xref: /linux/mm/damon/core.c (revision 9a2791e748e5e658abcf3a4ab7fc76ef02cd66c5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Data Access Monitor
4  *
5  * Author: SeongJae Park <sj@kernel.org>
6  */
7 
8 #define pr_fmt(fmt) "damon: " fmt
9 
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/memcontrol.h>
14 #include <linux/mm.h>
15 #include <linux/psi.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/string_choices.h>
19 
20 #define CREATE_TRACE_POINTS
21 #include <trace/events/damon.h>
22 
23 static DEFINE_MUTEX(damon_lock);
24 static int nr_running_ctxs;
25 static bool running_exclusive_ctxs;
26 
27 static DEFINE_MUTEX(damon_ops_lock);
28 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
29 
30 static struct kmem_cache *damon_region_cache __ro_after_init;
31 
32 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
33 static bool __damon_is_registered_ops(enum damon_ops_id id)
34 {
35 	struct damon_operations empty_ops = {};
36 
37 	if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
38 		return false;
39 	return true;
40 }
41 
42 /**
43  * damon_is_registered_ops() - Check if a given damon_operations is registered.
44  * @id:	Id of the damon_operations to check if registered.
45  *
46  * Return: true if the ops is set, false otherwise.
47  */
48 bool damon_is_registered_ops(enum damon_ops_id id)
49 {
50 	bool registered;
51 
52 	if (id >= NR_DAMON_OPS)
53 		return false;
54 	mutex_lock(&damon_ops_lock);
55 	registered = __damon_is_registered_ops(id);
56 	mutex_unlock(&damon_ops_lock);
57 	return registered;
58 }
59 
60 /**
61  * damon_register_ops() - Register a monitoring operations set to DAMON.
62  * @ops:	monitoring operations set to register.
63  *
64  * This function registers a monitoring operations set of valid &struct
65  * damon_operations->id so that others can find and use them later.
66  *
67  * Return: 0 on success, negative error code otherwise.
68  */
69 int damon_register_ops(struct damon_operations *ops)
70 {
71 	int err = 0;
72 
73 	if (ops->id >= NR_DAMON_OPS)
74 		return -EINVAL;
75 
76 	mutex_lock(&damon_ops_lock);
77 	/* Fail for already registered ops */
78 	if (__damon_is_registered_ops(ops->id))
79 		err = -EINVAL;
80 	else
81 		damon_registered_ops[ops->id] = *ops;
82 	mutex_unlock(&damon_ops_lock);
83 	return err;
84 }
85 
86 /**
87  * damon_select_ops() - Select a monitoring operations to use with the context.
88  * @ctx:	monitoring context to use the operations.
89  * @id:		id of the registered monitoring operations to select.
90  *
91  * This function finds registered monitoring operations set of @id and make
92  * @ctx to use it.
93  *
94  * Return: 0 on success, negative error code otherwise.
95  */
96 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
97 {
98 	int err = 0;
99 
100 	if (id >= NR_DAMON_OPS)
101 		return -EINVAL;
102 
103 	mutex_lock(&damon_ops_lock);
104 	if (!__damon_is_registered_ops(id))
105 		err = -EINVAL;
106 	else
107 		ctx->ops = damon_registered_ops[id];
108 	mutex_unlock(&damon_ops_lock);
109 	return err;
110 }
111 
112 /*
113  * Construct a damon_region struct
114  *
115  * Returns the pointer to the new struct if success, or NULL otherwise
116  */
117 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
118 {
119 	struct damon_region *region;
120 
121 	region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
122 	if (!region)
123 		return NULL;
124 
125 	region->ar.start = start;
126 	region->ar.end = end;
127 	region->nr_accesses = 0;
128 	region->nr_accesses_bp = 0;
129 	INIT_LIST_HEAD(&region->list);
130 
131 	region->age = 0;
132 	region->last_nr_accesses = 0;
133 
134 	return region;
135 }
136 
137 void damon_add_region(struct damon_region *r, struct damon_target *t)
138 {
139 	list_add_tail(&r->list, &t->regions_list);
140 	t->nr_regions++;
141 }
142 
143 static void damon_del_region(struct damon_region *r, struct damon_target *t)
144 {
145 	list_del(&r->list);
146 	t->nr_regions--;
147 }
148 
149 static void damon_free_region(struct damon_region *r)
150 {
151 	kmem_cache_free(damon_region_cache, r);
152 }
153 
154 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
155 {
156 	damon_del_region(r, t);
157 	damon_free_region(r);
158 }
159 
160 static bool damon_is_last_region(struct damon_region *r,
161 		struct damon_target *t)
162 {
163 	return list_is_last(&r->list, &t->regions_list);
164 }
165 
166 /*
167  * Check whether a region is intersecting an address range
168  *
169  * Returns true if it is.
170  */
171 static bool damon_intersect(struct damon_region *r,
172 		struct damon_addr_range *re)
173 {
174 	return !(r->ar.end <= re->start || re->end <= r->ar.start);
175 }
176 
177 /*
178  * Fill holes in regions with new regions.
179  */
180 static int damon_fill_regions_holes(struct damon_region *first,
181 		struct damon_region *last, struct damon_target *t)
182 {
183 	struct damon_region *r = first;
184 
185 	damon_for_each_region_from(r, t) {
186 		struct damon_region *next, *newr;
187 
188 		if (r == last)
189 			break;
190 		next = damon_next_region(r);
191 		if (r->ar.end != next->ar.start) {
192 			newr = damon_new_region(r->ar.end, next->ar.start);
193 			if (!newr)
194 				return -ENOMEM;
195 			damon_insert_region(newr, r, next, t);
196 		}
197 	}
198 	return 0;
199 }
200 
201 /*
202  * damon_set_regions() - Set regions of a target for given address ranges.
203  * @t:		the given target.
204  * @ranges:	array of new monitoring target ranges.
205  * @nr_ranges:	length of @ranges.
206  * @min_region_sz:	minimum region size.
207  *
208  * This function adds new regions to, or modify existing regions of a
209  * monitoring target to fit in specific ranges.
210  *
211  * Return: 0 if success, or negative error code otherwise.
212  */
213 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
214 		unsigned int nr_ranges, unsigned long min_region_sz)
215 {
216 	struct damon_region *r, *next;
217 	unsigned int i;
218 	int err;
219 
220 	/* Remove regions which are not in the new ranges */
221 	damon_for_each_region_safe(r, next, t) {
222 		for (i = 0; i < nr_ranges; i++) {
223 			if (damon_intersect(r, &ranges[i]))
224 				break;
225 		}
226 		if (i == nr_ranges)
227 			damon_destroy_region(r, t);
228 	}
229 
230 	r = damon_first_region(t);
231 	/* Add new regions or resize existing regions to fit in the ranges */
232 	for (i = 0; i < nr_ranges; i++) {
233 		struct damon_region *first = NULL, *last, *newr;
234 		struct damon_addr_range *range;
235 
236 		range = &ranges[i];
237 		/* Get the first/last regions intersecting with the range */
238 		damon_for_each_region_from(r, t) {
239 			if (damon_intersect(r, range)) {
240 				if (!first)
241 					first = r;
242 				last = r;
243 			}
244 			if (r->ar.start >= range->end)
245 				break;
246 		}
247 		if (!first) {
248 			/* no region intersects with this range */
249 			newr = damon_new_region(
250 					ALIGN_DOWN(range->start,
251 						min_region_sz),
252 					ALIGN(range->end, min_region_sz));
253 			if (!newr)
254 				return -ENOMEM;
255 			damon_insert_region(newr, damon_prev_region(r), r, t);
256 		} else {
257 			/* resize intersecting regions to fit in this range */
258 			first->ar.start = ALIGN_DOWN(range->start,
259 					min_region_sz);
260 			last->ar.end = ALIGN(range->end, min_region_sz);
261 
262 			/* fill possible holes in the range */
263 			err = damon_fill_regions_holes(first, last, t);
264 			if (err)
265 				return err;
266 		}
267 	}
268 	return 0;
269 }
270 
271 struct damos_filter *damos_new_filter(enum damos_filter_type type,
272 		bool matching, bool allow)
273 {
274 	struct damos_filter *filter;
275 
276 	filter = kmalloc(sizeof(*filter), GFP_KERNEL);
277 	if (!filter)
278 		return NULL;
279 	filter->type = type;
280 	filter->matching = matching;
281 	filter->allow = allow;
282 	INIT_LIST_HEAD(&filter->list);
283 	return filter;
284 }
285 
286 /**
287  * damos_filter_for_ops() - Return if the filter is ops-handled one.
288  * @type:	type of the filter.
289  *
290  * Return: true if the filter of @type needs to be handled by ops layer, false
291  * otherwise.
292  */
293 bool damos_filter_for_ops(enum damos_filter_type type)
294 {
295 	switch (type) {
296 	case DAMOS_FILTER_TYPE_ADDR:
297 	case DAMOS_FILTER_TYPE_TARGET:
298 		return false;
299 	default:
300 		break;
301 	}
302 	return true;
303 }
304 
305 void damos_add_filter(struct damos *s, struct damos_filter *f)
306 {
307 	if (damos_filter_for_ops(f->type))
308 		list_add_tail(&f->list, &s->ops_filters);
309 	else
310 		list_add_tail(&f->list, &s->core_filters);
311 }
312 
313 static void damos_del_filter(struct damos_filter *f)
314 {
315 	list_del(&f->list);
316 }
317 
318 static void damos_free_filter(struct damos_filter *f)
319 {
320 	kfree(f);
321 }
322 
323 void damos_destroy_filter(struct damos_filter *f)
324 {
325 	damos_del_filter(f);
326 	damos_free_filter(f);
327 }
328 
329 struct damos_quota_goal *damos_new_quota_goal(
330 		enum damos_quota_goal_metric metric,
331 		unsigned long target_value)
332 {
333 	struct damos_quota_goal *goal;
334 
335 	goal = kmalloc(sizeof(*goal), GFP_KERNEL);
336 	if (!goal)
337 		return NULL;
338 	goal->metric = metric;
339 	goal->target_value = target_value;
340 	INIT_LIST_HEAD(&goal->list);
341 	return goal;
342 }
343 
344 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g)
345 {
346 	list_add_tail(&g->list, &q->goals);
347 }
348 
349 static void damos_del_quota_goal(struct damos_quota_goal *g)
350 {
351 	list_del(&g->list);
352 }
353 
354 static void damos_free_quota_goal(struct damos_quota_goal *g)
355 {
356 	kfree(g);
357 }
358 
359 void damos_destroy_quota_goal(struct damos_quota_goal *g)
360 {
361 	damos_del_quota_goal(g);
362 	damos_free_quota_goal(g);
363 }
364 
365 /* initialize fields of @quota that normally API users wouldn't set */
366 static struct damos_quota *damos_quota_init(struct damos_quota *quota)
367 {
368 	quota->esz = 0;
369 	quota->total_charged_sz = 0;
370 	quota->total_charged_ns = 0;
371 	quota->charged_sz = 0;
372 	quota->charged_from = 0;
373 	quota->charge_target_from = NULL;
374 	quota->charge_addr_from = 0;
375 	quota->esz_bp = 0;
376 	return quota;
377 }
378 
379 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
380 			enum damos_action action,
381 			unsigned long apply_interval_us,
382 			struct damos_quota *quota,
383 			struct damos_watermarks *wmarks,
384 			int target_nid)
385 {
386 	struct damos *scheme;
387 
388 	scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
389 	if (!scheme)
390 		return NULL;
391 	scheme->pattern = *pattern;
392 	scheme->action = action;
393 	scheme->apply_interval_us = apply_interval_us;
394 	/*
395 	 * next_apply_sis will be set when kdamond starts.  While kdamond is
396 	 * running, it will also updated when it is added to the DAMON context,
397 	 * or damon_attrs are updated.
398 	 */
399 	scheme->next_apply_sis = 0;
400 	scheme->walk_completed = false;
401 	INIT_LIST_HEAD(&scheme->core_filters);
402 	INIT_LIST_HEAD(&scheme->ops_filters);
403 	scheme->stat = (struct damos_stat){};
404 	scheme->max_nr_snapshots = 0;
405 	INIT_LIST_HEAD(&scheme->list);
406 
407 	scheme->quota = *(damos_quota_init(quota));
408 	/* quota.goals should be separately set by caller */
409 	INIT_LIST_HEAD(&scheme->quota.goals);
410 
411 	scheme->wmarks = *wmarks;
412 	scheme->wmarks.activated = true;
413 
414 	scheme->migrate_dests = (struct damos_migrate_dests){};
415 	scheme->target_nid = target_nid;
416 
417 	return scheme;
418 }
419 
420 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx)
421 {
422 	unsigned long sample_interval = ctx->attrs.sample_interval ?
423 		ctx->attrs.sample_interval : 1;
424 	unsigned long apply_interval = s->apply_interval_us ?
425 		s->apply_interval_us : ctx->attrs.aggr_interval;
426 
427 	s->next_apply_sis = ctx->passed_sample_intervals +
428 		apply_interval / sample_interval;
429 }
430 
431 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
432 {
433 	list_add_tail(&s->list, &ctx->schemes);
434 	damos_set_next_apply_sis(s, ctx);
435 }
436 
437 static void damon_del_scheme(struct damos *s)
438 {
439 	list_del(&s->list);
440 }
441 
442 static void damon_free_scheme(struct damos *s)
443 {
444 	kfree(s);
445 }
446 
447 void damon_destroy_scheme(struct damos *s)
448 {
449 	struct damos_quota_goal *g, *g_next;
450 	struct damos_filter *f, *next;
451 
452 	damos_for_each_quota_goal_safe(g, g_next, &s->quota)
453 		damos_destroy_quota_goal(g);
454 
455 	damos_for_each_core_filter_safe(f, next, s)
456 		damos_destroy_filter(f);
457 
458 	damos_for_each_ops_filter_safe(f, next, s)
459 		damos_destroy_filter(f);
460 
461 	kfree(s->migrate_dests.node_id_arr);
462 	kfree(s->migrate_dests.weight_arr);
463 	damon_del_scheme(s);
464 	damon_free_scheme(s);
465 }
466 
467 /*
468  * Construct a damon_target struct
469  *
470  * Returns the pointer to the new struct if success, or NULL otherwise
471  */
472 struct damon_target *damon_new_target(void)
473 {
474 	struct damon_target *t;
475 
476 	t = kmalloc(sizeof(*t), GFP_KERNEL);
477 	if (!t)
478 		return NULL;
479 
480 	t->pid = NULL;
481 	t->nr_regions = 0;
482 	INIT_LIST_HEAD(&t->regions_list);
483 	INIT_LIST_HEAD(&t->list);
484 	t->obsolete = false;
485 
486 	return t;
487 }
488 
489 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
490 {
491 	list_add_tail(&t->list, &ctx->adaptive_targets);
492 }
493 
494 bool damon_targets_empty(struct damon_ctx *ctx)
495 {
496 	return list_empty(&ctx->adaptive_targets);
497 }
498 
499 static void damon_del_target(struct damon_target *t)
500 {
501 	list_del(&t->list);
502 }
503 
504 void damon_free_target(struct damon_target *t)
505 {
506 	struct damon_region *r, *next;
507 
508 	damon_for_each_region_safe(r, next, t)
509 		damon_free_region(r);
510 	kfree(t);
511 }
512 
513 void damon_destroy_target(struct damon_target *t, struct damon_ctx *ctx)
514 {
515 
516 	if (ctx && ctx->ops.cleanup_target)
517 		ctx->ops.cleanup_target(t);
518 
519 	damon_del_target(t);
520 	damon_free_target(t);
521 }
522 
523 unsigned int damon_nr_regions(struct damon_target *t)
524 {
525 	return t->nr_regions;
526 }
527 
528 struct damon_ctx *damon_new_ctx(void)
529 {
530 	struct damon_ctx *ctx;
531 
532 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
533 	if (!ctx)
534 		return NULL;
535 
536 	init_completion(&ctx->kdamond_started);
537 
538 	ctx->attrs.sample_interval = 5 * 1000;
539 	ctx->attrs.aggr_interval = 100 * 1000;
540 	ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
541 
542 	ctx->passed_sample_intervals = 0;
543 	/* These will be set from kdamond_init_ctx() */
544 	ctx->next_aggregation_sis = 0;
545 	ctx->next_ops_update_sis = 0;
546 
547 	mutex_init(&ctx->kdamond_lock);
548 	INIT_LIST_HEAD(&ctx->call_controls);
549 	mutex_init(&ctx->call_controls_lock);
550 	mutex_init(&ctx->walk_control_lock);
551 
552 	ctx->attrs.min_nr_regions = 10;
553 	ctx->attrs.max_nr_regions = 1000;
554 
555 	ctx->addr_unit = 1;
556 	ctx->min_region_sz = DAMON_MIN_REGION_SZ;
557 
558 	INIT_LIST_HEAD(&ctx->adaptive_targets);
559 	INIT_LIST_HEAD(&ctx->schemes);
560 
561 	return ctx;
562 }
563 
564 static void damon_destroy_targets(struct damon_ctx *ctx)
565 {
566 	struct damon_target *t, *next_t;
567 
568 	damon_for_each_target_safe(t, next_t, ctx)
569 		damon_destroy_target(t, ctx);
570 }
571 
572 void damon_destroy_ctx(struct damon_ctx *ctx)
573 {
574 	struct damos *s, *next_s;
575 
576 	damon_destroy_targets(ctx);
577 
578 	damon_for_each_scheme_safe(s, next_s, ctx)
579 		damon_destroy_scheme(s);
580 
581 	kfree(ctx);
582 }
583 
584 static bool damon_attrs_equals(const struct damon_attrs *attrs1,
585 		const struct damon_attrs *attrs2)
586 {
587 	const struct damon_intervals_goal *ig1 = &attrs1->intervals_goal;
588 	const struct damon_intervals_goal *ig2 = &attrs2->intervals_goal;
589 
590 	return attrs1->sample_interval == attrs2->sample_interval &&
591 		attrs1->aggr_interval == attrs2->aggr_interval &&
592 		attrs1->ops_update_interval == attrs2->ops_update_interval &&
593 		attrs1->min_nr_regions == attrs2->min_nr_regions &&
594 		attrs1->max_nr_regions == attrs2->max_nr_regions &&
595 		ig1->access_bp == ig2->access_bp &&
596 		ig1->aggrs == ig2->aggrs &&
597 		ig1->min_sample_us == ig2->min_sample_us &&
598 		ig1->max_sample_us == ig2->max_sample_us;
599 }
600 
601 static unsigned int damon_age_for_new_attrs(unsigned int age,
602 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
603 {
604 	return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
605 }
606 
607 /* convert access ratio in bp (per 10,000) to nr_accesses */
608 static unsigned int damon_accesses_bp_to_nr_accesses(
609 		unsigned int accesses_bp, struct damon_attrs *attrs)
610 {
611 	return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
612 }
613 
614 /*
615  * Convert nr_accesses to access ratio in bp (per 10,000).
616  *
617  * Callers should ensure attrs.aggr_interval is not zero, like
618  * damon_update_monitoring_results() does .  Otherwise, divide-by-zero would
619  * happen.
620  */
621 static unsigned int damon_nr_accesses_to_accesses_bp(
622 		unsigned int nr_accesses, struct damon_attrs *attrs)
623 {
624 	return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
625 }
626 
627 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
628 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
629 {
630 	return damon_accesses_bp_to_nr_accesses(
631 			damon_nr_accesses_to_accesses_bp(
632 				nr_accesses, old_attrs),
633 			new_attrs);
634 }
635 
636 static void damon_update_monitoring_result(struct damon_region *r,
637 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs,
638 		bool aggregating)
639 {
640 	if (!aggregating) {
641 		r->nr_accesses = damon_nr_accesses_for_new_attrs(
642 				r->nr_accesses, old_attrs, new_attrs);
643 		r->nr_accesses_bp = r->nr_accesses * 10000;
644 	} else {
645 		/*
646 		 * if this is called in the middle of the aggregation, reset
647 		 * the aggregations we made so far for this aggregation
648 		 * interval.  In other words, make the status like
649 		 * kdamond_reset_aggregated() is called.
650 		 */
651 		r->last_nr_accesses = damon_nr_accesses_for_new_attrs(
652 				r->last_nr_accesses, old_attrs, new_attrs);
653 		r->nr_accesses_bp = r->last_nr_accesses * 10000;
654 		r->nr_accesses = 0;
655 	}
656 	r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
657 }
658 
659 /*
660  * region->nr_accesses is the number of sampling intervals in the last
661  * aggregation interval that access to the region has found, and region->age is
662  * the number of aggregation intervals that its access pattern has maintained.
663  * For the reason, the real meaning of the two fields depend on current
664  * sampling interval and aggregation interval.  This function updates
665  * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
666  */
667 static void damon_update_monitoring_results(struct damon_ctx *ctx,
668 		struct damon_attrs *new_attrs, bool aggregating)
669 {
670 	struct damon_attrs *old_attrs = &ctx->attrs;
671 	struct damon_target *t;
672 	struct damon_region *r;
673 
674 	/* if any interval is zero, simply forgive conversion */
675 	if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
676 			!new_attrs->sample_interval ||
677 			!new_attrs->aggr_interval)
678 		return;
679 
680 	damon_for_each_target(t, ctx)
681 		damon_for_each_region(r, t)
682 			damon_update_monitoring_result(
683 					r, old_attrs, new_attrs, aggregating);
684 }
685 
686 /*
687  * damon_valid_intervals_goal() - return if the intervals goal of @attrs is
688  * valid.
689  */
690 static bool damon_valid_intervals_goal(struct damon_attrs *attrs)
691 {
692 	struct damon_intervals_goal *goal = &attrs->intervals_goal;
693 
694 	/* tuning is disabled */
695 	if (!goal->aggrs)
696 		return true;
697 	if (goal->min_sample_us > goal->max_sample_us)
698 		return false;
699 	if (attrs->sample_interval < goal->min_sample_us ||
700 			goal->max_sample_us < attrs->sample_interval)
701 		return false;
702 	return true;
703 }
704 
705 /**
706  * damon_set_attrs() - Set attributes for the monitoring.
707  * @ctx:		monitoring context
708  * @attrs:		monitoring attributes
709  *
710  * This function should be called while the kdamond is not running, an access
711  * check results aggregation is not ongoing (e.g., from damon_call().
712  *
713  * Every time interval is in micro-seconds.
714  *
715  * Return: 0 on success, negative error code otherwise.
716  */
717 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
718 {
719 	unsigned long sample_interval = attrs->sample_interval ?
720 		attrs->sample_interval : 1;
721 	struct damos *s;
722 	bool aggregating = ctx->passed_sample_intervals <
723 		ctx->next_aggregation_sis;
724 
725 	if (!damon_valid_intervals_goal(attrs))
726 		return -EINVAL;
727 
728 	if (attrs->min_nr_regions < 3)
729 		return -EINVAL;
730 	if (attrs->min_nr_regions > attrs->max_nr_regions)
731 		return -EINVAL;
732 	if (attrs->sample_interval > attrs->aggr_interval)
733 		return -EINVAL;
734 
735 	/* calls from core-external doesn't set this. */
736 	if (!attrs->aggr_samples)
737 		attrs->aggr_samples = attrs->aggr_interval / sample_interval;
738 
739 	ctx->next_aggregation_sis = ctx->passed_sample_intervals +
740 		attrs->aggr_interval / sample_interval;
741 	ctx->next_ops_update_sis = ctx->passed_sample_intervals +
742 		attrs->ops_update_interval / sample_interval;
743 
744 	damon_update_monitoring_results(ctx, attrs, aggregating);
745 	ctx->attrs = *attrs;
746 
747 	damon_for_each_scheme(s, ctx)
748 		damos_set_next_apply_sis(s, ctx);
749 
750 	return 0;
751 }
752 
753 /**
754  * damon_set_schemes() - Set data access monitoring based operation schemes.
755  * @ctx:	monitoring context
756  * @schemes:	array of the schemes
757  * @nr_schemes:	number of entries in @schemes
758  *
759  * This function should not be called while the kdamond of the context is
760  * running.
761  */
762 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
763 			ssize_t nr_schemes)
764 {
765 	struct damos *s, *next;
766 	ssize_t i;
767 
768 	damon_for_each_scheme_safe(s, next, ctx)
769 		damon_destroy_scheme(s);
770 	for (i = 0; i < nr_schemes; i++)
771 		damon_add_scheme(ctx, schemes[i]);
772 }
773 
774 static struct damos_quota_goal *damos_nth_quota_goal(
775 		int n, struct damos_quota *q)
776 {
777 	struct damos_quota_goal *goal;
778 	int i = 0;
779 
780 	damos_for_each_quota_goal(goal, q) {
781 		if (i++ == n)
782 			return goal;
783 	}
784 	return NULL;
785 }
786 
787 static void damos_commit_quota_goal_union(
788 		struct damos_quota_goal *dst, struct damos_quota_goal *src)
789 {
790 	switch (dst->metric) {
791 	case DAMOS_QUOTA_NODE_MEM_USED_BP:
792 	case DAMOS_QUOTA_NODE_MEM_FREE_BP:
793 		dst->nid = src->nid;
794 		break;
795 	case DAMOS_QUOTA_NODE_MEMCG_USED_BP:
796 	case DAMOS_QUOTA_NODE_MEMCG_FREE_BP:
797 		dst->nid = src->nid;
798 		dst->memcg_id = src->memcg_id;
799 		break;
800 	default:
801 		break;
802 	}
803 }
804 
805 static void damos_commit_quota_goal(
806 		struct damos_quota_goal *dst, struct damos_quota_goal *src)
807 {
808 	dst->metric = src->metric;
809 	dst->target_value = src->target_value;
810 	if (dst->metric == DAMOS_QUOTA_USER_INPUT)
811 		dst->current_value = src->current_value;
812 	/* keep last_psi_total as is, since it will be updated in next cycle */
813 	damos_commit_quota_goal_union(dst, src);
814 }
815 
816 /**
817  * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota.
818  * @dst:	The commit destination DAMOS quota.
819  * @src:	The commit source DAMOS quota.
820  *
821  * Copies user-specified parameters for quota goals from @src to @dst.  Users
822  * should use this function for quota goals-level parameters update of running
823  * DAMON contexts, instead of manual in-place updates.
824  *
825  * This function should be called from parameters-update safe context, like
826  * damon_call().
827  */
828 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src)
829 {
830 	struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal;
831 	int i = 0, j = 0;
832 
833 	damos_for_each_quota_goal_safe(dst_goal, next, dst) {
834 		src_goal = damos_nth_quota_goal(i++, src);
835 		if (src_goal)
836 			damos_commit_quota_goal(dst_goal, src_goal);
837 		else
838 			damos_destroy_quota_goal(dst_goal);
839 	}
840 	damos_for_each_quota_goal_safe(src_goal, next, src) {
841 		if (j++ < i)
842 			continue;
843 		new_goal = damos_new_quota_goal(
844 				src_goal->metric, src_goal->target_value);
845 		if (!new_goal)
846 			return -ENOMEM;
847 		damos_commit_quota_goal(new_goal, src_goal);
848 		damos_add_quota_goal(dst, new_goal);
849 	}
850 	return 0;
851 }
852 
853 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src)
854 {
855 	int err;
856 
857 	dst->reset_interval = src->reset_interval;
858 	dst->ms = src->ms;
859 	dst->sz = src->sz;
860 	err = damos_commit_quota_goals(dst, src);
861 	if (err)
862 		return err;
863 	dst->weight_sz = src->weight_sz;
864 	dst->weight_nr_accesses = src->weight_nr_accesses;
865 	dst->weight_age = src->weight_age;
866 	return 0;
867 }
868 
869 static struct damos_filter *damos_nth_core_filter(int n, struct damos *s)
870 {
871 	struct damos_filter *filter;
872 	int i = 0;
873 
874 	damos_for_each_core_filter(filter, s) {
875 		if (i++ == n)
876 			return filter;
877 	}
878 	return NULL;
879 }
880 
881 static struct damos_filter *damos_nth_ops_filter(int n, struct damos *s)
882 {
883 	struct damos_filter *filter;
884 	int i = 0;
885 
886 	damos_for_each_ops_filter(filter, s) {
887 		if (i++ == n)
888 			return filter;
889 	}
890 	return NULL;
891 }
892 
893 static void damos_commit_filter_arg(
894 		struct damos_filter *dst, struct damos_filter *src)
895 {
896 	switch (dst->type) {
897 	case DAMOS_FILTER_TYPE_MEMCG:
898 		dst->memcg_id = src->memcg_id;
899 		break;
900 	case DAMOS_FILTER_TYPE_ADDR:
901 		dst->addr_range = src->addr_range;
902 		break;
903 	case DAMOS_FILTER_TYPE_TARGET:
904 		dst->target_idx = src->target_idx;
905 		break;
906 	case DAMOS_FILTER_TYPE_HUGEPAGE_SIZE:
907 		dst->sz_range = src->sz_range;
908 		break;
909 	default:
910 		break;
911 	}
912 }
913 
914 static void damos_commit_filter(
915 		struct damos_filter *dst, struct damos_filter *src)
916 {
917 	dst->type = src->type;
918 	dst->matching = src->matching;
919 	dst->allow = src->allow;
920 	damos_commit_filter_arg(dst, src);
921 }
922 
923 static int damos_commit_core_filters(struct damos *dst, struct damos *src)
924 {
925 	struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
926 	int i = 0, j = 0;
927 
928 	damos_for_each_core_filter_safe(dst_filter, next, dst) {
929 		src_filter = damos_nth_core_filter(i++, src);
930 		if (src_filter)
931 			damos_commit_filter(dst_filter, src_filter);
932 		else
933 			damos_destroy_filter(dst_filter);
934 	}
935 
936 	damos_for_each_core_filter_safe(src_filter, next, src) {
937 		if (j++ < i)
938 			continue;
939 
940 		new_filter = damos_new_filter(
941 				src_filter->type, src_filter->matching,
942 				src_filter->allow);
943 		if (!new_filter)
944 			return -ENOMEM;
945 		damos_commit_filter_arg(new_filter, src_filter);
946 		damos_add_filter(dst, new_filter);
947 	}
948 	return 0;
949 }
950 
951 static int damos_commit_ops_filters(struct damos *dst, struct damos *src)
952 {
953 	struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
954 	int i = 0, j = 0;
955 
956 	damos_for_each_ops_filter_safe(dst_filter, next, dst) {
957 		src_filter = damos_nth_ops_filter(i++, src);
958 		if (src_filter)
959 			damos_commit_filter(dst_filter, src_filter);
960 		else
961 			damos_destroy_filter(dst_filter);
962 	}
963 
964 	damos_for_each_ops_filter_safe(src_filter, next, src) {
965 		if (j++ < i)
966 			continue;
967 
968 		new_filter = damos_new_filter(
969 				src_filter->type, src_filter->matching,
970 				src_filter->allow);
971 		if (!new_filter)
972 			return -ENOMEM;
973 		damos_commit_filter_arg(new_filter, src_filter);
974 		damos_add_filter(dst, new_filter);
975 	}
976 	return 0;
977 }
978 
979 /**
980  * damos_filters_default_reject() - decide whether to reject memory that didn't
981  *				    match with any given filter.
982  * @filters:	Given DAMOS filters of a group.
983  */
984 static bool damos_filters_default_reject(struct list_head *filters)
985 {
986 	struct damos_filter *last_filter;
987 
988 	if (list_empty(filters))
989 		return false;
990 	last_filter = list_last_entry(filters, struct damos_filter, list);
991 	return last_filter->allow;
992 }
993 
994 static void damos_set_filters_default_reject(struct damos *s)
995 {
996 	if (!list_empty(&s->ops_filters))
997 		s->core_filters_default_reject = false;
998 	else
999 		s->core_filters_default_reject =
1000 			damos_filters_default_reject(&s->core_filters);
1001 	s->ops_filters_default_reject =
1002 		damos_filters_default_reject(&s->ops_filters);
1003 }
1004 
1005 static int damos_commit_dests(struct damos_migrate_dests *dst,
1006 		struct damos_migrate_dests *src)
1007 {
1008 	if (dst->nr_dests != src->nr_dests) {
1009 		kfree(dst->node_id_arr);
1010 		kfree(dst->weight_arr);
1011 
1012 		dst->node_id_arr = kmalloc_array(src->nr_dests,
1013 			sizeof(*dst->node_id_arr), GFP_KERNEL);
1014 		if (!dst->node_id_arr) {
1015 			dst->weight_arr = NULL;
1016 			return -ENOMEM;
1017 		}
1018 
1019 		dst->weight_arr = kmalloc_array(src->nr_dests,
1020 			sizeof(*dst->weight_arr), GFP_KERNEL);
1021 		if (!dst->weight_arr) {
1022 			/* ->node_id_arr will be freed by scheme destruction */
1023 			return -ENOMEM;
1024 		}
1025 	}
1026 
1027 	dst->nr_dests = src->nr_dests;
1028 	for (int i = 0; i < src->nr_dests; i++) {
1029 		dst->node_id_arr[i] = src->node_id_arr[i];
1030 		dst->weight_arr[i] = src->weight_arr[i];
1031 	}
1032 
1033 	return 0;
1034 }
1035 
1036 static int damos_commit_filters(struct damos *dst, struct damos *src)
1037 {
1038 	int err;
1039 
1040 	err = damos_commit_core_filters(dst, src);
1041 	if (err)
1042 		return err;
1043 	err = damos_commit_ops_filters(dst, src);
1044 	if (err)
1045 		return err;
1046 	damos_set_filters_default_reject(dst);
1047 	return 0;
1048 }
1049 
1050 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx)
1051 {
1052 	struct damos *s;
1053 	int i = 0;
1054 
1055 	damon_for_each_scheme(s, ctx) {
1056 		if (i++ == n)
1057 			return s;
1058 	}
1059 	return NULL;
1060 }
1061 
1062 static int damos_commit(struct damos *dst, struct damos *src)
1063 {
1064 	int err;
1065 
1066 	dst->pattern = src->pattern;
1067 	dst->action = src->action;
1068 	dst->apply_interval_us = src->apply_interval_us;
1069 
1070 	err = damos_commit_quota(&dst->quota, &src->quota);
1071 	if (err)
1072 		return err;
1073 
1074 	dst->wmarks = src->wmarks;
1075 	dst->target_nid = src->target_nid;
1076 
1077 	err = damos_commit_dests(&dst->migrate_dests, &src->migrate_dests);
1078 	if (err)
1079 		return err;
1080 
1081 	err = damos_commit_filters(dst, src);
1082 	if (err)
1083 		return err;
1084 
1085 	dst->max_nr_snapshots = src->max_nr_snapshots;
1086 	return 0;
1087 }
1088 
1089 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src)
1090 {
1091 	struct damos *dst_scheme, *next, *src_scheme, *new_scheme;
1092 	int i = 0, j = 0, err;
1093 
1094 	damon_for_each_scheme_safe(dst_scheme, next, dst) {
1095 		src_scheme = damon_nth_scheme(i++, src);
1096 		if (src_scheme) {
1097 			err = damos_commit(dst_scheme, src_scheme);
1098 			if (err)
1099 				return err;
1100 		} else {
1101 			damon_destroy_scheme(dst_scheme);
1102 		}
1103 	}
1104 
1105 	damon_for_each_scheme_safe(src_scheme, next, src) {
1106 		if (j++ < i)
1107 			continue;
1108 		new_scheme = damon_new_scheme(&src_scheme->pattern,
1109 				src_scheme->action,
1110 				src_scheme->apply_interval_us,
1111 				&src_scheme->quota, &src_scheme->wmarks,
1112 				NUMA_NO_NODE);
1113 		if (!new_scheme)
1114 			return -ENOMEM;
1115 		err = damos_commit(new_scheme, src_scheme);
1116 		if (err) {
1117 			damon_destroy_scheme(new_scheme);
1118 			return err;
1119 		}
1120 		damon_add_scheme(dst, new_scheme);
1121 	}
1122 	return 0;
1123 }
1124 
1125 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx)
1126 {
1127 	struct damon_target *t;
1128 	int i = 0;
1129 
1130 	damon_for_each_target(t, ctx) {
1131 		if (i++ == n)
1132 			return t;
1133 	}
1134 	return NULL;
1135 }
1136 
1137 /*
1138  * The caller should ensure the regions of @src are
1139  * 1. valid (end >= src) and
1140  * 2. sorted by starting address.
1141  *
1142  * If @src has no region, @dst keeps current regions.
1143  */
1144 static int damon_commit_target_regions(struct damon_target *dst,
1145 		struct damon_target *src, unsigned long src_min_region_sz)
1146 {
1147 	struct damon_region *src_region;
1148 	struct damon_addr_range *ranges;
1149 	int i = 0, err;
1150 
1151 	damon_for_each_region(src_region, src)
1152 		i++;
1153 	if (!i)
1154 		return 0;
1155 
1156 	ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN);
1157 	if (!ranges)
1158 		return -ENOMEM;
1159 	i = 0;
1160 	damon_for_each_region(src_region, src)
1161 		ranges[i++] = src_region->ar;
1162 	err = damon_set_regions(dst, ranges, i, src_min_region_sz);
1163 	kfree(ranges);
1164 	return err;
1165 }
1166 
1167 static int damon_commit_target(
1168 		struct damon_target *dst, bool dst_has_pid,
1169 		struct damon_target *src, bool src_has_pid,
1170 		unsigned long src_min_region_sz)
1171 {
1172 	int err;
1173 
1174 	err = damon_commit_target_regions(dst, src, src_min_region_sz);
1175 	if (err)
1176 		return err;
1177 	if (dst_has_pid)
1178 		put_pid(dst->pid);
1179 	if (src_has_pid)
1180 		get_pid(src->pid);
1181 	dst->pid = src->pid;
1182 	return 0;
1183 }
1184 
1185 static int damon_commit_targets(
1186 		struct damon_ctx *dst, struct damon_ctx *src)
1187 {
1188 	struct damon_target *dst_target, *next, *src_target, *new_target;
1189 	int i = 0, j = 0, err;
1190 
1191 	damon_for_each_target_safe(dst_target, next, dst) {
1192 		src_target = damon_nth_target(i++, src);
1193 		/*
1194 		 * If src target is obsolete, do not commit the parameters to
1195 		 * the dst target, and further remove the dst target.
1196 		 */
1197 		if (src_target && !src_target->obsolete) {
1198 			err = damon_commit_target(
1199 					dst_target, damon_target_has_pid(dst),
1200 					src_target, damon_target_has_pid(src),
1201 					src->min_region_sz);
1202 			if (err)
1203 				return err;
1204 		} else {
1205 			struct damos *s;
1206 
1207 			damon_destroy_target(dst_target, dst);
1208 			damon_for_each_scheme(s, dst) {
1209 				if (s->quota.charge_target_from == dst_target) {
1210 					s->quota.charge_target_from = NULL;
1211 					s->quota.charge_addr_from = 0;
1212 				}
1213 			}
1214 		}
1215 	}
1216 
1217 	damon_for_each_target_safe(src_target, next, src) {
1218 		if (j++ < i)
1219 			continue;
1220 		/* target to remove has no matching dst */
1221 		if (src_target->obsolete)
1222 			return -EINVAL;
1223 		new_target = damon_new_target();
1224 		if (!new_target)
1225 			return -ENOMEM;
1226 		err = damon_commit_target(new_target, false,
1227 				src_target, damon_target_has_pid(src),
1228 				src->min_region_sz);
1229 		if (err) {
1230 			damon_destroy_target(new_target, NULL);
1231 			return err;
1232 		}
1233 		damon_add_target(dst, new_target);
1234 	}
1235 	return 0;
1236 }
1237 
1238 /**
1239  * damon_commit_ctx() - Commit parameters of a DAMON context to another.
1240  * @dst:	The commit destination DAMON context.
1241  * @src:	The commit source DAMON context.
1242  *
1243  * This function copies user-specified parameters from @src to @dst and update
1244  * the internal status and results accordingly.  Users should use this function
1245  * for context-level parameters update of running context, instead of manual
1246  * in-place updates.
1247  *
1248  * This function should be called from parameters-update safe context, like
1249  * damon_call().
1250  */
1251 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src)
1252 {
1253 	int err;
1254 
1255 	err = damon_commit_schemes(dst, src);
1256 	if (err)
1257 		return err;
1258 	err = damon_commit_targets(dst, src);
1259 	if (err)
1260 		return err;
1261 	/*
1262 	 * schemes and targets should be updated first, since
1263 	 * 1. damon_set_attrs() updates monitoring results of targets and
1264 	 * next_apply_sis of schemes, and
1265 	 * 2. ops update should be done after pid handling is done (target
1266 	 *    committing require putting pids).
1267 	 */
1268 	if (!damon_attrs_equals(&dst->attrs, &src->attrs)) {
1269 		err = damon_set_attrs(dst, &src->attrs);
1270 		if (err)
1271 			return err;
1272 	}
1273 	dst->ops = src->ops;
1274 	dst->addr_unit = src->addr_unit;
1275 	dst->min_region_sz = src->min_region_sz;
1276 
1277 	return 0;
1278 }
1279 
1280 /**
1281  * damon_nr_running_ctxs() - Return number of currently running contexts.
1282  */
1283 int damon_nr_running_ctxs(void)
1284 {
1285 	int nr_ctxs;
1286 
1287 	mutex_lock(&damon_lock);
1288 	nr_ctxs = nr_running_ctxs;
1289 	mutex_unlock(&damon_lock);
1290 
1291 	return nr_ctxs;
1292 }
1293 
1294 /* Returns the size upper limit for each monitoring region */
1295 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
1296 {
1297 	struct damon_target *t;
1298 	struct damon_region *r;
1299 	unsigned long sz = 0;
1300 
1301 	damon_for_each_target(t, ctx) {
1302 		damon_for_each_region(r, t)
1303 			sz += damon_sz_region(r);
1304 	}
1305 
1306 	if (ctx->attrs.min_nr_regions)
1307 		sz /= ctx->attrs.min_nr_regions;
1308 	if (sz < ctx->min_region_sz)
1309 		sz = ctx->min_region_sz;
1310 
1311 	return sz;
1312 }
1313 
1314 static int kdamond_fn(void *data);
1315 
1316 /*
1317  * __damon_start() - Starts monitoring with given context.
1318  * @ctx:	monitoring context
1319  *
1320  * This function should be called while damon_lock is hold.
1321  *
1322  * Return: 0 on success, negative error code otherwise.
1323  */
1324 static int __damon_start(struct damon_ctx *ctx)
1325 {
1326 	int err = -EBUSY;
1327 
1328 	mutex_lock(&ctx->kdamond_lock);
1329 	if (!ctx->kdamond) {
1330 		err = 0;
1331 		reinit_completion(&ctx->kdamond_started);
1332 		ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
1333 				nr_running_ctxs);
1334 		if (IS_ERR(ctx->kdamond)) {
1335 			err = PTR_ERR(ctx->kdamond);
1336 			ctx->kdamond = NULL;
1337 		} else {
1338 			wait_for_completion(&ctx->kdamond_started);
1339 		}
1340 	}
1341 	mutex_unlock(&ctx->kdamond_lock);
1342 
1343 	return err;
1344 }
1345 
1346 /**
1347  * damon_start() - Starts the monitorings for a given group of contexts.
1348  * @ctxs:	an array of the pointers for contexts to start monitoring
1349  * @nr_ctxs:	size of @ctxs
1350  * @exclusive:	exclusiveness of this contexts group
1351  *
1352  * This function starts a group of monitoring threads for a group of monitoring
1353  * contexts.  One thread per each context is created and run in parallel.  The
1354  * caller should handle synchronization between the threads by itself.  If
1355  * @exclusive is true and a group of threads that created by other
1356  * 'damon_start()' call is currently running, this function does nothing but
1357  * returns -EBUSY.
1358  *
1359  * Return: 0 on success, negative error code otherwise.
1360  */
1361 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
1362 {
1363 	int i;
1364 	int err = 0;
1365 
1366 	mutex_lock(&damon_lock);
1367 	if ((exclusive && nr_running_ctxs) ||
1368 			(!exclusive && running_exclusive_ctxs)) {
1369 		mutex_unlock(&damon_lock);
1370 		return -EBUSY;
1371 	}
1372 
1373 	for (i = 0; i < nr_ctxs; i++) {
1374 		err = __damon_start(ctxs[i]);
1375 		if (err)
1376 			break;
1377 		nr_running_ctxs++;
1378 	}
1379 	if (exclusive && nr_running_ctxs)
1380 		running_exclusive_ctxs = true;
1381 	mutex_unlock(&damon_lock);
1382 
1383 	return err;
1384 }
1385 
1386 /*
1387  * __damon_stop() - Stops monitoring of a given context.
1388  * @ctx:	monitoring context
1389  *
1390  * Return: 0 on success, negative error code otherwise.
1391  */
1392 static int __damon_stop(struct damon_ctx *ctx)
1393 {
1394 	struct task_struct *tsk;
1395 
1396 	mutex_lock(&ctx->kdamond_lock);
1397 	tsk = ctx->kdamond;
1398 	if (tsk) {
1399 		get_task_struct(tsk);
1400 		mutex_unlock(&ctx->kdamond_lock);
1401 		kthread_stop_put(tsk);
1402 		return 0;
1403 	}
1404 	mutex_unlock(&ctx->kdamond_lock);
1405 
1406 	return -EPERM;
1407 }
1408 
1409 /**
1410  * damon_stop() - Stops the monitorings for a given group of contexts.
1411  * @ctxs:	an array of the pointers for contexts to stop monitoring
1412  * @nr_ctxs:	size of @ctxs
1413  *
1414  * Return: 0 on success, negative error code otherwise.
1415  */
1416 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
1417 {
1418 	int i, err = 0;
1419 
1420 	for (i = 0; i < nr_ctxs; i++) {
1421 		/* nr_running_ctxs is decremented in kdamond_fn */
1422 		err = __damon_stop(ctxs[i]);
1423 		if (err)
1424 			break;
1425 	}
1426 	return err;
1427 }
1428 
1429 /**
1430  * damon_is_running() - Returns if a given DAMON context is running.
1431  * @ctx:	The DAMON context to see if running.
1432  *
1433  * Return: true if @ctx is running, false otherwise.
1434  */
1435 bool damon_is_running(struct damon_ctx *ctx)
1436 {
1437 	bool running;
1438 
1439 	mutex_lock(&ctx->kdamond_lock);
1440 	running = ctx->kdamond != NULL;
1441 	mutex_unlock(&ctx->kdamond_lock);
1442 	return running;
1443 }
1444 
1445 /**
1446  * damon_kdamond_pid() - Return pid of a given DAMON context's worker thread.
1447  * @ctx:	The DAMON context of the question.
1448  *
1449  * Return: pid if @ctx is running, negative error code otherwise.
1450  */
1451 int damon_kdamond_pid(struct damon_ctx *ctx)
1452 {
1453 	int pid = -EINVAL;
1454 
1455 	mutex_lock(&ctx->kdamond_lock);
1456 	if (ctx->kdamond)
1457 		pid = ctx->kdamond->pid;
1458 	mutex_unlock(&ctx->kdamond_lock);
1459 	return pid;
1460 }
1461 
1462 /*
1463  * damon_call_handle_inactive_ctx() - handle DAMON call request that added to
1464  *				      an inactive context.
1465  * @ctx:	The inactive DAMON context.
1466  * @control:	Control variable of the call request.
1467  *
1468  * This function is called in a case that @control is added to @ctx but @ctx is
1469  * not running (inactive).  See if @ctx handled @control or not, and cleanup
1470  * @control if it was not handled.
1471  *
1472  * Returns 0 if @control was handled by @ctx, negative error code otherwise.
1473  */
1474 static int damon_call_handle_inactive_ctx(
1475 		struct damon_ctx *ctx, struct damon_call_control *control)
1476 {
1477 	struct damon_call_control *c;
1478 
1479 	mutex_lock(&ctx->call_controls_lock);
1480 	list_for_each_entry(c, &ctx->call_controls, list) {
1481 		if (c == control) {
1482 			list_del(&control->list);
1483 			mutex_unlock(&ctx->call_controls_lock);
1484 			return -EINVAL;
1485 		}
1486 	}
1487 	mutex_unlock(&ctx->call_controls_lock);
1488 	return 0;
1489 }
1490 
1491 /**
1492  * damon_call() - Invoke a given function on DAMON worker thread (kdamond).
1493  * @ctx:	DAMON context to call the function for.
1494  * @control:	Control variable of the call request.
1495  *
1496  * Ask DAMON worker thread (kdamond) of @ctx to call a function with an
1497  * argument data that respectively passed via &damon_call_control->fn and
1498  * &damon_call_control->data of @control.  If &damon_call_control->repeat of
1499  * @control is unset, further wait until the kdamond finishes handling of the
1500  * request.  Otherwise, return as soon as the request is made.
1501  *
1502  * The kdamond executes the function with the argument in the main loop, just
1503  * after a sampling of the iteration is finished.  The function can hence
1504  * safely access the internal data of the &struct damon_ctx without additional
1505  * synchronization.  The return value of the function will be saved in
1506  * &damon_call_control->return_code.
1507  *
1508  * Return: 0 on success, negative error code otherwise.
1509  */
1510 int damon_call(struct damon_ctx *ctx, struct damon_call_control *control)
1511 {
1512 	if (!control->repeat)
1513 		init_completion(&control->completion);
1514 	control->canceled = false;
1515 	INIT_LIST_HEAD(&control->list);
1516 
1517 	mutex_lock(&ctx->call_controls_lock);
1518 	list_add_tail(&control->list, &ctx->call_controls);
1519 	mutex_unlock(&ctx->call_controls_lock);
1520 	if (!damon_is_running(ctx))
1521 		return damon_call_handle_inactive_ctx(ctx, control);
1522 	if (control->repeat)
1523 		return 0;
1524 	wait_for_completion(&control->completion);
1525 	if (control->canceled)
1526 		return -ECANCELED;
1527 	return 0;
1528 }
1529 
1530 /**
1531  * damos_walk() - Invoke a given functions while DAMOS walk regions.
1532  * @ctx:	DAMON context to call the functions for.
1533  * @control:	Control variable of the walk request.
1534  *
1535  * Ask DAMON worker thread (kdamond) of @ctx to call a function for each region
1536  * that the kdamond will apply DAMOS action to, and wait until the kdamond
1537  * finishes handling of the request.
1538  *
1539  * The kdamond executes the given function in the main loop, for each region
1540  * just after it applied any DAMOS actions of @ctx to it.  The invocation is
1541  * made only within one &damos->apply_interval_us since damos_walk()
1542  * invocation, for each scheme.  The given callback function can hence safely
1543  * access the internal data of &struct damon_ctx and &struct damon_region that
1544  * each of the scheme will apply the action for next interval, without
1545  * additional synchronizations against the kdamond.  If every scheme of @ctx
1546  * passed at least one &damos->apply_interval_us, kdamond marks the request as
1547  * completed so that damos_walk() can wakeup and return.
1548  *
1549  * Return: 0 on success, negative error code otherwise.
1550  */
1551 int damos_walk(struct damon_ctx *ctx, struct damos_walk_control *control)
1552 {
1553 	init_completion(&control->completion);
1554 	control->canceled = false;
1555 	mutex_lock(&ctx->walk_control_lock);
1556 	if (ctx->walk_control) {
1557 		mutex_unlock(&ctx->walk_control_lock);
1558 		return -EBUSY;
1559 	}
1560 	ctx->walk_control = control;
1561 	mutex_unlock(&ctx->walk_control_lock);
1562 	if (!damon_is_running(ctx))
1563 		return -EINVAL;
1564 	wait_for_completion(&control->completion);
1565 	if (control->canceled)
1566 		return -ECANCELED;
1567 	return 0;
1568 }
1569 
1570 /*
1571  * Warn and fix corrupted ->nr_accesses[_bp] for investigations and preventing
1572  * the problem being propagated.
1573  */
1574 static void damon_warn_fix_nr_accesses_corruption(struct damon_region *r)
1575 {
1576 	if (r->nr_accesses_bp == r->nr_accesses * 10000)
1577 		return;
1578 	WARN_ONCE(true, "invalid nr_accesses_bp at reset: %u %u\n",
1579 			r->nr_accesses_bp, r->nr_accesses);
1580 	r->nr_accesses_bp = r->nr_accesses * 10000;
1581 }
1582 
1583 /*
1584  * Reset the aggregated monitoring results ('nr_accesses' of each region).
1585  */
1586 static void kdamond_reset_aggregated(struct damon_ctx *c)
1587 {
1588 	struct damon_target *t;
1589 	unsigned int ti = 0;	/* target's index */
1590 
1591 	damon_for_each_target(t, c) {
1592 		struct damon_region *r;
1593 
1594 		damon_for_each_region(r, t) {
1595 			trace_damon_aggregated(ti, r, damon_nr_regions(t));
1596 			damon_warn_fix_nr_accesses_corruption(r);
1597 			r->last_nr_accesses = r->nr_accesses;
1598 			r->nr_accesses = 0;
1599 		}
1600 		ti++;
1601 	}
1602 }
1603 
1604 static unsigned long damon_get_intervals_score(struct damon_ctx *c)
1605 {
1606 	struct damon_target *t;
1607 	struct damon_region *r;
1608 	unsigned long sz_region, max_access_events = 0, access_events = 0;
1609 	unsigned long target_access_events;
1610 	unsigned long goal_bp = c->attrs.intervals_goal.access_bp;
1611 
1612 	damon_for_each_target(t, c) {
1613 		damon_for_each_region(r, t) {
1614 			sz_region = damon_sz_region(r);
1615 			max_access_events += sz_region * c->attrs.aggr_samples;
1616 			access_events += sz_region * r->nr_accesses;
1617 		}
1618 	}
1619 	target_access_events = max_access_events * goal_bp / 10000;
1620 	target_access_events = target_access_events ? : 1;
1621 	return access_events * 10000 / target_access_events;
1622 }
1623 
1624 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1625 		unsigned long score);
1626 
1627 static unsigned long damon_get_intervals_adaptation_bp(struct damon_ctx *c)
1628 {
1629 	unsigned long score_bp, adaptation_bp;
1630 
1631 	score_bp = damon_get_intervals_score(c);
1632 	adaptation_bp = damon_feed_loop_next_input(100000000, score_bp) /
1633 		10000;
1634 	/*
1635 	 * adaptation_bp ranges from 1 to 20,000.  Avoid too rapid reduction of
1636 	 * the intervals by rescaling [1,10,000] to [5000, 10,000].
1637 	 */
1638 	if (adaptation_bp <= 10000)
1639 		adaptation_bp = 5000 + adaptation_bp / 2;
1640 	return adaptation_bp;
1641 }
1642 
1643 static void kdamond_tune_intervals(struct damon_ctx *c)
1644 {
1645 	unsigned long adaptation_bp;
1646 	struct damon_attrs new_attrs;
1647 	struct damon_intervals_goal *goal;
1648 
1649 	adaptation_bp = damon_get_intervals_adaptation_bp(c);
1650 	if (adaptation_bp == 10000)
1651 		return;
1652 
1653 	new_attrs = c->attrs;
1654 	goal = &c->attrs.intervals_goal;
1655 	new_attrs.sample_interval = min(goal->max_sample_us,
1656 			c->attrs.sample_interval * adaptation_bp / 10000);
1657 	new_attrs.sample_interval = max(goal->min_sample_us,
1658 			new_attrs.sample_interval);
1659 	new_attrs.aggr_interval = new_attrs.sample_interval *
1660 		c->attrs.aggr_samples;
1661 	trace_damon_monitor_intervals_tune(new_attrs.sample_interval);
1662 	damon_set_attrs(c, &new_attrs);
1663 }
1664 
1665 static void damon_split_region_at(struct damon_target *t,
1666 				  struct damon_region *r, unsigned long sz_r);
1667 
1668 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
1669 {
1670 	unsigned long sz;
1671 	unsigned int nr_accesses = r->nr_accesses_bp / 10000;
1672 
1673 	sz = damon_sz_region(r);
1674 	return s->pattern.min_sz_region <= sz &&
1675 		sz <= s->pattern.max_sz_region &&
1676 		s->pattern.min_nr_accesses <= nr_accesses &&
1677 		nr_accesses <= s->pattern.max_nr_accesses &&
1678 		s->pattern.min_age_region <= r->age &&
1679 		r->age <= s->pattern.max_age_region;
1680 }
1681 
1682 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
1683 		struct damon_region *r, struct damos *s)
1684 {
1685 	bool ret = __damos_valid_target(r, s);
1686 
1687 	if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
1688 		return ret;
1689 
1690 	return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
1691 }
1692 
1693 /*
1694  * damos_skip_charged_region() - Check if the given region or starting part of
1695  * it is already charged for the DAMOS quota.
1696  * @t:	The target of the region.
1697  * @rp:	The pointer to the region.
1698  * @s:	The scheme to be applied.
1699  * @min_region_sz:	minimum region size.
1700  *
1701  * If a quota of a scheme has exceeded in a quota charge window, the scheme's
1702  * action would applied to only a part of the target access pattern fulfilling
1703  * regions.  To avoid applying the scheme action to only already applied
1704  * regions, DAMON skips applying the scheme action to the regions that charged
1705  * in the previous charge window.
1706  *
1707  * This function checks if a given region should be skipped or not for the
1708  * reason.  If only the starting part of the region has previously charged,
1709  * this function splits the region into two so that the second one covers the
1710  * area that not charged in the previous charge widnow and saves the second
1711  * region in *rp and returns false, so that the caller can apply DAMON action
1712  * to the second one.
1713  *
1714  * Return: true if the region should be entirely skipped, false otherwise.
1715  */
1716 static bool damos_skip_charged_region(struct damon_target *t,
1717 		struct damon_region **rp, struct damos *s,
1718 		unsigned long min_region_sz)
1719 {
1720 	struct damon_region *r = *rp;
1721 	struct damos_quota *quota = &s->quota;
1722 	unsigned long sz_to_skip;
1723 
1724 	/* Skip previously charged regions */
1725 	if (quota->charge_target_from) {
1726 		if (t != quota->charge_target_from)
1727 			return true;
1728 		if (r == damon_last_region(t)) {
1729 			quota->charge_target_from = NULL;
1730 			quota->charge_addr_from = 0;
1731 			return true;
1732 		}
1733 		if (quota->charge_addr_from &&
1734 				r->ar.end <= quota->charge_addr_from)
1735 			return true;
1736 
1737 		if (quota->charge_addr_from && r->ar.start <
1738 				quota->charge_addr_from) {
1739 			sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
1740 					r->ar.start, min_region_sz);
1741 			if (!sz_to_skip) {
1742 				if (damon_sz_region(r) <= min_region_sz)
1743 					return true;
1744 				sz_to_skip = min_region_sz;
1745 			}
1746 			damon_split_region_at(t, r, sz_to_skip);
1747 			r = damon_next_region(r);
1748 			*rp = r;
1749 		}
1750 		quota->charge_target_from = NULL;
1751 		quota->charge_addr_from = 0;
1752 	}
1753 	return false;
1754 }
1755 
1756 static void damos_update_stat(struct damos *s,
1757 		unsigned long sz_tried, unsigned long sz_applied,
1758 		unsigned long sz_ops_filter_passed)
1759 {
1760 	s->stat.nr_tried++;
1761 	s->stat.sz_tried += sz_tried;
1762 	if (sz_applied)
1763 		s->stat.nr_applied++;
1764 	s->stat.sz_applied += sz_applied;
1765 	s->stat.sz_ops_filter_passed += sz_ops_filter_passed;
1766 }
1767 
1768 static bool damos_filter_match(struct damon_ctx *ctx, struct damon_target *t,
1769 		struct damon_region *r, struct damos_filter *filter,
1770 		unsigned long min_region_sz)
1771 {
1772 	bool matched = false;
1773 	struct damon_target *ti;
1774 	int target_idx = 0;
1775 	unsigned long start, end;
1776 
1777 	switch (filter->type) {
1778 	case DAMOS_FILTER_TYPE_TARGET:
1779 		damon_for_each_target(ti, ctx) {
1780 			if (ti == t)
1781 				break;
1782 			target_idx++;
1783 		}
1784 		matched = target_idx == filter->target_idx;
1785 		break;
1786 	case DAMOS_FILTER_TYPE_ADDR:
1787 		start = ALIGN_DOWN(filter->addr_range.start, min_region_sz);
1788 		end = ALIGN_DOWN(filter->addr_range.end, min_region_sz);
1789 
1790 		/* inside the range */
1791 		if (start <= r->ar.start && r->ar.end <= end) {
1792 			matched = true;
1793 			break;
1794 		}
1795 		/* outside of the range */
1796 		if (r->ar.end <= start || end <= r->ar.start) {
1797 			matched = false;
1798 			break;
1799 		}
1800 		/* start before the range and overlap */
1801 		if (r->ar.start < start) {
1802 			damon_split_region_at(t, r, start - r->ar.start);
1803 			matched = false;
1804 			break;
1805 		}
1806 		/* start inside the range */
1807 		damon_split_region_at(t, r, end - r->ar.start);
1808 		matched = true;
1809 		break;
1810 	default:
1811 		return false;
1812 	}
1813 
1814 	return matched == filter->matching;
1815 }
1816 
1817 static bool damos_core_filter_out(struct damon_ctx *ctx, struct damon_target *t,
1818 		struct damon_region *r, struct damos *s)
1819 {
1820 	struct damos_filter *filter;
1821 
1822 	s->core_filters_allowed = false;
1823 	damos_for_each_core_filter(filter, s) {
1824 		if (damos_filter_match(ctx, t, r, filter, ctx->min_region_sz)) {
1825 			if (filter->allow)
1826 				s->core_filters_allowed = true;
1827 			return !filter->allow;
1828 		}
1829 	}
1830 	return s->core_filters_default_reject;
1831 }
1832 
1833 /*
1834  * damos_walk_call_walk() - Call &damos_walk_control->walk_fn.
1835  * @ctx:	The context of &damon_ctx->walk_control.
1836  * @t:		The monitoring target of @r that @s will be applied.
1837  * @r:		The region of @t that @s will be applied.
1838  * @s:		The scheme of @ctx that will be applied to @r.
1839  *
1840  * This function is called from kdamond whenever it asked the operation set to
1841  * apply a DAMOS scheme action to a region.  If a DAMOS walk request is
1842  * installed by damos_walk() and not yet uninstalled, invoke it.
1843  */
1844 static void damos_walk_call_walk(struct damon_ctx *ctx, struct damon_target *t,
1845 		struct damon_region *r, struct damos *s,
1846 		unsigned long sz_filter_passed)
1847 {
1848 	struct damos_walk_control *control;
1849 
1850 	if (s->walk_completed)
1851 		return;
1852 
1853 	control = ctx->walk_control;
1854 	if (!control)
1855 		return;
1856 
1857 	control->walk_fn(control->data, ctx, t, r, s, sz_filter_passed);
1858 }
1859 
1860 /*
1861  * damos_walk_complete() - Complete DAMOS walk request if all walks are done.
1862  * @ctx:	The context of &damon_ctx->walk_control.
1863  * @s:		A scheme of @ctx that all walks are now done.
1864  *
1865  * This function is called when kdamond finished applying the action of a DAMOS
1866  * scheme to all regions that eligible for the given &damos->apply_interval_us.
1867  * If every scheme of @ctx including @s now finished walking for at least one
1868  * &damos->apply_interval_us, this function makrs the handling of the given
1869  * DAMOS walk request is done, so that damos_walk() can wake up and return.
1870  */
1871 static void damos_walk_complete(struct damon_ctx *ctx, struct damos *s)
1872 {
1873 	struct damos *siter;
1874 	struct damos_walk_control *control;
1875 
1876 	control = ctx->walk_control;
1877 	if (!control)
1878 		return;
1879 
1880 	s->walk_completed = true;
1881 	/* if all schemes completed, signal completion to walker */
1882 	damon_for_each_scheme(siter, ctx) {
1883 		if (!siter->walk_completed)
1884 			return;
1885 	}
1886 	damon_for_each_scheme(siter, ctx)
1887 		siter->walk_completed = false;
1888 
1889 	complete(&control->completion);
1890 	ctx->walk_control = NULL;
1891 }
1892 
1893 /*
1894  * damos_walk_cancel() - Cancel the current DAMOS walk request.
1895  * @ctx:	The context of &damon_ctx->walk_control.
1896  *
1897  * This function is called when @ctx is deactivated by DAMOS watermarks, DAMOS
1898  * walk is requested but there is no DAMOS scheme to walk for, or the kdamond
1899  * is already out of the main loop and therefore gonna be terminated, and hence
1900  * cannot continue the walks.  This function therefore marks the walk request
1901  * as canceled, so that damos_walk() can wake up and return.
1902  */
1903 static void damos_walk_cancel(struct damon_ctx *ctx)
1904 {
1905 	struct damos_walk_control *control;
1906 
1907 	mutex_lock(&ctx->walk_control_lock);
1908 	control = ctx->walk_control;
1909 	mutex_unlock(&ctx->walk_control_lock);
1910 
1911 	if (!control)
1912 		return;
1913 	control->canceled = true;
1914 	complete(&control->completion);
1915 	mutex_lock(&ctx->walk_control_lock);
1916 	ctx->walk_control = NULL;
1917 	mutex_unlock(&ctx->walk_control_lock);
1918 }
1919 
1920 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
1921 		struct damon_region *r, struct damos *s)
1922 {
1923 	struct damos_quota *quota = &s->quota;
1924 	unsigned long sz = damon_sz_region(r);
1925 	struct timespec64 begin, end;
1926 	unsigned long sz_applied = 0;
1927 	unsigned long sz_ops_filter_passed = 0;
1928 	/*
1929 	 * We plan to support multiple context per kdamond, as DAMON sysfs
1930 	 * implies with 'nr_contexts' file.  Nevertheless, only single context
1931 	 * per kdamond is supported for now.  So, we can simply use '0' context
1932 	 * index here.
1933 	 */
1934 	unsigned int cidx = 0;
1935 	struct damos *siter;		/* schemes iterator */
1936 	unsigned int sidx = 0;
1937 	struct damon_target *titer;	/* targets iterator */
1938 	unsigned int tidx = 0;
1939 	bool do_trace = false;
1940 
1941 	/* get indices for trace_damos_before_apply() */
1942 	if (trace_damos_before_apply_enabled()) {
1943 		damon_for_each_scheme(siter, c) {
1944 			if (siter == s)
1945 				break;
1946 			sidx++;
1947 		}
1948 		damon_for_each_target(titer, c) {
1949 			if (titer == t)
1950 				break;
1951 			tidx++;
1952 		}
1953 		do_trace = true;
1954 	}
1955 
1956 	if (c->ops.apply_scheme) {
1957 		if (quota->esz && quota->charged_sz + sz > quota->esz) {
1958 			sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
1959 					c->min_region_sz);
1960 			if (!sz)
1961 				goto update_stat;
1962 			damon_split_region_at(t, r, sz);
1963 		}
1964 		if (damos_core_filter_out(c, t, r, s))
1965 			return;
1966 		ktime_get_coarse_ts64(&begin);
1967 		trace_damos_before_apply(cidx, sidx, tidx, r,
1968 				damon_nr_regions(t), do_trace);
1969 		sz_applied = c->ops.apply_scheme(c, t, r, s,
1970 				&sz_ops_filter_passed);
1971 		damos_walk_call_walk(c, t, r, s, sz_ops_filter_passed);
1972 		ktime_get_coarse_ts64(&end);
1973 		quota->total_charged_ns += timespec64_to_ns(&end) -
1974 			timespec64_to_ns(&begin);
1975 		quota->charged_sz += sz;
1976 		if (quota->esz && quota->charged_sz >= quota->esz) {
1977 			quota->charge_target_from = t;
1978 			quota->charge_addr_from = r->ar.end + 1;
1979 		}
1980 	}
1981 	if (s->action != DAMOS_STAT)
1982 		r->age = 0;
1983 
1984 update_stat:
1985 	damos_update_stat(s, sz, sz_applied, sz_ops_filter_passed);
1986 }
1987 
1988 static void damon_do_apply_schemes(struct damon_ctx *c,
1989 				   struct damon_target *t,
1990 				   struct damon_region *r)
1991 {
1992 	struct damos *s;
1993 
1994 	damon_for_each_scheme(s, c) {
1995 		struct damos_quota *quota = &s->quota;
1996 
1997 		if (c->passed_sample_intervals < s->next_apply_sis)
1998 			continue;
1999 
2000 		if (!s->wmarks.activated)
2001 			continue;
2002 
2003 		/* Check the quota */
2004 		if (quota->esz && quota->charged_sz >= quota->esz)
2005 			continue;
2006 
2007 		if (damos_skip_charged_region(t, &r, s, c->min_region_sz))
2008 			continue;
2009 
2010 		if (s->max_nr_snapshots &&
2011 				s->max_nr_snapshots <= s->stat.nr_snapshots)
2012 			continue;
2013 
2014 		if (damos_valid_target(c, t, r, s))
2015 			damos_apply_scheme(c, t, r, s);
2016 
2017 		if (damon_is_last_region(r, t))
2018 			s->stat.nr_snapshots++;
2019 	}
2020 }
2021 
2022 /*
2023  * damon_feed_loop_next_input() - get next input to achieve a target score.
2024  * @last_input	The last input.
2025  * @score	Current score that made with @last_input.
2026  *
2027  * Calculate next input to achieve the target score, based on the last input
2028  * and current score.  Assuming the input and the score are positively
2029  * proportional, calculate how much compensation should be added to or
2030  * subtracted from the last input as a proportion of the last input.  Avoid
2031  * next input always being zero by setting it non-zero always.  In short form
2032  * (assuming support of float and signed calculations), the algorithm is as
2033  * below.
2034  *
2035  * next_input = max(last_input * ((goal - current) / goal + 1), 1)
2036  *
2037  * For simple implementation, we assume the target score is always 10,000.  The
2038  * caller should adjust @score for this.
2039  *
2040  * Returns next input that assumed to achieve the target score.
2041  */
2042 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
2043 		unsigned long score)
2044 {
2045 	const unsigned long goal = 10000;
2046 	/* Set minimum input as 10000 to avoid compensation be zero */
2047 	const unsigned long min_input = 10000;
2048 	unsigned long score_goal_diff, compensation;
2049 	bool over_achieving = score > goal;
2050 
2051 	if (score == goal)
2052 		return last_input;
2053 	if (score >= goal * 2)
2054 		return min_input;
2055 
2056 	if (over_achieving)
2057 		score_goal_diff = score - goal;
2058 	else
2059 		score_goal_diff = goal - score;
2060 
2061 	if (last_input < ULONG_MAX / score_goal_diff)
2062 		compensation = last_input * score_goal_diff / goal;
2063 	else
2064 		compensation = last_input / goal * score_goal_diff;
2065 
2066 	if (over_achieving)
2067 		return max(last_input - compensation, min_input);
2068 	if (last_input < ULONG_MAX - compensation)
2069 		return last_input + compensation;
2070 	return ULONG_MAX;
2071 }
2072 
2073 #ifdef CONFIG_PSI
2074 
2075 static u64 damos_get_some_mem_psi_total(void)
2076 {
2077 	if (static_branch_likely(&psi_disabled))
2078 		return 0;
2079 	return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2],
2080 			NSEC_PER_USEC);
2081 }
2082 
2083 #else	/* CONFIG_PSI */
2084 
2085 static inline u64 damos_get_some_mem_psi_total(void)
2086 {
2087 	return 0;
2088 };
2089 
2090 #endif	/* CONFIG_PSI */
2091 
2092 #ifdef CONFIG_NUMA
2093 static __kernel_ulong_t damos_get_node_mem_bp(
2094 		struct damos_quota_goal *goal)
2095 {
2096 	struct sysinfo i;
2097 	__kernel_ulong_t numerator;
2098 
2099 	si_meminfo_node(&i, goal->nid);
2100 	if (goal->metric == DAMOS_QUOTA_NODE_MEM_USED_BP)
2101 		numerator = i.totalram - i.freeram;
2102 	else	/* DAMOS_QUOTA_NODE_MEM_FREE_BP */
2103 		numerator = i.freeram;
2104 	return numerator * 10000 / i.totalram;
2105 }
2106 
2107 static unsigned long damos_get_node_memcg_used_bp(
2108 		struct damos_quota_goal *goal)
2109 {
2110 	struct mem_cgroup *memcg;
2111 	struct lruvec *lruvec;
2112 	unsigned long used_pages, numerator;
2113 	struct sysinfo i;
2114 
2115 	memcg = mem_cgroup_get_from_id(goal->memcg_id);
2116 	if (!memcg) {
2117 		if (goal->metric == DAMOS_QUOTA_NODE_MEMCG_USED_BP)
2118 			return 0;
2119 		else	/* DAMOS_QUOTA_NODE_MEMCG_FREE_BP */
2120 			return 10000;
2121 	}
2122 
2123 	mem_cgroup_flush_stats(memcg);
2124 	lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(goal->nid));
2125 	used_pages = lruvec_page_state(lruvec, NR_ACTIVE_ANON);
2126 	used_pages += lruvec_page_state(lruvec, NR_INACTIVE_ANON);
2127 	used_pages += lruvec_page_state(lruvec, NR_ACTIVE_FILE);
2128 	used_pages += lruvec_page_state(lruvec, NR_INACTIVE_FILE);
2129 
2130 	mem_cgroup_put(memcg);
2131 
2132 	si_meminfo_node(&i, goal->nid);
2133 	if (goal->metric == DAMOS_QUOTA_NODE_MEMCG_USED_BP)
2134 		numerator = used_pages;
2135 	else	/* DAMOS_QUOTA_NODE_MEMCG_FREE_BP */
2136 		numerator = i.totalram - used_pages;
2137 	return numerator * 10000 / i.totalram;
2138 }
2139 #else
2140 static __kernel_ulong_t damos_get_node_mem_bp(
2141 		struct damos_quota_goal *goal)
2142 {
2143 	return 0;
2144 }
2145 
2146 static unsigned long damos_get_node_memcg_used_bp(
2147 		struct damos_quota_goal *goal)
2148 {
2149 	return 0;
2150 }
2151 #endif
2152 
2153 /*
2154  * Returns LRU-active or inactive memory to total LRU memory size ratio.
2155  */
2156 static unsigned int damos_get_in_active_mem_bp(bool active_ratio)
2157 {
2158 	unsigned long active, inactive, total;
2159 
2160 	/* This should align with /proc/meminfo output */
2161 	active = global_node_page_state(NR_LRU_BASE + LRU_ACTIVE_ANON) +
2162 		global_node_page_state(NR_LRU_BASE + LRU_ACTIVE_FILE);
2163 	inactive = global_node_page_state(NR_LRU_BASE + LRU_INACTIVE_ANON) +
2164 		global_node_page_state(NR_LRU_BASE + LRU_INACTIVE_FILE);
2165 	total = active + inactive;
2166 	if (active_ratio)
2167 		return active * 10000 / total;
2168 	return inactive * 10000 / total;
2169 }
2170 
2171 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal)
2172 {
2173 	u64 now_psi_total;
2174 
2175 	switch (goal->metric) {
2176 	case DAMOS_QUOTA_USER_INPUT:
2177 		/* User should already set goal->current_value */
2178 		break;
2179 	case DAMOS_QUOTA_SOME_MEM_PSI_US:
2180 		now_psi_total = damos_get_some_mem_psi_total();
2181 		goal->current_value = now_psi_total - goal->last_psi_total;
2182 		goal->last_psi_total = now_psi_total;
2183 		break;
2184 	case DAMOS_QUOTA_NODE_MEM_USED_BP:
2185 	case DAMOS_QUOTA_NODE_MEM_FREE_BP:
2186 		goal->current_value = damos_get_node_mem_bp(goal);
2187 		break;
2188 	case DAMOS_QUOTA_NODE_MEMCG_USED_BP:
2189 	case DAMOS_QUOTA_NODE_MEMCG_FREE_BP:
2190 		goal->current_value = damos_get_node_memcg_used_bp(goal);
2191 		break;
2192 	case DAMOS_QUOTA_ACTIVE_MEM_BP:
2193 	case DAMOS_QUOTA_INACTIVE_MEM_BP:
2194 		goal->current_value = damos_get_in_active_mem_bp(
2195 				goal->metric == DAMOS_QUOTA_ACTIVE_MEM_BP);
2196 		break;
2197 	default:
2198 		break;
2199 	}
2200 }
2201 
2202 /* Return the highest score since it makes schemes least aggressive */
2203 static unsigned long damos_quota_score(struct damos_quota *quota)
2204 {
2205 	struct damos_quota_goal *goal;
2206 	unsigned long highest_score = 0;
2207 
2208 	damos_for_each_quota_goal(goal, quota) {
2209 		damos_set_quota_goal_current_value(goal);
2210 		highest_score = max(highest_score,
2211 				goal->current_value * 10000 /
2212 				goal->target_value);
2213 	}
2214 
2215 	return highest_score;
2216 }
2217 
2218 /*
2219  * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty
2220  */
2221 static void damos_set_effective_quota(struct damos_quota *quota)
2222 {
2223 	unsigned long throughput;
2224 	unsigned long esz = ULONG_MAX;
2225 
2226 	if (!quota->ms && list_empty(&quota->goals)) {
2227 		quota->esz = quota->sz;
2228 		return;
2229 	}
2230 
2231 	if (!list_empty(&quota->goals)) {
2232 		unsigned long score = damos_quota_score(quota);
2233 
2234 		quota->esz_bp = damon_feed_loop_next_input(
2235 				max(quota->esz_bp, 10000UL),
2236 				score);
2237 		esz = quota->esz_bp / 10000;
2238 	}
2239 
2240 	if (quota->ms) {
2241 		if (quota->total_charged_ns)
2242 			throughput = mult_frac(quota->total_charged_sz, 1000000,
2243 							quota->total_charged_ns);
2244 		else
2245 			throughput = PAGE_SIZE * 1024;
2246 		esz = min(throughput * quota->ms, esz);
2247 	}
2248 
2249 	if (quota->sz && quota->sz < esz)
2250 		esz = quota->sz;
2251 
2252 	quota->esz = esz;
2253 }
2254 
2255 static void damos_trace_esz(struct damon_ctx *c, struct damos *s,
2256 		struct damos_quota *quota)
2257 {
2258 	unsigned int cidx = 0, sidx = 0;
2259 	struct damos *siter;
2260 
2261 	damon_for_each_scheme(siter, c) {
2262 		if (siter == s)
2263 			break;
2264 		sidx++;
2265 	}
2266 	trace_damos_esz(cidx, sidx, quota->esz);
2267 }
2268 
2269 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
2270 {
2271 	struct damos_quota *quota = &s->quota;
2272 	struct damon_target *t;
2273 	struct damon_region *r;
2274 	unsigned long cumulated_sz, cached_esz;
2275 	unsigned int score, max_score = 0;
2276 
2277 	if (!quota->ms && !quota->sz && list_empty(&quota->goals))
2278 		return;
2279 
2280 	/* First charge window */
2281 	if (!quota->total_charged_sz && !quota->charged_from) {
2282 		quota->charged_from = jiffies;
2283 		damos_set_effective_quota(quota);
2284 	}
2285 
2286 	/* New charge window starts */
2287 	if (time_after_eq(jiffies, quota->charged_from +
2288 				msecs_to_jiffies(quota->reset_interval))) {
2289 		if (quota->esz && quota->charged_sz >= quota->esz)
2290 			s->stat.qt_exceeds++;
2291 		quota->total_charged_sz += quota->charged_sz;
2292 		quota->charged_from = jiffies;
2293 		quota->charged_sz = 0;
2294 		if (trace_damos_esz_enabled())
2295 			cached_esz = quota->esz;
2296 		damos_set_effective_quota(quota);
2297 		if (trace_damos_esz_enabled() && quota->esz != cached_esz)
2298 			damos_trace_esz(c, s, quota);
2299 	}
2300 
2301 	if (!c->ops.get_scheme_score)
2302 		return;
2303 
2304 	/* Fill up the score histogram */
2305 	memset(c->regions_score_histogram, 0,
2306 			sizeof(*c->regions_score_histogram) *
2307 			(DAMOS_MAX_SCORE + 1));
2308 	damon_for_each_target(t, c) {
2309 		damon_for_each_region(r, t) {
2310 			if (!__damos_valid_target(r, s))
2311 				continue;
2312 			score = c->ops.get_scheme_score(c, t, r, s);
2313 			c->regions_score_histogram[score] +=
2314 				damon_sz_region(r);
2315 			if (score > max_score)
2316 				max_score = score;
2317 		}
2318 	}
2319 
2320 	/* Set the min score limit */
2321 	for (cumulated_sz = 0, score = max_score; ; score--) {
2322 		cumulated_sz += c->regions_score_histogram[score];
2323 		if (cumulated_sz >= quota->esz || !score)
2324 			break;
2325 	}
2326 	quota->min_score = score;
2327 }
2328 
2329 static void damos_trace_stat(struct damon_ctx *c, struct damos *s)
2330 {
2331 	unsigned int cidx = 0, sidx = 0;
2332 	struct damos *siter;
2333 
2334 	if (!trace_damos_stat_after_apply_interval_enabled())
2335 		return;
2336 
2337 	damon_for_each_scheme(siter, c) {
2338 		if (siter == s)
2339 			break;
2340 		sidx++;
2341 	}
2342 	trace_damos_stat_after_apply_interval(cidx, sidx, &s->stat);
2343 }
2344 
2345 static void kdamond_apply_schemes(struct damon_ctx *c)
2346 {
2347 	struct damon_target *t;
2348 	struct damon_region *r, *next_r;
2349 	struct damos *s;
2350 	unsigned long sample_interval = c->attrs.sample_interval ?
2351 		c->attrs.sample_interval : 1;
2352 	bool has_schemes_to_apply = false;
2353 
2354 	damon_for_each_scheme(s, c) {
2355 		if (c->passed_sample_intervals < s->next_apply_sis)
2356 			continue;
2357 
2358 		if (!s->wmarks.activated)
2359 			continue;
2360 
2361 		has_schemes_to_apply = true;
2362 
2363 		damos_adjust_quota(c, s);
2364 	}
2365 
2366 	if (!has_schemes_to_apply)
2367 		return;
2368 
2369 	mutex_lock(&c->walk_control_lock);
2370 	damon_for_each_target(t, c) {
2371 		if (c->ops.target_valid && c->ops.target_valid(t) == false)
2372 			continue;
2373 
2374 		damon_for_each_region_safe(r, next_r, t)
2375 			damon_do_apply_schemes(c, t, r);
2376 	}
2377 
2378 	damon_for_each_scheme(s, c) {
2379 		if (c->passed_sample_intervals < s->next_apply_sis)
2380 			continue;
2381 		damos_walk_complete(c, s);
2382 		s->next_apply_sis = c->passed_sample_intervals +
2383 			(s->apply_interval_us ? s->apply_interval_us :
2384 			 c->attrs.aggr_interval) / sample_interval;
2385 		s->last_applied = NULL;
2386 		damos_trace_stat(c, s);
2387 	}
2388 	mutex_unlock(&c->walk_control_lock);
2389 }
2390 
2391 /*
2392  * Merge two adjacent regions into one region
2393  */
2394 static void damon_merge_two_regions(struct damon_target *t,
2395 		struct damon_region *l, struct damon_region *r)
2396 {
2397 	unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
2398 
2399 	l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
2400 			(sz_l + sz_r);
2401 	l->nr_accesses_bp = l->nr_accesses * 10000;
2402 	l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
2403 	l->ar.end = r->ar.end;
2404 	damon_destroy_region(r, t);
2405 }
2406 
2407 /*
2408  * Merge adjacent regions having similar access frequencies
2409  *
2410  * t		target affected by this merge operation
2411  * thres	'->nr_accesses' diff threshold for the merge
2412  * sz_limit	size upper limit of each region
2413  */
2414 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
2415 				   unsigned long sz_limit)
2416 {
2417 	struct damon_region *r, *prev = NULL, *next;
2418 
2419 	damon_for_each_region_safe(r, next, t) {
2420 		if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
2421 			r->age = 0;
2422 		else if ((r->nr_accesses == 0) != (r->last_nr_accesses == 0))
2423 			r->age = 0;
2424 		else
2425 			r->age++;
2426 
2427 		if (prev && prev->ar.end == r->ar.start &&
2428 		    abs(prev->nr_accesses - r->nr_accesses) <= thres &&
2429 		    damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
2430 			damon_merge_two_regions(t, prev, r);
2431 		else
2432 			prev = r;
2433 	}
2434 }
2435 
2436 /*
2437  * Merge adjacent regions having similar access frequencies
2438  *
2439  * threshold	'->nr_accesses' diff threshold for the merge
2440  * sz_limit	size upper limit of each region
2441  *
2442  * This function merges monitoring target regions which are adjacent and their
2443  * access frequencies are similar.  This is for minimizing the monitoring
2444  * overhead under the dynamically changeable access pattern.  If a merge was
2445  * unnecessarily made, later 'kdamond_split_regions()' will revert it.
2446  *
2447  * The total number of regions could be higher than the user-defined limit,
2448  * max_nr_regions for some cases.  For example, the user can update
2449  * max_nr_regions to a number that lower than the current number of regions
2450  * while DAMON is running.  For such a case, repeat merging until the limit is
2451  * met while increasing @threshold up to possible maximum level.
2452  */
2453 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
2454 				  unsigned long sz_limit)
2455 {
2456 	struct damon_target *t;
2457 	unsigned int nr_regions;
2458 	unsigned int max_thres;
2459 
2460 	max_thres = c->attrs.aggr_interval /
2461 		(c->attrs.sample_interval ?  c->attrs.sample_interval : 1);
2462 	do {
2463 		nr_regions = 0;
2464 		damon_for_each_target(t, c) {
2465 			damon_merge_regions_of(t, threshold, sz_limit);
2466 			nr_regions += damon_nr_regions(t);
2467 		}
2468 		threshold = max(1, threshold * 2);
2469 	} while (nr_regions > c->attrs.max_nr_regions &&
2470 			threshold / 2 < max_thres);
2471 }
2472 
2473 /*
2474  * Split a region in two
2475  *
2476  * r		the region to be split
2477  * sz_r		size of the first sub-region that will be made
2478  */
2479 static void damon_split_region_at(struct damon_target *t,
2480 				  struct damon_region *r, unsigned long sz_r)
2481 {
2482 	struct damon_region *new;
2483 
2484 	new = damon_new_region(r->ar.start + sz_r, r->ar.end);
2485 	if (!new)
2486 		return;
2487 
2488 	r->ar.end = new->ar.start;
2489 
2490 	new->age = r->age;
2491 	new->last_nr_accesses = r->last_nr_accesses;
2492 	new->nr_accesses_bp = r->nr_accesses_bp;
2493 	new->nr_accesses = r->nr_accesses;
2494 
2495 	damon_insert_region(new, r, damon_next_region(r), t);
2496 }
2497 
2498 /* Split every region in the given target into 'nr_subs' regions */
2499 static void damon_split_regions_of(struct damon_target *t, int nr_subs,
2500 				  unsigned long min_region_sz)
2501 {
2502 	struct damon_region *r, *next;
2503 	unsigned long sz_region, sz_sub = 0;
2504 	int i;
2505 
2506 	damon_for_each_region_safe(r, next, t) {
2507 		sz_region = damon_sz_region(r);
2508 
2509 		for (i = 0; i < nr_subs - 1 &&
2510 				sz_region > 2 * min_region_sz; i++) {
2511 			/*
2512 			 * Randomly select size of left sub-region to be at
2513 			 * least 10 percent and at most 90% of original region
2514 			 */
2515 			sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
2516 					sz_region / 10, min_region_sz);
2517 			/* Do not allow blank region */
2518 			if (sz_sub == 0 || sz_sub >= sz_region)
2519 				continue;
2520 
2521 			damon_split_region_at(t, r, sz_sub);
2522 			sz_region = sz_sub;
2523 		}
2524 	}
2525 }
2526 
2527 /*
2528  * Split every target region into randomly-sized small regions
2529  *
2530  * This function splits every target region into random-sized small regions if
2531  * current total number of the regions is equal or smaller than half of the
2532  * user-specified maximum number of regions.  This is for maximizing the
2533  * monitoring accuracy under the dynamically changeable access patterns.  If a
2534  * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
2535  * it.
2536  */
2537 static void kdamond_split_regions(struct damon_ctx *ctx)
2538 {
2539 	struct damon_target *t;
2540 	unsigned int nr_regions = 0;
2541 	static unsigned int last_nr_regions;
2542 	int nr_subregions = 2;
2543 
2544 	damon_for_each_target(t, ctx)
2545 		nr_regions += damon_nr_regions(t);
2546 
2547 	if (nr_regions > ctx->attrs.max_nr_regions / 2)
2548 		return;
2549 
2550 	/* Maybe the middle of the region has different access frequency */
2551 	if (last_nr_regions == nr_regions &&
2552 			nr_regions < ctx->attrs.max_nr_regions / 3)
2553 		nr_subregions = 3;
2554 
2555 	damon_for_each_target(t, ctx)
2556 		damon_split_regions_of(t, nr_subregions, ctx->min_region_sz);
2557 
2558 	last_nr_regions = nr_regions;
2559 }
2560 
2561 /*
2562  * Check whether current monitoring should be stopped
2563  *
2564  * The monitoring is stopped when either the user requested to stop, or all
2565  * monitoring targets are invalid.
2566  *
2567  * Returns true if need to stop current monitoring.
2568  */
2569 static bool kdamond_need_stop(struct damon_ctx *ctx)
2570 {
2571 	struct damon_target *t;
2572 
2573 	if (kthread_should_stop())
2574 		return true;
2575 
2576 	if (!ctx->ops.target_valid)
2577 		return false;
2578 
2579 	damon_for_each_target(t, ctx) {
2580 		if (ctx->ops.target_valid(t))
2581 			return false;
2582 	}
2583 
2584 	return true;
2585 }
2586 
2587 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric,
2588 					unsigned long *metric_value)
2589 {
2590 	switch (metric) {
2591 	case DAMOS_WMARK_FREE_MEM_RATE:
2592 		*metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 /
2593 		       totalram_pages();
2594 		return 0;
2595 	default:
2596 		break;
2597 	}
2598 	return -EINVAL;
2599 }
2600 
2601 /*
2602  * Returns zero if the scheme is active.  Else, returns time to wait for next
2603  * watermark check in micro-seconds.
2604  */
2605 static unsigned long damos_wmark_wait_us(struct damos *scheme)
2606 {
2607 	unsigned long metric;
2608 
2609 	if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric))
2610 		return 0;
2611 
2612 	/* higher than high watermark or lower than low watermark */
2613 	if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
2614 		if (scheme->wmarks.activated)
2615 			pr_debug("deactivate a scheme (%d) for %s wmark\n",
2616 				 scheme->action,
2617 				 str_high_low(metric > scheme->wmarks.high));
2618 		scheme->wmarks.activated = false;
2619 		return scheme->wmarks.interval;
2620 	}
2621 
2622 	/* inactive and higher than middle watermark */
2623 	if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
2624 			!scheme->wmarks.activated)
2625 		return scheme->wmarks.interval;
2626 
2627 	if (!scheme->wmarks.activated)
2628 		pr_debug("activate a scheme (%d)\n", scheme->action);
2629 	scheme->wmarks.activated = true;
2630 	return 0;
2631 }
2632 
2633 static void kdamond_usleep(unsigned long usecs)
2634 {
2635 	if (usecs >= USLEEP_RANGE_UPPER_BOUND)
2636 		schedule_timeout_idle(usecs_to_jiffies(usecs));
2637 	else
2638 		usleep_range_idle(usecs, usecs + 1);
2639 }
2640 
2641 /*
2642  * kdamond_call() - handle damon_call_control objects.
2643  * @ctx:	The &struct damon_ctx of the kdamond.
2644  * @cancel:	Whether to cancel the invocation of the function.
2645  *
2646  * If there are &struct damon_call_control requests that registered via
2647  * &damon_call() on @ctx, do or cancel the invocation of the function depending
2648  * on @cancel.  @cancel is set when the kdamond is already out of the main loop
2649  * and therefore will be terminated.
2650  */
2651 static void kdamond_call(struct damon_ctx *ctx, bool cancel)
2652 {
2653 	struct damon_call_control *control, *next;
2654 	LIST_HEAD(controls);
2655 
2656 	mutex_lock(&ctx->call_controls_lock);
2657 	list_splice_tail_init(&ctx->call_controls, &controls);
2658 	mutex_unlock(&ctx->call_controls_lock);
2659 
2660 	list_for_each_entry_safe(control, next, &controls, list) {
2661 		if (!control->repeat || cancel)
2662 			list_del(&control->list);
2663 
2664 		if (cancel)
2665 			control->canceled = true;
2666 		else
2667 			control->return_code = control->fn(control->data);
2668 
2669 		if (!control->repeat)
2670 			complete(&control->completion);
2671 		else if (control->canceled && control->dealloc_on_cancel)
2672 			kfree(control);
2673 	}
2674 
2675 	mutex_lock(&ctx->call_controls_lock);
2676 	list_splice_tail(&controls, &ctx->call_controls);
2677 	mutex_unlock(&ctx->call_controls_lock);
2678 }
2679 
2680 /* Returns negative error code if it's not activated but should return */
2681 static int kdamond_wait_activation(struct damon_ctx *ctx)
2682 {
2683 	struct damos *s;
2684 	unsigned long wait_time;
2685 	unsigned long min_wait_time = 0;
2686 	bool init_wait_time = false;
2687 
2688 	while (!kdamond_need_stop(ctx)) {
2689 		damon_for_each_scheme(s, ctx) {
2690 			wait_time = damos_wmark_wait_us(s);
2691 			if (!init_wait_time || wait_time < min_wait_time) {
2692 				init_wait_time = true;
2693 				min_wait_time = wait_time;
2694 			}
2695 		}
2696 		if (!min_wait_time)
2697 			return 0;
2698 
2699 		kdamond_usleep(min_wait_time);
2700 
2701 		kdamond_call(ctx, false);
2702 		damos_walk_cancel(ctx);
2703 	}
2704 	return -EBUSY;
2705 }
2706 
2707 static void kdamond_init_ctx(struct damon_ctx *ctx)
2708 {
2709 	unsigned long sample_interval = ctx->attrs.sample_interval ?
2710 		ctx->attrs.sample_interval : 1;
2711 	unsigned long apply_interval;
2712 	struct damos *scheme;
2713 
2714 	ctx->passed_sample_intervals = 0;
2715 	ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
2716 	ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
2717 		sample_interval;
2718 	ctx->next_intervals_tune_sis = ctx->next_aggregation_sis *
2719 		ctx->attrs.intervals_goal.aggrs;
2720 
2721 	damon_for_each_scheme(scheme, ctx) {
2722 		apply_interval = scheme->apply_interval_us ?
2723 			scheme->apply_interval_us : ctx->attrs.aggr_interval;
2724 		scheme->next_apply_sis = apply_interval / sample_interval;
2725 		damos_set_filters_default_reject(scheme);
2726 	}
2727 }
2728 
2729 /*
2730  * The monitoring daemon that runs as a kernel thread
2731  */
2732 static int kdamond_fn(void *data)
2733 {
2734 	struct damon_ctx *ctx = data;
2735 	unsigned int max_nr_accesses = 0;
2736 	unsigned long sz_limit = 0;
2737 
2738 	pr_debug("kdamond (%d) starts\n", current->pid);
2739 
2740 	complete(&ctx->kdamond_started);
2741 	kdamond_init_ctx(ctx);
2742 
2743 	if (ctx->ops.init)
2744 		ctx->ops.init(ctx);
2745 	ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1,
2746 			sizeof(*ctx->regions_score_histogram), GFP_KERNEL);
2747 	if (!ctx->regions_score_histogram)
2748 		goto done;
2749 
2750 	sz_limit = damon_region_sz_limit(ctx);
2751 
2752 	while (!kdamond_need_stop(ctx)) {
2753 		/*
2754 		 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
2755 		 * be changed from kdamond_call().  Read the values here, and
2756 		 * use those for this iteration.  That is, damon_set_attrs()
2757 		 * updated new values are respected from next iteration.
2758 		 */
2759 		unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
2760 		unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
2761 		unsigned long sample_interval = ctx->attrs.sample_interval;
2762 
2763 		if (kdamond_wait_activation(ctx))
2764 			break;
2765 
2766 		if (ctx->ops.prepare_access_checks)
2767 			ctx->ops.prepare_access_checks(ctx);
2768 
2769 		kdamond_usleep(sample_interval);
2770 		ctx->passed_sample_intervals++;
2771 
2772 		if (ctx->ops.check_accesses)
2773 			max_nr_accesses = ctx->ops.check_accesses(ctx);
2774 
2775 		if (ctx->passed_sample_intervals >= next_aggregation_sis)
2776 			kdamond_merge_regions(ctx,
2777 					max_nr_accesses / 10,
2778 					sz_limit);
2779 
2780 		/*
2781 		 * do kdamond_call() and kdamond_apply_schemes() after
2782 		 * kdamond_merge_regions() if possible, to reduce overhead
2783 		 */
2784 		kdamond_call(ctx, false);
2785 		if (!list_empty(&ctx->schemes))
2786 			kdamond_apply_schemes(ctx);
2787 		else
2788 			damos_walk_cancel(ctx);
2789 
2790 		sample_interval = ctx->attrs.sample_interval ?
2791 			ctx->attrs.sample_interval : 1;
2792 		if (ctx->passed_sample_intervals >= next_aggregation_sis) {
2793 			if (ctx->attrs.intervals_goal.aggrs &&
2794 					ctx->passed_sample_intervals >=
2795 					ctx->next_intervals_tune_sis) {
2796 				/*
2797 				 * ctx->next_aggregation_sis might be updated
2798 				 * from kdamond_call().  In the case,
2799 				 * damon_set_attrs() which will be called from
2800 				 * kdamond_tune_interval() may wrongly think
2801 				 * this is in the middle of the current
2802 				 * aggregation, and make aggregation
2803 				 * information reset for all regions.  Then,
2804 				 * following kdamond_reset_aggregated() call
2805 				 * will make the region information invalid,
2806 				 * particularly for ->nr_accesses_bp.
2807 				 *
2808 				 * Reset ->next_aggregation_sis to avoid that.
2809 				 * It will anyway correctly updated after this
2810 				 * if clause.
2811 				 */
2812 				ctx->next_aggregation_sis =
2813 					next_aggregation_sis;
2814 				ctx->next_intervals_tune_sis +=
2815 					ctx->attrs.aggr_samples *
2816 					ctx->attrs.intervals_goal.aggrs;
2817 				kdamond_tune_intervals(ctx);
2818 				sample_interval = ctx->attrs.sample_interval ?
2819 					ctx->attrs.sample_interval : 1;
2820 
2821 			}
2822 			ctx->next_aggregation_sis = next_aggregation_sis +
2823 				ctx->attrs.aggr_interval / sample_interval;
2824 
2825 			kdamond_reset_aggregated(ctx);
2826 			kdamond_split_regions(ctx);
2827 		}
2828 
2829 		if (ctx->passed_sample_intervals >= next_ops_update_sis) {
2830 			ctx->next_ops_update_sis = next_ops_update_sis +
2831 				ctx->attrs.ops_update_interval /
2832 				sample_interval;
2833 			if (ctx->ops.update)
2834 				ctx->ops.update(ctx);
2835 			sz_limit = damon_region_sz_limit(ctx);
2836 		}
2837 	}
2838 done:
2839 	damon_destroy_targets(ctx);
2840 
2841 	kfree(ctx->regions_score_histogram);
2842 	kdamond_call(ctx, true);
2843 	damos_walk_cancel(ctx);
2844 
2845 	pr_debug("kdamond (%d) finishes\n", current->pid);
2846 	mutex_lock(&ctx->kdamond_lock);
2847 	ctx->kdamond = NULL;
2848 	mutex_unlock(&ctx->kdamond_lock);
2849 
2850 	mutex_lock(&damon_lock);
2851 	nr_running_ctxs--;
2852 	if (!nr_running_ctxs && running_exclusive_ctxs)
2853 		running_exclusive_ctxs = false;
2854 	mutex_unlock(&damon_lock);
2855 
2856 	return 0;
2857 }
2858 
2859 static int walk_system_ram(struct resource *res, void *arg)
2860 {
2861 	struct damon_addr_range *a = arg;
2862 
2863 	if (a->end - a->start < resource_size(res)) {
2864 		a->start = res->start;
2865 		a->end = res->end;
2866 	}
2867 	return 0;
2868 }
2869 
2870 /*
2871  * Find biggest 'System RAM' resource and store its start and end address in
2872  * @start and @end, respectively.  If no System RAM is found, returns false.
2873  */
2874 static bool damon_find_biggest_system_ram(unsigned long *start,
2875 						unsigned long *end)
2876 
2877 {
2878 	struct damon_addr_range arg = {};
2879 
2880 	walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
2881 	if (arg.end <= arg.start)
2882 		return false;
2883 
2884 	*start = arg.start;
2885 	*end = arg.end;
2886 	return true;
2887 }
2888 
2889 /**
2890  * damon_set_region_biggest_system_ram_default() - Set the region of the given
2891  * monitoring target as requested, or biggest 'System RAM'.
2892  * @t:		The monitoring target to set the region.
2893  * @start:	The pointer to the start address of the region.
2894  * @end:	The pointer to the end address of the region.
2895  * @min_region_sz:	Minimum region size.
2896  *
2897  * This function sets the region of @t as requested by @start and @end.  If the
2898  * values of @start and @end are zero, however, this function finds the biggest
2899  * 'System RAM' resource and sets the region to cover the resource.  In the
2900  * latter case, this function saves the start and end addresses of the resource
2901  * in @start and @end, respectively.
2902  *
2903  * Return: 0 on success, negative error code otherwise.
2904  */
2905 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
2906 			unsigned long *start, unsigned long *end,
2907 			unsigned long min_region_sz)
2908 {
2909 	struct damon_addr_range addr_range;
2910 
2911 	if (*start > *end)
2912 		return -EINVAL;
2913 
2914 	if (!*start && !*end &&
2915 		!damon_find_biggest_system_ram(start, end))
2916 		return -EINVAL;
2917 
2918 	addr_range.start = *start;
2919 	addr_range.end = *end;
2920 	return damon_set_regions(t, &addr_range, 1, min_region_sz);
2921 }
2922 
2923 /*
2924  * damon_moving_sum() - Calculate an inferred moving sum value.
2925  * @mvsum:	Inferred sum of the last @len_window values.
2926  * @nomvsum:	Non-moving sum of the last discrete @len_window window values.
2927  * @len_window:	The number of last values to take care of.
2928  * @new_value:	New value that will be added to the pseudo moving sum.
2929  *
2930  * Moving sum (moving average * window size) is good for handling noise, but
2931  * the cost of keeping past values can be high for arbitrary window size.  This
2932  * function implements a lightweight pseudo moving sum function that doesn't
2933  * keep the past window values.
2934  *
2935  * It simply assumes there was no noise in the past, and get the no-noise
2936  * assumed past value to drop from @nomvsum and @len_window.  @nomvsum is a
2937  * non-moving sum of the last window.  For example, if @len_window is 10 and we
2938  * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25
2939  * values.  Hence, this function simply drops @nomvsum / @len_window from
2940  * given @mvsum and add @new_value.
2941  *
2942  * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for
2943  * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20.  For
2944  * calculating next moving sum with a new value, we should drop 0 from 50 and
2945  * add the new value.  However, this function assumes it got value 5 for each
2946  * of the last ten times.  Based on the assumption, when the next value is
2947  * measured, it drops the assumed past value, 5 from the current sum, and add
2948  * the new value to get the updated pseduo-moving average.
2949  *
2950  * This means the value could have errors, but the errors will be disappeared
2951  * for every @len_window aligned calls.  For example, if @len_window is 10, the
2952  * pseudo moving sum with 11th value to 19th value would have an error.  But
2953  * the sum with 20th value will not have the error.
2954  *
2955  * Return: Pseudo-moving average after getting the @new_value.
2956  */
2957 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum,
2958 		unsigned int len_window, unsigned int new_value)
2959 {
2960 	return mvsum - nomvsum / len_window + new_value;
2961 }
2962 
2963 /**
2964  * damon_update_region_access_rate() - Update the access rate of a region.
2965  * @r:		The DAMON region to update for its access check result.
2966  * @accessed:	Whether the region has accessed during last sampling interval.
2967  * @attrs:	The damon_attrs of the DAMON context.
2968  *
2969  * Update the access rate of a region with the region's last sampling interval
2970  * access check result.
2971  *
2972  * Usually this will be called by &damon_operations->check_accesses callback.
2973  */
2974 void damon_update_region_access_rate(struct damon_region *r, bool accessed,
2975 		struct damon_attrs *attrs)
2976 {
2977 	unsigned int len_window = 1;
2978 
2979 	/*
2980 	 * sample_interval can be zero, but cannot be larger than
2981 	 * aggr_interval, owing to validation of damon_set_attrs().
2982 	 */
2983 	if (attrs->sample_interval)
2984 		len_window = damon_max_nr_accesses(attrs);
2985 	r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp,
2986 			r->last_nr_accesses * 10000, len_window,
2987 			accessed ? 10000 : 0);
2988 
2989 	if (accessed)
2990 		r->nr_accesses++;
2991 }
2992 
2993 /**
2994  * damon_initialized() - Return if DAMON is ready to be used.
2995  *
2996  * Return: true if DAMON is ready to be used, false otherwise.
2997  */
2998 bool damon_initialized(void)
2999 {
3000 	return damon_region_cache != NULL;
3001 }
3002 
3003 static int __init damon_init(void)
3004 {
3005 	damon_region_cache = KMEM_CACHE(damon_region, 0);
3006 	if (unlikely(!damon_region_cache)) {
3007 		pr_err("creating damon_region_cache fails\n");
3008 		return -ENOMEM;
3009 	}
3010 
3011 	return 0;
3012 }
3013 
3014 subsys_initcall(damon_init);
3015 
3016 #include "tests/core-kunit.h"
3017