1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Data Access Monitor
4 *
5 * Author: SeongJae Park <sj@kernel.org>
6 */
7
8 #define pr_fmt(fmt) "damon: " fmt
9
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/mm.h>
14 #include <linux/psi.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/string_choices.h>
18
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/damon.h>
21
22 #ifdef CONFIG_DAMON_KUNIT_TEST
23 #undef DAMON_MIN_REGION
24 #define DAMON_MIN_REGION 1
25 #endif
26
27 static DEFINE_MUTEX(damon_lock);
28 static int nr_running_ctxs;
29 static bool running_exclusive_ctxs;
30
31 static DEFINE_MUTEX(damon_ops_lock);
32 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
33
34 static struct kmem_cache *damon_region_cache __ro_after_init;
35
36 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
__damon_is_registered_ops(enum damon_ops_id id)37 static bool __damon_is_registered_ops(enum damon_ops_id id)
38 {
39 struct damon_operations empty_ops = {};
40
41 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
42 return false;
43 return true;
44 }
45
46 /**
47 * damon_is_registered_ops() - Check if a given damon_operations is registered.
48 * @id: Id of the damon_operations to check if registered.
49 *
50 * Return: true if the ops is set, false otherwise.
51 */
damon_is_registered_ops(enum damon_ops_id id)52 bool damon_is_registered_ops(enum damon_ops_id id)
53 {
54 bool registered;
55
56 if (id >= NR_DAMON_OPS)
57 return false;
58 mutex_lock(&damon_ops_lock);
59 registered = __damon_is_registered_ops(id);
60 mutex_unlock(&damon_ops_lock);
61 return registered;
62 }
63
64 /**
65 * damon_register_ops() - Register a monitoring operations set to DAMON.
66 * @ops: monitoring operations set to register.
67 *
68 * This function registers a monitoring operations set of valid &struct
69 * damon_operations->id so that others can find and use them later.
70 *
71 * Return: 0 on success, negative error code otherwise.
72 */
damon_register_ops(struct damon_operations * ops)73 int damon_register_ops(struct damon_operations *ops)
74 {
75 int err = 0;
76
77 if (ops->id >= NR_DAMON_OPS)
78 return -EINVAL;
79
80 mutex_lock(&damon_ops_lock);
81 /* Fail for already registered ops */
82 if (__damon_is_registered_ops(ops->id))
83 err = -EINVAL;
84 else
85 damon_registered_ops[ops->id] = *ops;
86 mutex_unlock(&damon_ops_lock);
87 return err;
88 }
89
90 /**
91 * damon_select_ops() - Select a monitoring operations to use with the context.
92 * @ctx: monitoring context to use the operations.
93 * @id: id of the registered monitoring operations to select.
94 *
95 * This function finds registered monitoring operations set of @id and make
96 * @ctx to use it.
97 *
98 * Return: 0 on success, negative error code otherwise.
99 */
damon_select_ops(struct damon_ctx * ctx,enum damon_ops_id id)100 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
101 {
102 int err = 0;
103
104 if (id >= NR_DAMON_OPS)
105 return -EINVAL;
106
107 mutex_lock(&damon_ops_lock);
108 if (!__damon_is_registered_ops(id))
109 err = -EINVAL;
110 else
111 ctx->ops = damon_registered_ops[id];
112 mutex_unlock(&damon_ops_lock);
113 return err;
114 }
115
116 /*
117 * Construct a damon_region struct
118 *
119 * Returns the pointer to the new struct if success, or NULL otherwise
120 */
damon_new_region(unsigned long start,unsigned long end)121 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
122 {
123 struct damon_region *region;
124
125 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
126 if (!region)
127 return NULL;
128
129 region->ar.start = start;
130 region->ar.end = end;
131 region->nr_accesses = 0;
132 region->nr_accesses_bp = 0;
133 INIT_LIST_HEAD(®ion->list);
134
135 region->age = 0;
136 region->last_nr_accesses = 0;
137
138 return region;
139 }
140
damon_add_region(struct damon_region * r,struct damon_target * t)141 void damon_add_region(struct damon_region *r, struct damon_target *t)
142 {
143 list_add_tail(&r->list, &t->regions_list);
144 t->nr_regions++;
145 }
146
damon_del_region(struct damon_region * r,struct damon_target * t)147 static void damon_del_region(struct damon_region *r, struct damon_target *t)
148 {
149 list_del(&r->list);
150 t->nr_regions--;
151 }
152
damon_free_region(struct damon_region * r)153 static void damon_free_region(struct damon_region *r)
154 {
155 kmem_cache_free(damon_region_cache, r);
156 }
157
damon_destroy_region(struct damon_region * r,struct damon_target * t)158 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
159 {
160 damon_del_region(r, t);
161 damon_free_region(r);
162 }
163
164 /*
165 * Check whether a region is intersecting an address range
166 *
167 * Returns true if it is.
168 */
damon_intersect(struct damon_region * r,struct damon_addr_range * re)169 static bool damon_intersect(struct damon_region *r,
170 struct damon_addr_range *re)
171 {
172 return !(r->ar.end <= re->start || re->end <= r->ar.start);
173 }
174
175 /*
176 * Fill holes in regions with new regions.
177 */
damon_fill_regions_holes(struct damon_region * first,struct damon_region * last,struct damon_target * t)178 static int damon_fill_regions_holes(struct damon_region *first,
179 struct damon_region *last, struct damon_target *t)
180 {
181 struct damon_region *r = first;
182
183 damon_for_each_region_from(r, t) {
184 struct damon_region *next, *newr;
185
186 if (r == last)
187 break;
188 next = damon_next_region(r);
189 if (r->ar.end != next->ar.start) {
190 newr = damon_new_region(r->ar.end, next->ar.start);
191 if (!newr)
192 return -ENOMEM;
193 damon_insert_region(newr, r, next, t);
194 }
195 }
196 return 0;
197 }
198
199 /*
200 * damon_set_regions() - Set regions of a target for given address ranges.
201 * @t: the given target.
202 * @ranges: array of new monitoring target ranges.
203 * @nr_ranges: length of @ranges.
204 *
205 * This function adds new regions to, or modify existing regions of a
206 * monitoring target to fit in specific ranges.
207 *
208 * Return: 0 if success, or negative error code otherwise.
209 */
damon_set_regions(struct damon_target * t,struct damon_addr_range * ranges,unsigned int nr_ranges)210 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
211 unsigned int nr_ranges)
212 {
213 struct damon_region *r, *next;
214 unsigned int i;
215 int err;
216
217 /* Remove regions which are not in the new ranges */
218 damon_for_each_region_safe(r, next, t) {
219 for (i = 0; i < nr_ranges; i++) {
220 if (damon_intersect(r, &ranges[i]))
221 break;
222 }
223 if (i == nr_ranges)
224 damon_destroy_region(r, t);
225 }
226
227 r = damon_first_region(t);
228 /* Add new regions or resize existing regions to fit in the ranges */
229 for (i = 0; i < nr_ranges; i++) {
230 struct damon_region *first = NULL, *last, *newr;
231 struct damon_addr_range *range;
232
233 range = &ranges[i];
234 /* Get the first/last regions intersecting with the range */
235 damon_for_each_region_from(r, t) {
236 if (damon_intersect(r, range)) {
237 if (!first)
238 first = r;
239 last = r;
240 }
241 if (r->ar.start >= range->end)
242 break;
243 }
244 if (!first) {
245 /* no region intersects with this range */
246 newr = damon_new_region(
247 ALIGN_DOWN(range->start,
248 DAMON_MIN_REGION),
249 ALIGN(range->end, DAMON_MIN_REGION));
250 if (!newr)
251 return -ENOMEM;
252 damon_insert_region(newr, damon_prev_region(r), r, t);
253 } else {
254 /* resize intersecting regions to fit in this range */
255 first->ar.start = ALIGN_DOWN(range->start,
256 DAMON_MIN_REGION);
257 last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
258
259 /* fill possible holes in the range */
260 err = damon_fill_regions_holes(first, last, t);
261 if (err)
262 return err;
263 }
264 }
265 return 0;
266 }
267
damos_new_filter(enum damos_filter_type type,bool matching,bool allow)268 struct damos_filter *damos_new_filter(enum damos_filter_type type,
269 bool matching, bool allow)
270 {
271 struct damos_filter *filter;
272
273 filter = kmalloc(sizeof(*filter), GFP_KERNEL);
274 if (!filter)
275 return NULL;
276 filter->type = type;
277 filter->matching = matching;
278 filter->allow = allow;
279 INIT_LIST_HEAD(&filter->list);
280 return filter;
281 }
282
283 /**
284 * damos_filter_for_ops() - Return if the filter is ops-hndled one.
285 * @type: type of the filter.
286 *
287 * Return: true if the filter of @type needs to be handled by ops layer, false
288 * otherwise.
289 */
damos_filter_for_ops(enum damos_filter_type type)290 bool damos_filter_for_ops(enum damos_filter_type type)
291 {
292 switch (type) {
293 case DAMOS_FILTER_TYPE_ADDR:
294 case DAMOS_FILTER_TYPE_TARGET:
295 return false;
296 default:
297 break;
298 }
299 return true;
300 }
301
damos_add_filter(struct damos * s,struct damos_filter * f)302 void damos_add_filter(struct damos *s, struct damos_filter *f)
303 {
304 if (damos_filter_for_ops(f->type))
305 list_add_tail(&f->list, &s->ops_filters);
306 else
307 list_add_tail(&f->list, &s->filters);
308 }
309
damos_del_filter(struct damos_filter * f)310 static void damos_del_filter(struct damos_filter *f)
311 {
312 list_del(&f->list);
313 }
314
damos_free_filter(struct damos_filter * f)315 static void damos_free_filter(struct damos_filter *f)
316 {
317 kfree(f);
318 }
319
damos_destroy_filter(struct damos_filter * f)320 void damos_destroy_filter(struct damos_filter *f)
321 {
322 damos_del_filter(f);
323 damos_free_filter(f);
324 }
325
damos_new_quota_goal(enum damos_quota_goal_metric metric,unsigned long target_value)326 struct damos_quota_goal *damos_new_quota_goal(
327 enum damos_quota_goal_metric metric,
328 unsigned long target_value)
329 {
330 struct damos_quota_goal *goal;
331
332 goal = kmalloc(sizeof(*goal), GFP_KERNEL);
333 if (!goal)
334 return NULL;
335 goal->metric = metric;
336 goal->target_value = target_value;
337 INIT_LIST_HEAD(&goal->list);
338 return goal;
339 }
340
damos_add_quota_goal(struct damos_quota * q,struct damos_quota_goal * g)341 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g)
342 {
343 list_add_tail(&g->list, &q->goals);
344 }
345
damos_del_quota_goal(struct damos_quota_goal * g)346 static void damos_del_quota_goal(struct damos_quota_goal *g)
347 {
348 list_del(&g->list);
349 }
350
damos_free_quota_goal(struct damos_quota_goal * g)351 static void damos_free_quota_goal(struct damos_quota_goal *g)
352 {
353 kfree(g);
354 }
355
damos_destroy_quota_goal(struct damos_quota_goal * g)356 void damos_destroy_quota_goal(struct damos_quota_goal *g)
357 {
358 damos_del_quota_goal(g);
359 damos_free_quota_goal(g);
360 }
361
362 /* initialize fields of @quota that normally API users wouldn't set */
damos_quota_init(struct damos_quota * quota)363 static struct damos_quota *damos_quota_init(struct damos_quota *quota)
364 {
365 quota->esz = 0;
366 quota->total_charged_sz = 0;
367 quota->total_charged_ns = 0;
368 quota->charged_sz = 0;
369 quota->charged_from = 0;
370 quota->charge_target_from = NULL;
371 quota->charge_addr_from = 0;
372 quota->esz_bp = 0;
373 return quota;
374 }
375
damon_new_scheme(struct damos_access_pattern * pattern,enum damos_action action,unsigned long apply_interval_us,struct damos_quota * quota,struct damos_watermarks * wmarks,int target_nid)376 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
377 enum damos_action action,
378 unsigned long apply_interval_us,
379 struct damos_quota *quota,
380 struct damos_watermarks *wmarks,
381 int target_nid)
382 {
383 struct damos *scheme;
384
385 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
386 if (!scheme)
387 return NULL;
388 scheme->pattern = *pattern;
389 scheme->action = action;
390 scheme->apply_interval_us = apply_interval_us;
391 /*
392 * next_apply_sis will be set when kdamond starts. While kdamond is
393 * running, it will also updated when it is added to the DAMON context,
394 * or damon_attrs are updated.
395 */
396 scheme->next_apply_sis = 0;
397 scheme->walk_completed = false;
398 INIT_LIST_HEAD(&scheme->filters);
399 INIT_LIST_HEAD(&scheme->ops_filters);
400 scheme->stat = (struct damos_stat){};
401 INIT_LIST_HEAD(&scheme->list);
402
403 scheme->quota = *(damos_quota_init(quota));
404 /* quota.goals should be separately set by caller */
405 INIT_LIST_HEAD(&scheme->quota.goals);
406
407 scheme->wmarks = *wmarks;
408 scheme->wmarks.activated = true;
409
410 scheme->target_nid = target_nid;
411
412 return scheme;
413 }
414
damos_set_next_apply_sis(struct damos * s,struct damon_ctx * ctx)415 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx)
416 {
417 unsigned long sample_interval = ctx->attrs.sample_interval ?
418 ctx->attrs.sample_interval : 1;
419 unsigned long apply_interval = s->apply_interval_us ?
420 s->apply_interval_us : ctx->attrs.aggr_interval;
421
422 s->next_apply_sis = ctx->passed_sample_intervals +
423 apply_interval / sample_interval;
424 }
425
damon_add_scheme(struct damon_ctx * ctx,struct damos * s)426 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
427 {
428 list_add_tail(&s->list, &ctx->schemes);
429 damos_set_next_apply_sis(s, ctx);
430 }
431
damon_del_scheme(struct damos * s)432 static void damon_del_scheme(struct damos *s)
433 {
434 list_del(&s->list);
435 }
436
damon_free_scheme(struct damos * s)437 static void damon_free_scheme(struct damos *s)
438 {
439 kfree(s);
440 }
441
damon_destroy_scheme(struct damos * s)442 void damon_destroy_scheme(struct damos *s)
443 {
444 struct damos_quota_goal *g, *g_next;
445 struct damos_filter *f, *next;
446
447 damos_for_each_quota_goal_safe(g, g_next, &s->quota)
448 damos_destroy_quota_goal(g);
449
450 damos_for_each_filter_safe(f, next, s)
451 damos_destroy_filter(f);
452 damon_del_scheme(s);
453 damon_free_scheme(s);
454 }
455
456 /*
457 * Construct a damon_target struct
458 *
459 * Returns the pointer to the new struct if success, or NULL otherwise
460 */
damon_new_target(void)461 struct damon_target *damon_new_target(void)
462 {
463 struct damon_target *t;
464
465 t = kmalloc(sizeof(*t), GFP_KERNEL);
466 if (!t)
467 return NULL;
468
469 t->pid = NULL;
470 t->nr_regions = 0;
471 INIT_LIST_HEAD(&t->regions_list);
472 INIT_LIST_HEAD(&t->list);
473
474 return t;
475 }
476
damon_add_target(struct damon_ctx * ctx,struct damon_target * t)477 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
478 {
479 list_add_tail(&t->list, &ctx->adaptive_targets);
480 }
481
damon_targets_empty(struct damon_ctx * ctx)482 bool damon_targets_empty(struct damon_ctx *ctx)
483 {
484 return list_empty(&ctx->adaptive_targets);
485 }
486
damon_del_target(struct damon_target * t)487 static void damon_del_target(struct damon_target *t)
488 {
489 list_del(&t->list);
490 }
491
damon_free_target(struct damon_target * t)492 void damon_free_target(struct damon_target *t)
493 {
494 struct damon_region *r, *next;
495
496 damon_for_each_region_safe(r, next, t)
497 damon_free_region(r);
498 kfree(t);
499 }
500
damon_destroy_target(struct damon_target * t)501 void damon_destroy_target(struct damon_target *t)
502 {
503 damon_del_target(t);
504 damon_free_target(t);
505 }
506
damon_nr_regions(struct damon_target * t)507 unsigned int damon_nr_regions(struct damon_target *t)
508 {
509 return t->nr_regions;
510 }
511
damon_new_ctx(void)512 struct damon_ctx *damon_new_ctx(void)
513 {
514 struct damon_ctx *ctx;
515
516 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
517 if (!ctx)
518 return NULL;
519
520 init_completion(&ctx->kdamond_started);
521
522 ctx->attrs.sample_interval = 5 * 1000;
523 ctx->attrs.aggr_interval = 100 * 1000;
524 ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
525
526 ctx->passed_sample_intervals = 0;
527 /* These will be set from kdamond_init_ctx() */
528 ctx->next_aggregation_sis = 0;
529 ctx->next_ops_update_sis = 0;
530
531 mutex_init(&ctx->kdamond_lock);
532 mutex_init(&ctx->call_control_lock);
533 mutex_init(&ctx->walk_control_lock);
534
535 ctx->attrs.min_nr_regions = 10;
536 ctx->attrs.max_nr_regions = 1000;
537
538 INIT_LIST_HEAD(&ctx->adaptive_targets);
539 INIT_LIST_HEAD(&ctx->schemes);
540
541 return ctx;
542 }
543
damon_destroy_targets(struct damon_ctx * ctx)544 static void damon_destroy_targets(struct damon_ctx *ctx)
545 {
546 struct damon_target *t, *next_t;
547
548 if (ctx->ops.cleanup) {
549 ctx->ops.cleanup(ctx);
550 return;
551 }
552
553 damon_for_each_target_safe(t, next_t, ctx)
554 damon_destroy_target(t);
555 }
556
damon_destroy_ctx(struct damon_ctx * ctx)557 void damon_destroy_ctx(struct damon_ctx *ctx)
558 {
559 struct damos *s, *next_s;
560
561 damon_destroy_targets(ctx);
562
563 damon_for_each_scheme_safe(s, next_s, ctx)
564 damon_destroy_scheme(s);
565
566 kfree(ctx);
567 }
568
damon_age_for_new_attrs(unsigned int age,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)569 static unsigned int damon_age_for_new_attrs(unsigned int age,
570 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
571 {
572 return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
573 }
574
575 /* convert access ratio in bp (per 10,000) to nr_accesses */
damon_accesses_bp_to_nr_accesses(unsigned int accesses_bp,struct damon_attrs * attrs)576 static unsigned int damon_accesses_bp_to_nr_accesses(
577 unsigned int accesses_bp, struct damon_attrs *attrs)
578 {
579 return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
580 }
581
582 /*
583 * Convert nr_accesses to access ratio in bp (per 10,000).
584 *
585 * Callers should ensure attrs.aggr_interval is not zero, like
586 * damon_update_monitoring_results() does . Otherwise, divide-by-zero would
587 * happen.
588 */
damon_nr_accesses_to_accesses_bp(unsigned int nr_accesses,struct damon_attrs * attrs)589 static unsigned int damon_nr_accesses_to_accesses_bp(
590 unsigned int nr_accesses, struct damon_attrs *attrs)
591 {
592 return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
593 }
594
damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)595 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
596 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
597 {
598 return damon_accesses_bp_to_nr_accesses(
599 damon_nr_accesses_to_accesses_bp(
600 nr_accesses, old_attrs),
601 new_attrs);
602 }
603
damon_update_monitoring_result(struct damon_region * r,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs,bool aggregating)604 static void damon_update_monitoring_result(struct damon_region *r,
605 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs,
606 bool aggregating)
607 {
608 if (!aggregating) {
609 r->nr_accesses = damon_nr_accesses_for_new_attrs(
610 r->nr_accesses, old_attrs, new_attrs);
611 r->nr_accesses_bp = r->nr_accesses * 10000;
612 } else {
613 /*
614 * if this is called in the middle of the aggregation, reset
615 * the aggregations we made so far for this aggregation
616 * interval. In other words, make the status like
617 * kdamond_reset_aggregated() is called.
618 */
619 r->last_nr_accesses = damon_nr_accesses_for_new_attrs(
620 r->last_nr_accesses, old_attrs, new_attrs);
621 r->nr_accesses_bp = r->last_nr_accesses * 10000;
622 r->nr_accesses = 0;
623 }
624 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
625 }
626
627 /*
628 * region->nr_accesses is the number of sampling intervals in the last
629 * aggregation interval that access to the region has found, and region->age is
630 * the number of aggregation intervals that its access pattern has maintained.
631 * For the reason, the real meaning of the two fields depend on current
632 * sampling interval and aggregation interval. This function updates
633 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
634 */
damon_update_monitoring_results(struct damon_ctx * ctx,struct damon_attrs * new_attrs,bool aggregating)635 static void damon_update_monitoring_results(struct damon_ctx *ctx,
636 struct damon_attrs *new_attrs, bool aggregating)
637 {
638 struct damon_attrs *old_attrs = &ctx->attrs;
639 struct damon_target *t;
640 struct damon_region *r;
641
642 /* if any interval is zero, simply forgive conversion */
643 if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
644 !new_attrs->sample_interval ||
645 !new_attrs->aggr_interval)
646 return;
647
648 damon_for_each_target(t, ctx)
649 damon_for_each_region(r, t)
650 damon_update_monitoring_result(
651 r, old_attrs, new_attrs, aggregating);
652 }
653
654 /*
655 * damon_valid_intervals_goal() - return if the intervals goal of @attrs is
656 * valid.
657 */
damon_valid_intervals_goal(struct damon_attrs * attrs)658 static bool damon_valid_intervals_goal(struct damon_attrs *attrs)
659 {
660 struct damon_intervals_goal *goal = &attrs->intervals_goal;
661
662 /* tuning is disabled */
663 if (!goal->aggrs)
664 return true;
665 if (goal->min_sample_us > goal->max_sample_us)
666 return false;
667 if (attrs->sample_interval < goal->min_sample_us ||
668 goal->max_sample_us < attrs->sample_interval)
669 return false;
670 return true;
671 }
672
673 /**
674 * damon_set_attrs() - Set attributes for the monitoring.
675 * @ctx: monitoring context
676 * @attrs: monitoring attributes
677 *
678 * This function should be called while the kdamond is not running, an access
679 * check results aggregation is not ongoing (e.g., from &struct
680 * damon_callback->after_aggregation or &struct
681 * damon_callback->after_wmarks_check callbacks), or from damon_call().
682 *
683 * Every time interval is in micro-seconds.
684 *
685 * Return: 0 on success, negative error code otherwise.
686 */
damon_set_attrs(struct damon_ctx * ctx,struct damon_attrs * attrs)687 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
688 {
689 unsigned long sample_interval = attrs->sample_interval ?
690 attrs->sample_interval : 1;
691 struct damos *s;
692 bool aggregating = ctx->passed_sample_intervals <
693 ctx->next_aggregation_sis;
694
695 if (!damon_valid_intervals_goal(attrs))
696 return -EINVAL;
697
698 if (attrs->min_nr_regions < 3)
699 return -EINVAL;
700 if (attrs->min_nr_regions > attrs->max_nr_regions)
701 return -EINVAL;
702 if (attrs->sample_interval > attrs->aggr_interval)
703 return -EINVAL;
704
705 /* calls from core-external doesn't set this. */
706 if (!attrs->aggr_samples)
707 attrs->aggr_samples = attrs->aggr_interval / sample_interval;
708
709 ctx->next_aggregation_sis = ctx->passed_sample_intervals +
710 attrs->aggr_interval / sample_interval;
711 ctx->next_ops_update_sis = ctx->passed_sample_intervals +
712 attrs->ops_update_interval / sample_interval;
713
714 damon_update_monitoring_results(ctx, attrs, aggregating);
715 ctx->attrs = *attrs;
716
717 damon_for_each_scheme(s, ctx)
718 damos_set_next_apply_sis(s, ctx);
719
720 return 0;
721 }
722
723 /**
724 * damon_set_schemes() - Set data access monitoring based operation schemes.
725 * @ctx: monitoring context
726 * @schemes: array of the schemes
727 * @nr_schemes: number of entries in @schemes
728 *
729 * This function should not be called while the kdamond of the context is
730 * running.
731 */
damon_set_schemes(struct damon_ctx * ctx,struct damos ** schemes,ssize_t nr_schemes)732 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
733 ssize_t nr_schemes)
734 {
735 struct damos *s, *next;
736 ssize_t i;
737
738 damon_for_each_scheme_safe(s, next, ctx)
739 damon_destroy_scheme(s);
740 for (i = 0; i < nr_schemes; i++)
741 damon_add_scheme(ctx, schemes[i]);
742 }
743
damos_nth_quota_goal(int n,struct damos_quota * q)744 static struct damos_quota_goal *damos_nth_quota_goal(
745 int n, struct damos_quota *q)
746 {
747 struct damos_quota_goal *goal;
748 int i = 0;
749
750 damos_for_each_quota_goal(goal, q) {
751 if (i++ == n)
752 return goal;
753 }
754 return NULL;
755 }
756
damos_commit_quota_goal_union(struct damos_quota_goal * dst,struct damos_quota_goal * src)757 static void damos_commit_quota_goal_union(
758 struct damos_quota_goal *dst, struct damos_quota_goal *src)
759 {
760 switch (dst->metric) {
761 case DAMOS_QUOTA_NODE_MEM_USED_BP:
762 case DAMOS_QUOTA_NODE_MEM_FREE_BP:
763 dst->nid = src->nid;
764 break;
765 default:
766 break;
767 }
768 }
769
damos_commit_quota_goal(struct damos_quota_goal * dst,struct damos_quota_goal * src)770 static void damos_commit_quota_goal(
771 struct damos_quota_goal *dst, struct damos_quota_goal *src)
772 {
773 dst->metric = src->metric;
774 dst->target_value = src->target_value;
775 if (dst->metric == DAMOS_QUOTA_USER_INPUT)
776 dst->current_value = src->current_value;
777 /* keep last_psi_total as is, since it will be updated in next cycle */
778 damos_commit_quota_goal_union(dst, src);
779 }
780
781 /**
782 * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota.
783 * @dst: The commit destination DAMOS quota.
784 * @src: The commit source DAMOS quota.
785 *
786 * Copies user-specified parameters for quota goals from @src to @dst. Users
787 * should use this function for quota goals-level parameters update of running
788 * DAMON contexts, instead of manual in-place updates.
789 *
790 * This function should be called from parameters-update safe context, like
791 * DAMON callbacks.
792 */
damos_commit_quota_goals(struct damos_quota * dst,struct damos_quota * src)793 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src)
794 {
795 struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal;
796 int i = 0, j = 0;
797
798 damos_for_each_quota_goal_safe(dst_goal, next, dst) {
799 src_goal = damos_nth_quota_goal(i++, src);
800 if (src_goal)
801 damos_commit_quota_goal(dst_goal, src_goal);
802 else
803 damos_destroy_quota_goal(dst_goal);
804 }
805 damos_for_each_quota_goal_safe(src_goal, next, src) {
806 if (j++ < i)
807 continue;
808 new_goal = damos_new_quota_goal(
809 src_goal->metric, src_goal->target_value);
810 if (!new_goal)
811 return -ENOMEM;
812 damos_commit_quota_goal_union(new_goal, src_goal);
813 damos_add_quota_goal(dst, new_goal);
814 }
815 return 0;
816 }
817
damos_commit_quota(struct damos_quota * dst,struct damos_quota * src)818 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src)
819 {
820 int err;
821
822 dst->reset_interval = src->reset_interval;
823 dst->ms = src->ms;
824 dst->sz = src->sz;
825 err = damos_commit_quota_goals(dst, src);
826 if (err)
827 return err;
828 dst->weight_sz = src->weight_sz;
829 dst->weight_nr_accesses = src->weight_nr_accesses;
830 dst->weight_age = src->weight_age;
831 return 0;
832 }
833
damos_nth_filter(int n,struct damos * s)834 static struct damos_filter *damos_nth_filter(int n, struct damos *s)
835 {
836 struct damos_filter *filter;
837 int i = 0;
838
839 damos_for_each_filter(filter, s) {
840 if (i++ == n)
841 return filter;
842 }
843 return NULL;
844 }
845
damos_commit_filter_arg(struct damos_filter * dst,struct damos_filter * src)846 static void damos_commit_filter_arg(
847 struct damos_filter *dst, struct damos_filter *src)
848 {
849 switch (dst->type) {
850 case DAMOS_FILTER_TYPE_MEMCG:
851 dst->memcg_id = src->memcg_id;
852 break;
853 case DAMOS_FILTER_TYPE_ADDR:
854 dst->addr_range = src->addr_range;
855 break;
856 case DAMOS_FILTER_TYPE_TARGET:
857 dst->target_idx = src->target_idx;
858 break;
859 case DAMOS_FILTER_TYPE_HUGEPAGE_SIZE:
860 dst->sz_range = src->sz_range;
861 break;
862 default:
863 break;
864 }
865 }
866
damos_commit_filter(struct damos_filter * dst,struct damos_filter * src)867 static void damos_commit_filter(
868 struct damos_filter *dst, struct damos_filter *src)
869 {
870 dst->type = src->type;
871 dst->matching = src->matching;
872 damos_commit_filter_arg(dst, src);
873 }
874
damos_commit_core_filters(struct damos * dst,struct damos * src)875 static int damos_commit_core_filters(struct damos *dst, struct damos *src)
876 {
877 struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
878 int i = 0, j = 0;
879
880 damos_for_each_filter_safe(dst_filter, next, dst) {
881 src_filter = damos_nth_filter(i++, src);
882 if (src_filter)
883 damos_commit_filter(dst_filter, src_filter);
884 else
885 damos_destroy_filter(dst_filter);
886 }
887
888 damos_for_each_filter_safe(src_filter, next, src) {
889 if (j++ < i)
890 continue;
891
892 new_filter = damos_new_filter(
893 src_filter->type, src_filter->matching,
894 src_filter->allow);
895 if (!new_filter)
896 return -ENOMEM;
897 damos_commit_filter_arg(new_filter, src_filter);
898 damos_add_filter(dst, new_filter);
899 }
900 return 0;
901 }
902
damos_commit_ops_filters(struct damos * dst,struct damos * src)903 static int damos_commit_ops_filters(struct damos *dst, struct damos *src)
904 {
905 struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
906 int i = 0, j = 0;
907
908 damos_for_each_ops_filter_safe(dst_filter, next, dst) {
909 src_filter = damos_nth_filter(i++, src);
910 if (src_filter)
911 damos_commit_filter(dst_filter, src_filter);
912 else
913 damos_destroy_filter(dst_filter);
914 }
915
916 damos_for_each_ops_filter_safe(src_filter, next, src) {
917 if (j++ < i)
918 continue;
919
920 new_filter = damos_new_filter(
921 src_filter->type, src_filter->matching,
922 src_filter->allow);
923 if (!new_filter)
924 return -ENOMEM;
925 damos_commit_filter_arg(new_filter, src_filter);
926 damos_add_filter(dst, new_filter);
927 }
928 return 0;
929 }
930
931 /**
932 * damos_filters_default_reject() - decide whether to reject memory that didn't
933 * match with any given filter.
934 * @filters: Given DAMOS filters of a group.
935 */
damos_filters_default_reject(struct list_head * filters)936 static bool damos_filters_default_reject(struct list_head *filters)
937 {
938 struct damos_filter *last_filter;
939
940 if (list_empty(filters))
941 return false;
942 last_filter = list_last_entry(filters, struct damos_filter, list);
943 return last_filter->allow;
944 }
945
damos_set_filters_default_reject(struct damos * s)946 static void damos_set_filters_default_reject(struct damos *s)
947 {
948 if (!list_empty(&s->ops_filters))
949 s->core_filters_default_reject = false;
950 else
951 s->core_filters_default_reject =
952 damos_filters_default_reject(&s->filters);
953 s->ops_filters_default_reject =
954 damos_filters_default_reject(&s->ops_filters);
955 }
956
damos_commit_filters(struct damos * dst,struct damos * src)957 static int damos_commit_filters(struct damos *dst, struct damos *src)
958 {
959 int err;
960
961 err = damos_commit_core_filters(dst, src);
962 if (err)
963 return err;
964 err = damos_commit_ops_filters(dst, src);
965 if (err)
966 return err;
967 damos_set_filters_default_reject(dst);
968 return 0;
969 }
970
damon_nth_scheme(int n,struct damon_ctx * ctx)971 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx)
972 {
973 struct damos *s;
974 int i = 0;
975
976 damon_for_each_scheme(s, ctx) {
977 if (i++ == n)
978 return s;
979 }
980 return NULL;
981 }
982
damos_commit(struct damos * dst,struct damos * src)983 static int damos_commit(struct damos *dst, struct damos *src)
984 {
985 int err;
986
987 dst->pattern = src->pattern;
988 dst->action = src->action;
989 dst->apply_interval_us = src->apply_interval_us;
990
991 err = damos_commit_quota(&dst->quota, &src->quota);
992 if (err)
993 return err;
994
995 dst->wmarks = src->wmarks;
996
997 err = damos_commit_filters(dst, src);
998 return err;
999 }
1000
damon_commit_schemes(struct damon_ctx * dst,struct damon_ctx * src)1001 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src)
1002 {
1003 struct damos *dst_scheme, *next, *src_scheme, *new_scheme;
1004 int i = 0, j = 0, err;
1005
1006 damon_for_each_scheme_safe(dst_scheme, next, dst) {
1007 src_scheme = damon_nth_scheme(i++, src);
1008 if (src_scheme) {
1009 err = damos_commit(dst_scheme, src_scheme);
1010 if (err)
1011 return err;
1012 } else {
1013 damon_destroy_scheme(dst_scheme);
1014 }
1015 }
1016
1017 damon_for_each_scheme_safe(src_scheme, next, src) {
1018 if (j++ < i)
1019 continue;
1020 new_scheme = damon_new_scheme(&src_scheme->pattern,
1021 src_scheme->action,
1022 src_scheme->apply_interval_us,
1023 &src_scheme->quota, &src_scheme->wmarks,
1024 NUMA_NO_NODE);
1025 if (!new_scheme)
1026 return -ENOMEM;
1027 err = damos_commit(new_scheme, src_scheme);
1028 if (err) {
1029 damon_destroy_scheme(new_scheme);
1030 return err;
1031 }
1032 damon_add_scheme(dst, new_scheme);
1033 }
1034 return 0;
1035 }
1036
damon_nth_target(int n,struct damon_ctx * ctx)1037 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx)
1038 {
1039 struct damon_target *t;
1040 int i = 0;
1041
1042 damon_for_each_target(t, ctx) {
1043 if (i++ == n)
1044 return t;
1045 }
1046 return NULL;
1047 }
1048
1049 /*
1050 * The caller should ensure the regions of @src are
1051 * 1. valid (end >= src) and
1052 * 2. sorted by starting address.
1053 *
1054 * If @src has no region, @dst keeps current regions.
1055 */
damon_commit_target_regions(struct damon_target * dst,struct damon_target * src)1056 static int damon_commit_target_regions(
1057 struct damon_target *dst, struct damon_target *src)
1058 {
1059 struct damon_region *src_region;
1060 struct damon_addr_range *ranges;
1061 int i = 0, err;
1062
1063 damon_for_each_region(src_region, src)
1064 i++;
1065 if (!i)
1066 return 0;
1067
1068 ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN);
1069 if (!ranges)
1070 return -ENOMEM;
1071 i = 0;
1072 damon_for_each_region(src_region, src)
1073 ranges[i++] = src_region->ar;
1074 err = damon_set_regions(dst, ranges, i);
1075 kfree(ranges);
1076 return err;
1077 }
1078
damon_commit_target(struct damon_target * dst,bool dst_has_pid,struct damon_target * src,bool src_has_pid)1079 static int damon_commit_target(
1080 struct damon_target *dst, bool dst_has_pid,
1081 struct damon_target *src, bool src_has_pid)
1082 {
1083 int err;
1084
1085 err = damon_commit_target_regions(dst, src);
1086 if (err)
1087 return err;
1088 if (dst_has_pid)
1089 put_pid(dst->pid);
1090 if (src_has_pid)
1091 get_pid(src->pid);
1092 dst->pid = src->pid;
1093 return 0;
1094 }
1095
damon_commit_targets(struct damon_ctx * dst,struct damon_ctx * src)1096 static int damon_commit_targets(
1097 struct damon_ctx *dst, struct damon_ctx *src)
1098 {
1099 struct damon_target *dst_target, *next, *src_target, *new_target;
1100 int i = 0, j = 0, err;
1101
1102 damon_for_each_target_safe(dst_target, next, dst) {
1103 src_target = damon_nth_target(i++, src);
1104 if (src_target) {
1105 err = damon_commit_target(
1106 dst_target, damon_target_has_pid(dst),
1107 src_target, damon_target_has_pid(src));
1108 if (err)
1109 return err;
1110 } else {
1111 struct damos *s;
1112
1113 if (damon_target_has_pid(dst))
1114 put_pid(dst_target->pid);
1115 damon_destroy_target(dst_target);
1116 damon_for_each_scheme(s, dst) {
1117 if (s->quota.charge_target_from == dst_target) {
1118 s->quota.charge_target_from = NULL;
1119 s->quota.charge_addr_from = 0;
1120 }
1121 }
1122 }
1123 }
1124
1125 damon_for_each_target_safe(src_target, next, src) {
1126 if (j++ < i)
1127 continue;
1128 new_target = damon_new_target();
1129 if (!new_target)
1130 return -ENOMEM;
1131 err = damon_commit_target(new_target, false,
1132 src_target, damon_target_has_pid(src));
1133 if (err) {
1134 damon_destroy_target(new_target);
1135 return err;
1136 }
1137 damon_add_target(dst, new_target);
1138 }
1139 return 0;
1140 }
1141
1142 /**
1143 * damon_commit_ctx() - Commit parameters of a DAMON context to another.
1144 * @dst: The commit destination DAMON context.
1145 * @src: The commit source DAMON context.
1146 *
1147 * This function copies user-specified parameters from @src to @dst and update
1148 * the internal status and results accordingly. Users should use this function
1149 * for context-level parameters update of running context, instead of manual
1150 * in-place updates.
1151 *
1152 * This function should be called from parameters-update safe context, like
1153 * DAMON callbacks.
1154 */
damon_commit_ctx(struct damon_ctx * dst,struct damon_ctx * src)1155 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src)
1156 {
1157 int err;
1158
1159 err = damon_commit_schemes(dst, src);
1160 if (err)
1161 return err;
1162 err = damon_commit_targets(dst, src);
1163 if (err)
1164 return err;
1165 /*
1166 * schemes and targets should be updated first, since
1167 * 1. damon_set_attrs() updates monitoring results of targets and
1168 * next_apply_sis of schemes, and
1169 * 2. ops update should be done after pid handling is done (target
1170 * committing require putting pids).
1171 */
1172 err = damon_set_attrs(dst, &src->attrs);
1173 if (err)
1174 return err;
1175 dst->ops = src->ops;
1176
1177 return 0;
1178 }
1179
1180 /**
1181 * damon_nr_running_ctxs() - Return number of currently running contexts.
1182 */
damon_nr_running_ctxs(void)1183 int damon_nr_running_ctxs(void)
1184 {
1185 int nr_ctxs;
1186
1187 mutex_lock(&damon_lock);
1188 nr_ctxs = nr_running_ctxs;
1189 mutex_unlock(&damon_lock);
1190
1191 return nr_ctxs;
1192 }
1193
1194 /* Returns the size upper limit for each monitoring region */
damon_region_sz_limit(struct damon_ctx * ctx)1195 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
1196 {
1197 struct damon_target *t;
1198 struct damon_region *r;
1199 unsigned long sz = 0;
1200
1201 damon_for_each_target(t, ctx) {
1202 damon_for_each_region(r, t)
1203 sz += damon_sz_region(r);
1204 }
1205
1206 if (ctx->attrs.min_nr_regions)
1207 sz /= ctx->attrs.min_nr_regions;
1208 if (sz < DAMON_MIN_REGION)
1209 sz = DAMON_MIN_REGION;
1210
1211 return sz;
1212 }
1213
1214 static int kdamond_fn(void *data);
1215
1216 /*
1217 * __damon_start() - Starts monitoring with given context.
1218 * @ctx: monitoring context
1219 *
1220 * This function should be called while damon_lock is hold.
1221 *
1222 * Return: 0 on success, negative error code otherwise.
1223 */
__damon_start(struct damon_ctx * ctx)1224 static int __damon_start(struct damon_ctx *ctx)
1225 {
1226 int err = -EBUSY;
1227
1228 mutex_lock(&ctx->kdamond_lock);
1229 if (!ctx->kdamond) {
1230 err = 0;
1231 reinit_completion(&ctx->kdamond_started);
1232 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
1233 nr_running_ctxs);
1234 if (IS_ERR(ctx->kdamond)) {
1235 err = PTR_ERR(ctx->kdamond);
1236 ctx->kdamond = NULL;
1237 } else {
1238 wait_for_completion(&ctx->kdamond_started);
1239 }
1240 }
1241 mutex_unlock(&ctx->kdamond_lock);
1242
1243 return err;
1244 }
1245
1246 /**
1247 * damon_start() - Starts the monitorings for a given group of contexts.
1248 * @ctxs: an array of the pointers for contexts to start monitoring
1249 * @nr_ctxs: size of @ctxs
1250 * @exclusive: exclusiveness of this contexts group
1251 *
1252 * This function starts a group of monitoring threads for a group of monitoring
1253 * contexts. One thread per each context is created and run in parallel. The
1254 * caller should handle synchronization between the threads by itself. If
1255 * @exclusive is true and a group of threads that created by other
1256 * 'damon_start()' call is currently running, this function does nothing but
1257 * returns -EBUSY.
1258 *
1259 * Return: 0 on success, negative error code otherwise.
1260 */
damon_start(struct damon_ctx ** ctxs,int nr_ctxs,bool exclusive)1261 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
1262 {
1263 int i;
1264 int err = 0;
1265
1266 mutex_lock(&damon_lock);
1267 if ((exclusive && nr_running_ctxs) ||
1268 (!exclusive && running_exclusive_ctxs)) {
1269 mutex_unlock(&damon_lock);
1270 return -EBUSY;
1271 }
1272
1273 for (i = 0; i < nr_ctxs; i++) {
1274 err = __damon_start(ctxs[i]);
1275 if (err)
1276 break;
1277 nr_running_ctxs++;
1278 }
1279 if (exclusive && nr_running_ctxs)
1280 running_exclusive_ctxs = true;
1281 mutex_unlock(&damon_lock);
1282
1283 return err;
1284 }
1285
1286 /*
1287 * __damon_stop() - Stops monitoring of a given context.
1288 * @ctx: monitoring context
1289 *
1290 * Return: 0 on success, negative error code otherwise.
1291 */
__damon_stop(struct damon_ctx * ctx)1292 static int __damon_stop(struct damon_ctx *ctx)
1293 {
1294 struct task_struct *tsk;
1295
1296 mutex_lock(&ctx->kdamond_lock);
1297 tsk = ctx->kdamond;
1298 if (tsk) {
1299 get_task_struct(tsk);
1300 mutex_unlock(&ctx->kdamond_lock);
1301 kthread_stop_put(tsk);
1302 return 0;
1303 }
1304 mutex_unlock(&ctx->kdamond_lock);
1305
1306 return -EPERM;
1307 }
1308
1309 /**
1310 * damon_stop() - Stops the monitorings for a given group of contexts.
1311 * @ctxs: an array of the pointers for contexts to stop monitoring
1312 * @nr_ctxs: size of @ctxs
1313 *
1314 * Return: 0 on success, negative error code otherwise.
1315 */
damon_stop(struct damon_ctx ** ctxs,int nr_ctxs)1316 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
1317 {
1318 int i, err = 0;
1319
1320 for (i = 0; i < nr_ctxs; i++) {
1321 /* nr_running_ctxs is decremented in kdamond_fn */
1322 err = __damon_stop(ctxs[i]);
1323 if (err)
1324 break;
1325 }
1326 return err;
1327 }
1328
damon_is_running(struct damon_ctx * ctx)1329 static bool damon_is_running(struct damon_ctx *ctx)
1330 {
1331 bool running;
1332
1333 mutex_lock(&ctx->kdamond_lock);
1334 running = ctx->kdamond != NULL;
1335 mutex_unlock(&ctx->kdamond_lock);
1336 return running;
1337 }
1338
1339 /**
1340 * damon_call() - Invoke a given function on DAMON worker thread (kdamond).
1341 * @ctx: DAMON context to call the function for.
1342 * @control: Control variable of the call request.
1343 *
1344 * Ask DAMON worker thread (kdamond) of @ctx to call a function with an
1345 * argument data that respectively passed via &damon_call_control->fn and
1346 * &damon_call_control->data of @control, and wait until the kdamond finishes
1347 * handling of the request.
1348 *
1349 * The kdamond executes the function with the argument in the main loop, just
1350 * after a sampling of the iteration is finished. The function can hence
1351 * safely access the internal data of the &struct damon_ctx without additional
1352 * synchronization. The return value of the function will be saved in
1353 * &damon_call_control->return_code.
1354 *
1355 * Return: 0 on success, negative error code otherwise.
1356 */
damon_call(struct damon_ctx * ctx,struct damon_call_control * control)1357 int damon_call(struct damon_ctx *ctx, struct damon_call_control *control)
1358 {
1359 init_completion(&control->completion);
1360 control->canceled = false;
1361
1362 mutex_lock(&ctx->call_control_lock);
1363 if (ctx->call_control) {
1364 mutex_unlock(&ctx->call_control_lock);
1365 return -EBUSY;
1366 }
1367 ctx->call_control = control;
1368 mutex_unlock(&ctx->call_control_lock);
1369 if (!damon_is_running(ctx))
1370 return -EINVAL;
1371 wait_for_completion(&control->completion);
1372 if (control->canceled)
1373 return -ECANCELED;
1374 return 0;
1375 }
1376
1377 /**
1378 * damos_walk() - Invoke a given functions while DAMOS walk regions.
1379 * @ctx: DAMON context to call the functions for.
1380 * @control: Control variable of the walk request.
1381 *
1382 * Ask DAMON worker thread (kdamond) of @ctx to call a function for each region
1383 * that the kdamond will apply DAMOS action to, and wait until the kdamond
1384 * finishes handling of the request.
1385 *
1386 * The kdamond executes the given function in the main loop, for each region
1387 * just after it applied any DAMOS actions of @ctx to it. The invocation is
1388 * made only within one &damos->apply_interval_us since damos_walk()
1389 * invocation, for each scheme. The given callback function can hence safely
1390 * access the internal data of &struct damon_ctx and &struct damon_region that
1391 * each of the scheme will apply the action for next interval, without
1392 * additional synchronizations against the kdamond. If every scheme of @ctx
1393 * passed at least one &damos->apply_interval_us, kdamond marks the request as
1394 * completed so that damos_walk() can wakeup and return.
1395 *
1396 * Return: 0 on success, negative error code otherwise.
1397 */
damos_walk(struct damon_ctx * ctx,struct damos_walk_control * control)1398 int damos_walk(struct damon_ctx *ctx, struct damos_walk_control *control)
1399 {
1400 init_completion(&control->completion);
1401 control->canceled = false;
1402 mutex_lock(&ctx->walk_control_lock);
1403 if (ctx->walk_control) {
1404 mutex_unlock(&ctx->walk_control_lock);
1405 return -EBUSY;
1406 }
1407 ctx->walk_control = control;
1408 mutex_unlock(&ctx->walk_control_lock);
1409 if (!damon_is_running(ctx))
1410 return -EINVAL;
1411 wait_for_completion(&control->completion);
1412 if (control->canceled)
1413 return -ECANCELED;
1414 return 0;
1415 }
1416
1417 /*
1418 * Warn and fix corrupted ->nr_accesses[_bp] for investigations and preventing
1419 * the problem being propagated.
1420 */
damon_warn_fix_nr_accesses_corruption(struct damon_region * r)1421 static void damon_warn_fix_nr_accesses_corruption(struct damon_region *r)
1422 {
1423 if (r->nr_accesses_bp == r->nr_accesses * 10000)
1424 return;
1425 WARN_ONCE(true, "invalid nr_accesses_bp at reset: %u %u\n",
1426 r->nr_accesses_bp, r->nr_accesses);
1427 r->nr_accesses_bp = r->nr_accesses * 10000;
1428 }
1429
1430 /*
1431 * Reset the aggregated monitoring results ('nr_accesses' of each region).
1432 */
kdamond_reset_aggregated(struct damon_ctx * c)1433 static void kdamond_reset_aggregated(struct damon_ctx *c)
1434 {
1435 struct damon_target *t;
1436 unsigned int ti = 0; /* target's index */
1437
1438 damon_for_each_target(t, c) {
1439 struct damon_region *r;
1440
1441 damon_for_each_region(r, t) {
1442 trace_damon_aggregated(ti, r, damon_nr_regions(t));
1443 damon_warn_fix_nr_accesses_corruption(r);
1444 r->last_nr_accesses = r->nr_accesses;
1445 r->nr_accesses = 0;
1446 }
1447 ti++;
1448 }
1449 }
1450
damon_get_intervals_score(struct damon_ctx * c)1451 static unsigned long damon_get_intervals_score(struct damon_ctx *c)
1452 {
1453 struct damon_target *t;
1454 struct damon_region *r;
1455 unsigned long sz_region, max_access_events = 0, access_events = 0;
1456 unsigned long target_access_events;
1457 unsigned long goal_bp = c->attrs.intervals_goal.access_bp;
1458
1459 damon_for_each_target(t, c) {
1460 damon_for_each_region(r, t) {
1461 sz_region = damon_sz_region(r);
1462 max_access_events += sz_region * c->attrs.aggr_samples;
1463 access_events += sz_region * r->nr_accesses;
1464 }
1465 }
1466 target_access_events = max_access_events * goal_bp / 10000;
1467 target_access_events = target_access_events ? : 1;
1468 return access_events * 10000 / target_access_events;
1469 }
1470
1471 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1472 unsigned long score);
1473
damon_get_intervals_adaptation_bp(struct damon_ctx * c)1474 static unsigned long damon_get_intervals_adaptation_bp(struct damon_ctx *c)
1475 {
1476 unsigned long score_bp, adaptation_bp;
1477
1478 score_bp = damon_get_intervals_score(c);
1479 adaptation_bp = damon_feed_loop_next_input(100000000, score_bp) /
1480 10000;
1481 /*
1482 * adaptaion_bp ranges from 1 to 20,000. Avoid too rapid reduction of
1483 * the intervals by rescaling [1,10,000] to [5000, 10,000].
1484 */
1485 if (adaptation_bp <= 10000)
1486 adaptation_bp = 5000 + adaptation_bp / 2;
1487 return adaptation_bp;
1488 }
1489
kdamond_tune_intervals(struct damon_ctx * c)1490 static void kdamond_tune_intervals(struct damon_ctx *c)
1491 {
1492 unsigned long adaptation_bp;
1493 struct damon_attrs new_attrs;
1494 struct damon_intervals_goal *goal;
1495
1496 adaptation_bp = damon_get_intervals_adaptation_bp(c);
1497 if (adaptation_bp == 10000)
1498 return;
1499
1500 new_attrs = c->attrs;
1501 goal = &c->attrs.intervals_goal;
1502 new_attrs.sample_interval = min(goal->max_sample_us,
1503 c->attrs.sample_interval * adaptation_bp / 10000);
1504 new_attrs.sample_interval = max(goal->min_sample_us,
1505 new_attrs.sample_interval);
1506 new_attrs.aggr_interval = new_attrs.sample_interval *
1507 c->attrs.aggr_samples;
1508 damon_set_attrs(c, &new_attrs);
1509 }
1510
1511 static void damon_split_region_at(struct damon_target *t,
1512 struct damon_region *r, unsigned long sz_r);
1513
__damos_valid_target(struct damon_region * r,struct damos * s)1514 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
1515 {
1516 unsigned long sz;
1517 unsigned int nr_accesses = r->nr_accesses_bp / 10000;
1518
1519 sz = damon_sz_region(r);
1520 return s->pattern.min_sz_region <= sz &&
1521 sz <= s->pattern.max_sz_region &&
1522 s->pattern.min_nr_accesses <= nr_accesses &&
1523 nr_accesses <= s->pattern.max_nr_accesses &&
1524 s->pattern.min_age_region <= r->age &&
1525 r->age <= s->pattern.max_age_region;
1526 }
1527
damos_valid_target(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)1528 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
1529 struct damon_region *r, struct damos *s)
1530 {
1531 bool ret = __damos_valid_target(r, s);
1532
1533 if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
1534 return ret;
1535
1536 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
1537 }
1538
1539 /*
1540 * damos_skip_charged_region() - Check if the given region or starting part of
1541 * it is already charged for the DAMOS quota.
1542 * @t: The target of the region.
1543 * @rp: The pointer to the region.
1544 * @s: The scheme to be applied.
1545 *
1546 * If a quota of a scheme has exceeded in a quota charge window, the scheme's
1547 * action would applied to only a part of the target access pattern fulfilling
1548 * regions. To avoid applying the scheme action to only already applied
1549 * regions, DAMON skips applying the scheme action to the regions that charged
1550 * in the previous charge window.
1551 *
1552 * This function checks if a given region should be skipped or not for the
1553 * reason. If only the starting part of the region has previously charged,
1554 * this function splits the region into two so that the second one covers the
1555 * area that not charged in the previous charge widnow and saves the second
1556 * region in *rp and returns false, so that the caller can apply DAMON action
1557 * to the second one.
1558 *
1559 * Return: true if the region should be entirely skipped, false otherwise.
1560 */
damos_skip_charged_region(struct damon_target * t,struct damon_region ** rp,struct damos * s)1561 static bool damos_skip_charged_region(struct damon_target *t,
1562 struct damon_region **rp, struct damos *s)
1563 {
1564 struct damon_region *r = *rp;
1565 struct damos_quota *quota = &s->quota;
1566 unsigned long sz_to_skip;
1567
1568 /* Skip previously charged regions */
1569 if (quota->charge_target_from) {
1570 if (t != quota->charge_target_from)
1571 return true;
1572 if (r == damon_last_region(t)) {
1573 quota->charge_target_from = NULL;
1574 quota->charge_addr_from = 0;
1575 return true;
1576 }
1577 if (quota->charge_addr_from &&
1578 r->ar.end <= quota->charge_addr_from)
1579 return true;
1580
1581 if (quota->charge_addr_from && r->ar.start <
1582 quota->charge_addr_from) {
1583 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
1584 r->ar.start, DAMON_MIN_REGION);
1585 if (!sz_to_skip) {
1586 if (damon_sz_region(r) <= DAMON_MIN_REGION)
1587 return true;
1588 sz_to_skip = DAMON_MIN_REGION;
1589 }
1590 damon_split_region_at(t, r, sz_to_skip);
1591 r = damon_next_region(r);
1592 *rp = r;
1593 }
1594 quota->charge_target_from = NULL;
1595 quota->charge_addr_from = 0;
1596 }
1597 return false;
1598 }
1599
damos_update_stat(struct damos * s,unsigned long sz_tried,unsigned long sz_applied,unsigned long sz_ops_filter_passed)1600 static void damos_update_stat(struct damos *s,
1601 unsigned long sz_tried, unsigned long sz_applied,
1602 unsigned long sz_ops_filter_passed)
1603 {
1604 s->stat.nr_tried++;
1605 s->stat.sz_tried += sz_tried;
1606 if (sz_applied)
1607 s->stat.nr_applied++;
1608 s->stat.sz_applied += sz_applied;
1609 s->stat.sz_ops_filter_passed += sz_ops_filter_passed;
1610 }
1611
damos_filter_match(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos_filter * filter)1612 static bool damos_filter_match(struct damon_ctx *ctx, struct damon_target *t,
1613 struct damon_region *r, struct damos_filter *filter)
1614 {
1615 bool matched = false;
1616 struct damon_target *ti;
1617 int target_idx = 0;
1618 unsigned long start, end;
1619
1620 switch (filter->type) {
1621 case DAMOS_FILTER_TYPE_TARGET:
1622 damon_for_each_target(ti, ctx) {
1623 if (ti == t)
1624 break;
1625 target_idx++;
1626 }
1627 matched = target_idx == filter->target_idx;
1628 break;
1629 case DAMOS_FILTER_TYPE_ADDR:
1630 start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
1631 end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
1632
1633 /* inside the range */
1634 if (start <= r->ar.start && r->ar.end <= end) {
1635 matched = true;
1636 break;
1637 }
1638 /* outside of the range */
1639 if (r->ar.end <= start || end <= r->ar.start) {
1640 matched = false;
1641 break;
1642 }
1643 /* start before the range and overlap */
1644 if (r->ar.start < start) {
1645 damon_split_region_at(t, r, start - r->ar.start);
1646 matched = false;
1647 break;
1648 }
1649 /* start inside the range */
1650 damon_split_region_at(t, r, end - r->ar.start);
1651 matched = true;
1652 break;
1653 default:
1654 return false;
1655 }
1656
1657 return matched == filter->matching;
1658 }
1659
damos_filter_out(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * s)1660 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
1661 struct damon_region *r, struct damos *s)
1662 {
1663 struct damos_filter *filter;
1664
1665 s->core_filters_allowed = false;
1666 damos_for_each_filter(filter, s) {
1667 if (damos_filter_match(ctx, t, r, filter)) {
1668 if (filter->allow)
1669 s->core_filters_allowed = true;
1670 return !filter->allow;
1671 }
1672 }
1673 return s->core_filters_default_reject;
1674 }
1675
1676 /*
1677 * damos_walk_call_walk() - Call &damos_walk_control->walk_fn.
1678 * @ctx: The context of &damon_ctx->walk_control.
1679 * @t: The monitoring target of @r that @s will be applied.
1680 * @r: The region of @t that @s will be applied.
1681 * @s: The scheme of @ctx that will be applied to @r.
1682 *
1683 * This function is called from kdamond whenever it asked the operation set to
1684 * apply a DAMOS scheme action to a region. If a DAMOS walk request is
1685 * installed by damos_walk() and not yet uninstalled, invoke it.
1686 */
damos_walk_call_walk(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * s,unsigned long sz_filter_passed)1687 static void damos_walk_call_walk(struct damon_ctx *ctx, struct damon_target *t,
1688 struct damon_region *r, struct damos *s,
1689 unsigned long sz_filter_passed)
1690 {
1691 struct damos_walk_control *control;
1692
1693 if (s->walk_completed)
1694 return;
1695
1696 control = ctx->walk_control;
1697 if (!control)
1698 return;
1699
1700 control->walk_fn(control->data, ctx, t, r, s, sz_filter_passed);
1701 }
1702
1703 /*
1704 * damos_walk_complete() - Complete DAMOS walk request if all walks are done.
1705 * @ctx: The context of &damon_ctx->walk_control.
1706 * @s: A scheme of @ctx that all walks are now done.
1707 *
1708 * This function is called when kdamond finished applying the action of a DAMOS
1709 * scheme to all regions that eligible for the given &damos->apply_interval_us.
1710 * If every scheme of @ctx including @s now finished walking for at least one
1711 * &damos->apply_interval_us, this function makrs the handling of the given
1712 * DAMOS walk request is done, so that damos_walk() can wake up and return.
1713 */
damos_walk_complete(struct damon_ctx * ctx,struct damos * s)1714 static void damos_walk_complete(struct damon_ctx *ctx, struct damos *s)
1715 {
1716 struct damos *siter;
1717 struct damos_walk_control *control;
1718
1719 control = ctx->walk_control;
1720 if (!control)
1721 return;
1722
1723 s->walk_completed = true;
1724 /* if all schemes completed, signal completion to walker */
1725 damon_for_each_scheme(siter, ctx) {
1726 if (!siter->walk_completed)
1727 return;
1728 }
1729 damon_for_each_scheme(siter, ctx)
1730 siter->walk_completed = false;
1731
1732 complete(&control->completion);
1733 ctx->walk_control = NULL;
1734 }
1735
1736 /*
1737 * damos_walk_cancel() - Cancel the current DAMOS walk request.
1738 * @ctx: The context of &damon_ctx->walk_control.
1739 *
1740 * This function is called when @ctx is deactivated by DAMOS watermarks, DAMOS
1741 * walk is requested but there is no DAMOS scheme to walk for, or the kdamond
1742 * is already out of the main loop and therefore gonna be terminated, and hence
1743 * cannot continue the walks. This function therefore marks the walk request
1744 * as canceled, so that damos_walk() can wake up and return.
1745 */
damos_walk_cancel(struct damon_ctx * ctx)1746 static void damos_walk_cancel(struct damon_ctx *ctx)
1747 {
1748 struct damos_walk_control *control;
1749
1750 mutex_lock(&ctx->walk_control_lock);
1751 control = ctx->walk_control;
1752 mutex_unlock(&ctx->walk_control_lock);
1753
1754 if (!control)
1755 return;
1756 control->canceled = true;
1757 complete(&control->completion);
1758 mutex_lock(&ctx->walk_control_lock);
1759 ctx->walk_control = NULL;
1760 mutex_unlock(&ctx->walk_control_lock);
1761 }
1762
damos_apply_scheme(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)1763 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
1764 struct damon_region *r, struct damos *s)
1765 {
1766 struct damos_quota *quota = &s->quota;
1767 unsigned long sz = damon_sz_region(r);
1768 struct timespec64 begin, end;
1769 unsigned long sz_applied = 0;
1770 unsigned long sz_ops_filter_passed = 0;
1771 /*
1772 * We plan to support multiple context per kdamond, as DAMON sysfs
1773 * implies with 'nr_contexts' file. Nevertheless, only single context
1774 * per kdamond is supported for now. So, we can simply use '0' context
1775 * index here.
1776 */
1777 unsigned int cidx = 0;
1778 struct damos *siter; /* schemes iterator */
1779 unsigned int sidx = 0;
1780 struct damon_target *titer; /* targets iterator */
1781 unsigned int tidx = 0;
1782 bool do_trace = false;
1783
1784 /* get indices for trace_damos_before_apply() */
1785 if (trace_damos_before_apply_enabled()) {
1786 damon_for_each_scheme(siter, c) {
1787 if (siter == s)
1788 break;
1789 sidx++;
1790 }
1791 damon_for_each_target(titer, c) {
1792 if (titer == t)
1793 break;
1794 tidx++;
1795 }
1796 do_trace = true;
1797 }
1798
1799 if (c->ops.apply_scheme) {
1800 if (quota->esz && quota->charged_sz + sz > quota->esz) {
1801 sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
1802 DAMON_MIN_REGION);
1803 if (!sz)
1804 goto update_stat;
1805 damon_split_region_at(t, r, sz);
1806 }
1807 if (damos_filter_out(c, t, r, s))
1808 return;
1809 ktime_get_coarse_ts64(&begin);
1810 trace_damos_before_apply(cidx, sidx, tidx, r,
1811 damon_nr_regions(t), do_trace);
1812 sz_applied = c->ops.apply_scheme(c, t, r, s,
1813 &sz_ops_filter_passed);
1814 damos_walk_call_walk(c, t, r, s, sz_ops_filter_passed);
1815 ktime_get_coarse_ts64(&end);
1816 quota->total_charged_ns += timespec64_to_ns(&end) -
1817 timespec64_to_ns(&begin);
1818 quota->charged_sz += sz;
1819 if (quota->esz && quota->charged_sz >= quota->esz) {
1820 quota->charge_target_from = t;
1821 quota->charge_addr_from = r->ar.end + 1;
1822 }
1823 }
1824 if (s->action != DAMOS_STAT)
1825 r->age = 0;
1826
1827 update_stat:
1828 damos_update_stat(s, sz, sz_applied, sz_ops_filter_passed);
1829 }
1830
damon_do_apply_schemes(struct damon_ctx * c,struct damon_target * t,struct damon_region * r)1831 static void damon_do_apply_schemes(struct damon_ctx *c,
1832 struct damon_target *t,
1833 struct damon_region *r)
1834 {
1835 struct damos *s;
1836
1837 damon_for_each_scheme(s, c) {
1838 struct damos_quota *quota = &s->quota;
1839
1840 if (c->passed_sample_intervals < s->next_apply_sis)
1841 continue;
1842
1843 if (!s->wmarks.activated)
1844 continue;
1845
1846 /* Check the quota */
1847 if (quota->esz && quota->charged_sz >= quota->esz)
1848 continue;
1849
1850 if (damos_skip_charged_region(t, &r, s))
1851 continue;
1852
1853 if (!damos_valid_target(c, t, r, s))
1854 continue;
1855
1856 damos_apply_scheme(c, t, r, s);
1857 }
1858 }
1859
1860 /*
1861 * damon_feed_loop_next_input() - get next input to achieve a target score.
1862 * @last_input The last input.
1863 * @score Current score that made with @last_input.
1864 *
1865 * Calculate next input to achieve the target score, based on the last input
1866 * and current score. Assuming the input and the score are positively
1867 * proportional, calculate how much compensation should be added to or
1868 * subtracted from the last input as a proportion of the last input. Avoid
1869 * next input always being zero by setting it non-zero always. In short form
1870 * (assuming support of float and signed calculations), the algorithm is as
1871 * below.
1872 *
1873 * next_input = max(last_input * ((goal - current) / goal + 1), 1)
1874 *
1875 * For simple implementation, we assume the target score is always 10,000. The
1876 * caller should adjust @score for this.
1877 *
1878 * Returns next input that assumed to achieve the target score.
1879 */
damon_feed_loop_next_input(unsigned long last_input,unsigned long score)1880 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1881 unsigned long score)
1882 {
1883 const unsigned long goal = 10000;
1884 /* Set minimum input as 10000 to avoid compensation be zero */
1885 const unsigned long min_input = 10000;
1886 unsigned long score_goal_diff, compensation;
1887 bool over_achieving = score > goal;
1888
1889 if (score == goal)
1890 return last_input;
1891 if (score >= goal * 2)
1892 return min_input;
1893
1894 if (over_achieving)
1895 score_goal_diff = score - goal;
1896 else
1897 score_goal_diff = goal - score;
1898
1899 if (last_input < ULONG_MAX / score_goal_diff)
1900 compensation = last_input * score_goal_diff / goal;
1901 else
1902 compensation = last_input / goal * score_goal_diff;
1903
1904 if (over_achieving)
1905 return max(last_input - compensation, min_input);
1906 if (last_input < ULONG_MAX - compensation)
1907 return last_input + compensation;
1908 return ULONG_MAX;
1909 }
1910
1911 #ifdef CONFIG_PSI
1912
damos_get_some_mem_psi_total(void)1913 static u64 damos_get_some_mem_psi_total(void)
1914 {
1915 if (static_branch_likely(&psi_disabled))
1916 return 0;
1917 return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2],
1918 NSEC_PER_USEC);
1919 }
1920
1921 #else /* CONFIG_PSI */
1922
damos_get_some_mem_psi_total(void)1923 static inline u64 damos_get_some_mem_psi_total(void)
1924 {
1925 return 0;
1926 };
1927
1928 #endif /* CONFIG_PSI */
1929
1930 #ifdef CONFIG_NUMA
damos_get_node_mem_bp(struct damos_quota_goal * goal)1931 static __kernel_ulong_t damos_get_node_mem_bp(
1932 struct damos_quota_goal *goal)
1933 {
1934 struct sysinfo i;
1935 __kernel_ulong_t numerator;
1936
1937 si_meminfo_node(&i, goal->nid);
1938 if (goal->metric == DAMOS_QUOTA_NODE_MEM_USED_BP)
1939 numerator = i.totalram - i.freeram;
1940 else /* DAMOS_QUOTA_NODE_MEM_FREE_BP */
1941 numerator = i.freeram;
1942 return numerator * 10000 / i.totalram;
1943 }
1944 #else
damos_get_node_mem_bp(struct damos_quota_goal * goal)1945 static __kernel_ulong_t damos_get_node_mem_bp(
1946 struct damos_quota_goal *goal)
1947 {
1948 return 0;
1949 }
1950 #endif
1951
1952
damos_set_quota_goal_current_value(struct damos_quota_goal * goal)1953 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal)
1954 {
1955 u64 now_psi_total;
1956
1957 switch (goal->metric) {
1958 case DAMOS_QUOTA_USER_INPUT:
1959 /* User should already set goal->current_value */
1960 break;
1961 case DAMOS_QUOTA_SOME_MEM_PSI_US:
1962 now_psi_total = damos_get_some_mem_psi_total();
1963 goal->current_value = now_psi_total - goal->last_psi_total;
1964 goal->last_psi_total = now_psi_total;
1965 break;
1966 case DAMOS_QUOTA_NODE_MEM_USED_BP:
1967 case DAMOS_QUOTA_NODE_MEM_FREE_BP:
1968 goal->current_value = damos_get_node_mem_bp(goal);
1969 break;
1970 default:
1971 break;
1972 }
1973 }
1974
1975 /* Return the highest score since it makes schemes least aggressive */
damos_quota_score(struct damos_quota * quota)1976 static unsigned long damos_quota_score(struct damos_quota *quota)
1977 {
1978 struct damos_quota_goal *goal;
1979 unsigned long highest_score = 0;
1980
1981 damos_for_each_quota_goal(goal, quota) {
1982 damos_set_quota_goal_current_value(goal);
1983 highest_score = max(highest_score,
1984 goal->current_value * 10000 /
1985 goal->target_value);
1986 }
1987
1988 return highest_score;
1989 }
1990
1991 /*
1992 * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty
1993 */
damos_set_effective_quota(struct damos_quota * quota)1994 static void damos_set_effective_quota(struct damos_quota *quota)
1995 {
1996 unsigned long throughput;
1997 unsigned long esz = ULONG_MAX;
1998
1999 if (!quota->ms && list_empty("a->goals)) {
2000 quota->esz = quota->sz;
2001 return;
2002 }
2003
2004 if (!list_empty("a->goals)) {
2005 unsigned long score = damos_quota_score(quota);
2006
2007 quota->esz_bp = damon_feed_loop_next_input(
2008 max(quota->esz_bp, 10000UL),
2009 score);
2010 esz = quota->esz_bp / 10000;
2011 }
2012
2013 if (quota->ms) {
2014 if (quota->total_charged_ns)
2015 throughput = quota->total_charged_sz * 1000000 /
2016 quota->total_charged_ns;
2017 else
2018 throughput = PAGE_SIZE * 1024;
2019 esz = min(throughput * quota->ms, esz);
2020 }
2021
2022 if (quota->sz && quota->sz < esz)
2023 esz = quota->sz;
2024
2025 quota->esz = esz;
2026 }
2027
damos_adjust_quota(struct damon_ctx * c,struct damos * s)2028 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
2029 {
2030 struct damos_quota *quota = &s->quota;
2031 struct damon_target *t;
2032 struct damon_region *r;
2033 unsigned long cumulated_sz;
2034 unsigned int score, max_score = 0;
2035
2036 if (!quota->ms && !quota->sz && list_empty("a->goals))
2037 return;
2038
2039 /* New charge window starts */
2040 if (time_after_eq(jiffies, quota->charged_from +
2041 msecs_to_jiffies(quota->reset_interval))) {
2042 if (quota->esz && quota->charged_sz >= quota->esz)
2043 s->stat.qt_exceeds++;
2044 quota->total_charged_sz += quota->charged_sz;
2045 quota->charged_from = jiffies;
2046 quota->charged_sz = 0;
2047 damos_set_effective_quota(quota);
2048 }
2049
2050 if (!c->ops.get_scheme_score)
2051 return;
2052
2053 /* Fill up the score histogram */
2054 memset(c->regions_score_histogram, 0,
2055 sizeof(*c->regions_score_histogram) *
2056 (DAMOS_MAX_SCORE + 1));
2057 damon_for_each_target(t, c) {
2058 damon_for_each_region(r, t) {
2059 if (!__damos_valid_target(r, s))
2060 continue;
2061 score = c->ops.get_scheme_score(c, t, r, s);
2062 c->regions_score_histogram[score] +=
2063 damon_sz_region(r);
2064 if (score > max_score)
2065 max_score = score;
2066 }
2067 }
2068
2069 /* Set the min score limit */
2070 for (cumulated_sz = 0, score = max_score; ; score--) {
2071 cumulated_sz += c->regions_score_histogram[score];
2072 if (cumulated_sz >= quota->esz || !score)
2073 break;
2074 }
2075 quota->min_score = score;
2076 }
2077
kdamond_apply_schemes(struct damon_ctx * c)2078 static void kdamond_apply_schemes(struct damon_ctx *c)
2079 {
2080 struct damon_target *t;
2081 struct damon_region *r, *next_r;
2082 struct damos *s;
2083 unsigned long sample_interval = c->attrs.sample_interval ?
2084 c->attrs.sample_interval : 1;
2085 bool has_schemes_to_apply = false;
2086
2087 damon_for_each_scheme(s, c) {
2088 if (c->passed_sample_intervals < s->next_apply_sis)
2089 continue;
2090
2091 if (!s->wmarks.activated)
2092 continue;
2093
2094 has_schemes_to_apply = true;
2095
2096 damos_adjust_quota(c, s);
2097 }
2098
2099 if (!has_schemes_to_apply)
2100 return;
2101
2102 mutex_lock(&c->walk_control_lock);
2103 damon_for_each_target(t, c) {
2104 damon_for_each_region_safe(r, next_r, t)
2105 damon_do_apply_schemes(c, t, r);
2106 }
2107
2108 damon_for_each_scheme(s, c) {
2109 if (c->passed_sample_intervals < s->next_apply_sis)
2110 continue;
2111 damos_walk_complete(c, s);
2112 s->next_apply_sis = c->passed_sample_intervals +
2113 (s->apply_interval_us ? s->apply_interval_us :
2114 c->attrs.aggr_interval) / sample_interval;
2115 s->last_applied = NULL;
2116 }
2117 mutex_unlock(&c->walk_control_lock);
2118 }
2119
2120 /*
2121 * Merge two adjacent regions into one region
2122 */
damon_merge_two_regions(struct damon_target * t,struct damon_region * l,struct damon_region * r)2123 static void damon_merge_two_regions(struct damon_target *t,
2124 struct damon_region *l, struct damon_region *r)
2125 {
2126 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
2127
2128 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
2129 (sz_l + sz_r);
2130 l->nr_accesses_bp = l->nr_accesses * 10000;
2131 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
2132 l->ar.end = r->ar.end;
2133 damon_destroy_region(r, t);
2134 }
2135
2136 /*
2137 * Merge adjacent regions having similar access frequencies
2138 *
2139 * t target affected by this merge operation
2140 * thres '->nr_accesses' diff threshold for the merge
2141 * sz_limit size upper limit of each region
2142 */
damon_merge_regions_of(struct damon_target * t,unsigned int thres,unsigned long sz_limit)2143 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
2144 unsigned long sz_limit)
2145 {
2146 struct damon_region *r, *prev = NULL, *next;
2147
2148 damon_for_each_region_safe(r, next, t) {
2149 if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
2150 r->age = 0;
2151 else
2152 r->age++;
2153
2154 if (prev && prev->ar.end == r->ar.start &&
2155 abs(prev->nr_accesses - r->nr_accesses) <= thres &&
2156 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
2157 damon_merge_two_regions(t, prev, r);
2158 else
2159 prev = r;
2160 }
2161 }
2162
2163 /*
2164 * Merge adjacent regions having similar access frequencies
2165 *
2166 * threshold '->nr_accesses' diff threshold for the merge
2167 * sz_limit size upper limit of each region
2168 *
2169 * This function merges monitoring target regions which are adjacent and their
2170 * access frequencies are similar. This is for minimizing the monitoring
2171 * overhead under the dynamically changeable access pattern. If a merge was
2172 * unnecessarily made, later 'kdamond_split_regions()' will revert it.
2173 *
2174 * The total number of regions could be higher than the user-defined limit,
2175 * max_nr_regions for some cases. For example, the user can update
2176 * max_nr_regions to a number that lower than the current number of regions
2177 * while DAMON is running. For such a case, repeat merging until the limit is
2178 * met while increasing @threshold up to possible maximum level.
2179 */
kdamond_merge_regions(struct damon_ctx * c,unsigned int threshold,unsigned long sz_limit)2180 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
2181 unsigned long sz_limit)
2182 {
2183 struct damon_target *t;
2184 unsigned int nr_regions;
2185 unsigned int max_thres;
2186
2187 max_thres = c->attrs.aggr_interval /
2188 (c->attrs.sample_interval ? c->attrs.sample_interval : 1);
2189 do {
2190 nr_regions = 0;
2191 damon_for_each_target(t, c) {
2192 damon_merge_regions_of(t, threshold, sz_limit);
2193 nr_regions += damon_nr_regions(t);
2194 }
2195 threshold = max(1, threshold * 2);
2196 } while (nr_regions > c->attrs.max_nr_regions &&
2197 threshold / 2 < max_thres);
2198 }
2199
2200 /*
2201 * Split a region in two
2202 *
2203 * r the region to be split
2204 * sz_r size of the first sub-region that will be made
2205 */
damon_split_region_at(struct damon_target * t,struct damon_region * r,unsigned long sz_r)2206 static void damon_split_region_at(struct damon_target *t,
2207 struct damon_region *r, unsigned long sz_r)
2208 {
2209 struct damon_region *new;
2210
2211 new = damon_new_region(r->ar.start + sz_r, r->ar.end);
2212 if (!new)
2213 return;
2214
2215 r->ar.end = new->ar.start;
2216
2217 new->age = r->age;
2218 new->last_nr_accesses = r->last_nr_accesses;
2219 new->nr_accesses_bp = r->nr_accesses_bp;
2220 new->nr_accesses = r->nr_accesses;
2221
2222 damon_insert_region(new, r, damon_next_region(r), t);
2223 }
2224
2225 /* Split every region in the given target into 'nr_subs' regions */
damon_split_regions_of(struct damon_target * t,int nr_subs)2226 static void damon_split_regions_of(struct damon_target *t, int nr_subs)
2227 {
2228 struct damon_region *r, *next;
2229 unsigned long sz_region, sz_sub = 0;
2230 int i;
2231
2232 damon_for_each_region_safe(r, next, t) {
2233 sz_region = damon_sz_region(r);
2234
2235 for (i = 0; i < nr_subs - 1 &&
2236 sz_region > 2 * DAMON_MIN_REGION; i++) {
2237 /*
2238 * Randomly select size of left sub-region to be at
2239 * least 10 percent and at most 90% of original region
2240 */
2241 sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
2242 sz_region / 10, DAMON_MIN_REGION);
2243 /* Do not allow blank region */
2244 if (sz_sub == 0 || sz_sub >= sz_region)
2245 continue;
2246
2247 damon_split_region_at(t, r, sz_sub);
2248 sz_region = sz_sub;
2249 }
2250 }
2251 }
2252
2253 /*
2254 * Split every target region into randomly-sized small regions
2255 *
2256 * This function splits every target region into random-sized small regions if
2257 * current total number of the regions is equal or smaller than half of the
2258 * user-specified maximum number of regions. This is for maximizing the
2259 * monitoring accuracy under the dynamically changeable access patterns. If a
2260 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
2261 * it.
2262 */
kdamond_split_regions(struct damon_ctx * ctx)2263 static void kdamond_split_regions(struct damon_ctx *ctx)
2264 {
2265 struct damon_target *t;
2266 unsigned int nr_regions = 0;
2267 static unsigned int last_nr_regions;
2268 int nr_subregions = 2;
2269
2270 damon_for_each_target(t, ctx)
2271 nr_regions += damon_nr_regions(t);
2272
2273 if (nr_regions > ctx->attrs.max_nr_regions / 2)
2274 return;
2275
2276 /* Maybe the middle of the region has different access frequency */
2277 if (last_nr_regions == nr_regions &&
2278 nr_regions < ctx->attrs.max_nr_regions / 3)
2279 nr_subregions = 3;
2280
2281 damon_for_each_target(t, ctx)
2282 damon_split_regions_of(t, nr_subregions);
2283
2284 last_nr_regions = nr_regions;
2285 }
2286
2287 /*
2288 * Check whether current monitoring should be stopped
2289 *
2290 * The monitoring is stopped when either the user requested to stop, or all
2291 * monitoring targets are invalid.
2292 *
2293 * Returns true if need to stop current monitoring.
2294 */
kdamond_need_stop(struct damon_ctx * ctx)2295 static bool kdamond_need_stop(struct damon_ctx *ctx)
2296 {
2297 struct damon_target *t;
2298
2299 if (kthread_should_stop())
2300 return true;
2301
2302 if (!ctx->ops.target_valid)
2303 return false;
2304
2305 damon_for_each_target(t, ctx) {
2306 if (ctx->ops.target_valid(t))
2307 return false;
2308 }
2309
2310 return true;
2311 }
2312
damos_get_wmark_metric_value(enum damos_wmark_metric metric,unsigned long * metric_value)2313 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric,
2314 unsigned long *metric_value)
2315 {
2316 switch (metric) {
2317 case DAMOS_WMARK_FREE_MEM_RATE:
2318 *metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 /
2319 totalram_pages();
2320 return 0;
2321 default:
2322 break;
2323 }
2324 return -EINVAL;
2325 }
2326
2327 /*
2328 * Returns zero if the scheme is active. Else, returns time to wait for next
2329 * watermark check in micro-seconds.
2330 */
damos_wmark_wait_us(struct damos * scheme)2331 static unsigned long damos_wmark_wait_us(struct damos *scheme)
2332 {
2333 unsigned long metric;
2334
2335 if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric))
2336 return 0;
2337
2338 /* higher than high watermark or lower than low watermark */
2339 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
2340 if (scheme->wmarks.activated)
2341 pr_debug("deactivate a scheme (%d) for %s wmark\n",
2342 scheme->action,
2343 str_high_low(metric > scheme->wmarks.high));
2344 scheme->wmarks.activated = false;
2345 return scheme->wmarks.interval;
2346 }
2347
2348 /* inactive and higher than middle watermark */
2349 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
2350 !scheme->wmarks.activated)
2351 return scheme->wmarks.interval;
2352
2353 if (!scheme->wmarks.activated)
2354 pr_debug("activate a scheme (%d)\n", scheme->action);
2355 scheme->wmarks.activated = true;
2356 return 0;
2357 }
2358
kdamond_usleep(unsigned long usecs)2359 static void kdamond_usleep(unsigned long usecs)
2360 {
2361 if (usecs >= USLEEP_RANGE_UPPER_BOUND)
2362 schedule_timeout_idle(usecs_to_jiffies(usecs));
2363 else
2364 usleep_range_idle(usecs, usecs + 1);
2365 }
2366
2367 /*
2368 * kdamond_call() - handle damon_call_control.
2369 * @ctx: The &struct damon_ctx of the kdamond.
2370 * @cancel: Whether to cancel the invocation of the function.
2371 *
2372 * If there is a &struct damon_call_control request that registered via
2373 * &damon_call() on @ctx, do or cancel the invocation of the function depending
2374 * on @cancel. @cancel is set when the kdamond is already out of the main loop
2375 * and therefore will be terminated.
2376 */
kdamond_call(struct damon_ctx * ctx,bool cancel)2377 static void kdamond_call(struct damon_ctx *ctx, bool cancel)
2378 {
2379 struct damon_call_control *control;
2380 int ret = 0;
2381
2382 mutex_lock(&ctx->call_control_lock);
2383 control = ctx->call_control;
2384 mutex_unlock(&ctx->call_control_lock);
2385 if (!control)
2386 return;
2387 if (cancel) {
2388 control->canceled = true;
2389 } else {
2390 ret = control->fn(control->data);
2391 control->return_code = ret;
2392 }
2393 complete(&control->completion);
2394 mutex_lock(&ctx->call_control_lock);
2395 ctx->call_control = NULL;
2396 mutex_unlock(&ctx->call_control_lock);
2397 }
2398
2399 /* Returns negative error code if it's not activated but should return */
kdamond_wait_activation(struct damon_ctx * ctx)2400 static int kdamond_wait_activation(struct damon_ctx *ctx)
2401 {
2402 struct damos *s;
2403 unsigned long wait_time;
2404 unsigned long min_wait_time = 0;
2405 bool init_wait_time = false;
2406
2407 while (!kdamond_need_stop(ctx)) {
2408 damon_for_each_scheme(s, ctx) {
2409 wait_time = damos_wmark_wait_us(s);
2410 if (!init_wait_time || wait_time < min_wait_time) {
2411 init_wait_time = true;
2412 min_wait_time = wait_time;
2413 }
2414 }
2415 if (!min_wait_time)
2416 return 0;
2417
2418 kdamond_usleep(min_wait_time);
2419
2420 if (ctx->callback.after_wmarks_check &&
2421 ctx->callback.after_wmarks_check(ctx))
2422 break;
2423 kdamond_call(ctx, false);
2424 damos_walk_cancel(ctx);
2425 }
2426 return -EBUSY;
2427 }
2428
kdamond_init_ctx(struct damon_ctx * ctx)2429 static void kdamond_init_ctx(struct damon_ctx *ctx)
2430 {
2431 unsigned long sample_interval = ctx->attrs.sample_interval ?
2432 ctx->attrs.sample_interval : 1;
2433 unsigned long apply_interval;
2434 struct damos *scheme;
2435
2436 ctx->passed_sample_intervals = 0;
2437 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
2438 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
2439 sample_interval;
2440 ctx->next_intervals_tune_sis = ctx->next_aggregation_sis *
2441 ctx->attrs.intervals_goal.aggrs;
2442
2443 damon_for_each_scheme(scheme, ctx) {
2444 apply_interval = scheme->apply_interval_us ?
2445 scheme->apply_interval_us : ctx->attrs.aggr_interval;
2446 scheme->next_apply_sis = apply_interval / sample_interval;
2447 damos_set_filters_default_reject(scheme);
2448 }
2449 }
2450
2451 /*
2452 * The monitoring daemon that runs as a kernel thread
2453 */
kdamond_fn(void * data)2454 static int kdamond_fn(void *data)
2455 {
2456 struct damon_ctx *ctx = data;
2457 struct damon_target *t;
2458 struct damon_region *r, *next;
2459 unsigned int max_nr_accesses = 0;
2460 unsigned long sz_limit = 0;
2461
2462 pr_debug("kdamond (%d) starts\n", current->pid);
2463
2464 complete(&ctx->kdamond_started);
2465 kdamond_init_ctx(ctx);
2466
2467 if (ctx->ops.init)
2468 ctx->ops.init(ctx);
2469 ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1,
2470 sizeof(*ctx->regions_score_histogram), GFP_KERNEL);
2471 if (!ctx->regions_score_histogram)
2472 goto done;
2473
2474 sz_limit = damon_region_sz_limit(ctx);
2475
2476 while (!kdamond_need_stop(ctx)) {
2477 /*
2478 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
2479 * be changed from after_wmarks_check() or after_aggregation()
2480 * callbacks. Read the values here, and use those for this
2481 * iteration. That is, damon_set_attrs() updated new values
2482 * are respected from next iteration.
2483 */
2484 unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
2485 unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
2486 unsigned long sample_interval = ctx->attrs.sample_interval;
2487
2488 if (kdamond_wait_activation(ctx))
2489 break;
2490
2491 if (ctx->ops.prepare_access_checks)
2492 ctx->ops.prepare_access_checks(ctx);
2493
2494 kdamond_usleep(sample_interval);
2495 ctx->passed_sample_intervals++;
2496
2497 if (ctx->ops.check_accesses)
2498 max_nr_accesses = ctx->ops.check_accesses(ctx);
2499
2500 if (ctx->passed_sample_intervals >= next_aggregation_sis) {
2501 kdamond_merge_regions(ctx,
2502 max_nr_accesses / 10,
2503 sz_limit);
2504 if (ctx->callback.after_aggregation &&
2505 ctx->callback.after_aggregation(ctx))
2506 break;
2507 }
2508
2509 /*
2510 * do kdamond_call() and kdamond_apply_schemes() after
2511 * kdamond_merge_regions() if possible, to reduce overhead
2512 */
2513 kdamond_call(ctx, false);
2514 if (!list_empty(&ctx->schemes))
2515 kdamond_apply_schemes(ctx);
2516 else
2517 damos_walk_cancel(ctx);
2518
2519 sample_interval = ctx->attrs.sample_interval ?
2520 ctx->attrs.sample_interval : 1;
2521 if (ctx->passed_sample_intervals >= next_aggregation_sis) {
2522 if (ctx->attrs.intervals_goal.aggrs &&
2523 ctx->passed_sample_intervals >=
2524 ctx->next_intervals_tune_sis) {
2525 /*
2526 * ctx->next_aggregation_sis might be updated
2527 * from kdamond_call(). In the case,
2528 * damon_set_attrs() which will be called from
2529 * kdamond_tune_interval() may wrongly think
2530 * this is in the middle of the current
2531 * aggregation, and make aggregation
2532 * information reset for all regions. Then,
2533 * following kdamond_reset_aggregated() call
2534 * will make the region information invalid,
2535 * particularly for ->nr_accesses_bp.
2536 *
2537 * Reset ->next_aggregation_sis to avoid that.
2538 * It will anyway correctly updated after this
2539 * if caluse.
2540 */
2541 ctx->next_aggregation_sis =
2542 next_aggregation_sis;
2543 ctx->next_intervals_tune_sis +=
2544 ctx->attrs.aggr_samples *
2545 ctx->attrs.intervals_goal.aggrs;
2546 kdamond_tune_intervals(ctx);
2547 sample_interval = ctx->attrs.sample_interval ?
2548 ctx->attrs.sample_interval : 1;
2549
2550 }
2551 ctx->next_aggregation_sis = next_aggregation_sis +
2552 ctx->attrs.aggr_interval / sample_interval;
2553
2554 kdamond_reset_aggregated(ctx);
2555 kdamond_split_regions(ctx);
2556 }
2557
2558 if (ctx->passed_sample_intervals >= next_ops_update_sis) {
2559 ctx->next_ops_update_sis = next_ops_update_sis +
2560 ctx->attrs.ops_update_interval /
2561 sample_interval;
2562 if (ctx->ops.update)
2563 ctx->ops.update(ctx);
2564 sz_limit = damon_region_sz_limit(ctx);
2565 }
2566 }
2567 done:
2568 damon_for_each_target(t, ctx) {
2569 damon_for_each_region_safe(r, next, t)
2570 damon_destroy_region(r, t);
2571 }
2572
2573 if (ctx->callback.before_terminate)
2574 ctx->callback.before_terminate(ctx);
2575 if (ctx->ops.cleanup)
2576 ctx->ops.cleanup(ctx);
2577 kfree(ctx->regions_score_histogram);
2578
2579 pr_debug("kdamond (%d) finishes\n", current->pid);
2580 mutex_lock(&ctx->kdamond_lock);
2581 ctx->kdamond = NULL;
2582 mutex_unlock(&ctx->kdamond_lock);
2583
2584 kdamond_call(ctx, true);
2585 damos_walk_cancel(ctx);
2586
2587 mutex_lock(&damon_lock);
2588 nr_running_ctxs--;
2589 if (!nr_running_ctxs && running_exclusive_ctxs)
2590 running_exclusive_ctxs = false;
2591 mutex_unlock(&damon_lock);
2592
2593 return 0;
2594 }
2595
2596 /*
2597 * struct damon_system_ram_region - System RAM resource address region of
2598 * [@start, @end).
2599 * @start: Start address of the region (inclusive).
2600 * @end: End address of the region (exclusive).
2601 */
2602 struct damon_system_ram_region {
2603 unsigned long start;
2604 unsigned long end;
2605 };
2606
walk_system_ram(struct resource * res,void * arg)2607 static int walk_system_ram(struct resource *res, void *arg)
2608 {
2609 struct damon_system_ram_region *a = arg;
2610
2611 if (a->end - a->start < resource_size(res)) {
2612 a->start = res->start;
2613 a->end = res->end;
2614 }
2615 return 0;
2616 }
2617
2618 /*
2619 * Find biggest 'System RAM' resource and store its start and end address in
2620 * @start and @end, respectively. If no System RAM is found, returns false.
2621 */
damon_find_biggest_system_ram(unsigned long * start,unsigned long * end)2622 static bool damon_find_biggest_system_ram(unsigned long *start,
2623 unsigned long *end)
2624
2625 {
2626 struct damon_system_ram_region arg = {};
2627
2628 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
2629 if (arg.end <= arg.start)
2630 return false;
2631
2632 *start = arg.start;
2633 *end = arg.end;
2634 return true;
2635 }
2636
2637 /**
2638 * damon_set_region_biggest_system_ram_default() - Set the region of the given
2639 * monitoring target as requested, or biggest 'System RAM'.
2640 * @t: The monitoring target to set the region.
2641 * @start: The pointer to the start address of the region.
2642 * @end: The pointer to the end address of the region.
2643 *
2644 * This function sets the region of @t as requested by @start and @end. If the
2645 * values of @start and @end are zero, however, this function finds the biggest
2646 * 'System RAM' resource and sets the region to cover the resource. In the
2647 * latter case, this function saves the start and end addresses of the resource
2648 * in @start and @end, respectively.
2649 *
2650 * Return: 0 on success, negative error code otherwise.
2651 */
damon_set_region_biggest_system_ram_default(struct damon_target * t,unsigned long * start,unsigned long * end)2652 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
2653 unsigned long *start, unsigned long *end)
2654 {
2655 struct damon_addr_range addr_range;
2656
2657 if (*start > *end)
2658 return -EINVAL;
2659
2660 if (!*start && !*end &&
2661 !damon_find_biggest_system_ram(start, end))
2662 return -EINVAL;
2663
2664 addr_range.start = *start;
2665 addr_range.end = *end;
2666 return damon_set_regions(t, &addr_range, 1);
2667 }
2668
2669 /*
2670 * damon_moving_sum() - Calculate an inferred moving sum value.
2671 * @mvsum: Inferred sum of the last @len_window values.
2672 * @nomvsum: Non-moving sum of the last discrete @len_window window values.
2673 * @len_window: The number of last values to take care of.
2674 * @new_value: New value that will be added to the pseudo moving sum.
2675 *
2676 * Moving sum (moving average * window size) is good for handling noise, but
2677 * the cost of keeping past values can be high for arbitrary window size. This
2678 * function implements a lightweight pseudo moving sum function that doesn't
2679 * keep the past window values.
2680 *
2681 * It simply assumes there was no noise in the past, and get the no-noise
2682 * assumed past value to drop from @nomvsum and @len_window. @nomvsum is a
2683 * non-moving sum of the last window. For example, if @len_window is 10 and we
2684 * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25
2685 * values. Hence, this function simply drops @nomvsum / @len_window from
2686 * given @mvsum and add @new_value.
2687 *
2688 * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for
2689 * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20. For
2690 * calculating next moving sum with a new value, we should drop 0 from 50 and
2691 * add the new value. However, this function assumes it got value 5 for each
2692 * of the last ten times. Based on the assumption, when the next value is
2693 * measured, it drops the assumed past value, 5 from the current sum, and add
2694 * the new value to get the updated pseduo-moving average.
2695 *
2696 * This means the value could have errors, but the errors will be disappeared
2697 * for every @len_window aligned calls. For example, if @len_window is 10, the
2698 * pseudo moving sum with 11th value to 19th value would have an error. But
2699 * the sum with 20th value will not have the error.
2700 *
2701 * Return: Pseudo-moving average after getting the @new_value.
2702 */
damon_moving_sum(unsigned int mvsum,unsigned int nomvsum,unsigned int len_window,unsigned int new_value)2703 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum,
2704 unsigned int len_window, unsigned int new_value)
2705 {
2706 return mvsum - nomvsum / len_window + new_value;
2707 }
2708
2709 /**
2710 * damon_update_region_access_rate() - Update the access rate of a region.
2711 * @r: The DAMON region to update for its access check result.
2712 * @accessed: Whether the region has accessed during last sampling interval.
2713 * @attrs: The damon_attrs of the DAMON context.
2714 *
2715 * Update the access rate of a region with the region's last sampling interval
2716 * access check result.
2717 *
2718 * Usually this will be called by &damon_operations->check_accesses callback.
2719 */
damon_update_region_access_rate(struct damon_region * r,bool accessed,struct damon_attrs * attrs)2720 void damon_update_region_access_rate(struct damon_region *r, bool accessed,
2721 struct damon_attrs *attrs)
2722 {
2723 unsigned int len_window = 1;
2724
2725 /*
2726 * sample_interval can be zero, but cannot be larger than
2727 * aggr_interval, owing to validation of damon_set_attrs().
2728 */
2729 if (attrs->sample_interval)
2730 len_window = damon_max_nr_accesses(attrs);
2731 r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp,
2732 r->last_nr_accesses * 10000, len_window,
2733 accessed ? 10000 : 0);
2734
2735 if (accessed)
2736 r->nr_accesses++;
2737 }
2738
damon_init(void)2739 static int __init damon_init(void)
2740 {
2741 damon_region_cache = KMEM_CACHE(damon_region, 0);
2742 if (unlikely(!damon_region_cache)) {
2743 pr_err("creating damon_region_cache fails\n");
2744 return -ENOMEM;
2745 }
2746
2747 return 0;
2748 }
2749
2750 subsys_initcall(damon_init);
2751
2752 #include "tests/core-kunit.h"
2753