1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Data Access Monitor
4 *
5 * Author: SeongJae Park <sj@kernel.org>
6 */
7
8 #define pr_fmt(fmt) "damon: " fmt
9
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/mm.h>
14 #include <linux/psi.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/string_choices.h>
18
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/damon.h>
21
22 #ifdef CONFIG_DAMON_KUNIT_TEST
23 #undef DAMON_MIN_REGION
24 #define DAMON_MIN_REGION 1
25 #endif
26
27 static DEFINE_MUTEX(damon_lock);
28 static int nr_running_ctxs;
29 static bool running_exclusive_ctxs;
30
31 static DEFINE_MUTEX(damon_ops_lock);
32 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
33
34 static struct kmem_cache *damon_region_cache __ro_after_init;
35
36 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
__damon_is_registered_ops(enum damon_ops_id id)37 static bool __damon_is_registered_ops(enum damon_ops_id id)
38 {
39 struct damon_operations empty_ops = {};
40
41 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
42 return false;
43 return true;
44 }
45
46 /**
47 * damon_is_registered_ops() - Check if a given damon_operations is registered.
48 * @id: Id of the damon_operations to check if registered.
49 *
50 * Return: true if the ops is set, false otherwise.
51 */
damon_is_registered_ops(enum damon_ops_id id)52 bool damon_is_registered_ops(enum damon_ops_id id)
53 {
54 bool registered;
55
56 if (id >= NR_DAMON_OPS)
57 return false;
58 mutex_lock(&damon_ops_lock);
59 registered = __damon_is_registered_ops(id);
60 mutex_unlock(&damon_ops_lock);
61 return registered;
62 }
63
64 /**
65 * damon_register_ops() - Register a monitoring operations set to DAMON.
66 * @ops: monitoring operations set to register.
67 *
68 * This function registers a monitoring operations set of valid &struct
69 * damon_operations->id so that others can find and use them later.
70 *
71 * Return: 0 on success, negative error code otherwise.
72 */
damon_register_ops(struct damon_operations * ops)73 int damon_register_ops(struct damon_operations *ops)
74 {
75 int err = 0;
76
77 if (ops->id >= NR_DAMON_OPS)
78 return -EINVAL;
79
80 mutex_lock(&damon_ops_lock);
81 /* Fail for already registered ops */
82 if (__damon_is_registered_ops(ops->id))
83 err = -EINVAL;
84 else
85 damon_registered_ops[ops->id] = *ops;
86 mutex_unlock(&damon_ops_lock);
87 return err;
88 }
89
90 /**
91 * damon_select_ops() - Select a monitoring operations to use with the context.
92 * @ctx: monitoring context to use the operations.
93 * @id: id of the registered monitoring operations to select.
94 *
95 * This function finds registered monitoring operations set of @id and make
96 * @ctx to use it.
97 *
98 * Return: 0 on success, negative error code otherwise.
99 */
damon_select_ops(struct damon_ctx * ctx,enum damon_ops_id id)100 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
101 {
102 int err = 0;
103
104 if (id >= NR_DAMON_OPS)
105 return -EINVAL;
106
107 mutex_lock(&damon_ops_lock);
108 if (!__damon_is_registered_ops(id))
109 err = -EINVAL;
110 else
111 ctx->ops = damon_registered_ops[id];
112 mutex_unlock(&damon_ops_lock);
113 return err;
114 }
115
116 /*
117 * Construct a damon_region struct
118 *
119 * Returns the pointer to the new struct if success, or NULL otherwise
120 */
damon_new_region(unsigned long start,unsigned long end)121 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
122 {
123 struct damon_region *region;
124
125 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
126 if (!region)
127 return NULL;
128
129 region->ar.start = start;
130 region->ar.end = end;
131 region->nr_accesses = 0;
132 region->nr_accesses_bp = 0;
133 INIT_LIST_HEAD(®ion->list);
134
135 region->age = 0;
136 region->last_nr_accesses = 0;
137
138 return region;
139 }
140
damon_add_region(struct damon_region * r,struct damon_target * t)141 void damon_add_region(struct damon_region *r, struct damon_target *t)
142 {
143 list_add_tail(&r->list, &t->regions_list);
144 t->nr_regions++;
145 }
146
damon_del_region(struct damon_region * r,struct damon_target * t)147 static void damon_del_region(struct damon_region *r, struct damon_target *t)
148 {
149 list_del(&r->list);
150 t->nr_regions--;
151 }
152
damon_free_region(struct damon_region * r)153 static void damon_free_region(struct damon_region *r)
154 {
155 kmem_cache_free(damon_region_cache, r);
156 }
157
damon_destroy_region(struct damon_region * r,struct damon_target * t)158 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
159 {
160 damon_del_region(r, t);
161 damon_free_region(r);
162 }
163
164 /*
165 * Check whether a region is intersecting an address range
166 *
167 * Returns true if it is.
168 */
damon_intersect(struct damon_region * r,struct damon_addr_range * re)169 static bool damon_intersect(struct damon_region *r,
170 struct damon_addr_range *re)
171 {
172 return !(r->ar.end <= re->start || re->end <= r->ar.start);
173 }
174
175 /*
176 * Fill holes in regions with new regions.
177 */
damon_fill_regions_holes(struct damon_region * first,struct damon_region * last,struct damon_target * t)178 static int damon_fill_regions_holes(struct damon_region *first,
179 struct damon_region *last, struct damon_target *t)
180 {
181 struct damon_region *r = first;
182
183 damon_for_each_region_from(r, t) {
184 struct damon_region *next, *newr;
185
186 if (r == last)
187 break;
188 next = damon_next_region(r);
189 if (r->ar.end != next->ar.start) {
190 newr = damon_new_region(r->ar.end, next->ar.start);
191 if (!newr)
192 return -ENOMEM;
193 damon_insert_region(newr, r, next, t);
194 }
195 }
196 return 0;
197 }
198
199 /*
200 * damon_set_regions() - Set regions of a target for given address ranges.
201 * @t: the given target.
202 * @ranges: array of new monitoring target ranges.
203 * @nr_ranges: length of @ranges.
204 * @min_sz_region: minimum region size.
205 *
206 * This function adds new regions to, or modify existing regions of a
207 * monitoring target to fit in specific ranges.
208 *
209 * Return: 0 if success, or negative error code otherwise.
210 */
damon_set_regions(struct damon_target * t,struct damon_addr_range * ranges,unsigned int nr_ranges,unsigned long min_sz_region)211 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
212 unsigned int nr_ranges, unsigned long min_sz_region)
213 {
214 struct damon_region *r, *next;
215 unsigned int i;
216 int err;
217
218 /* Remove regions which are not in the new ranges */
219 damon_for_each_region_safe(r, next, t) {
220 for (i = 0; i < nr_ranges; i++) {
221 if (damon_intersect(r, &ranges[i]))
222 break;
223 }
224 if (i == nr_ranges)
225 damon_destroy_region(r, t);
226 }
227
228 r = damon_first_region(t);
229 /* Add new regions or resize existing regions to fit in the ranges */
230 for (i = 0; i < nr_ranges; i++) {
231 struct damon_region *first = NULL, *last, *newr;
232 struct damon_addr_range *range;
233
234 range = &ranges[i];
235 /* Get the first/last regions intersecting with the range */
236 damon_for_each_region_from(r, t) {
237 if (damon_intersect(r, range)) {
238 if (!first)
239 first = r;
240 last = r;
241 }
242 if (r->ar.start >= range->end)
243 break;
244 }
245 if (!first) {
246 /* no region intersects with this range */
247 newr = damon_new_region(
248 ALIGN_DOWN(range->start,
249 min_sz_region),
250 ALIGN(range->end, min_sz_region));
251 if (!newr)
252 return -ENOMEM;
253 damon_insert_region(newr, damon_prev_region(r), r, t);
254 } else {
255 /* resize intersecting regions to fit in this range */
256 first->ar.start = ALIGN_DOWN(range->start,
257 min_sz_region);
258 last->ar.end = ALIGN(range->end, min_sz_region);
259
260 /* fill possible holes in the range */
261 err = damon_fill_regions_holes(first, last, t);
262 if (err)
263 return err;
264 }
265 }
266 return 0;
267 }
268
damos_new_filter(enum damos_filter_type type,bool matching,bool allow)269 struct damos_filter *damos_new_filter(enum damos_filter_type type,
270 bool matching, bool allow)
271 {
272 struct damos_filter *filter;
273
274 filter = kmalloc(sizeof(*filter), GFP_KERNEL);
275 if (!filter)
276 return NULL;
277 filter->type = type;
278 filter->matching = matching;
279 filter->allow = allow;
280 INIT_LIST_HEAD(&filter->list);
281 return filter;
282 }
283
284 /**
285 * damos_filter_for_ops() - Return if the filter is ops-hndled one.
286 * @type: type of the filter.
287 *
288 * Return: true if the filter of @type needs to be handled by ops layer, false
289 * otherwise.
290 */
damos_filter_for_ops(enum damos_filter_type type)291 bool damos_filter_for_ops(enum damos_filter_type type)
292 {
293 switch (type) {
294 case DAMOS_FILTER_TYPE_ADDR:
295 case DAMOS_FILTER_TYPE_TARGET:
296 return false;
297 default:
298 break;
299 }
300 return true;
301 }
302
damos_add_filter(struct damos * s,struct damos_filter * f)303 void damos_add_filter(struct damos *s, struct damos_filter *f)
304 {
305 if (damos_filter_for_ops(f->type))
306 list_add_tail(&f->list, &s->ops_filters);
307 else
308 list_add_tail(&f->list, &s->filters);
309 }
310
damos_del_filter(struct damos_filter * f)311 static void damos_del_filter(struct damos_filter *f)
312 {
313 list_del(&f->list);
314 }
315
damos_free_filter(struct damos_filter * f)316 static void damos_free_filter(struct damos_filter *f)
317 {
318 kfree(f);
319 }
320
damos_destroy_filter(struct damos_filter * f)321 void damos_destroy_filter(struct damos_filter *f)
322 {
323 damos_del_filter(f);
324 damos_free_filter(f);
325 }
326
damos_new_quota_goal(enum damos_quota_goal_metric metric,unsigned long target_value)327 struct damos_quota_goal *damos_new_quota_goal(
328 enum damos_quota_goal_metric metric,
329 unsigned long target_value)
330 {
331 struct damos_quota_goal *goal;
332
333 goal = kmalloc(sizeof(*goal), GFP_KERNEL);
334 if (!goal)
335 return NULL;
336 goal->metric = metric;
337 goal->target_value = target_value;
338 INIT_LIST_HEAD(&goal->list);
339 return goal;
340 }
341
damos_add_quota_goal(struct damos_quota * q,struct damos_quota_goal * g)342 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g)
343 {
344 list_add_tail(&g->list, &q->goals);
345 }
346
damos_del_quota_goal(struct damos_quota_goal * g)347 static void damos_del_quota_goal(struct damos_quota_goal *g)
348 {
349 list_del(&g->list);
350 }
351
damos_free_quota_goal(struct damos_quota_goal * g)352 static void damos_free_quota_goal(struct damos_quota_goal *g)
353 {
354 kfree(g);
355 }
356
damos_destroy_quota_goal(struct damos_quota_goal * g)357 void damos_destroy_quota_goal(struct damos_quota_goal *g)
358 {
359 damos_del_quota_goal(g);
360 damos_free_quota_goal(g);
361 }
362
363 /* initialize fields of @quota that normally API users wouldn't set */
damos_quota_init(struct damos_quota * quota)364 static struct damos_quota *damos_quota_init(struct damos_quota *quota)
365 {
366 quota->esz = 0;
367 quota->total_charged_sz = 0;
368 quota->total_charged_ns = 0;
369 quota->charged_sz = 0;
370 quota->charged_from = 0;
371 quota->charge_target_from = NULL;
372 quota->charge_addr_from = 0;
373 quota->esz_bp = 0;
374 return quota;
375 }
376
damon_new_scheme(struct damos_access_pattern * pattern,enum damos_action action,unsigned long apply_interval_us,struct damos_quota * quota,struct damos_watermarks * wmarks,int target_nid)377 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
378 enum damos_action action,
379 unsigned long apply_interval_us,
380 struct damos_quota *quota,
381 struct damos_watermarks *wmarks,
382 int target_nid)
383 {
384 struct damos *scheme;
385
386 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
387 if (!scheme)
388 return NULL;
389 scheme->pattern = *pattern;
390 scheme->action = action;
391 scheme->apply_interval_us = apply_interval_us;
392 /*
393 * next_apply_sis will be set when kdamond starts. While kdamond is
394 * running, it will also updated when it is added to the DAMON context,
395 * or damon_attrs are updated.
396 */
397 scheme->next_apply_sis = 0;
398 scheme->walk_completed = false;
399 INIT_LIST_HEAD(&scheme->filters);
400 INIT_LIST_HEAD(&scheme->ops_filters);
401 scheme->stat = (struct damos_stat){};
402 INIT_LIST_HEAD(&scheme->list);
403
404 scheme->quota = *(damos_quota_init(quota));
405 /* quota.goals should be separately set by caller */
406 INIT_LIST_HEAD(&scheme->quota.goals);
407
408 scheme->wmarks = *wmarks;
409 scheme->wmarks.activated = true;
410
411 scheme->migrate_dests = (struct damos_migrate_dests){};
412 scheme->target_nid = target_nid;
413
414 return scheme;
415 }
416
damos_set_next_apply_sis(struct damos * s,struct damon_ctx * ctx)417 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx)
418 {
419 unsigned long sample_interval = ctx->attrs.sample_interval ?
420 ctx->attrs.sample_interval : 1;
421 unsigned long apply_interval = s->apply_interval_us ?
422 s->apply_interval_us : ctx->attrs.aggr_interval;
423
424 s->next_apply_sis = ctx->passed_sample_intervals +
425 apply_interval / sample_interval;
426 }
427
damon_add_scheme(struct damon_ctx * ctx,struct damos * s)428 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
429 {
430 list_add_tail(&s->list, &ctx->schemes);
431 damos_set_next_apply_sis(s, ctx);
432 }
433
damon_del_scheme(struct damos * s)434 static void damon_del_scheme(struct damos *s)
435 {
436 list_del(&s->list);
437 }
438
damon_free_scheme(struct damos * s)439 static void damon_free_scheme(struct damos *s)
440 {
441 kfree(s);
442 }
443
damon_destroy_scheme(struct damos * s)444 void damon_destroy_scheme(struct damos *s)
445 {
446 struct damos_quota_goal *g, *g_next;
447 struct damos_filter *f, *next;
448
449 damos_for_each_quota_goal_safe(g, g_next, &s->quota)
450 damos_destroy_quota_goal(g);
451
452 damos_for_each_filter_safe(f, next, s)
453 damos_destroy_filter(f);
454
455 kfree(s->migrate_dests.node_id_arr);
456 kfree(s->migrate_dests.weight_arr);
457 damon_del_scheme(s);
458 damon_free_scheme(s);
459 }
460
461 /*
462 * Construct a damon_target struct
463 *
464 * Returns the pointer to the new struct if success, or NULL otherwise
465 */
damon_new_target(void)466 struct damon_target *damon_new_target(void)
467 {
468 struct damon_target *t;
469
470 t = kmalloc(sizeof(*t), GFP_KERNEL);
471 if (!t)
472 return NULL;
473
474 t->pid = NULL;
475 t->nr_regions = 0;
476 INIT_LIST_HEAD(&t->regions_list);
477 INIT_LIST_HEAD(&t->list);
478
479 return t;
480 }
481
damon_add_target(struct damon_ctx * ctx,struct damon_target * t)482 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
483 {
484 list_add_tail(&t->list, &ctx->adaptive_targets);
485 }
486
damon_targets_empty(struct damon_ctx * ctx)487 bool damon_targets_empty(struct damon_ctx *ctx)
488 {
489 return list_empty(&ctx->adaptive_targets);
490 }
491
damon_del_target(struct damon_target * t)492 static void damon_del_target(struct damon_target *t)
493 {
494 list_del(&t->list);
495 }
496
damon_free_target(struct damon_target * t)497 void damon_free_target(struct damon_target *t)
498 {
499 struct damon_region *r, *next;
500
501 damon_for_each_region_safe(r, next, t)
502 damon_free_region(r);
503 kfree(t);
504 }
505
damon_destroy_target(struct damon_target * t,struct damon_ctx * ctx)506 void damon_destroy_target(struct damon_target *t, struct damon_ctx *ctx)
507 {
508
509 if (ctx && ctx->ops.cleanup_target)
510 ctx->ops.cleanup_target(t);
511
512 damon_del_target(t);
513 damon_free_target(t);
514 }
515
damon_nr_regions(struct damon_target * t)516 unsigned int damon_nr_regions(struct damon_target *t)
517 {
518 return t->nr_regions;
519 }
520
damon_new_ctx(void)521 struct damon_ctx *damon_new_ctx(void)
522 {
523 struct damon_ctx *ctx;
524
525 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
526 if (!ctx)
527 return NULL;
528
529 init_completion(&ctx->kdamond_started);
530
531 ctx->attrs.sample_interval = 5 * 1000;
532 ctx->attrs.aggr_interval = 100 * 1000;
533 ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
534
535 ctx->passed_sample_intervals = 0;
536 /* These will be set from kdamond_init_ctx() */
537 ctx->next_aggregation_sis = 0;
538 ctx->next_ops_update_sis = 0;
539
540 mutex_init(&ctx->kdamond_lock);
541 INIT_LIST_HEAD(&ctx->call_controls);
542 mutex_init(&ctx->call_controls_lock);
543 mutex_init(&ctx->walk_control_lock);
544
545 ctx->attrs.min_nr_regions = 10;
546 ctx->attrs.max_nr_regions = 1000;
547
548 ctx->addr_unit = 1;
549 ctx->min_sz_region = DAMON_MIN_REGION;
550
551 INIT_LIST_HEAD(&ctx->adaptive_targets);
552 INIT_LIST_HEAD(&ctx->schemes);
553
554 return ctx;
555 }
556
damon_destroy_targets(struct damon_ctx * ctx)557 static void damon_destroy_targets(struct damon_ctx *ctx)
558 {
559 struct damon_target *t, *next_t;
560
561 damon_for_each_target_safe(t, next_t, ctx)
562 damon_destroy_target(t, ctx);
563 }
564
damon_destroy_ctx(struct damon_ctx * ctx)565 void damon_destroy_ctx(struct damon_ctx *ctx)
566 {
567 struct damos *s, *next_s;
568
569 damon_destroy_targets(ctx);
570
571 damon_for_each_scheme_safe(s, next_s, ctx)
572 damon_destroy_scheme(s);
573
574 kfree(ctx);
575 }
576
damon_attrs_equals(const struct damon_attrs * attrs1,const struct damon_attrs * attrs2)577 static bool damon_attrs_equals(const struct damon_attrs *attrs1,
578 const struct damon_attrs *attrs2)
579 {
580 const struct damon_intervals_goal *ig1 = &attrs1->intervals_goal;
581 const struct damon_intervals_goal *ig2 = &attrs2->intervals_goal;
582
583 return attrs1->sample_interval == attrs2->sample_interval &&
584 attrs1->aggr_interval == attrs2->aggr_interval &&
585 attrs1->ops_update_interval == attrs2->ops_update_interval &&
586 attrs1->min_nr_regions == attrs2->min_nr_regions &&
587 attrs1->max_nr_regions == attrs2->max_nr_regions &&
588 ig1->access_bp == ig2->access_bp &&
589 ig1->aggrs == ig2->aggrs &&
590 ig1->min_sample_us == ig2->min_sample_us &&
591 ig1->max_sample_us == ig2->max_sample_us;
592 }
593
damon_age_for_new_attrs(unsigned int age,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)594 static unsigned int damon_age_for_new_attrs(unsigned int age,
595 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
596 {
597 return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
598 }
599
600 /* convert access ratio in bp (per 10,000) to nr_accesses */
damon_accesses_bp_to_nr_accesses(unsigned int accesses_bp,struct damon_attrs * attrs)601 static unsigned int damon_accesses_bp_to_nr_accesses(
602 unsigned int accesses_bp, struct damon_attrs *attrs)
603 {
604 return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
605 }
606
607 /*
608 * Convert nr_accesses to access ratio in bp (per 10,000).
609 *
610 * Callers should ensure attrs.aggr_interval is not zero, like
611 * damon_update_monitoring_results() does . Otherwise, divide-by-zero would
612 * happen.
613 */
damon_nr_accesses_to_accesses_bp(unsigned int nr_accesses,struct damon_attrs * attrs)614 static unsigned int damon_nr_accesses_to_accesses_bp(
615 unsigned int nr_accesses, struct damon_attrs *attrs)
616 {
617 return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
618 }
619
damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)620 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
621 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
622 {
623 return damon_accesses_bp_to_nr_accesses(
624 damon_nr_accesses_to_accesses_bp(
625 nr_accesses, old_attrs),
626 new_attrs);
627 }
628
damon_update_monitoring_result(struct damon_region * r,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs,bool aggregating)629 static void damon_update_monitoring_result(struct damon_region *r,
630 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs,
631 bool aggregating)
632 {
633 if (!aggregating) {
634 r->nr_accesses = damon_nr_accesses_for_new_attrs(
635 r->nr_accesses, old_attrs, new_attrs);
636 r->nr_accesses_bp = r->nr_accesses * 10000;
637 } else {
638 /*
639 * if this is called in the middle of the aggregation, reset
640 * the aggregations we made so far for this aggregation
641 * interval. In other words, make the status like
642 * kdamond_reset_aggregated() is called.
643 */
644 r->last_nr_accesses = damon_nr_accesses_for_new_attrs(
645 r->last_nr_accesses, old_attrs, new_attrs);
646 r->nr_accesses_bp = r->last_nr_accesses * 10000;
647 r->nr_accesses = 0;
648 }
649 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
650 }
651
652 /*
653 * region->nr_accesses is the number of sampling intervals in the last
654 * aggregation interval that access to the region has found, and region->age is
655 * the number of aggregation intervals that its access pattern has maintained.
656 * For the reason, the real meaning of the two fields depend on current
657 * sampling interval and aggregation interval. This function updates
658 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
659 */
damon_update_monitoring_results(struct damon_ctx * ctx,struct damon_attrs * new_attrs,bool aggregating)660 static void damon_update_monitoring_results(struct damon_ctx *ctx,
661 struct damon_attrs *new_attrs, bool aggregating)
662 {
663 struct damon_attrs *old_attrs = &ctx->attrs;
664 struct damon_target *t;
665 struct damon_region *r;
666
667 /* if any interval is zero, simply forgive conversion */
668 if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
669 !new_attrs->sample_interval ||
670 !new_attrs->aggr_interval)
671 return;
672
673 damon_for_each_target(t, ctx)
674 damon_for_each_region(r, t)
675 damon_update_monitoring_result(
676 r, old_attrs, new_attrs, aggregating);
677 }
678
679 /*
680 * damon_valid_intervals_goal() - return if the intervals goal of @attrs is
681 * valid.
682 */
damon_valid_intervals_goal(struct damon_attrs * attrs)683 static bool damon_valid_intervals_goal(struct damon_attrs *attrs)
684 {
685 struct damon_intervals_goal *goal = &attrs->intervals_goal;
686
687 /* tuning is disabled */
688 if (!goal->aggrs)
689 return true;
690 if (goal->min_sample_us > goal->max_sample_us)
691 return false;
692 if (attrs->sample_interval < goal->min_sample_us ||
693 goal->max_sample_us < attrs->sample_interval)
694 return false;
695 return true;
696 }
697
698 /**
699 * damon_set_attrs() - Set attributes for the monitoring.
700 * @ctx: monitoring context
701 * @attrs: monitoring attributes
702 *
703 * This function should be called while the kdamond is not running, an access
704 * check results aggregation is not ongoing (e.g., from damon_call().
705 *
706 * Every time interval is in micro-seconds.
707 *
708 * Return: 0 on success, negative error code otherwise.
709 */
damon_set_attrs(struct damon_ctx * ctx,struct damon_attrs * attrs)710 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
711 {
712 unsigned long sample_interval = attrs->sample_interval ?
713 attrs->sample_interval : 1;
714 struct damos *s;
715 bool aggregating = ctx->passed_sample_intervals <
716 ctx->next_aggregation_sis;
717
718 if (!damon_valid_intervals_goal(attrs))
719 return -EINVAL;
720
721 if (attrs->min_nr_regions < 3)
722 return -EINVAL;
723 if (attrs->min_nr_regions > attrs->max_nr_regions)
724 return -EINVAL;
725 if (attrs->sample_interval > attrs->aggr_interval)
726 return -EINVAL;
727
728 /* calls from core-external doesn't set this. */
729 if (!attrs->aggr_samples)
730 attrs->aggr_samples = attrs->aggr_interval / sample_interval;
731
732 ctx->next_aggregation_sis = ctx->passed_sample_intervals +
733 attrs->aggr_interval / sample_interval;
734 ctx->next_ops_update_sis = ctx->passed_sample_intervals +
735 attrs->ops_update_interval / sample_interval;
736
737 damon_update_monitoring_results(ctx, attrs, aggregating);
738 ctx->attrs = *attrs;
739
740 damon_for_each_scheme(s, ctx)
741 damos_set_next_apply_sis(s, ctx);
742
743 return 0;
744 }
745
746 /**
747 * damon_set_schemes() - Set data access monitoring based operation schemes.
748 * @ctx: monitoring context
749 * @schemes: array of the schemes
750 * @nr_schemes: number of entries in @schemes
751 *
752 * This function should not be called while the kdamond of the context is
753 * running.
754 */
damon_set_schemes(struct damon_ctx * ctx,struct damos ** schemes,ssize_t nr_schemes)755 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
756 ssize_t nr_schemes)
757 {
758 struct damos *s, *next;
759 ssize_t i;
760
761 damon_for_each_scheme_safe(s, next, ctx)
762 damon_destroy_scheme(s);
763 for (i = 0; i < nr_schemes; i++)
764 damon_add_scheme(ctx, schemes[i]);
765 }
766
damos_nth_quota_goal(int n,struct damos_quota * q)767 static struct damos_quota_goal *damos_nth_quota_goal(
768 int n, struct damos_quota *q)
769 {
770 struct damos_quota_goal *goal;
771 int i = 0;
772
773 damos_for_each_quota_goal(goal, q) {
774 if (i++ == n)
775 return goal;
776 }
777 return NULL;
778 }
779
damos_commit_quota_goal_union(struct damos_quota_goal * dst,struct damos_quota_goal * src)780 static void damos_commit_quota_goal_union(
781 struct damos_quota_goal *dst, struct damos_quota_goal *src)
782 {
783 switch (dst->metric) {
784 case DAMOS_QUOTA_NODE_MEM_USED_BP:
785 case DAMOS_QUOTA_NODE_MEM_FREE_BP:
786 dst->nid = src->nid;
787 break;
788 default:
789 break;
790 }
791 }
792
damos_commit_quota_goal(struct damos_quota_goal * dst,struct damos_quota_goal * src)793 static void damos_commit_quota_goal(
794 struct damos_quota_goal *dst, struct damos_quota_goal *src)
795 {
796 dst->metric = src->metric;
797 dst->target_value = src->target_value;
798 if (dst->metric == DAMOS_QUOTA_USER_INPUT)
799 dst->current_value = src->current_value;
800 /* keep last_psi_total as is, since it will be updated in next cycle */
801 damos_commit_quota_goal_union(dst, src);
802 }
803
804 /**
805 * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota.
806 * @dst: The commit destination DAMOS quota.
807 * @src: The commit source DAMOS quota.
808 *
809 * Copies user-specified parameters for quota goals from @src to @dst. Users
810 * should use this function for quota goals-level parameters update of running
811 * DAMON contexts, instead of manual in-place updates.
812 *
813 * This function should be called from parameters-update safe context, like
814 * damon_call().
815 */
damos_commit_quota_goals(struct damos_quota * dst,struct damos_quota * src)816 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src)
817 {
818 struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal;
819 int i = 0, j = 0;
820
821 damos_for_each_quota_goal_safe(dst_goal, next, dst) {
822 src_goal = damos_nth_quota_goal(i++, src);
823 if (src_goal)
824 damos_commit_quota_goal(dst_goal, src_goal);
825 else
826 damos_destroy_quota_goal(dst_goal);
827 }
828 damos_for_each_quota_goal_safe(src_goal, next, src) {
829 if (j++ < i)
830 continue;
831 new_goal = damos_new_quota_goal(
832 src_goal->metric, src_goal->target_value);
833 if (!new_goal)
834 return -ENOMEM;
835 damos_commit_quota_goal_union(new_goal, src_goal);
836 damos_add_quota_goal(dst, new_goal);
837 }
838 return 0;
839 }
840
damos_commit_quota(struct damos_quota * dst,struct damos_quota * src)841 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src)
842 {
843 int err;
844
845 dst->reset_interval = src->reset_interval;
846 dst->ms = src->ms;
847 dst->sz = src->sz;
848 err = damos_commit_quota_goals(dst, src);
849 if (err)
850 return err;
851 dst->weight_sz = src->weight_sz;
852 dst->weight_nr_accesses = src->weight_nr_accesses;
853 dst->weight_age = src->weight_age;
854 return 0;
855 }
856
damos_nth_filter(int n,struct damos * s)857 static struct damos_filter *damos_nth_filter(int n, struct damos *s)
858 {
859 struct damos_filter *filter;
860 int i = 0;
861
862 damos_for_each_filter(filter, s) {
863 if (i++ == n)
864 return filter;
865 }
866 return NULL;
867 }
868
damos_nth_ops_filter(int n,struct damos * s)869 static struct damos_filter *damos_nth_ops_filter(int n, struct damos *s)
870 {
871 struct damos_filter *filter;
872 int i = 0;
873
874 damos_for_each_ops_filter(filter, s) {
875 if (i++ == n)
876 return filter;
877 }
878 return NULL;
879 }
880
damos_commit_filter_arg(struct damos_filter * dst,struct damos_filter * src)881 static void damos_commit_filter_arg(
882 struct damos_filter *dst, struct damos_filter *src)
883 {
884 switch (dst->type) {
885 case DAMOS_FILTER_TYPE_MEMCG:
886 dst->memcg_id = src->memcg_id;
887 break;
888 case DAMOS_FILTER_TYPE_ADDR:
889 dst->addr_range = src->addr_range;
890 break;
891 case DAMOS_FILTER_TYPE_TARGET:
892 dst->target_idx = src->target_idx;
893 break;
894 case DAMOS_FILTER_TYPE_HUGEPAGE_SIZE:
895 dst->sz_range = src->sz_range;
896 break;
897 default:
898 break;
899 }
900 }
901
damos_commit_filter(struct damos_filter * dst,struct damos_filter * src)902 static void damos_commit_filter(
903 struct damos_filter *dst, struct damos_filter *src)
904 {
905 dst->type = src->type;
906 dst->matching = src->matching;
907 dst->allow = src->allow;
908 damos_commit_filter_arg(dst, src);
909 }
910
damos_commit_core_filters(struct damos * dst,struct damos * src)911 static int damos_commit_core_filters(struct damos *dst, struct damos *src)
912 {
913 struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
914 int i = 0, j = 0;
915
916 damos_for_each_filter_safe(dst_filter, next, dst) {
917 src_filter = damos_nth_filter(i++, src);
918 if (src_filter)
919 damos_commit_filter(dst_filter, src_filter);
920 else
921 damos_destroy_filter(dst_filter);
922 }
923
924 damos_for_each_filter_safe(src_filter, next, src) {
925 if (j++ < i)
926 continue;
927
928 new_filter = damos_new_filter(
929 src_filter->type, src_filter->matching,
930 src_filter->allow);
931 if (!new_filter)
932 return -ENOMEM;
933 damos_commit_filter_arg(new_filter, src_filter);
934 damos_add_filter(dst, new_filter);
935 }
936 return 0;
937 }
938
damos_commit_ops_filters(struct damos * dst,struct damos * src)939 static int damos_commit_ops_filters(struct damos *dst, struct damos *src)
940 {
941 struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
942 int i = 0, j = 0;
943
944 damos_for_each_ops_filter_safe(dst_filter, next, dst) {
945 src_filter = damos_nth_ops_filter(i++, src);
946 if (src_filter)
947 damos_commit_filter(dst_filter, src_filter);
948 else
949 damos_destroy_filter(dst_filter);
950 }
951
952 damos_for_each_ops_filter_safe(src_filter, next, src) {
953 if (j++ < i)
954 continue;
955
956 new_filter = damos_new_filter(
957 src_filter->type, src_filter->matching,
958 src_filter->allow);
959 if (!new_filter)
960 return -ENOMEM;
961 damos_commit_filter_arg(new_filter, src_filter);
962 damos_add_filter(dst, new_filter);
963 }
964 return 0;
965 }
966
967 /**
968 * damos_filters_default_reject() - decide whether to reject memory that didn't
969 * match with any given filter.
970 * @filters: Given DAMOS filters of a group.
971 */
damos_filters_default_reject(struct list_head * filters)972 static bool damos_filters_default_reject(struct list_head *filters)
973 {
974 struct damos_filter *last_filter;
975
976 if (list_empty(filters))
977 return false;
978 last_filter = list_last_entry(filters, struct damos_filter, list);
979 return last_filter->allow;
980 }
981
damos_set_filters_default_reject(struct damos * s)982 static void damos_set_filters_default_reject(struct damos *s)
983 {
984 if (!list_empty(&s->ops_filters))
985 s->core_filters_default_reject = false;
986 else
987 s->core_filters_default_reject =
988 damos_filters_default_reject(&s->filters);
989 s->ops_filters_default_reject =
990 damos_filters_default_reject(&s->ops_filters);
991 }
992
damos_commit_dests(struct damos * dst,struct damos * src)993 static int damos_commit_dests(struct damos *dst, struct damos *src)
994 {
995 struct damos_migrate_dests *dst_dests, *src_dests;
996
997 dst_dests = &dst->migrate_dests;
998 src_dests = &src->migrate_dests;
999
1000 if (dst_dests->nr_dests != src_dests->nr_dests) {
1001 kfree(dst_dests->node_id_arr);
1002 kfree(dst_dests->weight_arr);
1003
1004 dst_dests->node_id_arr = kmalloc_array(src_dests->nr_dests,
1005 sizeof(*dst_dests->node_id_arr), GFP_KERNEL);
1006 if (!dst_dests->node_id_arr) {
1007 dst_dests->weight_arr = NULL;
1008 return -ENOMEM;
1009 }
1010
1011 dst_dests->weight_arr = kmalloc_array(src_dests->nr_dests,
1012 sizeof(*dst_dests->weight_arr), GFP_KERNEL);
1013 if (!dst_dests->weight_arr) {
1014 /* ->node_id_arr will be freed by scheme destruction */
1015 return -ENOMEM;
1016 }
1017 }
1018
1019 dst_dests->nr_dests = src_dests->nr_dests;
1020 for (int i = 0; i < src_dests->nr_dests; i++) {
1021 dst_dests->node_id_arr[i] = src_dests->node_id_arr[i];
1022 dst_dests->weight_arr[i] = src_dests->weight_arr[i];
1023 }
1024
1025 return 0;
1026 }
1027
damos_commit_filters(struct damos * dst,struct damos * src)1028 static int damos_commit_filters(struct damos *dst, struct damos *src)
1029 {
1030 int err;
1031
1032 err = damos_commit_core_filters(dst, src);
1033 if (err)
1034 return err;
1035 err = damos_commit_ops_filters(dst, src);
1036 if (err)
1037 return err;
1038 damos_set_filters_default_reject(dst);
1039 return 0;
1040 }
1041
damon_nth_scheme(int n,struct damon_ctx * ctx)1042 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx)
1043 {
1044 struct damos *s;
1045 int i = 0;
1046
1047 damon_for_each_scheme(s, ctx) {
1048 if (i++ == n)
1049 return s;
1050 }
1051 return NULL;
1052 }
1053
damos_commit(struct damos * dst,struct damos * src)1054 static int damos_commit(struct damos *dst, struct damos *src)
1055 {
1056 int err;
1057
1058 dst->pattern = src->pattern;
1059 dst->action = src->action;
1060 dst->apply_interval_us = src->apply_interval_us;
1061
1062 err = damos_commit_quota(&dst->quota, &src->quota);
1063 if (err)
1064 return err;
1065
1066 dst->wmarks = src->wmarks;
1067 dst->target_nid = src->target_nid;
1068
1069 err = damos_commit_dests(dst, src);
1070 if (err)
1071 return err;
1072
1073 err = damos_commit_filters(dst, src);
1074 return err;
1075 }
1076
damon_commit_schemes(struct damon_ctx * dst,struct damon_ctx * src)1077 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src)
1078 {
1079 struct damos *dst_scheme, *next, *src_scheme, *new_scheme;
1080 int i = 0, j = 0, err;
1081
1082 damon_for_each_scheme_safe(dst_scheme, next, dst) {
1083 src_scheme = damon_nth_scheme(i++, src);
1084 if (src_scheme) {
1085 err = damos_commit(dst_scheme, src_scheme);
1086 if (err)
1087 return err;
1088 } else {
1089 damon_destroy_scheme(dst_scheme);
1090 }
1091 }
1092
1093 damon_for_each_scheme_safe(src_scheme, next, src) {
1094 if (j++ < i)
1095 continue;
1096 new_scheme = damon_new_scheme(&src_scheme->pattern,
1097 src_scheme->action,
1098 src_scheme->apply_interval_us,
1099 &src_scheme->quota, &src_scheme->wmarks,
1100 NUMA_NO_NODE);
1101 if (!new_scheme)
1102 return -ENOMEM;
1103 err = damos_commit(new_scheme, src_scheme);
1104 if (err) {
1105 damon_destroy_scheme(new_scheme);
1106 return err;
1107 }
1108 damon_add_scheme(dst, new_scheme);
1109 }
1110 return 0;
1111 }
1112
damon_nth_target(int n,struct damon_ctx * ctx)1113 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx)
1114 {
1115 struct damon_target *t;
1116 int i = 0;
1117
1118 damon_for_each_target(t, ctx) {
1119 if (i++ == n)
1120 return t;
1121 }
1122 return NULL;
1123 }
1124
1125 /*
1126 * The caller should ensure the regions of @src are
1127 * 1. valid (end >= src) and
1128 * 2. sorted by starting address.
1129 *
1130 * If @src has no region, @dst keeps current regions.
1131 */
damon_commit_target_regions(struct damon_target * dst,struct damon_target * src,unsigned long src_min_sz_region)1132 static int damon_commit_target_regions(struct damon_target *dst,
1133 struct damon_target *src, unsigned long src_min_sz_region)
1134 {
1135 struct damon_region *src_region;
1136 struct damon_addr_range *ranges;
1137 int i = 0, err;
1138
1139 damon_for_each_region(src_region, src)
1140 i++;
1141 if (!i)
1142 return 0;
1143
1144 ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN);
1145 if (!ranges)
1146 return -ENOMEM;
1147 i = 0;
1148 damon_for_each_region(src_region, src)
1149 ranges[i++] = src_region->ar;
1150 err = damon_set_regions(dst, ranges, i, src_min_sz_region);
1151 kfree(ranges);
1152 return err;
1153 }
1154
damon_commit_target(struct damon_target * dst,bool dst_has_pid,struct damon_target * src,bool src_has_pid,unsigned long src_min_sz_region)1155 static int damon_commit_target(
1156 struct damon_target *dst, bool dst_has_pid,
1157 struct damon_target *src, bool src_has_pid,
1158 unsigned long src_min_sz_region)
1159 {
1160 int err;
1161
1162 err = damon_commit_target_regions(dst, src, src_min_sz_region);
1163 if (err)
1164 return err;
1165 if (dst_has_pid)
1166 put_pid(dst->pid);
1167 if (src_has_pid)
1168 get_pid(src->pid);
1169 dst->pid = src->pid;
1170 return 0;
1171 }
1172
damon_commit_targets(struct damon_ctx * dst,struct damon_ctx * src)1173 static int damon_commit_targets(
1174 struct damon_ctx *dst, struct damon_ctx *src)
1175 {
1176 struct damon_target *dst_target, *next, *src_target, *new_target;
1177 int i = 0, j = 0, err;
1178
1179 damon_for_each_target_safe(dst_target, next, dst) {
1180 src_target = damon_nth_target(i++, src);
1181 if (src_target) {
1182 err = damon_commit_target(
1183 dst_target, damon_target_has_pid(dst),
1184 src_target, damon_target_has_pid(src),
1185 src->min_sz_region);
1186 if (err)
1187 return err;
1188 } else {
1189 struct damos *s;
1190
1191 damon_destroy_target(dst_target, dst);
1192 damon_for_each_scheme(s, dst) {
1193 if (s->quota.charge_target_from == dst_target) {
1194 s->quota.charge_target_from = NULL;
1195 s->quota.charge_addr_from = 0;
1196 }
1197 }
1198 }
1199 }
1200
1201 damon_for_each_target_safe(src_target, next, src) {
1202 if (j++ < i)
1203 continue;
1204 new_target = damon_new_target();
1205 if (!new_target)
1206 return -ENOMEM;
1207 err = damon_commit_target(new_target, false,
1208 src_target, damon_target_has_pid(src),
1209 src->min_sz_region);
1210 if (err) {
1211 damon_destroy_target(new_target, NULL);
1212 return err;
1213 }
1214 damon_add_target(dst, new_target);
1215 }
1216 return 0;
1217 }
1218
1219 /**
1220 * damon_commit_ctx() - Commit parameters of a DAMON context to another.
1221 * @dst: The commit destination DAMON context.
1222 * @src: The commit source DAMON context.
1223 *
1224 * This function copies user-specified parameters from @src to @dst and update
1225 * the internal status and results accordingly. Users should use this function
1226 * for context-level parameters update of running context, instead of manual
1227 * in-place updates.
1228 *
1229 * This function should be called from parameters-update safe context, like
1230 * damon_call().
1231 */
damon_commit_ctx(struct damon_ctx * dst,struct damon_ctx * src)1232 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src)
1233 {
1234 int err;
1235
1236 err = damon_commit_schemes(dst, src);
1237 if (err)
1238 return err;
1239 err = damon_commit_targets(dst, src);
1240 if (err)
1241 return err;
1242 /*
1243 * schemes and targets should be updated first, since
1244 * 1. damon_set_attrs() updates monitoring results of targets and
1245 * next_apply_sis of schemes, and
1246 * 2. ops update should be done after pid handling is done (target
1247 * committing require putting pids).
1248 */
1249 if (!damon_attrs_equals(&dst->attrs, &src->attrs)) {
1250 err = damon_set_attrs(dst, &src->attrs);
1251 if (err)
1252 return err;
1253 }
1254 dst->ops = src->ops;
1255 dst->addr_unit = src->addr_unit;
1256 dst->min_sz_region = src->min_sz_region;
1257
1258 return 0;
1259 }
1260
1261 /**
1262 * damon_nr_running_ctxs() - Return number of currently running contexts.
1263 */
damon_nr_running_ctxs(void)1264 int damon_nr_running_ctxs(void)
1265 {
1266 int nr_ctxs;
1267
1268 mutex_lock(&damon_lock);
1269 nr_ctxs = nr_running_ctxs;
1270 mutex_unlock(&damon_lock);
1271
1272 return nr_ctxs;
1273 }
1274
1275 /* Returns the size upper limit for each monitoring region */
damon_region_sz_limit(struct damon_ctx * ctx)1276 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
1277 {
1278 struct damon_target *t;
1279 struct damon_region *r;
1280 unsigned long sz = 0;
1281
1282 damon_for_each_target(t, ctx) {
1283 damon_for_each_region(r, t)
1284 sz += damon_sz_region(r);
1285 }
1286
1287 if (ctx->attrs.min_nr_regions)
1288 sz /= ctx->attrs.min_nr_regions;
1289 if (sz < ctx->min_sz_region)
1290 sz = ctx->min_sz_region;
1291
1292 return sz;
1293 }
1294
1295 static int kdamond_fn(void *data);
1296
1297 /*
1298 * __damon_start() - Starts monitoring with given context.
1299 * @ctx: monitoring context
1300 *
1301 * This function should be called while damon_lock is hold.
1302 *
1303 * Return: 0 on success, negative error code otherwise.
1304 */
__damon_start(struct damon_ctx * ctx)1305 static int __damon_start(struct damon_ctx *ctx)
1306 {
1307 int err = -EBUSY;
1308
1309 mutex_lock(&ctx->kdamond_lock);
1310 if (!ctx->kdamond) {
1311 err = 0;
1312 reinit_completion(&ctx->kdamond_started);
1313 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
1314 nr_running_ctxs);
1315 if (IS_ERR(ctx->kdamond)) {
1316 err = PTR_ERR(ctx->kdamond);
1317 ctx->kdamond = NULL;
1318 } else {
1319 wait_for_completion(&ctx->kdamond_started);
1320 }
1321 }
1322 mutex_unlock(&ctx->kdamond_lock);
1323
1324 return err;
1325 }
1326
1327 /**
1328 * damon_start() - Starts the monitorings for a given group of contexts.
1329 * @ctxs: an array of the pointers for contexts to start monitoring
1330 * @nr_ctxs: size of @ctxs
1331 * @exclusive: exclusiveness of this contexts group
1332 *
1333 * This function starts a group of monitoring threads for a group of monitoring
1334 * contexts. One thread per each context is created and run in parallel. The
1335 * caller should handle synchronization between the threads by itself. If
1336 * @exclusive is true and a group of threads that created by other
1337 * 'damon_start()' call is currently running, this function does nothing but
1338 * returns -EBUSY.
1339 *
1340 * Return: 0 on success, negative error code otherwise.
1341 */
damon_start(struct damon_ctx ** ctxs,int nr_ctxs,bool exclusive)1342 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
1343 {
1344 int i;
1345 int err = 0;
1346
1347 mutex_lock(&damon_lock);
1348 if ((exclusive && nr_running_ctxs) ||
1349 (!exclusive && running_exclusive_ctxs)) {
1350 mutex_unlock(&damon_lock);
1351 return -EBUSY;
1352 }
1353
1354 for (i = 0; i < nr_ctxs; i++) {
1355 err = __damon_start(ctxs[i]);
1356 if (err)
1357 break;
1358 nr_running_ctxs++;
1359 }
1360 if (exclusive && nr_running_ctxs)
1361 running_exclusive_ctxs = true;
1362 mutex_unlock(&damon_lock);
1363
1364 return err;
1365 }
1366
1367 /*
1368 * __damon_stop() - Stops monitoring of a given context.
1369 * @ctx: monitoring context
1370 *
1371 * Return: 0 on success, negative error code otherwise.
1372 */
__damon_stop(struct damon_ctx * ctx)1373 static int __damon_stop(struct damon_ctx *ctx)
1374 {
1375 struct task_struct *tsk;
1376
1377 mutex_lock(&ctx->kdamond_lock);
1378 tsk = ctx->kdamond;
1379 if (tsk) {
1380 get_task_struct(tsk);
1381 mutex_unlock(&ctx->kdamond_lock);
1382 kthread_stop_put(tsk);
1383 return 0;
1384 }
1385 mutex_unlock(&ctx->kdamond_lock);
1386
1387 return -EPERM;
1388 }
1389
1390 /**
1391 * damon_stop() - Stops the monitorings for a given group of contexts.
1392 * @ctxs: an array of the pointers for contexts to stop monitoring
1393 * @nr_ctxs: size of @ctxs
1394 *
1395 * Return: 0 on success, negative error code otherwise.
1396 */
damon_stop(struct damon_ctx ** ctxs,int nr_ctxs)1397 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
1398 {
1399 int i, err = 0;
1400
1401 for (i = 0; i < nr_ctxs; i++) {
1402 /* nr_running_ctxs is decremented in kdamond_fn */
1403 err = __damon_stop(ctxs[i]);
1404 if (err)
1405 break;
1406 }
1407 return err;
1408 }
1409
1410 /**
1411 * damon_is_running() - Returns if a given DAMON context is running.
1412 * @ctx: The DAMON context to see if running.
1413 *
1414 * Return: true if @ctx is running, false otherwise.
1415 */
damon_is_running(struct damon_ctx * ctx)1416 bool damon_is_running(struct damon_ctx *ctx)
1417 {
1418 bool running;
1419
1420 mutex_lock(&ctx->kdamond_lock);
1421 running = ctx->kdamond != NULL;
1422 mutex_unlock(&ctx->kdamond_lock);
1423 return running;
1424 }
1425
1426 /**
1427 * damon_call() - Invoke a given function on DAMON worker thread (kdamond).
1428 * @ctx: DAMON context to call the function for.
1429 * @control: Control variable of the call request.
1430 *
1431 * Ask DAMON worker thread (kdamond) of @ctx to call a function with an
1432 * argument data that respectively passed via &damon_call_control->fn and
1433 * &damon_call_control->data of @control. If &damon_call_control->repeat of
1434 * @control is set, further wait until the kdamond finishes handling of the
1435 * request. Otherwise, return as soon as the request is made.
1436 *
1437 * The kdamond executes the function with the argument in the main loop, just
1438 * after a sampling of the iteration is finished. The function can hence
1439 * safely access the internal data of the &struct damon_ctx without additional
1440 * synchronization. The return value of the function will be saved in
1441 * &damon_call_control->return_code.
1442 *
1443 * Return: 0 on success, negative error code otherwise.
1444 */
damon_call(struct damon_ctx * ctx,struct damon_call_control * control)1445 int damon_call(struct damon_ctx *ctx, struct damon_call_control *control)
1446 {
1447 if (!control->repeat)
1448 init_completion(&control->completion);
1449 control->canceled = false;
1450 INIT_LIST_HEAD(&control->list);
1451
1452 mutex_lock(&ctx->call_controls_lock);
1453 list_add_tail(&ctx->call_controls, &control->list);
1454 mutex_unlock(&ctx->call_controls_lock);
1455 if (!damon_is_running(ctx))
1456 return -EINVAL;
1457 if (control->repeat)
1458 return 0;
1459 wait_for_completion(&control->completion);
1460 if (control->canceled)
1461 return -ECANCELED;
1462 return 0;
1463 }
1464
1465 /**
1466 * damos_walk() - Invoke a given functions while DAMOS walk regions.
1467 * @ctx: DAMON context to call the functions for.
1468 * @control: Control variable of the walk request.
1469 *
1470 * Ask DAMON worker thread (kdamond) of @ctx to call a function for each region
1471 * that the kdamond will apply DAMOS action to, and wait until the kdamond
1472 * finishes handling of the request.
1473 *
1474 * The kdamond executes the given function in the main loop, for each region
1475 * just after it applied any DAMOS actions of @ctx to it. The invocation is
1476 * made only within one &damos->apply_interval_us since damos_walk()
1477 * invocation, for each scheme. The given callback function can hence safely
1478 * access the internal data of &struct damon_ctx and &struct damon_region that
1479 * each of the scheme will apply the action for next interval, without
1480 * additional synchronizations against the kdamond. If every scheme of @ctx
1481 * passed at least one &damos->apply_interval_us, kdamond marks the request as
1482 * completed so that damos_walk() can wakeup and return.
1483 *
1484 * Return: 0 on success, negative error code otherwise.
1485 */
damos_walk(struct damon_ctx * ctx,struct damos_walk_control * control)1486 int damos_walk(struct damon_ctx *ctx, struct damos_walk_control *control)
1487 {
1488 init_completion(&control->completion);
1489 control->canceled = false;
1490 mutex_lock(&ctx->walk_control_lock);
1491 if (ctx->walk_control) {
1492 mutex_unlock(&ctx->walk_control_lock);
1493 return -EBUSY;
1494 }
1495 ctx->walk_control = control;
1496 mutex_unlock(&ctx->walk_control_lock);
1497 if (!damon_is_running(ctx))
1498 return -EINVAL;
1499 wait_for_completion(&control->completion);
1500 if (control->canceled)
1501 return -ECANCELED;
1502 return 0;
1503 }
1504
1505 /*
1506 * Warn and fix corrupted ->nr_accesses[_bp] for investigations and preventing
1507 * the problem being propagated.
1508 */
damon_warn_fix_nr_accesses_corruption(struct damon_region * r)1509 static void damon_warn_fix_nr_accesses_corruption(struct damon_region *r)
1510 {
1511 if (r->nr_accesses_bp == r->nr_accesses * 10000)
1512 return;
1513 WARN_ONCE(true, "invalid nr_accesses_bp at reset: %u %u\n",
1514 r->nr_accesses_bp, r->nr_accesses);
1515 r->nr_accesses_bp = r->nr_accesses * 10000;
1516 }
1517
1518 /*
1519 * Reset the aggregated monitoring results ('nr_accesses' of each region).
1520 */
kdamond_reset_aggregated(struct damon_ctx * c)1521 static void kdamond_reset_aggregated(struct damon_ctx *c)
1522 {
1523 struct damon_target *t;
1524 unsigned int ti = 0; /* target's index */
1525
1526 damon_for_each_target(t, c) {
1527 struct damon_region *r;
1528
1529 damon_for_each_region(r, t) {
1530 trace_damon_aggregated(ti, r, damon_nr_regions(t));
1531 damon_warn_fix_nr_accesses_corruption(r);
1532 r->last_nr_accesses = r->nr_accesses;
1533 r->nr_accesses = 0;
1534 }
1535 ti++;
1536 }
1537 }
1538
damon_get_intervals_score(struct damon_ctx * c)1539 static unsigned long damon_get_intervals_score(struct damon_ctx *c)
1540 {
1541 struct damon_target *t;
1542 struct damon_region *r;
1543 unsigned long sz_region, max_access_events = 0, access_events = 0;
1544 unsigned long target_access_events;
1545 unsigned long goal_bp = c->attrs.intervals_goal.access_bp;
1546
1547 damon_for_each_target(t, c) {
1548 damon_for_each_region(r, t) {
1549 sz_region = damon_sz_region(r);
1550 max_access_events += sz_region * c->attrs.aggr_samples;
1551 access_events += sz_region * r->nr_accesses;
1552 }
1553 }
1554 target_access_events = max_access_events * goal_bp / 10000;
1555 target_access_events = target_access_events ? : 1;
1556 return access_events * 10000 / target_access_events;
1557 }
1558
1559 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1560 unsigned long score);
1561
damon_get_intervals_adaptation_bp(struct damon_ctx * c)1562 static unsigned long damon_get_intervals_adaptation_bp(struct damon_ctx *c)
1563 {
1564 unsigned long score_bp, adaptation_bp;
1565
1566 score_bp = damon_get_intervals_score(c);
1567 adaptation_bp = damon_feed_loop_next_input(100000000, score_bp) /
1568 10000;
1569 /*
1570 * adaptaion_bp ranges from 1 to 20,000. Avoid too rapid reduction of
1571 * the intervals by rescaling [1,10,000] to [5000, 10,000].
1572 */
1573 if (adaptation_bp <= 10000)
1574 adaptation_bp = 5000 + adaptation_bp / 2;
1575 return adaptation_bp;
1576 }
1577
kdamond_tune_intervals(struct damon_ctx * c)1578 static void kdamond_tune_intervals(struct damon_ctx *c)
1579 {
1580 unsigned long adaptation_bp;
1581 struct damon_attrs new_attrs;
1582 struct damon_intervals_goal *goal;
1583
1584 adaptation_bp = damon_get_intervals_adaptation_bp(c);
1585 if (adaptation_bp == 10000)
1586 return;
1587
1588 new_attrs = c->attrs;
1589 goal = &c->attrs.intervals_goal;
1590 new_attrs.sample_interval = min(goal->max_sample_us,
1591 c->attrs.sample_interval * adaptation_bp / 10000);
1592 new_attrs.sample_interval = max(goal->min_sample_us,
1593 new_attrs.sample_interval);
1594 new_attrs.aggr_interval = new_attrs.sample_interval *
1595 c->attrs.aggr_samples;
1596 trace_damon_monitor_intervals_tune(new_attrs.sample_interval);
1597 damon_set_attrs(c, &new_attrs);
1598 }
1599
1600 static void damon_split_region_at(struct damon_target *t,
1601 struct damon_region *r, unsigned long sz_r);
1602
__damos_valid_target(struct damon_region * r,struct damos * s)1603 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
1604 {
1605 unsigned long sz;
1606 unsigned int nr_accesses = r->nr_accesses_bp / 10000;
1607
1608 sz = damon_sz_region(r);
1609 return s->pattern.min_sz_region <= sz &&
1610 sz <= s->pattern.max_sz_region &&
1611 s->pattern.min_nr_accesses <= nr_accesses &&
1612 nr_accesses <= s->pattern.max_nr_accesses &&
1613 s->pattern.min_age_region <= r->age &&
1614 r->age <= s->pattern.max_age_region;
1615 }
1616
damos_valid_target(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)1617 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
1618 struct damon_region *r, struct damos *s)
1619 {
1620 bool ret = __damos_valid_target(r, s);
1621
1622 if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
1623 return ret;
1624
1625 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
1626 }
1627
1628 /*
1629 * damos_skip_charged_region() - Check if the given region or starting part of
1630 * it is already charged for the DAMOS quota.
1631 * @t: The target of the region.
1632 * @rp: The pointer to the region.
1633 * @s: The scheme to be applied.
1634 * @min_sz_region: minimum region size.
1635 *
1636 * If a quota of a scheme has exceeded in a quota charge window, the scheme's
1637 * action would applied to only a part of the target access pattern fulfilling
1638 * regions. To avoid applying the scheme action to only already applied
1639 * regions, DAMON skips applying the scheme action to the regions that charged
1640 * in the previous charge window.
1641 *
1642 * This function checks if a given region should be skipped or not for the
1643 * reason. If only the starting part of the region has previously charged,
1644 * this function splits the region into two so that the second one covers the
1645 * area that not charged in the previous charge widnow and saves the second
1646 * region in *rp and returns false, so that the caller can apply DAMON action
1647 * to the second one.
1648 *
1649 * Return: true if the region should be entirely skipped, false otherwise.
1650 */
damos_skip_charged_region(struct damon_target * t,struct damon_region ** rp,struct damos * s,unsigned long min_sz_region)1651 static bool damos_skip_charged_region(struct damon_target *t,
1652 struct damon_region **rp, struct damos *s, unsigned long min_sz_region)
1653 {
1654 struct damon_region *r = *rp;
1655 struct damos_quota *quota = &s->quota;
1656 unsigned long sz_to_skip;
1657
1658 /* Skip previously charged regions */
1659 if (quota->charge_target_from) {
1660 if (t != quota->charge_target_from)
1661 return true;
1662 if (r == damon_last_region(t)) {
1663 quota->charge_target_from = NULL;
1664 quota->charge_addr_from = 0;
1665 return true;
1666 }
1667 if (quota->charge_addr_from &&
1668 r->ar.end <= quota->charge_addr_from)
1669 return true;
1670
1671 if (quota->charge_addr_from && r->ar.start <
1672 quota->charge_addr_from) {
1673 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
1674 r->ar.start, min_sz_region);
1675 if (!sz_to_skip) {
1676 if (damon_sz_region(r) <= min_sz_region)
1677 return true;
1678 sz_to_skip = min_sz_region;
1679 }
1680 damon_split_region_at(t, r, sz_to_skip);
1681 r = damon_next_region(r);
1682 *rp = r;
1683 }
1684 quota->charge_target_from = NULL;
1685 quota->charge_addr_from = 0;
1686 }
1687 return false;
1688 }
1689
damos_update_stat(struct damos * s,unsigned long sz_tried,unsigned long sz_applied,unsigned long sz_ops_filter_passed)1690 static void damos_update_stat(struct damos *s,
1691 unsigned long sz_tried, unsigned long sz_applied,
1692 unsigned long sz_ops_filter_passed)
1693 {
1694 s->stat.nr_tried++;
1695 s->stat.sz_tried += sz_tried;
1696 if (sz_applied)
1697 s->stat.nr_applied++;
1698 s->stat.sz_applied += sz_applied;
1699 s->stat.sz_ops_filter_passed += sz_ops_filter_passed;
1700 }
1701
damos_filter_match(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos_filter * filter,unsigned long min_sz_region)1702 static bool damos_filter_match(struct damon_ctx *ctx, struct damon_target *t,
1703 struct damon_region *r, struct damos_filter *filter,
1704 unsigned long min_sz_region)
1705 {
1706 bool matched = false;
1707 struct damon_target *ti;
1708 int target_idx = 0;
1709 unsigned long start, end;
1710
1711 switch (filter->type) {
1712 case DAMOS_FILTER_TYPE_TARGET:
1713 damon_for_each_target(ti, ctx) {
1714 if (ti == t)
1715 break;
1716 target_idx++;
1717 }
1718 matched = target_idx == filter->target_idx;
1719 break;
1720 case DAMOS_FILTER_TYPE_ADDR:
1721 start = ALIGN_DOWN(filter->addr_range.start, min_sz_region);
1722 end = ALIGN_DOWN(filter->addr_range.end, min_sz_region);
1723
1724 /* inside the range */
1725 if (start <= r->ar.start && r->ar.end <= end) {
1726 matched = true;
1727 break;
1728 }
1729 /* outside of the range */
1730 if (r->ar.end <= start || end <= r->ar.start) {
1731 matched = false;
1732 break;
1733 }
1734 /* start before the range and overlap */
1735 if (r->ar.start < start) {
1736 damon_split_region_at(t, r, start - r->ar.start);
1737 matched = false;
1738 break;
1739 }
1740 /* start inside the range */
1741 damon_split_region_at(t, r, end - r->ar.start);
1742 matched = true;
1743 break;
1744 default:
1745 return false;
1746 }
1747
1748 return matched == filter->matching;
1749 }
1750
damos_filter_out(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * s)1751 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
1752 struct damon_region *r, struct damos *s)
1753 {
1754 struct damos_filter *filter;
1755
1756 s->core_filters_allowed = false;
1757 damos_for_each_filter(filter, s) {
1758 if (damos_filter_match(ctx, t, r, filter, ctx->min_sz_region)) {
1759 if (filter->allow)
1760 s->core_filters_allowed = true;
1761 return !filter->allow;
1762 }
1763 }
1764 return s->core_filters_default_reject;
1765 }
1766
1767 /*
1768 * damos_walk_call_walk() - Call &damos_walk_control->walk_fn.
1769 * @ctx: The context of &damon_ctx->walk_control.
1770 * @t: The monitoring target of @r that @s will be applied.
1771 * @r: The region of @t that @s will be applied.
1772 * @s: The scheme of @ctx that will be applied to @r.
1773 *
1774 * This function is called from kdamond whenever it asked the operation set to
1775 * apply a DAMOS scheme action to a region. If a DAMOS walk request is
1776 * installed by damos_walk() and not yet uninstalled, invoke it.
1777 */
damos_walk_call_walk(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * s,unsigned long sz_filter_passed)1778 static void damos_walk_call_walk(struct damon_ctx *ctx, struct damon_target *t,
1779 struct damon_region *r, struct damos *s,
1780 unsigned long sz_filter_passed)
1781 {
1782 struct damos_walk_control *control;
1783
1784 if (s->walk_completed)
1785 return;
1786
1787 control = ctx->walk_control;
1788 if (!control)
1789 return;
1790
1791 control->walk_fn(control->data, ctx, t, r, s, sz_filter_passed);
1792 }
1793
1794 /*
1795 * damos_walk_complete() - Complete DAMOS walk request if all walks are done.
1796 * @ctx: The context of &damon_ctx->walk_control.
1797 * @s: A scheme of @ctx that all walks are now done.
1798 *
1799 * This function is called when kdamond finished applying the action of a DAMOS
1800 * scheme to all regions that eligible for the given &damos->apply_interval_us.
1801 * If every scheme of @ctx including @s now finished walking for at least one
1802 * &damos->apply_interval_us, this function makrs the handling of the given
1803 * DAMOS walk request is done, so that damos_walk() can wake up and return.
1804 */
damos_walk_complete(struct damon_ctx * ctx,struct damos * s)1805 static void damos_walk_complete(struct damon_ctx *ctx, struct damos *s)
1806 {
1807 struct damos *siter;
1808 struct damos_walk_control *control;
1809
1810 control = ctx->walk_control;
1811 if (!control)
1812 return;
1813
1814 s->walk_completed = true;
1815 /* if all schemes completed, signal completion to walker */
1816 damon_for_each_scheme(siter, ctx) {
1817 if (!siter->walk_completed)
1818 return;
1819 }
1820 damon_for_each_scheme(siter, ctx)
1821 siter->walk_completed = false;
1822
1823 complete(&control->completion);
1824 ctx->walk_control = NULL;
1825 }
1826
1827 /*
1828 * damos_walk_cancel() - Cancel the current DAMOS walk request.
1829 * @ctx: The context of &damon_ctx->walk_control.
1830 *
1831 * This function is called when @ctx is deactivated by DAMOS watermarks, DAMOS
1832 * walk is requested but there is no DAMOS scheme to walk for, or the kdamond
1833 * is already out of the main loop and therefore gonna be terminated, and hence
1834 * cannot continue the walks. This function therefore marks the walk request
1835 * as canceled, so that damos_walk() can wake up and return.
1836 */
damos_walk_cancel(struct damon_ctx * ctx)1837 static void damos_walk_cancel(struct damon_ctx *ctx)
1838 {
1839 struct damos_walk_control *control;
1840
1841 mutex_lock(&ctx->walk_control_lock);
1842 control = ctx->walk_control;
1843 mutex_unlock(&ctx->walk_control_lock);
1844
1845 if (!control)
1846 return;
1847 control->canceled = true;
1848 complete(&control->completion);
1849 mutex_lock(&ctx->walk_control_lock);
1850 ctx->walk_control = NULL;
1851 mutex_unlock(&ctx->walk_control_lock);
1852 }
1853
damos_apply_scheme(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)1854 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
1855 struct damon_region *r, struct damos *s)
1856 {
1857 struct damos_quota *quota = &s->quota;
1858 unsigned long sz = damon_sz_region(r);
1859 struct timespec64 begin, end;
1860 unsigned long sz_applied = 0;
1861 unsigned long sz_ops_filter_passed = 0;
1862 /*
1863 * We plan to support multiple context per kdamond, as DAMON sysfs
1864 * implies with 'nr_contexts' file. Nevertheless, only single context
1865 * per kdamond is supported for now. So, we can simply use '0' context
1866 * index here.
1867 */
1868 unsigned int cidx = 0;
1869 struct damos *siter; /* schemes iterator */
1870 unsigned int sidx = 0;
1871 struct damon_target *titer; /* targets iterator */
1872 unsigned int tidx = 0;
1873 bool do_trace = false;
1874
1875 /* get indices for trace_damos_before_apply() */
1876 if (trace_damos_before_apply_enabled()) {
1877 damon_for_each_scheme(siter, c) {
1878 if (siter == s)
1879 break;
1880 sidx++;
1881 }
1882 damon_for_each_target(titer, c) {
1883 if (titer == t)
1884 break;
1885 tidx++;
1886 }
1887 do_trace = true;
1888 }
1889
1890 if (c->ops.apply_scheme) {
1891 if (quota->esz && quota->charged_sz + sz > quota->esz) {
1892 sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
1893 c->min_sz_region);
1894 if (!sz)
1895 goto update_stat;
1896 damon_split_region_at(t, r, sz);
1897 }
1898 if (damos_filter_out(c, t, r, s))
1899 return;
1900 ktime_get_coarse_ts64(&begin);
1901 trace_damos_before_apply(cidx, sidx, tidx, r,
1902 damon_nr_regions(t), do_trace);
1903 sz_applied = c->ops.apply_scheme(c, t, r, s,
1904 &sz_ops_filter_passed);
1905 damos_walk_call_walk(c, t, r, s, sz_ops_filter_passed);
1906 ktime_get_coarse_ts64(&end);
1907 quota->total_charged_ns += timespec64_to_ns(&end) -
1908 timespec64_to_ns(&begin);
1909 quota->charged_sz += sz;
1910 if (quota->esz && quota->charged_sz >= quota->esz) {
1911 quota->charge_target_from = t;
1912 quota->charge_addr_from = r->ar.end + 1;
1913 }
1914 }
1915 if (s->action != DAMOS_STAT)
1916 r->age = 0;
1917
1918 update_stat:
1919 damos_update_stat(s, sz, sz_applied, sz_ops_filter_passed);
1920 }
1921
damon_do_apply_schemes(struct damon_ctx * c,struct damon_target * t,struct damon_region * r)1922 static void damon_do_apply_schemes(struct damon_ctx *c,
1923 struct damon_target *t,
1924 struct damon_region *r)
1925 {
1926 struct damos *s;
1927
1928 damon_for_each_scheme(s, c) {
1929 struct damos_quota *quota = &s->quota;
1930
1931 if (c->passed_sample_intervals < s->next_apply_sis)
1932 continue;
1933
1934 if (!s->wmarks.activated)
1935 continue;
1936
1937 /* Check the quota */
1938 if (quota->esz && quota->charged_sz >= quota->esz)
1939 continue;
1940
1941 if (damos_skip_charged_region(t, &r, s, c->min_sz_region))
1942 continue;
1943
1944 if (!damos_valid_target(c, t, r, s))
1945 continue;
1946
1947 damos_apply_scheme(c, t, r, s);
1948 }
1949 }
1950
1951 /*
1952 * damon_feed_loop_next_input() - get next input to achieve a target score.
1953 * @last_input The last input.
1954 * @score Current score that made with @last_input.
1955 *
1956 * Calculate next input to achieve the target score, based on the last input
1957 * and current score. Assuming the input and the score are positively
1958 * proportional, calculate how much compensation should be added to or
1959 * subtracted from the last input as a proportion of the last input. Avoid
1960 * next input always being zero by setting it non-zero always. In short form
1961 * (assuming support of float and signed calculations), the algorithm is as
1962 * below.
1963 *
1964 * next_input = max(last_input * ((goal - current) / goal + 1), 1)
1965 *
1966 * For simple implementation, we assume the target score is always 10,000. The
1967 * caller should adjust @score for this.
1968 *
1969 * Returns next input that assumed to achieve the target score.
1970 */
damon_feed_loop_next_input(unsigned long last_input,unsigned long score)1971 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1972 unsigned long score)
1973 {
1974 const unsigned long goal = 10000;
1975 /* Set minimum input as 10000 to avoid compensation be zero */
1976 const unsigned long min_input = 10000;
1977 unsigned long score_goal_diff, compensation;
1978 bool over_achieving = score > goal;
1979
1980 if (score == goal)
1981 return last_input;
1982 if (score >= goal * 2)
1983 return min_input;
1984
1985 if (over_achieving)
1986 score_goal_diff = score - goal;
1987 else
1988 score_goal_diff = goal - score;
1989
1990 if (last_input < ULONG_MAX / score_goal_diff)
1991 compensation = last_input * score_goal_diff / goal;
1992 else
1993 compensation = last_input / goal * score_goal_diff;
1994
1995 if (over_achieving)
1996 return max(last_input - compensation, min_input);
1997 if (last_input < ULONG_MAX - compensation)
1998 return last_input + compensation;
1999 return ULONG_MAX;
2000 }
2001
2002 #ifdef CONFIG_PSI
2003
damos_get_some_mem_psi_total(void)2004 static u64 damos_get_some_mem_psi_total(void)
2005 {
2006 if (static_branch_likely(&psi_disabled))
2007 return 0;
2008 return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2],
2009 NSEC_PER_USEC);
2010 }
2011
2012 #else /* CONFIG_PSI */
2013
damos_get_some_mem_psi_total(void)2014 static inline u64 damos_get_some_mem_psi_total(void)
2015 {
2016 return 0;
2017 };
2018
2019 #endif /* CONFIG_PSI */
2020
2021 #ifdef CONFIG_NUMA
damos_get_node_mem_bp(struct damos_quota_goal * goal)2022 static __kernel_ulong_t damos_get_node_mem_bp(
2023 struct damos_quota_goal *goal)
2024 {
2025 struct sysinfo i;
2026 __kernel_ulong_t numerator;
2027
2028 si_meminfo_node(&i, goal->nid);
2029 if (goal->metric == DAMOS_QUOTA_NODE_MEM_USED_BP)
2030 numerator = i.totalram - i.freeram;
2031 else /* DAMOS_QUOTA_NODE_MEM_FREE_BP */
2032 numerator = i.freeram;
2033 return numerator * 10000 / i.totalram;
2034 }
2035 #else
damos_get_node_mem_bp(struct damos_quota_goal * goal)2036 static __kernel_ulong_t damos_get_node_mem_bp(
2037 struct damos_quota_goal *goal)
2038 {
2039 return 0;
2040 }
2041 #endif
2042
2043
damos_set_quota_goal_current_value(struct damos_quota_goal * goal)2044 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal)
2045 {
2046 u64 now_psi_total;
2047
2048 switch (goal->metric) {
2049 case DAMOS_QUOTA_USER_INPUT:
2050 /* User should already set goal->current_value */
2051 break;
2052 case DAMOS_QUOTA_SOME_MEM_PSI_US:
2053 now_psi_total = damos_get_some_mem_psi_total();
2054 goal->current_value = now_psi_total - goal->last_psi_total;
2055 goal->last_psi_total = now_psi_total;
2056 break;
2057 case DAMOS_QUOTA_NODE_MEM_USED_BP:
2058 case DAMOS_QUOTA_NODE_MEM_FREE_BP:
2059 goal->current_value = damos_get_node_mem_bp(goal);
2060 break;
2061 default:
2062 break;
2063 }
2064 }
2065
2066 /* Return the highest score since it makes schemes least aggressive */
damos_quota_score(struct damos_quota * quota)2067 static unsigned long damos_quota_score(struct damos_quota *quota)
2068 {
2069 struct damos_quota_goal *goal;
2070 unsigned long highest_score = 0;
2071
2072 damos_for_each_quota_goal(goal, quota) {
2073 damos_set_quota_goal_current_value(goal);
2074 highest_score = max(highest_score,
2075 goal->current_value * 10000 /
2076 goal->target_value);
2077 }
2078
2079 return highest_score;
2080 }
2081
2082 /*
2083 * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty
2084 */
damos_set_effective_quota(struct damos_quota * quota)2085 static void damos_set_effective_quota(struct damos_quota *quota)
2086 {
2087 unsigned long throughput;
2088 unsigned long esz = ULONG_MAX;
2089
2090 if (!quota->ms && list_empty("a->goals)) {
2091 quota->esz = quota->sz;
2092 return;
2093 }
2094
2095 if (!list_empty("a->goals)) {
2096 unsigned long score = damos_quota_score(quota);
2097
2098 quota->esz_bp = damon_feed_loop_next_input(
2099 max(quota->esz_bp, 10000UL),
2100 score);
2101 esz = quota->esz_bp / 10000;
2102 }
2103
2104 if (quota->ms) {
2105 if (quota->total_charged_ns)
2106 throughput = mult_frac(quota->total_charged_sz, 1000000,
2107 quota->total_charged_ns);
2108 else
2109 throughput = PAGE_SIZE * 1024;
2110 esz = min(throughput * quota->ms, esz);
2111 }
2112
2113 if (quota->sz && quota->sz < esz)
2114 esz = quota->sz;
2115
2116 quota->esz = esz;
2117 }
2118
damos_trace_esz(struct damon_ctx * c,struct damos * s,struct damos_quota * quota)2119 static void damos_trace_esz(struct damon_ctx *c, struct damos *s,
2120 struct damos_quota *quota)
2121 {
2122 unsigned int cidx = 0, sidx = 0;
2123 struct damos *siter;
2124
2125 damon_for_each_scheme(siter, c) {
2126 if (siter == s)
2127 break;
2128 sidx++;
2129 }
2130 trace_damos_esz(cidx, sidx, quota->esz);
2131 }
2132
damos_adjust_quota(struct damon_ctx * c,struct damos * s)2133 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
2134 {
2135 struct damos_quota *quota = &s->quota;
2136 struct damon_target *t;
2137 struct damon_region *r;
2138 unsigned long cumulated_sz, cached_esz;
2139 unsigned int score, max_score = 0;
2140
2141 if (!quota->ms && !quota->sz && list_empty("a->goals))
2142 return;
2143
2144 /* First charge window */
2145 if (!quota->total_charged_sz && !quota->charged_from) {
2146 quota->charged_from = jiffies;
2147 damos_set_effective_quota(quota);
2148 }
2149
2150 /* New charge window starts */
2151 if (time_after_eq(jiffies, quota->charged_from +
2152 msecs_to_jiffies(quota->reset_interval))) {
2153 if (quota->esz && quota->charged_sz >= quota->esz)
2154 s->stat.qt_exceeds++;
2155 quota->total_charged_sz += quota->charged_sz;
2156 quota->charged_from = jiffies;
2157 quota->charged_sz = 0;
2158 if (trace_damos_esz_enabled())
2159 cached_esz = quota->esz;
2160 damos_set_effective_quota(quota);
2161 if (trace_damos_esz_enabled() && quota->esz != cached_esz)
2162 damos_trace_esz(c, s, quota);
2163 }
2164
2165 if (!c->ops.get_scheme_score)
2166 return;
2167
2168 /* Fill up the score histogram */
2169 memset(c->regions_score_histogram, 0,
2170 sizeof(*c->regions_score_histogram) *
2171 (DAMOS_MAX_SCORE + 1));
2172 damon_for_each_target(t, c) {
2173 damon_for_each_region(r, t) {
2174 if (!__damos_valid_target(r, s))
2175 continue;
2176 score = c->ops.get_scheme_score(c, t, r, s);
2177 c->regions_score_histogram[score] +=
2178 damon_sz_region(r);
2179 if (score > max_score)
2180 max_score = score;
2181 }
2182 }
2183
2184 /* Set the min score limit */
2185 for (cumulated_sz = 0, score = max_score; ; score--) {
2186 cumulated_sz += c->regions_score_histogram[score];
2187 if (cumulated_sz >= quota->esz || !score)
2188 break;
2189 }
2190 quota->min_score = score;
2191 }
2192
kdamond_apply_schemes(struct damon_ctx * c)2193 static void kdamond_apply_schemes(struct damon_ctx *c)
2194 {
2195 struct damon_target *t;
2196 struct damon_region *r, *next_r;
2197 struct damos *s;
2198 unsigned long sample_interval = c->attrs.sample_interval ?
2199 c->attrs.sample_interval : 1;
2200 bool has_schemes_to_apply = false;
2201
2202 damon_for_each_scheme(s, c) {
2203 if (c->passed_sample_intervals < s->next_apply_sis)
2204 continue;
2205
2206 if (!s->wmarks.activated)
2207 continue;
2208
2209 has_schemes_to_apply = true;
2210
2211 damos_adjust_quota(c, s);
2212 }
2213
2214 if (!has_schemes_to_apply)
2215 return;
2216
2217 mutex_lock(&c->walk_control_lock);
2218 damon_for_each_target(t, c) {
2219 damon_for_each_region_safe(r, next_r, t)
2220 damon_do_apply_schemes(c, t, r);
2221 }
2222
2223 damon_for_each_scheme(s, c) {
2224 if (c->passed_sample_intervals < s->next_apply_sis)
2225 continue;
2226 damos_walk_complete(c, s);
2227 s->next_apply_sis = c->passed_sample_intervals +
2228 (s->apply_interval_us ? s->apply_interval_us :
2229 c->attrs.aggr_interval) / sample_interval;
2230 s->last_applied = NULL;
2231 }
2232 mutex_unlock(&c->walk_control_lock);
2233 }
2234
2235 /*
2236 * Merge two adjacent regions into one region
2237 */
damon_merge_two_regions(struct damon_target * t,struct damon_region * l,struct damon_region * r)2238 static void damon_merge_two_regions(struct damon_target *t,
2239 struct damon_region *l, struct damon_region *r)
2240 {
2241 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
2242
2243 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
2244 (sz_l + sz_r);
2245 l->nr_accesses_bp = l->nr_accesses * 10000;
2246 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
2247 l->ar.end = r->ar.end;
2248 damon_destroy_region(r, t);
2249 }
2250
2251 /*
2252 * Merge adjacent regions having similar access frequencies
2253 *
2254 * t target affected by this merge operation
2255 * thres '->nr_accesses' diff threshold for the merge
2256 * sz_limit size upper limit of each region
2257 */
damon_merge_regions_of(struct damon_target * t,unsigned int thres,unsigned long sz_limit)2258 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
2259 unsigned long sz_limit)
2260 {
2261 struct damon_region *r, *prev = NULL, *next;
2262
2263 damon_for_each_region_safe(r, next, t) {
2264 if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
2265 r->age = 0;
2266 else if ((r->nr_accesses == 0) != (r->last_nr_accesses == 0))
2267 r->age = 0;
2268 else
2269 r->age++;
2270
2271 if (prev && prev->ar.end == r->ar.start &&
2272 abs(prev->nr_accesses - r->nr_accesses) <= thres &&
2273 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
2274 damon_merge_two_regions(t, prev, r);
2275 else
2276 prev = r;
2277 }
2278 }
2279
2280 /*
2281 * Merge adjacent regions having similar access frequencies
2282 *
2283 * threshold '->nr_accesses' diff threshold for the merge
2284 * sz_limit size upper limit of each region
2285 *
2286 * This function merges monitoring target regions which are adjacent and their
2287 * access frequencies are similar. This is for minimizing the monitoring
2288 * overhead under the dynamically changeable access pattern. If a merge was
2289 * unnecessarily made, later 'kdamond_split_regions()' will revert it.
2290 *
2291 * The total number of regions could be higher than the user-defined limit,
2292 * max_nr_regions for some cases. For example, the user can update
2293 * max_nr_regions to a number that lower than the current number of regions
2294 * while DAMON is running. For such a case, repeat merging until the limit is
2295 * met while increasing @threshold up to possible maximum level.
2296 */
kdamond_merge_regions(struct damon_ctx * c,unsigned int threshold,unsigned long sz_limit)2297 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
2298 unsigned long sz_limit)
2299 {
2300 struct damon_target *t;
2301 unsigned int nr_regions;
2302 unsigned int max_thres;
2303
2304 max_thres = c->attrs.aggr_interval /
2305 (c->attrs.sample_interval ? c->attrs.sample_interval : 1);
2306 do {
2307 nr_regions = 0;
2308 damon_for_each_target(t, c) {
2309 damon_merge_regions_of(t, threshold, sz_limit);
2310 nr_regions += damon_nr_regions(t);
2311 }
2312 threshold = max(1, threshold * 2);
2313 } while (nr_regions > c->attrs.max_nr_regions &&
2314 threshold / 2 < max_thres);
2315 }
2316
2317 /*
2318 * Split a region in two
2319 *
2320 * r the region to be split
2321 * sz_r size of the first sub-region that will be made
2322 */
damon_split_region_at(struct damon_target * t,struct damon_region * r,unsigned long sz_r)2323 static void damon_split_region_at(struct damon_target *t,
2324 struct damon_region *r, unsigned long sz_r)
2325 {
2326 struct damon_region *new;
2327
2328 new = damon_new_region(r->ar.start + sz_r, r->ar.end);
2329 if (!new)
2330 return;
2331
2332 r->ar.end = new->ar.start;
2333
2334 new->age = r->age;
2335 new->last_nr_accesses = r->last_nr_accesses;
2336 new->nr_accesses_bp = r->nr_accesses_bp;
2337 new->nr_accesses = r->nr_accesses;
2338
2339 damon_insert_region(new, r, damon_next_region(r), t);
2340 }
2341
2342 /* Split every region in the given target into 'nr_subs' regions */
damon_split_regions_of(struct damon_target * t,int nr_subs,unsigned long min_sz_region)2343 static void damon_split_regions_of(struct damon_target *t, int nr_subs,
2344 unsigned long min_sz_region)
2345 {
2346 struct damon_region *r, *next;
2347 unsigned long sz_region, sz_sub = 0;
2348 int i;
2349
2350 damon_for_each_region_safe(r, next, t) {
2351 sz_region = damon_sz_region(r);
2352
2353 for (i = 0; i < nr_subs - 1 &&
2354 sz_region > 2 * min_sz_region; i++) {
2355 /*
2356 * Randomly select size of left sub-region to be at
2357 * least 10 percent and at most 90% of original region
2358 */
2359 sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
2360 sz_region / 10, min_sz_region);
2361 /* Do not allow blank region */
2362 if (sz_sub == 0 || sz_sub >= sz_region)
2363 continue;
2364
2365 damon_split_region_at(t, r, sz_sub);
2366 sz_region = sz_sub;
2367 }
2368 }
2369 }
2370
2371 /*
2372 * Split every target region into randomly-sized small regions
2373 *
2374 * This function splits every target region into random-sized small regions if
2375 * current total number of the regions is equal or smaller than half of the
2376 * user-specified maximum number of regions. This is for maximizing the
2377 * monitoring accuracy under the dynamically changeable access patterns. If a
2378 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
2379 * it.
2380 */
kdamond_split_regions(struct damon_ctx * ctx)2381 static void kdamond_split_regions(struct damon_ctx *ctx)
2382 {
2383 struct damon_target *t;
2384 unsigned int nr_regions = 0;
2385 static unsigned int last_nr_regions;
2386 int nr_subregions = 2;
2387
2388 damon_for_each_target(t, ctx)
2389 nr_regions += damon_nr_regions(t);
2390
2391 if (nr_regions > ctx->attrs.max_nr_regions / 2)
2392 return;
2393
2394 /* Maybe the middle of the region has different access frequency */
2395 if (last_nr_regions == nr_regions &&
2396 nr_regions < ctx->attrs.max_nr_regions / 3)
2397 nr_subregions = 3;
2398
2399 damon_for_each_target(t, ctx)
2400 damon_split_regions_of(t, nr_subregions, ctx->min_sz_region);
2401
2402 last_nr_regions = nr_regions;
2403 }
2404
2405 /*
2406 * Check whether current monitoring should be stopped
2407 *
2408 * The monitoring is stopped when either the user requested to stop, or all
2409 * monitoring targets are invalid.
2410 *
2411 * Returns true if need to stop current monitoring.
2412 */
kdamond_need_stop(struct damon_ctx * ctx)2413 static bool kdamond_need_stop(struct damon_ctx *ctx)
2414 {
2415 struct damon_target *t;
2416
2417 if (kthread_should_stop())
2418 return true;
2419
2420 if (!ctx->ops.target_valid)
2421 return false;
2422
2423 damon_for_each_target(t, ctx) {
2424 if (ctx->ops.target_valid(t))
2425 return false;
2426 }
2427
2428 return true;
2429 }
2430
damos_get_wmark_metric_value(enum damos_wmark_metric metric,unsigned long * metric_value)2431 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric,
2432 unsigned long *metric_value)
2433 {
2434 switch (metric) {
2435 case DAMOS_WMARK_FREE_MEM_RATE:
2436 *metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 /
2437 totalram_pages();
2438 return 0;
2439 default:
2440 break;
2441 }
2442 return -EINVAL;
2443 }
2444
2445 /*
2446 * Returns zero if the scheme is active. Else, returns time to wait for next
2447 * watermark check in micro-seconds.
2448 */
damos_wmark_wait_us(struct damos * scheme)2449 static unsigned long damos_wmark_wait_us(struct damos *scheme)
2450 {
2451 unsigned long metric;
2452
2453 if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric))
2454 return 0;
2455
2456 /* higher than high watermark or lower than low watermark */
2457 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
2458 if (scheme->wmarks.activated)
2459 pr_debug("deactivate a scheme (%d) for %s wmark\n",
2460 scheme->action,
2461 str_high_low(metric > scheme->wmarks.high));
2462 scheme->wmarks.activated = false;
2463 return scheme->wmarks.interval;
2464 }
2465
2466 /* inactive and higher than middle watermark */
2467 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
2468 !scheme->wmarks.activated)
2469 return scheme->wmarks.interval;
2470
2471 if (!scheme->wmarks.activated)
2472 pr_debug("activate a scheme (%d)\n", scheme->action);
2473 scheme->wmarks.activated = true;
2474 return 0;
2475 }
2476
kdamond_usleep(unsigned long usecs)2477 static void kdamond_usleep(unsigned long usecs)
2478 {
2479 if (usecs >= USLEEP_RANGE_UPPER_BOUND)
2480 schedule_timeout_idle(usecs_to_jiffies(usecs));
2481 else
2482 usleep_range_idle(usecs, usecs + 1);
2483 }
2484
2485 /*
2486 * kdamond_call() - handle damon_call_control objects.
2487 * @ctx: The &struct damon_ctx of the kdamond.
2488 * @cancel: Whether to cancel the invocation of the function.
2489 *
2490 * If there are &struct damon_call_control requests that registered via
2491 * &damon_call() on @ctx, do or cancel the invocation of the function depending
2492 * on @cancel. @cancel is set when the kdamond is already out of the main loop
2493 * and therefore will be terminated.
2494 */
kdamond_call(struct damon_ctx * ctx,bool cancel)2495 static void kdamond_call(struct damon_ctx *ctx, bool cancel)
2496 {
2497 struct damon_call_control *control;
2498 LIST_HEAD(repeat_controls);
2499 int ret = 0;
2500
2501 while (true) {
2502 mutex_lock(&ctx->call_controls_lock);
2503 control = list_first_entry_or_null(&ctx->call_controls,
2504 struct damon_call_control, list);
2505 mutex_unlock(&ctx->call_controls_lock);
2506 if (!control)
2507 break;
2508 if (cancel) {
2509 control->canceled = true;
2510 } else {
2511 ret = control->fn(control->data);
2512 control->return_code = ret;
2513 }
2514 mutex_lock(&ctx->call_controls_lock);
2515 list_del(&control->list);
2516 mutex_unlock(&ctx->call_controls_lock);
2517 if (!control->repeat) {
2518 complete(&control->completion);
2519 } else if (control->canceled && control->dealloc_on_cancel) {
2520 kfree(control);
2521 continue;
2522 } else {
2523 list_add(&control->list, &repeat_controls);
2524 }
2525 }
2526 control = list_first_entry_or_null(&repeat_controls,
2527 struct damon_call_control, list);
2528 if (!control || cancel)
2529 return;
2530 mutex_lock(&ctx->call_controls_lock);
2531 list_add_tail(&control->list, &ctx->call_controls);
2532 mutex_unlock(&ctx->call_controls_lock);
2533 }
2534
2535 /* Returns negative error code if it's not activated but should return */
kdamond_wait_activation(struct damon_ctx * ctx)2536 static int kdamond_wait_activation(struct damon_ctx *ctx)
2537 {
2538 struct damos *s;
2539 unsigned long wait_time;
2540 unsigned long min_wait_time = 0;
2541 bool init_wait_time = false;
2542
2543 while (!kdamond_need_stop(ctx)) {
2544 damon_for_each_scheme(s, ctx) {
2545 wait_time = damos_wmark_wait_us(s);
2546 if (!init_wait_time || wait_time < min_wait_time) {
2547 init_wait_time = true;
2548 min_wait_time = wait_time;
2549 }
2550 }
2551 if (!min_wait_time)
2552 return 0;
2553
2554 kdamond_usleep(min_wait_time);
2555
2556 kdamond_call(ctx, false);
2557 damos_walk_cancel(ctx);
2558 }
2559 return -EBUSY;
2560 }
2561
kdamond_init_ctx(struct damon_ctx * ctx)2562 static void kdamond_init_ctx(struct damon_ctx *ctx)
2563 {
2564 unsigned long sample_interval = ctx->attrs.sample_interval ?
2565 ctx->attrs.sample_interval : 1;
2566 unsigned long apply_interval;
2567 struct damos *scheme;
2568
2569 ctx->passed_sample_intervals = 0;
2570 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
2571 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
2572 sample_interval;
2573 ctx->next_intervals_tune_sis = ctx->next_aggregation_sis *
2574 ctx->attrs.intervals_goal.aggrs;
2575
2576 damon_for_each_scheme(scheme, ctx) {
2577 apply_interval = scheme->apply_interval_us ?
2578 scheme->apply_interval_us : ctx->attrs.aggr_interval;
2579 scheme->next_apply_sis = apply_interval / sample_interval;
2580 damos_set_filters_default_reject(scheme);
2581 }
2582 }
2583
2584 /*
2585 * The monitoring daemon that runs as a kernel thread
2586 */
kdamond_fn(void * data)2587 static int kdamond_fn(void *data)
2588 {
2589 struct damon_ctx *ctx = data;
2590 struct damon_target *t;
2591 struct damon_region *r, *next;
2592 unsigned int max_nr_accesses = 0;
2593 unsigned long sz_limit = 0;
2594
2595 pr_debug("kdamond (%d) starts\n", current->pid);
2596
2597 complete(&ctx->kdamond_started);
2598 kdamond_init_ctx(ctx);
2599
2600 if (ctx->ops.init)
2601 ctx->ops.init(ctx);
2602 ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1,
2603 sizeof(*ctx->regions_score_histogram), GFP_KERNEL);
2604 if (!ctx->regions_score_histogram)
2605 goto done;
2606
2607 sz_limit = damon_region_sz_limit(ctx);
2608
2609 while (!kdamond_need_stop(ctx)) {
2610 /*
2611 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
2612 * be changed from kdamond_call(). Read the values here, and
2613 * use those for this iteration. That is, damon_set_attrs()
2614 * updated new values are respected from next iteration.
2615 */
2616 unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
2617 unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
2618 unsigned long sample_interval = ctx->attrs.sample_interval;
2619
2620 if (kdamond_wait_activation(ctx))
2621 break;
2622
2623 if (ctx->ops.prepare_access_checks)
2624 ctx->ops.prepare_access_checks(ctx);
2625
2626 kdamond_usleep(sample_interval);
2627 ctx->passed_sample_intervals++;
2628
2629 if (ctx->ops.check_accesses)
2630 max_nr_accesses = ctx->ops.check_accesses(ctx);
2631
2632 if (ctx->passed_sample_intervals >= next_aggregation_sis)
2633 kdamond_merge_regions(ctx,
2634 max_nr_accesses / 10,
2635 sz_limit);
2636
2637 /*
2638 * do kdamond_call() and kdamond_apply_schemes() after
2639 * kdamond_merge_regions() if possible, to reduce overhead
2640 */
2641 kdamond_call(ctx, false);
2642 if (!list_empty(&ctx->schemes))
2643 kdamond_apply_schemes(ctx);
2644 else
2645 damos_walk_cancel(ctx);
2646
2647 sample_interval = ctx->attrs.sample_interval ?
2648 ctx->attrs.sample_interval : 1;
2649 if (ctx->passed_sample_intervals >= next_aggregation_sis) {
2650 if (ctx->attrs.intervals_goal.aggrs &&
2651 ctx->passed_sample_intervals >=
2652 ctx->next_intervals_tune_sis) {
2653 /*
2654 * ctx->next_aggregation_sis might be updated
2655 * from kdamond_call(). In the case,
2656 * damon_set_attrs() which will be called from
2657 * kdamond_tune_interval() may wrongly think
2658 * this is in the middle of the current
2659 * aggregation, and make aggregation
2660 * information reset for all regions. Then,
2661 * following kdamond_reset_aggregated() call
2662 * will make the region information invalid,
2663 * particularly for ->nr_accesses_bp.
2664 *
2665 * Reset ->next_aggregation_sis to avoid that.
2666 * It will anyway correctly updated after this
2667 * if caluse.
2668 */
2669 ctx->next_aggregation_sis =
2670 next_aggregation_sis;
2671 ctx->next_intervals_tune_sis +=
2672 ctx->attrs.aggr_samples *
2673 ctx->attrs.intervals_goal.aggrs;
2674 kdamond_tune_intervals(ctx);
2675 sample_interval = ctx->attrs.sample_interval ?
2676 ctx->attrs.sample_interval : 1;
2677
2678 }
2679 ctx->next_aggregation_sis = next_aggregation_sis +
2680 ctx->attrs.aggr_interval / sample_interval;
2681
2682 kdamond_reset_aggregated(ctx);
2683 kdamond_split_regions(ctx);
2684 }
2685
2686 if (ctx->passed_sample_intervals >= next_ops_update_sis) {
2687 ctx->next_ops_update_sis = next_ops_update_sis +
2688 ctx->attrs.ops_update_interval /
2689 sample_interval;
2690 if (ctx->ops.update)
2691 ctx->ops.update(ctx);
2692 sz_limit = damon_region_sz_limit(ctx);
2693 }
2694 }
2695 done:
2696 damon_for_each_target(t, ctx) {
2697 damon_for_each_region_safe(r, next, t)
2698 damon_destroy_region(r, t);
2699 }
2700
2701 if (ctx->ops.cleanup)
2702 ctx->ops.cleanup(ctx);
2703 kfree(ctx->regions_score_histogram);
2704
2705 pr_debug("kdamond (%d) finishes\n", current->pid);
2706 mutex_lock(&ctx->kdamond_lock);
2707 ctx->kdamond = NULL;
2708 mutex_unlock(&ctx->kdamond_lock);
2709
2710 kdamond_call(ctx, true);
2711 damos_walk_cancel(ctx);
2712
2713 mutex_lock(&damon_lock);
2714 nr_running_ctxs--;
2715 if (!nr_running_ctxs && running_exclusive_ctxs)
2716 running_exclusive_ctxs = false;
2717 mutex_unlock(&damon_lock);
2718
2719 damon_destroy_targets(ctx);
2720 return 0;
2721 }
2722
2723 /*
2724 * struct damon_system_ram_region - System RAM resource address region of
2725 * [@start, @end).
2726 * @start: Start address of the region (inclusive).
2727 * @end: End address of the region (exclusive).
2728 */
2729 struct damon_system_ram_region {
2730 unsigned long start;
2731 unsigned long end;
2732 };
2733
walk_system_ram(struct resource * res,void * arg)2734 static int walk_system_ram(struct resource *res, void *arg)
2735 {
2736 struct damon_system_ram_region *a = arg;
2737
2738 if (a->end - a->start < resource_size(res)) {
2739 a->start = res->start;
2740 a->end = res->end;
2741 }
2742 return 0;
2743 }
2744
2745 /*
2746 * Find biggest 'System RAM' resource and store its start and end address in
2747 * @start and @end, respectively. If no System RAM is found, returns false.
2748 */
damon_find_biggest_system_ram(unsigned long * start,unsigned long * end)2749 static bool damon_find_biggest_system_ram(unsigned long *start,
2750 unsigned long *end)
2751
2752 {
2753 struct damon_system_ram_region arg = {};
2754
2755 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
2756 if (arg.end <= arg.start)
2757 return false;
2758
2759 *start = arg.start;
2760 *end = arg.end;
2761 return true;
2762 }
2763
2764 /**
2765 * damon_set_region_biggest_system_ram_default() - Set the region of the given
2766 * monitoring target as requested, or biggest 'System RAM'.
2767 * @t: The monitoring target to set the region.
2768 * @start: The pointer to the start address of the region.
2769 * @end: The pointer to the end address of the region.
2770 *
2771 * This function sets the region of @t as requested by @start and @end. If the
2772 * values of @start and @end are zero, however, this function finds the biggest
2773 * 'System RAM' resource and sets the region to cover the resource. In the
2774 * latter case, this function saves the start and end addresses of the resource
2775 * in @start and @end, respectively.
2776 *
2777 * Return: 0 on success, negative error code otherwise.
2778 */
damon_set_region_biggest_system_ram_default(struct damon_target * t,unsigned long * start,unsigned long * end)2779 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
2780 unsigned long *start, unsigned long *end)
2781 {
2782 struct damon_addr_range addr_range;
2783
2784 if (*start > *end)
2785 return -EINVAL;
2786
2787 if (!*start && !*end &&
2788 !damon_find_biggest_system_ram(start, end))
2789 return -EINVAL;
2790
2791 addr_range.start = *start;
2792 addr_range.end = *end;
2793 return damon_set_regions(t, &addr_range, 1, DAMON_MIN_REGION);
2794 }
2795
2796 /*
2797 * damon_moving_sum() - Calculate an inferred moving sum value.
2798 * @mvsum: Inferred sum of the last @len_window values.
2799 * @nomvsum: Non-moving sum of the last discrete @len_window window values.
2800 * @len_window: The number of last values to take care of.
2801 * @new_value: New value that will be added to the pseudo moving sum.
2802 *
2803 * Moving sum (moving average * window size) is good for handling noise, but
2804 * the cost of keeping past values can be high for arbitrary window size. This
2805 * function implements a lightweight pseudo moving sum function that doesn't
2806 * keep the past window values.
2807 *
2808 * It simply assumes there was no noise in the past, and get the no-noise
2809 * assumed past value to drop from @nomvsum and @len_window. @nomvsum is a
2810 * non-moving sum of the last window. For example, if @len_window is 10 and we
2811 * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25
2812 * values. Hence, this function simply drops @nomvsum / @len_window from
2813 * given @mvsum and add @new_value.
2814 *
2815 * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for
2816 * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20. For
2817 * calculating next moving sum with a new value, we should drop 0 from 50 and
2818 * add the new value. However, this function assumes it got value 5 for each
2819 * of the last ten times. Based on the assumption, when the next value is
2820 * measured, it drops the assumed past value, 5 from the current sum, and add
2821 * the new value to get the updated pseduo-moving average.
2822 *
2823 * This means the value could have errors, but the errors will be disappeared
2824 * for every @len_window aligned calls. For example, if @len_window is 10, the
2825 * pseudo moving sum with 11th value to 19th value would have an error. But
2826 * the sum with 20th value will not have the error.
2827 *
2828 * Return: Pseudo-moving average after getting the @new_value.
2829 */
damon_moving_sum(unsigned int mvsum,unsigned int nomvsum,unsigned int len_window,unsigned int new_value)2830 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum,
2831 unsigned int len_window, unsigned int new_value)
2832 {
2833 return mvsum - nomvsum / len_window + new_value;
2834 }
2835
2836 /**
2837 * damon_update_region_access_rate() - Update the access rate of a region.
2838 * @r: The DAMON region to update for its access check result.
2839 * @accessed: Whether the region has accessed during last sampling interval.
2840 * @attrs: The damon_attrs of the DAMON context.
2841 *
2842 * Update the access rate of a region with the region's last sampling interval
2843 * access check result.
2844 *
2845 * Usually this will be called by &damon_operations->check_accesses callback.
2846 */
damon_update_region_access_rate(struct damon_region * r,bool accessed,struct damon_attrs * attrs)2847 void damon_update_region_access_rate(struct damon_region *r, bool accessed,
2848 struct damon_attrs *attrs)
2849 {
2850 unsigned int len_window = 1;
2851
2852 /*
2853 * sample_interval can be zero, but cannot be larger than
2854 * aggr_interval, owing to validation of damon_set_attrs().
2855 */
2856 if (attrs->sample_interval)
2857 len_window = damon_max_nr_accesses(attrs);
2858 r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp,
2859 r->last_nr_accesses * 10000, len_window,
2860 accessed ? 10000 : 0);
2861
2862 if (accessed)
2863 r->nr_accesses++;
2864 }
2865
2866 /**
2867 * damon_initialized() - Return if DAMON is ready to be used.
2868 *
2869 * Return: true if DAMON is ready to be used, false otherwise.
2870 */
damon_initialized(void)2871 bool damon_initialized(void)
2872 {
2873 return damon_region_cache != NULL;
2874 }
2875
damon_init(void)2876 static int __init damon_init(void)
2877 {
2878 damon_region_cache = KMEM_CACHE(damon_region, 0);
2879 if (unlikely(!damon_region_cache)) {
2880 pr_err("creating damon_region_cache fails\n");
2881 return -ENOMEM;
2882 }
2883
2884 return 0;
2885 }
2886
2887 subsys_initcall(damon_init);
2888
2889 #include "tests/core-kunit.h"
2890