma, addr, ptep, pmdp);
656 		else
657 			matched = damos_folio_filter_match(filter, folio);
658 
659 		if (matched)
660 			return !filter->allow;
661 	}
662 	return scheme->ops_filters_default_reject;
663 }
664 
665 struct damos_va_migrate_private {
666 	struct list_head *migration_lists;
667 	struct damos *scheme;
668 };
669 
670 /*
671  * Place the given folio in the migration_list corresponding to where the folio
672  * should be migrated.
673  *
674  * The algorithm used here is similar to weighted_interleave_nid()
675  */
damos_va_migrate_dests_add(struct folio * folio,struct vm_area_struct * vma,unsigned long addr,struct damos_migrate_dests * dests,struct list_head * migration_lists)676 static void damos_va_migrate_dests_add(struct folio *folio,
677 		struct vm_area_struct *vma, unsigned long addr,
678 		struct damos_migrate_dests *dests,
679 		struct list_head *migration_lists)
680 {
681 	pgoff_t ilx;
682 	int order;
683 	unsigned int target;
684 	unsigned int weight_total = 0;
685 	int i;
686 
687 	/*
688 	 * If dests is empty, there is only one migration list corresponding
689 	 * to s->target_nid.
690 	 */
691 	if (!dests->nr_dests) {
692 		i = 0;
693 		goto isolate;
694 	}
695 
696 	order = folio_order(folio);
697 	ilx = vma->vm_pgoff >> order;
698 	ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order);
699 
700 	for (i = 0; i < dests->nr_dests; i++)
701 		weight_total += dests->weight_arr[i];
702 
703 	/* If the total weights are somehow 0, don't migrate at all */
704 	if (!weight_total)
705 		return;
706 
707 	target = ilx % weight_total;
708 	for (i = 0; i < dests->nr_dests; i++) {
709 		if (target < dests->weight_arr[i])
710 			break;
711 		target -= dests->weight_arr[i];
712 	}
713 
714 isolate:
715 	if (!folio_isolate_lru(folio))
716 		return;
717 
718 	list_add(&folio->lru, &migration_lists[i]);
719 }
720 
721 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
damos_va_migrate_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)722 static int damos_va_migrate_pmd_entry(pmd_t *pmd, unsigned long addr,
723 		unsigned long next, struct mm_walk *walk)
724 {
725 	struct damos_va_migrate_private *priv = walk->private;
726 	struct list_head *migration_lists = priv->migration_lists;
727 	struct damos *s = priv->scheme;
728 	struct damos_migrate_dests *dests = &s->migrate_dests;
729 	struct folio *folio;
730 	spinlock_t *ptl;
731 	pmd_t pmde;
732 
733 	ptl = pmd_lock(walk->mm, pmd);
734 	pmde = pmdp_get(pmd);
735 
736 	if (!pmd_present(pmde) || !pmd_trans_huge(pmde))
737 		goto unlock;
738 
739 	/* Tell page walk code to not split the PMD */
740 	walk->action = ACTION_CONTINUE;
741 
742 	folio = damon_get_folio(pmd_pfn(pmde));
743 	if (!folio)
744 		goto unlock;
745 
746 	if (damos_va_filter_out(s, folio, walk->vma, addr, NULL, pmd))
747 		goto put_folio;
748 
749 	damos_va_migrate_dests_add(folio, walk->vma, addr, dests,
750 		migration_lists);
751 
752 put_folio:
753 	folio_put(folio);
754 unlock:
755 	spin_unlock(ptl);
756 	return 0;
757 }
758 #else
759 #define damos_va_migrate_pmd_entry NULL
760 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
761 
damos_va_migrate_pte_entry(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)762 static int damos_va_migrate_pte_entry(pte_t *pte, unsigned long addr,
763 		unsigned long next, struct mm_walk *walk)
764 {
765 	struct damos_va_migrate_private *priv = walk->private;
766 	struct list_head *migration_lists = priv->migration_lists;
767 	struct damos *s = priv->scheme;
768 	struct damos_migrate_dests *dests = &s->migrate_dests;
769 	struct folio *folio;
770 	pte_t ptent;
771 
772 	ptent = ptep_get(pte);
773 	if (pte_none(ptent) || !pte_present(ptent))
774 		return 0;
775 
776 	folio = damon_get_folio(pte_pfn(ptent));
777 	if (!folio)
778 		return 0;
779 
780 	if (damos_va_filter_out(s, folio, walk->vma, addr, pte, NULL))
781 		goto put_folio;
782 
783 	damos_va_migrate_dests_add(folio, walk->vma, addr, dests,
784 		migration_lists);
785 
786 put_folio:
787 	folio_put(folio);
788 	return 0;
789 }
790 
791 /*
792  * Functions for the target validity check and cleanup
793  */
794 
damon_va_target_valid(struct damon_target * t)795 static bool damon_va_target_valid(struct damon_target *t)
796 {
797 	struct task_struct *task;
798 
799 	task = damon_get_task_struct(t);
800 	if (task) {
801 		put_task_struct(task);
802 		return true;
803 	}
804 
805 	return false;
806 }
807 
damon_va_cleanup_target(struct damon_target * t)808 static void damon_va_cleanup_target(struct damon_target *t)
809 {
810 	put_pid(t->pid);
811 }
812 
813 #ifndef CONFIG_ADVISE_SYSCALLS
damos_madvise(struct damon_target * target,struct damon_region * r,int behavior)814 static unsigned long damos_madvise(struct damon_target *target,
815 		struct damon_region *r, int behavior)
816 {
817 	return 0;
818 }
819 #else
damos_madvise(struct damon_target * target,struct damon_region * r,int behavior)820 static unsigned long damos_madvise(struct damon_target *target,
821 		struct damon_region *r, int behavior)
822 {
823 	struct mm_struct *mm;
824 	unsigned long start = PAGE_ALIGN(r->ar.start);
825 	unsigned long len = PAGE_ALIGN(damon_sz_region(r));
826 	unsigned long applied;
827 
828 	mm = damon_get_mm(target);
829 	if (!mm)
830 		return 0;
831 
832 	applied = do_madvise(mm, start, len, behavior) ? 0 : len;
833 	mmput(mm);
834 
835 	return applied;
836 }
837 #endif	/* CONFIG_ADVISE_SYSCALLS */
838 
damos_va_migrate(struct damon_target * target,struct damon_region * r,struct damos * s,unsigned long * sz_filter_passed)839 static unsigned long damos_va_migrate(struct damon_target *target,
840 		struct damon_region *r, struct damos *s,
841 		unsigned long *sz_filter_passed)
842 {
843 	LIST_HEAD(folio_list);
844 	struct damos_va_migrate_private priv;
845 	struct mm_struct *mm;
846 	int nr_dests;
847 	int nid;
848 	bool use_target_nid;
849 	unsigned long applied = 0;
850 	struct damos_migrate_dests *dests = &s->migrate_dests;
851 	struct mm_walk_ops walk_ops = {
852 		.pmd_entry = damos_va_migrate_pmd_entry,
853 		.pte_entry = damos_va_migrate_pte_entry,
854 		.walk_lock = PGWALK_RDLOCK,
855 	};
856 
857 	use_target_nid = dests->nr_dests == 0;
858 	nr_dests = use_target_nid ? 1 : dests->nr_dests;
859 	priv.scheme = s;
860 	priv.migration_lists = kmalloc_array(nr_dests,
861 		sizeof(*priv.migration_lists), GFP_KERNEL);
862 	if (!priv.migration_lists)
863 		return 0;
864 
865 	for (int i = 0; i < nr_dests; i++)
866 		INIT_LIST_HEAD(&priv.migration_lists[i]);
867 
868 
869 	mm = damon_get_mm(target);
870 	if (!mm)
871 		goto free_lists;
872 
873 	mmap_read_lock(mm);
874 	walk_page_range(mm, r->ar.start, r->ar.end, &walk_ops, &priv);
875 	mmap_read_unlock(mm);
876 	mmput(mm);
877 
878 	for (int i = 0; i < nr_dests; i++) {
879 		nid = use_target_nid ? s->target_nid : dests->node_id_arr[i];
880 		applied += damon_migrate_pages(&priv.migration_lists[i], nid);
881 		cond_resched();
882 	}
883 
884 free_lists:
885 	kfree(priv.migration_lists);
886 	return applied * PAGE_SIZE;
887 }
888 
damon_va_apply_scheme(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * scheme,unsigned long * sz_filter_passed)889 static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx,
890 		struct damon_target *t, struct damon_region *r,
891 		struct damos *scheme, unsigned long *sz_filter_passed)
892 {
893 	int madv_action;
894 
895 	switch (scheme->action) {
896 	case DAMOS_WILLNEED:
897 		madv_action = MADV_WILLNEED;
898 		break;
899 	case DAMOS_COLD:
900 		madv_action = MADV_COLD;
901 		break;
902 	case DAMOS_PAGEOUT:
903 		madv_action = MADV_PAGEOUT;
904 		break;
905 	case DAMOS_HUGEPAGE:
906 		madv_action = MADV_HUGEPAGE;
907 		break;
908 	case DAMOS_NOHUGEPAGE:
909 		madv_action = MADV_NOHUGEPAGE;
910 		break;
911 	case DAMOS_MIGRATE_HOT:
912 	case DAMOS_MIGRATE_COLD:
913 		return damos_va_migrate(t, r, scheme, sz_filter_passed);
914 	case DAMOS_STAT:
915 		return 0;
916 	default:
917 		/*
918 		 * DAMOS actions that are not yet supported by 'vaddr'.
919 		 */
920 		return 0;
921 	}
922 
923 	return damos_madvise(t, r, madv_action);
924 }
925 
damon_va_scheme_score(struct damon_ctx * context,struct damon_target * t,struct damon_region * r,struct damos * scheme)926 static int damon_va_scheme_score(struct damon_ctx *context,
927 		struct damon_target *t, struct damon_region *r,
928 		struct damos *scheme)
929 {
930 
931 	switch (scheme->action) {
932 	case DAMOS_PAGEOUT:
933 		return damon_cold_score(context, r, scheme);
934 	case DAMOS_MIGRATE_HOT:
935 		return damon_hot_score(context, r, scheme);
936 	case DAMOS_MIGRATE_COLD:
937 		return damon_cold_score(context, r, scheme);
938 	default:
939 		break;
940 	}
941 
942 	return DAMOS_MAX_SCORE;
943 }
944 
damon_va_initcall(void)945 static int __init damon_va_initcall(void)
946 {
947 	struct damon_operations ops = {
948 		.id = DAMON_OPS_VADDR,
949 		.init = damon_va_init,
950 		.update = damon_va_update,
951 		.prepare_access_checks = damon_va_prepare_access_checks,
952 		.check_accesses = damon_va_check_accesses,
953 		.target_valid = damon_va_target_valid,
954 		.cleanup_target = damon_va_cleanup_target,
955 		.cleanup = NULL,
956 		.apply_scheme = damon_va_apply_scheme,
957 		.get_scheme_score = damon_va_scheme_score,
958 	};
959 	/* ops for fixed virtual address ranges */
960 	struct damon_operations ops_fvaddr = ops;
961 	int err;
962 
963 	/* Don't set the monitoring target regions for the entire mapping */
964 	ops_fvaddr.id = DAMON_OPS_FVADDR;
965 	ops_fvaddr.init = NULL;
966 	ops_fvaddr.update = NULL;
967 
968 	err = damon_register_ops(&ops);
969 	if (err)
970 		return err;
971 	return damon_register_ops(&ops_fvaddr);
972 };
973 
974 subsys_initcall(damon_va_initcall);
975 
976 #include "tests/vaddr-kunit.h"
977