1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * BQ27xxx battery driver
4 *
5 * Copyright (C) 2008 Rodolfo Giometti <giometti@linux.it>
6 * Copyright (C) 2008 Eurotech S.p.A. <info@eurotech.it>
7 * Copyright (C) 2010-2011 Lars-Peter Clausen <lars@metafoo.de>
8 * Copyright (C) 2011 Pali Rohár <pali@kernel.org>
9 * Copyright (C) 2017 Liam Breck <kernel@networkimprov.net>
10 *
11 * Based on a previous work by Copyright (C) 2008 Texas Instruments, Inc.
12 *
13 * Datasheets:
14 * https://www.ti.com/product/bq27000
15 * https://www.ti.com/product/bq27200
16 * https://www.ti.com/product/bq27010
17 * https://www.ti.com/product/bq27210
18 * https://www.ti.com/product/bq27500
19 * https://www.ti.com/product/bq27510-g1
20 * https://www.ti.com/product/bq27510-g2
21 * https://www.ti.com/product/bq27510-g3
22 * https://www.ti.com/product/bq27520-g1
23 * https://www.ti.com/product/bq27520-g2
24 * https://www.ti.com/product/bq27520-g3
25 * https://www.ti.com/product/bq27520-g4
26 * https://www.ti.com/product/bq27530-g1
27 * https://www.ti.com/product/bq27531-g1
28 * https://www.ti.com/product/bq27541-g1
29 * https://www.ti.com/product/bq27542-g1
30 * https://www.ti.com/product/bq27546-g1
31 * https://www.ti.com/product/bq27742-g1
32 * https://www.ti.com/product/bq27545-g1
33 * https://www.ti.com/product/bq27421-g1
34 * https://www.ti.com/product/bq27425-g1
35 * https://www.ti.com/product/bq27426
36 * https://www.ti.com/product/bq27411-g1
37 * https://www.ti.com/product/bq27441-g1
38 * https://www.ti.com/product/bq27621-g1
39 * https://www.ti.com/product/bq27z561
40 * https://www.ti.com/product/bq28z610
41 * https://www.ti.com/product/bq34z100-g1
42 * https://www.ti.com/product/bq78z100
43 */
44
45 #include <linux/device.h>
46 #include <linux/module.h>
47 #include <linux/mutex.h>
48 #include <linux/param.h>
49 #include <linux/jiffies.h>
50 #include <linux/workqueue.h>
51 #include <linux/delay.h>
52 #include <linux/platform_device.h>
53 #include <linux/power_supply.h>
54 #include <linux/slab.h>
55 #include <linux/of.h>
56
57 #include <linux/power/bq27xxx_battery.h>
58
59 #define BQ27XXX_MANUFACTURER "Texas Instruments"
60
61 /* BQ27XXX Flags */
62 #define BQ27XXX_FLAG_DSC BIT(0)
63 #define BQ27XXX_FLAG_SOCF BIT(1) /* State-of-Charge threshold final */
64 #define BQ27XXX_FLAG_SOC1 BIT(2) /* State-of-Charge threshold 1 */
65 #define BQ27XXX_FLAG_CFGUP BIT(4)
66 #define BQ27XXX_FLAG_FC BIT(9)
67 #define BQ27XXX_FLAG_OTD BIT(14)
68 #define BQ27XXX_FLAG_OTC BIT(15)
69 #define BQ27XXX_FLAG_UT BIT(14)
70 #define BQ27XXX_FLAG_OT BIT(15)
71
72 /* BQ27000 has different layout for Flags register */
73 #define BQ27000_FLAG_EDVF BIT(0) /* Final End-of-Discharge-Voltage flag */
74 #define BQ27000_FLAG_EDV1 BIT(1) /* First End-of-Discharge-Voltage flag */
75 #define BQ27000_FLAG_CI BIT(4) /* Capacity Inaccurate flag */
76 #define BQ27000_FLAG_FC BIT(5)
77 #define BQ27000_FLAG_CHGS BIT(7) /* Charge state flag */
78
79 /* BQ27Z561 has different layout for Flags register */
80 #define BQ27Z561_FLAG_FDC BIT(4) /* Battery fully discharged */
81 #define BQ27Z561_FLAG_FC BIT(5) /* Battery fully charged */
82 #define BQ27Z561_FLAG_DIS_CH BIT(6) /* Battery is discharging */
83
84 /* control register params */
85 #define BQ27XXX_SEALED 0x20
86 #define BQ27XXX_SET_CFGUPDATE 0x13
87 #define BQ27XXX_SOFT_RESET 0x42
88 #define BQ27XXX_RESET 0x41
89
90 #define BQ27XXX_RS (20) /* Resistor sense mOhm */
91 #define BQ27XXX_POWER_CONSTANT (29200) /* 29.2 µV^2 * 1000 */
92 #define BQ27XXX_CURRENT_CONSTANT (3570) /* 3.57 µV * 1000 */
93
94 #define INVALID_REG_ADDR 0xff
95
96 /*
97 * bq27xxx_reg_index - Register names
98 *
99 * These are indexes into a device's register mapping array.
100 */
101
102 enum bq27xxx_reg_index {
103 BQ27XXX_REG_CTRL = 0, /* Control */
104 BQ27XXX_REG_TEMP, /* Temperature */
105 BQ27XXX_REG_INT_TEMP, /* Internal Temperature */
106 BQ27XXX_REG_VOLT, /* Voltage */
107 BQ27XXX_REG_AI, /* Average Current */
108 BQ27XXX_REG_FLAGS, /* Flags */
109 BQ27XXX_REG_TTE, /* Time-to-Empty */
110 BQ27XXX_REG_TTF, /* Time-to-Full */
111 BQ27XXX_REG_TTES, /* Time-to-Empty Standby */
112 BQ27XXX_REG_TTECP, /* Time-to-Empty at Constant Power */
113 BQ27XXX_REG_NAC, /* Nominal Available Capacity */
114 BQ27XXX_REG_RC, /* Remaining Capacity */
115 BQ27XXX_REG_FCC, /* Full Charge Capacity */
116 BQ27XXX_REG_CYCT, /* Cycle Count */
117 BQ27XXX_REG_AE, /* Available Energy */
118 BQ27XXX_REG_SOC, /* State-of-Charge */
119 BQ27XXX_REG_DCAP, /* Design Capacity */
120 BQ27XXX_REG_AP, /* Average Power */
121 BQ27XXX_DM_CTRL, /* Block Data Control */
122 BQ27XXX_DM_CLASS, /* Data Class */
123 BQ27XXX_DM_BLOCK, /* Data Block */
124 BQ27XXX_DM_DATA, /* Block Data */
125 BQ27XXX_DM_CKSUM, /* Block Data Checksum */
126 BQ27XXX_REG_SEDVF, /* End-of-discharge Voltage */
127 BQ27XXX_REG_PKCFG, /* Pack Configuration */
128 BQ27XXX_REG_MAX, /* sentinel */
129 };
130
131 #define BQ27XXX_DM_REG_ROWS \
132 [BQ27XXX_DM_CTRL] = 0x61, \
133 [BQ27XXX_DM_CLASS] = 0x3e, \
134 [BQ27XXX_DM_BLOCK] = 0x3f, \
135 [BQ27XXX_DM_DATA] = 0x40, \
136 [BQ27XXX_DM_CKSUM] = 0x60
137
138 /* Register mappings */
139 static u8
140 bq27000_regs[BQ27XXX_REG_MAX] = {
141 [BQ27XXX_REG_CTRL] = 0x00,
142 [BQ27XXX_REG_TEMP] = 0x06,
143 [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
144 [BQ27XXX_REG_VOLT] = 0x08,
145 [BQ27XXX_REG_AI] = 0x14,
146 [BQ27XXX_REG_FLAGS] = 0x0a,
147 [BQ27XXX_REG_TTE] = 0x16,
148 [BQ27XXX_REG_TTF] = 0x18,
149 [BQ27XXX_REG_TTES] = 0x1c,
150 [BQ27XXX_REG_TTECP] = 0x26,
151 [BQ27XXX_REG_NAC] = 0x0c,
152 [BQ27XXX_REG_RC] = INVALID_REG_ADDR,
153 [BQ27XXX_REG_FCC] = 0x12,
154 [BQ27XXX_REG_CYCT] = 0x2a,
155 [BQ27XXX_REG_AE] = 0x22,
156 [BQ27XXX_REG_SOC] = 0x0b,
157 [BQ27XXX_REG_DCAP] = 0x76,
158 [BQ27XXX_REG_AP] = 0x24,
159 [BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
160 [BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
161 [BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
162 [BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
163 [BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
164 [BQ27XXX_REG_SEDVF] = 0x77,
165 [BQ27XXX_REG_PKCFG] = 0x7C,
166 },
167 bq27010_regs[BQ27XXX_REG_MAX] = {
168 [BQ27XXX_REG_CTRL] = 0x00,
169 [BQ27XXX_REG_TEMP] = 0x06,
170 [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
171 [BQ27XXX_REG_VOLT] = 0x08,
172 [BQ27XXX_REG_AI] = 0x14,
173 [BQ27XXX_REG_FLAGS] = 0x0a,
174 [BQ27XXX_REG_TTE] = 0x16,
175 [BQ27XXX_REG_TTF] = 0x18,
176 [BQ27XXX_REG_TTES] = 0x1c,
177 [BQ27XXX_REG_TTECP] = 0x26,
178 [BQ27XXX_REG_NAC] = 0x0c,
179 [BQ27XXX_REG_RC] = INVALID_REG_ADDR,
180 [BQ27XXX_REG_FCC] = 0x12,
181 [BQ27XXX_REG_CYCT] = 0x2a,
182 [BQ27XXX_REG_AE] = INVALID_REG_ADDR,
183 [BQ27XXX_REG_SOC] = 0x0b,
184 [BQ27XXX_REG_DCAP] = 0x76,
185 [BQ27XXX_REG_AP] = INVALID_REG_ADDR,
186 [BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
187 [BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
188 [BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
189 [BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
190 [BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
191 [BQ27XXX_REG_SEDVF] = 0x77,
192 [BQ27XXX_REG_PKCFG] = 0x7C,
193 },
194 bq2750x_regs[BQ27XXX_REG_MAX] = {
195 [BQ27XXX_REG_CTRL] = 0x00,
196 [BQ27XXX_REG_TEMP] = 0x06,
197 [BQ27XXX_REG_INT_TEMP] = 0x28,
198 [BQ27XXX_REG_VOLT] = 0x08,
199 [BQ27XXX_REG_AI] = 0x14,
200 [BQ27XXX_REG_FLAGS] = 0x0a,
201 [BQ27XXX_REG_TTE] = 0x16,
202 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
203 [BQ27XXX_REG_TTES] = 0x1a,
204 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
205 [BQ27XXX_REG_NAC] = 0x0c,
206 [BQ27XXX_REG_RC] = 0x10,
207 [BQ27XXX_REG_FCC] = 0x12,
208 [BQ27XXX_REG_CYCT] = 0x2a,
209 [BQ27XXX_REG_AE] = INVALID_REG_ADDR,
210 [BQ27XXX_REG_SOC] = 0x2c,
211 [BQ27XXX_REG_DCAP] = 0x3c,
212 [BQ27XXX_REG_AP] = INVALID_REG_ADDR,
213 BQ27XXX_DM_REG_ROWS,
214 },
215 #define bq2751x_regs bq27510g3_regs
216 #define bq2752x_regs bq27510g3_regs
217 bq27500_regs[BQ27XXX_REG_MAX] = {
218 [BQ27XXX_REG_CTRL] = 0x00,
219 [BQ27XXX_REG_TEMP] = 0x06,
220 [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
221 [BQ27XXX_REG_VOLT] = 0x08,
222 [BQ27XXX_REG_AI] = 0x14,
223 [BQ27XXX_REG_FLAGS] = 0x0a,
224 [BQ27XXX_REG_TTE] = 0x16,
225 [BQ27XXX_REG_TTF] = 0x18,
226 [BQ27XXX_REG_TTES] = 0x1c,
227 [BQ27XXX_REG_TTECP] = 0x26,
228 [BQ27XXX_REG_NAC] = 0x0c,
229 [BQ27XXX_REG_RC] = 0x10,
230 [BQ27XXX_REG_FCC] = 0x12,
231 [BQ27XXX_REG_CYCT] = 0x2a,
232 [BQ27XXX_REG_AE] = 0x22,
233 [BQ27XXX_REG_SOC] = 0x2c,
234 [BQ27XXX_REG_DCAP] = 0x3c,
235 [BQ27XXX_REG_AP] = 0x24,
236 BQ27XXX_DM_REG_ROWS,
237 },
238 #define bq27510g1_regs bq27500_regs
239 #define bq27510g2_regs bq27500_regs
240 bq27510g3_regs[BQ27XXX_REG_MAX] = {
241 [BQ27XXX_REG_CTRL] = 0x00,
242 [BQ27XXX_REG_TEMP] = 0x06,
243 [BQ27XXX_REG_INT_TEMP] = 0x28,
244 [BQ27XXX_REG_VOLT] = 0x08,
245 [BQ27XXX_REG_AI] = 0x14,
246 [BQ27XXX_REG_FLAGS] = 0x0a,
247 [BQ27XXX_REG_TTE] = 0x16,
248 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
249 [BQ27XXX_REG_TTES] = 0x1a,
250 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
251 [BQ27XXX_REG_NAC] = 0x0c,
252 [BQ27XXX_REG_RC] = 0x10,
253 [BQ27XXX_REG_FCC] = 0x12,
254 [BQ27XXX_REG_CYCT] = 0x1e,
255 [BQ27XXX_REG_AE] = INVALID_REG_ADDR,
256 [BQ27XXX_REG_SOC] = 0x20,
257 [BQ27XXX_REG_DCAP] = 0x2e,
258 [BQ27XXX_REG_AP] = INVALID_REG_ADDR,
259 BQ27XXX_DM_REG_ROWS,
260 },
261 bq27520g1_regs[BQ27XXX_REG_MAX] = {
262 [BQ27XXX_REG_CTRL] = 0x00,
263 [BQ27XXX_REG_TEMP] = 0x06,
264 [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
265 [BQ27XXX_REG_VOLT] = 0x08,
266 [BQ27XXX_REG_AI] = 0x14,
267 [BQ27XXX_REG_FLAGS] = 0x0a,
268 [BQ27XXX_REG_TTE] = 0x16,
269 [BQ27XXX_REG_TTF] = 0x18,
270 [BQ27XXX_REG_TTES] = 0x1c,
271 [BQ27XXX_REG_TTECP] = 0x26,
272 [BQ27XXX_REG_NAC] = 0x0c,
273 [BQ27XXX_REG_RC] = 0x10,
274 [BQ27XXX_REG_FCC] = 0x12,
275 [BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
276 [BQ27XXX_REG_AE] = 0x22,
277 [BQ27XXX_REG_SOC] = 0x2c,
278 [BQ27XXX_REG_DCAP] = 0x3c,
279 [BQ27XXX_REG_AP] = 0x24,
280 BQ27XXX_DM_REG_ROWS,
281 },
282 bq27520g2_regs[BQ27XXX_REG_MAX] = {
283 [BQ27XXX_REG_CTRL] = 0x00,
284 [BQ27XXX_REG_TEMP] = 0x06,
285 [BQ27XXX_REG_INT_TEMP] = 0x36,
286 [BQ27XXX_REG_VOLT] = 0x08,
287 [BQ27XXX_REG_AI] = 0x14,
288 [BQ27XXX_REG_FLAGS] = 0x0a,
289 [BQ27XXX_REG_TTE] = 0x16,
290 [BQ27XXX_REG_TTF] = 0x18,
291 [BQ27XXX_REG_TTES] = 0x1c,
292 [BQ27XXX_REG_TTECP] = 0x26,
293 [BQ27XXX_REG_NAC] = 0x0c,
294 [BQ27XXX_REG_RC] = 0x10,
295 [BQ27XXX_REG_FCC] = 0x12,
296 [BQ27XXX_REG_CYCT] = 0x2a,
297 [BQ27XXX_REG_AE] = 0x22,
298 [BQ27XXX_REG_SOC] = 0x2c,
299 [BQ27XXX_REG_DCAP] = 0x3c,
300 [BQ27XXX_REG_AP] = 0x24,
301 BQ27XXX_DM_REG_ROWS,
302 },
303 bq27520g3_regs[BQ27XXX_REG_MAX] = {
304 [BQ27XXX_REG_CTRL] = 0x00,
305 [BQ27XXX_REG_TEMP] = 0x06,
306 [BQ27XXX_REG_INT_TEMP] = 0x36,
307 [BQ27XXX_REG_VOLT] = 0x08,
308 [BQ27XXX_REG_AI] = 0x14,
309 [BQ27XXX_REG_FLAGS] = 0x0a,
310 [BQ27XXX_REG_TTE] = 0x16,
311 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
312 [BQ27XXX_REG_TTES] = 0x1c,
313 [BQ27XXX_REG_TTECP] = 0x26,
314 [BQ27XXX_REG_NAC] = 0x0c,
315 [BQ27XXX_REG_RC] = 0x10,
316 [BQ27XXX_REG_FCC] = 0x12,
317 [BQ27XXX_REG_CYCT] = 0x2a,
318 [BQ27XXX_REG_AE] = 0x22,
319 [BQ27XXX_REG_SOC] = 0x2c,
320 [BQ27XXX_REG_DCAP] = 0x3c,
321 [BQ27XXX_REG_AP] = 0x24,
322 BQ27XXX_DM_REG_ROWS,
323 },
324 bq27520g4_regs[BQ27XXX_REG_MAX] = {
325 [BQ27XXX_REG_CTRL] = 0x00,
326 [BQ27XXX_REG_TEMP] = 0x06,
327 [BQ27XXX_REG_INT_TEMP] = 0x28,
328 [BQ27XXX_REG_VOLT] = 0x08,
329 [BQ27XXX_REG_AI] = 0x14,
330 [BQ27XXX_REG_FLAGS] = 0x0a,
331 [BQ27XXX_REG_TTE] = 0x16,
332 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
333 [BQ27XXX_REG_TTES] = 0x1c,
334 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
335 [BQ27XXX_REG_NAC] = 0x0c,
336 [BQ27XXX_REG_RC] = 0x10,
337 [BQ27XXX_REG_FCC] = 0x12,
338 [BQ27XXX_REG_CYCT] = 0x1e,
339 [BQ27XXX_REG_AE] = INVALID_REG_ADDR,
340 [BQ27XXX_REG_SOC] = 0x20,
341 [BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
342 [BQ27XXX_REG_AP] = INVALID_REG_ADDR,
343 BQ27XXX_DM_REG_ROWS,
344 },
345 bq27521_regs[BQ27XXX_REG_MAX] = {
346 [BQ27XXX_REG_CTRL] = 0x02,
347 [BQ27XXX_REG_TEMP] = 0x0a,
348 [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
349 [BQ27XXX_REG_VOLT] = 0x0c,
350 [BQ27XXX_REG_AI] = 0x0e,
351 [BQ27XXX_REG_FLAGS] = 0x08,
352 [BQ27XXX_REG_TTE] = INVALID_REG_ADDR,
353 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
354 [BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
355 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
356 [BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
357 [BQ27XXX_REG_RC] = INVALID_REG_ADDR,
358 [BQ27XXX_REG_FCC] = INVALID_REG_ADDR,
359 [BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
360 [BQ27XXX_REG_AE] = INVALID_REG_ADDR,
361 [BQ27XXX_REG_SOC] = INVALID_REG_ADDR,
362 [BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
363 [BQ27XXX_REG_AP] = INVALID_REG_ADDR,
364 [BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
365 [BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
366 [BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
367 [BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
368 [BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
369 },
370 bq27530_regs[BQ27XXX_REG_MAX] = {
371 [BQ27XXX_REG_CTRL] = 0x00,
372 [BQ27XXX_REG_TEMP] = 0x06,
373 [BQ27XXX_REG_INT_TEMP] = 0x32,
374 [BQ27XXX_REG_VOLT] = 0x08,
375 [BQ27XXX_REG_AI] = 0x14,
376 [BQ27XXX_REG_FLAGS] = 0x0a,
377 [BQ27XXX_REG_TTE] = 0x16,
378 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
379 [BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
380 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
381 [BQ27XXX_REG_NAC] = 0x0c,
382 [BQ27XXX_REG_RC] = 0x10,
383 [BQ27XXX_REG_FCC] = 0x12,
384 [BQ27XXX_REG_CYCT] = 0x2a,
385 [BQ27XXX_REG_AE] = INVALID_REG_ADDR,
386 [BQ27XXX_REG_SOC] = 0x2c,
387 [BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
388 [BQ27XXX_REG_AP] = 0x24,
389 BQ27XXX_DM_REG_ROWS,
390 },
391 #define bq27531_regs bq27530_regs
392 bq27541_regs[BQ27XXX_REG_MAX] = {
393 [BQ27XXX_REG_CTRL] = 0x00,
394 [BQ27XXX_REG_TEMP] = 0x06,
395 [BQ27XXX_REG_INT_TEMP] = 0x28,
396 [BQ27XXX_REG_VOLT] = 0x08,
397 [BQ27XXX_REG_AI] = 0x14,
398 [BQ27XXX_REG_FLAGS] = 0x0a,
399 [BQ27XXX_REG_TTE] = 0x16,
400 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
401 [BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
402 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
403 [BQ27XXX_REG_NAC] = 0x0c,
404 [BQ27XXX_REG_RC] = 0x10,
405 [BQ27XXX_REG_FCC] = 0x12,
406 [BQ27XXX_REG_CYCT] = 0x2a,
407 [BQ27XXX_REG_AE] = INVALID_REG_ADDR,
408 [BQ27XXX_REG_SOC] = 0x2c,
409 [BQ27XXX_REG_DCAP] = 0x3c,
410 [BQ27XXX_REG_AP] = 0x24,
411 BQ27XXX_DM_REG_ROWS,
412 },
413 #define bq27542_regs bq27541_regs
414 #define bq27546_regs bq27541_regs
415 #define bq27742_regs bq27541_regs
416 bq27545_regs[BQ27XXX_REG_MAX] = {
417 [BQ27XXX_REG_CTRL] = 0x00,
418 [BQ27XXX_REG_TEMP] = 0x06,
419 [BQ27XXX_REG_INT_TEMP] = 0x28,
420 [BQ27XXX_REG_VOLT] = 0x08,
421 [BQ27XXX_REG_AI] = 0x14,
422 [BQ27XXX_REG_FLAGS] = 0x0a,
423 [BQ27XXX_REG_TTE] = 0x16,
424 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
425 [BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
426 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
427 [BQ27XXX_REG_NAC] = 0x0c,
428 [BQ27XXX_REG_RC] = 0x10,
429 [BQ27XXX_REG_FCC] = 0x12,
430 [BQ27XXX_REG_CYCT] = 0x2a,
431 [BQ27XXX_REG_AE] = INVALID_REG_ADDR,
432 [BQ27XXX_REG_SOC] = 0x2c,
433 [BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
434 [BQ27XXX_REG_AP] = 0x24,
435 BQ27XXX_DM_REG_ROWS,
436 },
437 bq27421_regs[BQ27XXX_REG_MAX] = {
438 [BQ27XXX_REG_CTRL] = 0x00,
439 [BQ27XXX_REG_TEMP] = 0x02,
440 [BQ27XXX_REG_INT_TEMP] = 0x1e,
441 [BQ27XXX_REG_VOLT] = 0x04,
442 [BQ27XXX_REG_AI] = 0x10,
443 [BQ27XXX_REG_FLAGS] = 0x06,
444 [BQ27XXX_REG_TTE] = INVALID_REG_ADDR,
445 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
446 [BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
447 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
448 [BQ27XXX_REG_NAC] = 0x08,
449 [BQ27XXX_REG_RC] = 0x0c,
450 [BQ27XXX_REG_FCC] = 0x0e,
451 [BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
452 [BQ27XXX_REG_AE] = INVALID_REG_ADDR,
453 [BQ27XXX_REG_SOC] = 0x1c,
454 [BQ27XXX_REG_DCAP] = 0x3c,
455 [BQ27XXX_REG_AP] = 0x18,
456 BQ27XXX_DM_REG_ROWS,
457 },
458 bq27426_regs[BQ27XXX_REG_MAX] = {
459 [BQ27XXX_REG_CTRL] = 0x00,
460 [BQ27XXX_REG_TEMP] = 0x02,
461 [BQ27XXX_REG_INT_TEMP] = 0x1e,
462 [BQ27XXX_REG_VOLT] = 0x04,
463 [BQ27XXX_REG_AI] = 0x10,
464 [BQ27XXX_REG_FLAGS] = 0x06,
465 [BQ27XXX_REG_TTE] = INVALID_REG_ADDR,
466 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
467 [BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
468 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
469 [BQ27XXX_REG_NAC] = 0x08,
470 [BQ27XXX_REG_RC] = 0x0c,
471 [BQ27XXX_REG_FCC] = 0x0e,
472 [BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
473 [BQ27XXX_REG_AE] = INVALID_REG_ADDR,
474 [BQ27XXX_REG_SOC] = 0x1c,
475 [BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
476 [BQ27XXX_REG_AP] = 0x18,
477 BQ27XXX_DM_REG_ROWS,
478 },
479 #define bq27411_regs bq27421_regs
480 #define bq27425_regs bq27421_regs
481 #define bq27441_regs bq27421_regs
482 #define bq27621_regs bq27421_regs
483 bq27z561_regs[BQ27XXX_REG_MAX] = {
484 [BQ27XXX_REG_CTRL] = 0x00,
485 [BQ27XXX_REG_TEMP] = 0x06,
486 [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
487 [BQ27XXX_REG_VOLT] = 0x08,
488 [BQ27XXX_REG_AI] = 0x14,
489 [BQ27XXX_REG_FLAGS] = 0x0a,
490 [BQ27XXX_REG_TTE] = 0x16,
491 [BQ27XXX_REG_TTF] = 0x18,
492 [BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
493 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
494 [BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
495 [BQ27XXX_REG_RC] = 0x10,
496 [BQ27XXX_REG_FCC] = 0x12,
497 [BQ27XXX_REG_CYCT] = 0x2a,
498 [BQ27XXX_REG_AE] = 0x22,
499 [BQ27XXX_REG_SOC] = 0x2c,
500 [BQ27XXX_REG_DCAP] = 0x3c,
501 [BQ27XXX_REG_AP] = 0x22,
502 BQ27XXX_DM_REG_ROWS,
503 },
504 bq28z610_regs[BQ27XXX_REG_MAX] = {
505 [BQ27XXX_REG_CTRL] = 0x00,
506 [BQ27XXX_REG_TEMP] = 0x06,
507 [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
508 [BQ27XXX_REG_VOLT] = 0x08,
509 [BQ27XXX_REG_AI] = 0x14,
510 [BQ27XXX_REG_FLAGS] = 0x0a,
511 [BQ27XXX_REG_TTE] = 0x16,
512 [BQ27XXX_REG_TTF] = 0x18,
513 [BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
514 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
515 [BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
516 [BQ27XXX_REG_RC] = 0x10,
517 [BQ27XXX_REG_FCC] = 0x12,
518 [BQ27XXX_REG_CYCT] = 0x2a,
519 [BQ27XXX_REG_AE] = 0x22,
520 [BQ27XXX_REG_SOC] = 0x2c,
521 [BQ27XXX_REG_DCAP] = 0x3c,
522 [BQ27XXX_REG_AP] = 0x22,
523 BQ27XXX_DM_REG_ROWS,
524 },
525 bq34z100_regs[BQ27XXX_REG_MAX] = {
526 [BQ27XXX_REG_CTRL] = 0x00,
527 [BQ27XXX_REG_TEMP] = 0x0c,
528 [BQ27XXX_REG_INT_TEMP] = 0x2a,
529 [BQ27XXX_REG_VOLT] = 0x08,
530 [BQ27XXX_REG_AI] = 0x0a,
531 [BQ27XXX_REG_FLAGS] = 0x0e,
532 [BQ27XXX_REG_TTE] = 0x18,
533 [BQ27XXX_REG_TTF] = 0x1a,
534 [BQ27XXX_REG_TTES] = 0x1e,
535 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
536 [BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
537 [BQ27XXX_REG_RC] = 0x04,
538 [BQ27XXX_REG_FCC] = 0x06,
539 [BQ27XXX_REG_CYCT] = 0x2c,
540 [BQ27XXX_REG_AE] = 0x24,
541 [BQ27XXX_REG_SOC] = 0x02,
542 [BQ27XXX_REG_DCAP] = 0x3c,
543 [BQ27XXX_REG_AP] = 0x22,
544 BQ27XXX_DM_REG_ROWS,
545 },
546 bq78z100_regs[BQ27XXX_REG_MAX] = {
547 [BQ27XXX_REG_CTRL] = 0x00,
548 [BQ27XXX_REG_TEMP] = 0x06,
549 [BQ27XXX_REG_INT_TEMP] = 0x28,
550 [BQ27XXX_REG_VOLT] = 0x08,
551 [BQ27XXX_REG_AI] = 0x14,
552 [BQ27XXX_REG_FLAGS] = 0x0a,
553 [BQ27XXX_REG_TTE] = 0x16,
554 [BQ27XXX_REG_TTF] = 0x18,
555 [BQ27XXX_REG_TTES] = 0x1c,
556 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
557 [BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
558 [BQ27XXX_REG_RC] = 0x10,
559 [BQ27XXX_REG_FCC] = 0x12,
560 [BQ27XXX_REG_CYCT] = 0x2a,
561 [BQ27XXX_REG_AE] = INVALID_REG_ADDR,
562 [BQ27XXX_REG_SOC] = 0x2c,
563 [BQ27XXX_REG_DCAP] = 0x3c,
564 [BQ27XXX_REG_AP] = 0x22,
565 BQ27XXX_DM_REG_ROWS,
566 };
567
568 static enum power_supply_property bq27000_props[] = {
569 POWER_SUPPLY_PROP_STATUS,
570 POWER_SUPPLY_PROP_PRESENT,
571 POWER_SUPPLY_PROP_VOLTAGE_NOW,
572 POWER_SUPPLY_PROP_CURRENT_NOW,
573 POWER_SUPPLY_PROP_CAPACITY,
574 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
575 POWER_SUPPLY_PROP_TEMP,
576 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
577 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
578 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
579 POWER_SUPPLY_PROP_TECHNOLOGY,
580 POWER_SUPPLY_PROP_CHARGE_FULL,
581 POWER_SUPPLY_PROP_CHARGE_NOW,
582 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
583 POWER_SUPPLY_PROP_CYCLE_COUNT,
584 POWER_SUPPLY_PROP_ENERGY_NOW,
585 POWER_SUPPLY_PROP_POWER_AVG,
586 POWER_SUPPLY_PROP_HEALTH,
587 POWER_SUPPLY_PROP_MANUFACTURER,
588 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
589 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
590 };
591
592 static enum power_supply_property bq27010_props[] = {
593 POWER_SUPPLY_PROP_STATUS,
594 POWER_SUPPLY_PROP_PRESENT,
595 POWER_SUPPLY_PROP_VOLTAGE_NOW,
596 POWER_SUPPLY_PROP_CURRENT_NOW,
597 POWER_SUPPLY_PROP_CAPACITY,
598 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
599 POWER_SUPPLY_PROP_TEMP,
600 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
601 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
602 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
603 POWER_SUPPLY_PROP_TECHNOLOGY,
604 POWER_SUPPLY_PROP_CHARGE_FULL,
605 POWER_SUPPLY_PROP_CHARGE_NOW,
606 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
607 POWER_SUPPLY_PROP_CYCLE_COUNT,
608 POWER_SUPPLY_PROP_HEALTH,
609 POWER_SUPPLY_PROP_MANUFACTURER,
610 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
611 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
612 };
613
614 #define bq2750x_props bq27510g3_props
615 #define bq2751x_props bq27510g3_props
616 #define bq2752x_props bq27510g3_props
617
618 static enum power_supply_property bq27500_props[] = {
619 POWER_SUPPLY_PROP_STATUS,
620 POWER_SUPPLY_PROP_PRESENT,
621 POWER_SUPPLY_PROP_VOLTAGE_NOW,
622 POWER_SUPPLY_PROP_CURRENT_NOW,
623 POWER_SUPPLY_PROP_CAPACITY,
624 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
625 POWER_SUPPLY_PROP_TEMP,
626 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
627 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
628 POWER_SUPPLY_PROP_TECHNOLOGY,
629 POWER_SUPPLY_PROP_CHARGE_FULL,
630 POWER_SUPPLY_PROP_CHARGE_NOW,
631 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
632 POWER_SUPPLY_PROP_CYCLE_COUNT,
633 POWER_SUPPLY_PROP_ENERGY_NOW,
634 POWER_SUPPLY_PROP_POWER_AVG,
635 POWER_SUPPLY_PROP_HEALTH,
636 POWER_SUPPLY_PROP_MANUFACTURER,
637 };
638 #define bq27510g1_props bq27500_props
639 #define bq27510g2_props bq27500_props
640
641 static enum power_supply_property bq27510g3_props[] = {
642 POWER_SUPPLY_PROP_STATUS,
643 POWER_SUPPLY_PROP_PRESENT,
644 POWER_SUPPLY_PROP_VOLTAGE_NOW,
645 POWER_SUPPLY_PROP_CURRENT_NOW,
646 POWER_SUPPLY_PROP_CAPACITY,
647 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
648 POWER_SUPPLY_PROP_TEMP,
649 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
650 POWER_SUPPLY_PROP_TECHNOLOGY,
651 POWER_SUPPLY_PROP_CHARGE_FULL,
652 POWER_SUPPLY_PROP_CHARGE_NOW,
653 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
654 POWER_SUPPLY_PROP_CYCLE_COUNT,
655 POWER_SUPPLY_PROP_HEALTH,
656 POWER_SUPPLY_PROP_MANUFACTURER,
657 };
658
659 static enum power_supply_property bq27520g1_props[] = {
660 POWER_SUPPLY_PROP_STATUS,
661 POWER_SUPPLY_PROP_PRESENT,
662 POWER_SUPPLY_PROP_VOLTAGE_NOW,
663 POWER_SUPPLY_PROP_CURRENT_NOW,
664 POWER_SUPPLY_PROP_CAPACITY,
665 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
666 POWER_SUPPLY_PROP_TEMP,
667 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
668 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
669 POWER_SUPPLY_PROP_TECHNOLOGY,
670 POWER_SUPPLY_PROP_CHARGE_FULL,
671 POWER_SUPPLY_PROP_CHARGE_NOW,
672 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
673 POWER_SUPPLY_PROP_ENERGY_NOW,
674 POWER_SUPPLY_PROP_POWER_AVG,
675 POWER_SUPPLY_PROP_HEALTH,
676 POWER_SUPPLY_PROP_MANUFACTURER,
677 };
678
679 #define bq27520g2_props bq27500_props
680
681 static enum power_supply_property bq27520g3_props[] = {
682 POWER_SUPPLY_PROP_STATUS,
683 POWER_SUPPLY_PROP_PRESENT,
684 POWER_SUPPLY_PROP_VOLTAGE_NOW,
685 POWER_SUPPLY_PROP_CURRENT_NOW,
686 POWER_SUPPLY_PROP_CAPACITY,
687 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
688 POWER_SUPPLY_PROP_TEMP,
689 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
690 POWER_SUPPLY_PROP_TECHNOLOGY,
691 POWER_SUPPLY_PROP_CHARGE_FULL,
692 POWER_SUPPLY_PROP_CHARGE_NOW,
693 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
694 POWER_SUPPLY_PROP_CYCLE_COUNT,
695 POWER_SUPPLY_PROP_ENERGY_NOW,
696 POWER_SUPPLY_PROP_POWER_AVG,
697 POWER_SUPPLY_PROP_HEALTH,
698 POWER_SUPPLY_PROP_MANUFACTURER,
699 };
700
701 static enum power_supply_property bq27520g4_props[] = {
702 POWER_SUPPLY_PROP_STATUS,
703 POWER_SUPPLY_PROP_PRESENT,
704 POWER_SUPPLY_PROP_VOLTAGE_NOW,
705 POWER_SUPPLY_PROP_CURRENT_NOW,
706 POWER_SUPPLY_PROP_CAPACITY,
707 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
708 POWER_SUPPLY_PROP_TEMP,
709 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
710 POWER_SUPPLY_PROP_TECHNOLOGY,
711 POWER_SUPPLY_PROP_CHARGE_FULL,
712 POWER_SUPPLY_PROP_CHARGE_NOW,
713 POWER_SUPPLY_PROP_CYCLE_COUNT,
714 POWER_SUPPLY_PROP_HEALTH,
715 POWER_SUPPLY_PROP_MANUFACTURER,
716 };
717
718 static enum power_supply_property bq27521_props[] = {
719 POWER_SUPPLY_PROP_STATUS,
720 POWER_SUPPLY_PROP_PRESENT,
721 POWER_SUPPLY_PROP_VOLTAGE_NOW,
722 POWER_SUPPLY_PROP_CURRENT_NOW,
723 POWER_SUPPLY_PROP_TEMP,
724 POWER_SUPPLY_PROP_TECHNOLOGY,
725 };
726
727 static enum power_supply_property bq27530_props[] = {
728 POWER_SUPPLY_PROP_STATUS,
729 POWER_SUPPLY_PROP_PRESENT,
730 POWER_SUPPLY_PROP_VOLTAGE_NOW,
731 POWER_SUPPLY_PROP_CURRENT_NOW,
732 POWER_SUPPLY_PROP_CAPACITY,
733 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
734 POWER_SUPPLY_PROP_TEMP,
735 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
736 POWER_SUPPLY_PROP_TECHNOLOGY,
737 POWER_SUPPLY_PROP_CHARGE_FULL,
738 POWER_SUPPLY_PROP_CHARGE_NOW,
739 POWER_SUPPLY_PROP_POWER_AVG,
740 POWER_SUPPLY_PROP_HEALTH,
741 POWER_SUPPLY_PROP_CYCLE_COUNT,
742 POWER_SUPPLY_PROP_MANUFACTURER,
743 };
744 #define bq27531_props bq27530_props
745
746 static enum power_supply_property bq27541_props[] = {
747 POWER_SUPPLY_PROP_STATUS,
748 POWER_SUPPLY_PROP_PRESENT,
749 POWER_SUPPLY_PROP_VOLTAGE_NOW,
750 POWER_SUPPLY_PROP_CURRENT_NOW,
751 POWER_SUPPLY_PROP_CAPACITY,
752 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
753 POWER_SUPPLY_PROP_TEMP,
754 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
755 POWER_SUPPLY_PROP_TECHNOLOGY,
756 POWER_SUPPLY_PROP_CHARGE_FULL,
757 POWER_SUPPLY_PROP_CHARGE_NOW,
758 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
759 POWER_SUPPLY_PROP_CYCLE_COUNT,
760 POWER_SUPPLY_PROP_POWER_AVG,
761 POWER_SUPPLY_PROP_HEALTH,
762 POWER_SUPPLY_PROP_MANUFACTURER,
763 };
764 #define bq27542_props bq27541_props
765 #define bq27546_props bq27541_props
766 #define bq27742_props bq27541_props
767
768 static enum power_supply_property bq27545_props[] = {
769 POWER_SUPPLY_PROP_STATUS,
770 POWER_SUPPLY_PROP_PRESENT,
771 POWER_SUPPLY_PROP_VOLTAGE_NOW,
772 POWER_SUPPLY_PROP_CURRENT_NOW,
773 POWER_SUPPLY_PROP_CAPACITY,
774 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
775 POWER_SUPPLY_PROP_TEMP,
776 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
777 POWER_SUPPLY_PROP_TECHNOLOGY,
778 POWER_SUPPLY_PROP_CHARGE_FULL,
779 POWER_SUPPLY_PROP_CHARGE_NOW,
780 POWER_SUPPLY_PROP_HEALTH,
781 POWER_SUPPLY_PROP_CYCLE_COUNT,
782 POWER_SUPPLY_PROP_POWER_AVG,
783 POWER_SUPPLY_PROP_MANUFACTURER,
784 };
785
786 static enum power_supply_property bq27421_props[] = {
787 POWER_SUPPLY_PROP_STATUS,
788 POWER_SUPPLY_PROP_PRESENT,
789 POWER_SUPPLY_PROP_VOLTAGE_NOW,
790 POWER_SUPPLY_PROP_CURRENT_NOW,
791 POWER_SUPPLY_PROP_CAPACITY,
792 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
793 POWER_SUPPLY_PROP_TEMP,
794 POWER_SUPPLY_PROP_TECHNOLOGY,
795 POWER_SUPPLY_PROP_CHARGE_FULL,
796 POWER_SUPPLY_PROP_CHARGE_NOW,
797 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
798 POWER_SUPPLY_PROP_MANUFACTURER,
799 };
800 #define bq27411_props bq27421_props
801 #define bq27425_props bq27421_props
802 #define bq27441_props bq27421_props
803 #define bq27621_props bq27421_props
804
805 static enum power_supply_property bq27426_props[] = {
806 POWER_SUPPLY_PROP_STATUS,
807 POWER_SUPPLY_PROP_PRESENT,
808 POWER_SUPPLY_PROP_VOLTAGE_NOW,
809 POWER_SUPPLY_PROP_CURRENT_NOW,
810 POWER_SUPPLY_PROP_CAPACITY,
811 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
812 POWER_SUPPLY_PROP_TEMP,
813 POWER_SUPPLY_PROP_TECHNOLOGY,
814 POWER_SUPPLY_PROP_CHARGE_FULL,
815 POWER_SUPPLY_PROP_CHARGE_NOW,
816 POWER_SUPPLY_PROP_MANUFACTURER,
817 };
818
819 static enum power_supply_property bq27z561_props[] = {
820 POWER_SUPPLY_PROP_STATUS,
821 POWER_SUPPLY_PROP_PRESENT,
822 POWER_SUPPLY_PROP_VOLTAGE_NOW,
823 POWER_SUPPLY_PROP_CURRENT_NOW,
824 POWER_SUPPLY_PROP_CAPACITY,
825 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
826 POWER_SUPPLY_PROP_TEMP,
827 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
828 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
829 POWER_SUPPLY_PROP_TECHNOLOGY,
830 POWER_SUPPLY_PROP_CHARGE_FULL,
831 POWER_SUPPLY_PROP_CHARGE_NOW,
832 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
833 POWER_SUPPLY_PROP_CYCLE_COUNT,
834 POWER_SUPPLY_PROP_POWER_AVG,
835 POWER_SUPPLY_PROP_HEALTH,
836 POWER_SUPPLY_PROP_MANUFACTURER,
837 };
838
839 static enum power_supply_property bq28z610_props[] = {
840 POWER_SUPPLY_PROP_STATUS,
841 POWER_SUPPLY_PROP_PRESENT,
842 POWER_SUPPLY_PROP_VOLTAGE_NOW,
843 POWER_SUPPLY_PROP_CURRENT_NOW,
844 POWER_SUPPLY_PROP_CAPACITY,
845 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
846 POWER_SUPPLY_PROP_TEMP,
847 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
848 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
849 POWER_SUPPLY_PROP_TECHNOLOGY,
850 POWER_SUPPLY_PROP_CHARGE_FULL,
851 POWER_SUPPLY_PROP_CHARGE_NOW,
852 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
853 POWER_SUPPLY_PROP_CYCLE_COUNT,
854 POWER_SUPPLY_PROP_POWER_AVG,
855 POWER_SUPPLY_PROP_HEALTH,
856 POWER_SUPPLY_PROP_MANUFACTURER,
857 };
858
859 static enum power_supply_property bq34z100_props[] = {
860 POWER_SUPPLY_PROP_STATUS,
861 POWER_SUPPLY_PROP_PRESENT,
862 POWER_SUPPLY_PROP_VOLTAGE_NOW,
863 POWER_SUPPLY_PROP_CURRENT_NOW,
864 POWER_SUPPLY_PROP_CAPACITY,
865 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
866 POWER_SUPPLY_PROP_TEMP,
867 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
868 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
869 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
870 POWER_SUPPLY_PROP_TECHNOLOGY,
871 POWER_SUPPLY_PROP_CHARGE_FULL,
872 POWER_SUPPLY_PROP_CHARGE_NOW,
873 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
874 POWER_SUPPLY_PROP_CYCLE_COUNT,
875 POWER_SUPPLY_PROP_ENERGY_NOW,
876 POWER_SUPPLY_PROP_POWER_AVG,
877 POWER_SUPPLY_PROP_HEALTH,
878 POWER_SUPPLY_PROP_MANUFACTURER,
879 };
880
881 static enum power_supply_property bq78z100_props[] = {
882 POWER_SUPPLY_PROP_STATUS,
883 POWER_SUPPLY_PROP_PRESENT,
884 POWER_SUPPLY_PROP_VOLTAGE_NOW,
885 POWER_SUPPLY_PROP_CURRENT_NOW,
886 POWER_SUPPLY_PROP_CAPACITY,
887 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
888 POWER_SUPPLY_PROP_TEMP,
889 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
890 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
891 POWER_SUPPLY_PROP_TECHNOLOGY,
892 POWER_SUPPLY_PROP_CHARGE_FULL,
893 POWER_SUPPLY_PROP_CHARGE_NOW,
894 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
895 POWER_SUPPLY_PROP_CYCLE_COUNT,
896 POWER_SUPPLY_PROP_POWER_AVG,
897 POWER_SUPPLY_PROP_HEALTH,
898 POWER_SUPPLY_PROP_MANUFACTURER,
899 };
900
901 struct bq27xxx_dm_reg {
902 u8 subclass_id;
903 u8 offset;
904 u8 bytes;
905 u16 min, max;
906 };
907
908 enum bq27xxx_dm_reg_id {
909 BQ27XXX_DM_DESIGN_CAPACITY = 0,
910 BQ27XXX_DM_DESIGN_ENERGY,
911 BQ27XXX_DM_TERMINATE_VOLTAGE,
912 };
913
914 #define bq27000_dm_regs NULL
915 #define bq27010_dm_regs NULL
916 #define bq2750x_dm_regs NULL
917 #define bq2751x_dm_regs NULL
918 #define bq2752x_dm_regs NULL
919
920 #if 0 /* not yet tested */
921 static struct bq27xxx_dm_reg bq27500_dm_regs[] = {
922 [BQ27XXX_DM_DESIGN_CAPACITY] = { 48, 10, 2, 0, 65535 },
923 [BQ27XXX_DM_DESIGN_ENERGY] = { }, /* missing on chip */
924 [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 80, 48, 2, 1000, 32767 },
925 };
926 #else
927 #define bq27500_dm_regs NULL
928 #endif
929
930 /* todo create data memory definitions from datasheets and test on chips */
931 #define bq27510g1_dm_regs NULL
932 #define bq27510g2_dm_regs NULL
933 #define bq27510g3_dm_regs NULL
934 #define bq27520g1_dm_regs NULL
935 #define bq27520g2_dm_regs NULL
936 #define bq27520g3_dm_regs NULL
937 #define bq27520g4_dm_regs NULL
938 #define bq27521_dm_regs NULL
939 #define bq27530_dm_regs NULL
940 #define bq27531_dm_regs NULL
941 #define bq27541_dm_regs NULL
942 #define bq27542_dm_regs NULL
943 #define bq27546_dm_regs NULL
944 #define bq27742_dm_regs NULL
945
946 #if 0 /* not yet tested */
947 static struct bq27xxx_dm_reg bq27545_dm_regs[] = {
948 [BQ27XXX_DM_DESIGN_CAPACITY] = { 48, 23, 2, 0, 32767 },
949 [BQ27XXX_DM_DESIGN_ENERGY] = { 48, 25, 2, 0, 32767 },
950 [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 80, 67, 2, 2800, 3700 },
951 };
952 #else
953 #define bq27545_dm_regs NULL
954 #endif
955
956 static struct bq27xxx_dm_reg bq27411_dm_regs[] = {
957 [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 10, 2, 0, 32767 },
958 [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 12, 2, 0, 32767 },
959 [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 16, 2, 2800, 3700 },
960 };
961
962 static struct bq27xxx_dm_reg bq27421_dm_regs[] = {
963 [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 10, 2, 0, 8000 },
964 [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 12, 2, 0, 32767 },
965 [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 16, 2, 2500, 3700 },
966 };
967
968 static struct bq27xxx_dm_reg bq27425_dm_regs[] = {
969 [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 12, 2, 0, 32767 },
970 [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 14, 2, 0, 32767 },
971 [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 18, 2, 2800, 3700 },
972 };
973
974 static struct bq27xxx_dm_reg bq27426_dm_regs[] = {
975 [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 6, 2, 0, 8000 },
976 [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 8, 2, 0, 32767 },
977 [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 10, 2, 2500, 3700 },
978 };
979
980 #if 0 /* not yet tested */
981 #define bq27441_dm_regs bq27421_dm_regs
982 #else
983 #define bq27441_dm_regs NULL
984 #endif
985
986 #if 0 /* not yet tested */
987 static struct bq27xxx_dm_reg bq27621_dm_regs[] = {
988 [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 3, 2, 0, 8000 },
989 [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 5, 2, 0, 32767 },
990 [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 9, 2, 2500, 3700 },
991 };
992 #else
993 #define bq27621_dm_regs NULL
994 #endif
995
996 #define bq27z561_dm_regs NULL
997 #define bq28z610_dm_regs NULL
998 #define bq34z100_dm_regs NULL
999 #define bq78z100_dm_regs NULL
1000
1001 #define BQ27XXX_O_ZERO BIT(0)
1002 #define BQ27XXX_O_OTDC BIT(1) /* has OTC/OTD overtemperature flags */
1003 #define BQ27XXX_O_UTOT BIT(2) /* has OT overtemperature flag */
1004 #define BQ27XXX_O_CFGUP BIT(3)
1005 #define BQ27XXX_O_RAM BIT(4)
1006 #define BQ27Z561_O_BITS BIT(5)
1007 #define BQ27XXX_O_SOC_SI BIT(6) /* SoC is single register */
1008 #define BQ27XXX_O_HAS_CI BIT(7) /* has Capacity Inaccurate flag */
1009 #define BQ27XXX_O_MUL_CHEM BIT(8) /* multiple chemistries supported */
1010
1011 #define BQ27XXX_DATA(ref, key, opt) { \
1012 .opts = (opt), \
1013 .unseal_key = key, \
1014 .regs = ref##_regs, \
1015 .dm_regs = ref##_dm_regs, \
1016 .props = ref##_props, \
1017 .props_size = ARRAY_SIZE(ref##_props) }
1018
1019 static struct {
1020 u32 opts;
1021 u32 unseal_key;
1022 u8 *regs;
1023 struct bq27xxx_dm_reg *dm_regs;
1024 enum power_supply_property *props;
1025 size_t props_size;
1026 } bq27xxx_chip_data[] = {
1027 [BQ27000] = BQ27XXX_DATA(bq27000, 0 , BQ27XXX_O_ZERO | BQ27XXX_O_SOC_SI | BQ27XXX_O_HAS_CI),
1028 [BQ27010] = BQ27XXX_DATA(bq27010, 0 , BQ27XXX_O_ZERO | BQ27XXX_O_SOC_SI | BQ27XXX_O_HAS_CI),
1029 [BQ2750X] = BQ27XXX_DATA(bq2750x, 0 , BQ27XXX_O_OTDC),
1030 [BQ2751X] = BQ27XXX_DATA(bq2751x, 0 , BQ27XXX_O_OTDC),
1031 [BQ2752X] = BQ27XXX_DATA(bq2752x, 0 , BQ27XXX_O_OTDC),
1032 [BQ27500] = BQ27XXX_DATA(bq27500, 0x04143672, BQ27XXX_O_OTDC),
1033 [BQ27510G1] = BQ27XXX_DATA(bq27510g1, 0 , BQ27XXX_O_OTDC),
1034 [BQ27510G2] = BQ27XXX_DATA(bq27510g2, 0 , BQ27XXX_O_OTDC),
1035 [BQ27510G3] = BQ27XXX_DATA(bq27510g3, 0 , BQ27XXX_O_OTDC),
1036 [BQ27520G1] = BQ27XXX_DATA(bq27520g1, 0 , BQ27XXX_O_OTDC),
1037 [BQ27520G2] = BQ27XXX_DATA(bq27520g2, 0 , BQ27XXX_O_OTDC),
1038 [BQ27520G3] = BQ27XXX_DATA(bq27520g3, 0 , BQ27XXX_O_OTDC),
1039 [BQ27520G4] = BQ27XXX_DATA(bq27520g4, 0 , BQ27XXX_O_OTDC),
1040 [BQ27521] = BQ27XXX_DATA(bq27521, 0 , 0),
1041 [BQ27530] = BQ27XXX_DATA(bq27530, 0 , BQ27XXX_O_UTOT),
1042 [BQ27531] = BQ27XXX_DATA(bq27531, 0 , BQ27XXX_O_UTOT),
1043 [BQ27541] = BQ27XXX_DATA(bq27541, 0 , BQ27XXX_O_OTDC),
1044 [BQ27542] = BQ27XXX_DATA(bq27542, 0 , BQ27XXX_O_OTDC),
1045 [BQ27546] = BQ27XXX_DATA(bq27546, 0 , BQ27XXX_O_OTDC),
1046 [BQ27742] = BQ27XXX_DATA(bq27742, 0 , BQ27XXX_O_OTDC),
1047 [BQ27545] = BQ27XXX_DATA(bq27545, 0x04143672, BQ27XXX_O_OTDC),
1048 [BQ27411] = BQ27XXX_DATA(bq27411, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
1049 [BQ27421] = BQ27XXX_DATA(bq27421, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
1050 [BQ27425] = BQ27XXX_DATA(bq27425, 0x04143672, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP),
1051 [BQ27426] = BQ27XXX_DATA(bq27426, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
1052 [BQ27441] = BQ27XXX_DATA(bq27441, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
1053 [BQ27621] = BQ27XXX_DATA(bq27621, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
1054 [BQ27Z561] = BQ27XXX_DATA(bq27z561, 0 , BQ27Z561_O_BITS),
1055 [BQ28Z610] = BQ27XXX_DATA(bq28z610, 0 , BQ27Z561_O_BITS),
1056 [BQ34Z100] = BQ27XXX_DATA(bq34z100, 0 , BQ27XXX_O_OTDC | BQ27XXX_O_SOC_SI | \
1057 BQ27XXX_O_HAS_CI | BQ27XXX_O_MUL_CHEM),
1058 [BQ78Z100] = BQ27XXX_DATA(bq78z100, 0 , BQ27Z561_O_BITS),
1059 };
1060
1061 static DEFINE_MUTEX(bq27xxx_list_lock);
1062 static LIST_HEAD(bq27xxx_battery_devices);
1063
1064 #define BQ27XXX_MSLEEP(i) usleep_range((i)*1000, (i)*1000+500)
1065
1066 #define BQ27XXX_DM_SZ 32
1067
1068 /**
1069 * struct bq27xxx_dm_buf - chip data memory buffer
1070 * @class: data memory subclass_id
1071 * @block: data memory block number
1072 * @data: data from/for the block
1073 * @has_data: true if data has been filled by read
1074 * @dirty: true if data has changed since last read/write
1075 *
1076 * Encapsulates info required to manage chip data memory blocks.
1077 */
1078 struct bq27xxx_dm_buf {
1079 u8 class;
1080 u8 block;
1081 u8 data[BQ27XXX_DM_SZ];
1082 bool has_data, dirty;
1083 };
1084
1085 #define BQ27XXX_DM_BUF(di, i) { \
1086 .class = (di)->dm_regs[i].subclass_id, \
1087 .block = (di)->dm_regs[i].offset / BQ27XXX_DM_SZ, \
1088 }
1089
bq27xxx_dm_reg_ptr(struct bq27xxx_dm_buf * buf,struct bq27xxx_dm_reg * reg)1090 static inline __be16 *bq27xxx_dm_reg_ptr(struct bq27xxx_dm_buf *buf,
1091 struct bq27xxx_dm_reg *reg)
1092 {
1093 if (buf->class == reg->subclass_id &&
1094 buf->block == reg->offset / BQ27XXX_DM_SZ)
1095 return (__be16 *) (buf->data + reg->offset % BQ27XXX_DM_SZ);
1096
1097 return NULL;
1098 }
1099
1100 static const char * const bq27xxx_dm_reg_name[] = {
1101 [BQ27XXX_DM_DESIGN_CAPACITY] = "design-capacity",
1102 [BQ27XXX_DM_DESIGN_ENERGY] = "design-energy",
1103 [BQ27XXX_DM_TERMINATE_VOLTAGE] = "terminate-voltage",
1104 };
1105
1106
1107 static bool bq27xxx_dt_to_nvm = true;
1108 module_param_named(dt_monitored_battery_updates_nvm, bq27xxx_dt_to_nvm, bool, 0444);
1109 MODULE_PARM_DESC(dt_monitored_battery_updates_nvm,
1110 "Devicetree monitored-battery config updates data memory on NVM/flash chips.\n"
1111 "Users must set this =0 when installing a different type of battery!\n"
1112 "Default is =1."
1113 #ifndef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
1114 "\nSetting this affects future kernel updates, not the current configuration."
1115 #endif
1116 );
1117
poll_interval_param_set(const char * val,const struct kernel_param * kp)1118 static int poll_interval_param_set(const char *val, const struct kernel_param *kp)
1119 {
1120 struct bq27xxx_device_info *di;
1121 unsigned int prev_val = *(unsigned int *) kp->arg;
1122 int ret;
1123
1124 ret = param_set_uint(val, kp);
1125 if (ret < 0 || prev_val == *(unsigned int *) kp->arg)
1126 return ret;
1127
1128 mutex_lock(&bq27xxx_list_lock);
1129 list_for_each_entry(di, &bq27xxx_battery_devices, list)
1130 mod_delayed_work(system_wq, &di->work, 0);
1131 mutex_unlock(&bq27xxx_list_lock);
1132
1133 return ret;
1134 }
1135
1136 static const struct kernel_param_ops param_ops_poll_interval = {
1137 .get = param_get_uint,
1138 .set = poll_interval_param_set,
1139 };
1140
1141 static unsigned int poll_interval = 360;
1142 module_param_cb(poll_interval, ¶m_ops_poll_interval, &poll_interval, 0644);
1143 MODULE_PARM_DESC(poll_interval,
1144 "battery poll interval in seconds - 0 disables polling");
1145
1146 /*
1147 * Common code for BQ27xxx devices
1148 */
1149
bq27xxx_read(struct bq27xxx_device_info * di,int reg_index,bool single)1150 static inline int bq27xxx_read(struct bq27xxx_device_info *di, int reg_index,
1151 bool single)
1152 {
1153 int ret;
1154
1155 if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
1156 return -EINVAL;
1157
1158 ret = di->bus.read(di, di->regs[reg_index], single);
1159 if (ret < 0)
1160 dev_dbg(di->dev, "failed to read register 0x%02x (index %d)\n",
1161 di->regs[reg_index], reg_index);
1162
1163 return ret;
1164 }
1165
bq27xxx_write(struct bq27xxx_device_info * di,int reg_index,u16 value,bool single)1166 static inline int bq27xxx_write(struct bq27xxx_device_info *di, int reg_index,
1167 u16 value, bool single)
1168 {
1169 int ret;
1170
1171 if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
1172 return -EINVAL;
1173
1174 if (!di->bus.write)
1175 return -EPERM;
1176
1177 ret = di->bus.write(di, di->regs[reg_index], value, single);
1178 if (ret < 0)
1179 dev_dbg(di->dev, "failed to write register 0x%02x (index %d)\n",
1180 di->regs[reg_index], reg_index);
1181
1182 return ret;
1183 }
1184
bq27xxx_read_block(struct bq27xxx_device_info * di,int reg_index,u8 * data,int len)1185 static inline int bq27xxx_read_block(struct bq27xxx_device_info *di, int reg_index,
1186 u8 *data, int len)
1187 {
1188 int ret;
1189
1190 if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
1191 return -EINVAL;
1192
1193 if (!di->bus.read_bulk)
1194 return -EPERM;
1195
1196 ret = di->bus.read_bulk(di, di->regs[reg_index], data, len);
1197 if (ret < 0)
1198 dev_dbg(di->dev, "failed to read_bulk register 0x%02x (index %d)\n",
1199 di->regs[reg_index], reg_index);
1200
1201 return ret;
1202 }
1203
bq27xxx_write_block(struct bq27xxx_device_info * di,int reg_index,u8 * data,int len)1204 static inline int bq27xxx_write_block(struct bq27xxx_device_info *di, int reg_index,
1205 u8 *data, int len)
1206 {
1207 int ret;
1208
1209 if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
1210 return -EINVAL;
1211
1212 if (!di->bus.write_bulk)
1213 return -EPERM;
1214
1215 ret = di->bus.write_bulk(di, di->regs[reg_index], data, len);
1216 if (ret < 0)
1217 dev_dbg(di->dev, "failed to write_bulk register 0x%02x (index %d)\n",
1218 di->regs[reg_index], reg_index);
1219
1220 return ret;
1221 }
1222
bq27xxx_battery_seal(struct bq27xxx_device_info * di)1223 static int bq27xxx_battery_seal(struct bq27xxx_device_info *di)
1224 {
1225 int ret;
1226
1227 ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, BQ27XXX_SEALED, false);
1228 if (ret < 0) {
1229 dev_err(di->dev, "bus error on seal: %d\n", ret);
1230 return ret;
1231 }
1232
1233 return 0;
1234 }
1235
bq27xxx_battery_unseal(struct bq27xxx_device_info * di)1236 static int bq27xxx_battery_unseal(struct bq27xxx_device_info *di)
1237 {
1238 int ret;
1239
1240 if (di->unseal_key == 0) {
1241 dev_err(di->dev, "unseal failed due to missing key\n");
1242 return -EINVAL;
1243 }
1244
1245 ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, (u16)(di->unseal_key >> 16), false);
1246 if (ret < 0)
1247 goto out;
1248
1249 ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, (u16)di->unseal_key, false);
1250 if (ret < 0)
1251 goto out;
1252
1253 return 0;
1254
1255 out:
1256 dev_err(di->dev, "bus error on unseal: %d\n", ret);
1257 return ret;
1258 }
1259
bq27xxx_battery_checksum_dm_block(struct bq27xxx_dm_buf * buf)1260 static u8 bq27xxx_battery_checksum_dm_block(struct bq27xxx_dm_buf *buf)
1261 {
1262 u16 sum = 0;
1263 int i;
1264
1265 for (i = 0; i < BQ27XXX_DM_SZ; i++)
1266 sum += buf->data[i];
1267 sum &= 0xff;
1268
1269 return 0xff - sum;
1270 }
1271
bq27xxx_battery_read_dm_block(struct bq27xxx_device_info * di,struct bq27xxx_dm_buf * buf)1272 static int bq27xxx_battery_read_dm_block(struct bq27xxx_device_info *di,
1273 struct bq27xxx_dm_buf *buf)
1274 {
1275 int ret;
1276
1277 buf->has_data = false;
1278
1279 ret = bq27xxx_write(di, BQ27XXX_DM_CLASS, buf->class, true);
1280 if (ret < 0)
1281 goto out;
1282
1283 ret = bq27xxx_write(di, BQ27XXX_DM_BLOCK, buf->block, true);
1284 if (ret < 0)
1285 goto out;
1286
1287 BQ27XXX_MSLEEP(1);
1288
1289 ret = bq27xxx_read_block(di, BQ27XXX_DM_DATA, buf->data, BQ27XXX_DM_SZ);
1290 if (ret < 0)
1291 goto out;
1292
1293 ret = bq27xxx_read(di, BQ27XXX_DM_CKSUM, true);
1294 if (ret < 0)
1295 goto out;
1296
1297 if ((u8)ret != bq27xxx_battery_checksum_dm_block(buf)) {
1298 ret = -EINVAL;
1299 goto out;
1300 }
1301
1302 buf->has_data = true;
1303 buf->dirty = false;
1304
1305 return 0;
1306
1307 out:
1308 dev_err(di->dev, "bus error reading chip memory: %d\n", ret);
1309 return ret;
1310 }
1311
bq27xxx_battery_update_dm_block(struct bq27xxx_device_info * di,struct bq27xxx_dm_buf * buf,enum bq27xxx_dm_reg_id reg_id,unsigned int val)1312 static void bq27xxx_battery_update_dm_block(struct bq27xxx_device_info *di,
1313 struct bq27xxx_dm_buf *buf,
1314 enum bq27xxx_dm_reg_id reg_id,
1315 unsigned int val)
1316 {
1317 struct bq27xxx_dm_reg *reg = &di->dm_regs[reg_id];
1318 const char *str = bq27xxx_dm_reg_name[reg_id];
1319 __be16 *prev = bq27xxx_dm_reg_ptr(buf, reg);
1320
1321 if (prev == NULL) {
1322 dev_warn(di->dev, "buffer does not match %s dm spec\n", str);
1323 return;
1324 }
1325
1326 if (reg->bytes != 2) {
1327 dev_warn(di->dev, "%s dm spec has unsupported byte size\n", str);
1328 return;
1329 }
1330
1331 if (!buf->has_data)
1332 return;
1333
1334 if (be16_to_cpup(prev) == val) {
1335 dev_info(di->dev, "%s has %u\n", str, val);
1336 return;
1337 }
1338
1339 #ifdef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
1340 if (!(di->opts & BQ27XXX_O_RAM) && !bq27xxx_dt_to_nvm) {
1341 #else
1342 if (!(di->opts & BQ27XXX_O_RAM)) {
1343 #endif
1344 /* devicetree and NVM differ; defer to NVM */
1345 dev_warn(di->dev, "%s has %u; update to %u disallowed "
1346 #ifdef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
1347 "by dt_monitored_battery_updates_nvm=0"
1348 #else
1349 "for flash/NVM data memory"
1350 #endif
1351 "\n", str, be16_to_cpup(prev), val);
1352 return;
1353 }
1354
1355 dev_info(di->dev, "update %s to %u\n", str, val);
1356
1357 *prev = cpu_to_be16(val);
1358 buf->dirty = true;
1359 }
1360
1361 static int bq27xxx_battery_cfgupdate_priv(struct bq27xxx_device_info *di, bool active)
1362 {
1363 const int limit = 100;
1364 u16 cmd = active ? BQ27XXX_SET_CFGUPDATE : BQ27XXX_SOFT_RESET;
1365 int ret, try = limit;
1366
1367 ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, cmd, false);
1368 if (ret < 0)
1369 return ret;
1370
1371 do {
1372 BQ27XXX_MSLEEP(25);
1373 ret = bq27xxx_read(di, BQ27XXX_REG_FLAGS, false);
1374 if (ret < 0)
1375 return ret;
1376 } while (!!(ret & BQ27XXX_FLAG_CFGUP) != active && --try);
1377
1378 if (!try && di->chip != BQ27425) { // 425 has a bug
1379 dev_err(di->dev, "timed out waiting for cfgupdate flag %d\n", active);
1380 return -EINVAL;
1381 }
1382
1383 if (limit - try > 3)
1384 dev_warn(di->dev, "cfgupdate %d, retries %d\n", active, limit - try);
1385
1386 return 0;
1387 }
1388
1389 static inline int bq27xxx_battery_set_cfgupdate(struct bq27xxx_device_info *di)
1390 {
1391 int ret = bq27xxx_battery_cfgupdate_priv(di, true);
1392 if (ret < 0 && ret != -EINVAL)
1393 dev_err(di->dev, "bus error on set_cfgupdate: %d\n", ret);
1394
1395 return ret;
1396 }
1397
1398 static inline int bq27xxx_battery_soft_reset(struct bq27xxx_device_info *di)
1399 {
1400 int ret = bq27xxx_battery_cfgupdate_priv(di, false);
1401 if (ret < 0 && ret != -EINVAL)
1402 dev_err(di->dev, "bus error on soft_reset: %d\n", ret);
1403
1404 return ret;
1405 }
1406
1407 static int bq27xxx_battery_write_dm_block(struct bq27xxx_device_info *di,
1408 struct bq27xxx_dm_buf *buf)
1409 {
1410 bool cfgup = di->opts & BQ27XXX_O_CFGUP;
1411 int ret;
1412
1413 if (!buf->dirty)
1414 return 0;
1415
1416 if (cfgup) {
1417 ret = bq27xxx_battery_set_cfgupdate(di);
1418 if (ret < 0)
1419 return ret;
1420 }
1421
1422 ret = bq27xxx_write(di, BQ27XXX_DM_CTRL, 0, true);
1423 if (ret < 0)
1424 goto out;
1425
1426 ret = bq27xxx_write(di, BQ27XXX_DM_CLASS, buf->class, true);
1427 if (ret < 0)
1428 goto out;
1429
1430 ret = bq27xxx_write(di, BQ27XXX_DM_BLOCK, buf->block, true);
1431 if (ret < 0)
1432 goto out;
1433
1434 BQ27XXX_MSLEEP(1);
1435
1436 ret = bq27xxx_write_block(di, BQ27XXX_DM_DATA, buf->data, BQ27XXX_DM_SZ);
1437 if (ret < 0)
1438 goto out;
1439
1440 ret = bq27xxx_write(di, BQ27XXX_DM_CKSUM,
1441 bq27xxx_battery_checksum_dm_block(buf), true);
1442 if (ret < 0)
1443 goto out;
1444
1445 /* DO NOT read BQ27XXX_DM_CKSUM here to verify it! That may cause NVM
1446 * corruption on the '425 chip (and perhaps others), which can damage
1447 * the chip.
1448 */
1449
1450 if (cfgup) {
1451 BQ27XXX_MSLEEP(1);
1452 ret = bq27xxx_battery_soft_reset(di);
1453 if (ret < 0)
1454 return ret;
1455 } else {
1456 BQ27XXX_MSLEEP(100); /* flash DM updates in <100ms */
1457 }
1458
1459 buf->dirty = false;
1460
1461 return 0;
1462
1463 out:
1464 if (cfgup)
1465 bq27xxx_battery_soft_reset(di);
1466
1467 dev_err(di->dev, "bus error writing chip memory: %d\n", ret);
1468 return ret;
1469 }
1470
1471 static void bq27xxx_battery_set_config(struct bq27xxx_device_info *di,
1472 struct power_supply_battery_info *info)
1473 {
1474 struct bq27xxx_dm_buf bd = BQ27XXX_DM_BUF(di, BQ27XXX_DM_DESIGN_CAPACITY);
1475 struct bq27xxx_dm_buf bt = BQ27XXX_DM_BUF(di, BQ27XXX_DM_TERMINATE_VOLTAGE);
1476 bool updated;
1477
1478 if (bq27xxx_battery_unseal(di) < 0)
1479 return;
1480
1481 if (info->charge_full_design_uah != -EINVAL &&
1482 info->energy_full_design_uwh != -EINVAL) {
1483 bq27xxx_battery_read_dm_block(di, &bd);
1484 /* assume design energy & capacity are in same block */
1485 bq27xxx_battery_update_dm_block(di, &bd,
1486 BQ27XXX_DM_DESIGN_CAPACITY,
1487 info->charge_full_design_uah / 1000);
1488 bq27xxx_battery_update_dm_block(di, &bd,
1489 BQ27XXX_DM_DESIGN_ENERGY,
1490 info->energy_full_design_uwh / 1000);
1491 }
1492
1493 if (info->voltage_min_design_uv != -EINVAL) {
1494 bool same = bd.class == bt.class && bd.block == bt.block;
1495 if (!same)
1496 bq27xxx_battery_read_dm_block(di, &bt);
1497 bq27xxx_battery_update_dm_block(di, same ? &bd : &bt,
1498 BQ27XXX_DM_TERMINATE_VOLTAGE,
1499 info->voltage_min_design_uv / 1000);
1500 }
1501
1502 updated = bd.dirty || bt.dirty;
1503
1504 bq27xxx_battery_write_dm_block(di, &bd);
1505 bq27xxx_battery_write_dm_block(di, &bt);
1506
1507 bq27xxx_battery_seal(di);
1508
1509 if (updated && !(di->opts & BQ27XXX_O_CFGUP)) {
1510 bq27xxx_write(di, BQ27XXX_REG_CTRL, BQ27XXX_RESET, false);
1511 BQ27XXX_MSLEEP(300); /* reset time is not documented */
1512 }
1513 /* assume bq27xxx_battery_update() is called hereafter */
1514 }
1515
1516 static void bq27xxx_battery_settings(struct bq27xxx_device_info *di)
1517 {
1518 struct power_supply_battery_info *info;
1519 unsigned int min, max;
1520
1521 if (power_supply_get_battery_info(di->bat, &info) < 0)
1522 return;
1523
1524 if (!di->dm_regs) {
1525 dev_warn(di->dev, "data memory update not supported for chip\n");
1526 return;
1527 }
1528
1529 if (info->energy_full_design_uwh != info->charge_full_design_uah) {
1530 if (info->energy_full_design_uwh == -EINVAL)
1531 dev_warn(di->dev, "missing battery:energy-full-design-microwatt-hours\n");
1532 else if (info->charge_full_design_uah == -EINVAL)
1533 dev_warn(di->dev, "missing battery:charge-full-design-microamp-hours\n");
1534 }
1535
1536 /* assume min == 0 */
1537 max = di->dm_regs[BQ27XXX_DM_DESIGN_ENERGY].max;
1538 if (info->energy_full_design_uwh > max * 1000) {
1539 dev_err(di->dev, "invalid battery:energy-full-design-microwatt-hours %d\n",
1540 info->energy_full_design_uwh);
1541 info->energy_full_design_uwh = -EINVAL;
1542 }
1543
1544 /* assume min == 0 */
1545 max = di->dm_regs[BQ27XXX_DM_DESIGN_CAPACITY].max;
1546 if (info->charge_full_design_uah > max * 1000) {
1547 dev_err(di->dev, "invalid battery:charge-full-design-microamp-hours %d\n",
1548 info->charge_full_design_uah);
1549 info->charge_full_design_uah = -EINVAL;
1550 }
1551
1552 min = di->dm_regs[BQ27XXX_DM_TERMINATE_VOLTAGE].min;
1553 max = di->dm_regs[BQ27XXX_DM_TERMINATE_VOLTAGE].max;
1554 if ((info->voltage_min_design_uv < min * 1000 ||
1555 info->voltage_min_design_uv > max * 1000) &&
1556 info->voltage_min_design_uv != -EINVAL) {
1557 dev_err(di->dev, "invalid battery:voltage-min-design-microvolt %d\n",
1558 info->voltage_min_design_uv);
1559 info->voltage_min_design_uv = -EINVAL;
1560 }
1561
1562 if ((info->energy_full_design_uwh != -EINVAL &&
1563 info->charge_full_design_uah != -EINVAL) ||
1564 info->voltage_min_design_uv != -EINVAL)
1565 bq27xxx_battery_set_config(di, info);
1566 }
1567
1568 /*
1569 * Return the battery State-of-Charge
1570 * Or < 0 if something fails.
1571 */
1572 static int bq27xxx_battery_read_soc(struct bq27xxx_device_info *di)
1573 {
1574 int soc;
1575
1576 if (di->opts & BQ27XXX_O_SOC_SI)
1577 soc = bq27xxx_read(di, BQ27XXX_REG_SOC, true);
1578 else
1579 soc = bq27xxx_read(di, BQ27XXX_REG_SOC, false);
1580
1581 if (soc < 0)
1582 dev_dbg(di->dev, "error reading State-of-Charge\n");
1583
1584 return soc;
1585 }
1586
1587 /*
1588 * Return a battery charge value in µAh
1589 * Or < 0 if something fails.
1590 */
1591 static int bq27xxx_battery_read_charge(struct bq27xxx_device_info *di, u8 reg,
1592 union power_supply_propval *val)
1593 {
1594 int charge;
1595
1596 charge = bq27xxx_read(di, reg, false);
1597 if (charge < 0) {
1598 dev_dbg(di->dev, "error reading charge register %02x: %d\n",
1599 reg, charge);
1600 return charge;
1601 }
1602
1603 if (di->opts & BQ27XXX_O_ZERO)
1604 charge *= BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
1605 else
1606 charge *= 1000;
1607
1608 val->intval = charge;
1609
1610 return 0;
1611 }
1612
1613 /*
1614 * Return the battery Nominal available capacity in µAh
1615 * Or < 0 if something fails.
1616 */
1617 static inline int bq27xxx_battery_read_nac(struct bq27xxx_device_info *di,
1618 union power_supply_propval *val)
1619 {
1620 return bq27xxx_battery_read_charge(di, BQ27XXX_REG_NAC, val);
1621 }
1622
1623 /*
1624 * Return the battery Remaining Capacity in µAh
1625 * Or < 0 if something fails.
1626 */
1627 static inline int bq27xxx_battery_read_rc(struct bq27xxx_device_info *di,
1628 union power_supply_propval *val)
1629 {
1630 return bq27xxx_battery_read_charge(di, BQ27XXX_REG_RC, val);
1631 }
1632
1633 /*
1634 * Return the battery Full Charge Capacity in µAh
1635 * Or < 0 if something fails.
1636 */
1637 static inline int bq27xxx_battery_read_fcc(struct bq27xxx_device_info *di,
1638 union power_supply_propval *val)
1639 {
1640 return bq27xxx_battery_read_charge(di, BQ27XXX_REG_FCC, val);
1641 }
1642
1643 /*
1644 * Return the Design Capacity in µAh
1645 * Or < 0 if something fails.
1646 */
1647 static int bq27xxx_battery_read_dcap(struct bq27xxx_device_info *di,
1648 union power_supply_propval *val)
1649 {
1650 int dcap;
1651
1652 /* We only have to read charge design full once */
1653 if (di->charge_design_full > 0) {
1654 val->intval = di->charge_design_full;
1655 return 0;
1656 }
1657
1658 if (di->opts & BQ27XXX_O_ZERO)
1659 dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, true);
1660 else
1661 dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, false);
1662
1663 if (dcap < 0) {
1664 dev_dbg(di->dev, "error reading design capacity\n");
1665 return dcap;
1666 }
1667
1668 if (di->opts & BQ27XXX_O_ZERO)
1669 dcap = (dcap << 8) * BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
1670 else
1671 dcap *= 1000;
1672
1673 /* Save for later reads */
1674 di->charge_design_full = dcap;
1675
1676 val->intval = dcap;
1677
1678 return 0;
1679 }
1680
1681 /*
1682 * Return the battery Available energy in µWh
1683 * Or < 0 if something fails.
1684 */
1685 static int bq27xxx_battery_read_energy(struct bq27xxx_device_info *di,
1686 union power_supply_propval *val)
1687 {
1688 int ae;
1689
1690 ae = bq27xxx_read(di, BQ27XXX_REG_AE, false);
1691 if (ae < 0) {
1692 dev_dbg(di->dev, "error reading available energy\n");
1693 return ae;
1694 }
1695
1696 if (di->opts & BQ27XXX_O_ZERO)
1697 ae *= BQ27XXX_POWER_CONSTANT / BQ27XXX_RS;
1698 else
1699 ae *= 1000;
1700
1701 val->intval = ae;
1702
1703 return 0;
1704 }
1705
1706 /*
1707 * Return the battery temperature in tenths of degree Celsius
1708 * Or < 0 if something fails.
1709 */
1710 static int bq27xxx_battery_read_temperature(struct bq27xxx_device_info *di,
1711 union power_supply_propval *val)
1712 {
1713 int temp;
1714
1715 temp = bq27xxx_read(di, BQ27XXX_REG_TEMP, false);
1716 if (temp < 0) {
1717 dev_err(di->dev, "error reading temperature\n");
1718 return temp;
1719 }
1720
1721 if (di->opts & BQ27XXX_O_ZERO)
1722 temp = 5 * temp / 2;
1723
1724 /* Convert decidegree Kelvin to Celsius */
1725 temp -= 2731;
1726
1727 val->intval = temp;
1728
1729 return 0;
1730 }
1731
1732 /*
1733 * Return the battery Cycle count total
1734 * Or < 0 if something fails.
1735 */
1736 static int bq27xxx_battery_read_cyct(struct bq27xxx_device_info *di,
1737 union power_supply_propval *val)
1738 {
1739 int cyct;
1740
1741 cyct = bq27xxx_read(di, BQ27XXX_REG_CYCT, false);
1742 if (cyct < 0)
1743 dev_err(di->dev, "error reading cycle count total\n");
1744
1745 val->intval = cyct;
1746
1747 return 0;
1748 }
1749
1750 /*
1751 * Read a time register.
1752 * Return < 0 if something fails.
1753 */
1754 static int bq27xxx_battery_read_time(struct bq27xxx_device_info *di, u8 reg,
1755 union power_supply_propval *val)
1756 {
1757 int tval;
1758
1759 tval = bq27xxx_read(di, reg, false);
1760 if (tval < 0) {
1761 dev_dbg(di->dev, "error reading time register %02x: %d\n",
1762 reg, tval);
1763 return tval;
1764 }
1765
1766 if (tval == 65535)
1767 return -ENODATA;
1768
1769 val->intval = tval * 60;
1770
1771 return 0;
1772 }
1773
1774 /*
1775 * Returns true if a battery over temperature condition is detected
1776 */
1777 static bool bq27xxx_battery_overtemp(struct bq27xxx_device_info *di, u16 flags)
1778 {
1779 if (di->opts & BQ27XXX_O_OTDC)
1780 return flags & (BQ27XXX_FLAG_OTC | BQ27XXX_FLAG_OTD);
1781 if (di->opts & BQ27XXX_O_UTOT)
1782 return flags & BQ27XXX_FLAG_OT;
1783
1784 return false;
1785 }
1786
1787 /*
1788 * Returns true if a battery under temperature condition is detected
1789 */
1790 static bool bq27xxx_battery_undertemp(struct bq27xxx_device_info *di, u16 flags)
1791 {
1792 if (di->opts & BQ27XXX_O_UTOT)
1793 return flags & BQ27XXX_FLAG_UT;
1794
1795 return false;
1796 }
1797
1798 /*
1799 * Returns true if a low state of charge condition is detected
1800 */
1801 static bool bq27xxx_battery_dead(struct bq27xxx_device_info *di, u16 flags)
1802 {
1803 if (di->opts & BQ27XXX_O_ZERO)
1804 return flags & (BQ27000_FLAG_EDV1 | BQ27000_FLAG_EDVF);
1805 else if (di->opts & BQ27Z561_O_BITS)
1806 return flags & BQ27Z561_FLAG_FDC;
1807 else
1808 return flags & (BQ27XXX_FLAG_SOC1 | BQ27XXX_FLAG_SOCF);
1809 }
1810
1811 /*
1812 * Returns true if reported battery capacity is inaccurate
1813 */
1814 static bool bq27xxx_battery_capacity_inaccurate(struct bq27xxx_device_info *di,
1815 u16 flags)
1816 {
1817 if (di->opts & BQ27XXX_O_HAS_CI)
1818 return (flags & BQ27000_FLAG_CI);
1819 else
1820 return false;
1821 }
1822
1823 static int bq27xxx_battery_read_health(struct bq27xxx_device_info *di,
1824 union power_supply_propval *val)
1825 {
1826 int health;
1827
1828 /* Unlikely but important to return first */
1829 if (unlikely(bq27xxx_battery_overtemp(di, di->cache.flags)))
1830 health = POWER_SUPPLY_HEALTH_OVERHEAT;
1831 else if (unlikely(bq27xxx_battery_undertemp(di, di->cache.flags)))
1832 health = POWER_SUPPLY_HEALTH_COLD;
1833 else if (unlikely(bq27xxx_battery_dead(di, di->cache.flags)))
1834 health = POWER_SUPPLY_HEALTH_DEAD;
1835 else if (unlikely(bq27xxx_battery_capacity_inaccurate(di, di->cache.flags)))
1836 health = POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED;
1837 else
1838 health = POWER_SUPPLY_HEALTH_GOOD;
1839
1840 val->intval = health;
1841
1842 return 0;
1843 }
1844
1845 static bool bq27xxx_battery_is_full(struct bq27xxx_device_info *di, int flags)
1846 {
1847 if (di->opts & BQ27XXX_O_ZERO)
1848 return (flags & BQ27000_FLAG_FC);
1849 else if (di->opts & BQ27Z561_O_BITS)
1850 return (flags & BQ27Z561_FLAG_FC);
1851 else
1852 return (flags & BQ27XXX_FLAG_FC);
1853 }
1854
1855 /*
1856 * Return the battery average current in µA and the status
1857 * Note that current can be negative signed as well
1858 * Or 0 if something fails.
1859 */
1860 static int bq27xxx_battery_current_and_status(
1861 struct bq27xxx_device_info *di,
1862 union power_supply_propval *val_curr,
1863 union power_supply_propval *val_status,
1864 struct bq27xxx_reg_cache *cache)
1865 {
1866 bool single_flags = (di->opts & BQ27XXX_O_ZERO);
1867 int curr;
1868 int flags;
1869
1870 curr = bq27xxx_read(di, BQ27XXX_REG_AI, false);
1871 if (curr < 0) {
1872 dev_err(di->dev, "error reading current\n");
1873 return curr;
1874 }
1875
1876 if (cache) {
1877 flags = cache->flags;
1878 } else {
1879 flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, single_flags);
1880 if (flags < 0) {
1881 dev_err(di->dev, "error reading flags\n");
1882 return flags;
1883 }
1884 }
1885
1886 if (di->opts & BQ27XXX_O_ZERO) {
1887 if (!(flags & BQ27000_FLAG_CHGS)) {
1888 dev_dbg(di->dev, "negative current!\n");
1889 curr = -curr;
1890 }
1891
1892 curr = curr * BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
1893 } else {
1894 /* Other gauges return signed value */
1895 curr = (int)((s16)curr) * 1000;
1896 }
1897
1898 if (val_curr)
1899 val_curr->intval = curr;
1900
1901 if (val_status) {
1902 if (bq27xxx_battery_is_full(di, flags))
1903 val_status->intval = POWER_SUPPLY_STATUS_FULL;
1904 else if (curr > 0)
1905 val_status->intval = POWER_SUPPLY_STATUS_CHARGING;
1906 else if (curr < 0)
1907 val_status->intval = POWER_SUPPLY_STATUS_DISCHARGING;
1908 else
1909 val_status->intval = POWER_SUPPLY_STATUS_NOT_CHARGING;
1910 }
1911
1912 return 0;
1913 }
1914
1915 static void bq27xxx_battery_update_unlocked(struct bq27xxx_device_info *di)
1916 {
1917 union power_supply_propval status = di->last_status;
1918 struct bq27xxx_reg_cache cache = {0, };
1919 bool has_singe_flag = di->opts & BQ27XXX_O_ZERO;
1920
1921 cache.flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, has_singe_flag);
1922 if ((cache.flags & 0xff) == 0xff)
1923 cache.flags = -1; /* read error */
1924 if (cache.flags >= 0) {
1925 cache.capacity = bq27xxx_battery_read_soc(di);
1926
1927 /*
1928 * On gauges with signed current reporting the current must be
1929 * checked to detect charging <-> discharging status changes.
1930 */
1931 if (!(di->opts & BQ27XXX_O_ZERO))
1932 bq27xxx_battery_current_and_status(di, NULL, &status, &cache);
1933 }
1934
1935 if ((di->cache.capacity != cache.capacity) ||
1936 (di->cache.flags != cache.flags) ||
1937 (di->last_status.intval != status.intval)) {
1938 di->last_status.intval = status.intval;
1939 power_supply_changed(di->bat);
1940 }
1941
1942 if (memcmp(&di->cache, &cache, sizeof(cache)) != 0)
1943 di->cache = cache;
1944
1945 di->last_update = jiffies;
1946
1947 if (!di->removed && poll_interval > 0)
1948 mod_delayed_work(system_wq, &di->work, poll_interval * HZ);
1949 }
1950
1951 void bq27xxx_battery_update(struct bq27xxx_device_info *di)
1952 {
1953 mutex_lock(&di->lock);
1954 bq27xxx_battery_update_unlocked(di);
1955 mutex_unlock(&di->lock);
1956 }
1957 EXPORT_SYMBOL_GPL(bq27xxx_battery_update);
1958
1959 static void bq27xxx_battery_poll(struct work_struct *work)
1960 {
1961 struct bq27xxx_device_info *di =
1962 container_of(work, struct bq27xxx_device_info,
1963 work.work);
1964
1965 bq27xxx_battery_update(di);
1966 }
1967
1968 /*
1969 * Get the average power in µW
1970 * Return < 0 if something fails.
1971 */
1972 static int bq27xxx_battery_pwr_avg(struct bq27xxx_device_info *di,
1973 union power_supply_propval *val)
1974 {
1975 int power;
1976
1977 power = bq27xxx_read(di, BQ27XXX_REG_AP, false);
1978 if (power < 0) {
1979 dev_err(di->dev,
1980 "error reading average power register %02x: %d\n",
1981 BQ27XXX_REG_AP, power);
1982 return power;
1983 }
1984
1985 if (di->opts & BQ27XXX_O_ZERO)
1986 val->intval = (power * BQ27XXX_POWER_CONSTANT) / BQ27XXX_RS;
1987 else
1988 /* Other gauges return a signed value in units of 10mW */
1989 val->intval = (int)((s16)power) * 10000;
1990
1991 return 0;
1992 }
1993
1994 static int bq27xxx_battery_capacity_level(struct bq27xxx_device_info *di,
1995 union power_supply_propval *val)
1996 {
1997 int level;
1998
1999 if (di->opts & BQ27XXX_O_ZERO) {
2000 if (di->cache.flags & BQ27000_FLAG_FC)
2001 level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
2002 else if (di->cache.flags & BQ27000_FLAG_EDVF)
2003 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
2004 else if (di->cache.flags & BQ27000_FLAG_EDV1)
2005 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
2006 else
2007 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
2008 } else if (di->opts & BQ27Z561_O_BITS) {
2009 if (di->cache.flags & BQ27Z561_FLAG_FC)
2010 level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
2011 else if (di->cache.flags & BQ27Z561_FLAG_FDC)
2012 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
2013 else
2014 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
2015 } else {
2016 if (di->cache.flags & BQ27XXX_FLAG_FC)
2017 level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
2018 else if (di->cache.flags & BQ27XXX_FLAG_SOCF)
2019 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
2020 else if (di->cache.flags & BQ27XXX_FLAG_SOC1)
2021 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
2022 else
2023 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
2024 }
2025
2026 val->intval = level;
2027
2028 return 0;
2029 }
2030
2031 /*
2032 * Return the battery Voltage in millivolts
2033 * Or < 0 if something fails.
2034 */
2035 static int bq27xxx_battery_voltage(struct bq27xxx_device_info *di,
2036 union power_supply_propval *val)
2037 {
2038 int volt;
2039
2040 volt = bq27xxx_read(di, BQ27XXX_REG_VOLT, false);
2041 if (volt < 0) {
2042 dev_err(di->dev, "error reading voltage\n");
2043 return volt;
2044 }
2045
2046 val->intval = volt * 1000;
2047
2048 return 0;
2049 }
2050
2051 /*
2052 * Return the design maximum battery Voltage in microvolts, or < 0 if something
2053 * fails. The programmed value of the maximum battery voltage is determined by
2054 * QV0 and QV1 (bits 5 and 6) in the Pack Configuration register.
2055 */
2056 static int bq27xxx_battery_read_dmax_volt(struct bq27xxx_device_info *di,
2057 union power_supply_propval *val)
2058 {
2059 int reg_val, qv;
2060
2061 if (di->voltage_max_design > 0) {
2062 val->intval = di->voltage_max_design;
2063 return 0;
2064 }
2065
2066 reg_val = bq27xxx_read(di, BQ27XXX_REG_PKCFG, true);
2067 if (reg_val < 0) {
2068 dev_err(di->dev, "error reading design max voltage\n");
2069 return reg_val;
2070 }
2071
2072 qv = (reg_val >> 5) & 0x3;
2073 val->intval = 3968000 + 48000 * qv;
2074
2075 di->voltage_max_design = val->intval;
2076
2077 return 0;
2078 }
2079
2080 /*
2081 * Return the design minimum battery Voltage in microvolts
2082 * Or < 0 if something fails.
2083 */
2084 static int bq27xxx_battery_read_dmin_volt(struct bq27xxx_device_info *di,
2085 union power_supply_propval *val)
2086 {
2087 int volt;
2088
2089 /* We only have to read design minimum voltage once */
2090 if (di->voltage_min_design > 0) {
2091 val->intval = di->voltage_min_design;
2092 return 0;
2093 }
2094
2095 volt = bq27xxx_read(di, BQ27XXX_REG_SEDVF, true);
2096 if (volt < 0) {
2097 dev_err(di->dev, "error reading design min voltage\n");
2098 return volt;
2099 }
2100
2101 /* SEDVF = Design EDVF / 8 - 256 */
2102 val->intval = volt * 8000 + 2048000;
2103
2104 /* Save for later reads */
2105 di->voltage_min_design = val->intval;
2106
2107 return 0;
2108 }
2109
2110 static int bq27xxx_simple_value(int value,
2111 union power_supply_propval *val)
2112 {
2113 if (value < 0)
2114 return value;
2115
2116 val->intval = value;
2117
2118 return 0;
2119 }
2120
2121 static int bq27xxx_battery_get_property(struct power_supply *psy,
2122 enum power_supply_property psp,
2123 union power_supply_propval *val)
2124 {
2125 int ret = 0;
2126 struct bq27xxx_device_info *di = power_supply_get_drvdata(psy);
2127
2128 mutex_lock(&di->lock);
2129 if (time_is_before_jiffies(di->last_update + 5 * HZ))
2130 bq27xxx_battery_update_unlocked(di);
2131 mutex_unlock(&di->lock);
2132
2133 if (psp != POWER_SUPPLY_PROP_PRESENT && di->cache.flags < 0)
2134 return di->cache.flags;
2135
2136 switch (psp) {
2137 case POWER_SUPPLY_PROP_STATUS:
2138 ret = bq27xxx_battery_current_and_status(di, NULL, val, NULL);
2139 break;
2140 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2141 ret = bq27xxx_battery_voltage(di, val);
2142 break;
2143 case POWER_SUPPLY_PROP_PRESENT:
2144 val->intval = di->cache.flags < 0 ? 0 : 1;
2145 break;
2146 case POWER_SUPPLY_PROP_CURRENT_NOW:
2147 ret = bq27xxx_battery_current_and_status(di, val, NULL, NULL);
2148 break;
2149 case POWER_SUPPLY_PROP_CAPACITY:
2150 ret = bq27xxx_simple_value(di->cache.capacity, val);
2151 break;
2152 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2153 ret = bq27xxx_battery_capacity_level(di, val);
2154 break;
2155 case POWER_SUPPLY_PROP_TEMP:
2156 ret = bq27xxx_battery_read_temperature(di, val);
2157 break;
2158 case POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW:
2159 ret = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTE, val);
2160 break;
2161 case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
2162 ret = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTECP, val);
2163 break;
2164 case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW:
2165 ret = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTF, val);
2166 break;
2167 case POWER_SUPPLY_PROP_TECHNOLOGY:
2168 if (di->opts & BQ27XXX_O_MUL_CHEM)
2169 val->intval = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
2170 else
2171 val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
2172 break;
2173 case POWER_SUPPLY_PROP_CHARGE_NOW:
2174 if (di->regs[BQ27XXX_REG_NAC] != INVALID_REG_ADDR)
2175 ret = bq27xxx_battery_read_nac(di, val);
2176 else
2177 ret = bq27xxx_battery_read_rc(di, val);
2178 break;
2179 case POWER_SUPPLY_PROP_CHARGE_FULL:
2180 ret = bq27xxx_battery_read_fcc(di, val);
2181 break;
2182 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2183 ret = bq27xxx_battery_read_dcap(di, val);
2184 break;
2185 /*
2186 * TODO: Implement these to make registers set from
2187 * power_supply_battery_info visible in sysfs.
2188 */
2189 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2190 return -EINVAL;
2191 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
2192 ret = bq27xxx_battery_read_dmin_volt(di, val);
2193 break;
2194 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
2195 ret = bq27xxx_battery_read_dmax_volt(di, val);
2196 break;
2197 case POWER_SUPPLY_PROP_CYCLE_COUNT:
2198 ret = bq27xxx_battery_read_cyct(di, val);
2199 break;
2200 case POWER_SUPPLY_PROP_ENERGY_NOW:
2201 ret = bq27xxx_battery_read_energy(di, val);
2202 break;
2203 case POWER_SUPPLY_PROP_POWER_AVG:
2204 ret = bq27xxx_battery_pwr_avg(di, val);
2205 break;
2206 case POWER_SUPPLY_PROP_HEALTH:
2207 ret = bq27xxx_battery_read_health(di, val);
2208 break;
2209 case POWER_SUPPLY_PROP_MANUFACTURER:
2210 val->strval = BQ27XXX_MANUFACTURER;
2211 break;
2212 default:
2213 return -EINVAL;
2214 }
2215
2216 return ret;
2217 }
2218
2219 static void bq27xxx_external_power_changed(struct power_supply *psy)
2220 {
2221 struct bq27xxx_device_info *di = power_supply_get_drvdata(psy);
2222
2223 /* After charger plug in/out wait 0.5s for things to stabilize */
2224 mod_delayed_work(system_wq, &di->work, HZ / 2);
2225 }
2226
2227 static void bq27xxx_battery_mutex_destroy(void *data)
2228 {
2229 struct mutex *lock = data;
2230
2231 mutex_destroy(lock);
2232 }
2233
2234 int bq27xxx_battery_setup(struct bq27xxx_device_info *di)
2235 {
2236 struct power_supply_desc *psy_desc;
2237 struct power_supply_config psy_cfg = {
2238 .fwnode = dev_fwnode(di->dev),
2239 .drv_data = di,
2240 .no_wakeup_source = true,
2241 };
2242 int ret;
2243
2244 INIT_DELAYED_WORK(&di->work, bq27xxx_battery_poll);
2245 mutex_init(&di->lock);
2246 ret = devm_add_action_or_reset(di->dev, bq27xxx_battery_mutex_destroy,
2247 &di->lock);
2248 if (ret)
2249 return ret;
2250
2251 di->regs = bq27xxx_chip_data[di->chip].regs;
2252 di->unseal_key = bq27xxx_chip_data[di->chip].unseal_key;
2253 di->dm_regs = bq27xxx_chip_data[di->chip].dm_regs;
2254 di->opts = bq27xxx_chip_data[di->chip].opts;
2255
2256 psy_desc = devm_kzalloc(di->dev, sizeof(*psy_desc), GFP_KERNEL);
2257 if (!psy_desc)
2258 return -ENOMEM;
2259
2260 psy_desc->name = di->name;
2261 psy_desc->type = POWER_SUPPLY_TYPE_BATTERY;
2262 psy_desc->properties = bq27xxx_chip_data[di->chip].props;
2263 psy_desc->num_properties = bq27xxx_chip_data[di->chip].props_size;
2264 psy_desc->get_property = bq27xxx_battery_get_property;
2265 psy_desc->external_power_changed = bq27xxx_external_power_changed;
2266
2267 di->bat = devm_power_supply_register(di->dev, psy_desc, &psy_cfg);
2268 if (IS_ERR(di->bat))
2269 return dev_err_probe(di->dev, PTR_ERR(di->bat),
2270 "failed to register battery\n");
2271
2272 bq27xxx_battery_settings(di);
2273 bq27xxx_battery_update(di);
2274
2275 mutex_lock(&bq27xxx_list_lock);
2276 list_add(&di->list, &bq27xxx_battery_devices);
2277 mutex_unlock(&bq27xxx_list_lock);
2278
2279 return 0;
2280 }
2281 EXPORT_SYMBOL_GPL(bq27xxx_battery_setup);
2282
2283 void bq27xxx_battery_teardown(struct bq27xxx_device_info *di)
2284 {
2285 mutex_lock(&bq27xxx_list_lock);
2286 list_del(&di->list);
2287 mutex_unlock(&bq27xxx_list_lock);
2288
2289 /* Set removed to avoid bq27xxx_battery_update() re-queuing the work */
2290 mutex_lock(&di->lock);
2291 di->removed = true;
2292 mutex_unlock(&di->lock);
2293
2294 cancel_delayed_work_sync(&di->work);
2295 }
2296 EXPORT_SYMBOL_GPL(bq27xxx_battery_teardown);
2297
2298 #ifdef CONFIG_PM_SLEEP
2299 static int bq27xxx_battery_suspend(struct device *dev)
2300 {
2301 struct bq27xxx_device_info *di = dev_get_drvdata(dev);
2302
2303 cancel_delayed_work(&di->work);
2304 return 0;
2305 }
2306
2307 static int bq27xxx_battery_resume(struct device *dev)
2308 {
2309 struct bq27xxx_device_info *di = dev_get_drvdata(dev);
2310
2311 schedule_delayed_work(&di->work, 0);
2312 return 0;
2313 }
2314 #endif /* CONFIG_PM_SLEEP */
2315
2316 SIMPLE_DEV_PM_OPS(bq27xxx_battery_battery_pm_ops,
2317 bq27xxx_battery_suspend, bq27xxx_battery_resume);
2318 EXPORT_SYMBOL_GPL(bq27xxx_battery_battery_pm_ops);
2319
2320 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
2321 MODULE_DESCRIPTION("BQ27xxx battery monitor driver");
2322 MODULE_LICENSE("GPL");
2323