1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Data Access Monitor 4 * 5 * Author: SeongJae Park <sj@kernel.org> 6 */ 7 8 #define pr_fmt(fmt) "damon: " fmt 9 10 #include <linux/damon.h> 11 #include <linux/delay.h> 12 #include <linux/kthread.h> 13 #include <linux/mm.h> 14 #include <linux/psi.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 #include <linux/string_choices.h> 18 19 #define CREATE_TRACE_POINTS 20 #include <trace/events/damon.h> 21 22 #ifdef CONFIG_DAMON_KUNIT_TEST 23 #undef DAMON_MIN_REGION 24 #define DAMON_MIN_REGION 1 25 #endif 26 27 static DEFINE_MUTEX(damon_lock); 28 static int nr_running_ctxs; 29 static bool running_exclusive_ctxs; 30 31 static DEFINE_MUTEX(damon_ops_lock); 32 static struct damon_operations damon_registered_ops[NR_DAMON_OPS]; 33 34 static struct kmem_cache *damon_region_cache __ro_after_init; 35 36 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */ 37 static bool __damon_is_registered_ops(enum damon_ops_id id) 38 { 39 struct damon_operations empty_ops = {}; 40 41 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops))) 42 return false; 43 return true; 44 } 45 46 /** 47 * damon_is_registered_ops() - Check if a given damon_operations is registered. 48 * @id: Id of the damon_operations to check if registered. 49 * 50 * Return: true if the ops is set, false otherwise. 51 */ 52 bool damon_is_registered_ops(enum damon_ops_id id) 53 { 54 bool registered; 55 56 if (id >= NR_DAMON_OPS) 57 return false; 58 mutex_lock(&damon_ops_lock); 59 registered = __damon_is_registered_ops(id); 60 mutex_unlock(&damon_ops_lock); 61 return registered; 62 } 63 64 /** 65 * damon_register_ops() - Register a monitoring operations set to DAMON. 66 * @ops: monitoring operations set to register. 67 * 68 * This function registers a monitoring operations set of valid &struct 69 * damon_operations->id so that others can find and use them later. 70 * 71 * Return: 0 on success, negative error code otherwise. 72 */ 73 int damon_register_ops(struct damon_operations *ops) 74 { 75 int err = 0; 76 77 if (ops->id >= NR_DAMON_OPS) 78 return -EINVAL; 79 80 mutex_lock(&damon_ops_lock); 81 /* Fail for already registered ops */ 82 if (__damon_is_registered_ops(ops->id)) 83 err = -EINVAL; 84 else 85 damon_registered_ops[ops->id] = *ops; 86 mutex_unlock(&damon_ops_lock); 87 return err; 88 } 89 90 /** 91 * damon_select_ops() - Select a monitoring operations to use with the context. 92 * @ctx: monitoring context to use the operations. 93 * @id: id of the registered monitoring operations to select. 94 * 95 * This function finds registered monitoring operations set of @id and make 96 * @ctx to use it. 97 * 98 * Return: 0 on success, negative error code otherwise. 99 */ 100 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id) 101 { 102 int err = 0; 103 104 if (id >= NR_DAMON_OPS) 105 return -EINVAL; 106 107 mutex_lock(&damon_ops_lock); 108 if (!__damon_is_registered_ops(id)) 109 err = -EINVAL; 110 else 111 ctx->ops = damon_registered_ops[id]; 112 mutex_unlock(&damon_ops_lock); 113 return err; 114 } 115 116 /* 117 * Construct a damon_region struct 118 * 119 * Returns the pointer to the new struct if success, or NULL otherwise 120 */ 121 struct damon_region *damon_new_region(unsigned long start, unsigned long end) 122 { 123 struct damon_region *region; 124 125 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL); 126 if (!region) 127 return NULL; 128 129 region->ar.start = start; 130 region->ar.end = end; 131 region->nr_accesses = 0; 132 region->nr_accesses_bp = 0; 133 INIT_LIST_HEAD(®ion->list); 134 135 region->age = 0; 136 region->last_nr_accesses = 0; 137 138 return region; 139 } 140 141 void damon_add_region(struct damon_region *r, struct damon_target *t) 142 { 143 list_add_tail(&r->list, &t->regions_list); 144 t->nr_regions++; 145 } 146 147 static void damon_del_region(struct damon_region *r, struct damon_target *t) 148 { 149 list_del(&r->list); 150 t->nr_regions--; 151 } 152 153 static void damon_free_region(struct damon_region *r) 154 { 155 kmem_cache_free(damon_region_cache, r); 156 } 157 158 void damon_destroy_region(struct damon_region *r, struct damon_target *t) 159 { 160 damon_del_region(r, t); 161 damon_free_region(r); 162 } 163 164 /* 165 * Check whether a region is intersecting an address range 166 * 167 * Returns true if it is. 168 */ 169 static bool damon_intersect(struct damon_region *r, 170 struct damon_addr_range *re) 171 { 172 return !(r->ar.end <= re->start || re->end <= r->ar.start); 173 } 174 175 /* 176 * Fill holes in regions with new regions. 177 */ 178 static int damon_fill_regions_holes(struct damon_region *first, 179 struct damon_region *last, struct damon_target *t) 180 { 181 struct damon_region *r = first; 182 183 damon_for_each_region_from(r, t) { 184 struct damon_region *next, *newr; 185 186 if (r == last) 187 break; 188 next = damon_next_region(r); 189 if (r->ar.end != next->ar.start) { 190 newr = damon_new_region(r->ar.end, next->ar.start); 191 if (!newr) 192 return -ENOMEM; 193 damon_insert_region(newr, r, next, t); 194 } 195 } 196 return 0; 197 } 198 199 /* 200 * damon_set_regions() - Set regions of a target for given address ranges. 201 * @t: the given target. 202 * @ranges: array of new monitoring target ranges. 203 * @nr_ranges: length of @ranges. 204 * 205 * This function adds new regions to, or modify existing regions of a 206 * monitoring target to fit in specific ranges. 207 * 208 * Return: 0 if success, or negative error code otherwise. 209 */ 210 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges, 211 unsigned int nr_ranges) 212 { 213 struct damon_region *r, *next; 214 unsigned int i; 215 int err; 216 217 /* Remove regions which are not in the new ranges */ 218 damon_for_each_region_safe(r, next, t) { 219 for (i = 0; i < nr_ranges; i++) { 220 if (damon_intersect(r, &ranges[i])) 221 break; 222 } 223 if (i == nr_ranges) 224 damon_destroy_region(r, t); 225 } 226 227 r = damon_first_region(t); 228 /* Add new regions or resize existing regions to fit in the ranges */ 229 for (i = 0; i < nr_ranges; i++) { 230 struct damon_region *first = NULL, *last, *newr; 231 struct damon_addr_range *range; 232 233 range = &ranges[i]; 234 /* Get the first/last regions intersecting with the range */ 235 damon_for_each_region_from(r, t) { 236 if (damon_intersect(r, range)) { 237 if (!first) 238 first = r; 239 last = r; 240 } 241 if (r->ar.start >= range->end) 242 break; 243 } 244 if (!first) { 245 /* no region intersects with this range */ 246 newr = damon_new_region( 247 ALIGN_DOWN(range->start, 248 DAMON_MIN_REGION), 249 ALIGN(range->end, DAMON_MIN_REGION)); 250 if (!newr) 251 return -ENOMEM; 252 damon_insert_region(newr, damon_prev_region(r), r, t); 253 } else { 254 /* resize intersecting regions to fit in this range */ 255 first->ar.start = ALIGN_DOWN(range->start, 256 DAMON_MIN_REGION); 257 last->ar.end = ALIGN(range->end, DAMON_MIN_REGION); 258 259 /* fill possible holes in the range */ 260 err = damon_fill_regions_holes(first, last, t); 261 if (err) 262 return err; 263 } 264 } 265 return 0; 266 } 267 268 struct damos_filter *damos_new_filter(enum damos_filter_type type, 269 bool matching, bool allow) 270 { 271 struct damos_filter *filter; 272 273 filter = kmalloc(sizeof(*filter), GFP_KERNEL); 274 if (!filter) 275 return NULL; 276 filter->type = type; 277 filter->matching = matching; 278 filter->allow = allow; 279 INIT_LIST_HEAD(&filter->list); 280 return filter; 281 } 282 283 /** 284 * damos_filter_for_ops() - Return if the filter is ops-hndled one. 285 * @type: type of the filter. 286 * 287 * Return: true if the filter of @type needs to be handled by ops layer, false 288 * otherwise. 289 */ 290 bool damos_filter_for_ops(enum damos_filter_type type) 291 { 292 switch (type) { 293 case DAMOS_FILTER_TYPE_ADDR: 294 case DAMOS_FILTER_TYPE_TARGET: 295 return false; 296 default: 297 break; 298 } 299 return true; 300 } 301 302 void damos_add_filter(struct damos *s, struct damos_filter *f) 303 { 304 if (damos_filter_for_ops(f->type)) 305 list_add_tail(&f->list, &s->ops_filters); 306 else 307 list_add_tail(&f->list, &s->filters); 308 } 309 310 static void damos_del_filter(struct damos_filter *f) 311 { 312 list_del(&f->list); 313 } 314 315 static void damos_free_filter(struct damos_filter *f) 316 { 317 kfree(f); 318 } 319 320 void damos_destroy_filter(struct damos_filter *f) 321 { 322 damos_del_filter(f); 323 damos_free_filter(f); 324 } 325 326 struct damos_quota_goal *damos_new_quota_goal( 327 enum damos_quota_goal_metric metric, 328 unsigned long target_value) 329 { 330 struct damos_quota_goal *goal; 331 332 goal = kmalloc(sizeof(*goal), GFP_KERNEL); 333 if (!goal) 334 return NULL; 335 goal->metric = metric; 336 goal->target_value = target_value; 337 INIT_LIST_HEAD(&goal->list); 338 return goal; 339 } 340 341 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g) 342 { 343 list_add_tail(&g->list, &q->goals); 344 } 345 346 static void damos_del_quota_goal(struct damos_quota_goal *g) 347 { 348 list_del(&g->list); 349 } 350 351 static void damos_free_quota_goal(struct damos_quota_goal *g) 352 { 353 kfree(g); 354 } 355 356 void damos_destroy_quota_goal(struct damos_quota_goal *g) 357 { 358 damos_del_quota_goal(g); 359 damos_free_quota_goal(g); 360 } 361 362 /* initialize fields of @quota that normally API users wouldn't set */ 363 static struct damos_quota *damos_quota_init(struct damos_quota *quota) 364 { 365 quota->esz = 0; 366 quota->total_charged_sz = 0; 367 quota->total_charged_ns = 0; 368 quota->charged_sz = 0; 369 quota->charged_from = 0; 370 quota->charge_target_from = NULL; 371 quota->charge_addr_from = 0; 372 quota->esz_bp = 0; 373 return quota; 374 } 375 376 struct damos *damon_new_scheme(struct damos_access_pattern *pattern, 377 enum damos_action action, 378 unsigned long apply_interval_us, 379 struct damos_quota *quota, 380 struct damos_watermarks *wmarks, 381 int target_nid) 382 { 383 struct damos *scheme; 384 385 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL); 386 if (!scheme) 387 return NULL; 388 scheme->pattern = *pattern; 389 scheme->action = action; 390 scheme->apply_interval_us = apply_interval_us; 391 /* 392 * next_apply_sis will be set when kdamond starts. While kdamond is 393 * running, it will also updated when it is added to the DAMON context, 394 * or damon_attrs are updated. 395 */ 396 scheme->next_apply_sis = 0; 397 scheme->walk_completed = false; 398 INIT_LIST_HEAD(&scheme->filters); 399 INIT_LIST_HEAD(&scheme->ops_filters); 400 scheme->stat = (struct damos_stat){}; 401 INIT_LIST_HEAD(&scheme->list); 402 403 scheme->quota = *(damos_quota_init(quota)); 404 /* quota.goals should be separately set by caller */ 405 INIT_LIST_HEAD(&scheme->quota.goals); 406 407 scheme->wmarks = *wmarks; 408 scheme->wmarks.activated = true; 409 410 scheme->target_nid = target_nid; 411 412 return scheme; 413 } 414 415 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx) 416 { 417 unsigned long sample_interval = ctx->attrs.sample_interval ? 418 ctx->attrs.sample_interval : 1; 419 unsigned long apply_interval = s->apply_interval_us ? 420 s->apply_interval_us : ctx->attrs.aggr_interval; 421 422 s->next_apply_sis = ctx->passed_sample_intervals + 423 apply_interval / sample_interval; 424 } 425 426 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s) 427 { 428 list_add_tail(&s->list, &ctx->schemes); 429 damos_set_next_apply_sis(s, ctx); 430 } 431 432 static void damon_del_scheme(struct damos *s) 433 { 434 list_del(&s->list); 435 } 436 437 static void damon_free_scheme(struct damos *s) 438 { 439 kfree(s); 440 } 441 442 void damon_destroy_scheme(struct damos *s) 443 { 444 struct damos_quota_goal *g, *g_next; 445 struct damos_filter *f, *next; 446 447 damos_for_each_quota_goal_safe(g, g_next, &s->quota) 448 damos_destroy_quota_goal(g); 449 450 damos_for_each_filter_safe(f, next, s) 451 damos_destroy_filter(f); 452 damon_del_scheme(s); 453 damon_free_scheme(s); 454 } 455 456 /* 457 * Construct a damon_target struct 458 * 459 * Returns the pointer to the new struct if success, or NULL otherwise 460 */ 461 struct damon_target *damon_new_target(void) 462 { 463 struct damon_target *t; 464 465 t = kmalloc(sizeof(*t), GFP_KERNEL); 466 if (!t) 467 return NULL; 468 469 t->pid = NULL; 470 t->nr_regions = 0; 471 INIT_LIST_HEAD(&t->regions_list); 472 INIT_LIST_HEAD(&t->list); 473 474 return t; 475 } 476 477 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t) 478 { 479 list_add_tail(&t->list, &ctx->adaptive_targets); 480 } 481 482 bool damon_targets_empty(struct damon_ctx *ctx) 483 { 484 return list_empty(&ctx->adaptive_targets); 485 } 486 487 static void damon_del_target(struct damon_target *t) 488 { 489 list_del(&t->list); 490 } 491 492 void damon_free_target(struct damon_target *t) 493 { 494 struct damon_region *r, *next; 495 496 damon_for_each_region_safe(r, next, t) 497 damon_free_region(r); 498 kfree(t); 499 } 500 501 void damon_destroy_target(struct damon_target *t) 502 { 503 damon_del_target(t); 504 damon_free_target(t); 505 } 506 507 unsigned int damon_nr_regions(struct damon_target *t) 508 { 509 return t->nr_regions; 510 } 511 512 struct damon_ctx *damon_new_ctx(void) 513 { 514 struct damon_ctx *ctx; 515 516 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 517 if (!ctx) 518 return NULL; 519 520 init_completion(&ctx->kdamond_started); 521 522 ctx->attrs.sample_interval = 5 * 1000; 523 ctx->attrs.aggr_interval = 100 * 1000; 524 ctx->attrs.ops_update_interval = 60 * 1000 * 1000; 525 526 ctx->passed_sample_intervals = 0; 527 /* These will be set from kdamond_init_ctx() */ 528 ctx->next_aggregation_sis = 0; 529 ctx->next_ops_update_sis = 0; 530 531 mutex_init(&ctx->kdamond_lock); 532 mutex_init(&ctx->call_control_lock); 533 mutex_init(&ctx->walk_control_lock); 534 535 ctx->attrs.min_nr_regions = 10; 536 ctx->attrs.max_nr_regions = 1000; 537 538 INIT_LIST_HEAD(&ctx->adaptive_targets); 539 INIT_LIST_HEAD(&ctx->schemes); 540 541 return ctx; 542 } 543 544 static void damon_destroy_targets(struct damon_ctx *ctx) 545 { 546 struct damon_target *t, *next_t; 547 548 if (ctx->ops.cleanup) { 549 ctx->ops.cleanup(ctx); 550 return; 551 } 552 553 damon_for_each_target_safe(t, next_t, ctx) 554 damon_destroy_target(t); 555 } 556 557 void damon_destroy_ctx(struct damon_ctx *ctx) 558 { 559 struct damos *s, *next_s; 560 561 damon_destroy_targets(ctx); 562 563 damon_for_each_scheme_safe(s, next_s, ctx) 564 damon_destroy_scheme(s); 565 566 kfree(ctx); 567 } 568 569 static unsigned int damon_age_for_new_attrs(unsigned int age, 570 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 571 { 572 return age * old_attrs->aggr_interval / new_attrs->aggr_interval; 573 } 574 575 /* convert access ratio in bp (per 10,000) to nr_accesses */ 576 static unsigned int damon_accesses_bp_to_nr_accesses( 577 unsigned int accesses_bp, struct damon_attrs *attrs) 578 { 579 return accesses_bp * damon_max_nr_accesses(attrs) / 10000; 580 } 581 582 /* 583 * Convert nr_accesses to access ratio in bp (per 10,000). 584 * 585 * Callers should ensure attrs.aggr_interval is not zero, like 586 * damon_update_monitoring_results() does . Otherwise, divide-by-zero would 587 * happen. 588 */ 589 static unsigned int damon_nr_accesses_to_accesses_bp( 590 unsigned int nr_accesses, struct damon_attrs *attrs) 591 { 592 return nr_accesses * 10000 / damon_max_nr_accesses(attrs); 593 } 594 595 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses, 596 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 597 { 598 return damon_accesses_bp_to_nr_accesses( 599 damon_nr_accesses_to_accesses_bp( 600 nr_accesses, old_attrs), 601 new_attrs); 602 } 603 604 static void damon_update_monitoring_result(struct damon_region *r, 605 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs, 606 bool aggregating) 607 { 608 if (!aggregating) { 609 r->nr_accesses = damon_nr_accesses_for_new_attrs( 610 r->nr_accesses, old_attrs, new_attrs); 611 r->nr_accesses_bp = r->nr_accesses * 10000; 612 } else { 613 /* 614 * if this is called in the middle of the aggregation, reset 615 * the aggregations we made so far for this aggregation 616 * interval. In other words, make the status like 617 * kdamond_reset_aggregated() is called. 618 */ 619 r->last_nr_accesses = damon_nr_accesses_for_new_attrs( 620 r->last_nr_accesses, old_attrs, new_attrs); 621 r->nr_accesses_bp = r->last_nr_accesses * 10000; 622 r->nr_accesses = 0; 623 } 624 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs); 625 } 626 627 /* 628 * region->nr_accesses is the number of sampling intervals in the last 629 * aggregation interval that access to the region has found, and region->age is 630 * the number of aggregation intervals that its access pattern has maintained. 631 * For the reason, the real meaning of the two fields depend on current 632 * sampling interval and aggregation interval. This function updates 633 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs. 634 */ 635 static void damon_update_monitoring_results(struct damon_ctx *ctx, 636 struct damon_attrs *new_attrs, bool aggregating) 637 { 638 struct damon_attrs *old_attrs = &ctx->attrs; 639 struct damon_target *t; 640 struct damon_region *r; 641 642 /* if any interval is zero, simply forgive conversion */ 643 if (!old_attrs->sample_interval || !old_attrs->aggr_interval || 644 !new_attrs->sample_interval || 645 !new_attrs->aggr_interval) 646 return; 647 648 damon_for_each_target(t, ctx) 649 damon_for_each_region(r, t) 650 damon_update_monitoring_result( 651 r, old_attrs, new_attrs, aggregating); 652 } 653 654 /* 655 * damon_valid_intervals_goal() - return if the intervals goal of @attrs is 656 * valid. 657 */ 658 static bool damon_valid_intervals_goal(struct damon_attrs *attrs) 659 { 660 struct damon_intervals_goal *goal = &attrs->intervals_goal; 661 662 /* tuning is disabled */ 663 if (!goal->aggrs) 664 return true; 665 if (goal->min_sample_us > goal->max_sample_us) 666 return false; 667 if (attrs->sample_interval < goal->min_sample_us || 668 goal->max_sample_us < attrs->sample_interval) 669 return false; 670 return true; 671 } 672 673 /** 674 * damon_set_attrs() - Set attributes for the monitoring. 675 * @ctx: monitoring context 676 * @attrs: monitoring attributes 677 * 678 * This function should be called while the kdamond is not running, an access 679 * check results aggregation is not ongoing (e.g., from &struct 680 * damon_callback->after_aggregation or &struct 681 * damon_callback->after_wmarks_check callbacks), or from damon_call(). 682 * 683 * Every time interval is in micro-seconds. 684 * 685 * Return: 0 on success, negative error code otherwise. 686 */ 687 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs) 688 { 689 unsigned long sample_interval = attrs->sample_interval ? 690 attrs->sample_interval : 1; 691 struct damos *s; 692 bool aggregating = ctx->passed_sample_intervals < 693 ctx->next_aggregation_sis; 694 695 if (!damon_valid_intervals_goal(attrs)) 696 return -EINVAL; 697 698 if (attrs->min_nr_regions < 3) 699 return -EINVAL; 700 if (attrs->min_nr_regions > attrs->max_nr_regions) 701 return -EINVAL; 702 if (attrs->sample_interval > attrs->aggr_interval) 703 return -EINVAL; 704 705 /* calls from core-external doesn't set this. */ 706 if (!attrs->aggr_samples) 707 attrs->aggr_samples = attrs->aggr_interval / sample_interval; 708 709 ctx->next_aggregation_sis = ctx->passed_sample_intervals + 710 attrs->aggr_interval / sample_interval; 711 ctx->next_ops_update_sis = ctx->passed_sample_intervals + 712 attrs->ops_update_interval / sample_interval; 713 714 damon_update_monitoring_results(ctx, attrs, aggregating); 715 ctx->attrs = *attrs; 716 717 damon_for_each_scheme(s, ctx) 718 damos_set_next_apply_sis(s, ctx); 719 720 return 0; 721 } 722 723 /** 724 * damon_set_schemes() - Set data access monitoring based operation schemes. 725 * @ctx: monitoring context 726 * @schemes: array of the schemes 727 * @nr_schemes: number of entries in @schemes 728 * 729 * This function should not be called while the kdamond of the context is 730 * running. 731 */ 732 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes, 733 ssize_t nr_schemes) 734 { 735 struct damos *s, *next; 736 ssize_t i; 737 738 damon_for_each_scheme_safe(s, next, ctx) 739 damon_destroy_scheme(s); 740 for (i = 0; i < nr_schemes; i++) 741 damon_add_scheme(ctx, schemes[i]); 742 } 743 744 static struct damos_quota_goal *damos_nth_quota_goal( 745 int n, struct damos_quota *q) 746 { 747 struct damos_quota_goal *goal; 748 int i = 0; 749 750 damos_for_each_quota_goal(goal, q) { 751 if (i++ == n) 752 return goal; 753 } 754 return NULL; 755 } 756 757 static void damos_commit_quota_goal( 758 struct damos_quota_goal *dst, struct damos_quota_goal *src) 759 { 760 dst->metric = src->metric; 761 dst->target_value = src->target_value; 762 if (dst->metric == DAMOS_QUOTA_USER_INPUT) 763 dst->current_value = src->current_value; 764 /* keep last_psi_total as is, since it will be updated in next cycle */ 765 } 766 767 /** 768 * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota. 769 * @dst: The commit destination DAMOS quota. 770 * @src: The commit source DAMOS quota. 771 * 772 * Copies user-specified parameters for quota goals from @src to @dst. Users 773 * should use this function for quota goals-level parameters update of running 774 * DAMON contexts, instead of manual in-place updates. 775 * 776 * This function should be called from parameters-update safe context, like 777 * DAMON callbacks. 778 */ 779 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src) 780 { 781 struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal; 782 int i = 0, j = 0; 783 784 damos_for_each_quota_goal_safe(dst_goal, next, dst) { 785 src_goal = damos_nth_quota_goal(i++, src); 786 if (src_goal) 787 damos_commit_quota_goal(dst_goal, src_goal); 788 else 789 damos_destroy_quota_goal(dst_goal); 790 } 791 damos_for_each_quota_goal_safe(src_goal, next, src) { 792 if (j++ < i) 793 continue; 794 new_goal = damos_new_quota_goal( 795 src_goal->metric, src_goal->target_value); 796 if (!new_goal) 797 return -ENOMEM; 798 damos_add_quota_goal(dst, new_goal); 799 } 800 return 0; 801 } 802 803 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src) 804 { 805 int err; 806 807 dst->reset_interval = src->reset_interval; 808 dst->ms = src->ms; 809 dst->sz = src->sz; 810 err = damos_commit_quota_goals(dst, src); 811 if (err) 812 return err; 813 dst->weight_sz = src->weight_sz; 814 dst->weight_nr_accesses = src->weight_nr_accesses; 815 dst->weight_age = src->weight_age; 816 return 0; 817 } 818 819 static struct damos_filter *damos_nth_filter(int n, struct damos *s) 820 { 821 struct damos_filter *filter; 822 int i = 0; 823 824 damos_for_each_filter(filter, s) { 825 if (i++ == n) 826 return filter; 827 } 828 return NULL; 829 } 830 831 static void damos_commit_filter_arg( 832 struct damos_filter *dst, struct damos_filter *src) 833 { 834 switch (dst->type) { 835 case DAMOS_FILTER_TYPE_MEMCG: 836 dst->memcg_id = src->memcg_id; 837 break; 838 case DAMOS_FILTER_TYPE_ADDR: 839 dst->addr_range = src->addr_range; 840 break; 841 case DAMOS_FILTER_TYPE_TARGET: 842 dst->target_idx = src->target_idx; 843 break; 844 case DAMOS_FILTER_TYPE_HUGEPAGE_SIZE: 845 dst->sz_range = src->sz_range; 846 break; 847 default: 848 break; 849 } 850 } 851 852 static void damos_commit_filter( 853 struct damos_filter *dst, struct damos_filter *src) 854 { 855 dst->type = src->type; 856 dst->matching = src->matching; 857 damos_commit_filter_arg(dst, src); 858 } 859 860 static int damos_commit_core_filters(struct damos *dst, struct damos *src) 861 { 862 struct damos_filter *dst_filter, *next, *src_filter, *new_filter; 863 int i = 0, j = 0; 864 865 damos_for_each_filter_safe(dst_filter, next, dst) { 866 src_filter = damos_nth_filter(i++, src); 867 if (src_filter) 868 damos_commit_filter(dst_filter, src_filter); 869 else 870 damos_destroy_filter(dst_filter); 871 } 872 873 damos_for_each_filter_safe(src_filter, next, src) { 874 if (j++ < i) 875 continue; 876 877 new_filter = damos_new_filter( 878 src_filter->type, src_filter->matching, 879 src_filter->allow); 880 if (!new_filter) 881 return -ENOMEM; 882 damos_commit_filter_arg(new_filter, src_filter); 883 damos_add_filter(dst, new_filter); 884 } 885 return 0; 886 } 887 888 static int damos_commit_ops_filters(struct damos *dst, struct damos *src) 889 { 890 struct damos_filter *dst_filter, *next, *src_filter, *new_filter; 891 int i = 0, j = 0; 892 893 damos_for_each_ops_filter_safe(dst_filter, next, dst) { 894 src_filter = damos_nth_filter(i++, src); 895 if (src_filter) 896 damos_commit_filter(dst_filter, src_filter); 897 else 898 damos_destroy_filter(dst_filter); 899 } 900 901 damos_for_each_ops_filter_safe(src_filter, next, src) { 902 if (j++ < i) 903 continue; 904 905 new_filter = damos_new_filter( 906 src_filter->type, src_filter->matching, 907 src_filter->allow); 908 if (!new_filter) 909 return -ENOMEM; 910 damos_commit_filter_arg(new_filter, src_filter); 911 damos_add_filter(dst, new_filter); 912 } 913 return 0; 914 } 915 916 /** 917 * damos_filters_default_reject() - decide whether to reject memory that didn't 918 * match with any given filter. 919 * @filters: Given DAMOS filters of a group. 920 */ 921 static bool damos_filters_default_reject(struct list_head *filters) 922 { 923 struct damos_filter *last_filter; 924 925 if (list_empty(filters)) 926 return false; 927 last_filter = list_last_entry(filters, struct damos_filter, list); 928 return last_filter->allow; 929 } 930 931 static void damos_set_filters_default_reject(struct damos *s) 932 { 933 if (!list_empty(&s->ops_filters)) 934 s->core_filters_default_reject = false; 935 else 936 s->core_filters_default_reject = 937 damos_filters_default_reject(&s->filters); 938 s->ops_filters_default_reject = 939 damos_filters_default_reject(&s->ops_filters); 940 } 941 942 static int damos_commit_filters(struct damos *dst, struct damos *src) 943 { 944 int err; 945 946 err = damos_commit_core_filters(dst, src); 947 if (err) 948 return err; 949 err = damos_commit_ops_filters(dst, src); 950 if (err) 951 return err; 952 damos_set_filters_default_reject(dst); 953 return 0; 954 } 955 956 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx) 957 { 958 struct damos *s; 959 int i = 0; 960 961 damon_for_each_scheme(s, ctx) { 962 if (i++ == n) 963 return s; 964 } 965 return NULL; 966 } 967 968 static int damos_commit(struct damos *dst, struct damos *src) 969 { 970 int err; 971 972 dst->pattern = src->pattern; 973 dst->action = src->action; 974 dst->apply_interval_us = src->apply_interval_us; 975 976 err = damos_commit_quota(&dst->quota, &src->quota); 977 if (err) 978 return err; 979 980 dst->wmarks = src->wmarks; 981 982 err = damos_commit_filters(dst, src); 983 return err; 984 } 985 986 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src) 987 { 988 struct damos *dst_scheme, *next, *src_scheme, *new_scheme; 989 int i = 0, j = 0, err; 990 991 damon_for_each_scheme_safe(dst_scheme, next, dst) { 992 src_scheme = damon_nth_scheme(i++, src); 993 if (src_scheme) { 994 err = damos_commit(dst_scheme, src_scheme); 995 if (err) 996 return err; 997 } else { 998 damon_destroy_scheme(dst_scheme); 999 } 1000 } 1001 1002 damon_for_each_scheme_safe(src_scheme, next, src) { 1003 if (j++ < i) 1004 continue; 1005 new_scheme = damon_new_scheme(&src_scheme->pattern, 1006 src_scheme->action, 1007 src_scheme->apply_interval_us, 1008 &src_scheme->quota, &src_scheme->wmarks, 1009 NUMA_NO_NODE); 1010 if (!new_scheme) 1011 return -ENOMEM; 1012 err = damos_commit(new_scheme, src_scheme); 1013 if (err) { 1014 damon_destroy_scheme(new_scheme); 1015 return err; 1016 } 1017 damon_add_scheme(dst, new_scheme); 1018 } 1019 return 0; 1020 } 1021 1022 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx) 1023 { 1024 struct damon_target *t; 1025 int i = 0; 1026 1027 damon_for_each_target(t, ctx) { 1028 if (i++ == n) 1029 return t; 1030 } 1031 return NULL; 1032 } 1033 1034 /* 1035 * The caller should ensure the regions of @src are 1036 * 1. valid (end >= src) and 1037 * 2. sorted by starting address. 1038 * 1039 * If @src has no region, @dst keeps current regions. 1040 */ 1041 static int damon_commit_target_regions( 1042 struct damon_target *dst, struct damon_target *src) 1043 { 1044 struct damon_region *src_region; 1045 struct damon_addr_range *ranges; 1046 int i = 0, err; 1047 1048 damon_for_each_region(src_region, src) 1049 i++; 1050 if (!i) 1051 return 0; 1052 1053 ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN); 1054 if (!ranges) 1055 return -ENOMEM; 1056 i = 0; 1057 damon_for_each_region(src_region, src) 1058 ranges[i++] = src_region->ar; 1059 err = damon_set_regions(dst, ranges, i); 1060 kfree(ranges); 1061 return err; 1062 } 1063 1064 static int damon_commit_target( 1065 struct damon_target *dst, bool dst_has_pid, 1066 struct damon_target *src, bool src_has_pid) 1067 { 1068 int err; 1069 1070 err = damon_commit_target_regions(dst, src); 1071 if (err) 1072 return err; 1073 if (dst_has_pid) 1074 put_pid(dst->pid); 1075 if (src_has_pid) 1076 get_pid(src->pid); 1077 dst->pid = src->pid; 1078 return 0; 1079 } 1080 1081 static int damon_commit_targets( 1082 struct damon_ctx *dst, struct damon_ctx *src) 1083 { 1084 struct damon_target *dst_target, *next, *src_target, *new_target; 1085 int i = 0, j = 0, err; 1086 1087 damon_for_each_target_safe(dst_target, next, dst) { 1088 src_target = damon_nth_target(i++, src); 1089 if (src_target) { 1090 err = damon_commit_target( 1091 dst_target, damon_target_has_pid(dst), 1092 src_target, damon_target_has_pid(src)); 1093 if (err) 1094 return err; 1095 } else { 1096 struct damos *s; 1097 1098 if (damon_target_has_pid(dst)) 1099 put_pid(dst_target->pid); 1100 damon_destroy_target(dst_target); 1101 damon_for_each_scheme(s, dst) { 1102 if (s->quota.charge_target_from == dst_target) { 1103 s->quota.charge_target_from = NULL; 1104 s->quota.charge_addr_from = 0; 1105 } 1106 } 1107 } 1108 } 1109 1110 damon_for_each_target_safe(src_target, next, src) { 1111 if (j++ < i) 1112 continue; 1113 new_target = damon_new_target(); 1114 if (!new_target) 1115 return -ENOMEM; 1116 err = damon_commit_target(new_target, false, 1117 src_target, damon_target_has_pid(src)); 1118 if (err) { 1119 damon_destroy_target(new_target); 1120 return err; 1121 } 1122 damon_add_target(dst, new_target); 1123 } 1124 return 0; 1125 } 1126 1127 /** 1128 * damon_commit_ctx() - Commit parameters of a DAMON context to another. 1129 * @dst: The commit destination DAMON context. 1130 * @src: The commit source DAMON context. 1131 * 1132 * This function copies user-specified parameters from @src to @dst and update 1133 * the internal status and results accordingly. Users should use this function 1134 * for context-level parameters update of running context, instead of manual 1135 * in-place updates. 1136 * 1137 * This function should be called from parameters-update safe context, like 1138 * DAMON callbacks. 1139 */ 1140 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src) 1141 { 1142 int err; 1143 1144 err = damon_commit_schemes(dst, src); 1145 if (err) 1146 return err; 1147 err = damon_commit_targets(dst, src); 1148 if (err) 1149 return err; 1150 /* 1151 * schemes and targets should be updated first, since 1152 * 1. damon_set_attrs() updates monitoring results of targets and 1153 * next_apply_sis of schemes, and 1154 * 2. ops update should be done after pid handling is done (target 1155 * committing require putting pids). 1156 */ 1157 err = damon_set_attrs(dst, &src->attrs); 1158 if (err) 1159 return err; 1160 dst->ops = src->ops; 1161 1162 return 0; 1163 } 1164 1165 /** 1166 * damon_nr_running_ctxs() - Return number of currently running contexts. 1167 */ 1168 int damon_nr_running_ctxs(void) 1169 { 1170 int nr_ctxs; 1171 1172 mutex_lock(&damon_lock); 1173 nr_ctxs = nr_running_ctxs; 1174 mutex_unlock(&damon_lock); 1175 1176 return nr_ctxs; 1177 } 1178 1179 /* Returns the size upper limit for each monitoring region */ 1180 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx) 1181 { 1182 struct damon_target *t; 1183 struct damon_region *r; 1184 unsigned long sz = 0; 1185 1186 damon_for_each_target(t, ctx) { 1187 damon_for_each_region(r, t) 1188 sz += damon_sz_region(r); 1189 } 1190 1191 if (ctx->attrs.min_nr_regions) 1192 sz /= ctx->attrs.min_nr_regions; 1193 if (sz < DAMON_MIN_REGION) 1194 sz = DAMON_MIN_REGION; 1195 1196 return sz; 1197 } 1198 1199 static int kdamond_fn(void *data); 1200 1201 /* 1202 * __damon_start() - Starts monitoring with given context. 1203 * @ctx: monitoring context 1204 * 1205 * This function should be called while damon_lock is hold. 1206 * 1207 * Return: 0 on success, negative error code otherwise. 1208 */ 1209 static int __damon_start(struct damon_ctx *ctx) 1210 { 1211 int err = -EBUSY; 1212 1213 mutex_lock(&ctx->kdamond_lock); 1214 if (!ctx->kdamond) { 1215 err = 0; 1216 reinit_completion(&ctx->kdamond_started); 1217 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d", 1218 nr_running_ctxs); 1219 if (IS_ERR(ctx->kdamond)) { 1220 err = PTR_ERR(ctx->kdamond); 1221 ctx->kdamond = NULL; 1222 } else { 1223 wait_for_completion(&ctx->kdamond_started); 1224 } 1225 } 1226 mutex_unlock(&ctx->kdamond_lock); 1227 1228 return err; 1229 } 1230 1231 /** 1232 * damon_start() - Starts the monitorings for a given group of contexts. 1233 * @ctxs: an array of the pointers for contexts to start monitoring 1234 * @nr_ctxs: size of @ctxs 1235 * @exclusive: exclusiveness of this contexts group 1236 * 1237 * This function starts a group of monitoring threads for a group of monitoring 1238 * contexts. One thread per each context is created and run in parallel. The 1239 * caller should handle synchronization between the threads by itself. If 1240 * @exclusive is true and a group of threads that created by other 1241 * 'damon_start()' call is currently running, this function does nothing but 1242 * returns -EBUSY. 1243 * 1244 * Return: 0 on success, negative error code otherwise. 1245 */ 1246 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive) 1247 { 1248 int i; 1249 int err = 0; 1250 1251 mutex_lock(&damon_lock); 1252 if ((exclusive && nr_running_ctxs) || 1253 (!exclusive && running_exclusive_ctxs)) { 1254 mutex_unlock(&damon_lock); 1255 return -EBUSY; 1256 } 1257 1258 for (i = 0; i < nr_ctxs; i++) { 1259 err = __damon_start(ctxs[i]); 1260 if (err) 1261 break; 1262 nr_running_ctxs++; 1263 } 1264 if (exclusive && nr_running_ctxs) 1265 running_exclusive_ctxs = true; 1266 mutex_unlock(&damon_lock); 1267 1268 return err; 1269 } 1270 1271 /* 1272 * __damon_stop() - Stops monitoring of a given context. 1273 * @ctx: monitoring context 1274 * 1275 * Return: 0 on success, negative error code otherwise. 1276 */ 1277 static int __damon_stop(struct damon_ctx *ctx) 1278 { 1279 struct task_struct *tsk; 1280 1281 mutex_lock(&ctx->kdamond_lock); 1282 tsk = ctx->kdamond; 1283 if (tsk) { 1284 get_task_struct(tsk); 1285 mutex_unlock(&ctx->kdamond_lock); 1286 kthread_stop_put(tsk); 1287 return 0; 1288 } 1289 mutex_unlock(&ctx->kdamond_lock); 1290 1291 return -EPERM; 1292 } 1293 1294 /** 1295 * damon_stop() - Stops the monitorings for a given group of contexts. 1296 * @ctxs: an array of the pointers for contexts to stop monitoring 1297 * @nr_ctxs: size of @ctxs 1298 * 1299 * Return: 0 on success, negative error code otherwise. 1300 */ 1301 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs) 1302 { 1303 int i, err = 0; 1304 1305 for (i = 0; i < nr_ctxs; i++) { 1306 /* nr_running_ctxs is decremented in kdamond_fn */ 1307 err = __damon_stop(ctxs[i]); 1308 if (err) 1309 break; 1310 } 1311 return err; 1312 } 1313 1314 static bool damon_is_running(struct damon_ctx *ctx) 1315 { 1316 bool running; 1317 1318 mutex_lock(&ctx->kdamond_lock); 1319 running = ctx->kdamond != NULL; 1320 mutex_unlock(&ctx->kdamond_lock); 1321 return running; 1322 } 1323 1324 /** 1325 * damon_call() - Invoke a given function on DAMON worker thread (kdamond). 1326 * @ctx: DAMON context to call the function for. 1327 * @control: Control variable of the call request. 1328 * 1329 * Ask DAMON worker thread (kdamond) of @ctx to call a function with an 1330 * argument data that respectively passed via &damon_call_control->fn and 1331 * &damon_call_control->data of @control, and wait until the kdamond finishes 1332 * handling of the request. 1333 * 1334 * The kdamond executes the function with the argument in the main loop, just 1335 * after a sampling of the iteration is finished. The function can hence 1336 * safely access the internal data of the &struct damon_ctx without additional 1337 * synchronization. The return value of the function will be saved in 1338 * &damon_call_control->return_code. 1339 * 1340 * Return: 0 on success, negative error code otherwise. 1341 */ 1342 int damon_call(struct damon_ctx *ctx, struct damon_call_control *control) 1343 { 1344 init_completion(&control->completion); 1345 control->canceled = false; 1346 1347 mutex_lock(&ctx->call_control_lock); 1348 if (ctx->call_control) { 1349 mutex_unlock(&ctx->call_control_lock); 1350 return -EBUSY; 1351 } 1352 ctx->call_control = control; 1353 mutex_unlock(&ctx->call_control_lock); 1354 if (!damon_is_running(ctx)) 1355 return -EINVAL; 1356 wait_for_completion(&control->completion); 1357 if (control->canceled) 1358 return -ECANCELED; 1359 return 0; 1360 } 1361 1362 /** 1363 * damos_walk() - Invoke a given functions while DAMOS walk regions. 1364 * @ctx: DAMON context to call the functions for. 1365 * @control: Control variable of the walk request. 1366 * 1367 * Ask DAMON worker thread (kdamond) of @ctx to call a function for each region 1368 * that the kdamond will apply DAMOS action to, and wait until the kdamond 1369 * finishes handling of the request. 1370 * 1371 * The kdamond executes the given function in the main loop, for each region 1372 * just after it applied any DAMOS actions of @ctx to it. The invocation is 1373 * made only within one &damos->apply_interval_us since damos_walk() 1374 * invocation, for each scheme. The given callback function can hence safely 1375 * access the internal data of &struct damon_ctx and &struct damon_region that 1376 * each of the scheme will apply the action for next interval, without 1377 * additional synchronizations against the kdamond. If every scheme of @ctx 1378 * passed at least one &damos->apply_interval_us, kdamond marks the request as 1379 * completed so that damos_walk() can wakeup and return. 1380 * 1381 * Return: 0 on success, negative error code otherwise. 1382 */ 1383 int damos_walk(struct damon_ctx *ctx, struct damos_walk_control *control) 1384 { 1385 init_completion(&control->completion); 1386 control->canceled = false; 1387 mutex_lock(&ctx->walk_control_lock); 1388 if (ctx->walk_control) { 1389 mutex_unlock(&ctx->walk_control_lock); 1390 return -EBUSY; 1391 } 1392 ctx->walk_control = control; 1393 mutex_unlock(&ctx->walk_control_lock); 1394 if (!damon_is_running(ctx)) 1395 return -EINVAL; 1396 wait_for_completion(&control->completion); 1397 if (control->canceled) 1398 return -ECANCELED; 1399 return 0; 1400 } 1401 1402 /* 1403 * Warn and fix corrupted ->nr_accesses[_bp] for investigations and preventing 1404 * the problem being propagated. 1405 */ 1406 static void damon_warn_fix_nr_accesses_corruption(struct damon_region *r) 1407 { 1408 if (r->nr_accesses_bp == r->nr_accesses * 10000) 1409 return; 1410 WARN_ONCE(true, "invalid nr_accesses_bp at reset: %u %u\n", 1411 r->nr_accesses_bp, r->nr_accesses); 1412 r->nr_accesses_bp = r->nr_accesses * 10000; 1413 } 1414 1415 /* 1416 * Reset the aggregated monitoring results ('nr_accesses' of each region). 1417 */ 1418 static void kdamond_reset_aggregated(struct damon_ctx *c) 1419 { 1420 struct damon_target *t; 1421 unsigned int ti = 0; /* target's index */ 1422 1423 damon_for_each_target(t, c) { 1424 struct damon_region *r; 1425 1426 damon_for_each_region(r, t) { 1427 trace_damon_aggregated(ti, r, damon_nr_regions(t)); 1428 damon_warn_fix_nr_accesses_corruption(r); 1429 r->last_nr_accesses = r->nr_accesses; 1430 r->nr_accesses = 0; 1431 } 1432 ti++; 1433 } 1434 } 1435 1436 static unsigned long damon_get_intervals_score(struct damon_ctx *c) 1437 { 1438 struct damon_target *t; 1439 struct damon_region *r; 1440 unsigned long sz_region, max_access_events = 0, access_events = 0; 1441 unsigned long target_access_events; 1442 unsigned long goal_bp = c->attrs.intervals_goal.access_bp; 1443 1444 damon_for_each_target(t, c) { 1445 damon_for_each_region(r, t) { 1446 sz_region = damon_sz_region(r); 1447 max_access_events += sz_region * c->attrs.aggr_samples; 1448 access_events += sz_region * r->nr_accesses; 1449 } 1450 } 1451 target_access_events = max_access_events * goal_bp / 10000; 1452 return access_events * 10000 / target_access_events; 1453 } 1454 1455 static unsigned long damon_feed_loop_next_input(unsigned long last_input, 1456 unsigned long score); 1457 1458 static unsigned long damon_get_intervals_adaptation_bp(struct damon_ctx *c) 1459 { 1460 unsigned long score_bp, adaptation_bp; 1461 1462 score_bp = damon_get_intervals_score(c); 1463 adaptation_bp = damon_feed_loop_next_input(100000000, score_bp) / 1464 10000; 1465 /* 1466 * adaptaion_bp ranges from 1 to 20,000. Avoid too rapid reduction of 1467 * the intervals by rescaling [1,10,000] to [5000, 10,000]. 1468 */ 1469 if (adaptation_bp <= 10000) 1470 adaptation_bp = 5000 + adaptation_bp / 2; 1471 return adaptation_bp; 1472 } 1473 1474 static void kdamond_tune_intervals(struct damon_ctx *c) 1475 { 1476 unsigned long adaptation_bp; 1477 struct damon_attrs new_attrs; 1478 struct damon_intervals_goal *goal; 1479 1480 adaptation_bp = damon_get_intervals_adaptation_bp(c); 1481 if (adaptation_bp == 10000) 1482 return; 1483 1484 new_attrs = c->attrs; 1485 goal = &c->attrs.intervals_goal; 1486 new_attrs.sample_interval = min(goal->max_sample_us, 1487 c->attrs.sample_interval * adaptation_bp / 10000); 1488 new_attrs.sample_interval = max(goal->min_sample_us, 1489 new_attrs.sample_interval); 1490 new_attrs.aggr_interval = new_attrs.sample_interval * 1491 c->attrs.aggr_samples; 1492 damon_set_attrs(c, &new_attrs); 1493 } 1494 1495 static void damon_split_region_at(struct damon_target *t, 1496 struct damon_region *r, unsigned long sz_r); 1497 1498 static bool __damos_valid_target(struct damon_region *r, struct damos *s) 1499 { 1500 unsigned long sz; 1501 unsigned int nr_accesses = r->nr_accesses_bp / 10000; 1502 1503 sz = damon_sz_region(r); 1504 return s->pattern.min_sz_region <= sz && 1505 sz <= s->pattern.max_sz_region && 1506 s->pattern.min_nr_accesses <= nr_accesses && 1507 nr_accesses <= s->pattern.max_nr_accesses && 1508 s->pattern.min_age_region <= r->age && 1509 r->age <= s->pattern.max_age_region; 1510 } 1511 1512 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t, 1513 struct damon_region *r, struct damos *s) 1514 { 1515 bool ret = __damos_valid_target(r, s); 1516 1517 if (!ret || !s->quota.esz || !c->ops.get_scheme_score) 1518 return ret; 1519 1520 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score; 1521 } 1522 1523 /* 1524 * damos_skip_charged_region() - Check if the given region or starting part of 1525 * it is already charged for the DAMOS quota. 1526 * @t: The target of the region. 1527 * @rp: The pointer to the region. 1528 * @s: The scheme to be applied. 1529 * 1530 * If a quota of a scheme has exceeded in a quota charge window, the scheme's 1531 * action would applied to only a part of the target access pattern fulfilling 1532 * regions. To avoid applying the scheme action to only already applied 1533 * regions, DAMON skips applying the scheme action to the regions that charged 1534 * in the previous charge window. 1535 * 1536 * This function checks if a given region should be skipped or not for the 1537 * reason. If only the starting part of the region has previously charged, 1538 * this function splits the region into two so that the second one covers the 1539 * area that not charged in the previous charge widnow and saves the second 1540 * region in *rp and returns false, so that the caller can apply DAMON action 1541 * to the second one. 1542 * 1543 * Return: true if the region should be entirely skipped, false otherwise. 1544 */ 1545 static bool damos_skip_charged_region(struct damon_target *t, 1546 struct damon_region **rp, struct damos *s) 1547 { 1548 struct damon_region *r = *rp; 1549 struct damos_quota *quota = &s->quota; 1550 unsigned long sz_to_skip; 1551 1552 /* Skip previously charged regions */ 1553 if (quota->charge_target_from) { 1554 if (t != quota->charge_target_from) 1555 return true; 1556 if (r == damon_last_region(t)) { 1557 quota->charge_target_from = NULL; 1558 quota->charge_addr_from = 0; 1559 return true; 1560 } 1561 if (quota->charge_addr_from && 1562 r->ar.end <= quota->charge_addr_from) 1563 return true; 1564 1565 if (quota->charge_addr_from && r->ar.start < 1566 quota->charge_addr_from) { 1567 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from - 1568 r->ar.start, DAMON_MIN_REGION); 1569 if (!sz_to_skip) { 1570 if (damon_sz_region(r) <= DAMON_MIN_REGION) 1571 return true; 1572 sz_to_skip = DAMON_MIN_REGION; 1573 } 1574 damon_split_region_at(t, r, sz_to_skip); 1575 r = damon_next_region(r); 1576 *rp = r; 1577 } 1578 quota->charge_target_from = NULL; 1579 quota->charge_addr_from = 0; 1580 } 1581 return false; 1582 } 1583 1584 static void damos_update_stat(struct damos *s, 1585 unsigned long sz_tried, unsigned long sz_applied, 1586 unsigned long sz_ops_filter_passed) 1587 { 1588 s->stat.nr_tried++; 1589 s->stat.sz_tried += sz_tried; 1590 if (sz_applied) 1591 s->stat.nr_applied++; 1592 s->stat.sz_applied += sz_applied; 1593 s->stat.sz_ops_filter_passed += sz_ops_filter_passed; 1594 } 1595 1596 static bool damos_filter_match(struct damon_ctx *ctx, struct damon_target *t, 1597 struct damon_region *r, struct damos_filter *filter) 1598 { 1599 bool matched = false; 1600 struct damon_target *ti; 1601 int target_idx = 0; 1602 unsigned long start, end; 1603 1604 switch (filter->type) { 1605 case DAMOS_FILTER_TYPE_TARGET: 1606 damon_for_each_target(ti, ctx) { 1607 if (ti == t) 1608 break; 1609 target_idx++; 1610 } 1611 matched = target_idx == filter->target_idx; 1612 break; 1613 case DAMOS_FILTER_TYPE_ADDR: 1614 start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION); 1615 end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION); 1616 1617 /* inside the range */ 1618 if (start <= r->ar.start && r->ar.end <= end) { 1619 matched = true; 1620 break; 1621 } 1622 /* outside of the range */ 1623 if (r->ar.end <= start || end <= r->ar.start) { 1624 matched = false; 1625 break; 1626 } 1627 /* start before the range and overlap */ 1628 if (r->ar.start < start) { 1629 damon_split_region_at(t, r, start - r->ar.start); 1630 matched = false; 1631 break; 1632 } 1633 /* start inside the range */ 1634 damon_split_region_at(t, r, end - r->ar.start); 1635 matched = true; 1636 break; 1637 default: 1638 return false; 1639 } 1640 1641 return matched == filter->matching; 1642 } 1643 1644 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t, 1645 struct damon_region *r, struct damos *s) 1646 { 1647 struct damos_filter *filter; 1648 1649 s->core_filters_allowed = false; 1650 damos_for_each_filter(filter, s) { 1651 if (damos_filter_match(ctx, t, r, filter)) { 1652 if (filter->allow) 1653 s->core_filters_allowed = true; 1654 return !filter->allow; 1655 } 1656 } 1657 return s->core_filters_default_reject; 1658 } 1659 1660 /* 1661 * damos_walk_call_walk() - Call &damos_walk_control->walk_fn. 1662 * @ctx: The context of &damon_ctx->walk_control. 1663 * @t: The monitoring target of @r that @s will be applied. 1664 * @r: The region of @t that @s will be applied. 1665 * @s: The scheme of @ctx that will be applied to @r. 1666 * 1667 * This function is called from kdamond whenever it asked the operation set to 1668 * apply a DAMOS scheme action to a region. If a DAMOS walk request is 1669 * installed by damos_walk() and not yet uninstalled, invoke it. 1670 */ 1671 static void damos_walk_call_walk(struct damon_ctx *ctx, struct damon_target *t, 1672 struct damon_region *r, struct damos *s, 1673 unsigned long sz_filter_passed) 1674 { 1675 struct damos_walk_control *control; 1676 1677 if (s->walk_completed) 1678 return; 1679 1680 control = ctx->walk_control; 1681 if (!control) 1682 return; 1683 1684 control->walk_fn(control->data, ctx, t, r, s, sz_filter_passed); 1685 } 1686 1687 /* 1688 * damos_walk_complete() - Complete DAMOS walk request if all walks are done. 1689 * @ctx: The context of &damon_ctx->walk_control. 1690 * @s: A scheme of @ctx that all walks are now done. 1691 * 1692 * This function is called when kdamond finished applying the action of a DAMOS 1693 * scheme to all regions that eligible for the given &damos->apply_interval_us. 1694 * If every scheme of @ctx including @s now finished walking for at least one 1695 * &damos->apply_interval_us, this function makrs the handling of the given 1696 * DAMOS walk request is done, so that damos_walk() can wake up and return. 1697 */ 1698 static void damos_walk_complete(struct damon_ctx *ctx, struct damos *s) 1699 { 1700 struct damos *siter; 1701 struct damos_walk_control *control; 1702 1703 control = ctx->walk_control; 1704 if (!control) 1705 return; 1706 1707 s->walk_completed = true; 1708 /* if all schemes completed, signal completion to walker */ 1709 damon_for_each_scheme(siter, ctx) { 1710 if (!siter->walk_completed) 1711 return; 1712 } 1713 damon_for_each_scheme(siter, ctx) 1714 siter->walk_completed = false; 1715 1716 complete(&control->completion); 1717 ctx->walk_control = NULL; 1718 } 1719 1720 /* 1721 * damos_walk_cancel() - Cancel the current DAMOS walk request. 1722 * @ctx: The context of &damon_ctx->walk_control. 1723 * 1724 * This function is called when @ctx is deactivated by DAMOS watermarks, DAMOS 1725 * walk is requested but there is no DAMOS scheme to walk for, or the kdamond 1726 * is already out of the main loop and therefore gonna be terminated, and hence 1727 * cannot continue the walks. This function therefore marks the walk request 1728 * as canceled, so that damos_walk() can wake up and return. 1729 */ 1730 static void damos_walk_cancel(struct damon_ctx *ctx) 1731 { 1732 struct damos_walk_control *control; 1733 1734 mutex_lock(&ctx->walk_control_lock); 1735 control = ctx->walk_control; 1736 mutex_unlock(&ctx->walk_control_lock); 1737 1738 if (!control) 1739 return; 1740 control->canceled = true; 1741 complete(&control->completion); 1742 mutex_lock(&ctx->walk_control_lock); 1743 ctx->walk_control = NULL; 1744 mutex_unlock(&ctx->walk_control_lock); 1745 } 1746 1747 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t, 1748 struct damon_region *r, struct damos *s) 1749 { 1750 struct damos_quota *quota = &s->quota; 1751 unsigned long sz = damon_sz_region(r); 1752 struct timespec64 begin, end; 1753 unsigned long sz_applied = 0; 1754 unsigned long sz_ops_filter_passed = 0; 1755 /* 1756 * We plan to support multiple context per kdamond, as DAMON sysfs 1757 * implies with 'nr_contexts' file. Nevertheless, only single context 1758 * per kdamond is supported for now. So, we can simply use '0' context 1759 * index here. 1760 */ 1761 unsigned int cidx = 0; 1762 struct damos *siter; /* schemes iterator */ 1763 unsigned int sidx = 0; 1764 struct damon_target *titer; /* targets iterator */ 1765 unsigned int tidx = 0; 1766 bool do_trace = false; 1767 1768 /* get indices for trace_damos_before_apply() */ 1769 if (trace_damos_before_apply_enabled()) { 1770 damon_for_each_scheme(siter, c) { 1771 if (siter == s) 1772 break; 1773 sidx++; 1774 } 1775 damon_for_each_target(titer, c) { 1776 if (titer == t) 1777 break; 1778 tidx++; 1779 } 1780 do_trace = true; 1781 } 1782 1783 if (c->ops.apply_scheme) { 1784 if (quota->esz && quota->charged_sz + sz > quota->esz) { 1785 sz = ALIGN_DOWN(quota->esz - quota->charged_sz, 1786 DAMON_MIN_REGION); 1787 if (!sz) 1788 goto update_stat; 1789 damon_split_region_at(t, r, sz); 1790 } 1791 if (damos_filter_out(c, t, r, s)) 1792 return; 1793 ktime_get_coarse_ts64(&begin); 1794 trace_damos_before_apply(cidx, sidx, tidx, r, 1795 damon_nr_regions(t), do_trace); 1796 sz_applied = c->ops.apply_scheme(c, t, r, s, 1797 &sz_ops_filter_passed); 1798 damos_walk_call_walk(c, t, r, s, sz_ops_filter_passed); 1799 ktime_get_coarse_ts64(&end); 1800 quota->total_charged_ns += timespec64_to_ns(&end) - 1801 timespec64_to_ns(&begin); 1802 quota->charged_sz += sz; 1803 if (quota->esz && quota->charged_sz >= quota->esz) { 1804 quota->charge_target_from = t; 1805 quota->charge_addr_from = r->ar.end + 1; 1806 } 1807 } 1808 if (s->action != DAMOS_STAT) 1809 r->age = 0; 1810 1811 update_stat: 1812 damos_update_stat(s, sz, sz_applied, sz_ops_filter_passed); 1813 } 1814 1815 static void damon_do_apply_schemes(struct damon_ctx *c, 1816 struct damon_target *t, 1817 struct damon_region *r) 1818 { 1819 struct damos *s; 1820 1821 damon_for_each_scheme(s, c) { 1822 struct damos_quota *quota = &s->quota; 1823 1824 if (c->passed_sample_intervals < s->next_apply_sis) 1825 continue; 1826 1827 if (!s->wmarks.activated) 1828 continue; 1829 1830 /* Check the quota */ 1831 if (quota->esz && quota->charged_sz >= quota->esz) 1832 continue; 1833 1834 if (damos_skip_charged_region(t, &r, s)) 1835 continue; 1836 1837 if (!damos_valid_target(c, t, r, s)) 1838 continue; 1839 1840 damos_apply_scheme(c, t, r, s); 1841 } 1842 } 1843 1844 /* 1845 * damon_feed_loop_next_input() - get next input to achieve a target score. 1846 * @last_input The last input. 1847 * @score Current score that made with @last_input. 1848 * 1849 * Calculate next input to achieve the target score, based on the last input 1850 * and current score. Assuming the input and the score are positively 1851 * proportional, calculate how much compensation should be added to or 1852 * subtracted from the last input as a proportion of the last input. Avoid 1853 * next input always being zero by setting it non-zero always. In short form 1854 * (assuming support of float and signed calculations), the algorithm is as 1855 * below. 1856 * 1857 * next_input = max(last_input * ((goal - current) / goal + 1), 1) 1858 * 1859 * For simple implementation, we assume the target score is always 10,000. The 1860 * caller should adjust @score for this. 1861 * 1862 * Returns next input that assumed to achieve the target score. 1863 */ 1864 static unsigned long damon_feed_loop_next_input(unsigned long last_input, 1865 unsigned long score) 1866 { 1867 const unsigned long goal = 10000; 1868 /* Set minimum input as 10000 to avoid compensation be zero */ 1869 const unsigned long min_input = 10000; 1870 unsigned long score_goal_diff, compensation; 1871 bool over_achieving = score > goal; 1872 1873 if (score == goal) 1874 return last_input; 1875 if (score >= goal * 2) 1876 return min_input; 1877 1878 if (over_achieving) 1879 score_goal_diff = score - goal; 1880 else 1881 score_goal_diff = goal - score; 1882 1883 if (last_input < ULONG_MAX / score_goal_diff) 1884 compensation = last_input * score_goal_diff / goal; 1885 else 1886 compensation = last_input / goal * score_goal_diff; 1887 1888 if (over_achieving) 1889 return max(last_input - compensation, min_input); 1890 if (last_input < ULONG_MAX - compensation) 1891 return last_input + compensation; 1892 return ULONG_MAX; 1893 } 1894 1895 #ifdef CONFIG_PSI 1896 1897 static u64 damos_get_some_mem_psi_total(void) 1898 { 1899 if (static_branch_likely(&psi_disabled)) 1900 return 0; 1901 return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2], 1902 NSEC_PER_USEC); 1903 } 1904 1905 #else /* CONFIG_PSI */ 1906 1907 static inline u64 damos_get_some_mem_psi_total(void) 1908 { 1909 return 0; 1910 }; 1911 1912 #endif /* CONFIG_PSI */ 1913 1914 #ifdef CONFIG_NUMA 1915 static __kernel_ulong_t damos_get_node_mem_bp( 1916 struct damos_quota_goal *goal) 1917 { 1918 struct sysinfo i; 1919 __kernel_ulong_t numerator; 1920 1921 si_meminfo_node(&i, goal->nid); 1922 if (goal->metric == DAMOS_QUOTA_NODE_MEM_USED_BP) 1923 numerator = i.totalram - i.freeram; 1924 else /* DAMOS_QUOTA_NODE_MEM_FREE_BP */ 1925 numerator = i.freeram; 1926 return numerator * 10000 / i.totalram; 1927 } 1928 #else 1929 static __kernel_ulong_t damos_get_node_mem_bp( 1930 struct damos_quota_goal *goal) 1931 { 1932 return 0; 1933 } 1934 #endif 1935 1936 1937 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal) 1938 { 1939 u64 now_psi_total; 1940 1941 switch (goal->metric) { 1942 case DAMOS_QUOTA_USER_INPUT: 1943 /* User should already set goal->current_value */ 1944 break; 1945 case DAMOS_QUOTA_SOME_MEM_PSI_US: 1946 now_psi_total = damos_get_some_mem_psi_total(); 1947 goal->current_value = now_psi_total - goal->last_psi_total; 1948 goal->last_psi_total = now_psi_total; 1949 break; 1950 case DAMOS_QUOTA_NODE_MEM_USED_BP: 1951 case DAMOS_QUOTA_NODE_MEM_FREE_BP: 1952 goal->current_value = damos_get_node_mem_bp(goal); 1953 break; 1954 default: 1955 break; 1956 } 1957 } 1958 1959 /* Return the highest score since it makes schemes least aggressive */ 1960 static unsigned long damos_quota_score(struct damos_quota *quota) 1961 { 1962 struct damos_quota_goal *goal; 1963 unsigned long highest_score = 0; 1964 1965 damos_for_each_quota_goal(goal, quota) { 1966 damos_set_quota_goal_current_value(goal); 1967 highest_score = max(highest_score, 1968 goal->current_value * 10000 / 1969 goal->target_value); 1970 } 1971 1972 return highest_score; 1973 } 1974 1975 /* 1976 * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty 1977 */ 1978 static void damos_set_effective_quota(struct damos_quota *quota) 1979 { 1980 unsigned long throughput; 1981 unsigned long esz = ULONG_MAX; 1982 1983 if (!quota->ms && list_empty("a->goals)) { 1984 quota->esz = quota->sz; 1985 return; 1986 } 1987 1988 if (!list_empty("a->goals)) { 1989 unsigned long score = damos_quota_score(quota); 1990 1991 quota->esz_bp = damon_feed_loop_next_input( 1992 max(quota->esz_bp, 10000UL), 1993 score); 1994 esz = quota->esz_bp / 10000; 1995 } 1996 1997 if (quota->ms) { 1998 if (quota->total_charged_ns) 1999 throughput = quota->total_charged_sz * 1000000 / 2000 quota->total_charged_ns; 2001 else 2002 throughput = PAGE_SIZE * 1024; 2003 esz = min(throughput * quota->ms, esz); 2004 } 2005 2006 if (quota->sz && quota->sz < esz) 2007 esz = quota->sz; 2008 2009 quota->esz = esz; 2010 } 2011 2012 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s) 2013 { 2014 struct damos_quota *quota = &s->quota; 2015 struct damon_target *t; 2016 struct damon_region *r; 2017 unsigned long cumulated_sz; 2018 unsigned int score, max_score = 0; 2019 2020 if (!quota->ms && !quota->sz && list_empty("a->goals)) 2021 return; 2022 2023 /* New charge window starts */ 2024 if (time_after_eq(jiffies, quota->charged_from + 2025 msecs_to_jiffies(quota->reset_interval))) { 2026 if (quota->esz && quota->charged_sz >= quota->esz) 2027 s->stat.qt_exceeds++; 2028 quota->total_charged_sz += quota->charged_sz; 2029 quota->charged_from = jiffies; 2030 quota->charged_sz = 0; 2031 damos_set_effective_quota(quota); 2032 } 2033 2034 if (!c->ops.get_scheme_score) 2035 return; 2036 2037 /* Fill up the score histogram */ 2038 memset(c->regions_score_histogram, 0, 2039 sizeof(*c->regions_score_histogram) * 2040 (DAMOS_MAX_SCORE + 1)); 2041 damon_for_each_target(t, c) { 2042 damon_for_each_region(r, t) { 2043 if (!__damos_valid_target(r, s)) 2044 continue; 2045 score = c->ops.get_scheme_score(c, t, r, s); 2046 c->regions_score_histogram[score] += 2047 damon_sz_region(r); 2048 if (score > max_score) 2049 max_score = score; 2050 } 2051 } 2052 2053 /* Set the min score limit */ 2054 for (cumulated_sz = 0, score = max_score; ; score--) { 2055 cumulated_sz += c->regions_score_histogram[score]; 2056 if (cumulated_sz >= quota->esz || !score) 2057 break; 2058 } 2059 quota->min_score = score; 2060 } 2061 2062 static void kdamond_apply_schemes(struct damon_ctx *c) 2063 { 2064 struct damon_target *t; 2065 struct damon_region *r, *next_r; 2066 struct damos *s; 2067 unsigned long sample_interval = c->attrs.sample_interval ? 2068 c->attrs.sample_interval : 1; 2069 bool has_schemes_to_apply = false; 2070 2071 damon_for_each_scheme(s, c) { 2072 if (c->passed_sample_intervals < s->next_apply_sis) 2073 continue; 2074 2075 if (!s->wmarks.activated) 2076 continue; 2077 2078 has_schemes_to_apply = true; 2079 2080 damos_adjust_quota(c, s); 2081 } 2082 2083 if (!has_schemes_to_apply) 2084 return; 2085 2086 mutex_lock(&c->walk_control_lock); 2087 damon_for_each_target(t, c) { 2088 damon_for_each_region_safe(r, next_r, t) 2089 damon_do_apply_schemes(c, t, r); 2090 } 2091 2092 damon_for_each_scheme(s, c) { 2093 if (c->passed_sample_intervals < s->next_apply_sis) 2094 continue; 2095 damos_walk_complete(c, s); 2096 s->next_apply_sis = c->passed_sample_intervals + 2097 (s->apply_interval_us ? s->apply_interval_us : 2098 c->attrs.aggr_interval) / sample_interval; 2099 s->last_applied = NULL; 2100 } 2101 mutex_unlock(&c->walk_control_lock); 2102 } 2103 2104 /* 2105 * Merge two adjacent regions into one region 2106 */ 2107 static void damon_merge_two_regions(struct damon_target *t, 2108 struct damon_region *l, struct damon_region *r) 2109 { 2110 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r); 2111 2112 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) / 2113 (sz_l + sz_r); 2114 l->nr_accesses_bp = l->nr_accesses * 10000; 2115 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r); 2116 l->ar.end = r->ar.end; 2117 damon_destroy_region(r, t); 2118 } 2119 2120 /* 2121 * Merge adjacent regions having similar access frequencies 2122 * 2123 * t target affected by this merge operation 2124 * thres '->nr_accesses' diff threshold for the merge 2125 * sz_limit size upper limit of each region 2126 */ 2127 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres, 2128 unsigned long sz_limit) 2129 { 2130 struct damon_region *r, *prev = NULL, *next; 2131 2132 damon_for_each_region_safe(r, next, t) { 2133 if (abs(r->nr_accesses - r->last_nr_accesses) > thres) 2134 r->age = 0; 2135 else 2136 r->age++; 2137 2138 if (prev && prev->ar.end == r->ar.start && 2139 abs(prev->nr_accesses - r->nr_accesses) <= thres && 2140 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit) 2141 damon_merge_two_regions(t, prev, r); 2142 else 2143 prev = r; 2144 } 2145 } 2146 2147 /* 2148 * Merge adjacent regions having similar access frequencies 2149 * 2150 * threshold '->nr_accesses' diff threshold for the merge 2151 * sz_limit size upper limit of each region 2152 * 2153 * This function merges monitoring target regions which are adjacent and their 2154 * access frequencies are similar. This is for minimizing the monitoring 2155 * overhead under the dynamically changeable access pattern. If a merge was 2156 * unnecessarily made, later 'kdamond_split_regions()' will revert it. 2157 * 2158 * The total number of regions could be higher than the user-defined limit, 2159 * max_nr_regions for some cases. For example, the user can update 2160 * max_nr_regions to a number that lower than the current number of regions 2161 * while DAMON is running. For such a case, repeat merging until the limit is 2162 * met while increasing @threshold up to possible maximum level. 2163 */ 2164 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold, 2165 unsigned long sz_limit) 2166 { 2167 struct damon_target *t; 2168 unsigned int nr_regions; 2169 unsigned int max_thres; 2170 2171 max_thres = c->attrs.aggr_interval / 2172 (c->attrs.sample_interval ? c->attrs.sample_interval : 1); 2173 do { 2174 nr_regions = 0; 2175 damon_for_each_target(t, c) { 2176 damon_merge_regions_of(t, threshold, sz_limit); 2177 nr_regions += damon_nr_regions(t); 2178 } 2179 threshold = max(1, threshold * 2); 2180 } while (nr_regions > c->attrs.max_nr_regions && 2181 threshold / 2 < max_thres); 2182 } 2183 2184 /* 2185 * Split a region in two 2186 * 2187 * r the region to be split 2188 * sz_r size of the first sub-region that will be made 2189 */ 2190 static void damon_split_region_at(struct damon_target *t, 2191 struct damon_region *r, unsigned long sz_r) 2192 { 2193 struct damon_region *new; 2194 2195 new = damon_new_region(r->ar.start + sz_r, r->ar.end); 2196 if (!new) 2197 return; 2198 2199 r->ar.end = new->ar.start; 2200 2201 new->age = r->age; 2202 new->last_nr_accesses = r->last_nr_accesses; 2203 new->nr_accesses_bp = r->nr_accesses_bp; 2204 new->nr_accesses = r->nr_accesses; 2205 2206 damon_insert_region(new, r, damon_next_region(r), t); 2207 } 2208 2209 /* Split every region in the given target into 'nr_subs' regions */ 2210 static void damon_split_regions_of(struct damon_target *t, int nr_subs) 2211 { 2212 struct damon_region *r, *next; 2213 unsigned long sz_region, sz_sub = 0; 2214 int i; 2215 2216 damon_for_each_region_safe(r, next, t) { 2217 sz_region = damon_sz_region(r); 2218 2219 for (i = 0; i < nr_subs - 1 && 2220 sz_region > 2 * DAMON_MIN_REGION; i++) { 2221 /* 2222 * Randomly select size of left sub-region to be at 2223 * least 10 percent and at most 90% of original region 2224 */ 2225 sz_sub = ALIGN_DOWN(damon_rand(1, 10) * 2226 sz_region / 10, DAMON_MIN_REGION); 2227 /* Do not allow blank region */ 2228 if (sz_sub == 0 || sz_sub >= sz_region) 2229 continue; 2230 2231 damon_split_region_at(t, r, sz_sub); 2232 sz_region = sz_sub; 2233 } 2234 } 2235 } 2236 2237 /* 2238 * Split every target region into randomly-sized small regions 2239 * 2240 * This function splits every target region into random-sized small regions if 2241 * current total number of the regions is equal or smaller than half of the 2242 * user-specified maximum number of regions. This is for maximizing the 2243 * monitoring accuracy under the dynamically changeable access patterns. If a 2244 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert 2245 * it. 2246 */ 2247 static void kdamond_split_regions(struct damon_ctx *ctx) 2248 { 2249 struct damon_target *t; 2250 unsigned int nr_regions = 0; 2251 static unsigned int last_nr_regions; 2252 int nr_subregions = 2; 2253 2254 damon_for_each_target(t, ctx) 2255 nr_regions += damon_nr_regions(t); 2256 2257 if (nr_regions > ctx->attrs.max_nr_regions / 2) 2258 return; 2259 2260 /* Maybe the middle of the region has different access frequency */ 2261 if (last_nr_regions == nr_regions && 2262 nr_regions < ctx->attrs.max_nr_regions / 3) 2263 nr_subregions = 3; 2264 2265 damon_for_each_target(t, ctx) 2266 damon_split_regions_of(t, nr_subregions); 2267 2268 last_nr_regions = nr_regions; 2269 } 2270 2271 /* 2272 * Check whether current monitoring should be stopped 2273 * 2274 * The monitoring is stopped when either the user requested to stop, or all 2275 * monitoring targets are invalid. 2276 * 2277 * Returns true if need to stop current monitoring. 2278 */ 2279 static bool kdamond_need_stop(struct damon_ctx *ctx) 2280 { 2281 struct damon_target *t; 2282 2283 if (kthread_should_stop()) 2284 return true; 2285 2286 if (!ctx->ops.target_valid) 2287 return false; 2288 2289 damon_for_each_target(t, ctx) { 2290 if (ctx->ops.target_valid(t)) 2291 return false; 2292 } 2293 2294 return true; 2295 } 2296 2297 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric, 2298 unsigned long *metric_value) 2299 { 2300 switch (metric) { 2301 case DAMOS_WMARK_FREE_MEM_RATE: 2302 *metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 / 2303 totalram_pages(); 2304 return 0; 2305 default: 2306 break; 2307 } 2308 return -EINVAL; 2309 } 2310 2311 /* 2312 * Returns zero if the scheme is active. Else, returns time to wait for next 2313 * watermark check in micro-seconds. 2314 */ 2315 static unsigned long damos_wmark_wait_us(struct damos *scheme) 2316 { 2317 unsigned long metric; 2318 2319 if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric)) 2320 return 0; 2321 2322 /* higher than high watermark or lower than low watermark */ 2323 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) { 2324 if (scheme->wmarks.activated) 2325 pr_debug("deactivate a scheme (%d) for %s wmark\n", 2326 scheme->action, 2327 str_high_low(metric > scheme->wmarks.high)); 2328 scheme->wmarks.activated = false; 2329 return scheme->wmarks.interval; 2330 } 2331 2332 /* inactive and higher than middle watermark */ 2333 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) && 2334 !scheme->wmarks.activated) 2335 return scheme->wmarks.interval; 2336 2337 if (!scheme->wmarks.activated) 2338 pr_debug("activate a scheme (%d)\n", scheme->action); 2339 scheme->wmarks.activated = true; 2340 return 0; 2341 } 2342 2343 static void kdamond_usleep(unsigned long usecs) 2344 { 2345 if (usecs >= USLEEP_RANGE_UPPER_BOUND) 2346 schedule_timeout_idle(usecs_to_jiffies(usecs)); 2347 else 2348 usleep_range_idle(usecs, usecs + 1); 2349 } 2350 2351 /* 2352 * kdamond_call() - handle damon_call_control. 2353 * @ctx: The &struct damon_ctx of the kdamond. 2354 * @cancel: Whether to cancel the invocation of the function. 2355 * 2356 * If there is a &struct damon_call_control request that registered via 2357 * &damon_call() on @ctx, do or cancel the invocation of the function depending 2358 * on @cancel. @cancel is set when the kdamond is deactivated by DAMOS 2359 * watermarks, or the kdamond is already out of the main loop and therefore 2360 * will be terminated. 2361 */ 2362 static void kdamond_call(struct damon_ctx *ctx, bool cancel) 2363 { 2364 struct damon_call_control *control; 2365 int ret = 0; 2366 2367 mutex_lock(&ctx->call_control_lock); 2368 control = ctx->call_control; 2369 mutex_unlock(&ctx->call_control_lock); 2370 if (!control) 2371 return; 2372 if (cancel) { 2373 control->canceled = true; 2374 } else { 2375 ret = control->fn(control->data); 2376 control->return_code = ret; 2377 } 2378 complete(&control->completion); 2379 mutex_lock(&ctx->call_control_lock); 2380 ctx->call_control = NULL; 2381 mutex_unlock(&ctx->call_control_lock); 2382 } 2383 2384 /* Returns negative error code if it's not activated but should return */ 2385 static int kdamond_wait_activation(struct damon_ctx *ctx) 2386 { 2387 struct damos *s; 2388 unsigned long wait_time; 2389 unsigned long min_wait_time = 0; 2390 bool init_wait_time = false; 2391 2392 while (!kdamond_need_stop(ctx)) { 2393 damon_for_each_scheme(s, ctx) { 2394 wait_time = damos_wmark_wait_us(s); 2395 if (!init_wait_time || wait_time < min_wait_time) { 2396 init_wait_time = true; 2397 min_wait_time = wait_time; 2398 } 2399 } 2400 if (!min_wait_time) 2401 return 0; 2402 2403 kdamond_usleep(min_wait_time); 2404 2405 if (ctx->callback.after_wmarks_check && 2406 ctx->callback.after_wmarks_check(ctx)) 2407 break; 2408 kdamond_call(ctx, true); 2409 damos_walk_cancel(ctx); 2410 } 2411 return -EBUSY; 2412 } 2413 2414 static void kdamond_init_ctx(struct damon_ctx *ctx) 2415 { 2416 unsigned long sample_interval = ctx->attrs.sample_interval ? 2417 ctx->attrs.sample_interval : 1; 2418 unsigned long apply_interval; 2419 struct damos *scheme; 2420 2421 ctx->passed_sample_intervals = 0; 2422 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval; 2423 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval / 2424 sample_interval; 2425 ctx->next_intervals_tune_sis = ctx->next_aggregation_sis * 2426 ctx->attrs.intervals_goal.aggrs; 2427 2428 damon_for_each_scheme(scheme, ctx) { 2429 apply_interval = scheme->apply_interval_us ? 2430 scheme->apply_interval_us : ctx->attrs.aggr_interval; 2431 scheme->next_apply_sis = apply_interval / sample_interval; 2432 damos_set_filters_default_reject(scheme); 2433 } 2434 } 2435 2436 /* 2437 * The monitoring daemon that runs as a kernel thread 2438 */ 2439 static int kdamond_fn(void *data) 2440 { 2441 struct damon_ctx *ctx = data; 2442 struct damon_target *t; 2443 struct damon_region *r, *next; 2444 unsigned int max_nr_accesses = 0; 2445 unsigned long sz_limit = 0; 2446 2447 pr_debug("kdamond (%d) starts\n", current->pid); 2448 2449 complete(&ctx->kdamond_started); 2450 kdamond_init_ctx(ctx); 2451 2452 if (ctx->ops.init) 2453 ctx->ops.init(ctx); 2454 ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1, 2455 sizeof(*ctx->regions_score_histogram), GFP_KERNEL); 2456 if (!ctx->regions_score_histogram) 2457 goto done; 2458 2459 sz_limit = damon_region_sz_limit(ctx); 2460 2461 while (!kdamond_need_stop(ctx)) { 2462 /* 2463 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could 2464 * be changed from after_wmarks_check() or after_aggregation() 2465 * callbacks. Read the values here, and use those for this 2466 * iteration. That is, damon_set_attrs() updated new values 2467 * are respected from next iteration. 2468 */ 2469 unsigned long next_aggregation_sis = ctx->next_aggregation_sis; 2470 unsigned long next_ops_update_sis = ctx->next_ops_update_sis; 2471 unsigned long sample_interval = ctx->attrs.sample_interval; 2472 2473 if (kdamond_wait_activation(ctx)) 2474 break; 2475 2476 if (ctx->ops.prepare_access_checks) 2477 ctx->ops.prepare_access_checks(ctx); 2478 2479 kdamond_usleep(sample_interval); 2480 ctx->passed_sample_intervals++; 2481 2482 if (ctx->ops.check_accesses) 2483 max_nr_accesses = ctx->ops.check_accesses(ctx); 2484 2485 if (ctx->passed_sample_intervals >= next_aggregation_sis) { 2486 kdamond_merge_regions(ctx, 2487 max_nr_accesses / 10, 2488 sz_limit); 2489 if (ctx->callback.after_aggregation && 2490 ctx->callback.after_aggregation(ctx)) 2491 break; 2492 } 2493 2494 /* 2495 * do kdamond_call() and kdamond_apply_schemes() after 2496 * kdamond_merge_regions() if possible, to reduce overhead 2497 */ 2498 kdamond_call(ctx, false); 2499 if (!list_empty(&ctx->schemes)) 2500 kdamond_apply_schemes(ctx); 2501 else 2502 damos_walk_cancel(ctx); 2503 2504 sample_interval = ctx->attrs.sample_interval ? 2505 ctx->attrs.sample_interval : 1; 2506 if (ctx->passed_sample_intervals >= next_aggregation_sis) { 2507 if (ctx->attrs.intervals_goal.aggrs && 2508 ctx->passed_sample_intervals >= 2509 ctx->next_intervals_tune_sis) { 2510 /* 2511 * ctx->next_aggregation_sis might be updated 2512 * from kdamond_call(). In the case, 2513 * damon_set_attrs() which will be called from 2514 * kdamond_tune_interval() may wrongly think 2515 * this is in the middle of the current 2516 * aggregation, and make aggregation 2517 * information reset for all regions. Then, 2518 * following kdamond_reset_aggregated() call 2519 * will make the region information invalid, 2520 * particularly for ->nr_accesses_bp. 2521 * 2522 * Reset ->next_aggregation_sis to avoid that. 2523 * It will anyway correctly updated after this 2524 * if caluse. 2525 */ 2526 ctx->next_aggregation_sis = 2527 next_aggregation_sis; 2528 ctx->next_intervals_tune_sis += 2529 ctx->attrs.aggr_samples * 2530 ctx->attrs.intervals_goal.aggrs; 2531 kdamond_tune_intervals(ctx); 2532 sample_interval = ctx->attrs.sample_interval ? 2533 ctx->attrs.sample_interval : 1; 2534 2535 } 2536 ctx->next_aggregation_sis = next_aggregation_sis + 2537 ctx->attrs.aggr_interval / sample_interval; 2538 2539 kdamond_reset_aggregated(ctx); 2540 kdamond_split_regions(ctx); 2541 } 2542 2543 if (ctx->passed_sample_intervals >= next_ops_update_sis) { 2544 ctx->next_ops_update_sis = next_ops_update_sis + 2545 ctx->attrs.ops_update_interval / 2546 sample_interval; 2547 if (ctx->ops.update) 2548 ctx->ops.update(ctx); 2549 sz_limit = damon_region_sz_limit(ctx); 2550 } 2551 } 2552 done: 2553 damon_for_each_target(t, ctx) { 2554 damon_for_each_region_safe(r, next, t) 2555 damon_destroy_region(r, t); 2556 } 2557 2558 if (ctx->callback.before_terminate) 2559 ctx->callback.before_terminate(ctx); 2560 if (ctx->ops.cleanup) 2561 ctx->ops.cleanup(ctx); 2562 kfree(ctx->regions_score_histogram); 2563 2564 pr_debug("kdamond (%d) finishes\n", current->pid); 2565 mutex_lock(&ctx->kdamond_lock); 2566 ctx->kdamond = NULL; 2567 mutex_unlock(&ctx->kdamond_lock); 2568 2569 kdamond_call(ctx, true); 2570 damos_walk_cancel(ctx); 2571 2572 mutex_lock(&damon_lock); 2573 nr_running_ctxs--; 2574 if (!nr_running_ctxs && running_exclusive_ctxs) 2575 running_exclusive_ctxs = false; 2576 mutex_unlock(&damon_lock); 2577 2578 return 0; 2579 } 2580 2581 /* 2582 * struct damon_system_ram_region - System RAM resource address region of 2583 * [@start, @end). 2584 * @start: Start address of the region (inclusive). 2585 * @end: End address of the region (exclusive). 2586 */ 2587 struct damon_system_ram_region { 2588 unsigned long start; 2589 unsigned long end; 2590 }; 2591 2592 static int walk_system_ram(struct resource *res, void *arg) 2593 { 2594 struct damon_system_ram_region *a = arg; 2595 2596 if (a->end - a->start < resource_size(res)) { 2597 a->start = res->start; 2598 a->end = res->end; 2599 } 2600 return 0; 2601 } 2602 2603 /* 2604 * Find biggest 'System RAM' resource and store its start and end address in 2605 * @start and @end, respectively. If no System RAM is found, returns false. 2606 */ 2607 static bool damon_find_biggest_system_ram(unsigned long *start, 2608 unsigned long *end) 2609 2610 { 2611 struct damon_system_ram_region arg = {}; 2612 2613 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram); 2614 if (arg.end <= arg.start) 2615 return false; 2616 2617 *start = arg.start; 2618 *end = arg.end; 2619 return true; 2620 } 2621 2622 /** 2623 * damon_set_region_biggest_system_ram_default() - Set the region of the given 2624 * monitoring target as requested, or biggest 'System RAM'. 2625 * @t: The monitoring target to set the region. 2626 * @start: The pointer to the start address of the region. 2627 * @end: The pointer to the end address of the region. 2628 * 2629 * This function sets the region of @t as requested by @start and @end. If the 2630 * values of @start and @end are zero, however, this function finds the biggest 2631 * 'System RAM' resource and sets the region to cover the resource. In the 2632 * latter case, this function saves the start and end addresses of the resource 2633 * in @start and @end, respectively. 2634 * 2635 * Return: 0 on success, negative error code otherwise. 2636 */ 2637 int damon_set_region_biggest_system_ram_default(struct damon_target *t, 2638 unsigned long *start, unsigned long *end) 2639 { 2640 struct damon_addr_range addr_range; 2641 2642 if (*start > *end) 2643 return -EINVAL; 2644 2645 if (!*start && !*end && 2646 !damon_find_biggest_system_ram(start, end)) 2647 return -EINVAL; 2648 2649 addr_range.start = *start; 2650 addr_range.end = *end; 2651 return damon_set_regions(t, &addr_range, 1); 2652 } 2653 2654 /* 2655 * damon_moving_sum() - Calculate an inferred moving sum value. 2656 * @mvsum: Inferred sum of the last @len_window values. 2657 * @nomvsum: Non-moving sum of the last discrete @len_window window values. 2658 * @len_window: The number of last values to take care of. 2659 * @new_value: New value that will be added to the pseudo moving sum. 2660 * 2661 * Moving sum (moving average * window size) is good for handling noise, but 2662 * the cost of keeping past values can be high for arbitrary window size. This 2663 * function implements a lightweight pseudo moving sum function that doesn't 2664 * keep the past window values. 2665 * 2666 * It simply assumes there was no noise in the past, and get the no-noise 2667 * assumed past value to drop from @nomvsum and @len_window. @nomvsum is a 2668 * non-moving sum of the last window. For example, if @len_window is 10 and we 2669 * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25 2670 * values. Hence, this function simply drops @nomvsum / @len_window from 2671 * given @mvsum and add @new_value. 2672 * 2673 * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for 2674 * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20. For 2675 * calculating next moving sum with a new value, we should drop 0 from 50 and 2676 * add the new value. However, this function assumes it got value 5 for each 2677 * of the last ten times. Based on the assumption, when the next value is 2678 * measured, it drops the assumed past value, 5 from the current sum, and add 2679 * the new value to get the updated pseduo-moving average. 2680 * 2681 * This means the value could have errors, but the errors will be disappeared 2682 * for every @len_window aligned calls. For example, if @len_window is 10, the 2683 * pseudo moving sum with 11th value to 19th value would have an error. But 2684 * the sum with 20th value will not have the error. 2685 * 2686 * Return: Pseudo-moving average after getting the @new_value. 2687 */ 2688 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum, 2689 unsigned int len_window, unsigned int new_value) 2690 { 2691 return mvsum - nomvsum / len_window + new_value; 2692 } 2693 2694 /** 2695 * damon_update_region_access_rate() - Update the access rate of a region. 2696 * @r: The DAMON region to update for its access check result. 2697 * @accessed: Whether the region has accessed during last sampling interval. 2698 * @attrs: The damon_attrs of the DAMON context. 2699 * 2700 * Update the access rate of a region with the region's last sampling interval 2701 * access check result. 2702 * 2703 * Usually this will be called by &damon_operations->check_accesses callback. 2704 */ 2705 void damon_update_region_access_rate(struct damon_region *r, bool accessed, 2706 struct damon_attrs *attrs) 2707 { 2708 unsigned int len_window = 1; 2709 2710 /* 2711 * sample_interval can be zero, but cannot be larger than 2712 * aggr_interval, owing to validation of damon_set_attrs(). 2713 */ 2714 if (attrs->sample_interval) 2715 len_window = damon_max_nr_accesses(attrs); 2716 r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp, 2717 r->last_nr_accesses * 10000, len_window, 2718 accessed ? 10000 : 0); 2719 2720 if (accessed) 2721 r->nr_accesses++; 2722 } 2723 2724 static int __init damon_init(void) 2725 { 2726 damon_region_cache = KMEM_CACHE(damon_region, 0); 2727 if (unlikely(!damon_region_cache)) { 2728 pr_err("creating damon_region_cache fails\n"); 2729 return -ENOMEM; 2730 } 2731 2732 return 0; 2733 } 2734 2735 subsys_initcall(damon_init); 2736 2737 #include "tests/core-kunit.h" 2738