xref: /linux/fs/dcache.c (revision 7879d7aff0ffd969fcb1a59e3f87ebb353e47b7f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9 
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17 
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37 
38 #include <asm/runtime-const.h>
39 
40 /*
41  * Usage:
42  * dcache->d_inode->i_lock protects:
43  *   - i_dentry, d_u.d_alias, d_inode of aliases
44  * dcache_hash_bucket lock protects:
45  *   - the dcache hash table
46  * s_roots bl list spinlock protects:
47  *   - the s_roots list (see __d_drop)
48  * dentry->d_sb->s_dentry_lru_lock protects:
49  *   - the dcache lru lists and counters
50  * d_lock protects:
51  *   - d_flags
52  *   - d_name
53  *   - d_lru
54  *   - d_count
55  *   - d_unhashed()
56  *   - d_parent and d_chilren
57  *   - childrens' d_sib and d_parent
58  *   - d_u.d_alias, d_inode
59  *
60  * Ordering:
61  * dentry->d_inode->i_lock
62  *   dentry->d_lock
63  *     dentry->d_sb->s_dentry_lru_lock
64  *     dcache_hash_bucket lock
65  *     s_roots lock
66  *
67  * If there is an ancestor relationship:
68  * dentry->d_parent->...->d_parent->d_lock
69  *   ...
70  *     dentry->d_parent->d_lock
71  *       dentry->d_lock
72  *
73  * If no ancestor relationship:
74  * arbitrary, since it's serialized on rename_lock
75  */
76 static int sysctl_vfs_cache_pressure __read_mostly = 100;
77 static int sysctl_vfs_cache_pressure_denom __read_mostly = 100;
78 
vfs_pressure_ratio(unsigned long val)79 unsigned long vfs_pressure_ratio(unsigned long val)
80 {
81 	return mult_frac(val, sysctl_vfs_cache_pressure, sysctl_vfs_cache_pressure_denom);
82 }
83 EXPORT_SYMBOL_GPL(vfs_pressure_ratio);
84 
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 
87 EXPORT_SYMBOL(rename_lock);
88 
89 static struct kmem_cache *dentry_cache __ro_after_init;
90 
91 const struct qstr empty_name = QSTR_INIT("", 0);
92 EXPORT_SYMBOL(empty_name);
93 const struct qstr slash_name = QSTR_INIT("/", 1);
94 EXPORT_SYMBOL(slash_name);
95 const struct qstr dotdot_name = QSTR_INIT("..", 2);
96 EXPORT_SYMBOL(dotdot_name);
97 
98 /*
99  * This is the single most critical data structure when it comes
100  * to the dcache: the hashtable for lookups. Somebody should try
101  * to make this good - I've just made it work.
102  *
103  * This hash-function tries to avoid losing too many bits of hash
104  * information, yet avoid using a prime hash-size or similar.
105  *
106  * Marking the variables "used" ensures that the compiler doesn't
107  * optimize them away completely on architectures with runtime
108  * constant infrastructure, this allows debuggers to see their
109  * values. But updating these values has no effect on those arches.
110  */
111 
112 static unsigned int d_hash_shift __ro_after_init __used;
113 
114 static struct hlist_bl_head *dentry_hashtable __ro_after_init __used;
115 
d_hash(unsigned long hashlen)116 static inline struct hlist_bl_head *d_hash(unsigned long hashlen)
117 {
118 	return runtime_const_ptr(dentry_hashtable) +
119 		runtime_const_shift_right_32(hashlen, d_hash_shift);
120 }
121 
122 #define IN_LOOKUP_SHIFT 10
123 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
124 
in_lookup_hash(const struct dentry * parent,unsigned int hash)125 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
126 					unsigned int hash)
127 {
128 	hash += (unsigned long) parent / L1_CACHE_BYTES;
129 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
130 }
131 
132 struct dentry_stat_t {
133 	long nr_dentry;
134 	long nr_unused;
135 	long age_limit;		/* age in seconds */
136 	long want_pages;	/* pages requested by system */
137 	long nr_negative;	/* # of unused negative dentries */
138 	long dummy;		/* Reserved for future use */
139 };
140 
141 static DEFINE_PER_CPU(long, nr_dentry);
142 static DEFINE_PER_CPU(long, nr_dentry_unused);
143 static DEFINE_PER_CPU(long, nr_dentry_negative);
144 static int dentry_negative_policy;
145 
146 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
147 /* Statistics gathering. */
148 static struct dentry_stat_t dentry_stat = {
149 	.age_limit = 45,
150 };
151 
152 /*
153  * Here we resort to our own counters instead of using generic per-cpu counters
154  * for consistency with what the vfs inode code does. We are expected to harvest
155  * better code and performance by having our own specialized counters.
156  *
157  * Please note that the loop is done over all possible CPUs, not over all online
158  * CPUs. The reason for this is that we don't want to play games with CPUs going
159  * on and off. If one of them goes off, we will just keep their counters.
160  *
161  * glommer: See cffbc8a for details, and if you ever intend to change this,
162  * please update all vfs counters to match.
163  */
get_nr_dentry(void)164 static long get_nr_dentry(void)
165 {
166 	int i;
167 	long sum = 0;
168 	for_each_possible_cpu(i)
169 		sum += per_cpu(nr_dentry, i);
170 	return sum < 0 ? 0 : sum;
171 }
172 
get_nr_dentry_unused(void)173 static long get_nr_dentry_unused(void)
174 {
175 	int i;
176 	long sum = 0;
177 	for_each_possible_cpu(i)
178 		sum += per_cpu(nr_dentry_unused, i);
179 	return sum < 0 ? 0 : sum;
180 }
181 
get_nr_dentry_negative(void)182 static long get_nr_dentry_negative(void)
183 {
184 	int i;
185 	long sum = 0;
186 
187 	for_each_possible_cpu(i)
188 		sum += per_cpu(nr_dentry_negative, i);
189 	return sum < 0 ? 0 : sum;
190 }
191 
proc_nr_dentry(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)192 static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer,
193 			  size_t *lenp, loff_t *ppos)
194 {
195 	dentry_stat.nr_dentry = get_nr_dentry();
196 	dentry_stat.nr_unused = get_nr_dentry_unused();
197 	dentry_stat.nr_negative = get_nr_dentry_negative();
198 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
199 }
200 
201 static const struct ctl_table fs_dcache_sysctls[] = {
202 	{
203 		.procname	= "dentry-state",
204 		.data		= &dentry_stat,
205 		.maxlen		= 6*sizeof(long),
206 		.mode		= 0444,
207 		.proc_handler	= proc_nr_dentry,
208 	},
209 	{
210 		.procname	= "dentry-negative",
211 		.data		= &dentry_negative_policy,
212 		.maxlen		= sizeof(dentry_negative_policy),
213 		.mode		= 0644,
214 		.proc_handler	= proc_dointvec_minmax,
215 		.extra1		= SYSCTL_ZERO,
216 		.extra2		= SYSCTL_ONE,
217 	},
218 };
219 
220 static const struct ctl_table vm_dcache_sysctls[] = {
221 	{
222 		.procname	= "vfs_cache_pressure",
223 		.data		= &sysctl_vfs_cache_pressure,
224 		.maxlen		= sizeof(sysctl_vfs_cache_pressure),
225 		.mode		= 0644,
226 		.proc_handler	= proc_dointvec_minmax,
227 		.extra1		= SYSCTL_ZERO,
228 	},
229 	{
230 		.procname	= "vfs_cache_pressure_denom",
231 		.data		= &sysctl_vfs_cache_pressure_denom,
232 		.maxlen		= sizeof(sysctl_vfs_cache_pressure_denom),
233 		.mode		= 0644,
234 		.proc_handler	= proc_dointvec_minmax,
235 		.extra1		= SYSCTL_ONE_HUNDRED,
236 	},
237 };
238 
init_fs_dcache_sysctls(void)239 static int __init init_fs_dcache_sysctls(void)
240 {
241 	register_sysctl_init("vm", vm_dcache_sysctls);
242 	register_sysctl_init("fs", fs_dcache_sysctls);
243 	return 0;
244 }
245 fs_initcall(init_fs_dcache_sysctls);
246 #endif
247 
248 /*
249  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
250  * The strings are both count bytes long, and count is non-zero.
251  */
252 #ifdef CONFIG_DCACHE_WORD_ACCESS
253 
254 #include <asm/word-at-a-time.h>
255 /*
256  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
257  * aligned allocation for this particular component. We don't
258  * strictly need the load_unaligned_zeropad() safety, but it
259  * doesn't hurt either.
260  *
261  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
262  * need the careful unaligned handling.
263  */
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)264 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
265 {
266 	unsigned long a,b,mask;
267 
268 	for (;;) {
269 		a = read_word_at_a_time(cs);
270 		b = load_unaligned_zeropad(ct);
271 		if (tcount < sizeof(unsigned long))
272 			break;
273 		if (unlikely(a != b))
274 			return 1;
275 		cs += sizeof(unsigned long);
276 		ct += sizeof(unsigned long);
277 		tcount -= sizeof(unsigned long);
278 		if (!tcount)
279 			return 0;
280 	}
281 	mask = bytemask_from_count(tcount);
282 	return unlikely(!!((a ^ b) & mask));
283 }
284 
285 #else
286 
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)287 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
288 {
289 	do {
290 		if (*cs != *ct)
291 			return 1;
292 		cs++;
293 		ct++;
294 		tcount--;
295 	} while (tcount);
296 	return 0;
297 }
298 
299 #endif
300 
dentry_cmp(const struct dentry * dentry,const unsigned char * ct,unsigned tcount)301 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
302 {
303 	/*
304 	 * Be careful about RCU walk racing with rename:
305 	 * use 'READ_ONCE' to fetch the name pointer.
306 	 *
307 	 * NOTE! Even if a rename will mean that the length
308 	 * was not loaded atomically, we don't care. The
309 	 * RCU walk will check the sequence count eventually,
310 	 * and catch it. And we won't overrun the buffer,
311 	 * because we're reading the name pointer atomically,
312 	 * and a dentry name is guaranteed to be properly
313 	 * terminated with a NUL byte.
314 	 *
315 	 * End result: even if 'len' is wrong, we'll exit
316 	 * early because the data cannot match (there can
317 	 * be no NUL in the ct/tcount data)
318 	 */
319 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
320 
321 	return dentry_string_cmp(cs, ct, tcount);
322 }
323 
324 /*
325  * long names are allocated separately from dentry and never modified.
326  * Refcounted, freeing is RCU-delayed.  See take_dentry_name_snapshot()
327  * for the reason why ->count and ->head can't be combined into a union.
328  * dentry_string_cmp() relies upon ->name[] being word-aligned.
329  */
330 struct external_name {
331 	atomic_t count;
332 	struct rcu_head head;
333 	unsigned char name[] __aligned(sizeof(unsigned long));
334 };
335 
external_name(struct dentry * dentry)336 static inline struct external_name *external_name(struct dentry *dentry)
337 {
338 	return container_of(dentry->d_name.name, struct external_name, name[0]);
339 }
340 
__d_free(struct rcu_head * head)341 static void __d_free(struct rcu_head *head)
342 {
343 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
344 
345 	kmem_cache_free(dentry_cache, dentry);
346 }
347 
__d_free_external(struct rcu_head * head)348 static void __d_free_external(struct rcu_head *head)
349 {
350 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
351 	kfree(external_name(dentry));
352 	kmem_cache_free(dentry_cache, dentry);
353 }
354 
dname_external(const struct dentry * dentry)355 static inline int dname_external(const struct dentry *dentry)
356 {
357 	return dentry->d_name.name != dentry->d_shortname.string;
358 }
359 
take_dentry_name_snapshot(struct name_snapshot * name,struct dentry * dentry)360 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
361 {
362 	unsigned seq;
363 	const unsigned char *s;
364 
365 	rcu_read_lock();
366 retry:
367 	seq = read_seqcount_begin(&dentry->d_seq);
368 	s = READ_ONCE(dentry->d_name.name);
369 	name->name.hash_len = dentry->d_name.hash_len;
370 	name->name.name = name->inline_name.string;
371 	if (likely(s == dentry->d_shortname.string)) {
372 		name->inline_name = dentry->d_shortname;
373 	} else {
374 		struct external_name *p;
375 		p = container_of(s, struct external_name, name[0]);
376 		// get a valid reference
377 		if (unlikely(!atomic_inc_not_zero(&p->count)))
378 			goto retry;
379 		name->name.name = s;
380 	}
381 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
382 		release_dentry_name_snapshot(name);
383 		goto retry;
384 	}
385 	rcu_read_unlock();
386 }
387 EXPORT_SYMBOL(take_dentry_name_snapshot);
388 
release_dentry_name_snapshot(struct name_snapshot * name)389 void release_dentry_name_snapshot(struct name_snapshot *name)
390 {
391 	if (unlikely(name->name.name != name->inline_name.string)) {
392 		struct external_name *p;
393 		p = container_of(name->name.name, struct external_name, name[0]);
394 		if (unlikely(atomic_dec_and_test(&p->count)))
395 			kfree_rcu(p, head);
396 	}
397 }
398 EXPORT_SYMBOL(release_dentry_name_snapshot);
399 
__d_set_inode_and_type(struct dentry * dentry,struct inode * inode,unsigned type_flags)400 static inline void __d_set_inode_and_type(struct dentry *dentry,
401 					  struct inode *inode,
402 					  unsigned type_flags)
403 {
404 	unsigned flags;
405 
406 	dentry->d_inode = inode;
407 	flags = READ_ONCE(dentry->d_flags);
408 	flags &= ~DCACHE_ENTRY_TYPE;
409 	flags |= type_flags;
410 	smp_store_release(&dentry->d_flags, flags);
411 }
412 
__d_clear_type_and_inode(struct dentry * dentry)413 static inline void __d_clear_type_and_inode(struct dentry *dentry)
414 {
415 	unsigned flags = READ_ONCE(dentry->d_flags);
416 
417 	flags &= ~DCACHE_ENTRY_TYPE;
418 	WRITE_ONCE(dentry->d_flags, flags);
419 	dentry->d_inode = NULL;
420 	/*
421 	 * The negative counter only tracks dentries on the LRU. Don't inc if
422 	 * d_lru is on another list.
423 	 */
424 	if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
425 		this_cpu_inc(nr_dentry_negative);
426 }
427 
dentry_free(struct dentry * dentry)428 static void dentry_free(struct dentry *dentry)
429 {
430 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
431 	if (unlikely(dname_external(dentry))) {
432 		struct external_name *p = external_name(dentry);
433 		if (likely(atomic_dec_and_test(&p->count))) {
434 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
435 			return;
436 		}
437 	}
438 	/* if dentry was never visible to RCU, immediate free is OK */
439 	if (dentry->d_flags & DCACHE_NORCU)
440 		__d_free(&dentry->d_u.d_rcu);
441 	else
442 		call_rcu(&dentry->d_u.d_rcu, __d_free);
443 }
444 
445 /*
446  * Release the dentry's inode, using the filesystem
447  * d_iput() operation if defined.
448  */
dentry_unlink_inode(struct dentry * dentry)449 static void dentry_unlink_inode(struct dentry * dentry)
450 	__releases(dentry->d_lock)
451 	__releases(dentry->d_inode->i_lock)
452 {
453 	struct inode *inode = dentry->d_inode;
454 
455 	raw_write_seqcount_begin(&dentry->d_seq);
456 	__d_clear_type_and_inode(dentry);
457 	hlist_del_init(&dentry->d_u.d_alias);
458 	raw_write_seqcount_end(&dentry->d_seq);
459 	spin_unlock(&dentry->d_lock);
460 	spin_unlock(&inode->i_lock);
461 	if (!inode->i_nlink)
462 		fsnotify_inoderemove(inode);
463 	if (dentry->d_op && dentry->d_op->d_iput)
464 		dentry->d_op->d_iput(dentry, inode);
465 	else
466 		iput(inode);
467 }
468 
469 /*
470  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
471  * is in use - which includes both the "real" per-superblock
472  * LRU list _and_ the DCACHE_SHRINK_LIST use.
473  *
474  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
475  * on the shrink list (ie not on the superblock LRU list).
476  *
477  * The per-cpu "nr_dentry_unused" counters are updated with
478  * the DCACHE_LRU_LIST bit.
479  *
480  * The per-cpu "nr_dentry_negative" counters are only updated
481  * when deleted from or added to the per-superblock LRU list, not
482  * from/to the shrink list. That is to avoid an unneeded dec/inc
483  * pair when moving from LRU to shrink list in select_collect().
484  *
485  * These helper functions make sure we always follow the
486  * rules. d_lock must be held by the caller.
487  */
488 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
d_lru_add(struct dentry * dentry)489 static void d_lru_add(struct dentry *dentry)
490 {
491 	D_FLAG_VERIFY(dentry, 0);
492 	dentry->d_flags |= DCACHE_LRU_LIST;
493 	this_cpu_inc(nr_dentry_unused);
494 	if (d_is_negative(dentry))
495 		this_cpu_inc(nr_dentry_negative);
496 	WARN_ON_ONCE(!list_lru_add_obj(
497 			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
498 }
499 
d_lru_del(struct dentry * dentry)500 static void d_lru_del(struct dentry *dentry)
501 {
502 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
503 	dentry->d_flags &= ~DCACHE_LRU_LIST;
504 	this_cpu_dec(nr_dentry_unused);
505 	if (d_is_negative(dentry))
506 		this_cpu_dec(nr_dentry_negative);
507 	WARN_ON_ONCE(!list_lru_del_obj(
508 			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
509 }
510 
d_shrink_del(struct dentry * dentry)511 static void d_shrink_del(struct dentry *dentry)
512 {
513 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
514 	list_del_init(&dentry->d_lru);
515 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
516 	this_cpu_dec(nr_dentry_unused);
517 }
518 
d_shrink_add(struct dentry * dentry,struct list_head * list)519 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
520 {
521 	D_FLAG_VERIFY(dentry, 0);
522 	list_add(&dentry->d_lru, list);
523 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
524 	this_cpu_inc(nr_dentry_unused);
525 }
526 
527 /*
528  * These can only be called under the global LRU lock, ie during the
529  * callback for freeing the LRU list. "isolate" removes it from the
530  * LRU lists entirely, while shrink_move moves it to the indicated
531  * private list.
532  */
d_lru_isolate(struct list_lru_one * lru,struct dentry * dentry)533 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
534 {
535 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
536 	dentry->d_flags &= ~DCACHE_LRU_LIST;
537 	this_cpu_dec(nr_dentry_unused);
538 	if (d_is_negative(dentry))
539 		this_cpu_dec(nr_dentry_negative);
540 	list_lru_isolate(lru, &dentry->d_lru);
541 }
542 
d_lru_shrink_move(struct list_lru_one * lru,struct dentry * dentry,struct list_head * list)543 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
544 			      struct list_head *list)
545 {
546 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
547 	dentry->d_flags |= DCACHE_SHRINK_LIST;
548 	if (d_is_negative(dentry))
549 		this_cpu_dec(nr_dentry_negative);
550 	list_lru_isolate_move(lru, &dentry->d_lru, list);
551 }
552 
___d_drop(struct dentry * dentry)553 static void ___d_drop(struct dentry *dentry)
554 {
555 	struct hlist_bl_head *b;
556 	/*
557 	 * Hashed dentries are normally on the dentry hashtable,
558 	 * with the exception of those newly allocated by
559 	 * d_obtain_root, which are always IS_ROOT:
560 	 */
561 	if (unlikely(IS_ROOT(dentry)))
562 		b = &dentry->d_sb->s_roots;
563 	else
564 		b = d_hash(dentry->d_name.hash);
565 
566 	hlist_bl_lock(b);
567 	__hlist_bl_del(&dentry->d_hash);
568 	hlist_bl_unlock(b);
569 }
570 
__d_drop(struct dentry * dentry)571 void __d_drop(struct dentry *dentry)
572 {
573 	if (!d_unhashed(dentry)) {
574 		___d_drop(dentry);
575 		dentry->d_hash.pprev = NULL;
576 		write_seqcount_invalidate(&dentry->d_seq);
577 	}
578 }
579 EXPORT_SYMBOL(__d_drop);
580 
581 /**
582  * d_drop - drop a dentry
583  * @dentry: dentry to drop
584  *
585  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
586  * be found through a VFS lookup any more. Note that this is different from
587  * deleting the dentry - d_delete will try to mark the dentry negative if
588  * possible, giving a successful _negative_ lookup, while d_drop will
589  * just make the cache lookup fail.
590  *
591  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
592  * reason (NFS timeouts or autofs deletes).
593  *
594  * __d_drop requires dentry->d_lock
595  *
596  * ___d_drop doesn't mark dentry as "unhashed"
597  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
598  */
d_drop(struct dentry * dentry)599 void d_drop(struct dentry *dentry)
600 {
601 	spin_lock(&dentry->d_lock);
602 	__d_drop(dentry);
603 	spin_unlock(&dentry->d_lock);
604 }
605 EXPORT_SYMBOL(d_drop);
606 
dentry_unlist(struct dentry * dentry)607 static inline void dentry_unlist(struct dentry *dentry)
608 {
609 	struct dentry *next;
610 	/*
611 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
612 	 * attached to the dentry tree
613 	 */
614 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
615 	if (unlikely(hlist_unhashed(&dentry->d_sib)))
616 		return;
617 	__hlist_del(&dentry->d_sib);
618 	/*
619 	 * Cursors can move around the list of children.  While we'd been
620 	 * a normal list member, it didn't matter - ->d_sib.next would've
621 	 * been updated.  However, from now on it won't be and for the
622 	 * things like d_walk() it might end up with a nasty surprise.
623 	 * Normally d_walk() doesn't care about cursors moving around -
624 	 * ->d_lock on parent prevents that and since a cursor has no children
625 	 * of its own, we get through it without ever unlocking the parent.
626 	 * There is one exception, though - if we ascend from a child that
627 	 * gets killed as soon as we unlock it, the next sibling is found
628 	 * using the value left in its ->d_sib.next.  And if _that_
629 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
630 	 * before d_walk() regains parent->d_lock, we'll end up skipping
631 	 * everything the cursor had been moved past.
632 	 *
633 	 * Solution: make sure that the pointer left behind in ->d_sib.next
634 	 * points to something that won't be moving around.  I.e. skip the
635 	 * cursors.
636 	 */
637 	while (dentry->d_sib.next) {
638 		next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
639 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
640 			break;
641 		dentry->d_sib.next = next->d_sib.next;
642 	}
643 }
644 
__dentry_kill(struct dentry * dentry)645 static struct dentry *__dentry_kill(struct dentry *dentry)
646 {
647 	struct dentry *parent = NULL;
648 	bool can_free = true;
649 
650 	/*
651 	 * The dentry is now unrecoverably dead to the world.
652 	 */
653 	lockref_mark_dead(&dentry->d_lockref);
654 
655 	/*
656 	 * inform the fs via d_prune that this dentry is about to be
657 	 * unhashed and destroyed.
658 	 */
659 	if (dentry->d_flags & DCACHE_OP_PRUNE)
660 		dentry->d_op->d_prune(dentry);
661 
662 	if (dentry->d_flags & DCACHE_LRU_LIST) {
663 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
664 			d_lru_del(dentry);
665 	}
666 	/* if it was on the hash then remove it */
667 	__d_drop(dentry);
668 	if (dentry->d_inode)
669 		dentry_unlink_inode(dentry);
670 	else
671 		spin_unlock(&dentry->d_lock);
672 	this_cpu_dec(nr_dentry);
673 	if (dentry->d_op && dentry->d_op->d_release)
674 		dentry->d_op->d_release(dentry);
675 
676 	cond_resched();
677 	/* now that it's negative, ->d_parent is stable */
678 	if (!IS_ROOT(dentry)) {
679 		parent = dentry->d_parent;
680 		spin_lock(&parent->d_lock);
681 	}
682 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
683 	dentry_unlist(dentry);
684 	if (dentry->d_flags & DCACHE_SHRINK_LIST)
685 		can_free = false;
686 	spin_unlock(&dentry->d_lock);
687 	if (likely(can_free))
688 		dentry_free(dentry);
689 	if (parent && --parent->d_lockref.count) {
690 		spin_unlock(&parent->d_lock);
691 		return NULL;
692 	}
693 	return parent;
694 }
695 
696 /*
697  * Lock a dentry for feeding it to __dentry_kill().
698  * Called under rcu_read_lock() and dentry->d_lock; the former
699  * guarantees that nothing we access will be freed under us.
700  * Note that dentry is *not* protected from concurrent dentry_kill(),
701  * d_delete(), etc.
702  *
703  * Return false if dentry is busy.  Otherwise, return true and have
704  * that dentry's inode locked.
705  */
706 
lock_for_kill(struct dentry * dentry)707 static bool lock_for_kill(struct dentry *dentry)
708 {
709 	struct inode *inode = dentry->d_inode;
710 
711 	if (unlikely(dentry->d_lockref.count))
712 		return false;
713 
714 	if (!inode || likely(spin_trylock(&inode->i_lock)))
715 		return true;
716 
717 	do {
718 		spin_unlock(&dentry->d_lock);
719 		spin_lock(&inode->i_lock);
720 		spin_lock(&dentry->d_lock);
721 		if (likely(inode == dentry->d_inode))
722 			break;
723 		spin_unlock(&inode->i_lock);
724 		inode = dentry->d_inode;
725 	} while (inode);
726 	if (likely(!dentry->d_lockref.count))
727 		return true;
728 	if (inode)
729 		spin_unlock(&inode->i_lock);
730 	return false;
731 }
732 
733 /*
734  * Decide if dentry is worth retaining.  Usually this is called with dentry
735  * locked; if not locked, we are more limited and might not be able to tell
736  * without a lock.  False in this case means "punt to locked path and recheck".
737  *
738  * In case we aren't locked, these predicates are not "stable". However, it is
739  * sufficient that at some point after we dropped the reference the dentry was
740  * hashed and the flags had the proper value. Other dentry users may have
741  * re-gotten a reference to the dentry and change that, but our work is done -
742  * we can leave the dentry around with a zero refcount.
743  */
retain_dentry(struct dentry * dentry,bool locked)744 static inline bool retain_dentry(struct dentry *dentry, bool locked)
745 {
746 	unsigned int d_flags;
747 
748 	smp_rmb();
749 	d_flags = READ_ONCE(dentry->d_flags);
750 
751 	// Unreachable? Nobody would be able to look it up, no point retaining
752 	if (unlikely(d_unhashed(dentry)))
753 		return false;
754 
755 	// Same if it's disconnected
756 	if (unlikely(d_flags & DCACHE_DISCONNECTED))
757 		return false;
758 
759 	// ->d_delete() might tell us not to bother, but that requires
760 	// ->d_lock; can't decide without it
761 	if (unlikely(d_flags & DCACHE_OP_DELETE)) {
762 		if (!locked || dentry->d_op->d_delete(dentry))
763 			return false;
764 	}
765 
766 	// Explicitly told not to bother
767 	if (unlikely(d_flags & DCACHE_DONTCACHE))
768 		return false;
769 
770 	// At this point it looks like we ought to keep it.  We also might
771 	// need to do something - put it on LRU if it wasn't there already
772 	// and mark it referenced if it was on LRU, but not marked yet.
773 	// Unfortunately, both actions require ->d_lock, so in lockless
774 	// case we'd have to punt rather than doing those.
775 	if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
776 		if (!locked)
777 			return false;
778 		d_lru_add(dentry);
779 	} else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
780 		if (!locked)
781 			return false;
782 		dentry->d_flags |= DCACHE_REFERENCED;
783 	}
784 	return true;
785 }
786 
d_mark_dontcache(struct inode * inode)787 void d_mark_dontcache(struct inode *inode)
788 {
789 	struct dentry *de;
790 
791 	spin_lock(&inode->i_lock);
792 	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
793 		spin_lock(&de->d_lock);
794 		de->d_flags |= DCACHE_DONTCACHE;
795 		spin_unlock(&de->d_lock);
796 	}
797 	inode->i_state |= I_DONTCACHE;
798 	spin_unlock(&inode->i_lock);
799 }
800 EXPORT_SYMBOL(d_mark_dontcache);
801 
802 /*
803  * Try to do a lockless dput(), and return whether that was successful.
804  *
805  * If unsuccessful, we return false, having already taken the dentry lock.
806  * In that case refcount is guaranteed to be zero and we have already
807  * decided that it's not worth keeping around.
808  *
809  * The caller needs to hold the RCU read lock, so that the dentry is
810  * guaranteed to stay around even if the refcount goes down to zero!
811  */
fast_dput(struct dentry * dentry)812 static inline bool fast_dput(struct dentry *dentry)
813 {
814 	int ret;
815 
816 	/*
817 	 * try to decrement the lockref optimistically.
818 	 */
819 	ret = lockref_put_return(&dentry->d_lockref);
820 
821 	/*
822 	 * If the lockref_put_return() failed due to the lock being held
823 	 * by somebody else, the fast path has failed. We will need to
824 	 * get the lock, and then check the count again.
825 	 */
826 	if (unlikely(ret < 0)) {
827 		spin_lock(&dentry->d_lock);
828 		if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
829 			spin_unlock(&dentry->d_lock);
830 			return true;
831 		}
832 		dentry->d_lockref.count--;
833 		goto locked;
834 	}
835 
836 	/*
837 	 * If we weren't the last ref, we're done.
838 	 */
839 	if (ret)
840 		return true;
841 
842 	/*
843 	 * Can we decide that decrement of refcount is all we needed without
844 	 * taking the lock?  There's a very common case when it's all we need -
845 	 * dentry looks like it ought to be retained and there's nothing else
846 	 * to do.
847 	 */
848 	if (retain_dentry(dentry, false))
849 		return true;
850 
851 	/*
852 	 * Either not worth retaining or we can't tell without the lock.
853 	 * Get the lock, then.  We've already decremented the refcount to 0,
854 	 * but we'll need to re-check the situation after getting the lock.
855 	 */
856 	spin_lock(&dentry->d_lock);
857 
858 	/*
859 	 * Did somebody else grab a reference to it in the meantime, and
860 	 * we're no longer the last user after all? Alternatively, somebody
861 	 * else could have killed it and marked it dead. Either way, we
862 	 * don't need to do anything else.
863 	 */
864 locked:
865 	if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
866 		spin_unlock(&dentry->d_lock);
867 		return true;
868 	}
869 	return false;
870 }
871 
872 
873 /*
874  * This is dput
875  *
876  * This is complicated by the fact that we do not want to put
877  * dentries that are no longer on any hash chain on the unused
878  * list: we'd much rather just get rid of them immediately.
879  *
880  * However, that implies that we have to traverse the dentry
881  * tree upwards to the parents which might _also_ now be
882  * scheduled for deletion (it may have been only waiting for
883  * its last child to go away).
884  *
885  * This tail recursion is done by hand as we don't want to depend
886  * on the compiler to always get this right (gcc generally doesn't).
887  * Real recursion would eat up our stack space.
888  */
889 
890 /*
891  * dput - release a dentry
892  * @dentry: dentry to release
893  *
894  * Release a dentry. This will drop the usage count and if appropriate
895  * call the dentry unlink method as well as removing it from the queues and
896  * releasing its resources. If the parent dentries were scheduled for release
897  * they too may now get deleted.
898  */
dput(struct dentry * dentry)899 void dput(struct dentry *dentry)
900 {
901 	if (!dentry)
902 		return;
903 	might_sleep();
904 	rcu_read_lock();
905 	if (likely(fast_dput(dentry))) {
906 		rcu_read_unlock();
907 		return;
908 	}
909 	while (lock_for_kill(dentry)) {
910 		rcu_read_unlock();
911 		dentry = __dentry_kill(dentry);
912 		if (!dentry)
913 			return;
914 		if (retain_dentry(dentry, true)) {
915 			spin_unlock(&dentry->d_lock);
916 			return;
917 		}
918 		rcu_read_lock();
919 	}
920 	rcu_read_unlock();
921 	spin_unlock(&dentry->d_lock);
922 }
923 EXPORT_SYMBOL(dput);
924 
to_shrink_list(struct dentry * dentry,struct list_head * list)925 static void to_shrink_list(struct dentry *dentry, struct list_head *list)
926 __must_hold(&dentry->d_lock)
927 {
928 	if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
929 		if (dentry->d_flags & DCACHE_LRU_LIST)
930 			d_lru_del(dentry);
931 		d_shrink_add(dentry, list);
932 	}
933 }
934 
dput_to_list(struct dentry * dentry,struct list_head * list)935 void dput_to_list(struct dentry *dentry, struct list_head *list)
936 {
937 	rcu_read_lock();
938 	if (likely(fast_dput(dentry))) {
939 		rcu_read_unlock();
940 		return;
941 	}
942 	rcu_read_unlock();
943 	to_shrink_list(dentry, list);
944 	spin_unlock(&dentry->d_lock);
945 }
946 
dget_parent(struct dentry * dentry)947 struct dentry *dget_parent(struct dentry *dentry)
948 {
949 	int gotref;
950 	struct dentry *ret;
951 	unsigned seq;
952 
953 	/*
954 	 * Do optimistic parent lookup without any
955 	 * locking.
956 	 */
957 	rcu_read_lock();
958 	seq = raw_seqcount_begin(&dentry->d_seq);
959 	ret = READ_ONCE(dentry->d_parent);
960 	gotref = lockref_get_not_zero(&ret->d_lockref);
961 	rcu_read_unlock();
962 	if (likely(gotref)) {
963 		if (!read_seqcount_retry(&dentry->d_seq, seq))
964 			return ret;
965 		dput(ret);
966 	}
967 
968 repeat:
969 	/*
970 	 * Don't need rcu_dereference because we re-check it was correct under
971 	 * the lock.
972 	 */
973 	rcu_read_lock();
974 	ret = dentry->d_parent;
975 	spin_lock(&ret->d_lock);
976 	if (unlikely(ret != dentry->d_parent)) {
977 		spin_unlock(&ret->d_lock);
978 		rcu_read_unlock();
979 		goto repeat;
980 	}
981 	rcu_read_unlock();
982 	BUG_ON(!ret->d_lockref.count);
983 	ret->d_lockref.count++;
984 	spin_unlock(&ret->d_lock);
985 	return ret;
986 }
987 EXPORT_SYMBOL(dget_parent);
988 
__d_find_any_alias(struct inode * inode)989 static struct dentry * __d_find_any_alias(struct inode *inode)
990 {
991 	struct dentry *alias;
992 
993 	if (hlist_empty(&inode->i_dentry))
994 		return NULL;
995 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
996 	lockref_get(&alias->d_lockref);
997 	return alias;
998 }
999 
1000 /**
1001  * d_find_any_alias - find any alias for a given inode
1002  * @inode: inode to find an alias for
1003  *
1004  * If any aliases exist for the given inode, take and return a
1005  * reference for one of them.  If no aliases exist, return %NULL.
1006  */
d_find_any_alias(struct inode * inode)1007 struct dentry *d_find_any_alias(struct inode *inode)
1008 {
1009 	struct dentry *de;
1010 
1011 	spin_lock(&inode->i_lock);
1012 	de = __d_find_any_alias(inode);
1013 	spin_unlock(&inode->i_lock);
1014 	return de;
1015 }
1016 EXPORT_SYMBOL(d_find_any_alias);
1017 
__d_find_alias(struct inode * inode)1018 static struct dentry *__d_find_alias(struct inode *inode)
1019 {
1020 	struct dentry *alias;
1021 
1022 	if (S_ISDIR(inode->i_mode))
1023 		return __d_find_any_alias(inode);
1024 
1025 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1026 		spin_lock(&alias->d_lock);
1027  		if (!d_unhashed(alias)) {
1028 			dget_dlock(alias);
1029 			spin_unlock(&alias->d_lock);
1030 			return alias;
1031 		}
1032 		spin_unlock(&alias->d_lock);
1033 	}
1034 	return NULL;
1035 }
1036 
1037 /**
1038  * d_find_alias - grab a hashed alias of inode
1039  * @inode: inode in question
1040  *
1041  * If inode has a hashed alias, or is a directory and has any alias,
1042  * acquire the reference to alias and return it. Otherwise return NULL.
1043  * Notice that if inode is a directory there can be only one alias and
1044  * it can be unhashed only if it has no children, or if it is the root
1045  * of a filesystem, or if the directory was renamed and d_revalidate
1046  * was the first vfs operation to notice.
1047  *
1048  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1049  * any other hashed alias over that one.
1050  */
d_find_alias(struct inode * inode)1051 struct dentry *d_find_alias(struct inode *inode)
1052 {
1053 	struct dentry *de = NULL;
1054 
1055 	if (!hlist_empty(&inode->i_dentry)) {
1056 		spin_lock(&inode->i_lock);
1057 		de = __d_find_alias(inode);
1058 		spin_unlock(&inode->i_lock);
1059 	}
1060 	return de;
1061 }
1062 EXPORT_SYMBOL(d_find_alias);
1063 
1064 /*
1065  *  Caller MUST be holding rcu_read_lock() and be guaranteed
1066  *  that inode won't get freed until rcu_read_unlock().
1067  */
d_find_alias_rcu(struct inode * inode)1068 struct dentry *d_find_alias_rcu(struct inode *inode)
1069 {
1070 	struct hlist_head *l = &inode->i_dentry;
1071 	struct dentry *de = NULL;
1072 
1073 	spin_lock(&inode->i_lock);
1074 	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1075 	// used without having I_FREEING set, which means no aliases left
1076 	if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1077 		if (S_ISDIR(inode->i_mode)) {
1078 			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1079 		} else {
1080 			hlist_for_each_entry(de, l, d_u.d_alias)
1081 				if (!d_unhashed(de))
1082 					break;
1083 		}
1084 	}
1085 	spin_unlock(&inode->i_lock);
1086 	return de;
1087 }
1088 
1089 /*
1090  *	Try to kill dentries associated with this inode.
1091  * WARNING: you must own a reference to inode.
1092  */
d_prune_aliases(struct inode * inode)1093 void d_prune_aliases(struct inode *inode)
1094 {
1095 	LIST_HEAD(dispose);
1096 	struct dentry *dentry;
1097 
1098 	spin_lock(&inode->i_lock);
1099 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1100 		spin_lock(&dentry->d_lock);
1101 		if (!dentry->d_lockref.count)
1102 			to_shrink_list(dentry, &dispose);
1103 		spin_unlock(&dentry->d_lock);
1104 	}
1105 	spin_unlock(&inode->i_lock);
1106 	shrink_dentry_list(&dispose);
1107 }
1108 EXPORT_SYMBOL(d_prune_aliases);
1109 
shrink_kill(struct dentry * victim)1110 static inline void shrink_kill(struct dentry *victim)
1111 {
1112 	do {
1113 		rcu_read_unlock();
1114 		victim = __dentry_kill(victim);
1115 		rcu_read_lock();
1116 	} while (victim && lock_for_kill(victim));
1117 	rcu_read_unlock();
1118 	if (victim)
1119 		spin_unlock(&victim->d_lock);
1120 }
1121 
shrink_dentry_list(struct list_head * list)1122 void shrink_dentry_list(struct list_head *list)
1123 {
1124 	while (!list_empty(list)) {
1125 		struct dentry *dentry;
1126 
1127 		dentry = list_entry(list->prev, struct dentry, d_lru);
1128 		spin_lock(&dentry->d_lock);
1129 		rcu_read_lock();
1130 		if (!lock_for_kill(dentry)) {
1131 			bool can_free;
1132 			rcu_read_unlock();
1133 			d_shrink_del(dentry);
1134 			can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
1135 			spin_unlock(&dentry->d_lock);
1136 			if (can_free)
1137 				dentry_free(dentry);
1138 			continue;
1139 		}
1140 		d_shrink_del(dentry);
1141 		shrink_kill(dentry);
1142 	}
1143 }
1144 
dentry_lru_isolate(struct list_head * item,struct list_lru_one * lru,void * arg)1145 static enum lru_status dentry_lru_isolate(struct list_head *item,
1146 		struct list_lru_one *lru, void *arg)
1147 {
1148 	struct list_head *freeable = arg;
1149 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1150 
1151 
1152 	/*
1153 	 * we are inverting the lru lock/dentry->d_lock here,
1154 	 * so use a trylock. If we fail to get the lock, just skip
1155 	 * it
1156 	 */
1157 	if (!spin_trylock(&dentry->d_lock))
1158 		return LRU_SKIP;
1159 
1160 	/*
1161 	 * Referenced dentries are still in use. If they have active
1162 	 * counts, just remove them from the LRU. Otherwise give them
1163 	 * another pass through the LRU.
1164 	 */
1165 	if (dentry->d_lockref.count) {
1166 		d_lru_isolate(lru, dentry);
1167 		spin_unlock(&dentry->d_lock);
1168 		return LRU_REMOVED;
1169 	}
1170 
1171 	if (dentry->d_flags & DCACHE_REFERENCED) {
1172 		dentry->d_flags &= ~DCACHE_REFERENCED;
1173 		spin_unlock(&dentry->d_lock);
1174 
1175 		/*
1176 		 * The list move itself will be made by the common LRU code. At
1177 		 * this point, we've dropped the dentry->d_lock but keep the
1178 		 * lru lock. This is safe to do, since every list movement is
1179 		 * protected by the lru lock even if both locks are held.
1180 		 *
1181 		 * This is guaranteed by the fact that all LRU management
1182 		 * functions are intermediated by the LRU API calls like
1183 		 * list_lru_add_obj and list_lru_del_obj. List movement in this file
1184 		 * only ever occur through this functions or through callbacks
1185 		 * like this one, that are called from the LRU API.
1186 		 *
1187 		 * The only exceptions to this are functions like
1188 		 * shrink_dentry_list, and code that first checks for the
1189 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1190 		 * operating only with stack provided lists after they are
1191 		 * properly isolated from the main list.  It is thus, always a
1192 		 * local access.
1193 		 */
1194 		return LRU_ROTATE;
1195 	}
1196 
1197 	d_lru_shrink_move(lru, dentry, freeable);
1198 	spin_unlock(&dentry->d_lock);
1199 
1200 	return LRU_REMOVED;
1201 }
1202 
1203 /**
1204  * prune_dcache_sb - shrink the dcache
1205  * @sb: superblock
1206  * @sc: shrink control, passed to list_lru_shrink_walk()
1207  *
1208  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1209  * is done when we need more memory and called from the superblock shrinker
1210  * function.
1211  *
1212  * This function may fail to free any resources if all the dentries are in
1213  * use.
1214  */
prune_dcache_sb(struct super_block * sb,struct shrink_control * sc)1215 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1216 {
1217 	LIST_HEAD(dispose);
1218 	long freed;
1219 
1220 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1221 				     dentry_lru_isolate, &dispose);
1222 	shrink_dentry_list(&dispose);
1223 	return freed;
1224 }
1225 
dentry_lru_isolate_shrink(struct list_head * item,struct list_lru_one * lru,void * arg)1226 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1227 		struct list_lru_one *lru, void *arg)
1228 {
1229 	struct list_head *freeable = arg;
1230 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1231 
1232 	/*
1233 	 * we are inverting the lru lock/dentry->d_lock here,
1234 	 * so use a trylock. If we fail to get the lock, just skip
1235 	 * it
1236 	 */
1237 	if (!spin_trylock(&dentry->d_lock))
1238 		return LRU_SKIP;
1239 
1240 	d_lru_shrink_move(lru, dentry, freeable);
1241 	spin_unlock(&dentry->d_lock);
1242 
1243 	return LRU_REMOVED;
1244 }
1245 
1246 
1247 /**
1248  * shrink_dcache_sb - shrink dcache for a superblock
1249  * @sb: superblock
1250  *
1251  * Shrink the dcache for the specified super block. This is used to free
1252  * the dcache before unmounting a file system.
1253  */
shrink_dcache_sb(struct super_block * sb)1254 void shrink_dcache_sb(struct super_block *sb)
1255 {
1256 	do {
1257 		LIST_HEAD(dispose);
1258 
1259 		list_lru_walk(&sb->s_dentry_lru,
1260 			dentry_lru_isolate_shrink, &dispose, 1024);
1261 		shrink_dentry_list(&dispose);
1262 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1263 }
1264 EXPORT_SYMBOL(shrink_dcache_sb);
1265 
1266 /**
1267  * enum d_walk_ret - action to talke during tree walk
1268  * @D_WALK_CONTINUE:	contrinue walk
1269  * @D_WALK_QUIT:	quit walk
1270  * @D_WALK_NORETRY:	quit when retry is needed
1271  * @D_WALK_SKIP:	skip this dentry and its children
1272  */
1273 enum d_walk_ret {
1274 	D_WALK_CONTINUE,
1275 	D_WALK_QUIT,
1276 	D_WALK_NORETRY,
1277 	D_WALK_SKIP,
1278 };
1279 
1280 /**
1281  * d_walk - walk the dentry tree
1282  * @parent:	start of walk
1283  * @data:	data passed to @enter() and @finish()
1284  * @enter:	callback when first entering the dentry
1285  *
1286  * The @enter() callbacks are called with d_lock held.
1287  */
d_walk(struct dentry * parent,void * data,enum d_walk_ret (* enter)(void *,struct dentry *))1288 static void d_walk(struct dentry *parent, void *data,
1289 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1290 {
1291 	struct dentry *this_parent, *dentry;
1292 	unsigned seq = 0;
1293 	enum d_walk_ret ret;
1294 	bool retry = true;
1295 
1296 again:
1297 	read_seqbegin_or_lock(&rename_lock, &seq);
1298 	this_parent = parent;
1299 	spin_lock(&this_parent->d_lock);
1300 
1301 	ret = enter(data, this_parent);
1302 	switch (ret) {
1303 	case D_WALK_CONTINUE:
1304 		break;
1305 	case D_WALK_QUIT:
1306 	case D_WALK_SKIP:
1307 		goto out_unlock;
1308 	case D_WALK_NORETRY:
1309 		retry = false;
1310 		break;
1311 	}
1312 repeat:
1313 	dentry = d_first_child(this_parent);
1314 resume:
1315 	hlist_for_each_entry_from(dentry, d_sib) {
1316 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1317 			continue;
1318 
1319 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1320 
1321 		ret = enter(data, dentry);
1322 		switch (ret) {
1323 		case D_WALK_CONTINUE:
1324 			break;
1325 		case D_WALK_QUIT:
1326 			spin_unlock(&dentry->d_lock);
1327 			goto out_unlock;
1328 		case D_WALK_NORETRY:
1329 			retry = false;
1330 			break;
1331 		case D_WALK_SKIP:
1332 			spin_unlock(&dentry->d_lock);
1333 			continue;
1334 		}
1335 
1336 		if (!hlist_empty(&dentry->d_children)) {
1337 			spin_unlock(&this_parent->d_lock);
1338 			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1339 			this_parent = dentry;
1340 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1341 			goto repeat;
1342 		}
1343 		spin_unlock(&dentry->d_lock);
1344 	}
1345 	/*
1346 	 * All done at this level ... ascend and resume the search.
1347 	 */
1348 	rcu_read_lock();
1349 ascend:
1350 	if (this_parent != parent) {
1351 		dentry = this_parent;
1352 		this_parent = dentry->d_parent;
1353 
1354 		spin_unlock(&dentry->d_lock);
1355 		spin_lock(&this_parent->d_lock);
1356 
1357 		/* might go back up the wrong parent if we have had a rename. */
1358 		if (need_seqretry(&rename_lock, seq))
1359 			goto rename_retry;
1360 		/* go into the first sibling still alive */
1361 		hlist_for_each_entry_continue(dentry, d_sib) {
1362 			if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1363 				rcu_read_unlock();
1364 				goto resume;
1365 			}
1366 		}
1367 		goto ascend;
1368 	}
1369 	if (need_seqretry(&rename_lock, seq))
1370 		goto rename_retry;
1371 	rcu_read_unlock();
1372 
1373 out_unlock:
1374 	spin_unlock(&this_parent->d_lock);
1375 	done_seqretry(&rename_lock, seq);
1376 	return;
1377 
1378 rename_retry:
1379 	spin_unlock(&this_parent->d_lock);
1380 	rcu_read_unlock();
1381 	BUG_ON(seq & 1);
1382 	if (!retry)
1383 		return;
1384 	seq = 1;
1385 	goto again;
1386 }
1387 
1388 struct check_mount {
1389 	struct vfsmount *mnt;
1390 	unsigned int mounted;
1391 };
1392 
path_check_mount(void * data,struct dentry * dentry)1393 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1394 {
1395 	struct check_mount *info = data;
1396 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1397 
1398 	if (likely(!d_mountpoint(dentry)))
1399 		return D_WALK_CONTINUE;
1400 	if (__path_is_mountpoint(&path)) {
1401 		info->mounted = 1;
1402 		return D_WALK_QUIT;
1403 	}
1404 	return D_WALK_CONTINUE;
1405 }
1406 
1407 /**
1408  * path_has_submounts - check for mounts over a dentry in the
1409  *                      current namespace.
1410  * @parent: path to check.
1411  *
1412  * Return true if the parent or its subdirectories contain
1413  * a mount point in the current namespace.
1414  */
path_has_submounts(const struct path * parent)1415 int path_has_submounts(const struct path *parent)
1416 {
1417 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1418 
1419 	read_seqlock_excl(&mount_lock);
1420 	d_walk(parent->dentry, &data, path_check_mount);
1421 	read_sequnlock_excl(&mount_lock);
1422 
1423 	return data.mounted;
1424 }
1425 EXPORT_SYMBOL(path_has_submounts);
1426 
1427 /*
1428  * Called by mount code to set a mountpoint and check if the mountpoint is
1429  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1430  * subtree can become unreachable).
1431  *
1432  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1433  * this reason take rename_lock and d_lock on dentry and ancestors.
1434  */
d_set_mounted(struct dentry * dentry)1435 int d_set_mounted(struct dentry *dentry)
1436 {
1437 	struct dentry *p;
1438 	int ret = -ENOENT;
1439 	read_seqlock_excl(&rename_lock);
1440 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1441 		/* Need exclusion wrt. d_invalidate() */
1442 		spin_lock(&p->d_lock);
1443 		if (unlikely(d_unhashed(p))) {
1444 			spin_unlock(&p->d_lock);
1445 			goto out;
1446 		}
1447 		spin_unlock(&p->d_lock);
1448 	}
1449 	spin_lock(&dentry->d_lock);
1450 	if (!d_unlinked(dentry)) {
1451 		ret = -EBUSY;
1452 		if (!d_mountpoint(dentry)) {
1453 			dentry->d_flags |= DCACHE_MOUNTED;
1454 			ret = 0;
1455 		}
1456 	}
1457  	spin_unlock(&dentry->d_lock);
1458 out:
1459 	read_sequnlock_excl(&rename_lock);
1460 	return ret;
1461 }
1462 
1463 /*
1464  * Search the dentry child list of the specified parent,
1465  * and move any unused dentries to the end of the unused
1466  * list for prune_dcache(). We descend to the next level
1467  * whenever the d_children list is non-empty and continue
1468  * searching.
1469  *
1470  * It returns zero iff there are no unused children,
1471  * otherwise  it returns the number of children moved to
1472  * the end of the unused list. This may not be the total
1473  * number of unused children, because select_parent can
1474  * drop the lock and return early due to latency
1475  * constraints.
1476  */
1477 
1478 struct select_data {
1479 	struct dentry *start;
1480 	union {
1481 		long found;
1482 		struct dentry *victim;
1483 	};
1484 	struct list_head dispose;
1485 };
1486 
select_collect(void * _data,struct dentry * dentry)1487 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1488 {
1489 	struct select_data *data = _data;
1490 	enum d_walk_ret ret = D_WALK_CONTINUE;
1491 
1492 	if (data->start == dentry)
1493 		goto out;
1494 
1495 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1496 		data->found++;
1497 	} else if (!dentry->d_lockref.count) {
1498 		to_shrink_list(dentry, &data->dispose);
1499 		data->found++;
1500 	} else if (dentry->d_lockref.count < 0) {
1501 		data->found++;
1502 	}
1503 	/*
1504 	 * We can return to the caller if we have found some (this
1505 	 * ensures forward progress). We'll be coming back to find
1506 	 * the rest.
1507 	 */
1508 	if (!list_empty(&data->dispose))
1509 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1510 out:
1511 	return ret;
1512 }
1513 
select_collect2(void * _data,struct dentry * dentry)1514 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1515 {
1516 	struct select_data *data = _data;
1517 	enum d_walk_ret ret = D_WALK_CONTINUE;
1518 
1519 	if (data->start == dentry)
1520 		goto out;
1521 
1522 	if (!dentry->d_lockref.count) {
1523 		if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1524 			rcu_read_lock();
1525 			data->victim = dentry;
1526 			return D_WALK_QUIT;
1527 		}
1528 		to_shrink_list(dentry, &data->dispose);
1529 	}
1530 	/*
1531 	 * We can return to the caller if we have found some (this
1532 	 * ensures forward progress). We'll be coming back to find
1533 	 * the rest.
1534 	 */
1535 	if (!list_empty(&data->dispose))
1536 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1537 out:
1538 	return ret;
1539 }
1540 
1541 /**
1542  * shrink_dcache_parent - prune dcache
1543  * @parent: parent of entries to prune
1544  *
1545  * Prune the dcache to remove unused children of the parent dentry.
1546  */
shrink_dcache_parent(struct dentry * parent)1547 void shrink_dcache_parent(struct dentry *parent)
1548 {
1549 	for (;;) {
1550 		struct select_data data = {.start = parent};
1551 
1552 		INIT_LIST_HEAD(&data.dispose);
1553 		d_walk(parent, &data, select_collect);
1554 
1555 		if (!list_empty(&data.dispose)) {
1556 			shrink_dentry_list(&data.dispose);
1557 			continue;
1558 		}
1559 
1560 		cond_resched();
1561 		if (!data.found)
1562 			break;
1563 		data.victim = NULL;
1564 		d_walk(parent, &data, select_collect2);
1565 		if (data.victim) {
1566 			spin_lock(&data.victim->d_lock);
1567 			if (!lock_for_kill(data.victim)) {
1568 				spin_unlock(&data.victim->d_lock);
1569 				rcu_read_unlock();
1570 			} else {
1571 				shrink_kill(data.victim);
1572 			}
1573 		}
1574 		if (!list_empty(&data.dispose))
1575 			shrink_dentry_list(&data.dispose);
1576 	}
1577 }
1578 EXPORT_SYMBOL(shrink_dcache_parent);
1579 
umount_check(void * _data,struct dentry * dentry)1580 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1581 {
1582 	/* it has busy descendents; complain about those instead */
1583 	if (!hlist_empty(&dentry->d_children))
1584 		return D_WALK_CONTINUE;
1585 
1586 	/* root with refcount 1 is fine */
1587 	if (dentry == _data && dentry->d_lockref.count == 1)
1588 		return D_WALK_CONTINUE;
1589 
1590 	WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1591 			" still in use (%d) [unmount of %s %s]\n",
1592 		       dentry,
1593 		       dentry->d_inode ?
1594 		       dentry->d_inode->i_ino : 0UL,
1595 		       dentry,
1596 		       dentry->d_lockref.count,
1597 		       dentry->d_sb->s_type->name,
1598 		       dentry->d_sb->s_id);
1599 	return D_WALK_CONTINUE;
1600 }
1601 
do_one_tree(struct dentry * dentry)1602 static void do_one_tree(struct dentry *dentry)
1603 {
1604 	shrink_dcache_parent(dentry);
1605 	d_walk(dentry, dentry, umount_check);
1606 	d_drop(dentry);
1607 	dput(dentry);
1608 }
1609 
1610 /*
1611  * destroy the dentries attached to a superblock on unmounting
1612  */
shrink_dcache_for_umount(struct super_block * sb)1613 void shrink_dcache_for_umount(struct super_block *sb)
1614 {
1615 	struct dentry *dentry;
1616 
1617 	rwsem_assert_held_write(&sb->s_umount);
1618 
1619 	dentry = sb->s_root;
1620 	sb->s_root = NULL;
1621 	do_one_tree(dentry);
1622 
1623 	while (!hlist_bl_empty(&sb->s_roots)) {
1624 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1625 		do_one_tree(dentry);
1626 	}
1627 }
1628 
find_submount(void * _data,struct dentry * dentry)1629 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1630 {
1631 	struct dentry **victim = _data;
1632 	if (d_mountpoint(dentry)) {
1633 		*victim = dget_dlock(dentry);
1634 		return D_WALK_QUIT;
1635 	}
1636 	return D_WALK_CONTINUE;
1637 }
1638 
1639 /**
1640  * d_invalidate - detach submounts, prune dcache, and drop
1641  * @dentry: dentry to invalidate (aka detach, prune and drop)
1642  */
d_invalidate(struct dentry * dentry)1643 void d_invalidate(struct dentry *dentry)
1644 {
1645 	bool had_submounts = false;
1646 	spin_lock(&dentry->d_lock);
1647 	if (d_unhashed(dentry)) {
1648 		spin_unlock(&dentry->d_lock);
1649 		return;
1650 	}
1651 	__d_drop(dentry);
1652 	spin_unlock(&dentry->d_lock);
1653 
1654 	/* Negative dentries can be dropped without further checks */
1655 	if (!dentry->d_inode)
1656 		return;
1657 
1658 	shrink_dcache_parent(dentry);
1659 	for (;;) {
1660 		struct dentry *victim = NULL;
1661 		d_walk(dentry, &victim, find_submount);
1662 		if (!victim) {
1663 			if (had_submounts)
1664 				shrink_dcache_parent(dentry);
1665 			return;
1666 		}
1667 		had_submounts = true;
1668 		detach_mounts(victim);
1669 		dput(victim);
1670 	}
1671 }
1672 EXPORT_SYMBOL(d_invalidate);
1673 
1674 /**
1675  * __d_alloc	-	allocate a dcache entry
1676  * @sb: filesystem it will belong to
1677  * @name: qstr of the name
1678  *
1679  * Allocates a dentry. It returns %NULL if there is insufficient memory
1680  * available. On a success the dentry is returned. The name passed in is
1681  * copied and the copy passed in may be reused after this call.
1682  */
1683 
__d_alloc(struct super_block * sb,const struct qstr * name)1684 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1685 {
1686 	struct dentry *dentry;
1687 	char *dname;
1688 	int err;
1689 
1690 	dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1691 				      GFP_KERNEL);
1692 	if (!dentry)
1693 		return NULL;
1694 
1695 	/*
1696 	 * We guarantee that the inline name is always NUL-terminated.
1697 	 * This way the memcpy() done by the name switching in rename
1698 	 * will still always have a NUL at the end, even if we might
1699 	 * be overwriting an internal NUL character
1700 	 */
1701 	dentry->d_shortname.string[DNAME_INLINE_LEN-1] = 0;
1702 	if (unlikely(!name)) {
1703 		name = &slash_name;
1704 		dname = dentry->d_shortname.string;
1705 	} else if (name->len > DNAME_INLINE_LEN-1) {
1706 		size_t size = offsetof(struct external_name, name[1]);
1707 		struct external_name *p = kmalloc(size + name->len,
1708 						  GFP_KERNEL_ACCOUNT |
1709 						  __GFP_RECLAIMABLE);
1710 		if (!p) {
1711 			kmem_cache_free(dentry_cache, dentry);
1712 			return NULL;
1713 		}
1714 		atomic_set(&p->count, 1);
1715 		dname = p->name;
1716 	} else  {
1717 		dname = dentry->d_shortname.string;
1718 	}
1719 
1720 	dentry->d_name.len = name->len;
1721 	dentry->d_name.hash = name->hash;
1722 	memcpy(dname, name->name, name->len);
1723 	dname[name->len] = 0;
1724 
1725 	/* Make sure we always see the terminating NUL character */
1726 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1727 
1728 	dentry->d_flags = 0;
1729 	lockref_init(&dentry->d_lockref);
1730 	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1731 	dentry->d_inode = NULL;
1732 	dentry->d_parent = dentry;
1733 	dentry->d_sb = sb;
1734 	dentry->d_op = sb->__s_d_op;
1735 	dentry->d_flags = sb->s_d_flags;
1736 	dentry->d_fsdata = NULL;
1737 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1738 	INIT_LIST_HEAD(&dentry->d_lru);
1739 	INIT_HLIST_HEAD(&dentry->d_children);
1740 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1741 	INIT_HLIST_NODE(&dentry->d_sib);
1742 
1743 	if (dentry->d_op && dentry->d_op->d_init) {
1744 		err = dentry->d_op->d_init(dentry);
1745 		if (err) {
1746 			if (dname_external(dentry))
1747 				kfree(external_name(dentry));
1748 			kmem_cache_free(dentry_cache, dentry);
1749 			return NULL;
1750 		}
1751 	}
1752 
1753 	this_cpu_inc(nr_dentry);
1754 
1755 	return dentry;
1756 }
1757 
1758 /**
1759  * d_alloc	-	allocate a dcache entry
1760  * @parent: parent of entry to allocate
1761  * @name: qstr of the name
1762  *
1763  * Allocates a dentry. It returns %NULL if there is insufficient memory
1764  * available. On a success the dentry is returned. The name passed in is
1765  * copied and the copy passed in may be reused after this call.
1766  */
d_alloc(struct dentry * parent,const struct qstr * name)1767 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1768 {
1769 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1770 	if (!dentry)
1771 		return NULL;
1772 	spin_lock(&parent->d_lock);
1773 	/*
1774 	 * don't need child lock because it is not subject
1775 	 * to concurrency here
1776 	 */
1777 	dentry->d_parent = dget_dlock(parent);
1778 	hlist_add_head(&dentry->d_sib, &parent->d_children);
1779 	spin_unlock(&parent->d_lock);
1780 
1781 	return dentry;
1782 }
1783 EXPORT_SYMBOL(d_alloc);
1784 
d_alloc_anon(struct super_block * sb)1785 struct dentry *d_alloc_anon(struct super_block *sb)
1786 {
1787 	return __d_alloc(sb, NULL);
1788 }
1789 EXPORT_SYMBOL(d_alloc_anon);
1790 
d_alloc_cursor(struct dentry * parent)1791 struct dentry *d_alloc_cursor(struct dentry * parent)
1792 {
1793 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1794 	if (dentry) {
1795 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1796 		dentry->d_parent = dget(parent);
1797 	}
1798 	return dentry;
1799 }
1800 
1801 /**
1802  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1803  * @sb: the superblock
1804  * @name: qstr of the name
1805  *
1806  * For a filesystem that just pins its dentries in memory and never
1807  * performs lookups at all, return an unhashed IS_ROOT dentry.
1808  * This is used for pipes, sockets et.al. - the stuff that should
1809  * never be anyone's children or parents.  Unlike all other
1810  * dentries, these will not have RCU delay between dropping the
1811  * last reference and freeing them.
1812  *
1813  * The only user is alloc_file_pseudo() and that's what should
1814  * be considered a public interface.  Don't use directly.
1815  */
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1816 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1817 {
1818 	static const struct dentry_operations anon_ops = {
1819 		.d_dname = simple_dname
1820 	};
1821 	struct dentry *dentry = __d_alloc(sb, name);
1822 	if (likely(dentry)) {
1823 		dentry->d_flags |= DCACHE_NORCU;
1824 		/* d_op_flags(&anon_ops) is 0 */
1825 		if (!dentry->d_op)
1826 			dentry->d_op = &anon_ops;
1827 	}
1828 	return dentry;
1829 }
1830 
d_alloc_name(struct dentry * parent,const char * name)1831 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1832 {
1833 	struct qstr q;
1834 
1835 	q.name = name;
1836 	q.hash_len = hashlen_string(parent, name);
1837 	return d_alloc(parent, &q);
1838 }
1839 EXPORT_SYMBOL(d_alloc_name);
1840 
1841 #define DCACHE_OP_FLAGS \
1842 	(DCACHE_OP_HASH | DCACHE_OP_COMPARE | DCACHE_OP_REVALIDATE | \
1843 	 DCACHE_OP_WEAK_REVALIDATE | DCACHE_OP_DELETE | DCACHE_OP_PRUNE | \
1844 	 DCACHE_OP_REAL)
1845 
d_op_flags(const struct dentry_operations * op)1846 static unsigned int d_op_flags(const struct dentry_operations *op)
1847 {
1848 	unsigned int flags = 0;
1849 	if (op) {
1850 		if (op->d_hash)
1851 			flags |= DCACHE_OP_HASH;
1852 		if (op->d_compare)
1853 			flags |= DCACHE_OP_COMPARE;
1854 		if (op->d_revalidate)
1855 			flags |= DCACHE_OP_REVALIDATE;
1856 		if (op->d_weak_revalidate)
1857 			flags |= DCACHE_OP_WEAK_REVALIDATE;
1858 		if (op->d_delete)
1859 			flags |= DCACHE_OP_DELETE;
1860 		if (op->d_prune)
1861 			flags |= DCACHE_OP_PRUNE;
1862 		if (op->d_real)
1863 			flags |= DCACHE_OP_REAL;
1864 	}
1865 	return flags;
1866 }
1867 
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1868 static void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1869 {
1870 	unsigned int flags = d_op_flags(op);
1871 	WARN_ON_ONCE(dentry->d_op);
1872 	WARN_ON_ONCE(dentry->d_flags & DCACHE_OP_FLAGS);
1873 	dentry->d_op = op;
1874 	if (flags)
1875 		dentry->d_flags |= flags;
1876 }
1877 
set_default_d_op(struct super_block * s,const struct dentry_operations * ops)1878 void set_default_d_op(struct super_block *s, const struct dentry_operations *ops)
1879 {
1880 	unsigned int flags = d_op_flags(ops);
1881 	s->__s_d_op = ops;
1882 	s->s_d_flags = (s->s_d_flags & ~DCACHE_OP_FLAGS) | flags;
1883 }
1884 EXPORT_SYMBOL(set_default_d_op);
1885 
d_flags_for_inode(struct inode * inode)1886 static unsigned d_flags_for_inode(struct inode *inode)
1887 {
1888 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1889 
1890 	if (!inode)
1891 		return DCACHE_MISS_TYPE;
1892 
1893 	if (S_ISDIR(inode->i_mode)) {
1894 		add_flags = DCACHE_DIRECTORY_TYPE;
1895 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1896 			if (unlikely(!inode->i_op->lookup))
1897 				add_flags = DCACHE_AUTODIR_TYPE;
1898 			else
1899 				inode->i_opflags |= IOP_LOOKUP;
1900 		}
1901 		goto type_determined;
1902 	}
1903 
1904 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1905 		if (unlikely(inode->i_op->get_link)) {
1906 			add_flags = DCACHE_SYMLINK_TYPE;
1907 			goto type_determined;
1908 		}
1909 		inode->i_opflags |= IOP_NOFOLLOW;
1910 	}
1911 
1912 	if (unlikely(!S_ISREG(inode->i_mode)))
1913 		add_flags = DCACHE_SPECIAL_TYPE;
1914 
1915 type_determined:
1916 	if (unlikely(IS_AUTOMOUNT(inode)))
1917 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1918 	return add_flags;
1919 }
1920 
__d_instantiate(struct dentry * dentry,struct inode * inode)1921 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1922 {
1923 	unsigned add_flags = d_flags_for_inode(inode);
1924 	WARN_ON(d_in_lookup(dentry));
1925 
1926 	spin_lock(&dentry->d_lock);
1927 	/*
1928 	 * The negative counter only tracks dentries on the LRU. Don't dec if
1929 	 * d_lru is on another list.
1930 	 */
1931 	if ((dentry->d_flags &
1932 	     (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
1933 		this_cpu_dec(nr_dentry_negative);
1934 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1935 	raw_write_seqcount_begin(&dentry->d_seq);
1936 	__d_set_inode_and_type(dentry, inode, add_flags);
1937 	raw_write_seqcount_end(&dentry->d_seq);
1938 	fsnotify_update_flags(dentry);
1939 	spin_unlock(&dentry->d_lock);
1940 }
1941 
1942 /**
1943  * d_instantiate - fill in inode information for a dentry
1944  * @entry: dentry to complete
1945  * @inode: inode to attach to this dentry
1946  *
1947  * Fill in inode information in the entry.
1948  *
1949  * This turns negative dentries into productive full members
1950  * of society.
1951  *
1952  * NOTE! This assumes that the inode count has been incremented
1953  * (or otherwise set) by the caller to indicate that it is now
1954  * in use by the dcache.
1955  */
1956 
d_instantiate(struct dentry * entry,struct inode * inode)1957 void d_instantiate(struct dentry *entry, struct inode * inode)
1958 {
1959 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1960 	if (inode) {
1961 		security_d_instantiate(entry, inode);
1962 		spin_lock(&inode->i_lock);
1963 		__d_instantiate(entry, inode);
1964 		spin_unlock(&inode->i_lock);
1965 	}
1966 }
1967 EXPORT_SYMBOL(d_instantiate);
1968 
1969 /*
1970  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1971  * with lockdep-related part of unlock_new_inode() done before
1972  * anything else.  Use that instead of open-coding d_instantiate()/
1973  * unlock_new_inode() combinations.
1974  */
d_instantiate_new(struct dentry * entry,struct inode * inode)1975 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1976 {
1977 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1978 	BUG_ON(!inode);
1979 	lockdep_annotate_inode_mutex_key(inode);
1980 	security_d_instantiate(entry, inode);
1981 	spin_lock(&inode->i_lock);
1982 	__d_instantiate(entry, inode);
1983 	WARN_ON(!(inode->i_state & I_NEW));
1984 	inode->i_state &= ~I_NEW & ~I_CREATING;
1985 	/*
1986 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
1987 	 * ___wait_var_event() either sees the bit cleared or
1988 	 * waitqueue_active() check in wake_up_var() sees the waiter.
1989 	 */
1990 	smp_mb();
1991 	inode_wake_up_bit(inode, __I_NEW);
1992 	spin_unlock(&inode->i_lock);
1993 }
1994 EXPORT_SYMBOL(d_instantiate_new);
1995 
d_make_root(struct inode * root_inode)1996 struct dentry *d_make_root(struct inode *root_inode)
1997 {
1998 	struct dentry *res = NULL;
1999 
2000 	if (root_inode) {
2001 		res = d_alloc_anon(root_inode->i_sb);
2002 		if (res)
2003 			d_instantiate(res, root_inode);
2004 		else
2005 			iput(root_inode);
2006 	}
2007 	return res;
2008 }
2009 EXPORT_SYMBOL(d_make_root);
2010 
__d_obtain_alias(struct inode * inode,bool disconnected)2011 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2012 {
2013 	struct super_block *sb;
2014 	struct dentry *new, *res;
2015 
2016 	if (!inode)
2017 		return ERR_PTR(-ESTALE);
2018 	if (IS_ERR(inode))
2019 		return ERR_CAST(inode);
2020 
2021 	sb = inode->i_sb;
2022 
2023 	res = d_find_any_alias(inode); /* existing alias? */
2024 	if (res)
2025 		goto out;
2026 
2027 	new = d_alloc_anon(sb);
2028 	if (!new) {
2029 		res = ERR_PTR(-ENOMEM);
2030 		goto out;
2031 	}
2032 
2033 	security_d_instantiate(new, inode);
2034 	spin_lock(&inode->i_lock);
2035 	res = __d_find_any_alias(inode); /* recheck under lock */
2036 	if (likely(!res)) { /* still no alias, attach a disconnected dentry */
2037 		unsigned add_flags = d_flags_for_inode(inode);
2038 
2039 		if (disconnected)
2040 			add_flags |= DCACHE_DISCONNECTED;
2041 
2042 		spin_lock(&new->d_lock);
2043 		__d_set_inode_and_type(new, inode, add_flags);
2044 		hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
2045 		if (!disconnected) {
2046 			hlist_bl_lock(&sb->s_roots);
2047 			hlist_bl_add_head(&new->d_hash, &sb->s_roots);
2048 			hlist_bl_unlock(&sb->s_roots);
2049 		}
2050 		spin_unlock(&new->d_lock);
2051 		spin_unlock(&inode->i_lock);
2052 		inode = NULL; /* consumed by new->d_inode */
2053 		res = new;
2054 	} else {
2055 		spin_unlock(&inode->i_lock);
2056 		dput(new);
2057 	}
2058 
2059  out:
2060 	iput(inode);
2061 	return res;
2062 }
2063 
2064 /**
2065  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2066  * @inode: inode to allocate the dentry for
2067  *
2068  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2069  * similar open by handle operations.  The returned dentry may be anonymous,
2070  * or may have a full name (if the inode was already in the cache).
2071  *
2072  * When called on a directory inode, we must ensure that the inode only ever
2073  * has one dentry.  If a dentry is found, that is returned instead of
2074  * allocating a new one.
2075  *
2076  * On successful return, the reference to the inode has been transferred
2077  * to the dentry.  In case of an error the reference on the inode is released.
2078  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2079  * be passed in and the error will be propagated to the return value,
2080  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2081  */
d_obtain_alias(struct inode * inode)2082 struct dentry *d_obtain_alias(struct inode *inode)
2083 {
2084 	return __d_obtain_alias(inode, true);
2085 }
2086 EXPORT_SYMBOL(d_obtain_alias);
2087 
2088 /**
2089  * d_obtain_root - find or allocate a dentry for a given inode
2090  * @inode: inode to allocate the dentry for
2091  *
2092  * Obtain an IS_ROOT dentry for the root of a filesystem.
2093  *
2094  * We must ensure that directory inodes only ever have one dentry.  If a
2095  * dentry is found, that is returned instead of allocating a new one.
2096  *
2097  * On successful return, the reference to the inode has been transferred
2098  * to the dentry.  In case of an error the reference on the inode is
2099  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2100  * error will be propagate to the return value, with a %NULL @inode
2101  * replaced by ERR_PTR(-ESTALE).
2102  */
d_obtain_root(struct inode * inode)2103 struct dentry *d_obtain_root(struct inode *inode)
2104 {
2105 	return __d_obtain_alias(inode, false);
2106 }
2107 EXPORT_SYMBOL(d_obtain_root);
2108 
2109 /**
2110  * d_add_ci - lookup or allocate new dentry with case-exact name
2111  * @dentry: the negative dentry that was passed to the parent's lookup func
2112  * @inode:  the inode case-insensitive lookup has found
2113  * @name:   the case-exact name to be associated with the returned dentry
2114  *
2115  * This is to avoid filling the dcache with case-insensitive names to the
2116  * same inode, only the actual correct case is stored in the dcache for
2117  * case-insensitive filesystems.
2118  *
2119  * For a case-insensitive lookup match and if the case-exact dentry
2120  * already exists in the dcache, use it and return it.
2121  *
2122  * If no entry exists with the exact case name, allocate new dentry with
2123  * the exact case, and return the spliced entry.
2124  */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)2125 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2126 			struct qstr *name)
2127 {
2128 	struct dentry *found, *res;
2129 
2130 	/*
2131 	 * First check if a dentry matching the name already exists,
2132 	 * if not go ahead and create it now.
2133 	 */
2134 	found = d_hash_and_lookup(dentry->d_parent, name);
2135 	if (found) {
2136 		iput(inode);
2137 		return found;
2138 	}
2139 	if (d_in_lookup(dentry)) {
2140 		found = d_alloc_parallel(dentry->d_parent, name,
2141 					dentry->d_wait);
2142 		if (IS_ERR(found) || !d_in_lookup(found)) {
2143 			iput(inode);
2144 			return found;
2145 		}
2146 	} else {
2147 		found = d_alloc(dentry->d_parent, name);
2148 		if (!found) {
2149 			iput(inode);
2150 			return ERR_PTR(-ENOMEM);
2151 		}
2152 	}
2153 	res = d_splice_alias(inode, found);
2154 	if (res) {
2155 		d_lookup_done(found);
2156 		dput(found);
2157 		return res;
2158 	}
2159 	return found;
2160 }
2161 EXPORT_SYMBOL(d_add_ci);
2162 
2163 /**
2164  * d_same_name - compare dentry name with case-exact name
2165  * @dentry: the negative dentry that was passed to the parent's lookup func
2166  * @parent: parent dentry
2167  * @name:   the case-exact name to be associated with the returned dentry
2168  *
2169  * Return: true if names are same, or false
2170  */
d_same_name(const struct dentry * dentry,const struct dentry * parent,const struct qstr * name)2171 bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2172 		 const struct qstr *name)
2173 {
2174 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2175 		if (dentry->d_name.len != name->len)
2176 			return false;
2177 		return dentry_cmp(dentry, name->name, name->len) == 0;
2178 	}
2179 	return parent->d_op->d_compare(dentry,
2180 				       dentry->d_name.len, dentry->d_name.name,
2181 				       name) == 0;
2182 }
2183 EXPORT_SYMBOL_GPL(d_same_name);
2184 
2185 /*
2186  * This is __d_lookup_rcu() when the parent dentry has
2187  * DCACHE_OP_COMPARE, which makes things much nastier.
2188  */
__d_lookup_rcu_op_compare(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2189 static noinline struct dentry *__d_lookup_rcu_op_compare(
2190 	const struct dentry *parent,
2191 	const struct qstr *name,
2192 	unsigned *seqp)
2193 {
2194 	u64 hashlen = name->hash_len;
2195 	struct hlist_bl_head *b = d_hash(hashlen);
2196 	struct hlist_bl_node *node;
2197 	struct dentry *dentry;
2198 
2199 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2200 		int tlen;
2201 		const char *tname;
2202 		unsigned seq;
2203 
2204 seqretry:
2205 		seq = raw_seqcount_begin(&dentry->d_seq);
2206 		if (dentry->d_parent != parent)
2207 			continue;
2208 		if (d_unhashed(dentry))
2209 			continue;
2210 		if (dentry->d_name.hash != hashlen_hash(hashlen))
2211 			continue;
2212 		tlen = dentry->d_name.len;
2213 		tname = dentry->d_name.name;
2214 		/* we want a consistent (name,len) pair */
2215 		if (read_seqcount_retry(&dentry->d_seq, seq)) {
2216 			cpu_relax();
2217 			goto seqretry;
2218 		}
2219 		if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2220 			continue;
2221 		*seqp = seq;
2222 		return dentry;
2223 	}
2224 	return NULL;
2225 }
2226 
2227 /**
2228  * __d_lookup_rcu - search for a dentry (racy, store-free)
2229  * @parent: parent dentry
2230  * @name: qstr of name we wish to find
2231  * @seqp: returns d_seq value at the point where the dentry was found
2232  * Returns: dentry, or NULL
2233  *
2234  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2235  * resolution (store-free path walking) design described in
2236  * Documentation/filesystems/path-lookup.txt.
2237  *
2238  * This is not to be used outside core vfs.
2239  *
2240  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2241  * held, and rcu_read_lock held. The returned dentry must not be stored into
2242  * without taking d_lock and checking d_seq sequence count against @seq
2243  * returned here.
2244  *
2245  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2246  * the returned dentry, so long as its parent's seqlock is checked after the
2247  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2248  * is formed, giving integrity down the path walk.
2249  *
2250  * NOTE! The caller *has* to check the resulting dentry against the sequence
2251  * number we've returned before using any of the resulting dentry state!
2252  */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2253 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2254 				const struct qstr *name,
2255 				unsigned *seqp)
2256 {
2257 	u64 hashlen = name->hash_len;
2258 	const unsigned char *str = name->name;
2259 	struct hlist_bl_head *b = d_hash(hashlen);
2260 	struct hlist_bl_node *node;
2261 	struct dentry *dentry;
2262 
2263 	/*
2264 	 * Note: There is significant duplication with __d_lookup_rcu which is
2265 	 * required to prevent single threaded performance regressions
2266 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2267 	 * Keep the two functions in sync.
2268 	 */
2269 
2270 	if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2271 		return __d_lookup_rcu_op_compare(parent, name, seqp);
2272 
2273 	/*
2274 	 * The hash list is protected using RCU.
2275 	 *
2276 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2277 	 * races with d_move().
2278 	 *
2279 	 * It is possible that concurrent renames can mess up our list
2280 	 * walk here and result in missing our dentry, resulting in the
2281 	 * false-negative result. d_lookup() protects against concurrent
2282 	 * renames using rename_lock seqlock.
2283 	 *
2284 	 * See Documentation/filesystems/path-lookup.txt for more details.
2285 	 */
2286 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2287 		unsigned seq;
2288 
2289 		/*
2290 		 * The dentry sequence count protects us from concurrent
2291 		 * renames, and thus protects parent and name fields.
2292 		 *
2293 		 * The caller must perform a seqcount check in order
2294 		 * to do anything useful with the returned dentry.
2295 		 *
2296 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2297 		 * we don't wait for the sequence count to stabilize if it
2298 		 * is in the middle of a sequence change. If we do the slow
2299 		 * dentry compare, we will do seqretries until it is stable,
2300 		 * and if we end up with a successful lookup, we actually
2301 		 * want to exit RCU lookup anyway.
2302 		 *
2303 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2304 		 * we are still guaranteed NUL-termination of ->d_name.name.
2305 		 */
2306 		seq = raw_seqcount_begin(&dentry->d_seq);
2307 		if (dentry->d_parent != parent)
2308 			continue;
2309 		if (d_unhashed(dentry))
2310 			continue;
2311 		if (dentry->d_name.hash_len != hashlen)
2312 			continue;
2313 		if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2314 			continue;
2315 		*seqp = seq;
2316 		return dentry;
2317 	}
2318 	return NULL;
2319 }
2320 
2321 /**
2322  * d_lookup - search for a dentry
2323  * @parent: parent dentry
2324  * @name: qstr of name we wish to find
2325  * Returns: dentry, or NULL
2326  *
2327  * d_lookup searches the children of the parent dentry for the name in
2328  * question. If the dentry is found its reference count is incremented and the
2329  * dentry is returned. The caller must use dput to free the entry when it has
2330  * finished using it. %NULL is returned if the dentry does not exist.
2331  */
d_lookup(const struct dentry * parent,const struct qstr * name)2332 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2333 {
2334 	struct dentry *dentry;
2335 	unsigned seq;
2336 
2337 	do {
2338 		seq = read_seqbegin(&rename_lock);
2339 		dentry = __d_lookup(parent, name);
2340 		if (dentry)
2341 			break;
2342 	} while (read_seqretry(&rename_lock, seq));
2343 	return dentry;
2344 }
2345 EXPORT_SYMBOL(d_lookup);
2346 
2347 /**
2348  * __d_lookup - search for a dentry (racy)
2349  * @parent: parent dentry
2350  * @name: qstr of name we wish to find
2351  * Returns: dentry, or NULL
2352  *
2353  * __d_lookup is like d_lookup, however it may (rarely) return a
2354  * false-negative result due to unrelated rename activity.
2355  *
2356  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2357  * however it must be used carefully, eg. with a following d_lookup in
2358  * the case of failure.
2359  *
2360  * __d_lookup callers must be commented.
2361  */
__d_lookup(const struct dentry * parent,const struct qstr * name)2362 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2363 {
2364 	unsigned int hash = name->hash;
2365 	struct hlist_bl_head *b = d_hash(hash);
2366 	struct hlist_bl_node *node;
2367 	struct dentry *found = NULL;
2368 	struct dentry *dentry;
2369 
2370 	/*
2371 	 * Note: There is significant duplication with __d_lookup_rcu which is
2372 	 * required to prevent single threaded performance regressions
2373 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2374 	 * Keep the two functions in sync.
2375 	 */
2376 
2377 	/*
2378 	 * The hash list is protected using RCU.
2379 	 *
2380 	 * Take d_lock when comparing a candidate dentry, to avoid races
2381 	 * with d_move().
2382 	 *
2383 	 * It is possible that concurrent renames can mess up our list
2384 	 * walk here and result in missing our dentry, resulting in the
2385 	 * false-negative result. d_lookup() protects against concurrent
2386 	 * renames using rename_lock seqlock.
2387 	 *
2388 	 * See Documentation/filesystems/path-lookup.txt for more details.
2389 	 */
2390 	rcu_read_lock();
2391 
2392 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2393 
2394 		if (dentry->d_name.hash != hash)
2395 			continue;
2396 
2397 		spin_lock(&dentry->d_lock);
2398 		if (dentry->d_parent != parent)
2399 			goto next;
2400 		if (d_unhashed(dentry))
2401 			goto next;
2402 
2403 		if (!d_same_name(dentry, parent, name))
2404 			goto next;
2405 
2406 		dentry->d_lockref.count++;
2407 		found = dentry;
2408 		spin_unlock(&dentry->d_lock);
2409 		break;
2410 next:
2411 		spin_unlock(&dentry->d_lock);
2412  	}
2413  	rcu_read_unlock();
2414 
2415  	return found;
2416 }
2417 
2418 /**
2419  * d_hash_and_lookup - hash the qstr then search for a dentry
2420  * @dir: Directory to search in
2421  * @name: qstr of name we wish to find
2422  *
2423  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2424  */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)2425 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2426 {
2427 	/*
2428 	 * Check for a fs-specific hash function. Note that we must
2429 	 * calculate the standard hash first, as the d_op->d_hash()
2430 	 * routine may choose to leave the hash value unchanged.
2431 	 */
2432 	name->hash = full_name_hash(dir, name->name, name->len);
2433 	if (dir->d_flags & DCACHE_OP_HASH) {
2434 		int err = dir->d_op->d_hash(dir, name);
2435 		if (unlikely(err < 0))
2436 			return ERR_PTR(err);
2437 	}
2438 	return d_lookup(dir, name);
2439 }
2440 
2441 /*
2442  * When a file is deleted, we have two options:
2443  * - turn this dentry into a negative dentry
2444  * - unhash this dentry and free it.
2445  *
2446  * Usually, we want to just turn this into
2447  * a negative dentry, but if anybody else is
2448  * currently using the dentry or the inode
2449  * we can't do that and we fall back on removing
2450  * it from the hash queues and waiting for
2451  * it to be deleted later when it has no users
2452  */
2453 
2454 /**
2455  * d_delete - delete a dentry
2456  * @dentry: The dentry to delete
2457  *
2458  * Turn the dentry into a negative dentry if possible, otherwise
2459  * remove it from the hash queues so it can be deleted later
2460  */
2461 
d_delete(struct dentry * dentry)2462 void d_delete(struct dentry * dentry)
2463 {
2464 	struct inode *inode = dentry->d_inode;
2465 
2466 	spin_lock(&inode->i_lock);
2467 	spin_lock(&dentry->d_lock);
2468 	/*
2469 	 * Are we the only user?
2470 	 */
2471 	if (dentry->d_lockref.count == 1) {
2472 		if (dentry_negative_policy)
2473 			__d_drop(dentry);
2474 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2475 		dentry_unlink_inode(dentry);
2476 	} else {
2477 		__d_drop(dentry);
2478 		spin_unlock(&dentry->d_lock);
2479 		spin_unlock(&inode->i_lock);
2480 	}
2481 }
2482 EXPORT_SYMBOL(d_delete);
2483 
__d_rehash(struct dentry * entry)2484 static void __d_rehash(struct dentry *entry)
2485 {
2486 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2487 
2488 	hlist_bl_lock(b);
2489 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2490 	hlist_bl_unlock(b);
2491 }
2492 
2493 /**
2494  * d_rehash	- add an entry back to the hash
2495  * @entry: dentry to add to the hash
2496  *
2497  * Adds a dentry to the hash according to its name.
2498  */
2499 
d_rehash(struct dentry * entry)2500 void d_rehash(struct dentry * entry)
2501 {
2502 	spin_lock(&entry->d_lock);
2503 	__d_rehash(entry);
2504 	spin_unlock(&entry->d_lock);
2505 }
2506 EXPORT_SYMBOL(d_rehash);
2507 
start_dir_add(struct inode * dir)2508 static inline unsigned start_dir_add(struct inode *dir)
2509 {
2510 	preempt_disable_nested();
2511 	for (;;) {
2512 		unsigned n = dir->i_dir_seq;
2513 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2514 			return n;
2515 		cpu_relax();
2516 	}
2517 }
2518 
end_dir_add(struct inode * dir,unsigned int n,wait_queue_head_t * d_wait)2519 static inline void end_dir_add(struct inode *dir, unsigned int n,
2520 			       wait_queue_head_t *d_wait)
2521 {
2522 	smp_store_release(&dir->i_dir_seq, n + 2);
2523 	preempt_enable_nested();
2524 	if (wq_has_sleeper(d_wait))
2525 		wake_up_all(d_wait);
2526 }
2527 
d_wait_lookup(struct dentry * dentry)2528 static void d_wait_lookup(struct dentry *dentry)
2529 {
2530 	if (d_in_lookup(dentry)) {
2531 		DECLARE_WAITQUEUE(wait, current);
2532 		add_wait_queue(dentry->d_wait, &wait);
2533 		do {
2534 			set_current_state(TASK_UNINTERRUPTIBLE);
2535 			spin_unlock(&dentry->d_lock);
2536 			schedule();
2537 			spin_lock(&dentry->d_lock);
2538 		} while (d_in_lookup(dentry));
2539 	}
2540 }
2541 
d_alloc_parallel(struct dentry * parent,const struct qstr * name,wait_queue_head_t * wq)2542 struct dentry *d_alloc_parallel(struct dentry *parent,
2543 				const struct qstr *name,
2544 				wait_queue_head_t *wq)
2545 {
2546 	unsigned int hash = name->hash;
2547 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2548 	struct hlist_bl_node *node;
2549 	struct dentry *new = __d_alloc(parent->d_sb, name);
2550 	struct dentry *dentry;
2551 	unsigned seq, r_seq, d_seq;
2552 
2553 	if (unlikely(!new))
2554 		return ERR_PTR(-ENOMEM);
2555 
2556 	new->d_flags |= DCACHE_PAR_LOOKUP;
2557 	spin_lock(&parent->d_lock);
2558 	new->d_parent = dget_dlock(parent);
2559 	hlist_add_head(&new->d_sib, &parent->d_children);
2560 	spin_unlock(&parent->d_lock);
2561 
2562 retry:
2563 	rcu_read_lock();
2564 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2565 	r_seq = read_seqbegin(&rename_lock);
2566 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2567 	if (unlikely(dentry)) {
2568 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2569 			rcu_read_unlock();
2570 			goto retry;
2571 		}
2572 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2573 			rcu_read_unlock();
2574 			dput(dentry);
2575 			goto retry;
2576 		}
2577 		rcu_read_unlock();
2578 		dput(new);
2579 		return dentry;
2580 	}
2581 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2582 		rcu_read_unlock();
2583 		goto retry;
2584 	}
2585 
2586 	if (unlikely(seq & 1)) {
2587 		rcu_read_unlock();
2588 		goto retry;
2589 	}
2590 
2591 	hlist_bl_lock(b);
2592 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2593 		hlist_bl_unlock(b);
2594 		rcu_read_unlock();
2595 		goto retry;
2596 	}
2597 	/*
2598 	 * No changes for the parent since the beginning of d_lookup().
2599 	 * Since all removals from the chain happen with hlist_bl_lock(),
2600 	 * any potential in-lookup matches are going to stay here until
2601 	 * we unlock the chain.  All fields are stable in everything
2602 	 * we encounter.
2603 	 */
2604 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2605 		if (dentry->d_name.hash != hash)
2606 			continue;
2607 		if (dentry->d_parent != parent)
2608 			continue;
2609 		if (!d_same_name(dentry, parent, name))
2610 			continue;
2611 		hlist_bl_unlock(b);
2612 		/* now we can try to grab a reference */
2613 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2614 			rcu_read_unlock();
2615 			goto retry;
2616 		}
2617 
2618 		rcu_read_unlock();
2619 		/*
2620 		 * somebody is likely to be still doing lookup for it;
2621 		 * wait for them to finish
2622 		 */
2623 		spin_lock(&dentry->d_lock);
2624 		d_wait_lookup(dentry);
2625 		/*
2626 		 * it's not in-lookup anymore; in principle we should repeat
2627 		 * everything from dcache lookup, but it's likely to be what
2628 		 * d_lookup() would've found anyway.  If it is, just return it;
2629 		 * otherwise we really have to repeat the whole thing.
2630 		 */
2631 		if (unlikely(dentry->d_name.hash != hash))
2632 			goto mismatch;
2633 		if (unlikely(dentry->d_parent != parent))
2634 			goto mismatch;
2635 		if (unlikely(d_unhashed(dentry)))
2636 			goto mismatch;
2637 		if (unlikely(!d_same_name(dentry, parent, name)))
2638 			goto mismatch;
2639 		/* OK, it *is* a hashed match; return it */
2640 		spin_unlock(&dentry->d_lock);
2641 		dput(new);
2642 		return dentry;
2643 	}
2644 	rcu_read_unlock();
2645 	new->d_wait = wq;
2646 	hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2647 	hlist_bl_unlock(b);
2648 	return new;
2649 mismatch:
2650 	spin_unlock(&dentry->d_lock);
2651 	dput(dentry);
2652 	goto retry;
2653 }
2654 EXPORT_SYMBOL(d_alloc_parallel);
2655 
2656 /*
2657  * - Unhash the dentry
2658  * - Retrieve and clear the waitqueue head in dentry
2659  * - Return the waitqueue head
2660  */
__d_lookup_unhash(struct dentry * dentry)2661 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2662 {
2663 	wait_queue_head_t *d_wait;
2664 	struct hlist_bl_head *b;
2665 
2666 	lockdep_assert_held(&dentry->d_lock);
2667 
2668 	b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2669 	hlist_bl_lock(b);
2670 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2671 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2672 	d_wait = dentry->d_wait;
2673 	dentry->d_wait = NULL;
2674 	hlist_bl_unlock(b);
2675 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2676 	INIT_LIST_HEAD(&dentry->d_lru);
2677 	return d_wait;
2678 }
2679 
__d_lookup_unhash_wake(struct dentry * dentry)2680 void __d_lookup_unhash_wake(struct dentry *dentry)
2681 {
2682 	spin_lock(&dentry->d_lock);
2683 	wake_up_all(__d_lookup_unhash(dentry));
2684 	spin_unlock(&dentry->d_lock);
2685 }
2686 EXPORT_SYMBOL(__d_lookup_unhash_wake);
2687 
2688 /* inode->i_lock held if inode is non-NULL */
2689 
__d_add(struct dentry * dentry,struct inode * inode,const struct dentry_operations * ops)2690 static inline void __d_add(struct dentry *dentry, struct inode *inode,
2691 			   const struct dentry_operations *ops)
2692 {
2693 	wait_queue_head_t *d_wait;
2694 	struct inode *dir = NULL;
2695 	unsigned n;
2696 	spin_lock(&dentry->d_lock);
2697 	if (unlikely(d_in_lookup(dentry))) {
2698 		dir = dentry->d_parent->d_inode;
2699 		n = start_dir_add(dir);
2700 		d_wait = __d_lookup_unhash(dentry);
2701 	}
2702 	if (unlikely(ops))
2703 		d_set_d_op(dentry, ops);
2704 	if (inode) {
2705 		unsigned add_flags = d_flags_for_inode(inode);
2706 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2707 		raw_write_seqcount_begin(&dentry->d_seq);
2708 		__d_set_inode_and_type(dentry, inode, add_flags);
2709 		raw_write_seqcount_end(&dentry->d_seq);
2710 		fsnotify_update_flags(dentry);
2711 	}
2712 	__d_rehash(dentry);
2713 	if (dir)
2714 		end_dir_add(dir, n, d_wait);
2715 	spin_unlock(&dentry->d_lock);
2716 	if (inode)
2717 		spin_unlock(&inode->i_lock);
2718 }
2719 
2720 /**
2721  * d_add - add dentry to hash queues
2722  * @entry: dentry to add
2723  * @inode: The inode to attach to this dentry
2724  *
2725  * This adds the entry to the hash queues and initializes @inode.
2726  * The entry was actually filled in earlier during d_alloc().
2727  */
2728 
d_add(struct dentry * entry,struct inode * inode)2729 void d_add(struct dentry *entry, struct inode *inode)
2730 {
2731 	if (inode) {
2732 		security_d_instantiate(entry, inode);
2733 		spin_lock(&inode->i_lock);
2734 	}
2735 	__d_add(entry, inode, NULL);
2736 }
2737 EXPORT_SYMBOL(d_add);
2738 
swap_names(struct dentry * dentry,struct dentry * target)2739 static void swap_names(struct dentry *dentry, struct dentry *target)
2740 {
2741 	if (unlikely(dname_external(target))) {
2742 		if (unlikely(dname_external(dentry))) {
2743 			/*
2744 			 * Both external: swap the pointers
2745 			 */
2746 			swap(target->d_name.name, dentry->d_name.name);
2747 		} else {
2748 			/*
2749 			 * dentry:internal, target:external.  Steal target's
2750 			 * storage and make target internal.
2751 			 */
2752 			dentry->d_name.name = target->d_name.name;
2753 			target->d_shortname = dentry->d_shortname;
2754 			target->d_name.name = target->d_shortname.string;
2755 		}
2756 	} else {
2757 		if (unlikely(dname_external(dentry))) {
2758 			/*
2759 			 * dentry:external, target:internal.  Give dentry's
2760 			 * storage to target and make dentry internal
2761 			 */
2762 			target->d_name.name = dentry->d_name.name;
2763 			dentry->d_shortname = target->d_shortname;
2764 			dentry->d_name.name = dentry->d_shortname.string;
2765 		} else {
2766 			/*
2767 			 * Both are internal.
2768 			 */
2769 			for (int i = 0; i < DNAME_INLINE_WORDS; i++)
2770 				swap(dentry->d_shortname.words[i],
2771 				     target->d_shortname.words[i]);
2772 		}
2773 	}
2774 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2775 }
2776 
copy_name(struct dentry * dentry,struct dentry * target)2777 static void copy_name(struct dentry *dentry, struct dentry *target)
2778 {
2779 	struct external_name *old_name = NULL;
2780 	if (unlikely(dname_external(dentry)))
2781 		old_name = external_name(dentry);
2782 	if (unlikely(dname_external(target))) {
2783 		atomic_inc(&external_name(target)->count);
2784 		dentry->d_name = target->d_name;
2785 	} else {
2786 		dentry->d_shortname = target->d_shortname;
2787 		dentry->d_name.name = dentry->d_shortname.string;
2788 		dentry->d_name.hash_len = target->d_name.hash_len;
2789 	}
2790 	if (old_name && likely(atomic_dec_and_test(&old_name->count)))
2791 		kfree_rcu(old_name, head);
2792 }
2793 
2794 /*
2795  * __d_move - move a dentry
2796  * @dentry: entry to move
2797  * @target: new dentry
2798  * @exchange: exchange the two dentries
2799  *
2800  * Update the dcache to reflect the move of a file name. Negative dcache
2801  * entries should not be moved in this way. Caller must hold rename_lock, the
2802  * i_rwsem of the source and target directories (exclusively), and the sb->
2803  * s_vfs_rename_mutex if they differ. See lock_rename().
2804  */
__d_move(struct dentry * dentry,struct dentry * target,bool exchange)2805 static void __d_move(struct dentry *dentry, struct dentry *target,
2806 		     bool exchange)
2807 {
2808 	struct dentry *old_parent, *p;
2809 	wait_queue_head_t *d_wait;
2810 	struct inode *dir = NULL;
2811 	unsigned n;
2812 
2813 	WARN_ON(!dentry->d_inode);
2814 	if (WARN_ON(dentry == target))
2815 		return;
2816 
2817 	BUG_ON(d_ancestor(target, dentry));
2818 	old_parent = dentry->d_parent;
2819 	p = d_ancestor(old_parent, target);
2820 	if (IS_ROOT(dentry)) {
2821 		BUG_ON(p);
2822 		spin_lock(&target->d_parent->d_lock);
2823 	} else if (!p) {
2824 		/* target is not a descendent of dentry->d_parent */
2825 		spin_lock(&target->d_parent->d_lock);
2826 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2827 	} else {
2828 		BUG_ON(p == dentry);
2829 		spin_lock(&old_parent->d_lock);
2830 		if (p != target)
2831 			spin_lock_nested(&target->d_parent->d_lock,
2832 					DENTRY_D_LOCK_NESTED);
2833 	}
2834 	spin_lock_nested(&dentry->d_lock, 2);
2835 	spin_lock_nested(&target->d_lock, 3);
2836 
2837 	if (unlikely(d_in_lookup(target))) {
2838 		dir = target->d_parent->d_inode;
2839 		n = start_dir_add(dir);
2840 		d_wait = __d_lookup_unhash(target);
2841 	}
2842 
2843 	write_seqcount_begin(&dentry->d_seq);
2844 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2845 
2846 	/* unhash both */
2847 	if (!d_unhashed(dentry))
2848 		___d_drop(dentry);
2849 	if (!d_unhashed(target))
2850 		___d_drop(target);
2851 
2852 	/* ... and switch them in the tree */
2853 	dentry->d_parent = target->d_parent;
2854 	if (!exchange) {
2855 		copy_name(dentry, target);
2856 		target->d_hash.pprev = NULL;
2857 		dentry->d_parent->d_lockref.count++;
2858 		if (dentry != old_parent) /* wasn't IS_ROOT */
2859 			WARN_ON(!--old_parent->d_lockref.count);
2860 	} else {
2861 		target->d_parent = old_parent;
2862 		swap_names(dentry, target);
2863 		if (!hlist_unhashed(&target->d_sib))
2864 			__hlist_del(&target->d_sib);
2865 		hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2866 		__d_rehash(target);
2867 		fsnotify_update_flags(target);
2868 	}
2869 	if (!hlist_unhashed(&dentry->d_sib))
2870 		__hlist_del(&dentry->d_sib);
2871 	hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2872 	__d_rehash(dentry);
2873 	fsnotify_update_flags(dentry);
2874 	fscrypt_handle_d_move(dentry);
2875 
2876 	write_seqcount_end(&target->d_seq);
2877 	write_seqcount_end(&dentry->d_seq);
2878 
2879 	if (dir)
2880 		end_dir_add(dir, n, d_wait);
2881 
2882 	if (dentry->d_parent != old_parent)
2883 		spin_unlock(&dentry->d_parent->d_lock);
2884 	if (dentry != old_parent)
2885 		spin_unlock(&old_parent->d_lock);
2886 	spin_unlock(&target->d_lock);
2887 	spin_unlock(&dentry->d_lock);
2888 }
2889 
2890 /*
2891  * d_move - move a dentry
2892  * @dentry: entry to move
2893  * @target: new dentry
2894  *
2895  * Update the dcache to reflect the move of a file name. Negative
2896  * dcache entries should not be moved in this way. See the locking
2897  * requirements for __d_move.
2898  */
d_move(struct dentry * dentry,struct dentry * target)2899 void d_move(struct dentry *dentry, struct dentry *target)
2900 {
2901 	write_seqlock(&rename_lock);
2902 	__d_move(dentry, target, false);
2903 	write_sequnlock(&rename_lock);
2904 }
2905 EXPORT_SYMBOL(d_move);
2906 
2907 /*
2908  * d_exchange - exchange two dentries
2909  * @dentry1: first dentry
2910  * @dentry2: second dentry
2911  */
d_exchange(struct dentry * dentry1,struct dentry * dentry2)2912 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2913 {
2914 	write_seqlock(&rename_lock);
2915 
2916 	WARN_ON(!dentry1->d_inode);
2917 	WARN_ON(!dentry2->d_inode);
2918 	WARN_ON(IS_ROOT(dentry1));
2919 	WARN_ON(IS_ROOT(dentry2));
2920 
2921 	__d_move(dentry1, dentry2, true);
2922 
2923 	write_sequnlock(&rename_lock);
2924 }
2925 
2926 /**
2927  * d_ancestor - search for an ancestor
2928  * @p1: ancestor dentry
2929  * @p2: child dentry
2930  *
2931  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2932  * an ancestor of p2, else NULL.
2933  */
d_ancestor(struct dentry * p1,struct dentry * p2)2934 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2935 {
2936 	struct dentry *p;
2937 
2938 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2939 		if (p->d_parent == p1)
2940 			return p;
2941 	}
2942 	return NULL;
2943 }
2944 
2945 /*
2946  * This helper attempts to cope with remotely renamed directories
2947  *
2948  * It assumes that the caller is already holding
2949  * dentry->d_parent->d_inode->i_rwsem, and rename_lock
2950  *
2951  * Note: If ever the locking in lock_rename() changes, then please
2952  * remember to update this too...
2953  */
__d_unalias(struct dentry * dentry,struct dentry * alias)2954 static int __d_unalias(struct dentry *dentry, struct dentry *alias)
2955 {
2956 	struct mutex *m1 = NULL;
2957 	struct rw_semaphore *m2 = NULL;
2958 	int ret = -ESTALE;
2959 
2960 	/* If alias and dentry share a parent, then no extra locks required */
2961 	if (alias->d_parent == dentry->d_parent)
2962 		goto out_unalias;
2963 
2964 	/* See lock_rename() */
2965 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2966 		goto out_err;
2967 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2968 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2969 		goto out_err;
2970 	m2 = &alias->d_parent->d_inode->i_rwsem;
2971 out_unalias:
2972 	if (alias->d_op && alias->d_op->d_unalias_trylock &&
2973 	    !alias->d_op->d_unalias_trylock(alias))
2974 		goto out_err;
2975 	__d_move(alias, dentry, false);
2976 	if (alias->d_op && alias->d_op->d_unalias_unlock)
2977 		alias->d_op->d_unalias_unlock(alias);
2978 	ret = 0;
2979 out_err:
2980 	if (m2)
2981 		up_read(m2);
2982 	if (m1)
2983 		mutex_unlock(m1);
2984 	return ret;
2985 }
2986 
d_splice_alias_ops(struct inode * inode,struct dentry * dentry,const struct dentry_operations * ops)2987 struct dentry *d_splice_alias_ops(struct inode *inode, struct dentry *dentry,
2988 				  const struct dentry_operations *ops)
2989 {
2990 	if (IS_ERR(inode))
2991 		return ERR_CAST(inode);
2992 
2993 	BUG_ON(!d_unhashed(dentry));
2994 
2995 	if (!inode)
2996 		goto out;
2997 
2998 	security_d_instantiate(dentry, inode);
2999 	spin_lock(&inode->i_lock);
3000 	if (S_ISDIR(inode->i_mode)) {
3001 		struct dentry *new = __d_find_any_alias(inode);
3002 		if (unlikely(new)) {
3003 			/* The reference to new ensures it remains an alias */
3004 			spin_unlock(&inode->i_lock);
3005 			write_seqlock(&rename_lock);
3006 			if (unlikely(d_ancestor(new, dentry))) {
3007 				write_sequnlock(&rename_lock);
3008 				dput(new);
3009 				new = ERR_PTR(-ELOOP);
3010 				pr_warn_ratelimited(
3011 					"VFS: Lookup of '%s' in %s %s"
3012 					" would have caused loop\n",
3013 					dentry->d_name.name,
3014 					inode->i_sb->s_type->name,
3015 					inode->i_sb->s_id);
3016 			} else if (!IS_ROOT(new)) {
3017 				struct dentry *old_parent = dget(new->d_parent);
3018 				int err = __d_unalias(dentry, new);
3019 				write_sequnlock(&rename_lock);
3020 				if (err) {
3021 					dput(new);
3022 					new = ERR_PTR(err);
3023 				}
3024 				dput(old_parent);
3025 			} else {
3026 				__d_move(new, dentry, false);
3027 				write_sequnlock(&rename_lock);
3028 			}
3029 			iput(inode);
3030 			return new;
3031 		}
3032 	}
3033 out:
3034 	__d_add(dentry, inode, ops);
3035 	return NULL;
3036 }
3037 
3038 /**
3039  * d_splice_alias - splice a disconnected dentry into the tree if one exists
3040  * @inode:  the inode which may have a disconnected dentry
3041  * @dentry: a negative dentry which we want to point to the inode.
3042  *
3043  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3044  * place of the given dentry and return it, else simply d_add the inode
3045  * to the dentry and return NULL.
3046  *
3047  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3048  * we should error out: directories can't have multiple aliases.
3049  *
3050  * This is needed in the lookup routine of any filesystem that is exportable
3051  * (via knfsd) so that we can build dcache paths to directories effectively.
3052  *
3053  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3054  * is returned.  This matches the expected return value of ->lookup.
3055  *
3056  * Cluster filesystems may call this function with a negative, hashed dentry.
3057  * In that case, we know that the inode will be a regular file, and also this
3058  * will only occur during atomic_open. So we need to check for the dentry
3059  * being already hashed only in the final case.
3060  */
d_splice_alias(struct inode * inode,struct dentry * dentry)3061 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3062 {
3063 	return d_splice_alias_ops(inode, dentry, NULL);
3064 }
3065 EXPORT_SYMBOL(d_splice_alias);
3066 
3067 /*
3068  * Test whether new_dentry is a subdirectory of old_dentry.
3069  *
3070  * Trivially implemented using the dcache structure
3071  */
3072 
3073 /**
3074  * is_subdir - is new dentry a subdirectory of old_dentry
3075  * @new_dentry: new dentry
3076  * @old_dentry: old dentry
3077  *
3078  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3079  * Returns false otherwise.
3080  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3081  */
3082 
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)3083 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3084 {
3085 	bool subdir;
3086 	unsigned seq;
3087 
3088 	if (new_dentry == old_dentry)
3089 		return true;
3090 
3091 	/* Access d_parent under rcu as d_move() may change it. */
3092 	rcu_read_lock();
3093 	seq = read_seqbegin(&rename_lock);
3094 	subdir = d_ancestor(old_dentry, new_dentry);
3095 	 /* Try lockless once... */
3096 	if (read_seqretry(&rename_lock, seq)) {
3097 		/* ...else acquire lock for progress even on deep chains. */
3098 		read_seqlock_excl(&rename_lock);
3099 		subdir = d_ancestor(old_dentry, new_dentry);
3100 		read_sequnlock_excl(&rename_lock);
3101 	}
3102 	rcu_read_unlock();
3103 	return subdir;
3104 }
3105 EXPORT_SYMBOL(is_subdir);
3106 
d_genocide_kill(void * data,struct dentry * dentry)3107 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3108 {
3109 	struct dentry *root = data;
3110 	if (dentry != root) {
3111 		if (d_unhashed(dentry) || !dentry->d_inode)
3112 			return D_WALK_SKIP;
3113 
3114 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3115 			dentry->d_flags |= DCACHE_GENOCIDE;
3116 			dentry->d_lockref.count--;
3117 		}
3118 	}
3119 	return D_WALK_CONTINUE;
3120 }
3121 
d_genocide(struct dentry * parent)3122 void d_genocide(struct dentry *parent)
3123 {
3124 	d_walk(parent, parent, d_genocide_kill);
3125 }
3126 
d_mark_tmpfile(struct file * file,struct inode * inode)3127 void d_mark_tmpfile(struct file *file, struct inode *inode)
3128 {
3129 	struct dentry *dentry = file->f_path.dentry;
3130 
3131 	BUG_ON(dname_external(dentry) ||
3132 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3133 		!d_unlinked(dentry));
3134 	spin_lock(&dentry->d_parent->d_lock);
3135 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3136 	dentry->d_name.len = sprintf(dentry->d_shortname.string, "#%llu",
3137 				(unsigned long long)inode->i_ino);
3138 	spin_unlock(&dentry->d_lock);
3139 	spin_unlock(&dentry->d_parent->d_lock);
3140 }
3141 EXPORT_SYMBOL(d_mark_tmpfile);
3142 
d_tmpfile(struct file * file,struct inode * inode)3143 void d_tmpfile(struct file *file, struct inode *inode)
3144 {
3145 	struct dentry *dentry = file->f_path.dentry;
3146 
3147 	inode_dec_link_count(inode);
3148 	d_mark_tmpfile(file, inode);
3149 	d_instantiate(dentry, inode);
3150 }
3151 EXPORT_SYMBOL(d_tmpfile);
3152 
3153 /*
3154  * Obtain inode number of the parent dentry.
3155  */
d_parent_ino(struct dentry * dentry)3156 ino_t d_parent_ino(struct dentry *dentry)
3157 {
3158 	struct dentry *parent;
3159 	struct inode *iparent;
3160 	unsigned seq;
3161 	ino_t ret;
3162 
3163 	scoped_guard(rcu) {
3164 		seq = raw_seqcount_begin(&dentry->d_seq);
3165 		parent = READ_ONCE(dentry->d_parent);
3166 		iparent = d_inode_rcu(parent);
3167 		if (likely(iparent)) {
3168 			ret = iparent->i_ino;
3169 			if (!read_seqcount_retry(&dentry->d_seq, seq))
3170 				return ret;
3171 		}
3172 	}
3173 
3174 	spin_lock(&dentry->d_lock);
3175 	ret = dentry->d_parent->d_inode->i_ino;
3176 	spin_unlock(&dentry->d_lock);
3177 	return ret;
3178 }
3179 EXPORT_SYMBOL(d_parent_ino);
3180 
3181 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3182 static int __init set_dhash_entries(char *str)
3183 {
3184 	if (!str)
3185 		return 0;
3186 	dhash_entries = simple_strtoul(str, &str, 0);
3187 	return 1;
3188 }
3189 __setup("dhash_entries=", set_dhash_entries);
3190 
dcache_init_early(void)3191 static void __init dcache_init_early(void)
3192 {
3193 	/* If hashes are distributed across NUMA nodes, defer
3194 	 * hash allocation until vmalloc space is available.
3195 	 */
3196 	if (hashdist)
3197 		return;
3198 
3199 	dentry_hashtable =
3200 		alloc_large_system_hash("Dentry cache",
3201 					sizeof(struct hlist_bl_head),
3202 					dhash_entries,
3203 					13,
3204 					HASH_EARLY | HASH_ZERO,
3205 					&d_hash_shift,
3206 					NULL,
3207 					0,
3208 					0);
3209 	d_hash_shift = 32 - d_hash_shift;
3210 
3211 	runtime_const_init(shift, d_hash_shift);
3212 	runtime_const_init(ptr, dentry_hashtable);
3213 }
3214 
dcache_init(void)3215 static void __init dcache_init(void)
3216 {
3217 	/*
3218 	 * A constructor could be added for stable state like the lists,
3219 	 * but it is probably not worth it because of the cache nature
3220 	 * of the dcache.
3221 	 */
3222 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3223 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
3224 		d_shortname.string);
3225 
3226 	/* Hash may have been set up in dcache_init_early */
3227 	if (!hashdist)
3228 		return;
3229 
3230 	dentry_hashtable =
3231 		alloc_large_system_hash("Dentry cache",
3232 					sizeof(struct hlist_bl_head),
3233 					dhash_entries,
3234 					13,
3235 					HASH_ZERO,
3236 					&d_hash_shift,
3237 					NULL,
3238 					0,
3239 					0);
3240 	d_hash_shift = 32 - d_hash_shift;
3241 
3242 	runtime_const_init(shift, d_hash_shift);
3243 	runtime_const_init(ptr, dentry_hashtable);
3244 }
3245 
3246 /* SLAB cache for __getname() consumers */
3247 struct kmem_cache *names_cachep __ro_after_init;
3248 EXPORT_SYMBOL(names_cachep);
3249 
vfs_caches_init_early(void)3250 void __init vfs_caches_init_early(void)
3251 {
3252 	int i;
3253 
3254 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3255 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3256 
3257 	dcache_init_early();
3258 	inode_init_early();
3259 }
3260 
vfs_caches_init(void)3261 void __init vfs_caches_init(void)
3262 {
3263 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3264 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3265 
3266 	dcache_init();
3267 	inode_init();
3268 	files_init();
3269 	files_maxfiles_init();
3270 	mnt_init();
3271 	bdev_cache_init();
3272 	chrdev_init();
3273 }
3274