xref: /linux/mm/damon/core.c (revision 8026aed072e1221f0a61e5acc48c64546341bd4d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Data Access Monitor
4  *
5  * Author: SeongJae Park <sj@kernel.org>
6  */
7 
8 #define pr_fmt(fmt) "damon: " fmt
9 
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/mm.h>
14 #include <linux/psi.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/string_choices.h>
18 
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/damon.h>
21 
22 #ifdef CONFIG_DAMON_KUNIT_TEST
23 #undef DAMON_MIN_REGION
24 #define DAMON_MIN_REGION 1
25 #endif
26 
27 static DEFINE_MUTEX(damon_lock);
28 static int nr_running_ctxs;
29 static bool running_exclusive_ctxs;
30 
31 static DEFINE_MUTEX(damon_ops_lock);
32 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
33 
34 static struct kmem_cache *damon_region_cache __ro_after_init;
35 
36 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
__damon_is_registered_ops(enum damon_ops_id id)37 static bool __damon_is_registered_ops(enum damon_ops_id id)
38 {
39 	struct damon_operations empty_ops = {};
40 
41 	if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
42 		return false;
43 	return true;
44 }
45 
46 /**
47  * damon_is_registered_ops() - Check if a given damon_operations is registered.
48  * @id:	Id of the damon_operations to check if registered.
49  *
50  * Return: true if the ops is set, false otherwise.
51  */
damon_is_registered_ops(enum damon_ops_id id)52 bool damon_is_registered_ops(enum damon_ops_id id)
53 {
54 	bool registered;
55 
56 	if (id >= NR_DAMON_OPS)
57 		return false;
58 	mutex_lock(&damon_ops_lock);
59 	registered = __damon_is_registered_ops(id);
60 	mutex_unlock(&damon_ops_lock);
61 	return registered;
62 }
63 
64 /**
65  * damon_register_ops() - Register a monitoring operations set to DAMON.
66  * @ops:	monitoring operations set to register.
67  *
68  * This function registers a monitoring operations set of valid &struct
69  * damon_operations->id so that others can find and use them later.
70  *
71  * Return: 0 on success, negative error code otherwise.
72  */
damon_register_ops(struct damon_operations * ops)73 int damon_register_ops(struct damon_operations *ops)
74 {
75 	int err = 0;
76 
77 	if (ops->id >= NR_DAMON_OPS)
78 		return -EINVAL;
79 
80 	mutex_lock(&damon_ops_lock);
81 	/* Fail for already registered ops */
82 	if (__damon_is_registered_ops(ops->id))
83 		err = -EINVAL;
84 	else
85 		damon_registered_ops[ops->id] = *ops;
86 	mutex_unlock(&damon_ops_lock);
87 	return err;
88 }
89 
90 /**
91  * damon_select_ops() - Select a monitoring operations to use with the context.
92  * @ctx:	monitoring context to use the operations.
93  * @id:		id of the registered monitoring operations to select.
94  *
95  * This function finds registered monitoring operations set of @id and make
96  * @ctx to use it.
97  *
98  * Return: 0 on success, negative error code otherwise.
99  */
damon_select_ops(struct damon_ctx * ctx,enum damon_ops_id id)100 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
101 {
102 	int err = 0;
103 
104 	if (id >= NR_DAMON_OPS)
105 		return -EINVAL;
106 
107 	mutex_lock(&damon_ops_lock);
108 	if (!__damon_is_registered_ops(id))
109 		err = -EINVAL;
110 	else
111 		ctx->ops = damon_registered_ops[id];
112 	mutex_unlock(&damon_ops_lock);
113 	return err;
114 }
115 
116 /*
117  * Construct a damon_region struct
118  *
119  * Returns the pointer to the new struct if success, or NULL otherwise
120  */
damon_new_region(unsigned long start,unsigned long end)121 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
122 {
123 	struct damon_region *region;
124 
125 	region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
126 	if (!region)
127 		return NULL;
128 
129 	region->ar.start = start;
130 	region->ar.end = end;
131 	region->nr_accesses = 0;
132 	region->nr_accesses_bp = 0;
133 	INIT_LIST_HEAD(&region->list);
134 
135 	region->age = 0;
136 	region->last_nr_accesses = 0;
137 
138 	return region;
139 }
140 
damon_add_region(struct damon_region * r,struct damon_target * t)141 void damon_add_region(struct damon_region *r, struct damon_target *t)
142 {
143 	list_add_tail(&r->list, &t->regions_list);
144 	t->nr_regions++;
145 }
146 
damon_del_region(struct damon_region * r,struct damon_target * t)147 static void damon_del_region(struct damon_region *r, struct damon_target *t)
148 {
149 	list_del(&r->list);
150 	t->nr_regions--;
151 }
152 
damon_free_region(struct damon_region * r)153 static void damon_free_region(struct damon_region *r)
154 {
155 	kmem_cache_free(damon_region_cache, r);
156 }
157 
damon_destroy_region(struct damon_region * r,struct damon_target * t)158 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
159 {
160 	damon_del_region(r, t);
161 	damon_free_region(r);
162 }
163 
164 /*
165  * Check whether a region is intersecting an address range
166  *
167  * Returns true if it is.
168  */
damon_intersect(struct damon_region * r,struct damon_addr_range * re)169 static bool damon_intersect(struct damon_region *r,
170 		struct damon_addr_range *re)
171 {
172 	return !(r->ar.end <= re->start || re->end <= r->ar.start);
173 }
174 
175 /*
176  * Fill holes in regions with new regions.
177  */
damon_fill_regions_holes(struct damon_region * first,struct damon_region * last,struct damon_target * t)178 static int damon_fill_regions_holes(struct damon_region *first,
179 		struct damon_region *last, struct damon_target *t)
180 {
181 	struct damon_region *r = first;
182 
183 	damon_for_each_region_from(r, t) {
184 		struct damon_region *next, *newr;
185 
186 		if (r == last)
187 			break;
188 		next = damon_next_region(r);
189 		if (r->ar.end != next->ar.start) {
190 			newr = damon_new_region(r->ar.end, next->ar.start);
191 			if (!newr)
192 				return -ENOMEM;
193 			damon_insert_region(newr, r, next, t);
194 		}
195 	}
196 	return 0;
197 }
198 
199 /*
200  * damon_set_regions() - Set regions of a target for given address ranges.
201  * @t:		the given target.
202  * @ranges:	array of new monitoring target ranges.
203  * @nr_ranges:	length of @ranges.
204  *
205  * This function adds new regions to, or modify existing regions of a
206  * monitoring target to fit in specific ranges.
207  *
208  * Return: 0 if success, or negative error code otherwise.
209  */
damon_set_regions(struct damon_target * t,struct damon_addr_range * ranges,unsigned int nr_ranges)210 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
211 		unsigned int nr_ranges)
212 {
213 	struct damon_region *r, *next;
214 	unsigned int i;
215 	int err;
216 
217 	/* Remove regions which are not in the new ranges */
218 	damon_for_each_region_safe(r, next, t) {
219 		for (i = 0; i < nr_ranges; i++) {
220 			if (damon_intersect(r, &ranges[i]))
221 				break;
222 		}
223 		if (i == nr_ranges)
224 			damon_destroy_region(r, t);
225 	}
226 
227 	r = damon_first_region(t);
228 	/* Add new regions or resize existing regions to fit in the ranges */
229 	for (i = 0; i < nr_ranges; i++) {
230 		struct damon_region *first = NULL, *last, *newr;
231 		struct damon_addr_range *range;
232 
233 		range = &ranges[i];
234 		/* Get the first/last regions intersecting with the range */
235 		damon_for_each_region_from(r, t) {
236 			if (damon_intersect(r, range)) {
237 				if (!first)
238 					first = r;
239 				last = r;
240 			}
241 			if (r->ar.start >= range->end)
242 				break;
243 		}
244 		if (!first) {
245 			/* no region intersects with this range */
246 			newr = damon_new_region(
247 					ALIGN_DOWN(range->start,
248 						DAMON_MIN_REGION),
249 					ALIGN(range->end, DAMON_MIN_REGION));
250 			if (!newr)
251 				return -ENOMEM;
252 			damon_insert_region(newr, damon_prev_region(r), r, t);
253 		} else {
254 			/* resize intersecting regions to fit in this range */
255 			first->ar.start = ALIGN_DOWN(range->start,
256 					DAMON_MIN_REGION);
257 			last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
258 
259 			/* fill possible holes in the range */
260 			err = damon_fill_regions_holes(first, last, t);
261 			if (err)
262 				return err;
263 		}
264 	}
265 	return 0;
266 }
267 
damos_new_filter(enum damos_filter_type type,bool matching,bool allow)268 struct damos_filter *damos_new_filter(enum damos_filter_type type,
269 		bool matching, bool allow)
270 {
271 	struct damos_filter *filter;
272 
273 	filter = kmalloc(sizeof(*filter), GFP_KERNEL);
274 	if (!filter)
275 		return NULL;
276 	filter->type = type;
277 	filter->matching = matching;
278 	filter->allow = allow;
279 	INIT_LIST_HEAD(&filter->list);
280 	return filter;
281 }
282 
283 /**
284  * damos_filter_for_ops() - Return if the filter is ops-hndled one.
285  * @type:	type of the filter.
286  *
287  * Return: true if the filter of @type needs to be handled by ops layer, false
288  * otherwise.
289  */
damos_filter_for_ops(enum damos_filter_type type)290 bool damos_filter_for_ops(enum damos_filter_type type)
291 {
292 	switch (type) {
293 	case DAMOS_FILTER_TYPE_ADDR:
294 	case DAMOS_FILTER_TYPE_TARGET:
295 		return false;
296 	default:
297 		break;
298 	}
299 	return true;
300 }
301 
damos_add_filter(struct damos * s,struct damos_filter * f)302 void damos_add_filter(struct damos *s, struct damos_filter *f)
303 {
304 	if (damos_filter_for_ops(f->type))
305 		list_add_tail(&f->list, &s->ops_filters);
306 	else
307 		list_add_tail(&f->list, &s->filters);
308 }
309 
damos_del_filter(struct damos_filter * f)310 static void damos_del_filter(struct damos_filter *f)
311 {
312 	list_del(&f->list);
313 }
314 
damos_free_filter(struct damos_filter * f)315 static void damos_free_filter(struct damos_filter *f)
316 {
317 	kfree(f);
318 }
319 
damos_destroy_filter(struct damos_filter * f)320 void damos_destroy_filter(struct damos_filter *f)
321 {
322 	damos_del_filter(f);
323 	damos_free_filter(f);
324 }
325 
damos_new_quota_goal(enum damos_quota_goal_metric metric,unsigned long target_value)326 struct damos_quota_goal *damos_new_quota_goal(
327 		enum damos_quota_goal_metric metric,
328 		unsigned long target_value)
329 {
330 	struct damos_quota_goal *goal;
331 
332 	goal = kmalloc(sizeof(*goal), GFP_KERNEL);
333 	if (!goal)
334 		return NULL;
335 	goal->metric = metric;
336 	goal->target_value = target_value;
337 	INIT_LIST_HEAD(&goal->list);
338 	return goal;
339 }
340 
damos_add_quota_goal(struct damos_quota * q,struct damos_quota_goal * g)341 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g)
342 {
343 	list_add_tail(&g->list, &q->goals);
344 }
345 
damos_del_quota_goal(struct damos_quota_goal * g)346 static void damos_del_quota_goal(struct damos_quota_goal *g)
347 {
348 	list_del(&g->list);
349 }
350 
damos_free_quota_goal(struct damos_quota_goal * g)351 static void damos_free_quota_goal(struct damos_quota_goal *g)
352 {
353 	kfree(g);
354 }
355 
damos_destroy_quota_goal(struct damos_quota_goal * g)356 void damos_destroy_quota_goal(struct damos_quota_goal *g)
357 {
358 	damos_del_quota_goal(g);
359 	damos_free_quota_goal(g);
360 }
361 
362 /* initialize fields of @quota that normally API users wouldn't set */
damos_quota_init(struct damos_quota * quota)363 static struct damos_quota *damos_quota_init(struct damos_quota *quota)
364 {
365 	quota->esz = 0;
366 	quota->total_charged_sz = 0;
367 	quota->total_charged_ns = 0;
368 	quota->charged_sz = 0;
369 	quota->charged_from = 0;
370 	quota->charge_target_from = NULL;
371 	quota->charge_addr_from = 0;
372 	quota->esz_bp = 0;
373 	return quota;
374 }
375 
damon_new_scheme(struct damos_access_pattern * pattern,enum damos_action action,unsigned long apply_interval_us,struct damos_quota * quota,struct damos_watermarks * wmarks,int target_nid)376 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
377 			enum damos_action action,
378 			unsigned long apply_interval_us,
379 			struct damos_quota *quota,
380 			struct damos_watermarks *wmarks,
381 			int target_nid)
382 {
383 	struct damos *scheme;
384 
385 	scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
386 	if (!scheme)
387 		return NULL;
388 	scheme->pattern = *pattern;
389 	scheme->action = action;
390 	scheme->apply_interval_us = apply_interval_us;
391 	/*
392 	 * next_apply_sis will be set when kdamond starts.  While kdamond is
393 	 * running, it will also updated when it is added to the DAMON context,
394 	 * or damon_attrs are updated.
395 	 */
396 	scheme->next_apply_sis = 0;
397 	scheme->walk_completed = false;
398 	INIT_LIST_HEAD(&scheme->filters);
399 	INIT_LIST_HEAD(&scheme->ops_filters);
400 	scheme->stat = (struct damos_stat){};
401 	INIT_LIST_HEAD(&scheme->list);
402 
403 	scheme->quota = *(damos_quota_init(quota));
404 	/* quota.goals should be separately set by caller */
405 	INIT_LIST_HEAD(&scheme->quota.goals);
406 
407 	scheme->wmarks = *wmarks;
408 	scheme->wmarks.activated = true;
409 
410 	scheme->migrate_dests = (struct damos_migrate_dests){};
411 	scheme->target_nid = target_nid;
412 
413 	return scheme;
414 }
415 
damos_set_next_apply_sis(struct damos * s,struct damon_ctx * ctx)416 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx)
417 {
418 	unsigned long sample_interval = ctx->attrs.sample_interval ?
419 		ctx->attrs.sample_interval : 1;
420 	unsigned long apply_interval = s->apply_interval_us ?
421 		s->apply_interval_us : ctx->attrs.aggr_interval;
422 
423 	s->next_apply_sis = ctx->passed_sample_intervals +
424 		apply_interval / sample_interval;
425 }
426 
damon_add_scheme(struct damon_ctx * ctx,struct damos * s)427 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
428 {
429 	list_add_tail(&s->list, &ctx->schemes);
430 	damos_set_next_apply_sis(s, ctx);
431 }
432 
damon_del_scheme(struct damos * s)433 static void damon_del_scheme(struct damos *s)
434 {
435 	list_del(&s->list);
436 }
437 
damon_free_scheme(struct damos * s)438 static void damon_free_scheme(struct damos *s)
439 {
440 	kfree(s);
441 }
442 
damon_destroy_scheme(struct damos * s)443 void damon_destroy_scheme(struct damos *s)
444 {
445 	struct damos_quota_goal *g, *g_next;
446 	struct damos_filter *f, *next;
447 
448 	damos_for_each_quota_goal_safe(g, g_next, &s->quota)
449 		damos_destroy_quota_goal(g);
450 
451 	damos_for_each_filter_safe(f, next, s)
452 		damos_destroy_filter(f);
453 
454 	kfree(s->migrate_dests.node_id_arr);
455 	kfree(s->migrate_dests.weight_arr);
456 	damon_del_scheme(s);
457 	damon_free_scheme(s);
458 }
459 
460 /*
461  * Construct a damon_target struct
462  *
463  * Returns the pointer to the new struct if success, or NULL otherwise
464  */
damon_new_target(void)465 struct damon_target *damon_new_target(void)
466 {
467 	struct damon_target *t;
468 
469 	t = kmalloc(sizeof(*t), GFP_KERNEL);
470 	if (!t)
471 		return NULL;
472 
473 	t->pid = NULL;
474 	t->nr_regions = 0;
475 	INIT_LIST_HEAD(&t->regions_list);
476 	INIT_LIST_HEAD(&t->list);
477 
478 	return t;
479 }
480 
damon_add_target(struct damon_ctx * ctx,struct damon_target * t)481 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
482 {
483 	list_add_tail(&t->list, &ctx->adaptive_targets);
484 }
485 
damon_targets_empty(struct damon_ctx * ctx)486 bool damon_targets_empty(struct damon_ctx *ctx)
487 {
488 	return list_empty(&ctx->adaptive_targets);
489 }
490 
damon_del_target(struct damon_target * t)491 static void damon_del_target(struct damon_target *t)
492 {
493 	list_del(&t->list);
494 }
495 
damon_free_target(struct damon_target * t)496 void damon_free_target(struct damon_target *t)
497 {
498 	struct damon_region *r, *next;
499 
500 	damon_for_each_region_safe(r, next, t)
501 		damon_free_region(r);
502 	kfree(t);
503 }
504 
damon_destroy_target(struct damon_target * t,struct damon_ctx * ctx)505 void damon_destroy_target(struct damon_target *t, struct damon_ctx *ctx)
506 {
507 
508 	if (ctx && ctx->ops.cleanup_target)
509 		ctx->ops.cleanup_target(t);
510 
511 	damon_del_target(t);
512 	damon_free_target(t);
513 }
514 
damon_nr_regions(struct damon_target * t)515 unsigned int damon_nr_regions(struct damon_target *t)
516 {
517 	return t->nr_regions;
518 }
519 
damon_new_ctx(void)520 struct damon_ctx *damon_new_ctx(void)
521 {
522 	struct damon_ctx *ctx;
523 
524 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
525 	if (!ctx)
526 		return NULL;
527 
528 	init_completion(&ctx->kdamond_started);
529 
530 	ctx->attrs.sample_interval = 5 * 1000;
531 	ctx->attrs.aggr_interval = 100 * 1000;
532 	ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
533 
534 	ctx->passed_sample_intervals = 0;
535 	/* These will be set from kdamond_init_ctx() */
536 	ctx->next_aggregation_sis = 0;
537 	ctx->next_ops_update_sis = 0;
538 
539 	mutex_init(&ctx->kdamond_lock);
540 	INIT_LIST_HEAD(&ctx->call_controls);
541 	mutex_init(&ctx->call_controls_lock);
542 	mutex_init(&ctx->walk_control_lock);
543 
544 	ctx->attrs.min_nr_regions = 10;
545 	ctx->attrs.max_nr_regions = 1000;
546 
547 	INIT_LIST_HEAD(&ctx->adaptive_targets);
548 	INIT_LIST_HEAD(&ctx->schemes);
549 
550 	return ctx;
551 }
552 
damon_destroy_targets(struct damon_ctx * ctx)553 static void damon_destroy_targets(struct damon_ctx *ctx)
554 {
555 	struct damon_target *t, *next_t;
556 
557 	damon_for_each_target_safe(t, next_t, ctx)
558 		damon_destroy_target(t, ctx);
559 }
560 
damon_destroy_ctx(struct damon_ctx * ctx)561 void damon_destroy_ctx(struct damon_ctx *ctx)
562 {
563 	struct damos *s, *next_s;
564 
565 	damon_destroy_targets(ctx);
566 
567 	damon_for_each_scheme_safe(s, next_s, ctx)
568 		damon_destroy_scheme(s);
569 
570 	kfree(ctx);
571 }
572 
damon_age_for_new_attrs(unsigned int age,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)573 static unsigned int damon_age_for_new_attrs(unsigned int age,
574 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
575 {
576 	return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
577 }
578 
579 /* convert access ratio in bp (per 10,000) to nr_accesses */
damon_accesses_bp_to_nr_accesses(unsigned int accesses_bp,struct damon_attrs * attrs)580 static unsigned int damon_accesses_bp_to_nr_accesses(
581 		unsigned int accesses_bp, struct damon_attrs *attrs)
582 {
583 	return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
584 }
585 
586 /*
587  * Convert nr_accesses to access ratio in bp (per 10,000).
588  *
589  * Callers should ensure attrs.aggr_interval is not zero, like
590  * damon_update_monitoring_results() does .  Otherwise, divide-by-zero would
591  * happen.
592  */
damon_nr_accesses_to_accesses_bp(unsigned int nr_accesses,struct damon_attrs * attrs)593 static unsigned int damon_nr_accesses_to_accesses_bp(
594 		unsigned int nr_accesses, struct damon_attrs *attrs)
595 {
596 	return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
597 }
598 
damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)599 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
600 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
601 {
602 	return damon_accesses_bp_to_nr_accesses(
603 			damon_nr_accesses_to_accesses_bp(
604 				nr_accesses, old_attrs),
605 			new_attrs);
606 }
607 
damon_update_monitoring_result(struct damon_region * r,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs,bool aggregating)608 static void damon_update_monitoring_result(struct damon_region *r,
609 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs,
610 		bool aggregating)
611 {
612 	if (!aggregating) {
613 		r->nr_accesses = damon_nr_accesses_for_new_attrs(
614 				r->nr_accesses, old_attrs, new_attrs);
615 		r->nr_accesses_bp = r->nr_accesses * 10000;
616 	} else {
617 		/*
618 		 * if this is called in the middle of the aggregation, reset
619 		 * the aggregations we made so far for this aggregation
620 		 * interval.  In other words, make the status like
621 		 * kdamond_reset_aggregated() is called.
622 		 */
623 		r->last_nr_accesses = damon_nr_accesses_for_new_attrs(
624 				r->last_nr_accesses, old_attrs, new_attrs);
625 		r->nr_accesses_bp = r->last_nr_accesses * 10000;
626 		r->nr_accesses = 0;
627 	}
628 	r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
629 }
630 
631 /*
632  * region->nr_accesses is the number of sampling intervals in the last
633  * aggregation interval that access to the region has found, and region->age is
634  * the number of aggregation intervals that its access pattern has maintained.
635  * For the reason, the real meaning of the two fields depend on current
636  * sampling interval and aggregation interval.  This function updates
637  * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
638  */
damon_update_monitoring_results(struct damon_ctx * ctx,struct damon_attrs * new_attrs,bool aggregating)639 static void damon_update_monitoring_results(struct damon_ctx *ctx,
640 		struct damon_attrs *new_attrs, bool aggregating)
641 {
642 	struct damon_attrs *old_attrs = &ctx->attrs;
643 	struct damon_target *t;
644 	struct damon_region *r;
645 
646 	/* if any interval is zero, simply forgive conversion */
647 	if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
648 			!new_attrs->sample_interval ||
649 			!new_attrs->aggr_interval)
650 		return;
651 
652 	damon_for_each_target(t, ctx)
653 		damon_for_each_region(r, t)
654 			damon_update_monitoring_result(
655 					r, old_attrs, new_attrs, aggregating);
656 }
657 
658 /*
659  * damon_valid_intervals_goal() - return if the intervals goal of @attrs is
660  * valid.
661  */
damon_valid_intervals_goal(struct damon_attrs * attrs)662 static bool damon_valid_intervals_goal(struct damon_attrs *attrs)
663 {
664 	struct damon_intervals_goal *goal = &attrs->intervals_goal;
665 
666 	/* tuning is disabled */
667 	if (!goal->aggrs)
668 		return true;
669 	if (goal->min_sample_us > goal->max_sample_us)
670 		return false;
671 	if (attrs->sample_interval < goal->min_sample_us ||
672 			goal->max_sample_us < attrs->sample_interval)
673 		return false;
674 	return true;
675 }
676 
677 /**
678  * damon_set_attrs() - Set attributes for the monitoring.
679  * @ctx:		monitoring context
680  * @attrs:		monitoring attributes
681  *
682  * This function should be called while the kdamond is not running, an access
683  * check results aggregation is not ongoing (e.g., from damon_call().
684  *
685  * Every time interval is in micro-seconds.
686  *
687  * Return: 0 on success, negative error code otherwise.
688  */
damon_set_attrs(struct damon_ctx * ctx,struct damon_attrs * attrs)689 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
690 {
691 	unsigned long sample_interval = attrs->sample_interval ?
692 		attrs->sample_interval : 1;
693 	struct damos *s;
694 	bool aggregating = ctx->passed_sample_intervals <
695 		ctx->next_aggregation_sis;
696 
697 	if (!damon_valid_intervals_goal(attrs))
698 		return -EINVAL;
699 
700 	if (attrs->min_nr_regions < 3)
701 		return -EINVAL;
702 	if (attrs->min_nr_regions > attrs->max_nr_regions)
703 		return -EINVAL;
704 	if (attrs->sample_interval > attrs->aggr_interval)
705 		return -EINVAL;
706 
707 	/* calls from core-external doesn't set this. */
708 	if (!attrs->aggr_samples)
709 		attrs->aggr_samples = attrs->aggr_interval / sample_interval;
710 
711 	ctx->next_aggregation_sis = ctx->passed_sample_intervals +
712 		attrs->aggr_interval / sample_interval;
713 	ctx->next_ops_update_sis = ctx->passed_sample_intervals +
714 		attrs->ops_update_interval / sample_interval;
715 
716 	damon_update_monitoring_results(ctx, attrs, aggregating);
717 	ctx->attrs = *attrs;
718 
719 	damon_for_each_scheme(s, ctx)
720 		damos_set_next_apply_sis(s, ctx);
721 
722 	return 0;
723 }
724 
725 /**
726  * damon_set_schemes() - Set data access monitoring based operation schemes.
727  * @ctx:	monitoring context
728  * @schemes:	array of the schemes
729  * @nr_schemes:	number of entries in @schemes
730  *
731  * This function should not be called while the kdamond of the context is
732  * running.
733  */
damon_set_schemes(struct damon_ctx * ctx,struct damos ** schemes,ssize_t nr_schemes)734 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
735 			ssize_t nr_schemes)
736 {
737 	struct damos *s, *next;
738 	ssize_t i;
739 
740 	damon_for_each_scheme_safe(s, next, ctx)
741 		damon_destroy_scheme(s);
742 	for (i = 0; i < nr_schemes; i++)
743 		damon_add_scheme(ctx, schemes[i]);
744 }
745 
damos_nth_quota_goal(int n,struct damos_quota * q)746 static struct damos_quota_goal *damos_nth_quota_goal(
747 		int n, struct damos_quota *q)
748 {
749 	struct damos_quota_goal *goal;
750 	int i = 0;
751 
752 	damos_for_each_quota_goal(goal, q) {
753 		if (i++ == n)
754 			return goal;
755 	}
756 	return NULL;
757 }
758 
damos_commit_quota_goal_union(struct damos_quota_goal * dst,struct damos_quota_goal * src)759 static void damos_commit_quota_goal_union(
760 		struct damos_quota_goal *dst, struct damos_quota_goal *src)
761 {
762 	switch (dst->metric) {
763 	case DAMOS_QUOTA_NODE_MEM_USED_BP:
764 	case DAMOS_QUOTA_NODE_MEM_FREE_BP:
765 		dst->nid = src->nid;
766 		break;
767 	default:
768 		break;
769 	}
770 }
771 
damos_commit_quota_goal(struct damos_quota_goal * dst,struct damos_quota_goal * src)772 static void damos_commit_quota_goal(
773 		struct damos_quota_goal *dst, struct damos_quota_goal *src)
774 {
775 	dst->metric = src->metric;
776 	dst->target_value = src->target_value;
777 	if (dst->metric == DAMOS_QUOTA_USER_INPUT)
778 		dst->current_value = src->current_value;
779 	/* keep last_psi_total as is, since it will be updated in next cycle */
780 	damos_commit_quota_goal_union(dst, src);
781 }
782 
783 /**
784  * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota.
785  * @dst:	The commit destination DAMOS quota.
786  * @src:	The commit source DAMOS quota.
787  *
788  * Copies user-specified parameters for quota goals from @src to @dst.  Users
789  * should use this function for quota goals-level parameters update of running
790  * DAMON contexts, instead of manual in-place updates.
791  *
792  * This function should be called from parameters-update safe context, like
793  * damon_call().
794  */
damos_commit_quota_goals(struct damos_quota * dst,struct damos_quota * src)795 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src)
796 {
797 	struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal;
798 	int i = 0, j = 0;
799 
800 	damos_for_each_quota_goal_safe(dst_goal, next, dst) {
801 		src_goal = damos_nth_quota_goal(i++, src);
802 		if (src_goal)
803 			damos_commit_quota_goal(dst_goal, src_goal);
804 		else
805 			damos_destroy_quota_goal(dst_goal);
806 	}
807 	damos_for_each_quota_goal_safe(src_goal, next, src) {
808 		if (j++ < i)
809 			continue;
810 		new_goal = damos_new_quota_goal(
811 				src_goal->metric, src_goal->target_value);
812 		if (!new_goal)
813 			return -ENOMEM;
814 		damos_commit_quota_goal_union(new_goal, src_goal);
815 		damos_add_quota_goal(dst, new_goal);
816 	}
817 	return 0;
818 }
819 
damos_commit_quota(struct damos_quota * dst,struct damos_quota * src)820 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src)
821 {
822 	int err;
823 
824 	dst->reset_interval = src->reset_interval;
825 	dst->ms = src->ms;
826 	dst->sz = src->sz;
827 	err = damos_commit_quota_goals(dst, src);
828 	if (err)
829 		return err;
830 	dst->weight_sz = src->weight_sz;
831 	dst->weight_nr_accesses = src->weight_nr_accesses;
832 	dst->weight_age = src->weight_age;
833 	return 0;
834 }
835 
damos_nth_filter(int n,struct damos * s)836 static struct damos_filter *damos_nth_filter(int n, struct damos *s)
837 {
838 	struct damos_filter *filter;
839 	int i = 0;
840 
841 	damos_for_each_filter(filter, s) {
842 		if (i++ == n)
843 			return filter;
844 	}
845 	return NULL;
846 }
847 
damos_nth_ops_filter(int n,struct damos * s)848 static struct damos_filter *damos_nth_ops_filter(int n, struct damos *s)
849 {
850 	struct damos_filter *filter;
851 	int i = 0;
852 
853 	damos_for_each_ops_filter(filter, s) {
854 		if (i++ == n)
855 			return filter;
856 	}
857 	return NULL;
858 }
859 
damos_commit_filter_arg(struct damos_filter * dst,struct damos_filter * src)860 static void damos_commit_filter_arg(
861 		struct damos_filter *dst, struct damos_filter *src)
862 {
863 	switch (dst->type) {
864 	case DAMOS_FILTER_TYPE_MEMCG:
865 		dst->memcg_id = src->memcg_id;
866 		break;
867 	case DAMOS_FILTER_TYPE_ADDR:
868 		dst->addr_range = src->addr_range;
869 		break;
870 	case DAMOS_FILTER_TYPE_TARGET:
871 		dst->target_idx = src->target_idx;
872 		break;
873 	case DAMOS_FILTER_TYPE_HUGEPAGE_SIZE:
874 		dst->sz_range = src->sz_range;
875 		break;
876 	default:
877 		break;
878 	}
879 }
880 
damos_commit_filter(struct damos_filter * dst,struct damos_filter * src)881 static void damos_commit_filter(
882 		struct damos_filter *dst, struct damos_filter *src)
883 {
884 	dst->type = src->type;
885 	dst->matching = src->matching;
886 	dst->allow = src->allow;
887 	damos_commit_filter_arg(dst, src);
888 }
889 
damos_commit_core_filters(struct damos * dst,struct damos * src)890 static int damos_commit_core_filters(struct damos *dst, struct damos *src)
891 {
892 	struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
893 	int i = 0, j = 0;
894 
895 	damos_for_each_filter_safe(dst_filter, next, dst) {
896 		src_filter = damos_nth_filter(i++, src);
897 		if (src_filter)
898 			damos_commit_filter(dst_filter, src_filter);
899 		else
900 			damos_destroy_filter(dst_filter);
901 	}
902 
903 	damos_for_each_filter_safe(src_filter, next, src) {
904 		if (j++ < i)
905 			continue;
906 
907 		new_filter = damos_new_filter(
908 				src_filter->type, src_filter->matching,
909 				src_filter->allow);
910 		if (!new_filter)
911 			return -ENOMEM;
912 		damos_commit_filter_arg(new_filter, src_filter);
913 		damos_add_filter(dst, new_filter);
914 	}
915 	return 0;
916 }
917 
damos_commit_ops_filters(struct damos * dst,struct damos * src)918 static int damos_commit_ops_filters(struct damos *dst, struct damos *src)
919 {
920 	struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
921 	int i = 0, j = 0;
922 
923 	damos_for_each_ops_filter_safe(dst_filter, next, dst) {
924 		src_filter = damos_nth_ops_filter(i++, src);
925 		if (src_filter)
926 			damos_commit_filter(dst_filter, src_filter);
927 		else
928 			damos_destroy_filter(dst_filter);
929 	}
930 
931 	damos_for_each_ops_filter_safe(src_filter, next, src) {
932 		if (j++ < i)
933 			continue;
934 
935 		new_filter = damos_new_filter(
936 				src_filter->type, src_filter->matching,
937 				src_filter->allow);
938 		if (!new_filter)
939 			return -ENOMEM;
940 		damos_commit_filter_arg(new_filter, src_filter);
941 		damos_add_filter(dst, new_filter);
942 	}
943 	return 0;
944 }
945 
946 /**
947  * damos_filters_default_reject() - decide whether to reject memory that didn't
948  *				    match with any given filter.
949  * @filters:	Given DAMOS filters of a group.
950  */
damos_filters_default_reject(struct list_head * filters)951 static bool damos_filters_default_reject(struct list_head *filters)
952 {
953 	struct damos_filter *last_filter;
954 
955 	if (list_empty(filters))
956 		return false;
957 	last_filter = list_last_entry(filters, struct damos_filter, list);
958 	return last_filter->allow;
959 }
960 
damos_set_filters_default_reject(struct damos * s)961 static void damos_set_filters_default_reject(struct damos *s)
962 {
963 	if (!list_empty(&s->ops_filters))
964 		s->core_filters_default_reject = false;
965 	else
966 		s->core_filters_default_reject =
967 			damos_filters_default_reject(&s->filters);
968 	s->ops_filters_default_reject =
969 		damos_filters_default_reject(&s->ops_filters);
970 }
971 
damos_commit_dests(struct damos * dst,struct damos * src)972 static int damos_commit_dests(struct damos *dst, struct damos *src)
973 {
974 	struct damos_migrate_dests *dst_dests, *src_dests;
975 
976 	dst_dests = &dst->migrate_dests;
977 	src_dests = &src->migrate_dests;
978 
979 	if (dst_dests->nr_dests != src_dests->nr_dests) {
980 		kfree(dst_dests->node_id_arr);
981 		kfree(dst_dests->weight_arr);
982 
983 		dst_dests->node_id_arr = kmalloc_array(src_dests->nr_dests,
984 			sizeof(*dst_dests->node_id_arr), GFP_KERNEL);
985 		if (!dst_dests->node_id_arr) {
986 			dst_dests->weight_arr = NULL;
987 			return -ENOMEM;
988 		}
989 
990 		dst_dests->weight_arr = kmalloc_array(src_dests->nr_dests,
991 			sizeof(*dst_dests->weight_arr), GFP_KERNEL);
992 		if (!dst_dests->weight_arr) {
993 			/* ->node_id_arr will be freed by scheme destruction */
994 			return -ENOMEM;
995 		}
996 	}
997 
998 	dst_dests->nr_dests = src_dests->nr_dests;
999 	for (int i = 0; i < src_dests->nr_dests; i++) {
1000 		dst_dests->node_id_arr[i] = src_dests->node_id_arr[i];
1001 		dst_dests->weight_arr[i] = src_dests->weight_arr[i];
1002 	}
1003 
1004 	return 0;
1005 }
1006 
damos_commit_filters(struct damos * dst,struct damos * src)1007 static int damos_commit_filters(struct damos *dst, struct damos *src)
1008 {
1009 	int err;
1010 
1011 	err = damos_commit_core_filters(dst, src);
1012 	if (err)
1013 		return err;
1014 	err = damos_commit_ops_filters(dst, src);
1015 	if (err)
1016 		return err;
1017 	damos_set_filters_default_reject(dst);
1018 	return 0;
1019 }
1020 
damon_nth_scheme(int n,struct damon_ctx * ctx)1021 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx)
1022 {
1023 	struct damos *s;
1024 	int i = 0;
1025 
1026 	damon_for_each_scheme(s, ctx) {
1027 		if (i++ == n)
1028 			return s;
1029 	}
1030 	return NULL;
1031 }
1032 
damos_commit(struct damos * dst,struct damos * src)1033 static int damos_commit(struct damos *dst, struct damos *src)
1034 {
1035 	int err;
1036 
1037 	dst->pattern = src->pattern;
1038 	dst->action = src->action;
1039 	dst->apply_interval_us = src->apply_interval_us;
1040 
1041 	err = damos_commit_quota(&dst->quota, &src->quota);
1042 	if (err)
1043 		return err;
1044 
1045 	dst->wmarks = src->wmarks;
1046 	dst->target_nid = src->target_nid;
1047 
1048 	err = damos_commit_dests(dst, src);
1049 	if (err)
1050 		return err;
1051 
1052 	err = damos_commit_filters(dst, src);
1053 	return err;
1054 }
1055 
damon_commit_schemes(struct damon_ctx * dst,struct damon_ctx * src)1056 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src)
1057 {
1058 	struct damos *dst_scheme, *next, *src_scheme, *new_scheme;
1059 	int i = 0, j = 0, err;
1060 
1061 	damon_for_each_scheme_safe(dst_scheme, next, dst) {
1062 		src_scheme = damon_nth_scheme(i++, src);
1063 		if (src_scheme) {
1064 			err = damos_commit(dst_scheme, src_scheme);
1065 			if (err)
1066 				return err;
1067 		} else {
1068 			damon_destroy_scheme(dst_scheme);
1069 		}
1070 	}
1071 
1072 	damon_for_each_scheme_safe(src_scheme, next, src) {
1073 		if (j++ < i)
1074 			continue;
1075 		new_scheme = damon_new_scheme(&src_scheme->pattern,
1076 				src_scheme->action,
1077 				src_scheme->apply_interval_us,
1078 				&src_scheme->quota, &src_scheme->wmarks,
1079 				NUMA_NO_NODE);
1080 		if (!new_scheme)
1081 			return -ENOMEM;
1082 		err = damos_commit(new_scheme, src_scheme);
1083 		if (err) {
1084 			damon_destroy_scheme(new_scheme);
1085 			return err;
1086 		}
1087 		damon_add_scheme(dst, new_scheme);
1088 	}
1089 	return 0;
1090 }
1091 
damon_nth_target(int n,struct damon_ctx * ctx)1092 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx)
1093 {
1094 	struct damon_target *t;
1095 	int i = 0;
1096 
1097 	damon_for_each_target(t, ctx) {
1098 		if (i++ == n)
1099 			return t;
1100 	}
1101 	return NULL;
1102 }
1103 
1104 /*
1105  * The caller should ensure the regions of @src are
1106  * 1. valid (end >= src) and
1107  * 2. sorted by starting address.
1108  *
1109  * If @src has no region, @dst keeps current regions.
1110  */
damon_commit_target_regions(struct damon_target * dst,struct damon_target * src)1111 static int damon_commit_target_regions(
1112 		struct damon_target *dst, struct damon_target *src)
1113 {
1114 	struct damon_region *src_region;
1115 	struct damon_addr_range *ranges;
1116 	int i = 0, err;
1117 
1118 	damon_for_each_region(src_region, src)
1119 		i++;
1120 	if (!i)
1121 		return 0;
1122 
1123 	ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN);
1124 	if (!ranges)
1125 		return -ENOMEM;
1126 	i = 0;
1127 	damon_for_each_region(src_region, src)
1128 		ranges[i++] = src_region->ar;
1129 	err = damon_set_regions(dst, ranges, i);
1130 	kfree(ranges);
1131 	return err;
1132 }
1133 
damon_commit_target(struct damon_target * dst,bool dst_has_pid,struct damon_target * src,bool src_has_pid)1134 static int damon_commit_target(
1135 		struct damon_target *dst, bool dst_has_pid,
1136 		struct damon_target *src, bool src_has_pid)
1137 {
1138 	int err;
1139 
1140 	err = damon_commit_target_regions(dst, src);
1141 	if (err)
1142 		return err;
1143 	if (dst_has_pid)
1144 		put_pid(dst->pid);
1145 	if (src_has_pid)
1146 		get_pid(src->pid);
1147 	dst->pid = src->pid;
1148 	return 0;
1149 }
1150 
damon_commit_targets(struct damon_ctx * dst,struct damon_ctx * src)1151 static int damon_commit_targets(
1152 		struct damon_ctx *dst, struct damon_ctx *src)
1153 {
1154 	struct damon_target *dst_target, *next, *src_target, *new_target;
1155 	int i = 0, j = 0, err;
1156 
1157 	damon_for_each_target_safe(dst_target, next, dst) {
1158 		src_target = damon_nth_target(i++, src);
1159 		if (src_target) {
1160 			err = damon_commit_target(
1161 					dst_target, damon_target_has_pid(dst),
1162 					src_target, damon_target_has_pid(src));
1163 			if (err)
1164 				return err;
1165 		} else {
1166 			struct damos *s;
1167 
1168 			damon_destroy_target(dst_target, dst);
1169 			damon_for_each_scheme(s, dst) {
1170 				if (s->quota.charge_target_from == dst_target) {
1171 					s->quota.charge_target_from = NULL;
1172 					s->quota.charge_addr_from = 0;
1173 				}
1174 			}
1175 		}
1176 	}
1177 
1178 	damon_for_each_target_safe(src_target, next, src) {
1179 		if (j++ < i)
1180 			continue;
1181 		new_target = damon_new_target();
1182 		if (!new_target)
1183 			return -ENOMEM;
1184 		err = damon_commit_target(new_target, false,
1185 				src_target, damon_target_has_pid(src));
1186 		if (err) {
1187 			damon_destroy_target(new_target, NULL);
1188 			return err;
1189 		}
1190 		damon_add_target(dst, new_target);
1191 	}
1192 	return 0;
1193 }
1194 
1195 /**
1196  * damon_commit_ctx() - Commit parameters of a DAMON context to another.
1197  * @dst:	The commit destination DAMON context.
1198  * @src:	The commit source DAMON context.
1199  *
1200  * This function copies user-specified parameters from @src to @dst and update
1201  * the internal status and results accordingly.  Users should use this function
1202  * for context-level parameters update of running context, instead of manual
1203  * in-place updates.
1204  *
1205  * This function should be called from parameters-update safe context, like
1206  * damon_call().
1207  */
damon_commit_ctx(struct damon_ctx * dst,struct damon_ctx * src)1208 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src)
1209 {
1210 	int err;
1211 
1212 	err = damon_commit_schemes(dst, src);
1213 	if (err)
1214 		return err;
1215 	err = damon_commit_targets(dst, src);
1216 	if (err)
1217 		return err;
1218 	/*
1219 	 * schemes and targets should be updated first, since
1220 	 * 1. damon_set_attrs() updates monitoring results of targets and
1221 	 * next_apply_sis of schemes, and
1222 	 * 2. ops update should be done after pid handling is done (target
1223 	 *    committing require putting pids).
1224 	 */
1225 	err = damon_set_attrs(dst, &src->attrs);
1226 	if (err)
1227 		return err;
1228 	dst->ops = src->ops;
1229 
1230 	return 0;
1231 }
1232 
1233 /**
1234  * damon_nr_running_ctxs() - Return number of currently running contexts.
1235  */
damon_nr_running_ctxs(void)1236 int damon_nr_running_ctxs(void)
1237 {
1238 	int nr_ctxs;
1239 
1240 	mutex_lock(&damon_lock);
1241 	nr_ctxs = nr_running_ctxs;
1242 	mutex_unlock(&damon_lock);
1243 
1244 	return nr_ctxs;
1245 }
1246 
1247 /* Returns the size upper limit for each monitoring region */
damon_region_sz_limit(struct damon_ctx * ctx)1248 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
1249 {
1250 	struct damon_target *t;
1251 	struct damon_region *r;
1252 	unsigned long sz = 0;
1253 
1254 	damon_for_each_target(t, ctx) {
1255 		damon_for_each_region(r, t)
1256 			sz += damon_sz_region(r);
1257 	}
1258 
1259 	if (ctx->attrs.min_nr_regions)
1260 		sz /= ctx->attrs.min_nr_regions;
1261 	if (sz < DAMON_MIN_REGION)
1262 		sz = DAMON_MIN_REGION;
1263 
1264 	return sz;
1265 }
1266 
1267 static int kdamond_fn(void *data);
1268 
1269 /*
1270  * __damon_start() - Starts monitoring with given context.
1271  * @ctx:	monitoring context
1272  *
1273  * This function should be called while damon_lock is hold.
1274  *
1275  * Return: 0 on success, negative error code otherwise.
1276  */
__damon_start(struct damon_ctx * ctx)1277 static int __damon_start(struct damon_ctx *ctx)
1278 {
1279 	int err = -EBUSY;
1280 
1281 	mutex_lock(&ctx->kdamond_lock);
1282 	if (!ctx->kdamond) {
1283 		err = 0;
1284 		reinit_completion(&ctx->kdamond_started);
1285 		ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
1286 				nr_running_ctxs);
1287 		if (IS_ERR(ctx->kdamond)) {
1288 			err = PTR_ERR(ctx->kdamond);
1289 			ctx->kdamond = NULL;
1290 		} else {
1291 			wait_for_completion(&ctx->kdamond_started);
1292 		}
1293 	}
1294 	mutex_unlock(&ctx->kdamond_lock);
1295 
1296 	return err;
1297 }
1298 
1299 /**
1300  * damon_start() - Starts the monitorings for a given group of contexts.
1301  * @ctxs:	an array of the pointers for contexts to start monitoring
1302  * @nr_ctxs:	size of @ctxs
1303  * @exclusive:	exclusiveness of this contexts group
1304  *
1305  * This function starts a group of monitoring threads for a group of monitoring
1306  * contexts.  One thread per each context is created and run in parallel.  The
1307  * caller should handle synchronization between the threads by itself.  If
1308  * @exclusive is true and a group of threads that created by other
1309  * 'damon_start()' call is currently running, this function does nothing but
1310  * returns -EBUSY.
1311  *
1312  * Return: 0 on success, negative error code otherwise.
1313  */
damon_start(struct damon_ctx ** ctxs,int nr_ctxs,bool exclusive)1314 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
1315 {
1316 	int i;
1317 	int err = 0;
1318 
1319 	mutex_lock(&damon_lock);
1320 	if ((exclusive && nr_running_ctxs) ||
1321 			(!exclusive && running_exclusive_ctxs)) {
1322 		mutex_unlock(&damon_lock);
1323 		return -EBUSY;
1324 	}
1325 
1326 	for (i = 0; i < nr_ctxs; i++) {
1327 		err = __damon_start(ctxs[i]);
1328 		if (err)
1329 			break;
1330 		nr_running_ctxs++;
1331 	}
1332 	if (exclusive && nr_running_ctxs)
1333 		running_exclusive_ctxs = true;
1334 	mutex_unlock(&damon_lock);
1335 
1336 	return err;
1337 }
1338 
1339 /*
1340  * __damon_stop() - Stops monitoring of a given context.
1341  * @ctx:	monitoring context
1342  *
1343  * Return: 0 on success, negative error code otherwise.
1344  */
__damon_stop(struct damon_ctx * ctx)1345 static int __damon_stop(struct damon_ctx *ctx)
1346 {
1347 	struct task_struct *tsk;
1348 
1349 	mutex_lock(&ctx->kdamond_lock);
1350 	tsk = ctx->kdamond;
1351 	if (tsk) {
1352 		get_task_struct(tsk);
1353 		mutex_unlock(&ctx->kdamond_lock);
1354 		kthread_stop_put(tsk);
1355 		return 0;
1356 	}
1357 	mutex_unlock(&ctx->kdamond_lock);
1358 
1359 	return -EPERM;
1360 }
1361 
1362 /**
1363  * damon_stop() - Stops the monitorings for a given group of contexts.
1364  * @ctxs:	an array of the pointers for contexts to stop monitoring
1365  * @nr_ctxs:	size of @ctxs
1366  *
1367  * Return: 0 on success, negative error code otherwise.
1368  */
damon_stop(struct damon_ctx ** ctxs,int nr_ctxs)1369 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
1370 {
1371 	int i, err = 0;
1372 
1373 	for (i = 0; i < nr_ctxs; i++) {
1374 		/* nr_running_ctxs is decremented in kdamond_fn */
1375 		err = __damon_stop(ctxs[i]);
1376 		if (err)
1377 			break;
1378 	}
1379 	return err;
1380 }
1381 
1382 /**
1383  * damon_is_running() - Returns if a given DAMON context is running.
1384  * @ctx:	The DAMON context to see if running.
1385  *
1386  * Return: true if @ctx is running, false otherwise.
1387  */
damon_is_running(struct damon_ctx * ctx)1388 bool damon_is_running(struct damon_ctx *ctx)
1389 {
1390 	bool running;
1391 
1392 	mutex_lock(&ctx->kdamond_lock);
1393 	running = ctx->kdamond != NULL;
1394 	mutex_unlock(&ctx->kdamond_lock);
1395 	return running;
1396 }
1397 
1398 /**
1399  * damon_call() - Invoke a given function on DAMON worker thread (kdamond).
1400  * @ctx:	DAMON context to call the function for.
1401  * @control:	Control variable of the call request.
1402  *
1403  * Ask DAMON worker thread (kdamond) of @ctx to call a function with an
1404  * argument data that respectively passed via &damon_call_control->fn and
1405  * &damon_call_control->data of @control.  If &damon_call_control->repeat of
1406  * @control is set, further wait until the kdamond finishes handling of the
1407  * request.  Otherwise, return as soon as the request is made.
1408  *
1409  * The kdamond executes the function with the argument in the main loop, just
1410  * after a sampling of the iteration is finished.  The function can hence
1411  * safely access the internal data of the &struct damon_ctx without additional
1412  * synchronization.  The return value of the function will be saved in
1413  * &damon_call_control->return_code.
1414  *
1415  * Return: 0 on success, negative error code otherwise.
1416  */
damon_call(struct damon_ctx * ctx,struct damon_call_control * control)1417 int damon_call(struct damon_ctx *ctx, struct damon_call_control *control)
1418 {
1419 	if (!control->repeat)
1420 		init_completion(&control->completion);
1421 	control->canceled = false;
1422 	INIT_LIST_HEAD(&control->list);
1423 
1424 	mutex_lock(&ctx->call_controls_lock);
1425 	list_add_tail(&ctx->call_controls, &control->list);
1426 	mutex_unlock(&ctx->call_controls_lock);
1427 	if (!damon_is_running(ctx))
1428 		return -EINVAL;
1429 	if (control->repeat)
1430 		return 0;
1431 	wait_for_completion(&control->completion);
1432 	if (control->canceled)
1433 		return -ECANCELED;
1434 	return 0;
1435 }
1436 
1437 /**
1438  * damos_walk() - Invoke a given functions while DAMOS walk regions.
1439  * @ctx:	DAMON context to call the functions for.
1440  * @control:	Control variable of the walk request.
1441  *
1442  * Ask DAMON worker thread (kdamond) of @ctx to call a function for each region
1443  * that the kdamond will apply DAMOS action to, and wait until the kdamond
1444  * finishes handling of the request.
1445  *
1446  * The kdamond executes the given function in the main loop, for each region
1447  * just after it applied any DAMOS actions of @ctx to it.  The invocation is
1448  * made only within one &damos->apply_interval_us since damos_walk()
1449  * invocation, for each scheme.  The given callback function can hence safely
1450  * access the internal data of &struct damon_ctx and &struct damon_region that
1451  * each of the scheme will apply the action for next interval, without
1452  * additional synchronizations against the kdamond.  If every scheme of @ctx
1453  * passed at least one &damos->apply_interval_us, kdamond marks the request as
1454  * completed so that damos_walk() can wakeup and return.
1455  *
1456  * Return: 0 on success, negative error code otherwise.
1457  */
damos_walk(struct damon_ctx * ctx,struct damos_walk_control * control)1458 int damos_walk(struct damon_ctx *ctx, struct damos_walk_control *control)
1459 {
1460 	init_completion(&control->completion);
1461 	control->canceled = false;
1462 	mutex_lock(&ctx->walk_control_lock);
1463 	if (ctx->walk_control) {
1464 		mutex_unlock(&ctx->walk_control_lock);
1465 		return -EBUSY;
1466 	}
1467 	ctx->walk_control = control;
1468 	mutex_unlock(&ctx->walk_control_lock);
1469 	if (!damon_is_running(ctx))
1470 		return -EINVAL;
1471 	wait_for_completion(&control->completion);
1472 	if (control->canceled)
1473 		return -ECANCELED;
1474 	return 0;
1475 }
1476 
1477 /*
1478  * Warn and fix corrupted ->nr_accesses[_bp] for investigations and preventing
1479  * the problem being propagated.
1480  */
damon_warn_fix_nr_accesses_corruption(struct damon_region * r)1481 static void damon_warn_fix_nr_accesses_corruption(struct damon_region *r)
1482 {
1483 	if (r->nr_accesses_bp == r->nr_accesses * 10000)
1484 		return;
1485 	WARN_ONCE(true, "invalid nr_accesses_bp at reset: %u %u\n",
1486 			r->nr_accesses_bp, r->nr_accesses);
1487 	r->nr_accesses_bp = r->nr_accesses * 10000;
1488 }
1489 
1490 /*
1491  * Reset the aggregated monitoring results ('nr_accesses' of each region).
1492  */
kdamond_reset_aggregated(struct damon_ctx * c)1493 static void kdamond_reset_aggregated(struct damon_ctx *c)
1494 {
1495 	struct damon_target *t;
1496 	unsigned int ti = 0;	/* target's index */
1497 
1498 	damon_for_each_target(t, c) {
1499 		struct damon_region *r;
1500 
1501 		damon_for_each_region(r, t) {
1502 			trace_damon_aggregated(ti, r, damon_nr_regions(t));
1503 			damon_warn_fix_nr_accesses_corruption(r);
1504 			r->last_nr_accesses = r->nr_accesses;
1505 			r->nr_accesses = 0;
1506 		}
1507 		ti++;
1508 	}
1509 }
1510 
damon_get_intervals_score(struct damon_ctx * c)1511 static unsigned long damon_get_intervals_score(struct damon_ctx *c)
1512 {
1513 	struct damon_target *t;
1514 	struct damon_region *r;
1515 	unsigned long sz_region, max_access_events = 0, access_events = 0;
1516 	unsigned long target_access_events;
1517 	unsigned long goal_bp = c->attrs.intervals_goal.access_bp;
1518 
1519 	damon_for_each_target(t, c) {
1520 		damon_for_each_region(r, t) {
1521 			sz_region = damon_sz_region(r);
1522 			max_access_events += sz_region * c->attrs.aggr_samples;
1523 			access_events += sz_region * r->nr_accesses;
1524 		}
1525 	}
1526 	target_access_events = max_access_events * goal_bp / 10000;
1527 	target_access_events = target_access_events ? : 1;
1528 	return access_events * 10000 / target_access_events;
1529 }
1530 
1531 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1532 		unsigned long score);
1533 
damon_get_intervals_adaptation_bp(struct damon_ctx * c)1534 static unsigned long damon_get_intervals_adaptation_bp(struct damon_ctx *c)
1535 {
1536 	unsigned long score_bp, adaptation_bp;
1537 
1538 	score_bp = damon_get_intervals_score(c);
1539 	adaptation_bp = damon_feed_loop_next_input(100000000, score_bp) /
1540 		10000;
1541 	/*
1542 	 * adaptaion_bp ranges from 1 to 20,000.  Avoid too rapid reduction of
1543 	 * the intervals by rescaling [1,10,000] to [5000, 10,000].
1544 	 */
1545 	if (adaptation_bp <= 10000)
1546 		adaptation_bp = 5000 + adaptation_bp / 2;
1547 	return adaptation_bp;
1548 }
1549 
kdamond_tune_intervals(struct damon_ctx * c)1550 static void kdamond_tune_intervals(struct damon_ctx *c)
1551 {
1552 	unsigned long adaptation_bp;
1553 	struct damon_attrs new_attrs;
1554 	struct damon_intervals_goal *goal;
1555 
1556 	adaptation_bp = damon_get_intervals_adaptation_bp(c);
1557 	if (adaptation_bp == 10000)
1558 		return;
1559 
1560 	new_attrs = c->attrs;
1561 	goal = &c->attrs.intervals_goal;
1562 	new_attrs.sample_interval = min(goal->max_sample_us,
1563 			c->attrs.sample_interval * adaptation_bp / 10000);
1564 	new_attrs.sample_interval = max(goal->min_sample_us,
1565 			new_attrs.sample_interval);
1566 	new_attrs.aggr_interval = new_attrs.sample_interval *
1567 		c->attrs.aggr_samples;
1568 	trace_damon_monitor_intervals_tune(new_attrs.sample_interval);
1569 	damon_set_attrs(c, &new_attrs);
1570 }
1571 
1572 static void damon_split_region_at(struct damon_target *t,
1573 				  struct damon_region *r, unsigned long sz_r);
1574 
__damos_valid_target(struct damon_region * r,struct damos * s)1575 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
1576 {
1577 	unsigned long sz;
1578 	unsigned int nr_accesses = r->nr_accesses_bp / 10000;
1579 
1580 	sz = damon_sz_region(r);
1581 	return s->pattern.min_sz_region <= sz &&
1582 		sz <= s->pattern.max_sz_region &&
1583 		s->pattern.min_nr_accesses <= nr_accesses &&
1584 		nr_accesses <= s->pattern.max_nr_accesses &&
1585 		s->pattern.min_age_region <= r->age &&
1586 		r->age <= s->pattern.max_age_region;
1587 }
1588 
damos_valid_target(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)1589 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
1590 		struct damon_region *r, struct damos *s)
1591 {
1592 	bool ret = __damos_valid_target(r, s);
1593 
1594 	if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
1595 		return ret;
1596 
1597 	return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
1598 }
1599 
1600 /*
1601  * damos_skip_charged_region() - Check if the given region or starting part of
1602  * it is already charged for the DAMOS quota.
1603  * @t:	The target of the region.
1604  * @rp:	The pointer to the region.
1605  * @s:	The scheme to be applied.
1606  *
1607  * If a quota of a scheme has exceeded in a quota charge window, the scheme's
1608  * action would applied to only a part of the target access pattern fulfilling
1609  * regions.  To avoid applying the scheme action to only already applied
1610  * regions, DAMON skips applying the scheme action to the regions that charged
1611  * in the previous charge window.
1612  *
1613  * This function checks if a given region should be skipped or not for the
1614  * reason.  If only the starting part of the region has previously charged,
1615  * this function splits the region into two so that the second one covers the
1616  * area that not charged in the previous charge widnow and saves the second
1617  * region in *rp and returns false, so that the caller can apply DAMON action
1618  * to the second one.
1619  *
1620  * Return: true if the region should be entirely skipped, false otherwise.
1621  */
damos_skip_charged_region(struct damon_target * t,struct damon_region ** rp,struct damos * s)1622 static bool damos_skip_charged_region(struct damon_target *t,
1623 		struct damon_region **rp, struct damos *s)
1624 {
1625 	struct damon_region *r = *rp;
1626 	struct damos_quota *quota = &s->quota;
1627 	unsigned long sz_to_skip;
1628 
1629 	/* Skip previously charged regions */
1630 	if (quota->charge_target_from) {
1631 		if (t != quota->charge_target_from)
1632 			return true;
1633 		if (r == damon_last_region(t)) {
1634 			quota->charge_target_from = NULL;
1635 			quota->charge_addr_from = 0;
1636 			return true;
1637 		}
1638 		if (quota->charge_addr_from &&
1639 				r->ar.end <= quota->charge_addr_from)
1640 			return true;
1641 
1642 		if (quota->charge_addr_from && r->ar.start <
1643 				quota->charge_addr_from) {
1644 			sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
1645 					r->ar.start, DAMON_MIN_REGION);
1646 			if (!sz_to_skip) {
1647 				if (damon_sz_region(r) <= DAMON_MIN_REGION)
1648 					return true;
1649 				sz_to_skip = DAMON_MIN_REGION;
1650 			}
1651 			damon_split_region_at(t, r, sz_to_skip);
1652 			r = damon_next_region(r);
1653 			*rp = r;
1654 		}
1655 		quota->charge_target_from = NULL;
1656 		quota->charge_addr_from = 0;
1657 	}
1658 	return false;
1659 }
1660 
damos_update_stat(struct damos * s,unsigned long sz_tried,unsigned long sz_applied,unsigned long sz_ops_filter_passed)1661 static void damos_update_stat(struct damos *s,
1662 		unsigned long sz_tried, unsigned long sz_applied,
1663 		unsigned long sz_ops_filter_passed)
1664 {
1665 	s->stat.nr_tried++;
1666 	s->stat.sz_tried += sz_tried;
1667 	if (sz_applied)
1668 		s->stat.nr_applied++;
1669 	s->stat.sz_applied += sz_applied;
1670 	s->stat.sz_ops_filter_passed += sz_ops_filter_passed;
1671 }
1672 
damos_filter_match(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos_filter * filter)1673 static bool damos_filter_match(struct damon_ctx *ctx, struct damon_target *t,
1674 		struct damon_region *r, struct damos_filter *filter)
1675 {
1676 	bool matched = false;
1677 	struct damon_target *ti;
1678 	int target_idx = 0;
1679 	unsigned long start, end;
1680 
1681 	switch (filter->type) {
1682 	case DAMOS_FILTER_TYPE_TARGET:
1683 		damon_for_each_target(ti, ctx) {
1684 			if (ti == t)
1685 				break;
1686 			target_idx++;
1687 		}
1688 		matched = target_idx == filter->target_idx;
1689 		break;
1690 	case DAMOS_FILTER_TYPE_ADDR:
1691 		start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
1692 		end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
1693 
1694 		/* inside the range */
1695 		if (start <= r->ar.start && r->ar.end <= end) {
1696 			matched = true;
1697 			break;
1698 		}
1699 		/* outside of the range */
1700 		if (r->ar.end <= start || end <= r->ar.start) {
1701 			matched = false;
1702 			break;
1703 		}
1704 		/* start before the range and overlap */
1705 		if (r->ar.start < start) {
1706 			damon_split_region_at(t, r, start - r->ar.start);
1707 			matched = false;
1708 			break;
1709 		}
1710 		/* start inside the range */
1711 		damon_split_region_at(t, r, end - r->ar.start);
1712 		matched = true;
1713 		break;
1714 	default:
1715 		return false;
1716 	}
1717 
1718 	return matched == filter->matching;
1719 }
1720 
damos_filter_out(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * s)1721 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
1722 		struct damon_region *r, struct damos *s)
1723 {
1724 	struct damos_filter *filter;
1725 
1726 	s->core_filters_allowed = false;
1727 	damos_for_each_filter(filter, s) {
1728 		if (damos_filter_match(ctx, t, r, filter)) {
1729 			if (filter->allow)
1730 				s->core_filters_allowed = true;
1731 			return !filter->allow;
1732 		}
1733 	}
1734 	return s->core_filters_default_reject;
1735 }
1736 
1737 /*
1738  * damos_walk_call_walk() - Call &damos_walk_control->walk_fn.
1739  * @ctx:	The context of &damon_ctx->walk_control.
1740  * @t:		The monitoring target of @r that @s will be applied.
1741  * @r:		The region of @t that @s will be applied.
1742  * @s:		The scheme of @ctx that will be applied to @r.
1743  *
1744  * This function is called from kdamond whenever it asked the operation set to
1745  * apply a DAMOS scheme action to a region.  If a DAMOS walk request is
1746  * installed by damos_walk() and not yet uninstalled, invoke it.
1747  */
damos_walk_call_walk(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * s,unsigned long sz_filter_passed)1748 static void damos_walk_call_walk(struct damon_ctx *ctx, struct damon_target *t,
1749 		struct damon_region *r, struct damos *s,
1750 		unsigned long sz_filter_passed)
1751 {
1752 	struct damos_walk_control *control;
1753 
1754 	if (s->walk_completed)
1755 		return;
1756 
1757 	control = ctx->walk_control;
1758 	if (!control)
1759 		return;
1760 
1761 	control->walk_fn(control->data, ctx, t, r, s, sz_filter_passed);
1762 }
1763 
1764 /*
1765  * damos_walk_complete() - Complete DAMOS walk request if all walks are done.
1766  * @ctx:	The context of &damon_ctx->walk_control.
1767  * @s:		A scheme of @ctx that all walks are now done.
1768  *
1769  * This function is called when kdamond finished applying the action of a DAMOS
1770  * scheme to all regions that eligible for the given &damos->apply_interval_us.
1771  * If every scheme of @ctx including @s now finished walking for at least one
1772  * &damos->apply_interval_us, this function makrs the handling of the given
1773  * DAMOS walk request is done, so that damos_walk() can wake up and return.
1774  */
damos_walk_complete(struct damon_ctx * ctx,struct damos * s)1775 static void damos_walk_complete(struct damon_ctx *ctx, struct damos *s)
1776 {
1777 	struct damos *siter;
1778 	struct damos_walk_control *control;
1779 
1780 	control = ctx->walk_control;
1781 	if (!control)
1782 		return;
1783 
1784 	s->walk_completed = true;
1785 	/* if all schemes completed, signal completion to walker */
1786 	damon_for_each_scheme(siter, ctx) {
1787 		if (!siter->walk_completed)
1788 			return;
1789 	}
1790 	damon_for_each_scheme(siter, ctx)
1791 		siter->walk_completed = false;
1792 
1793 	complete(&control->completion);
1794 	ctx->walk_control = NULL;
1795 }
1796 
1797 /*
1798  * damos_walk_cancel() - Cancel the current DAMOS walk request.
1799  * @ctx:	The context of &damon_ctx->walk_control.
1800  *
1801  * This function is called when @ctx is deactivated by DAMOS watermarks, DAMOS
1802  * walk is requested but there is no DAMOS scheme to walk for, or the kdamond
1803  * is already out of the main loop and therefore gonna be terminated, and hence
1804  * cannot continue the walks.  This function therefore marks the walk request
1805  * as canceled, so that damos_walk() can wake up and return.
1806  */
damos_walk_cancel(struct damon_ctx * ctx)1807 static void damos_walk_cancel(struct damon_ctx *ctx)
1808 {
1809 	struct damos_walk_control *control;
1810 
1811 	mutex_lock(&ctx->walk_control_lock);
1812 	control = ctx->walk_control;
1813 	mutex_unlock(&ctx->walk_control_lock);
1814 
1815 	if (!control)
1816 		return;
1817 	control->canceled = true;
1818 	complete(&control->completion);
1819 	mutex_lock(&ctx->walk_control_lock);
1820 	ctx->walk_control = NULL;
1821 	mutex_unlock(&ctx->walk_control_lock);
1822 }
1823 
damos_apply_scheme(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)1824 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
1825 		struct damon_region *r, struct damos *s)
1826 {
1827 	struct damos_quota *quota = &s->quota;
1828 	unsigned long sz = damon_sz_region(r);
1829 	struct timespec64 begin, end;
1830 	unsigned long sz_applied = 0;
1831 	unsigned long sz_ops_filter_passed = 0;
1832 	/*
1833 	 * We plan to support multiple context per kdamond, as DAMON sysfs
1834 	 * implies with 'nr_contexts' file.  Nevertheless, only single context
1835 	 * per kdamond is supported for now.  So, we can simply use '0' context
1836 	 * index here.
1837 	 */
1838 	unsigned int cidx = 0;
1839 	struct damos *siter;		/* schemes iterator */
1840 	unsigned int sidx = 0;
1841 	struct damon_target *titer;	/* targets iterator */
1842 	unsigned int tidx = 0;
1843 	bool do_trace = false;
1844 
1845 	/* get indices for trace_damos_before_apply() */
1846 	if (trace_damos_before_apply_enabled()) {
1847 		damon_for_each_scheme(siter, c) {
1848 			if (siter == s)
1849 				break;
1850 			sidx++;
1851 		}
1852 		damon_for_each_target(titer, c) {
1853 			if (titer == t)
1854 				break;
1855 			tidx++;
1856 		}
1857 		do_trace = true;
1858 	}
1859 
1860 	if (c->ops.apply_scheme) {
1861 		if (quota->esz && quota->charged_sz + sz > quota->esz) {
1862 			sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
1863 					DAMON_MIN_REGION);
1864 			if (!sz)
1865 				goto update_stat;
1866 			damon_split_region_at(t, r, sz);
1867 		}
1868 		if (damos_filter_out(c, t, r, s))
1869 			return;
1870 		ktime_get_coarse_ts64(&begin);
1871 		trace_damos_before_apply(cidx, sidx, tidx, r,
1872 				damon_nr_regions(t), do_trace);
1873 		sz_applied = c->ops.apply_scheme(c, t, r, s,
1874 				&sz_ops_filter_passed);
1875 		damos_walk_call_walk(c, t, r, s, sz_ops_filter_passed);
1876 		ktime_get_coarse_ts64(&end);
1877 		quota->total_charged_ns += timespec64_to_ns(&end) -
1878 			timespec64_to_ns(&begin);
1879 		quota->charged_sz += sz;
1880 		if (quota->esz && quota->charged_sz >= quota->esz) {
1881 			quota->charge_target_from = t;
1882 			quota->charge_addr_from = r->ar.end + 1;
1883 		}
1884 	}
1885 	if (s->action != DAMOS_STAT)
1886 		r->age = 0;
1887 
1888 update_stat:
1889 	damos_update_stat(s, sz, sz_applied, sz_ops_filter_passed);
1890 }
1891 
damon_do_apply_schemes(struct damon_ctx * c,struct damon_target * t,struct damon_region * r)1892 static void damon_do_apply_schemes(struct damon_ctx *c,
1893 				   struct damon_target *t,
1894 				   struct damon_region *r)
1895 {
1896 	struct damos *s;
1897 
1898 	damon_for_each_scheme(s, c) {
1899 		struct damos_quota *quota = &s->quota;
1900 
1901 		if (c->passed_sample_intervals < s->next_apply_sis)
1902 			continue;
1903 
1904 		if (!s->wmarks.activated)
1905 			continue;
1906 
1907 		/* Check the quota */
1908 		if (quota->esz && quota->charged_sz >= quota->esz)
1909 			continue;
1910 
1911 		if (damos_skip_charged_region(t, &r, s))
1912 			continue;
1913 
1914 		if (!damos_valid_target(c, t, r, s))
1915 			continue;
1916 
1917 		damos_apply_scheme(c, t, r, s);
1918 	}
1919 }
1920 
1921 /*
1922  * damon_feed_loop_next_input() - get next input to achieve a target score.
1923  * @last_input	The last input.
1924  * @score	Current score that made with @last_input.
1925  *
1926  * Calculate next input to achieve the target score, based on the last input
1927  * and current score.  Assuming the input and the score are positively
1928  * proportional, calculate how much compensation should be added to or
1929  * subtracted from the last input as a proportion of the last input.  Avoid
1930  * next input always being zero by setting it non-zero always.  In short form
1931  * (assuming support of float and signed calculations), the algorithm is as
1932  * below.
1933  *
1934  * next_input = max(last_input * ((goal - current) / goal + 1), 1)
1935  *
1936  * For simple implementation, we assume the target score is always 10,000.  The
1937  * caller should adjust @score for this.
1938  *
1939  * Returns next input that assumed to achieve the target score.
1940  */
damon_feed_loop_next_input(unsigned long last_input,unsigned long score)1941 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1942 		unsigned long score)
1943 {
1944 	const unsigned long goal = 10000;
1945 	/* Set minimum input as 10000 to avoid compensation be zero */
1946 	const unsigned long min_input = 10000;
1947 	unsigned long score_goal_diff, compensation;
1948 	bool over_achieving = score > goal;
1949 
1950 	if (score == goal)
1951 		return last_input;
1952 	if (score >= goal * 2)
1953 		return min_input;
1954 
1955 	if (over_achieving)
1956 		score_goal_diff = score - goal;
1957 	else
1958 		score_goal_diff = goal - score;
1959 
1960 	if (last_input < ULONG_MAX / score_goal_diff)
1961 		compensation = last_input * score_goal_diff / goal;
1962 	else
1963 		compensation = last_input / goal * score_goal_diff;
1964 
1965 	if (over_achieving)
1966 		return max(last_input - compensation, min_input);
1967 	if (last_input < ULONG_MAX - compensation)
1968 		return last_input + compensation;
1969 	return ULONG_MAX;
1970 }
1971 
1972 #ifdef CONFIG_PSI
1973 
damos_get_some_mem_psi_total(void)1974 static u64 damos_get_some_mem_psi_total(void)
1975 {
1976 	if (static_branch_likely(&psi_disabled))
1977 		return 0;
1978 	return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2],
1979 			NSEC_PER_USEC);
1980 }
1981 
1982 #else	/* CONFIG_PSI */
1983 
damos_get_some_mem_psi_total(void)1984 static inline u64 damos_get_some_mem_psi_total(void)
1985 {
1986 	return 0;
1987 };
1988 
1989 #endif	/* CONFIG_PSI */
1990 
1991 #ifdef CONFIG_NUMA
damos_get_node_mem_bp(struct damos_quota_goal * goal)1992 static __kernel_ulong_t damos_get_node_mem_bp(
1993 		struct damos_quota_goal *goal)
1994 {
1995 	struct sysinfo i;
1996 	__kernel_ulong_t numerator;
1997 
1998 	si_meminfo_node(&i, goal->nid);
1999 	if (goal->metric == DAMOS_QUOTA_NODE_MEM_USED_BP)
2000 		numerator = i.totalram - i.freeram;
2001 	else	/* DAMOS_QUOTA_NODE_MEM_FREE_BP */
2002 		numerator = i.freeram;
2003 	return numerator * 10000 / i.totalram;
2004 }
2005 #else
damos_get_node_mem_bp(struct damos_quota_goal * goal)2006 static __kernel_ulong_t damos_get_node_mem_bp(
2007 		struct damos_quota_goal *goal)
2008 {
2009 	return 0;
2010 }
2011 #endif
2012 
2013 
damos_set_quota_goal_current_value(struct damos_quota_goal * goal)2014 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal)
2015 {
2016 	u64 now_psi_total;
2017 
2018 	switch (goal->metric) {
2019 	case DAMOS_QUOTA_USER_INPUT:
2020 		/* User should already set goal->current_value */
2021 		break;
2022 	case DAMOS_QUOTA_SOME_MEM_PSI_US:
2023 		now_psi_total = damos_get_some_mem_psi_total();
2024 		goal->current_value = now_psi_total - goal->last_psi_total;
2025 		goal->last_psi_total = now_psi_total;
2026 		break;
2027 	case DAMOS_QUOTA_NODE_MEM_USED_BP:
2028 	case DAMOS_QUOTA_NODE_MEM_FREE_BP:
2029 		goal->current_value = damos_get_node_mem_bp(goal);
2030 		break;
2031 	default:
2032 		break;
2033 	}
2034 }
2035 
2036 /* Return the highest score since it makes schemes least aggressive */
damos_quota_score(struct damos_quota * quota)2037 static unsigned long damos_quota_score(struct damos_quota *quota)
2038 {
2039 	struct damos_quota_goal *goal;
2040 	unsigned long highest_score = 0;
2041 
2042 	damos_for_each_quota_goal(goal, quota) {
2043 		damos_set_quota_goal_current_value(goal);
2044 		highest_score = max(highest_score,
2045 				goal->current_value * 10000 /
2046 				goal->target_value);
2047 	}
2048 
2049 	return highest_score;
2050 }
2051 
2052 /*
2053  * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty
2054  */
damos_set_effective_quota(struct damos_quota * quota)2055 static void damos_set_effective_quota(struct damos_quota *quota)
2056 {
2057 	unsigned long throughput;
2058 	unsigned long esz = ULONG_MAX;
2059 
2060 	if (!quota->ms && list_empty(&quota->goals)) {
2061 		quota->esz = quota->sz;
2062 		return;
2063 	}
2064 
2065 	if (!list_empty(&quota->goals)) {
2066 		unsigned long score = damos_quota_score(quota);
2067 
2068 		quota->esz_bp = damon_feed_loop_next_input(
2069 				max(quota->esz_bp, 10000UL),
2070 				score);
2071 		esz = quota->esz_bp / 10000;
2072 	}
2073 
2074 	if (quota->ms) {
2075 		if (quota->total_charged_ns)
2076 			throughput = mult_frac(quota->total_charged_sz, 1000000,
2077 							quota->total_charged_ns);
2078 		else
2079 			throughput = PAGE_SIZE * 1024;
2080 		esz = min(throughput * quota->ms, esz);
2081 	}
2082 
2083 	if (quota->sz && quota->sz < esz)
2084 		esz = quota->sz;
2085 
2086 	quota->esz = esz;
2087 }
2088 
damos_trace_esz(struct damon_ctx * c,struct damos * s,struct damos_quota * quota)2089 static void damos_trace_esz(struct damon_ctx *c, struct damos *s,
2090 		struct damos_quota *quota)
2091 {
2092 	unsigned int cidx = 0, sidx = 0;
2093 	struct damos *siter;
2094 
2095 	damon_for_each_scheme(siter, c) {
2096 		if (siter == s)
2097 			break;
2098 		sidx++;
2099 	}
2100 	trace_damos_esz(cidx, sidx, quota->esz);
2101 }
2102 
damos_adjust_quota(struct damon_ctx * c,struct damos * s)2103 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
2104 {
2105 	struct damos_quota *quota = &s->quota;
2106 	struct damon_target *t;
2107 	struct damon_region *r;
2108 	unsigned long cumulated_sz, cached_esz;
2109 	unsigned int score, max_score = 0;
2110 
2111 	if (!quota->ms && !quota->sz && list_empty(&quota->goals))
2112 		return;
2113 
2114 	/* New charge window starts */
2115 	if (time_after_eq(jiffies, quota->charged_from +
2116 				msecs_to_jiffies(quota->reset_interval))) {
2117 		if (quota->esz && quota->charged_sz >= quota->esz)
2118 			s->stat.qt_exceeds++;
2119 		quota->total_charged_sz += quota->charged_sz;
2120 		quota->charged_from = jiffies;
2121 		quota->charged_sz = 0;
2122 		if (trace_damos_esz_enabled())
2123 			cached_esz = quota->esz;
2124 		damos_set_effective_quota(quota);
2125 		if (trace_damos_esz_enabled() && quota->esz != cached_esz)
2126 			damos_trace_esz(c, s, quota);
2127 	}
2128 
2129 	if (!c->ops.get_scheme_score)
2130 		return;
2131 
2132 	/* Fill up the score histogram */
2133 	memset(c->regions_score_histogram, 0,
2134 			sizeof(*c->regions_score_histogram) *
2135 			(DAMOS_MAX_SCORE + 1));
2136 	damon_for_each_target(t, c) {
2137 		damon_for_each_region(r, t) {
2138 			if (!__damos_valid_target(r, s))
2139 				continue;
2140 			score = c->ops.get_scheme_score(c, t, r, s);
2141 			c->regions_score_histogram[score] +=
2142 				damon_sz_region(r);
2143 			if (score > max_score)
2144 				max_score = score;
2145 		}
2146 	}
2147 
2148 	/* Set the min score limit */
2149 	for (cumulated_sz = 0, score = max_score; ; score--) {
2150 		cumulated_sz += c->regions_score_histogram[score];
2151 		if (cumulated_sz >= quota->esz || !score)
2152 			break;
2153 	}
2154 	quota->min_score = score;
2155 }
2156 
kdamond_apply_schemes(struct damon_ctx * c)2157 static void kdamond_apply_schemes(struct damon_ctx *c)
2158 {
2159 	struct damon_target *t;
2160 	struct damon_region *r, *next_r;
2161 	struct damos *s;
2162 	unsigned long sample_interval = c->attrs.sample_interval ?
2163 		c->attrs.sample_interval : 1;
2164 	bool has_schemes_to_apply = false;
2165 
2166 	damon_for_each_scheme(s, c) {
2167 		if (c->passed_sample_intervals < s->next_apply_sis)
2168 			continue;
2169 
2170 		if (!s->wmarks.activated)
2171 			continue;
2172 
2173 		has_schemes_to_apply = true;
2174 
2175 		damos_adjust_quota(c, s);
2176 	}
2177 
2178 	if (!has_schemes_to_apply)
2179 		return;
2180 
2181 	mutex_lock(&c->walk_control_lock);
2182 	damon_for_each_target(t, c) {
2183 		damon_for_each_region_safe(r, next_r, t)
2184 			damon_do_apply_schemes(c, t, r);
2185 	}
2186 
2187 	damon_for_each_scheme(s, c) {
2188 		if (c->passed_sample_intervals < s->next_apply_sis)
2189 			continue;
2190 		damos_walk_complete(c, s);
2191 		s->next_apply_sis = c->passed_sample_intervals +
2192 			(s->apply_interval_us ? s->apply_interval_us :
2193 			 c->attrs.aggr_interval) / sample_interval;
2194 		s->last_applied = NULL;
2195 	}
2196 	mutex_unlock(&c->walk_control_lock);
2197 }
2198 
2199 /*
2200  * Merge two adjacent regions into one region
2201  */
damon_merge_two_regions(struct damon_target * t,struct damon_region * l,struct damon_region * r)2202 static void damon_merge_two_regions(struct damon_target *t,
2203 		struct damon_region *l, struct damon_region *r)
2204 {
2205 	unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
2206 
2207 	l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
2208 			(sz_l + sz_r);
2209 	l->nr_accesses_bp = l->nr_accesses * 10000;
2210 	l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
2211 	l->ar.end = r->ar.end;
2212 	damon_destroy_region(r, t);
2213 }
2214 
2215 /*
2216  * Merge adjacent regions having similar access frequencies
2217  *
2218  * t		target affected by this merge operation
2219  * thres	'->nr_accesses' diff threshold for the merge
2220  * sz_limit	size upper limit of each region
2221  */
damon_merge_regions_of(struct damon_target * t,unsigned int thres,unsigned long sz_limit)2222 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
2223 				   unsigned long sz_limit)
2224 {
2225 	struct damon_region *r, *prev = NULL, *next;
2226 
2227 	damon_for_each_region_safe(r, next, t) {
2228 		if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
2229 			r->age = 0;
2230 		else
2231 			r->age++;
2232 
2233 		if (prev && prev->ar.end == r->ar.start &&
2234 		    abs(prev->nr_accesses - r->nr_accesses) <= thres &&
2235 		    damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
2236 			damon_merge_two_regions(t, prev, r);
2237 		else
2238 			prev = r;
2239 	}
2240 }
2241 
2242 /*
2243  * Merge adjacent regions having similar access frequencies
2244  *
2245  * threshold	'->nr_accesses' diff threshold for the merge
2246  * sz_limit	size upper limit of each region
2247  *
2248  * This function merges monitoring target regions which are adjacent and their
2249  * access frequencies are similar.  This is for minimizing the monitoring
2250  * overhead under the dynamically changeable access pattern.  If a merge was
2251  * unnecessarily made, later 'kdamond_split_regions()' will revert it.
2252  *
2253  * The total number of regions could be higher than the user-defined limit,
2254  * max_nr_regions for some cases.  For example, the user can update
2255  * max_nr_regions to a number that lower than the current number of regions
2256  * while DAMON is running.  For such a case, repeat merging until the limit is
2257  * met while increasing @threshold up to possible maximum level.
2258  */
kdamond_merge_regions(struct damon_ctx * c,unsigned int threshold,unsigned long sz_limit)2259 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
2260 				  unsigned long sz_limit)
2261 {
2262 	struct damon_target *t;
2263 	unsigned int nr_regions;
2264 	unsigned int max_thres;
2265 
2266 	max_thres = c->attrs.aggr_interval /
2267 		(c->attrs.sample_interval ?  c->attrs.sample_interval : 1);
2268 	do {
2269 		nr_regions = 0;
2270 		damon_for_each_target(t, c) {
2271 			damon_merge_regions_of(t, threshold, sz_limit);
2272 			nr_regions += damon_nr_regions(t);
2273 		}
2274 		threshold = max(1, threshold * 2);
2275 	} while (nr_regions > c->attrs.max_nr_regions &&
2276 			threshold / 2 < max_thres);
2277 }
2278 
2279 /*
2280  * Split a region in two
2281  *
2282  * r		the region to be split
2283  * sz_r		size of the first sub-region that will be made
2284  */
damon_split_region_at(struct damon_target * t,struct damon_region * r,unsigned long sz_r)2285 static void damon_split_region_at(struct damon_target *t,
2286 				  struct damon_region *r, unsigned long sz_r)
2287 {
2288 	struct damon_region *new;
2289 
2290 	new = damon_new_region(r->ar.start + sz_r, r->ar.end);
2291 	if (!new)
2292 		return;
2293 
2294 	r->ar.end = new->ar.start;
2295 
2296 	new->age = r->age;
2297 	new->last_nr_accesses = r->last_nr_accesses;
2298 	new->nr_accesses_bp = r->nr_accesses_bp;
2299 	new->nr_accesses = r->nr_accesses;
2300 
2301 	damon_insert_region(new, r, damon_next_region(r), t);
2302 }
2303 
2304 /* Split every region in the given target into 'nr_subs' regions */
damon_split_regions_of(struct damon_target * t,int nr_subs)2305 static void damon_split_regions_of(struct damon_target *t, int nr_subs)
2306 {
2307 	struct damon_region *r, *next;
2308 	unsigned long sz_region, sz_sub = 0;
2309 	int i;
2310 
2311 	damon_for_each_region_safe(r, next, t) {
2312 		sz_region = damon_sz_region(r);
2313 
2314 		for (i = 0; i < nr_subs - 1 &&
2315 				sz_region > 2 * DAMON_MIN_REGION; i++) {
2316 			/*
2317 			 * Randomly select size of left sub-region to be at
2318 			 * least 10 percent and at most 90% of original region
2319 			 */
2320 			sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
2321 					sz_region / 10, DAMON_MIN_REGION);
2322 			/* Do not allow blank region */
2323 			if (sz_sub == 0 || sz_sub >= sz_region)
2324 				continue;
2325 
2326 			damon_split_region_at(t, r, sz_sub);
2327 			sz_region = sz_sub;
2328 		}
2329 	}
2330 }
2331 
2332 /*
2333  * Split every target region into randomly-sized small regions
2334  *
2335  * This function splits every target region into random-sized small regions if
2336  * current total number of the regions is equal or smaller than half of the
2337  * user-specified maximum number of regions.  This is for maximizing the
2338  * monitoring accuracy under the dynamically changeable access patterns.  If a
2339  * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
2340  * it.
2341  */
kdamond_split_regions(struct damon_ctx * ctx)2342 static void kdamond_split_regions(struct damon_ctx *ctx)
2343 {
2344 	struct damon_target *t;
2345 	unsigned int nr_regions = 0;
2346 	static unsigned int last_nr_regions;
2347 	int nr_subregions = 2;
2348 
2349 	damon_for_each_target(t, ctx)
2350 		nr_regions += damon_nr_regions(t);
2351 
2352 	if (nr_regions > ctx->attrs.max_nr_regions / 2)
2353 		return;
2354 
2355 	/* Maybe the middle of the region has different access frequency */
2356 	if (last_nr_regions == nr_regions &&
2357 			nr_regions < ctx->attrs.max_nr_regions / 3)
2358 		nr_subregions = 3;
2359 
2360 	damon_for_each_target(t, ctx)
2361 		damon_split_regions_of(t, nr_subregions);
2362 
2363 	last_nr_regions = nr_regions;
2364 }
2365 
2366 /*
2367  * Check whether current monitoring should be stopped
2368  *
2369  * The monitoring is stopped when either the user requested to stop, or all
2370  * monitoring targets are invalid.
2371  *
2372  * Returns true if need to stop current monitoring.
2373  */
kdamond_need_stop(struct damon_ctx * ctx)2374 static bool kdamond_need_stop(struct damon_ctx *ctx)
2375 {
2376 	struct damon_target *t;
2377 
2378 	if (kthread_should_stop())
2379 		return true;
2380 
2381 	if (!ctx->ops.target_valid)
2382 		return false;
2383 
2384 	damon_for_each_target(t, ctx) {
2385 		if (ctx->ops.target_valid(t))
2386 			return false;
2387 	}
2388 
2389 	return true;
2390 }
2391 
damos_get_wmark_metric_value(enum damos_wmark_metric metric,unsigned long * metric_value)2392 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric,
2393 					unsigned long *metric_value)
2394 {
2395 	switch (metric) {
2396 	case DAMOS_WMARK_FREE_MEM_RATE:
2397 		*metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 /
2398 		       totalram_pages();
2399 		return 0;
2400 	default:
2401 		break;
2402 	}
2403 	return -EINVAL;
2404 }
2405 
2406 /*
2407  * Returns zero if the scheme is active.  Else, returns time to wait for next
2408  * watermark check in micro-seconds.
2409  */
damos_wmark_wait_us(struct damos * scheme)2410 static unsigned long damos_wmark_wait_us(struct damos *scheme)
2411 {
2412 	unsigned long metric;
2413 
2414 	if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric))
2415 		return 0;
2416 
2417 	/* higher than high watermark or lower than low watermark */
2418 	if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
2419 		if (scheme->wmarks.activated)
2420 			pr_debug("deactivate a scheme (%d) for %s wmark\n",
2421 				 scheme->action,
2422 				 str_high_low(metric > scheme->wmarks.high));
2423 		scheme->wmarks.activated = false;
2424 		return scheme->wmarks.interval;
2425 	}
2426 
2427 	/* inactive and higher than middle watermark */
2428 	if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
2429 			!scheme->wmarks.activated)
2430 		return scheme->wmarks.interval;
2431 
2432 	if (!scheme->wmarks.activated)
2433 		pr_debug("activate a scheme (%d)\n", scheme->action);
2434 	scheme->wmarks.activated = true;
2435 	return 0;
2436 }
2437 
kdamond_usleep(unsigned long usecs)2438 static void kdamond_usleep(unsigned long usecs)
2439 {
2440 	if (usecs >= USLEEP_RANGE_UPPER_BOUND)
2441 		schedule_timeout_idle(usecs_to_jiffies(usecs));
2442 	else
2443 		usleep_range_idle(usecs, usecs + 1);
2444 }
2445 
2446 /*
2447  * kdamond_call() - handle damon_call_control objects.
2448  * @ctx:	The &struct damon_ctx of the kdamond.
2449  * @cancel:	Whether to cancel the invocation of the function.
2450  *
2451  * If there are &struct damon_call_control requests that registered via
2452  * &damon_call() on @ctx, do or cancel the invocation of the function depending
2453  * on @cancel.  @cancel is set when the kdamond is already out of the main loop
2454  * and therefore will be terminated.
2455  */
kdamond_call(struct damon_ctx * ctx,bool cancel)2456 static void kdamond_call(struct damon_ctx *ctx, bool cancel)
2457 {
2458 	struct damon_call_control *control;
2459 	LIST_HEAD(repeat_controls);
2460 	int ret = 0;
2461 
2462 	while (true) {
2463 		mutex_lock(&ctx->call_controls_lock);
2464 		control = list_first_entry_or_null(&ctx->call_controls,
2465 				struct damon_call_control, list);
2466 		mutex_unlock(&ctx->call_controls_lock);
2467 		if (!control)
2468 			break;
2469 		if (cancel) {
2470 			control->canceled = true;
2471 		} else {
2472 			ret = control->fn(control->data);
2473 			control->return_code = ret;
2474 		}
2475 		mutex_lock(&ctx->call_controls_lock);
2476 		list_del(&control->list);
2477 		mutex_unlock(&ctx->call_controls_lock);
2478 		if (!control->repeat)
2479 			complete(&control->completion);
2480 		else
2481 			list_add(&control->list, &repeat_controls);
2482 	}
2483 	control = list_first_entry_or_null(&repeat_controls,
2484 			struct damon_call_control, list);
2485 	if (!control || cancel)
2486 		return;
2487 	mutex_lock(&ctx->call_controls_lock);
2488 	list_add_tail(&control->list, &ctx->call_controls);
2489 	mutex_unlock(&ctx->call_controls_lock);
2490 }
2491 
2492 /* Returns negative error code if it's not activated but should return */
kdamond_wait_activation(struct damon_ctx * ctx)2493 static int kdamond_wait_activation(struct damon_ctx *ctx)
2494 {
2495 	struct damos *s;
2496 	unsigned long wait_time;
2497 	unsigned long min_wait_time = 0;
2498 	bool init_wait_time = false;
2499 
2500 	while (!kdamond_need_stop(ctx)) {
2501 		damon_for_each_scheme(s, ctx) {
2502 			wait_time = damos_wmark_wait_us(s);
2503 			if (!init_wait_time || wait_time < min_wait_time) {
2504 				init_wait_time = true;
2505 				min_wait_time = wait_time;
2506 			}
2507 		}
2508 		if (!min_wait_time)
2509 			return 0;
2510 
2511 		kdamond_usleep(min_wait_time);
2512 
2513 		kdamond_call(ctx, false);
2514 		damos_walk_cancel(ctx);
2515 	}
2516 	return -EBUSY;
2517 }
2518 
kdamond_init_ctx(struct damon_ctx * ctx)2519 static void kdamond_init_ctx(struct damon_ctx *ctx)
2520 {
2521 	unsigned long sample_interval = ctx->attrs.sample_interval ?
2522 		ctx->attrs.sample_interval : 1;
2523 	unsigned long apply_interval;
2524 	struct damos *scheme;
2525 
2526 	ctx->passed_sample_intervals = 0;
2527 	ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
2528 	ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
2529 		sample_interval;
2530 	ctx->next_intervals_tune_sis = ctx->next_aggregation_sis *
2531 		ctx->attrs.intervals_goal.aggrs;
2532 
2533 	damon_for_each_scheme(scheme, ctx) {
2534 		apply_interval = scheme->apply_interval_us ?
2535 			scheme->apply_interval_us : ctx->attrs.aggr_interval;
2536 		scheme->next_apply_sis = apply_interval / sample_interval;
2537 		damos_set_filters_default_reject(scheme);
2538 	}
2539 }
2540 
2541 /*
2542  * The monitoring daemon that runs as a kernel thread
2543  */
kdamond_fn(void * data)2544 static int kdamond_fn(void *data)
2545 {
2546 	struct damon_ctx *ctx = data;
2547 	struct damon_target *t;
2548 	struct damon_region *r, *next;
2549 	unsigned int max_nr_accesses = 0;
2550 	unsigned long sz_limit = 0;
2551 
2552 	pr_debug("kdamond (%d) starts\n", current->pid);
2553 
2554 	complete(&ctx->kdamond_started);
2555 	kdamond_init_ctx(ctx);
2556 
2557 	if (ctx->ops.init)
2558 		ctx->ops.init(ctx);
2559 	ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1,
2560 			sizeof(*ctx->regions_score_histogram), GFP_KERNEL);
2561 	if (!ctx->regions_score_histogram)
2562 		goto done;
2563 
2564 	sz_limit = damon_region_sz_limit(ctx);
2565 
2566 	while (!kdamond_need_stop(ctx)) {
2567 		/*
2568 		 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
2569 		 * be changed from kdamond_call().  Read the values here, and
2570 		 * use those for this iteration.  That is, damon_set_attrs()
2571 		 * updated new values are respected from next iteration.
2572 		 */
2573 		unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
2574 		unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
2575 		unsigned long sample_interval = ctx->attrs.sample_interval;
2576 
2577 		if (kdamond_wait_activation(ctx))
2578 			break;
2579 
2580 		if (ctx->ops.prepare_access_checks)
2581 			ctx->ops.prepare_access_checks(ctx);
2582 
2583 		kdamond_usleep(sample_interval);
2584 		ctx->passed_sample_intervals++;
2585 
2586 		if (ctx->ops.check_accesses)
2587 			max_nr_accesses = ctx->ops.check_accesses(ctx);
2588 
2589 		if (ctx->passed_sample_intervals >= next_aggregation_sis)
2590 			kdamond_merge_regions(ctx,
2591 					max_nr_accesses / 10,
2592 					sz_limit);
2593 
2594 		/*
2595 		 * do kdamond_call() and kdamond_apply_schemes() after
2596 		 * kdamond_merge_regions() if possible, to reduce overhead
2597 		 */
2598 		kdamond_call(ctx, false);
2599 		if (!list_empty(&ctx->schemes))
2600 			kdamond_apply_schemes(ctx);
2601 		else
2602 			damos_walk_cancel(ctx);
2603 
2604 		sample_interval = ctx->attrs.sample_interval ?
2605 			ctx->attrs.sample_interval : 1;
2606 		if (ctx->passed_sample_intervals >= next_aggregation_sis) {
2607 			if (ctx->attrs.intervals_goal.aggrs &&
2608 					ctx->passed_sample_intervals >=
2609 					ctx->next_intervals_tune_sis) {
2610 				/*
2611 				 * ctx->next_aggregation_sis might be updated
2612 				 * from kdamond_call().  In the case,
2613 				 * damon_set_attrs() which will be called from
2614 				 * kdamond_tune_interval() may wrongly think
2615 				 * this is in the middle of the current
2616 				 * aggregation, and make aggregation
2617 				 * information reset for all regions.  Then,
2618 				 * following kdamond_reset_aggregated() call
2619 				 * will make the region information invalid,
2620 				 * particularly for ->nr_accesses_bp.
2621 				 *
2622 				 * Reset ->next_aggregation_sis to avoid that.
2623 				 * It will anyway correctly updated after this
2624 				 * if caluse.
2625 				 */
2626 				ctx->next_aggregation_sis =
2627 					next_aggregation_sis;
2628 				ctx->next_intervals_tune_sis +=
2629 					ctx->attrs.aggr_samples *
2630 					ctx->attrs.intervals_goal.aggrs;
2631 				kdamond_tune_intervals(ctx);
2632 				sample_interval = ctx->attrs.sample_interval ?
2633 					ctx->attrs.sample_interval : 1;
2634 
2635 			}
2636 			ctx->next_aggregation_sis = next_aggregation_sis +
2637 				ctx->attrs.aggr_interval / sample_interval;
2638 
2639 			kdamond_reset_aggregated(ctx);
2640 			kdamond_split_regions(ctx);
2641 		}
2642 
2643 		if (ctx->passed_sample_intervals >= next_ops_update_sis) {
2644 			ctx->next_ops_update_sis = next_ops_update_sis +
2645 				ctx->attrs.ops_update_interval /
2646 				sample_interval;
2647 			if (ctx->ops.update)
2648 				ctx->ops.update(ctx);
2649 			sz_limit = damon_region_sz_limit(ctx);
2650 		}
2651 	}
2652 done:
2653 	damon_for_each_target(t, ctx) {
2654 		damon_for_each_region_safe(r, next, t)
2655 			damon_destroy_region(r, t);
2656 	}
2657 
2658 	if (ctx->ops.cleanup)
2659 		ctx->ops.cleanup(ctx);
2660 	kfree(ctx->regions_score_histogram);
2661 
2662 	pr_debug("kdamond (%d) finishes\n", current->pid);
2663 	mutex_lock(&ctx->kdamond_lock);
2664 	ctx->kdamond = NULL;
2665 	mutex_unlock(&ctx->kdamond_lock);
2666 
2667 	kdamond_call(ctx, true);
2668 	damos_walk_cancel(ctx);
2669 
2670 	mutex_lock(&damon_lock);
2671 	nr_running_ctxs--;
2672 	if (!nr_running_ctxs && running_exclusive_ctxs)
2673 		running_exclusive_ctxs = false;
2674 	mutex_unlock(&damon_lock);
2675 
2676 	damon_destroy_targets(ctx);
2677 	return 0;
2678 }
2679 
2680 /*
2681  * struct damon_system_ram_region - System RAM resource address region of
2682  *				    [@start, @end).
2683  * @start:	Start address of the region (inclusive).
2684  * @end:	End address of the region (exclusive).
2685  */
2686 struct damon_system_ram_region {
2687 	unsigned long start;
2688 	unsigned long end;
2689 };
2690 
walk_system_ram(struct resource * res,void * arg)2691 static int walk_system_ram(struct resource *res, void *arg)
2692 {
2693 	struct damon_system_ram_region *a = arg;
2694 
2695 	if (a->end - a->start < resource_size(res)) {
2696 		a->start = res->start;
2697 		a->end = res->end;
2698 	}
2699 	return 0;
2700 }
2701 
2702 /*
2703  * Find biggest 'System RAM' resource and store its start and end address in
2704  * @start and @end, respectively.  If no System RAM is found, returns false.
2705  */
damon_find_biggest_system_ram(unsigned long * start,unsigned long * end)2706 static bool damon_find_biggest_system_ram(unsigned long *start,
2707 						unsigned long *end)
2708 
2709 {
2710 	struct damon_system_ram_region arg = {};
2711 
2712 	walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
2713 	if (arg.end <= arg.start)
2714 		return false;
2715 
2716 	*start = arg.start;
2717 	*end = arg.end;
2718 	return true;
2719 }
2720 
2721 /**
2722  * damon_set_region_biggest_system_ram_default() - Set the region of the given
2723  * monitoring target as requested, or biggest 'System RAM'.
2724  * @t:		The monitoring target to set the region.
2725  * @start:	The pointer to the start address of the region.
2726  * @end:	The pointer to the end address of the region.
2727  *
2728  * This function sets the region of @t as requested by @start and @end.  If the
2729  * values of @start and @end are zero, however, this function finds the biggest
2730  * 'System RAM' resource and sets the region to cover the resource.  In the
2731  * latter case, this function saves the start and end addresses of the resource
2732  * in @start and @end, respectively.
2733  *
2734  * Return: 0 on success, negative error code otherwise.
2735  */
damon_set_region_biggest_system_ram_default(struct damon_target * t,unsigned long * start,unsigned long * end)2736 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
2737 			unsigned long *start, unsigned long *end)
2738 {
2739 	struct damon_addr_range addr_range;
2740 
2741 	if (*start > *end)
2742 		return -EINVAL;
2743 
2744 	if (!*start && !*end &&
2745 		!damon_find_biggest_system_ram(start, end))
2746 		return -EINVAL;
2747 
2748 	addr_range.start = *start;
2749 	addr_range.end = *end;
2750 	return damon_set_regions(t, &addr_range, 1);
2751 }
2752 
2753 /*
2754  * damon_moving_sum() - Calculate an inferred moving sum value.
2755  * @mvsum:	Inferred sum of the last @len_window values.
2756  * @nomvsum:	Non-moving sum of the last discrete @len_window window values.
2757  * @len_window:	The number of last values to take care of.
2758  * @new_value:	New value that will be added to the pseudo moving sum.
2759  *
2760  * Moving sum (moving average * window size) is good for handling noise, but
2761  * the cost of keeping past values can be high for arbitrary window size.  This
2762  * function implements a lightweight pseudo moving sum function that doesn't
2763  * keep the past window values.
2764  *
2765  * It simply assumes there was no noise in the past, and get the no-noise
2766  * assumed past value to drop from @nomvsum and @len_window.  @nomvsum is a
2767  * non-moving sum of the last window.  For example, if @len_window is 10 and we
2768  * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25
2769  * values.  Hence, this function simply drops @nomvsum / @len_window from
2770  * given @mvsum and add @new_value.
2771  *
2772  * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for
2773  * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20.  For
2774  * calculating next moving sum with a new value, we should drop 0 from 50 and
2775  * add the new value.  However, this function assumes it got value 5 for each
2776  * of the last ten times.  Based on the assumption, when the next value is
2777  * measured, it drops the assumed past value, 5 from the current sum, and add
2778  * the new value to get the updated pseduo-moving average.
2779  *
2780  * This means the value could have errors, but the errors will be disappeared
2781  * for every @len_window aligned calls.  For example, if @len_window is 10, the
2782  * pseudo moving sum with 11th value to 19th value would have an error.  But
2783  * the sum with 20th value will not have the error.
2784  *
2785  * Return: Pseudo-moving average after getting the @new_value.
2786  */
damon_moving_sum(unsigned int mvsum,unsigned int nomvsum,unsigned int len_window,unsigned int new_value)2787 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum,
2788 		unsigned int len_window, unsigned int new_value)
2789 {
2790 	return mvsum - nomvsum / len_window + new_value;
2791 }
2792 
2793 /**
2794  * damon_update_region_access_rate() - Update the access rate of a region.
2795  * @r:		The DAMON region to update for its access check result.
2796  * @accessed:	Whether the region has accessed during last sampling interval.
2797  * @attrs:	The damon_attrs of the DAMON context.
2798  *
2799  * Update the access rate of a region with the region's last sampling interval
2800  * access check result.
2801  *
2802  * Usually this will be called by &damon_operations->check_accesses callback.
2803  */
damon_update_region_access_rate(struct damon_region * r,bool accessed,struct damon_attrs * attrs)2804 void damon_update_region_access_rate(struct damon_region *r, bool accessed,
2805 		struct damon_attrs *attrs)
2806 {
2807 	unsigned int len_window = 1;
2808 
2809 	/*
2810 	 * sample_interval can be zero, but cannot be larger than
2811 	 * aggr_interval, owing to validation of damon_set_attrs().
2812 	 */
2813 	if (attrs->sample_interval)
2814 		len_window = damon_max_nr_accesses(attrs);
2815 	r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp,
2816 			r->last_nr_accesses * 10000, len_window,
2817 			accessed ? 10000 : 0);
2818 
2819 	if (accessed)
2820 		r->nr_accesses++;
2821 }
2822 
damon_init(void)2823 static int __init damon_init(void)
2824 {
2825 	damon_region_cache = KMEM_CACHE(damon_region, 0);
2826 	if (unlikely(!damon_region_cache)) {
2827 		pr_err("creating damon_region_cache fails\n");
2828 		return -ENOMEM;
2829 	}
2830 
2831 	return 0;
2832 }
2833 
2834 subsys_initcall(damon_init);
2835 
2836 #include "tests/core-kunit.h"
2837