1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Data Access Monitor 4 * 5 * Author: SeongJae Park <sj@kernel.org> 6 */ 7 8 #define pr_fmt(fmt) "damon: " fmt 9 10 #include <linux/damon.h> 11 #include <linux/delay.h> 12 #include <linux/kthread.h> 13 #include <linux/mm.h> 14 #include <linux/psi.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 #include <linux/string_choices.h> 18 19 #define CREATE_TRACE_POINTS 20 #include <trace/events/damon.h> 21 22 #ifdef CONFIG_DAMON_KUNIT_TEST 23 #undef DAMON_MIN_REGION 24 #define DAMON_MIN_REGION 1 25 #endif 26 27 static DEFINE_MUTEX(damon_lock); 28 static int nr_running_ctxs; 29 static bool running_exclusive_ctxs; 30 31 static DEFINE_MUTEX(damon_ops_lock); 32 static struct damon_operations damon_registered_ops[NR_DAMON_OPS]; 33 34 static struct kmem_cache *damon_region_cache __ro_after_init; 35 36 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */ 37 static bool __damon_is_registered_ops(enum damon_ops_id id) 38 { 39 struct damon_operations empty_ops = {}; 40 41 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops))) 42 return false; 43 return true; 44 } 45 46 /** 47 * damon_is_registered_ops() - Check if a given damon_operations is registered. 48 * @id: Id of the damon_operations to check if registered. 49 * 50 * Return: true if the ops is set, false otherwise. 51 */ 52 bool damon_is_registered_ops(enum damon_ops_id id) 53 { 54 bool registered; 55 56 if (id >= NR_DAMON_OPS) 57 return false; 58 mutex_lock(&damon_ops_lock); 59 registered = __damon_is_registered_ops(id); 60 mutex_unlock(&damon_ops_lock); 61 return registered; 62 } 63 64 /** 65 * damon_register_ops() - Register a monitoring operations set to DAMON. 66 * @ops: monitoring operations set to register. 67 * 68 * This function registers a monitoring operations set of valid &struct 69 * damon_operations->id so that others can find and use them later. 70 * 71 * Return: 0 on success, negative error code otherwise. 72 */ 73 int damon_register_ops(struct damon_operations *ops) 74 { 75 int err = 0; 76 77 if (ops->id >= NR_DAMON_OPS) 78 return -EINVAL; 79 80 mutex_lock(&damon_ops_lock); 81 /* Fail for already registered ops */ 82 if (__damon_is_registered_ops(ops->id)) 83 err = -EINVAL; 84 else 85 damon_registered_ops[ops->id] = *ops; 86 mutex_unlock(&damon_ops_lock); 87 return err; 88 } 89 90 /** 91 * damon_select_ops() - Select a monitoring operations to use with the context. 92 * @ctx: monitoring context to use the operations. 93 * @id: id of the registered monitoring operations to select. 94 * 95 * This function finds registered monitoring operations set of @id and make 96 * @ctx to use it. 97 * 98 * Return: 0 on success, negative error code otherwise. 99 */ 100 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id) 101 { 102 int err = 0; 103 104 if (id >= NR_DAMON_OPS) 105 return -EINVAL; 106 107 mutex_lock(&damon_ops_lock); 108 if (!__damon_is_registered_ops(id)) 109 err = -EINVAL; 110 else 111 ctx->ops = damon_registered_ops[id]; 112 mutex_unlock(&damon_ops_lock); 113 return err; 114 } 115 116 /* 117 * Construct a damon_region struct 118 * 119 * Returns the pointer to the new struct if success, or NULL otherwise 120 */ 121 struct damon_region *damon_new_region(unsigned long start, unsigned long end) 122 { 123 struct damon_region *region; 124 125 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL); 126 if (!region) 127 return NULL; 128 129 region->ar.start = start; 130 region->ar.end = end; 131 region->nr_accesses = 0; 132 region->nr_accesses_bp = 0; 133 INIT_LIST_HEAD(®ion->list); 134 135 region->age = 0; 136 region->last_nr_accesses = 0; 137 138 return region; 139 } 140 141 void damon_add_region(struct damon_region *r, struct damon_target *t) 142 { 143 list_add_tail(&r->list, &t->regions_list); 144 t->nr_regions++; 145 } 146 147 static void damon_del_region(struct damon_region *r, struct damon_target *t) 148 { 149 list_del(&r->list); 150 t->nr_regions--; 151 } 152 153 static void damon_free_region(struct damon_region *r) 154 { 155 kmem_cache_free(damon_region_cache, r); 156 } 157 158 void damon_destroy_region(struct damon_region *r, struct damon_target *t) 159 { 160 damon_del_region(r, t); 161 damon_free_region(r); 162 } 163 164 /* 165 * Check whether a region is intersecting an address range 166 * 167 * Returns true if it is. 168 */ 169 static bool damon_intersect(struct damon_region *r, 170 struct damon_addr_range *re) 171 { 172 return !(r->ar.end <= re->start || re->end <= r->ar.start); 173 } 174 175 /* 176 * Fill holes in regions with new regions. 177 */ 178 static int damon_fill_regions_holes(struct damon_region *first, 179 struct damon_region *last, struct damon_target *t) 180 { 181 struct damon_region *r = first; 182 183 damon_for_each_region_from(r, t) { 184 struct damon_region *next, *newr; 185 186 if (r == last) 187 break; 188 next = damon_next_region(r); 189 if (r->ar.end != next->ar.start) { 190 newr = damon_new_region(r->ar.end, next->ar.start); 191 if (!newr) 192 return -ENOMEM; 193 damon_insert_region(newr, r, next, t); 194 } 195 } 196 return 0; 197 } 198 199 /* 200 * damon_set_regions() - Set regions of a target for given address ranges. 201 * @t: the given target. 202 * @ranges: array of new monitoring target ranges. 203 * @nr_ranges: length of @ranges. 204 * 205 * This function adds new regions to, or modify existing regions of a 206 * monitoring target to fit in specific ranges. 207 * 208 * Return: 0 if success, or negative error code otherwise. 209 */ 210 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges, 211 unsigned int nr_ranges) 212 { 213 struct damon_region *r, *next; 214 unsigned int i; 215 int err; 216 217 /* Remove regions which are not in the new ranges */ 218 damon_for_each_region_safe(r, next, t) { 219 for (i = 0; i < nr_ranges; i++) { 220 if (damon_intersect(r, &ranges[i])) 221 break; 222 } 223 if (i == nr_ranges) 224 damon_destroy_region(r, t); 225 } 226 227 r = damon_first_region(t); 228 /* Add new regions or resize existing regions to fit in the ranges */ 229 for (i = 0; i < nr_ranges; i++) { 230 struct damon_region *first = NULL, *last, *newr; 231 struct damon_addr_range *range; 232 233 range = &ranges[i]; 234 /* Get the first/last regions intersecting with the range */ 235 damon_for_each_region_from(r, t) { 236 if (damon_intersect(r, range)) { 237 if (!first) 238 first = r; 239 last = r; 240 } 241 if (r->ar.start >= range->end) 242 break; 243 } 244 if (!first) { 245 /* no region intersects with this range */ 246 newr = damon_new_region( 247 ALIGN_DOWN(range->start, 248 DAMON_MIN_REGION), 249 ALIGN(range->end, DAMON_MIN_REGION)); 250 if (!newr) 251 return -ENOMEM; 252 damon_insert_region(newr, damon_prev_region(r), r, t); 253 } else { 254 /* resize intersecting regions to fit in this range */ 255 first->ar.start = ALIGN_DOWN(range->start, 256 DAMON_MIN_REGION); 257 last->ar.end = ALIGN(range->end, DAMON_MIN_REGION); 258 259 /* fill possible holes in the range */ 260 err = damon_fill_regions_holes(first, last, t); 261 if (err) 262 return err; 263 } 264 } 265 return 0; 266 } 267 268 struct damos_filter *damos_new_filter(enum damos_filter_type type, 269 bool matching, bool allow) 270 { 271 struct damos_filter *filter; 272 273 filter = kmalloc(sizeof(*filter), GFP_KERNEL); 274 if (!filter) 275 return NULL; 276 filter->type = type; 277 filter->matching = matching; 278 filter->allow = allow; 279 INIT_LIST_HEAD(&filter->list); 280 return filter; 281 } 282 283 /** 284 * damos_filter_for_ops() - Return if the filter is ops-hndled one. 285 * @type: type of the filter. 286 * 287 * Return: true if the filter of @type needs to be handled by ops layer, false 288 * otherwise. 289 */ 290 bool damos_filter_for_ops(enum damos_filter_type type) 291 { 292 switch (type) { 293 case DAMOS_FILTER_TYPE_ADDR: 294 case DAMOS_FILTER_TYPE_TARGET: 295 return false; 296 default: 297 break; 298 } 299 return true; 300 } 301 302 void damos_add_filter(struct damos *s, struct damos_filter *f) 303 { 304 if (damos_filter_for_ops(f->type)) 305 list_add_tail(&f->list, &s->ops_filters); 306 else 307 list_add_tail(&f->list, &s->filters); 308 } 309 310 static void damos_del_filter(struct damos_filter *f) 311 { 312 list_del(&f->list); 313 } 314 315 static void damos_free_filter(struct damos_filter *f) 316 { 317 kfree(f); 318 } 319 320 void damos_destroy_filter(struct damos_filter *f) 321 { 322 damos_del_filter(f); 323 damos_free_filter(f); 324 } 325 326 struct damos_quota_goal *damos_new_quota_goal( 327 enum damos_quota_goal_metric metric, 328 unsigned long target_value) 329 { 330 struct damos_quota_goal *goal; 331 332 goal = kmalloc(sizeof(*goal), GFP_KERNEL); 333 if (!goal) 334 return NULL; 335 goal->metric = metric; 336 goal->target_value = target_value; 337 INIT_LIST_HEAD(&goal->list); 338 return goal; 339 } 340 341 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g) 342 { 343 list_add_tail(&g->list, &q->goals); 344 } 345 346 static void damos_del_quota_goal(struct damos_quota_goal *g) 347 { 348 list_del(&g->list); 349 } 350 351 static void damos_free_quota_goal(struct damos_quota_goal *g) 352 { 353 kfree(g); 354 } 355 356 void damos_destroy_quota_goal(struct damos_quota_goal *g) 357 { 358 damos_del_quota_goal(g); 359 damos_free_quota_goal(g); 360 } 361 362 /* initialize fields of @quota that normally API users wouldn't set */ 363 static struct damos_quota *damos_quota_init(struct damos_quota *quota) 364 { 365 quota->esz = 0; 366 quota->total_charged_sz = 0; 367 quota->total_charged_ns = 0; 368 quota->charged_sz = 0; 369 quota->charged_from = 0; 370 quota->charge_target_from = NULL; 371 quota->charge_addr_from = 0; 372 quota->esz_bp = 0; 373 return quota; 374 } 375 376 struct damos *damon_new_scheme(struct damos_access_pattern *pattern, 377 enum damos_action action, 378 unsigned long apply_interval_us, 379 struct damos_quota *quota, 380 struct damos_watermarks *wmarks, 381 int target_nid) 382 { 383 struct damos *scheme; 384 385 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL); 386 if (!scheme) 387 return NULL; 388 scheme->pattern = *pattern; 389 scheme->action = action; 390 scheme->apply_interval_us = apply_interval_us; 391 /* 392 * next_apply_sis will be set when kdamond starts. While kdamond is 393 * running, it will also updated when it is added to the DAMON context, 394 * or damon_attrs are updated. 395 */ 396 scheme->next_apply_sis = 0; 397 scheme->walk_completed = false; 398 INIT_LIST_HEAD(&scheme->filters); 399 INIT_LIST_HEAD(&scheme->ops_filters); 400 scheme->stat = (struct damos_stat){}; 401 INIT_LIST_HEAD(&scheme->list); 402 403 scheme->quota = *(damos_quota_init(quota)); 404 /* quota.goals should be separately set by caller */ 405 INIT_LIST_HEAD(&scheme->quota.goals); 406 407 scheme->wmarks = *wmarks; 408 scheme->wmarks.activated = true; 409 410 scheme->migrate_dests = (struct damos_migrate_dests){}; 411 scheme->target_nid = target_nid; 412 413 return scheme; 414 } 415 416 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx) 417 { 418 unsigned long sample_interval = ctx->attrs.sample_interval ? 419 ctx->attrs.sample_interval : 1; 420 unsigned long apply_interval = s->apply_interval_us ? 421 s->apply_interval_us : ctx->attrs.aggr_interval; 422 423 s->next_apply_sis = ctx->passed_sample_intervals + 424 apply_interval / sample_interval; 425 } 426 427 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s) 428 { 429 list_add_tail(&s->list, &ctx->schemes); 430 damos_set_next_apply_sis(s, ctx); 431 } 432 433 static void damon_del_scheme(struct damos *s) 434 { 435 list_del(&s->list); 436 } 437 438 static void damon_free_scheme(struct damos *s) 439 { 440 kfree(s); 441 } 442 443 void damon_destroy_scheme(struct damos *s) 444 { 445 struct damos_quota_goal *g, *g_next; 446 struct damos_filter *f, *next; 447 448 damos_for_each_quota_goal_safe(g, g_next, &s->quota) 449 damos_destroy_quota_goal(g); 450 451 damos_for_each_filter_safe(f, next, s) 452 damos_destroy_filter(f); 453 454 kfree(s->migrate_dests.node_id_arr); 455 kfree(s->migrate_dests.weight_arr); 456 damon_del_scheme(s); 457 damon_free_scheme(s); 458 } 459 460 /* 461 * Construct a damon_target struct 462 * 463 * Returns the pointer to the new struct if success, or NULL otherwise 464 */ 465 struct damon_target *damon_new_target(void) 466 { 467 struct damon_target *t; 468 469 t = kmalloc(sizeof(*t), GFP_KERNEL); 470 if (!t) 471 return NULL; 472 473 t->pid = NULL; 474 t->nr_regions = 0; 475 INIT_LIST_HEAD(&t->regions_list); 476 INIT_LIST_HEAD(&t->list); 477 478 return t; 479 } 480 481 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t) 482 { 483 list_add_tail(&t->list, &ctx->adaptive_targets); 484 } 485 486 bool damon_targets_empty(struct damon_ctx *ctx) 487 { 488 return list_empty(&ctx->adaptive_targets); 489 } 490 491 static void damon_del_target(struct damon_target *t) 492 { 493 list_del(&t->list); 494 } 495 496 void damon_free_target(struct damon_target *t) 497 { 498 struct damon_region *r, *next; 499 500 damon_for_each_region_safe(r, next, t) 501 damon_free_region(r); 502 kfree(t); 503 } 504 505 void damon_destroy_target(struct damon_target *t, struct damon_ctx *ctx) 506 { 507 508 if (ctx && ctx->ops.cleanup_target) 509 ctx->ops.cleanup_target(t); 510 511 damon_del_target(t); 512 damon_free_target(t); 513 } 514 515 unsigned int damon_nr_regions(struct damon_target *t) 516 { 517 return t->nr_regions; 518 } 519 520 struct damon_ctx *damon_new_ctx(void) 521 { 522 struct damon_ctx *ctx; 523 524 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 525 if (!ctx) 526 return NULL; 527 528 init_completion(&ctx->kdamond_started); 529 530 ctx->attrs.sample_interval = 5 * 1000; 531 ctx->attrs.aggr_interval = 100 * 1000; 532 ctx->attrs.ops_update_interval = 60 * 1000 * 1000; 533 534 ctx->passed_sample_intervals = 0; 535 /* These will be set from kdamond_init_ctx() */ 536 ctx->next_aggregation_sis = 0; 537 ctx->next_ops_update_sis = 0; 538 539 mutex_init(&ctx->kdamond_lock); 540 INIT_LIST_HEAD(&ctx->call_controls); 541 mutex_init(&ctx->call_controls_lock); 542 mutex_init(&ctx->walk_control_lock); 543 544 ctx->attrs.min_nr_regions = 10; 545 ctx->attrs.max_nr_regions = 1000; 546 547 INIT_LIST_HEAD(&ctx->adaptive_targets); 548 INIT_LIST_HEAD(&ctx->schemes); 549 550 return ctx; 551 } 552 553 static void damon_destroy_targets(struct damon_ctx *ctx) 554 { 555 struct damon_target *t, *next_t; 556 557 damon_for_each_target_safe(t, next_t, ctx) 558 damon_destroy_target(t, ctx); 559 } 560 561 void damon_destroy_ctx(struct damon_ctx *ctx) 562 { 563 struct damos *s, *next_s; 564 565 damon_destroy_targets(ctx); 566 567 damon_for_each_scheme_safe(s, next_s, ctx) 568 damon_destroy_scheme(s); 569 570 kfree(ctx); 571 } 572 573 static unsigned int damon_age_for_new_attrs(unsigned int age, 574 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 575 { 576 return age * old_attrs->aggr_interval / new_attrs->aggr_interval; 577 } 578 579 /* convert access ratio in bp (per 10,000) to nr_accesses */ 580 static unsigned int damon_accesses_bp_to_nr_accesses( 581 unsigned int accesses_bp, struct damon_attrs *attrs) 582 { 583 return accesses_bp * damon_max_nr_accesses(attrs) / 10000; 584 } 585 586 /* 587 * Convert nr_accesses to access ratio in bp (per 10,000). 588 * 589 * Callers should ensure attrs.aggr_interval is not zero, like 590 * damon_update_monitoring_results() does . Otherwise, divide-by-zero would 591 * happen. 592 */ 593 static unsigned int damon_nr_accesses_to_accesses_bp( 594 unsigned int nr_accesses, struct damon_attrs *attrs) 595 { 596 return nr_accesses * 10000 / damon_max_nr_accesses(attrs); 597 } 598 599 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses, 600 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 601 { 602 return damon_accesses_bp_to_nr_accesses( 603 damon_nr_accesses_to_accesses_bp( 604 nr_accesses, old_attrs), 605 new_attrs); 606 } 607 608 static void damon_update_monitoring_result(struct damon_region *r, 609 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs, 610 bool aggregating) 611 { 612 if (!aggregating) { 613 r->nr_accesses = damon_nr_accesses_for_new_attrs( 614 r->nr_accesses, old_attrs, new_attrs); 615 r->nr_accesses_bp = r->nr_accesses * 10000; 616 } else { 617 /* 618 * if this is called in the middle of the aggregation, reset 619 * the aggregations we made so far for this aggregation 620 * interval. In other words, make the status like 621 * kdamond_reset_aggregated() is called. 622 */ 623 r->last_nr_accesses = damon_nr_accesses_for_new_attrs( 624 r->last_nr_accesses, old_attrs, new_attrs); 625 r->nr_accesses_bp = r->last_nr_accesses * 10000; 626 r->nr_accesses = 0; 627 } 628 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs); 629 } 630 631 /* 632 * region->nr_accesses is the number of sampling intervals in the last 633 * aggregation interval that access to the region has found, and region->age is 634 * the number of aggregation intervals that its access pattern has maintained. 635 * For the reason, the real meaning of the two fields depend on current 636 * sampling interval and aggregation interval. This function updates 637 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs. 638 */ 639 static void damon_update_monitoring_results(struct damon_ctx *ctx, 640 struct damon_attrs *new_attrs, bool aggregating) 641 { 642 struct damon_attrs *old_attrs = &ctx->attrs; 643 struct damon_target *t; 644 struct damon_region *r; 645 646 /* if any interval is zero, simply forgive conversion */ 647 if (!old_attrs->sample_interval || !old_attrs->aggr_interval || 648 !new_attrs->sample_interval || 649 !new_attrs->aggr_interval) 650 return; 651 652 damon_for_each_target(t, ctx) 653 damon_for_each_region(r, t) 654 damon_update_monitoring_result( 655 r, old_attrs, new_attrs, aggregating); 656 } 657 658 /* 659 * damon_valid_intervals_goal() - return if the intervals goal of @attrs is 660 * valid. 661 */ 662 static bool damon_valid_intervals_goal(struct damon_attrs *attrs) 663 { 664 struct damon_intervals_goal *goal = &attrs->intervals_goal; 665 666 /* tuning is disabled */ 667 if (!goal->aggrs) 668 return true; 669 if (goal->min_sample_us > goal->max_sample_us) 670 return false; 671 if (attrs->sample_interval < goal->min_sample_us || 672 goal->max_sample_us < attrs->sample_interval) 673 return false; 674 return true; 675 } 676 677 /** 678 * damon_set_attrs() - Set attributes for the monitoring. 679 * @ctx: monitoring context 680 * @attrs: monitoring attributes 681 * 682 * This function should be called while the kdamond is not running, an access 683 * check results aggregation is not ongoing (e.g., from damon_call(). 684 * 685 * Every time interval is in micro-seconds. 686 * 687 * Return: 0 on success, negative error code otherwise. 688 */ 689 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs) 690 { 691 unsigned long sample_interval = attrs->sample_interval ? 692 attrs->sample_interval : 1; 693 struct damos *s; 694 bool aggregating = ctx->passed_sample_intervals < 695 ctx->next_aggregation_sis; 696 697 if (!damon_valid_intervals_goal(attrs)) 698 return -EINVAL; 699 700 if (attrs->min_nr_regions < 3) 701 return -EINVAL; 702 if (attrs->min_nr_regions > attrs->max_nr_regions) 703 return -EINVAL; 704 if (attrs->sample_interval > attrs->aggr_interval) 705 return -EINVAL; 706 707 /* calls from core-external doesn't set this. */ 708 if (!attrs->aggr_samples) 709 attrs->aggr_samples = attrs->aggr_interval / sample_interval; 710 711 ctx->next_aggregation_sis = ctx->passed_sample_intervals + 712 attrs->aggr_interval / sample_interval; 713 ctx->next_ops_update_sis = ctx->passed_sample_intervals + 714 attrs->ops_update_interval / sample_interval; 715 716 damon_update_monitoring_results(ctx, attrs, aggregating); 717 ctx->attrs = *attrs; 718 719 damon_for_each_scheme(s, ctx) 720 damos_set_next_apply_sis(s, ctx); 721 722 return 0; 723 } 724 725 /** 726 * damon_set_schemes() - Set data access monitoring based operation schemes. 727 * @ctx: monitoring context 728 * @schemes: array of the schemes 729 * @nr_schemes: number of entries in @schemes 730 * 731 * This function should not be called while the kdamond of the context is 732 * running. 733 */ 734 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes, 735 ssize_t nr_schemes) 736 { 737 struct damos *s, *next; 738 ssize_t i; 739 740 damon_for_each_scheme_safe(s, next, ctx) 741 damon_destroy_scheme(s); 742 for (i = 0; i < nr_schemes; i++) 743 damon_add_scheme(ctx, schemes[i]); 744 } 745 746 static struct damos_quota_goal *damos_nth_quota_goal( 747 int n, struct damos_quota *q) 748 { 749 struct damos_quota_goal *goal; 750 int i = 0; 751 752 damos_for_each_quota_goal(goal, q) { 753 if (i++ == n) 754 return goal; 755 } 756 return NULL; 757 } 758 759 static void damos_commit_quota_goal_union( 760 struct damos_quota_goal *dst, struct damos_quota_goal *src) 761 { 762 switch (dst->metric) { 763 case DAMOS_QUOTA_NODE_MEM_USED_BP: 764 case DAMOS_QUOTA_NODE_MEM_FREE_BP: 765 dst->nid = src->nid; 766 break; 767 default: 768 break; 769 } 770 } 771 772 static void damos_commit_quota_goal( 773 struct damos_quota_goal *dst, struct damos_quota_goal *src) 774 { 775 dst->metric = src->metric; 776 dst->target_value = src->target_value; 777 if (dst->metric == DAMOS_QUOTA_USER_INPUT) 778 dst->current_value = src->current_value; 779 /* keep last_psi_total as is, since it will be updated in next cycle */ 780 damos_commit_quota_goal_union(dst, src); 781 } 782 783 /** 784 * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota. 785 * @dst: The commit destination DAMOS quota. 786 * @src: The commit source DAMOS quota. 787 * 788 * Copies user-specified parameters for quota goals from @src to @dst. Users 789 * should use this function for quota goals-level parameters update of running 790 * DAMON contexts, instead of manual in-place updates. 791 * 792 * This function should be called from parameters-update safe context, like 793 * damon_call(). 794 */ 795 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src) 796 { 797 struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal; 798 int i = 0, j = 0; 799 800 damos_for_each_quota_goal_safe(dst_goal, next, dst) { 801 src_goal = damos_nth_quota_goal(i++, src); 802 if (src_goal) 803 damos_commit_quota_goal(dst_goal, src_goal); 804 else 805 damos_destroy_quota_goal(dst_goal); 806 } 807 damos_for_each_quota_goal_safe(src_goal, next, src) { 808 if (j++ < i) 809 continue; 810 new_goal = damos_new_quota_goal( 811 src_goal->metric, src_goal->target_value); 812 if (!new_goal) 813 return -ENOMEM; 814 damos_commit_quota_goal_union(new_goal, src_goal); 815 damos_add_quota_goal(dst, new_goal); 816 } 817 return 0; 818 } 819 820 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src) 821 { 822 int err; 823 824 dst->reset_interval = src->reset_interval; 825 dst->ms = src->ms; 826 dst->sz = src->sz; 827 err = damos_commit_quota_goals(dst, src); 828 if (err) 829 return err; 830 dst->weight_sz = src->weight_sz; 831 dst->weight_nr_accesses = src->weight_nr_accesses; 832 dst->weight_age = src->weight_age; 833 return 0; 834 } 835 836 static struct damos_filter *damos_nth_filter(int n, struct damos *s) 837 { 838 struct damos_filter *filter; 839 int i = 0; 840 841 damos_for_each_filter(filter, s) { 842 if (i++ == n) 843 return filter; 844 } 845 return NULL; 846 } 847 848 static void damos_commit_filter_arg( 849 struct damos_filter *dst, struct damos_filter *src) 850 { 851 switch (dst->type) { 852 case DAMOS_FILTER_TYPE_MEMCG: 853 dst->memcg_id = src->memcg_id; 854 break; 855 case DAMOS_FILTER_TYPE_ADDR: 856 dst->addr_range = src->addr_range; 857 break; 858 case DAMOS_FILTER_TYPE_TARGET: 859 dst->target_idx = src->target_idx; 860 break; 861 case DAMOS_FILTER_TYPE_HUGEPAGE_SIZE: 862 dst->sz_range = src->sz_range; 863 break; 864 default: 865 break; 866 } 867 } 868 869 static void damos_commit_filter( 870 struct damos_filter *dst, struct damos_filter *src) 871 { 872 dst->type = src->type; 873 dst->matching = src->matching; 874 damos_commit_filter_arg(dst, src); 875 } 876 877 static int damos_commit_core_filters(struct damos *dst, struct damos *src) 878 { 879 struct damos_filter *dst_filter, *next, *src_filter, *new_filter; 880 int i = 0, j = 0; 881 882 damos_for_each_filter_safe(dst_filter, next, dst) { 883 src_filter = damos_nth_filter(i++, src); 884 if (src_filter) 885 damos_commit_filter(dst_filter, src_filter); 886 else 887 damos_destroy_filter(dst_filter); 888 } 889 890 damos_for_each_filter_safe(src_filter, next, src) { 891 if (j++ < i) 892 continue; 893 894 new_filter = damos_new_filter( 895 src_filter->type, src_filter->matching, 896 src_filter->allow); 897 if (!new_filter) 898 return -ENOMEM; 899 damos_commit_filter_arg(new_filter, src_filter); 900 damos_add_filter(dst, new_filter); 901 } 902 return 0; 903 } 904 905 static int damos_commit_ops_filters(struct damos *dst, struct damos *src) 906 { 907 struct damos_filter *dst_filter, *next, *src_filter, *new_filter; 908 int i = 0, j = 0; 909 910 damos_for_each_ops_filter_safe(dst_filter, next, dst) { 911 src_filter = damos_nth_filter(i++, src); 912 if (src_filter) 913 damos_commit_filter(dst_filter, src_filter); 914 else 915 damos_destroy_filter(dst_filter); 916 } 917 918 damos_for_each_ops_filter_safe(src_filter, next, src) { 919 if (j++ < i) 920 continue; 921 922 new_filter = damos_new_filter( 923 src_filter->type, src_filter->matching, 924 src_filter->allow); 925 if (!new_filter) 926 return -ENOMEM; 927 damos_commit_filter_arg(new_filter, src_filter); 928 damos_add_filter(dst, new_filter); 929 } 930 return 0; 931 } 932 933 /** 934 * damos_filters_default_reject() - decide whether to reject memory that didn't 935 * match with any given filter. 936 * @filters: Given DAMOS filters of a group. 937 */ 938 static bool damos_filters_default_reject(struct list_head *filters) 939 { 940 struct damos_filter *last_filter; 941 942 if (list_empty(filters)) 943 return false; 944 last_filter = list_last_entry(filters, struct damos_filter, list); 945 return last_filter->allow; 946 } 947 948 static void damos_set_filters_default_reject(struct damos *s) 949 { 950 if (!list_empty(&s->ops_filters)) 951 s->core_filters_default_reject = false; 952 else 953 s->core_filters_default_reject = 954 damos_filters_default_reject(&s->filters); 955 s->ops_filters_default_reject = 956 damos_filters_default_reject(&s->ops_filters); 957 } 958 959 static int damos_commit_dests(struct damos *dst, struct damos *src) 960 { 961 struct damos_migrate_dests *dst_dests, *src_dests; 962 963 dst_dests = &dst->migrate_dests; 964 src_dests = &src->migrate_dests; 965 966 if (dst_dests->nr_dests != src_dests->nr_dests) { 967 kfree(dst_dests->node_id_arr); 968 kfree(dst_dests->weight_arr); 969 970 dst_dests->node_id_arr = kmalloc_array(src_dests->nr_dests, 971 sizeof(*dst_dests->node_id_arr), GFP_KERNEL); 972 if (!dst_dests->node_id_arr) { 973 dst_dests->weight_arr = NULL; 974 return -ENOMEM; 975 } 976 977 dst_dests->weight_arr = kmalloc_array(src_dests->nr_dests, 978 sizeof(*dst_dests->weight_arr), GFP_KERNEL); 979 if (!dst_dests->weight_arr) { 980 /* ->node_id_arr will be freed by scheme destruction */ 981 return -ENOMEM; 982 } 983 } 984 985 dst_dests->nr_dests = src_dests->nr_dests; 986 for (int i = 0; i < src_dests->nr_dests; i++) { 987 dst_dests->node_id_arr[i] = src_dests->node_id_arr[i]; 988 dst_dests->weight_arr[i] = src_dests->weight_arr[i]; 989 } 990 991 return 0; 992 } 993 994 static int damos_commit_filters(struct damos *dst, struct damos *src) 995 { 996 int err; 997 998 err = damos_commit_core_filters(dst, src); 999 if (err) 1000 return err; 1001 err = damos_commit_ops_filters(dst, src); 1002 if (err) 1003 return err; 1004 damos_set_filters_default_reject(dst); 1005 return 0; 1006 } 1007 1008 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx) 1009 { 1010 struct damos *s; 1011 int i = 0; 1012 1013 damon_for_each_scheme(s, ctx) { 1014 if (i++ == n) 1015 return s; 1016 } 1017 return NULL; 1018 } 1019 1020 static int damos_commit(struct damos *dst, struct damos *src) 1021 { 1022 int err; 1023 1024 dst->pattern = src->pattern; 1025 dst->action = src->action; 1026 dst->apply_interval_us = src->apply_interval_us; 1027 1028 err = damos_commit_quota(&dst->quota, &src->quota); 1029 if (err) 1030 return err; 1031 1032 dst->wmarks = src->wmarks; 1033 dst->target_nid = src->target_nid; 1034 1035 err = damos_commit_dests(dst, src); 1036 if (err) 1037 return err; 1038 1039 err = damos_commit_filters(dst, src); 1040 return err; 1041 } 1042 1043 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src) 1044 { 1045 struct damos *dst_scheme, *next, *src_scheme, *new_scheme; 1046 int i = 0, j = 0, err; 1047 1048 damon_for_each_scheme_safe(dst_scheme, next, dst) { 1049 src_scheme = damon_nth_scheme(i++, src); 1050 if (src_scheme) { 1051 err = damos_commit(dst_scheme, src_scheme); 1052 if (err) 1053 return err; 1054 } else { 1055 damon_destroy_scheme(dst_scheme); 1056 } 1057 } 1058 1059 damon_for_each_scheme_safe(src_scheme, next, src) { 1060 if (j++ < i) 1061 continue; 1062 new_scheme = damon_new_scheme(&src_scheme->pattern, 1063 src_scheme->action, 1064 src_scheme->apply_interval_us, 1065 &src_scheme->quota, &src_scheme->wmarks, 1066 NUMA_NO_NODE); 1067 if (!new_scheme) 1068 return -ENOMEM; 1069 err = damos_commit(new_scheme, src_scheme); 1070 if (err) { 1071 damon_destroy_scheme(new_scheme); 1072 return err; 1073 } 1074 damon_add_scheme(dst, new_scheme); 1075 } 1076 return 0; 1077 } 1078 1079 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx) 1080 { 1081 struct damon_target *t; 1082 int i = 0; 1083 1084 damon_for_each_target(t, ctx) { 1085 if (i++ == n) 1086 return t; 1087 } 1088 return NULL; 1089 } 1090 1091 /* 1092 * The caller should ensure the regions of @src are 1093 * 1. valid (end >= src) and 1094 * 2. sorted by starting address. 1095 * 1096 * If @src has no region, @dst keeps current regions. 1097 */ 1098 static int damon_commit_target_regions( 1099 struct damon_target *dst, struct damon_target *src) 1100 { 1101 struct damon_region *src_region; 1102 struct damon_addr_range *ranges; 1103 int i = 0, err; 1104 1105 damon_for_each_region(src_region, src) 1106 i++; 1107 if (!i) 1108 return 0; 1109 1110 ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN); 1111 if (!ranges) 1112 return -ENOMEM; 1113 i = 0; 1114 damon_for_each_region(src_region, src) 1115 ranges[i++] = src_region->ar; 1116 err = damon_set_regions(dst, ranges, i); 1117 kfree(ranges); 1118 return err; 1119 } 1120 1121 static int damon_commit_target( 1122 struct damon_target *dst, bool dst_has_pid, 1123 struct damon_target *src, bool src_has_pid) 1124 { 1125 int err; 1126 1127 err = damon_commit_target_regions(dst, src); 1128 if (err) 1129 return err; 1130 if (dst_has_pid) 1131 put_pid(dst->pid); 1132 if (src_has_pid) 1133 get_pid(src->pid); 1134 dst->pid = src->pid; 1135 return 0; 1136 } 1137 1138 static int damon_commit_targets( 1139 struct damon_ctx *dst, struct damon_ctx *src) 1140 { 1141 struct damon_target *dst_target, *next, *src_target, *new_target; 1142 int i = 0, j = 0, err; 1143 1144 damon_for_each_target_safe(dst_target, next, dst) { 1145 src_target = damon_nth_target(i++, src); 1146 if (src_target) { 1147 err = damon_commit_target( 1148 dst_target, damon_target_has_pid(dst), 1149 src_target, damon_target_has_pid(src)); 1150 if (err) 1151 return err; 1152 } else { 1153 struct damos *s; 1154 1155 damon_destroy_target(dst_target, dst); 1156 damon_for_each_scheme(s, dst) { 1157 if (s->quota.charge_target_from == dst_target) { 1158 s->quota.charge_target_from = NULL; 1159 s->quota.charge_addr_from = 0; 1160 } 1161 } 1162 } 1163 } 1164 1165 damon_for_each_target_safe(src_target, next, src) { 1166 if (j++ < i) 1167 continue; 1168 new_target = damon_new_target(); 1169 if (!new_target) 1170 return -ENOMEM; 1171 err = damon_commit_target(new_target, false, 1172 src_target, damon_target_has_pid(src)); 1173 if (err) { 1174 damon_destroy_target(new_target, NULL); 1175 return err; 1176 } 1177 damon_add_target(dst, new_target); 1178 } 1179 return 0; 1180 } 1181 1182 /** 1183 * damon_commit_ctx() - Commit parameters of a DAMON context to another. 1184 * @dst: The commit destination DAMON context. 1185 * @src: The commit source DAMON context. 1186 * 1187 * This function copies user-specified parameters from @src to @dst and update 1188 * the internal status and results accordingly. Users should use this function 1189 * for context-level parameters update of running context, instead of manual 1190 * in-place updates. 1191 * 1192 * This function should be called from parameters-update safe context, like 1193 * damon_call(). 1194 */ 1195 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src) 1196 { 1197 int err; 1198 1199 err = damon_commit_schemes(dst, src); 1200 if (err) 1201 return err; 1202 err = damon_commit_targets(dst, src); 1203 if (err) 1204 return err; 1205 /* 1206 * schemes and targets should be updated first, since 1207 * 1. damon_set_attrs() updates monitoring results of targets and 1208 * next_apply_sis of schemes, and 1209 * 2. ops update should be done after pid handling is done (target 1210 * committing require putting pids). 1211 */ 1212 err = damon_set_attrs(dst, &src->attrs); 1213 if (err) 1214 return err; 1215 dst->ops = src->ops; 1216 1217 return 0; 1218 } 1219 1220 /** 1221 * damon_nr_running_ctxs() - Return number of currently running contexts. 1222 */ 1223 int damon_nr_running_ctxs(void) 1224 { 1225 int nr_ctxs; 1226 1227 mutex_lock(&damon_lock); 1228 nr_ctxs = nr_running_ctxs; 1229 mutex_unlock(&damon_lock); 1230 1231 return nr_ctxs; 1232 } 1233 1234 /* Returns the size upper limit for each monitoring region */ 1235 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx) 1236 { 1237 struct damon_target *t; 1238 struct damon_region *r; 1239 unsigned long sz = 0; 1240 1241 damon_for_each_target(t, ctx) { 1242 damon_for_each_region(r, t) 1243 sz += damon_sz_region(r); 1244 } 1245 1246 if (ctx->attrs.min_nr_regions) 1247 sz /= ctx->attrs.min_nr_regions; 1248 if (sz < DAMON_MIN_REGION) 1249 sz = DAMON_MIN_REGION; 1250 1251 return sz; 1252 } 1253 1254 static int kdamond_fn(void *data); 1255 1256 /* 1257 * __damon_start() - Starts monitoring with given context. 1258 * @ctx: monitoring context 1259 * 1260 * This function should be called while damon_lock is hold. 1261 * 1262 * Return: 0 on success, negative error code otherwise. 1263 */ 1264 static int __damon_start(struct damon_ctx *ctx) 1265 { 1266 int err = -EBUSY; 1267 1268 mutex_lock(&ctx->kdamond_lock); 1269 if (!ctx->kdamond) { 1270 err = 0; 1271 reinit_completion(&ctx->kdamond_started); 1272 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d", 1273 nr_running_ctxs); 1274 if (IS_ERR(ctx->kdamond)) { 1275 err = PTR_ERR(ctx->kdamond); 1276 ctx->kdamond = NULL; 1277 } else { 1278 wait_for_completion(&ctx->kdamond_started); 1279 } 1280 } 1281 mutex_unlock(&ctx->kdamond_lock); 1282 1283 return err; 1284 } 1285 1286 /** 1287 * damon_start() - Starts the monitorings for a given group of contexts. 1288 * @ctxs: an array of the pointers for contexts to start monitoring 1289 * @nr_ctxs: size of @ctxs 1290 * @exclusive: exclusiveness of this contexts group 1291 * 1292 * This function starts a group of monitoring threads for a group of monitoring 1293 * contexts. One thread per each context is created and run in parallel. The 1294 * caller should handle synchronization between the threads by itself. If 1295 * @exclusive is true and a group of threads that created by other 1296 * 'damon_start()' call is currently running, this function does nothing but 1297 * returns -EBUSY. 1298 * 1299 * Return: 0 on success, negative error code otherwise. 1300 */ 1301 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive) 1302 { 1303 int i; 1304 int err = 0; 1305 1306 mutex_lock(&damon_lock); 1307 if ((exclusive && nr_running_ctxs) || 1308 (!exclusive && running_exclusive_ctxs)) { 1309 mutex_unlock(&damon_lock); 1310 return -EBUSY; 1311 } 1312 1313 for (i = 0; i < nr_ctxs; i++) { 1314 err = __damon_start(ctxs[i]); 1315 if (err) 1316 break; 1317 nr_running_ctxs++; 1318 } 1319 if (exclusive && nr_running_ctxs) 1320 running_exclusive_ctxs = true; 1321 mutex_unlock(&damon_lock); 1322 1323 return err; 1324 } 1325 1326 /* 1327 * __damon_stop() - Stops monitoring of a given context. 1328 * @ctx: monitoring context 1329 * 1330 * Return: 0 on success, negative error code otherwise. 1331 */ 1332 static int __damon_stop(struct damon_ctx *ctx) 1333 { 1334 struct task_struct *tsk; 1335 1336 mutex_lock(&ctx->kdamond_lock); 1337 tsk = ctx->kdamond; 1338 if (tsk) { 1339 get_task_struct(tsk); 1340 mutex_unlock(&ctx->kdamond_lock); 1341 kthread_stop_put(tsk); 1342 return 0; 1343 } 1344 mutex_unlock(&ctx->kdamond_lock); 1345 1346 return -EPERM; 1347 } 1348 1349 /** 1350 * damon_stop() - Stops the monitorings for a given group of contexts. 1351 * @ctxs: an array of the pointers for contexts to stop monitoring 1352 * @nr_ctxs: size of @ctxs 1353 * 1354 * Return: 0 on success, negative error code otherwise. 1355 */ 1356 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs) 1357 { 1358 int i, err = 0; 1359 1360 for (i = 0; i < nr_ctxs; i++) { 1361 /* nr_running_ctxs is decremented in kdamond_fn */ 1362 err = __damon_stop(ctxs[i]); 1363 if (err) 1364 break; 1365 } 1366 return err; 1367 } 1368 1369 /** 1370 * damon_is_running() - Returns if a given DAMON context is running. 1371 * @ctx: The DAMON context to see if running. 1372 * 1373 * Return: true if @ctx is running, false otherwise. 1374 */ 1375 bool damon_is_running(struct damon_ctx *ctx) 1376 { 1377 bool running; 1378 1379 mutex_lock(&ctx->kdamond_lock); 1380 running = ctx->kdamond != NULL; 1381 mutex_unlock(&ctx->kdamond_lock); 1382 return running; 1383 } 1384 1385 /** 1386 * damon_call() - Invoke a given function on DAMON worker thread (kdamond). 1387 * @ctx: DAMON context to call the function for. 1388 * @control: Control variable of the call request. 1389 * 1390 * Ask DAMON worker thread (kdamond) of @ctx to call a function with an 1391 * argument data that respectively passed via &damon_call_control->fn and 1392 * &damon_call_control->data of @control. If &damon_call_control->repeat of 1393 * @control is set, further wait until the kdamond finishes handling of the 1394 * request. Otherwise, return as soon as the request is made. 1395 * 1396 * The kdamond executes the function with the argument in the main loop, just 1397 * after a sampling of the iteration is finished. The function can hence 1398 * safely access the internal data of the &struct damon_ctx without additional 1399 * synchronization. The return value of the function will be saved in 1400 * &damon_call_control->return_code. 1401 * 1402 * Return: 0 on success, negative error code otherwise. 1403 */ 1404 int damon_call(struct damon_ctx *ctx, struct damon_call_control *control) 1405 { 1406 if (!control->repeat) 1407 init_completion(&control->completion); 1408 control->canceled = false; 1409 INIT_LIST_HEAD(&control->list); 1410 1411 mutex_lock(&ctx->call_controls_lock); 1412 list_add_tail(&ctx->call_controls, &control->list); 1413 mutex_unlock(&ctx->call_controls_lock); 1414 if (!damon_is_running(ctx)) 1415 return -EINVAL; 1416 if (control->repeat) 1417 return 0; 1418 wait_for_completion(&control->completion); 1419 if (control->canceled) 1420 return -ECANCELED; 1421 return 0; 1422 } 1423 1424 /** 1425 * damos_walk() - Invoke a given functions while DAMOS walk regions. 1426 * @ctx: DAMON context to call the functions for. 1427 * @control: Control variable of the walk request. 1428 * 1429 * Ask DAMON worker thread (kdamond) of @ctx to call a function for each region 1430 * that the kdamond will apply DAMOS action to, and wait until the kdamond 1431 * finishes handling of the request. 1432 * 1433 * The kdamond executes the given function in the main loop, for each region 1434 * just after it applied any DAMOS actions of @ctx to it. The invocation is 1435 * made only within one &damos->apply_interval_us since damos_walk() 1436 * invocation, for each scheme. The given callback function can hence safely 1437 * access the internal data of &struct damon_ctx and &struct damon_region that 1438 * each of the scheme will apply the action for next interval, without 1439 * additional synchronizations against the kdamond. If every scheme of @ctx 1440 * passed at least one &damos->apply_interval_us, kdamond marks the request as 1441 * completed so that damos_walk() can wakeup and return. 1442 * 1443 * Return: 0 on success, negative error code otherwise. 1444 */ 1445 int damos_walk(struct damon_ctx *ctx, struct damos_walk_control *control) 1446 { 1447 init_completion(&control->completion); 1448 control->canceled = false; 1449 mutex_lock(&ctx->walk_control_lock); 1450 if (ctx->walk_control) { 1451 mutex_unlock(&ctx->walk_control_lock); 1452 return -EBUSY; 1453 } 1454 ctx->walk_control = control; 1455 mutex_unlock(&ctx->walk_control_lock); 1456 if (!damon_is_running(ctx)) 1457 return -EINVAL; 1458 wait_for_completion(&control->completion); 1459 if (control->canceled) 1460 return -ECANCELED; 1461 return 0; 1462 } 1463 1464 /* 1465 * Warn and fix corrupted ->nr_accesses[_bp] for investigations and preventing 1466 * the problem being propagated. 1467 */ 1468 static void damon_warn_fix_nr_accesses_corruption(struct damon_region *r) 1469 { 1470 if (r->nr_accesses_bp == r->nr_accesses * 10000) 1471 return; 1472 WARN_ONCE(true, "invalid nr_accesses_bp at reset: %u %u\n", 1473 r->nr_accesses_bp, r->nr_accesses); 1474 r->nr_accesses_bp = r->nr_accesses * 10000; 1475 } 1476 1477 /* 1478 * Reset the aggregated monitoring results ('nr_accesses' of each region). 1479 */ 1480 static void kdamond_reset_aggregated(struct damon_ctx *c) 1481 { 1482 struct damon_target *t; 1483 unsigned int ti = 0; /* target's index */ 1484 1485 damon_for_each_target(t, c) { 1486 struct damon_region *r; 1487 1488 damon_for_each_region(r, t) { 1489 trace_damon_aggregated(ti, r, damon_nr_regions(t)); 1490 damon_warn_fix_nr_accesses_corruption(r); 1491 r->last_nr_accesses = r->nr_accesses; 1492 r->nr_accesses = 0; 1493 } 1494 ti++; 1495 } 1496 } 1497 1498 static unsigned long damon_get_intervals_score(struct damon_ctx *c) 1499 { 1500 struct damon_target *t; 1501 struct damon_region *r; 1502 unsigned long sz_region, max_access_events = 0, access_events = 0; 1503 unsigned long target_access_events; 1504 unsigned long goal_bp = c->attrs.intervals_goal.access_bp; 1505 1506 damon_for_each_target(t, c) { 1507 damon_for_each_region(r, t) { 1508 sz_region = damon_sz_region(r); 1509 max_access_events += sz_region * c->attrs.aggr_samples; 1510 access_events += sz_region * r->nr_accesses; 1511 } 1512 } 1513 target_access_events = max_access_events * goal_bp / 10000; 1514 target_access_events = target_access_events ? : 1; 1515 return access_events * 10000 / target_access_events; 1516 } 1517 1518 static unsigned long damon_feed_loop_next_input(unsigned long last_input, 1519 unsigned long score); 1520 1521 static unsigned long damon_get_intervals_adaptation_bp(struct damon_ctx *c) 1522 { 1523 unsigned long score_bp, adaptation_bp; 1524 1525 score_bp = damon_get_intervals_score(c); 1526 adaptation_bp = damon_feed_loop_next_input(100000000, score_bp) / 1527 10000; 1528 /* 1529 * adaptaion_bp ranges from 1 to 20,000. Avoid too rapid reduction of 1530 * the intervals by rescaling [1,10,000] to [5000, 10,000]. 1531 */ 1532 if (adaptation_bp <= 10000) 1533 adaptation_bp = 5000 + adaptation_bp / 2; 1534 return adaptation_bp; 1535 } 1536 1537 static void kdamond_tune_intervals(struct damon_ctx *c) 1538 { 1539 unsigned long adaptation_bp; 1540 struct damon_attrs new_attrs; 1541 struct damon_intervals_goal *goal; 1542 1543 adaptation_bp = damon_get_intervals_adaptation_bp(c); 1544 if (adaptation_bp == 10000) 1545 return; 1546 1547 new_attrs = c->attrs; 1548 goal = &c->attrs.intervals_goal; 1549 new_attrs.sample_interval = min(goal->max_sample_us, 1550 c->attrs.sample_interval * adaptation_bp / 10000); 1551 new_attrs.sample_interval = max(goal->min_sample_us, 1552 new_attrs.sample_interval); 1553 new_attrs.aggr_interval = new_attrs.sample_interval * 1554 c->attrs.aggr_samples; 1555 trace_damon_monitor_intervals_tune(new_attrs.sample_interval); 1556 damon_set_attrs(c, &new_attrs); 1557 } 1558 1559 static void damon_split_region_at(struct damon_target *t, 1560 struct damon_region *r, unsigned long sz_r); 1561 1562 static bool __damos_valid_target(struct damon_region *r, struct damos *s) 1563 { 1564 unsigned long sz; 1565 unsigned int nr_accesses = r->nr_accesses_bp / 10000; 1566 1567 sz = damon_sz_region(r); 1568 return s->pattern.min_sz_region <= sz && 1569 sz <= s->pattern.max_sz_region && 1570 s->pattern.min_nr_accesses <= nr_accesses && 1571 nr_accesses <= s->pattern.max_nr_accesses && 1572 s->pattern.min_age_region <= r->age && 1573 r->age <= s->pattern.max_age_region; 1574 } 1575 1576 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t, 1577 struct damon_region *r, struct damos *s) 1578 { 1579 bool ret = __damos_valid_target(r, s); 1580 1581 if (!ret || !s->quota.esz || !c->ops.get_scheme_score) 1582 return ret; 1583 1584 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score; 1585 } 1586 1587 /* 1588 * damos_skip_charged_region() - Check if the given region or starting part of 1589 * it is already charged for the DAMOS quota. 1590 * @t: The target of the region. 1591 * @rp: The pointer to the region. 1592 * @s: The scheme to be applied. 1593 * 1594 * If a quota of a scheme has exceeded in a quota charge window, the scheme's 1595 * action would applied to only a part of the target access pattern fulfilling 1596 * regions. To avoid applying the scheme action to only already applied 1597 * regions, DAMON skips applying the scheme action to the regions that charged 1598 * in the previous charge window. 1599 * 1600 * This function checks if a given region should be skipped or not for the 1601 * reason. If only the starting part of the region has previously charged, 1602 * this function splits the region into two so that the second one covers the 1603 * area that not charged in the previous charge widnow and saves the second 1604 * region in *rp and returns false, so that the caller can apply DAMON action 1605 * to the second one. 1606 * 1607 * Return: true if the region should be entirely skipped, false otherwise. 1608 */ 1609 static bool damos_skip_charged_region(struct damon_target *t, 1610 struct damon_region **rp, struct damos *s) 1611 { 1612 struct damon_region *r = *rp; 1613 struct damos_quota *quota = &s->quota; 1614 unsigned long sz_to_skip; 1615 1616 /* Skip previously charged regions */ 1617 if (quota->charge_target_from) { 1618 if (t != quota->charge_target_from) 1619 return true; 1620 if (r == damon_last_region(t)) { 1621 quota->charge_target_from = NULL; 1622 quota->charge_addr_from = 0; 1623 return true; 1624 } 1625 if (quota->charge_addr_from && 1626 r->ar.end <= quota->charge_addr_from) 1627 return true; 1628 1629 if (quota->charge_addr_from && r->ar.start < 1630 quota->charge_addr_from) { 1631 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from - 1632 r->ar.start, DAMON_MIN_REGION); 1633 if (!sz_to_skip) { 1634 if (damon_sz_region(r) <= DAMON_MIN_REGION) 1635 return true; 1636 sz_to_skip = DAMON_MIN_REGION; 1637 } 1638 damon_split_region_at(t, r, sz_to_skip); 1639 r = damon_next_region(r); 1640 *rp = r; 1641 } 1642 quota->charge_target_from = NULL; 1643 quota->charge_addr_from = 0; 1644 } 1645 return false; 1646 } 1647 1648 static void damos_update_stat(struct damos *s, 1649 unsigned long sz_tried, unsigned long sz_applied, 1650 unsigned long sz_ops_filter_passed) 1651 { 1652 s->stat.nr_tried++; 1653 s->stat.sz_tried += sz_tried; 1654 if (sz_applied) 1655 s->stat.nr_applied++; 1656 s->stat.sz_applied += sz_applied; 1657 s->stat.sz_ops_filter_passed += sz_ops_filter_passed; 1658 } 1659 1660 static bool damos_filter_match(struct damon_ctx *ctx, struct damon_target *t, 1661 struct damon_region *r, struct damos_filter *filter) 1662 { 1663 bool matched = false; 1664 struct damon_target *ti; 1665 int target_idx = 0; 1666 unsigned long start, end; 1667 1668 switch (filter->type) { 1669 case DAMOS_FILTER_TYPE_TARGET: 1670 damon_for_each_target(ti, ctx) { 1671 if (ti == t) 1672 break; 1673 target_idx++; 1674 } 1675 matched = target_idx == filter->target_idx; 1676 break; 1677 case DAMOS_FILTER_TYPE_ADDR: 1678 start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION); 1679 end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION); 1680 1681 /* inside the range */ 1682 if (start <= r->ar.start && r->ar.end <= end) { 1683 matched = true; 1684 break; 1685 } 1686 /* outside of the range */ 1687 if (r->ar.end <= start || end <= r->ar.start) { 1688 matched = false; 1689 break; 1690 } 1691 /* start before the range and overlap */ 1692 if (r->ar.start < start) { 1693 damon_split_region_at(t, r, start - r->ar.start); 1694 matched = false; 1695 break; 1696 } 1697 /* start inside the range */ 1698 damon_split_region_at(t, r, end - r->ar.start); 1699 matched = true; 1700 break; 1701 default: 1702 return false; 1703 } 1704 1705 return matched == filter->matching; 1706 } 1707 1708 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t, 1709 struct damon_region *r, struct damos *s) 1710 { 1711 struct damos_filter *filter; 1712 1713 s->core_filters_allowed = false; 1714 damos_for_each_filter(filter, s) { 1715 if (damos_filter_match(ctx, t, r, filter)) { 1716 if (filter->allow) 1717 s->core_filters_allowed = true; 1718 return !filter->allow; 1719 } 1720 } 1721 return s->core_filters_default_reject; 1722 } 1723 1724 /* 1725 * damos_walk_call_walk() - Call &damos_walk_control->walk_fn. 1726 * @ctx: The context of &damon_ctx->walk_control. 1727 * @t: The monitoring target of @r that @s will be applied. 1728 * @r: The region of @t that @s will be applied. 1729 * @s: The scheme of @ctx that will be applied to @r. 1730 * 1731 * This function is called from kdamond whenever it asked the operation set to 1732 * apply a DAMOS scheme action to a region. If a DAMOS walk request is 1733 * installed by damos_walk() and not yet uninstalled, invoke it. 1734 */ 1735 static void damos_walk_call_walk(struct damon_ctx *ctx, struct damon_target *t, 1736 struct damon_region *r, struct damos *s, 1737 unsigned long sz_filter_passed) 1738 { 1739 struct damos_walk_control *control; 1740 1741 if (s->walk_completed) 1742 return; 1743 1744 control = ctx->walk_control; 1745 if (!control) 1746 return; 1747 1748 control->walk_fn(control->data, ctx, t, r, s, sz_filter_passed); 1749 } 1750 1751 /* 1752 * damos_walk_complete() - Complete DAMOS walk request if all walks are done. 1753 * @ctx: The context of &damon_ctx->walk_control. 1754 * @s: A scheme of @ctx that all walks are now done. 1755 * 1756 * This function is called when kdamond finished applying the action of a DAMOS 1757 * scheme to all regions that eligible for the given &damos->apply_interval_us. 1758 * If every scheme of @ctx including @s now finished walking for at least one 1759 * &damos->apply_interval_us, this function makrs the handling of the given 1760 * DAMOS walk request is done, so that damos_walk() can wake up and return. 1761 */ 1762 static void damos_walk_complete(struct damon_ctx *ctx, struct damos *s) 1763 { 1764 struct damos *siter; 1765 struct damos_walk_control *control; 1766 1767 control = ctx->walk_control; 1768 if (!control) 1769 return; 1770 1771 s->walk_completed = true; 1772 /* if all schemes completed, signal completion to walker */ 1773 damon_for_each_scheme(siter, ctx) { 1774 if (!siter->walk_completed) 1775 return; 1776 } 1777 damon_for_each_scheme(siter, ctx) 1778 siter->walk_completed = false; 1779 1780 complete(&control->completion); 1781 ctx->walk_control = NULL; 1782 } 1783 1784 /* 1785 * damos_walk_cancel() - Cancel the current DAMOS walk request. 1786 * @ctx: The context of &damon_ctx->walk_control. 1787 * 1788 * This function is called when @ctx is deactivated by DAMOS watermarks, DAMOS 1789 * walk is requested but there is no DAMOS scheme to walk for, or the kdamond 1790 * is already out of the main loop and therefore gonna be terminated, and hence 1791 * cannot continue the walks. This function therefore marks the walk request 1792 * as canceled, so that damos_walk() can wake up and return. 1793 */ 1794 static void damos_walk_cancel(struct damon_ctx *ctx) 1795 { 1796 struct damos_walk_control *control; 1797 1798 mutex_lock(&ctx->walk_control_lock); 1799 control = ctx->walk_control; 1800 mutex_unlock(&ctx->walk_control_lock); 1801 1802 if (!control) 1803 return; 1804 control->canceled = true; 1805 complete(&control->completion); 1806 mutex_lock(&ctx->walk_control_lock); 1807 ctx->walk_control = NULL; 1808 mutex_unlock(&ctx->walk_control_lock); 1809 } 1810 1811 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t, 1812 struct damon_region *r, struct damos *s) 1813 { 1814 struct damos_quota *quota = &s->quota; 1815 unsigned long sz = damon_sz_region(r); 1816 struct timespec64 begin, end; 1817 unsigned long sz_applied = 0; 1818 unsigned long sz_ops_filter_passed = 0; 1819 /* 1820 * We plan to support multiple context per kdamond, as DAMON sysfs 1821 * implies with 'nr_contexts' file. Nevertheless, only single context 1822 * per kdamond is supported for now. So, we can simply use '0' context 1823 * index here. 1824 */ 1825 unsigned int cidx = 0; 1826 struct damos *siter; /* schemes iterator */ 1827 unsigned int sidx = 0; 1828 struct damon_target *titer; /* targets iterator */ 1829 unsigned int tidx = 0; 1830 bool do_trace = false; 1831 1832 /* get indices for trace_damos_before_apply() */ 1833 if (trace_damos_before_apply_enabled()) { 1834 damon_for_each_scheme(siter, c) { 1835 if (siter == s) 1836 break; 1837 sidx++; 1838 } 1839 damon_for_each_target(titer, c) { 1840 if (titer == t) 1841 break; 1842 tidx++; 1843 } 1844 do_trace = true; 1845 } 1846 1847 if (c->ops.apply_scheme) { 1848 if (quota->esz && quota->charged_sz + sz > quota->esz) { 1849 sz = ALIGN_DOWN(quota->esz - quota->charged_sz, 1850 DAMON_MIN_REGION); 1851 if (!sz) 1852 goto update_stat; 1853 damon_split_region_at(t, r, sz); 1854 } 1855 if (damos_filter_out(c, t, r, s)) 1856 return; 1857 ktime_get_coarse_ts64(&begin); 1858 trace_damos_before_apply(cidx, sidx, tidx, r, 1859 damon_nr_regions(t), do_trace); 1860 sz_applied = c->ops.apply_scheme(c, t, r, s, 1861 &sz_ops_filter_passed); 1862 damos_walk_call_walk(c, t, r, s, sz_ops_filter_passed); 1863 ktime_get_coarse_ts64(&end); 1864 quota->total_charged_ns += timespec64_to_ns(&end) - 1865 timespec64_to_ns(&begin); 1866 quota->charged_sz += sz; 1867 if (quota->esz && quota->charged_sz >= quota->esz) { 1868 quota->charge_target_from = t; 1869 quota->charge_addr_from = r->ar.end + 1; 1870 } 1871 } 1872 if (s->action != DAMOS_STAT) 1873 r->age = 0; 1874 1875 update_stat: 1876 damos_update_stat(s, sz, sz_applied, sz_ops_filter_passed); 1877 } 1878 1879 static void damon_do_apply_schemes(struct damon_ctx *c, 1880 struct damon_target *t, 1881 struct damon_region *r) 1882 { 1883 struct damos *s; 1884 1885 damon_for_each_scheme(s, c) { 1886 struct damos_quota *quota = &s->quota; 1887 1888 if (c->passed_sample_intervals < s->next_apply_sis) 1889 continue; 1890 1891 if (!s->wmarks.activated) 1892 continue; 1893 1894 /* Check the quota */ 1895 if (quota->esz && quota->charged_sz >= quota->esz) 1896 continue; 1897 1898 if (damos_skip_charged_region(t, &r, s)) 1899 continue; 1900 1901 if (!damos_valid_target(c, t, r, s)) 1902 continue; 1903 1904 damos_apply_scheme(c, t, r, s); 1905 } 1906 } 1907 1908 /* 1909 * damon_feed_loop_next_input() - get next input to achieve a target score. 1910 * @last_input The last input. 1911 * @score Current score that made with @last_input. 1912 * 1913 * Calculate next input to achieve the target score, based on the last input 1914 * and current score. Assuming the input and the score are positively 1915 * proportional, calculate how much compensation should be added to or 1916 * subtracted from the last input as a proportion of the last input. Avoid 1917 * next input always being zero by setting it non-zero always. In short form 1918 * (assuming support of float and signed calculations), the algorithm is as 1919 * below. 1920 * 1921 * next_input = max(last_input * ((goal - current) / goal + 1), 1) 1922 * 1923 * For simple implementation, we assume the target score is always 10,000. The 1924 * caller should adjust @score for this. 1925 * 1926 * Returns next input that assumed to achieve the target score. 1927 */ 1928 static unsigned long damon_feed_loop_next_input(unsigned long last_input, 1929 unsigned long score) 1930 { 1931 const unsigned long goal = 10000; 1932 /* Set minimum input as 10000 to avoid compensation be zero */ 1933 const unsigned long min_input = 10000; 1934 unsigned long score_goal_diff, compensation; 1935 bool over_achieving = score > goal; 1936 1937 if (score == goal) 1938 return last_input; 1939 if (score >= goal * 2) 1940 return min_input; 1941 1942 if (over_achieving) 1943 score_goal_diff = score - goal; 1944 else 1945 score_goal_diff = goal - score; 1946 1947 if (last_input < ULONG_MAX / score_goal_diff) 1948 compensation = last_input * score_goal_diff / goal; 1949 else 1950 compensation = last_input / goal * score_goal_diff; 1951 1952 if (over_achieving) 1953 return max(last_input - compensation, min_input); 1954 if (last_input < ULONG_MAX - compensation) 1955 return last_input + compensation; 1956 return ULONG_MAX; 1957 } 1958 1959 #ifdef CONFIG_PSI 1960 1961 static u64 damos_get_some_mem_psi_total(void) 1962 { 1963 if (static_branch_likely(&psi_disabled)) 1964 return 0; 1965 return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2], 1966 NSEC_PER_USEC); 1967 } 1968 1969 #else /* CONFIG_PSI */ 1970 1971 static inline u64 damos_get_some_mem_psi_total(void) 1972 { 1973 return 0; 1974 }; 1975 1976 #endif /* CONFIG_PSI */ 1977 1978 #ifdef CONFIG_NUMA 1979 static __kernel_ulong_t damos_get_node_mem_bp( 1980 struct damos_quota_goal *goal) 1981 { 1982 struct sysinfo i; 1983 __kernel_ulong_t numerator; 1984 1985 si_meminfo_node(&i, goal->nid); 1986 if (goal->metric == DAMOS_QUOTA_NODE_MEM_USED_BP) 1987 numerator = i.totalram - i.freeram; 1988 else /* DAMOS_QUOTA_NODE_MEM_FREE_BP */ 1989 numerator = i.freeram; 1990 return numerator * 10000 / i.totalram; 1991 } 1992 #else 1993 static __kernel_ulong_t damos_get_node_mem_bp( 1994 struct damos_quota_goal *goal) 1995 { 1996 return 0; 1997 } 1998 #endif 1999 2000 2001 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal) 2002 { 2003 u64 now_psi_total; 2004 2005 switch (goal->metric) { 2006 case DAMOS_QUOTA_USER_INPUT: 2007 /* User should already set goal->current_value */ 2008 break; 2009 case DAMOS_QUOTA_SOME_MEM_PSI_US: 2010 now_psi_total = damos_get_some_mem_psi_total(); 2011 goal->current_value = now_psi_total - goal->last_psi_total; 2012 goal->last_psi_total = now_psi_total; 2013 break; 2014 case DAMOS_QUOTA_NODE_MEM_USED_BP: 2015 case DAMOS_QUOTA_NODE_MEM_FREE_BP: 2016 goal->current_value = damos_get_node_mem_bp(goal); 2017 break; 2018 default: 2019 break; 2020 } 2021 } 2022 2023 /* Return the highest score since it makes schemes least aggressive */ 2024 static unsigned long damos_quota_score(struct damos_quota *quota) 2025 { 2026 struct damos_quota_goal *goal; 2027 unsigned long highest_score = 0; 2028 2029 damos_for_each_quota_goal(goal, quota) { 2030 damos_set_quota_goal_current_value(goal); 2031 highest_score = max(highest_score, 2032 goal->current_value * 10000 / 2033 goal->target_value); 2034 } 2035 2036 return highest_score; 2037 } 2038 2039 /* 2040 * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty 2041 */ 2042 static void damos_set_effective_quota(struct damos_quota *quota) 2043 { 2044 unsigned long throughput; 2045 unsigned long esz = ULONG_MAX; 2046 2047 if (!quota->ms && list_empty("a->goals)) { 2048 quota->esz = quota->sz; 2049 return; 2050 } 2051 2052 if (!list_empty("a->goals)) { 2053 unsigned long score = damos_quota_score(quota); 2054 2055 quota->esz_bp = damon_feed_loop_next_input( 2056 max(quota->esz_bp, 10000UL), 2057 score); 2058 esz = quota->esz_bp / 10000; 2059 } 2060 2061 if (quota->ms) { 2062 if (quota->total_charged_ns) 2063 throughput = quota->total_charged_sz * 1000000 / 2064 quota->total_charged_ns; 2065 else 2066 throughput = PAGE_SIZE * 1024; 2067 esz = min(throughput * quota->ms, esz); 2068 } 2069 2070 if (quota->sz && quota->sz < esz) 2071 esz = quota->sz; 2072 2073 quota->esz = esz; 2074 } 2075 2076 static void damos_trace_esz(struct damon_ctx *c, struct damos *s, 2077 struct damos_quota *quota) 2078 { 2079 unsigned int cidx = 0, sidx = 0; 2080 struct damos *siter; 2081 2082 damon_for_each_scheme(siter, c) { 2083 if (siter == s) 2084 break; 2085 sidx++; 2086 } 2087 trace_damos_esz(cidx, sidx, quota->esz); 2088 } 2089 2090 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s) 2091 { 2092 struct damos_quota *quota = &s->quota; 2093 struct damon_target *t; 2094 struct damon_region *r; 2095 unsigned long cumulated_sz, cached_esz; 2096 unsigned int score, max_score = 0; 2097 2098 if (!quota->ms && !quota->sz && list_empty("a->goals)) 2099 return; 2100 2101 /* New charge window starts */ 2102 if (time_after_eq(jiffies, quota->charged_from + 2103 msecs_to_jiffies(quota->reset_interval))) { 2104 if (quota->esz && quota->charged_sz >= quota->esz) 2105 s->stat.qt_exceeds++; 2106 quota->total_charged_sz += quota->charged_sz; 2107 quota->charged_from = jiffies; 2108 quota->charged_sz = 0; 2109 if (trace_damos_esz_enabled()) 2110 cached_esz = quota->esz; 2111 damos_set_effective_quota(quota); 2112 if (trace_damos_esz_enabled() && quota->esz != cached_esz) 2113 damos_trace_esz(c, s, quota); 2114 } 2115 2116 if (!c->ops.get_scheme_score) 2117 return; 2118 2119 /* Fill up the score histogram */ 2120 memset(c->regions_score_histogram, 0, 2121 sizeof(*c->regions_score_histogram) * 2122 (DAMOS_MAX_SCORE + 1)); 2123 damon_for_each_target(t, c) { 2124 damon_for_each_region(r, t) { 2125 if (!__damos_valid_target(r, s)) 2126 continue; 2127 score = c->ops.get_scheme_score(c, t, r, s); 2128 c->regions_score_histogram[score] += 2129 damon_sz_region(r); 2130 if (score > max_score) 2131 max_score = score; 2132 } 2133 } 2134 2135 /* Set the min score limit */ 2136 for (cumulated_sz = 0, score = max_score; ; score--) { 2137 cumulated_sz += c->regions_score_histogram[score]; 2138 if (cumulated_sz >= quota->esz || !score) 2139 break; 2140 } 2141 quota->min_score = score; 2142 } 2143 2144 static void kdamond_apply_schemes(struct damon_ctx *c) 2145 { 2146 struct damon_target *t; 2147 struct damon_region *r, *next_r; 2148 struct damos *s; 2149 unsigned long sample_interval = c->attrs.sample_interval ? 2150 c->attrs.sample_interval : 1; 2151 bool has_schemes_to_apply = false; 2152 2153 damon_for_each_scheme(s, c) { 2154 if (c->passed_sample_intervals < s->next_apply_sis) 2155 continue; 2156 2157 if (!s->wmarks.activated) 2158 continue; 2159 2160 has_schemes_to_apply = true; 2161 2162 damos_adjust_quota(c, s); 2163 } 2164 2165 if (!has_schemes_to_apply) 2166 return; 2167 2168 mutex_lock(&c->walk_control_lock); 2169 damon_for_each_target(t, c) { 2170 damon_for_each_region_safe(r, next_r, t) 2171 damon_do_apply_schemes(c, t, r); 2172 } 2173 2174 damon_for_each_scheme(s, c) { 2175 if (c->passed_sample_intervals < s->next_apply_sis) 2176 continue; 2177 damos_walk_complete(c, s); 2178 s->next_apply_sis = c->passed_sample_intervals + 2179 (s->apply_interval_us ? s->apply_interval_us : 2180 c->attrs.aggr_interval) / sample_interval; 2181 s->last_applied = NULL; 2182 } 2183 mutex_unlock(&c->walk_control_lock); 2184 } 2185 2186 /* 2187 * Merge two adjacent regions into one region 2188 */ 2189 static void damon_merge_two_regions(struct damon_target *t, 2190 struct damon_region *l, struct damon_region *r) 2191 { 2192 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r); 2193 2194 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) / 2195 (sz_l + sz_r); 2196 l->nr_accesses_bp = l->nr_accesses * 10000; 2197 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r); 2198 l->ar.end = r->ar.end; 2199 damon_destroy_region(r, t); 2200 } 2201 2202 /* 2203 * Merge adjacent regions having similar access frequencies 2204 * 2205 * t target affected by this merge operation 2206 * thres '->nr_accesses' diff threshold for the merge 2207 * sz_limit size upper limit of each region 2208 */ 2209 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres, 2210 unsigned long sz_limit) 2211 { 2212 struct damon_region *r, *prev = NULL, *next; 2213 2214 damon_for_each_region_safe(r, next, t) { 2215 if (abs(r->nr_accesses - r->last_nr_accesses) > thres) 2216 r->age = 0; 2217 else 2218 r->age++; 2219 2220 if (prev && prev->ar.end == r->ar.start && 2221 abs(prev->nr_accesses - r->nr_accesses) <= thres && 2222 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit) 2223 damon_merge_two_regions(t, prev, r); 2224 else 2225 prev = r; 2226 } 2227 } 2228 2229 /* 2230 * Merge adjacent regions having similar access frequencies 2231 * 2232 * threshold '->nr_accesses' diff threshold for the merge 2233 * sz_limit size upper limit of each region 2234 * 2235 * This function merges monitoring target regions which are adjacent and their 2236 * access frequencies are similar. This is for minimizing the monitoring 2237 * overhead under the dynamically changeable access pattern. If a merge was 2238 * unnecessarily made, later 'kdamond_split_regions()' will revert it. 2239 * 2240 * The total number of regions could be higher than the user-defined limit, 2241 * max_nr_regions for some cases. For example, the user can update 2242 * max_nr_regions to a number that lower than the current number of regions 2243 * while DAMON is running. For such a case, repeat merging until the limit is 2244 * met while increasing @threshold up to possible maximum level. 2245 */ 2246 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold, 2247 unsigned long sz_limit) 2248 { 2249 struct damon_target *t; 2250 unsigned int nr_regions; 2251 unsigned int max_thres; 2252 2253 max_thres = c->attrs.aggr_interval / 2254 (c->attrs.sample_interval ? c->attrs.sample_interval : 1); 2255 do { 2256 nr_regions = 0; 2257 damon_for_each_target(t, c) { 2258 damon_merge_regions_of(t, threshold, sz_limit); 2259 nr_regions += damon_nr_regions(t); 2260 } 2261 threshold = max(1, threshold * 2); 2262 } while (nr_regions > c->attrs.max_nr_regions && 2263 threshold / 2 < max_thres); 2264 } 2265 2266 /* 2267 * Split a region in two 2268 * 2269 * r the region to be split 2270 * sz_r size of the first sub-region that will be made 2271 */ 2272 static void damon_split_region_at(struct damon_target *t, 2273 struct damon_region *r, unsigned long sz_r) 2274 { 2275 struct damon_region *new; 2276 2277 new = damon_new_region(r->ar.start + sz_r, r->ar.end); 2278 if (!new) 2279 return; 2280 2281 r->ar.end = new->ar.start; 2282 2283 new->age = r->age; 2284 new->last_nr_accesses = r->last_nr_accesses; 2285 new->nr_accesses_bp = r->nr_accesses_bp; 2286 new->nr_accesses = r->nr_accesses; 2287 2288 damon_insert_region(new, r, damon_next_region(r), t); 2289 } 2290 2291 /* Split every region in the given target into 'nr_subs' regions */ 2292 static void damon_split_regions_of(struct damon_target *t, int nr_subs) 2293 { 2294 struct damon_region *r, *next; 2295 unsigned long sz_region, sz_sub = 0; 2296 int i; 2297 2298 damon_for_each_region_safe(r, next, t) { 2299 sz_region = damon_sz_region(r); 2300 2301 for (i = 0; i < nr_subs - 1 && 2302 sz_region > 2 * DAMON_MIN_REGION; i++) { 2303 /* 2304 * Randomly select size of left sub-region to be at 2305 * least 10 percent and at most 90% of original region 2306 */ 2307 sz_sub = ALIGN_DOWN(damon_rand(1, 10) * 2308 sz_region / 10, DAMON_MIN_REGION); 2309 /* Do not allow blank region */ 2310 if (sz_sub == 0 || sz_sub >= sz_region) 2311 continue; 2312 2313 damon_split_region_at(t, r, sz_sub); 2314 sz_region = sz_sub; 2315 } 2316 } 2317 } 2318 2319 /* 2320 * Split every target region into randomly-sized small regions 2321 * 2322 * This function splits every target region into random-sized small regions if 2323 * current total number of the regions is equal or smaller than half of the 2324 * user-specified maximum number of regions. This is for maximizing the 2325 * monitoring accuracy under the dynamically changeable access patterns. If a 2326 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert 2327 * it. 2328 */ 2329 static void kdamond_split_regions(struct damon_ctx *ctx) 2330 { 2331 struct damon_target *t; 2332 unsigned int nr_regions = 0; 2333 static unsigned int last_nr_regions; 2334 int nr_subregions = 2; 2335 2336 damon_for_each_target(t, ctx) 2337 nr_regions += damon_nr_regions(t); 2338 2339 if (nr_regions > ctx->attrs.max_nr_regions / 2) 2340 return; 2341 2342 /* Maybe the middle of the region has different access frequency */ 2343 if (last_nr_regions == nr_regions && 2344 nr_regions < ctx->attrs.max_nr_regions / 3) 2345 nr_subregions = 3; 2346 2347 damon_for_each_target(t, ctx) 2348 damon_split_regions_of(t, nr_subregions); 2349 2350 last_nr_regions = nr_regions; 2351 } 2352 2353 /* 2354 * Check whether current monitoring should be stopped 2355 * 2356 * The monitoring is stopped when either the user requested to stop, or all 2357 * monitoring targets are invalid. 2358 * 2359 * Returns true if need to stop current monitoring. 2360 */ 2361 static bool kdamond_need_stop(struct damon_ctx *ctx) 2362 { 2363 struct damon_target *t; 2364 2365 if (kthread_should_stop()) 2366 return true; 2367 2368 if (!ctx->ops.target_valid) 2369 return false; 2370 2371 damon_for_each_target(t, ctx) { 2372 if (ctx->ops.target_valid(t)) 2373 return false; 2374 } 2375 2376 return true; 2377 } 2378 2379 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric, 2380 unsigned long *metric_value) 2381 { 2382 switch (metric) { 2383 case DAMOS_WMARK_FREE_MEM_RATE: 2384 *metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 / 2385 totalram_pages(); 2386 return 0; 2387 default: 2388 break; 2389 } 2390 return -EINVAL; 2391 } 2392 2393 /* 2394 * Returns zero if the scheme is active. Else, returns time to wait for next 2395 * watermark check in micro-seconds. 2396 */ 2397 static unsigned long damos_wmark_wait_us(struct damos *scheme) 2398 { 2399 unsigned long metric; 2400 2401 if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric)) 2402 return 0; 2403 2404 /* higher than high watermark or lower than low watermark */ 2405 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) { 2406 if (scheme->wmarks.activated) 2407 pr_debug("deactivate a scheme (%d) for %s wmark\n", 2408 scheme->action, 2409 str_high_low(metric > scheme->wmarks.high)); 2410 scheme->wmarks.activated = false; 2411 return scheme->wmarks.interval; 2412 } 2413 2414 /* inactive and higher than middle watermark */ 2415 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) && 2416 !scheme->wmarks.activated) 2417 return scheme->wmarks.interval; 2418 2419 if (!scheme->wmarks.activated) 2420 pr_debug("activate a scheme (%d)\n", scheme->action); 2421 scheme->wmarks.activated = true; 2422 return 0; 2423 } 2424 2425 static void kdamond_usleep(unsigned long usecs) 2426 { 2427 if (usecs >= USLEEP_RANGE_UPPER_BOUND) 2428 schedule_timeout_idle(usecs_to_jiffies(usecs)); 2429 else 2430 usleep_range_idle(usecs, usecs + 1); 2431 } 2432 2433 /* 2434 * kdamond_call() - handle damon_call_control objects. 2435 * @ctx: The &struct damon_ctx of the kdamond. 2436 * @cancel: Whether to cancel the invocation of the function. 2437 * 2438 * If there are &struct damon_call_control requests that registered via 2439 * &damon_call() on @ctx, do or cancel the invocation of the function depending 2440 * on @cancel. @cancel is set when the kdamond is already out of the main loop 2441 * and therefore will be terminated. 2442 */ 2443 static void kdamond_call(struct damon_ctx *ctx, bool cancel) 2444 { 2445 struct damon_call_control *control; 2446 LIST_HEAD(repeat_controls); 2447 int ret = 0; 2448 2449 while (true) { 2450 mutex_lock(&ctx->call_controls_lock); 2451 control = list_first_entry_or_null(&ctx->call_controls, 2452 struct damon_call_control, list); 2453 mutex_unlock(&ctx->call_controls_lock); 2454 if (!control) 2455 break; 2456 if (cancel) { 2457 control->canceled = true; 2458 } else { 2459 ret = control->fn(control->data); 2460 control->return_code = ret; 2461 } 2462 mutex_lock(&ctx->call_controls_lock); 2463 list_del(&control->list); 2464 mutex_unlock(&ctx->call_controls_lock); 2465 if (!control->repeat) 2466 complete(&control->completion); 2467 else 2468 list_add(&control->list, &repeat_controls); 2469 } 2470 control = list_first_entry_or_null(&repeat_controls, 2471 struct damon_call_control, list); 2472 if (!control || cancel) 2473 return; 2474 mutex_lock(&ctx->call_controls_lock); 2475 list_add_tail(&control->list, &ctx->call_controls); 2476 mutex_unlock(&ctx->call_controls_lock); 2477 } 2478 2479 /* Returns negative error code if it's not activated but should return */ 2480 static int kdamond_wait_activation(struct damon_ctx *ctx) 2481 { 2482 struct damos *s; 2483 unsigned long wait_time; 2484 unsigned long min_wait_time = 0; 2485 bool init_wait_time = false; 2486 2487 while (!kdamond_need_stop(ctx)) { 2488 damon_for_each_scheme(s, ctx) { 2489 wait_time = damos_wmark_wait_us(s); 2490 if (!init_wait_time || wait_time < min_wait_time) { 2491 init_wait_time = true; 2492 min_wait_time = wait_time; 2493 } 2494 } 2495 if (!min_wait_time) 2496 return 0; 2497 2498 kdamond_usleep(min_wait_time); 2499 2500 kdamond_call(ctx, false); 2501 damos_walk_cancel(ctx); 2502 } 2503 return -EBUSY; 2504 } 2505 2506 static void kdamond_init_ctx(struct damon_ctx *ctx) 2507 { 2508 unsigned long sample_interval = ctx->attrs.sample_interval ? 2509 ctx->attrs.sample_interval : 1; 2510 unsigned long apply_interval; 2511 struct damos *scheme; 2512 2513 ctx->passed_sample_intervals = 0; 2514 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval; 2515 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval / 2516 sample_interval; 2517 ctx->next_intervals_tune_sis = ctx->next_aggregation_sis * 2518 ctx->attrs.intervals_goal.aggrs; 2519 2520 damon_for_each_scheme(scheme, ctx) { 2521 apply_interval = scheme->apply_interval_us ? 2522 scheme->apply_interval_us : ctx->attrs.aggr_interval; 2523 scheme->next_apply_sis = apply_interval / sample_interval; 2524 damos_set_filters_default_reject(scheme); 2525 } 2526 } 2527 2528 /* 2529 * The monitoring daemon that runs as a kernel thread 2530 */ 2531 static int kdamond_fn(void *data) 2532 { 2533 struct damon_ctx *ctx = data; 2534 struct damon_target *t; 2535 struct damon_region *r, *next; 2536 unsigned int max_nr_accesses = 0; 2537 unsigned long sz_limit = 0; 2538 2539 pr_debug("kdamond (%d) starts\n", current->pid); 2540 2541 complete(&ctx->kdamond_started); 2542 kdamond_init_ctx(ctx); 2543 2544 if (ctx->ops.init) 2545 ctx->ops.init(ctx); 2546 ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1, 2547 sizeof(*ctx->regions_score_histogram), GFP_KERNEL); 2548 if (!ctx->regions_score_histogram) 2549 goto done; 2550 2551 sz_limit = damon_region_sz_limit(ctx); 2552 2553 while (!kdamond_need_stop(ctx)) { 2554 /* 2555 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could 2556 * be changed from kdamond_call(). Read the values here, and 2557 * use those for this iteration. That is, damon_set_attrs() 2558 * updated new values are respected from next iteration. 2559 */ 2560 unsigned long next_aggregation_sis = ctx->next_aggregation_sis; 2561 unsigned long next_ops_update_sis = ctx->next_ops_update_sis; 2562 unsigned long sample_interval = ctx->attrs.sample_interval; 2563 2564 if (kdamond_wait_activation(ctx)) 2565 break; 2566 2567 if (ctx->ops.prepare_access_checks) 2568 ctx->ops.prepare_access_checks(ctx); 2569 2570 kdamond_usleep(sample_interval); 2571 ctx->passed_sample_intervals++; 2572 2573 if (ctx->ops.check_accesses) 2574 max_nr_accesses = ctx->ops.check_accesses(ctx); 2575 2576 if (ctx->passed_sample_intervals >= next_aggregation_sis) 2577 kdamond_merge_regions(ctx, 2578 max_nr_accesses / 10, 2579 sz_limit); 2580 2581 /* 2582 * do kdamond_call() and kdamond_apply_schemes() after 2583 * kdamond_merge_regions() if possible, to reduce overhead 2584 */ 2585 kdamond_call(ctx, false); 2586 if (!list_empty(&ctx->schemes)) 2587 kdamond_apply_schemes(ctx); 2588 else 2589 damos_walk_cancel(ctx); 2590 2591 sample_interval = ctx->attrs.sample_interval ? 2592 ctx->attrs.sample_interval : 1; 2593 if (ctx->passed_sample_intervals >= next_aggregation_sis) { 2594 if (ctx->attrs.intervals_goal.aggrs && 2595 ctx->passed_sample_intervals >= 2596 ctx->next_intervals_tune_sis) { 2597 /* 2598 * ctx->next_aggregation_sis might be updated 2599 * from kdamond_call(). In the case, 2600 * damon_set_attrs() which will be called from 2601 * kdamond_tune_interval() may wrongly think 2602 * this is in the middle of the current 2603 * aggregation, and make aggregation 2604 * information reset for all regions. Then, 2605 * following kdamond_reset_aggregated() call 2606 * will make the region information invalid, 2607 * particularly for ->nr_accesses_bp. 2608 * 2609 * Reset ->next_aggregation_sis to avoid that. 2610 * It will anyway correctly updated after this 2611 * if caluse. 2612 */ 2613 ctx->next_aggregation_sis = 2614 next_aggregation_sis; 2615 ctx->next_intervals_tune_sis += 2616 ctx->attrs.aggr_samples * 2617 ctx->attrs.intervals_goal.aggrs; 2618 kdamond_tune_intervals(ctx); 2619 sample_interval = ctx->attrs.sample_interval ? 2620 ctx->attrs.sample_interval : 1; 2621 2622 } 2623 ctx->next_aggregation_sis = next_aggregation_sis + 2624 ctx->attrs.aggr_interval / sample_interval; 2625 2626 kdamond_reset_aggregated(ctx); 2627 kdamond_split_regions(ctx); 2628 } 2629 2630 if (ctx->passed_sample_intervals >= next_ops_update_sis) { 2631 ctx->next_ops_update_sis = next_ops_update_sis + 2632 ctx->attrs.ops_update_interval / 2633 sample_interval; 2634 if (ctx->ops.update) 2635 ctx->ops.update(ctx); 2636 sz_limit = damon_region_sz_limit(ctx); 2637 } 2638 } 2639 done: 2640 damon_for_each_target(t, ctx) { 2641 damon_for_each_region_safe(r, next, t) 2642 damon_destroy_region(r, t); 2643 } 2644 2645 if (ctx->ops.cleanup) 2646 ctx->ops.cleanup(ctx); 2647 kfree(ctx->regions_score_histogram); 2648 2649 pr_debug("kdamond (%d) finishes\n", current->pid); 2650 mutex_lock(&ctx->kdamond_lock); 2651 ctx->kdamond = NULL; 2652 mutex_unlock(&ctx->kdamond_lock); 2653 2654 kdamond_call(ctx, true); 2655 damos_walk_cancel(ctx); 2656 2657 mutex_lock(&damon_lock); 2658 nr_running_ctxs--; 2659 if (!nr_running_ctxs && running_exclusive_ctxs) 2660 running_exclusive_ctxs = false; 2661 mutex_unlock(&damon_lock); 2662 2663 damon_destroy_targets(ctx); 2664 return 0; 2665 } 2666 2667 /* 2668 * struct damon_system_ram_region - System RAM resource address region of 2669 * [@start, @end). 2670 * @start: Start address of the region (inclusive). 2671 * @end: End address of the region (exclusive). 2672 */ 2673 struct damon_system_ram_region { 2674 unsigned long start; 2675 unsigned long end; 2676 }; 2677 2678 static int walk_system_ram(struct resource *res, void *arg) 2679 { 2680 struct damon_system_ram_region *a = arg; 2681 2682 if (a->end - a->start < resource_size(res)) { 2683 a->start = res->start; 2684 a->end = res->end; 2685 } 2686 return 0; 2687 } 2688 2689 /* 2690 * Find biggest 'System RAM' resource and store its start and end address in 2691 * @start and @end, respectively. If no System RAM is found, returns false. 2692 */ 2693 static bool damon_find_biggest_system_ram(unsigned long *start, 2694 unsigned long *end) 2695 2696 { 2697 struct damon_system_ram_region arg = {}; 2698 2699 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram); 2700 if (arg.end <= arg.start) 2701 return false; 2702 2703 *start = arg.start; 2704 *end = arg.end; 2705 return true; 2706 } 2707 2708 /** 2709 * damon_set_region_biggest_system_ram_default() - Set the region of the given 2710 * monitoring target as requested, or biggest 'System RAM'. 2711 * @t: The monitoring target to set the region. 2712 * @start: The pointer to the start address of the region. 2713 * @end: The pointer to the end address of the region. 2714 * 2715 * This function sets the region of @t as requested by @start and @end. If the 2716 * values of @start and @end are zero, however, this function finds the biggest 2717 * 'System RAM' resource and sets the region to cover the resource. In the 2718 * latter case, this function saves the start and end addresses of the resource 2719 * in @start and @end, respectively. 2720 * 2721 * Return: 0 on success, negative error code otherwise. 2722 */ 2723 int damon_set_region_biggest_system_ram_default(struct damon_target *t, 2724 unsigned long *start, unsigned long *end) 2725 { 2726 struct damon_addr_range addr_range; 2727 2728 if (*start > *end) 2729 return -EINVAL; 2730 2731 if (!*start && !*end && 2732 !damon_find_biggest_system_ram(start, end)) 2733 return -EINVAL; 2734 2735 addr_range.start = *start; 2736 addr_range.end = *end; 2737 return damon_set_regions(t, &addr_range, 1); 2738 } 2739 2740 /* 2741 * damon_moving_sum() - Calculate an inferred moving sum value. 2742 * @mvsum: Inferred sum of the last @len_window values. 2743 * @nomvsum: Non-moving sum of the last discrete @len_window window values. 2744 * @len_window: The number of last values to take care of. 2745 * @new_value: New value that will be added to the pseudo moving sum. 2746 * 2747 * Moving sum (moving average * window size) is good for handling noise, but 2748 * the cost of keeping past values can be high for arbitrary window size. This 2749 * function implements a lightweight pseudo moving sum function that doesn't 2750 * keep the past window values. 2751 * 2752 * It simply assumes there was no noise in the past, and get the no-noise 2753 * assumed past value to drop from @nomvsum and @len_window. @nomvsum is a 2754 * non-moving sum of the last window. For example, if @len_window is 10 and we 2755 * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25 2756 * values. Hence, this function simply drops @nomvsum / @len_window from 2757 * given @mvsum and add @new_value. 2758 * 2759 * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for 2760 * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20. For 2761 * calculating next moving sum with a new value, we should drop 0 from 50 and 2762 * add the new value. However, this function assumes it got value 5 for each 2763 * of the last ten times. Based on the assumption, when the next value is 2764 * measured, it drops the assumed past value, 5 from the current sum, and add 2765 * the new value to get the updated pseduo-moving average. 2766 * 2767 * This means the value could have errors, but the errors will be disappeared 2768 * for every @len_window aligned calls. For example, if @len_window is 10, the 2769 * pseudo moving sum with 11th value to 19th value would have an error. But 2770 * the sum with 20th value will not have the error. 2771 * 2772 * Return: Pseudo-moving average after getting the @new_value. 2773 */ 2774 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum, 2775 unsigned int len_window, unsigned int new_value) 2776 { 2777 return mvsum - nomvsum / len_window + new_value; 2778 } 2779 2780 /** 2781 * damon_update_region_access_rate() - Update the access rate of a region. 2782 * @r: The DAMON region to update for its access check result. 2783 * @accessed: Whether the region has accessed during last sampling interval. 2784 * @attrs: The damon_attrs of the DAMON context. 2785 * 2786 * Update the access rate of a region with the region's last sampling interval 2787 * access check result. 2788 * 2789 * Usually this will be called by &damon_operations->check_accesses callback. 2790 */ 2791 void damon_update_region_access_rate(struct damon_region *r, bool accessed, 2792 struct damon_attrs *attrs) 2793 { 2794 unsigned int len_window = 1; 2795 2796 /* 2797 * sample_interval can be zero, but cannot be larger than 2798 * aggr_interval, owing to validation of damon_set_attrs(). 2799 */ 2800 if (attrs->sample_interval) 2801 len_window = damon_max_nr_accesses(attrs); 2802 r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp, 2803 r->last_nr_accesses * 10000, len_window, 2804 accessed ? 10000 : 0); 2805 2806 if (accessed) 2807 r->nr_accesses++; 2808 } 2809 2810 static int __init damon_init(void) 2811 { 2812 damon_region_cache = KMEM_CACHE(damon_region, 0); 2813 if (unlikely(!damon_region_cache)) { 2814 pr_err("creating damon_region_cache fails\n"); 2815 return -ENOMEM; 2816 } 2817 2818 return 0; 2819 } 2820 2821 subsys_initcall(damon_init); 2822 2823 #include "tests/core-kunit.h" 2824