1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Conexant cx24123/cx24109 - DVB QPSK Satellite demod/tuner driver
4 *
5 * Copyright (C) 2005 Steven Toth <stoth@linuxtv.org>
6 *
7 * Support for KWorld DVB-S 100 by Vadim Catana <skystar@moldova.cc>
8 *
9 * Support for CX24123/CX24113-NIM by Patrick Boettcher <pb@linuxtv.org>
10 */
11
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <asm/div64.h>
17
18 #include <media/dvb_frontend.h>
19 #include "cx24123.h"
20
21 #define XTAL 10111000
22
23 static int force_band;
24 module_param(force_band, int, 0644);
25 MODULE_PARM_DESC(force_band, "Force a specific band select "\
26 "(1-9, default:off).");
27
28 static int debug;
29 module_param(debug, int, 0644);
30 MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)");
31
32 #define info(args...) do { printk(KERN_INFO "CX24123: " args); } while (0)
33 #define err(args...) do { printk(KERN_ERR "CX24123: " args); } while (0)
34
35 #define dprintk(args...) \
36 do { \
37 if (debug) { \
38 printk(KERN_DEBUG "CX24123: %s: ", __func__); \
39 printk(args); \
40 } \
41 } while (0)
42
43 struct cx24123_state {
44 struct i2c_adapter *i2c;
45 const struct cx24123_config *config;
46
47 struct dvb_frontend frontend;
48
49 /* Some PLL specifics for tuning */
50 u32 VCAarg;
51 u32 VGAarg;
52 u32 bandselectarg;
53 u32 pllarg;
54 u32 FILTune;
55
56 struct i2c_adapter tuner_i2c_adapter;
57
58 u8 demod_rev;
59
60 /* The Demod/Tuner can't easily provide these, we cache them */
61 u32 currentfreq;
62 u32 currentsymbolrate;
63 };
64
65 /* Various tuner defaults need to be established for a given symbol rate Sps */
66 static struct cx24123_AGC_val {
67 u32 symbolrate_low;
68 u32 symbolrate_high;
69 u32 VCAprogdata;
70 u32 VGAprogdata;
71 u32 FILTune;
72 } cx24123_AGC_vals[] =
73 {
74 {
75 .symbolrate_low = 1000000,
76 .symbolrate_high = 4999999,
77 /* the specs recommend other values for VGA offsets,
78 but tests show they are wrong */
79 .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0,
80 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x07,
81 .FILTune = 0x27f /* 0.41 V */
82 },
83 {
84 .symbolrate_low = 5000000,
85 .symbolrate_high = 14999999,
86 .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0,
87 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x1f,
88 .FILTune = 0x317 /* 0.90 V */
89 },
90 {
91 .symbolrate_low = 15000000,
92 .symbolrate_high = 45000000,
93 .VGAprogdata = (1 << 19) | (0x100 << 9) | 0x180,
94 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x3f,
95 .FILTune = 0x145 /* 2.70 V */
96 },
97 };
98
99 /*
100 * Various tuner defaults need to be established for a given frequency kHz.
101 * fixme: The bounds on the bands do not match the doc in real life.
102 * fixme: Some of them have been moved, other might need adjustment.
103 */
104 static struct cx24123_bandselect_val {
105 u32 freq_low;
106 u32 freq_high;
107 u32 VCOdivider;
108 u32 progdata;
109 } cx24123_bandselect_vals[] =
110 {
111 /* band 1 */
112 {
113 .freq_low = 950000,
114 .freq_high = 1074999,
115 .VCOdivider = 4,
116 .progdata = (0 << 19) | (0 << 9) | 0x40,
117 },
118
119 /* band 2 */
120 {
121 .freq_low = 1075000,
122 .freq_high = 1177999,
123 .VCOdivider = 4,
124 .progdata = (0 << 19) | (0 << 9) | 0x80,
125 },
126
127 /* band 3 */
128 {
129 .freq_low = 1178000,
130 .freq_high = 1295999,
131 .VCOdivider = 2,
132 .progdata = (0 << 19) | (1 << 9) | 0x01,
133 },
134
135 /* band 4 */
136 {
137 .freq_low = 1296000,
138 .freq_high = 1431999,
139 .VCOdivider = 2,
140 .progdata = (0 << 19) | (1 << 9) | 0x02,
141 },
142
143 /* band 5 */
144 {
145 .freq_low = 1432000,
146 .freq_high = 1575999,
147 .VCOdivider = 2,
148 .progdata = (0 << 19) | (1 << 9) | 0x04,
149 },
150
151 /* band 6 */
152 {
153 .freq_low = 1576000,
154 .freq_high = 1717999,
155 .VCOdivider = 2,
156 .progdata = (0 << 19) | (1 << 9) | 0x08,
157 },
158
159 /* band 7 */
160 {
161 .freq_low = 1718000,
162 .freq_high = 1855999,
163 .VCOdivider = 2,
164 .progdata = (0 << 19) | (1 << 9) | 0x10,
165 },
166
167 /* band 8 */
168 {
169 .freq_low = 1856000,
170 .freq_high = 2035999,
171 .VCOdivider = 2,
172 .progdata = (0 << 19) | (1 << 9) | 0x20,
173 },
174
175 /* band 9 */
176 {
177 .freq_low = 2036000,
178 .freq_high = 2150000,
179 .VCOdivider = 2,
180 .progdata = (0 << 19) | (1 << 9) | 0x40,
181 },
182 };
183
184 static struct {
185 u8 reg;
186 u8 data;
187 } cx24123_regdata[] =
188 {
189 {0x00, 0x03}, /* Reset system */
190 {0x00, 0x00}, /* Clear reset */
191 {0x03, 0x07}, /* QPSK, DVB, Auto Acquisition (default) */
192 {0x04, 0x10}, /* MPEG */
193 {0x05, 0x04}, /* MPEG */
194 {0x06, 0x31}, /* MPEG (default) */
195 {0x0b, 0x00}, /* Freq search start point (default) */
196 {0x0c, 0x00}, /* Demodulator sample gain (default) */
197 {0x0d, 0x7f}, /* Force driver to shift until the maximum (+-10 MHz) */
198 {0x0e, 0x03}, /* Default non-inverted, FEC 3/4 (default) */
199 {0x0f, 0xfe}, /* FEC search mask (all supported codes) */
200 {0x10, 0x01}, /* Default search inversion, no repeat (default) */
201 {0x16, 0x00}, /* Enable reading of frequency */
202 {0x17, 0x01}, /* Enable EsNO Ready Counter */
203 {0x1c, 0x80}, /* Enable error counter */
204 {0x20, 0x00}, /* Tuner burst clock rate = 500KHz */
205 {0x21, 0x15}, /* Tuner burst mode, word length = 0x15 */
206 {0x28, 0x00}, /* Enable FILTERV with positive pol., DiSEqC 2.x off */
207 {0x29, 0x00}, /* DiSEqC LNB_DC off */
208 {0x2a, 0xb0}, /* DiSEqC Parameters (default) */
209 {0x2b, 0x73}, /* DiSEqC Tone Frequency (default) */
210 {0x2c, 0x00}, /* DiSEqC Message (0x2c - 0x31) */
211 {0x2d, 0x00},
212 {0x2e, 0x00},
213 {0x2f, 0x00},
214 {0x30, 0x00},
215 {0x31, 0x00},
216 {0x32, 0x8c}, /* DiSEqC Parameters (default) */
217 {0x33, 0x00}, /* Interrupts off (0x33 - 0x34) */
218 {0x34, 0x00},
219 {0x35, 0x03}, /* DiSEqC Tone Amplitude (default) */
220 {0x36, 0x02}, /* DiSEqC Parameters (default) */
221 {0x37, 0x3a}, /* DiSEqC Parameters (default) */
222 {0x3a, 0x00}, /* Enable AGC accumulator (for signal strength) */
223 {0x44, 0x00}, /* Constellation (default) */
224 {0x45, 0x00}, /* Symbol count (default) */
225 {0x46, 0x0d}, /* Symbol rate estimator on (default) */
226 {0x56, 0xc1}, /* Error Counter = Viterbi BER */
227 {0x57, 0xff}, /* Error Counter Window (default) */
228 {0x5c, 0x20}, /* Acquisition AFC Expiration window (default is 0x10) */
229 {0x67, 0x83}, /* Non-DCII symbol clock */
230 };
231
cx24123_i2c_writereg(struct cx24123_state * state,u8 i2c_addr,int reg,int data)232 static int cx24123_i2c_writereg(struct cx24123_state *state,
233 u8 i2c_addr, int reg, int data)
234 {
235 u8 buf[] = { reg, data };
236 struct i2c_msg msg = {
237 .addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
238 };
239 int err;
240
241 /* printk(KERN_DEBUG "wr(%02x): %02x %02x\n", i2c_addr, reg, data); */
242
243 err = i2c_transfer(state->i2c, &msg, 1);
244 if (err != 1) {
245 printk("%s: writereg error(err == %i, reg == 0x%02x, data == 0x%02x)\n",
246 __func__, err, reg, data);
247 return err;
248 }
249
250 return 0;
251 }
252
cx24123_i2c_readreg(struct cx24123_state * state,u8 i2c_addr,u8 reg)253 static int cx24123_i2c_readreg(struct cx24123_state *state, u8 i2c_addr, u8 reg)
254 {
255 int ret;
256 u8 b = 0;
257 struct i2c_msg msg[] = {
258 { .addr = i2c_addr, .flags = 0, .buf = ®, .len = 1 },
259 { .addr = i2c_addr, .flags = I2C_M_RD, .buf = &b, .len = 1 }
260 };
261
262 ret = i2c_transfer(state->i2c, msg, 2);
263
264 if (ret != 2) {
265 err("%s: reg=0x%x (error=%d)\n", __func__, reg, ret);
266 return ret;
267 }
268
269 /* printk(KERN_DEBUG "rd(%02x): %02x %02x\n", i2c_addr, reg, b); */
270
271 return b;
272 }
273
274 #define cx24123_readreg(state, reg) \
275 cx24123_i2c_readreg(state, state->config->demod_address, reg)
276 #define cx24123_writereg(state, reg, val) \
277 cx24123_i2c_writereg(state, state->config->demod_address, reg, val)
278
cx24123_set_inversion(struct cx24123_state * state,enum fe_spectral_inversion inversion)279 static int cx24123_set_inversion(struct cx24123_state *state,
280 enum fe_spectral_inversion inversion)
281 {
282 u8 nom_reg = cx24123_readreg(state, 0x0e);
283 u8 auto_reg = cx24123_readreg(state, 0x10);
284
285 switch (inversion) {
286 case INVERSION_OFF:
287 dprintk("inversion off\n");
288 cx24123_writereg(state, 0x0e, nom_reg & ~0x80);
289 cx24123_writereg(state, 0x10, auto_reg | 0x80);
290 break;
291 case INVERSION_ON:
292 dprintk("inversion on\n");
293 cx24123_writereg(state, 0x0e, nom_reg | 0x80);
294 cx24123_writereg(state, 0x10, auto_reg | 0x80);
295 break;
296 case INVERSION_AUTO:
297 dprintk("inversion auto\n");
298 cx24123_writereg(state, 0x10, auto_reg & ~0x80);
299 break;
300 default:
301 return -EINVAL;
302 }
303
304 return 0;
305 }
306
cx24123_get_inversion(struct cx24123_state * state,enum fe_spectral_inversion * inversion)307 static int cx24123_get_inversion(struct cx24123_state *state,
308 enum fe_spectral_inversion *inversion)
309 {
310 u8 val;
311
312 val = cx24123_readreg(state, 0x1b) >> 7;
313
314 if (val == 0) {
315 dprintk("read inversion off\n");
316 *inversion = INVERSION_OFF;
317 } else {
318 dprintk("read inversion on\n");
319 *inversion = INVERSION_ON;
320 }
321
322 return 0;
323 }
324
cx24123_set_fec(struct cx24123_state * state,enum fe_code_rate fec)325 static int cx24123_set_fec(struct cx24123_state *state, enum fe_code_rate fec)
326 {
327 u8 nom_reg = cx24123_readreg(state, 0x0e) & ~0x07;
328
329 if (((int)fec < FEC_NONE) || (fec > FEC_AUTO))
330 fec = FEC_AUTO;
331
332 /* Set the soft decision threshold */
333 if (fec == FEC_1_2)
334 cx24123_writereg(state, 0x43,
335 cx24123_readreg(state, 0x43) | 0x01);
336 else
337 cx24123_writereg(state, 0x43,
338 cx24123_readreg(state, 0x43) & ~0x01);
339
340 switch (fec) {
341 case FEC_1_2:
342 dprintk("set FEC to 1/2\n");
343 cx24123_writereg(state, 0x0e, nom_reg | 0x01);
344 cx24123_writereg(state, 0x0f, 0x02);
345 break;
346 case FEC_2_3:
347 dprintk("set FEC to 2/3\n");
348 cx24123_writereg(state, 0x0e, nom_reg | 0x02);
349 cx24123_writereg(state, 0x0f, 0x04);
350 break;
351 case FEC_3_4:
352 dprintk("set FEC to 3/4\n");
353 cx24123_writereg(state, 0x0e, nom_reg | 0x03);
354 cx24123_writereg(state, 0x0f, 0x08);
355 break;
356 case FEC_4_5:
357 dprintk("set FEC to 4/5\n");
358 cx24123_writereg(state, 0x0e, nom_reg | 0x04);
359 cx24123_writereg(state, 0x0f, 0x10);
360 break;
361 case FEC_5_6:
362 dprintk("set FEC to 5/6\n");
363 cx24123_writereg(state, 0x0e, nom_reg | 0x05);
364 cx24123_writereg(state, 0x0f, 0x20);
365 break;
366 case FEC_6_7:
367 dprintk("set FEC to 6/7\n");
368 cx24123_writereg(state, 0x0e, nom_reg | 0x06);
369 cx24123_writereg(state, 0x0f, 0x40);
370 break;
371 case FEC_7_8:
372 dprintk("set FEC to 7/8\n");
373 cx24123_writereg(state, 0x0e, nom_reg | 0x07);
374 cx24123_writereg(state, 0x0f, 0x80);
375 break;
376 case FEC_AUTO:
377 dprintk("set FEC to auto\n");
378 cx24123_writereg(state, 0x0f, 0xfe);
379 break;
380 default:
381 return -EOPNOTSUPP;
382 }
383
384 return 0;
385 }
386
cx24123_get_fec(struct cx24123_state * state,enum fe_code_rate * fec)387 static int cx24123_get_fec(struct cx24123_state *state, enum fe_code_rate *fec)
388 {
389 int ret;
390
391 ret = cx24123_readreg(state, 0x1b);
392 if (ret < 0)
393 return ret;
394 ret = ret & 0x07;
395
396 switch (ret) {
397 case 1:
398 *fec = FEC_1_2;
399 break;
400 case 2:
401 *fec = FEC_2_3;
402 break;
403 case 3:
404 *fec = FEC_3_4;
405 break;
406 case 4:
407 *fec = FEC_4_5;
408 break;
409 case 5:
410 *fec = FEC_5_6;
411 break;
412 case 6:
413 *fec = FEC_6_7;
414 break;
415 case 7:
416 *fec = FEC_7_8;
417 break;
418 default:
419 /* this can happen when there's no lock */
420 *fec = FEC_NONE;
421 }
422
423 return 0;
424 }
425
426 /* Approximation of closest integer of log2(a/b). It actually gives the
427 lowest integer i such that 2^i >= round(a/b) */
cx24123_int_log2(u32 a,u32 b)428 static u32 cx24123_int_log2(u32 a, u32 b)
429 {
430 u32 exp, nearest = 0;
431 u32 div = a / b;
432 if (a % b >= b / 2)
433 ++div;
434 if (div < (1UL << 31)) {
435 for (exp = 1; div > exp; nearest++)
436 exp += exp;
437 }
438 return nearest;
439 }
440
cx24123_set_symbolrate(struct cx24123_state * state,u32 srate)441 static int cx24123_set_symbolrate(struct cx24123_state *state, u32 srate)
442 {
443 u64 tmp;
444 u32 sample_rate, ratio, sample_gain;
445 u8 pll_mult;
446
447 /* check if symbol rate is within limits */
448 if ((srate > state->frontend.ops.info.symbol_rate_max) ||
449 (srate < state->frontend.ops.info.symbol_rate_min))
450 return -EOPNOTSUPP;
451
452 /* choose the sampling rate high enough for the required operation,
453 while optimizing the power consumed by the demodulator */
454 if (srate < (XTAL*2)/2)
455 pll_mult = 2;
456 else if (srate < (XTAL*3)/2)
457 pll_mult = 3;
458 else if (srate < (XTAL*4)/2)
459 pll_mult = 4;
460 else if (srate < (XTAL*5)/2)
461 pll_mult = 5;
462 else if (srate < (XTAL*6)/2)
463 pll_mult = 6;
464 else if (srate < (XTAL*7)/2)
465 pll_mult = 7;
466 else if (srate < (XTAL*8)/2)
467 pll_mult = 8;
468 else
469 pll_mult = 9;
470
471
472 sample_rate = pll_mult * XTAL;
473
474 /* SYSSymbolRate[21:0] = (srate << 23) / sample_rate */
475
476 tmp = ((u64)srate) << 23;
477 do_div(tmp, sample_rate);
478 ratio = (u32) tmp;
479
480 cx24123_writereg(state, 0x01, pll_mult * 6);
481
482 cx24123_writereg(state, 0x08, (ratio >> 16) & 0x3f);
483 cx24123_writereg(state, 0x09, (ratio >> 8) & 0xff);
484 cx24123_writereg(state, 0x0a, ratio & 0xff);
485
486 /* also set the demodulator sample gain */
487 sample_gain = cx24123_int_log2(sample_rate, srate);
488 tmp = cx24123_readreg(state, 0x0c) & ~0xe0;
489 cx24123_writereg(state, 0x0c, tmp | sample_gain << 5);
490
491 dprintk("srate=%d, ratio=0x%08x, sample_rate=%i sample_gain=%d\n",
492 srate, ratio, sample_rate, sample_gain);
493
494 return 0;
495 }
496
497 /*
498 * Based on the required frequency and symbolrate, the tuner AGC has
499 * to be configured and the correct band selected.
500 * Calculate those values.
501 */
cx24123_pll_calculate(struct dvb_frontend * fe)502 static int cx24123_pll_calculate(struct dvb_frontend *fe)
503 {
504 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
505 struct cx24123_state *state = fe->demodulator_priv;
506 u32 ndiv = 0, adiv = 0, vco_div = 0;
507 int i = 0;
508 int pump = 2;
509 int band = 0;
510 int num_bands = ARRAY_SIZE(cx24123_bandselect_vals);
511 struct cx24123_bandselect_val *bsv = NULL;
512 struct cx24123_AGC_val *agcv = NULL;
513
514 /* Defaults for low freq, low rate */
515 state->VCAarg = cx24123_AGC_vals[0].VCAprogdata;
516 state->VGAarg = cx24123_AGC_vals[0].VGAprogdata;
517 state->bandselectarg = cx24123_bandselect_vals[0].progdata;
518 vco_div = cx24123_bandselect_vals[0].VCOdivider;
519
520 /* For the given symbol rate, determine the VCA, VGA and
521 * FILTUNE programming bits */
522 for (i = 0; i < ARRAY_SIZE(cx24123_AGC_vals); i++) {
523 agcv = &cx24123_AGC_vals[i];
524 if ((agcv->symbolrate_low <= p->symbol_rate) &&
525 (agcv->symbolrate_high >= p->symbol_rate)) {
526 state->VCAarg = agcv->VCAprogdata;
527 state->VGAarg = agcv->VGAprogdata;
528 state->FILTune = agcv->FILTune;
529 }
530 }
531
532 /* determine the band to use */
533 if (force_band < 1 || force_band > num_bands) {
534 for (i = 0; i < num_bands; i++) {
535 bsv = &cx24123_bandselect_vals[i];
536 if ((bsv->freq_low <= p->frequency) &&
537 (bsv->freq_high >= p->frequency))
538 band = i;
539 }
540 } else
541 band = force_band - 1;
542
543 state->bandselectarg = cx24123_bandselect_vals[band].progdata;
544 vco_div = cx24123_bandselect_vals[band].VCOdivider;
545
546 /* determine the charge pump current */
547 if (p->frequency < (cx24123_bandselect_vals[band].freq_low +
548 cx24123_bandselect_vals[band].freq_high) / 2)
549 pump = 0x01;
550 else
551 pump = 0x02;
552
553 /* Determine the N/A dividers for the requested lband freq (in kHz). */
554 /* Note: the reference divider R=10, frequency is in KHz,
555 * XTAL is in Hz */
556 ndiv = (((p->frequency * vco_div * 10) /
557 (2 * XTAL / 1000)) / 32) & 0x1ff;
558 adiv = (((p->frequency * vco_div * 10) /
559 (2 * XTAL / 1000)) % 32) & 0x1f;
560
561 if (adiv == 0 && ndiv > 0)
562 ndiv--;
563
564 /* control bits 11, refdiv 11, charge pump polarity 1,
565 * charge pump current, ndiv, adiv */
566 state->pllarg = (3 << 19) | (3 << 17) | (1 << 16) |
567 (pump << 14) | (ndiv << 5) | adiv;
568
569 return 0;
570 }
571
572 /*
573 * Tuner data is 21 bits long, must be left-aligned in data.
574 * Tuner cx24109 is written through a dedicated 3wire interface
575 * on the demod chip.
576 */
cx24123_pll_writereg(struct dvb_frontend * fe,u32 data)577 static int cx24123_pll_writereg(struct dvb_frontend *fe, u32 data)
578 {
579 struct cx24123_state *state = fe->demodulator_priv;
580 unsigned long timeout;
581
582 dprintk("pll writereg called, data=0x%08x\n", data);
583
584 /* align the 21 bytes into to bit23 boundary */
585 data = data << 3;
586
587 /* Reset the demod pll word length to 0x15 bits */
588 cx24123_writereg(state, 0x21, 0x15);
589
590 /* write the msb 8 bits, wait for the send to be completed */
591 timeout = jiffies + msecs_to_jiffies(40);
592 cx24123_writereg(state, 0x22, (data >> 16) & 0xff);
593 while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
594 if (time_after(jiffies, timeout)) {
595 err("%s: demodulator is not responding, "\
596 "possibly hung, aborting.\n", __func__);
597 return -EREMOTEIO;
598 }
599 msleep(10);
600 }
601
602 /* send another 8 bytes, wait for the send to be completed */
603 timeout = jiffies + msecs_to_jiffies(40);
604 cx24123_writereg(state, 0x22, (data >> 8) & 0xff);
605 while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
606 if (time_after(jiffies, timeout)) {
607 err("%s: demodulator is not responding, "\
608 "possibly hung, aborting.\n", __func__);
609 return -EREMOTEIO;
610 }
611 msleep(10);
612 }
613
614 /* send the lower 5 bits of this byte, padded with 3 LBB,
615 * wait for the send to be completed */
616 timeout = jiffies + msecs_to_jiffies(40);
617 cx24123_writereg(state, 0x22, (data) & 0xff);
618 while ((cx24123_readreg(state, 0x20) & 0x80)) {
619 if (time_after(jiffies, timeout)) {
620 err("%s: demodulator is not responding," \
621 "possibly hung, aborting.\n", __func__);
622 return -EREMOTEIO;
623 }
624 msleep(10);
625 }
626
627 /* Trigger the demod to configure the tuner */
628 cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) | 2);
629 cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) & 0xfd);
630
631 return 0;
632 }
633
cx24123_pll_tune(struct dvb_frontend * fe)634 static int cx24123_pll_tune(struct dvb_frontend *fe)
635 {
636 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
637 struct cx24123_state *state = fe->demodulator_priv;
638 u8 val;
639
640 dprintk("frequency=%i\n", p->frequency);
641
642 if (cx24123_pll_calculate(fe) != 0) {
643 err("%s: cx24123_pll_calculate failed\n", __func__);
644 return -EINVAL;
645 }
646
647 /* Write the new VCO/VGA */
648 cx24123_pll_writereg(fe, state->VCAarg);
649 cx24123_pll_writereg(fe, state->VGAarg);
650
651 /* Write the new bandselect and pll args */
652 cx24123_pll_writereg(fe, state->bandselectarg);
653 cx24123_pll_writereg(fe, state->pllarg);
654
655 /* set the FILTUNE voltage */
656 val = cx24123_readreg(state, 0x28) & ~0x3;
657 cx24123_writereg(state, 0x27, state->FILTune >> 2);
658 cx24123_writereg(state, 0x28, val | (state->FILTune & 0x3));
659
660 dprintk("pll tune VCA=%d, band=%d, pll=%d\n", state->VCAarg,
661 state->bandselectarg, state->pllarg);
662
663 return 0;
664 }
665
666
667 /*
668 * 0x23:
669 * [7:7] = BTI enabled
670 * [6:6] = I2C repeater enabled
671 * [5:5] = I2C repeater start
672 * [0:0] = BTI start
673 */
674
675 /* mode == 1 -> i2c-repeater, 0 -> bti */
cx24123_repeater_mode(struct cx24123_state * state,u8 mode,u8 start)676 static int cx24123_repeater_mode(struct cx24123_state *state, u8 mode, u8 start)
677 {
678 u8 r = cx24123_readreg(state, 0x23) & 0x1e;
679 if (mode)
680 r |= (1 << 6) | (start << 5);
681 else
682 r |= (1 << 7) | (start);
683 return cx24123_writereg(state, 0x23, r);
684 }
685
cx24123_initfe(struct dvb_frontend * fe)686 static int cx24123_initfe(struct dvb_frontend *fe)
687 {
688 struct cx24123_state *state = fe->demodulator_priv;
689 int i;
690
691 dprintk("init frontend\n");
692
693 /* Configure the demod to a good set of defaults */
694 for (i = 0; i < ARRAY_SIZE(cx24123_regdata); i++)
695 cx24123_writereg(state, cx24123_regdata[i].reg,
696 cx24123_regdata[i].data);
697
698 /* Set the LNB polarity */
699 if (state->config->lnb_polarity)
700 cx24123_writereg(state, 0x32,
701 cx24123_readreg(state, 0x32) | 0x02);
702
703 if (state->config->dont_use_pll)
704 cx24123_repeater_mode(state, 1, 0);
705
706 return 0;
707 }
708
cx24123_set_voltage(struct dvb_frontend * fe,enum fe_sec_voltage voltage)709 static int cx24123_set_voltage(struct dvb_frontend *fe,
710 enum fe_sec_voltage voltage)
711 {
712 struct cx24123_state *state = fe->demodulator_priv;
713 u8 val;
714
715 val = cx24123_readreg(state, 0x29) & ~0x40;
716
717 switch (voltage) {
718 case SEC_VOLTAGE_13:
719 dprintk("setting voltage 13V\n");
720 return cx24123_writereg(state, 0x29, val & 0x7f);
721 case SEC_VOLTAGE_18:
722 dprintk("setting voltage 18V\n");
723 return cx24123_writereg(state, 0x29, val | 0x80);
724 case SEC_VOLTAGE_OFF:
725 /* already handled in cx88-dvb */
726 return 0;
727 default:
728 return -EINVAL;
729 }
730
731 return 0;
732 }
733
734 /* wait for diseqc queue to become ready (or timeout) */
cx24123_wait_for_diseqc(struct cx24123_state * state)735 static void cx24123_wait_for_diseqc(struct cx24123_state *state)
736 {
737 unsigned long timeout = jiffies + msecs_to_jiffies(200);
738 while (!(cx24123_readreg(state, 0x29) & 0x40)) {
739 if (time_after(jiffies, timeout)) {
740 err("%s: diseqc queue not ready, " \
741 "command may be lost.\n", __func__);
742 break;
743 }
744 msleep(10);
745 }
746 }
747
cx24123_send_diseqc_msg(struct dvb_frontend * fe,struct dvb_diseqc_master_cmd * cmd)748 static int cx24123_send_diseqc_msg(struct dvb_frontend *fe,
749 struct dvb_diseqc_master_cmd *cmd)
750 {
751 struct cx24123_state *state = fe->demodulator_priv;
752 int i, val, tone;
753
754 dprintk("\n");
755
756 /* stop continuous tone if enabled */
757 tone = cx24123_readreg(state, 0x29);
758 if (tone & 0x10)
759 cx24123_writereg(state, 0x29, tone & ~0x50);
760
761 /* wait for diseqc queue ready */
762 cx24123_wait_for_diseqc(state);
763
764 /* select tone mode */
765 cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb);
766
767 for (i = 0; i < cmd->msg_len; i++)
768 cx24123_writereg(state, 0x2C + i, cmd->msg[i]);
769
770 val = cx24123_readreg(state, 0x29);
771 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40) |
772 ((cmd->msg_len-3) & 3));
773
774 /* wait for diseqc message to finish sending */
775 cx24123_wait_for_diseqc(state);
776
777 /* restart continuous tone if enabled */
778 if (tone & 0x10)
779 cx24123_writereg(state, 0x29, tone & ~0x40);
780
781 return 0;
782 }
783
cx24123_diseqc_send_burst(struct dvb_frontend * fe,enum fe_sec_mini_cmd burst)784 static int cx24123_diseqc_send_burst(struct dvb_frontend *fe,
785 enum fe_sec_mini_cmd burst)
786 {
787 struct cx24123_state *state = fe->demodulator_priv;
788 int val, tone;
789
790 dprintk("\n");
791
792 /* stop continuous tone if enabled */
793 tone = cx24123_readreg(state, 0x29);
794 if (tone & 0x10)
795 cx24123_writereg(state, 0x29, tone & ~0x50);
796
797 /* wait for diseqc queue ready */
798 cx24123_wait_for_diseqc(state);
799
800 /* select tone mode */
801 cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) | 0x4);
802 msleep(30);
803 val = cx24123_readreg(state, 0x29);
804 if (burst == SEC_MINI_A)
805 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x00));
806 else if (burst == SEC_MINI_B)
807 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x08));
808 else
809 return -EINVAL;
810
811 cx24123_wait_for_diseqc(state);
812 cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb);
813
814 /* restart continuous tone if enabled */
815 if (tone & 0x10)
816 cx24123_writereg(state, 0x29, tone & ~0x40);
817
818 return 0;
819 }
820
cx24123_read_status(struct dvb_frontend * fe,enum fe_status * status)821 static int cx24123_read_status(struct dvb_frontend *fe, enum fe_status *status)
822 {
823 struct cx24123_state *state = fe->demodulator_priv;
824 int sync = cx24123_readreg(state, 0x14);
825
826 *status = 0;
827 if (state->config->dont_use_pll) {
828 u32 tun_status = 0;
829 if (fe->ops.tuner_ops.get_status)
830 fe->ops.tuner_ops.get_status(fe, &tun_status);
831 if (tun_status & TUNER_STATUS_LOCKED)
832 *status |= FE_HAS_SIGNAL;
833 } else {
834 int lock = cx24123_readreg(state, 0x20);
835 if (lock & 0x01)
836 *status |= FE_HAS_SIGNAL;
837 }
838
839 if (sync & 0x02)
840 *status |= FE_HAS_CARRIER; /* Phase locked */
841 if (sync & 0x04)
842 *status |= FE_HAS_VITERBI;
843
844 /* Reed-Solomon Status */
845 if (sync & 0x08)
846 *status |= FE_HAS_SYNC;
847 if (sync & 0x80)
848 *status |= FE_HAS_LOCK; /*Full Sync */
849
850 return 0;
851 }
852
853 /*
854 * Configured to return the measurement of errors in blocks,
855 * because no UCBLOCKS value is available, so this value doubles up
856 * to satisfy both measurements.
857 */
cx24123_read_ber(struct dvb_frontend * fe,u32 * ber)858 static int cx24123_read_ber(struct dvb_frontend *fe, u32 *ber)
859 {
860 struct cx24123_state *state = fe->demodulator_priv;
861
862 /* The true bit error rate is this value divided by
863 the window size (set as 256 * 255) */
864 *ber = ((cx24123_readreg(state, 0x1c) & 0x3f) << 16) |
865 (cx24123_readreg(state, 0x1d) << 8 |
866 cx24123_readreg(state, 0x1e));
867
868 dprintk("BER = %d\n", *ber);
869
870 return 0;
871 }
872
cx24123_read_signal_strength(struct dvb_frontend * fe,u16 * signal_strength)873 static int cx24123_read_signal_strength(struct dvb_frontend *fe,
874 u16 *signal_strength)
875 {
876 struct cx24123_state *state = fe->demodulator_priv;
877
878 /* larger = better */
879 *signal_strength = cx24123_readreg(state, 0x3b) << 8;
880
881 dprintk("Signal strength = %d\n", *signal_strength);
882
883 return 0;
884 }
885
cx24123_read_snr(struct dvb_frontend * fe,u16 * snr)886 static int cx24123_read_snr(struct dvb_frontend *fe, u16 *snr)
887 {
888 struct cx24123_state *state = fe->demodulator_priv;
889
890 /* Inverted raw Es/N0 count, totally bogus but better than the
891 BER threshold. */
892 *snr = 65535 - (((u16)cx24123_readreg(state, 0x18) << 8) |
893 (u16)cx24123_readreg(state, 0x19));
894
895 dprintk("read S/N index = %d\n", *snr);
896
897 return 0;
898 }
899
cx24123_set_frontend(struct dvb_frontend * fe)900 static int cx24123_set_frontend(struct dvb_frontend *fe)
901 {
902 struct cx24123_state *state = fe->demodulator_priv;
903 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
904
905 dprintk("\n");
906
907 if (state->config->set_ts_params)
908 state->config->set_ts_params(fe, 0);
909
910 state->currentfreq = p->frequency;
911 state->currentsymbolrate = p->symbol_rate;
912
913 cx24123_set_inversion(state, p->inversion);
914 cx24123_set_fec(state, p->fec_inner);
915 cx24123_set_symbolrate(state, p->symbol_rate);
916
917 if (!state->config->dont_use_pll)
918 cx24123_pll_tune(fe);
919 else if (fe->ops.tuner_ops.set_params)
920 fe->ops.tuner_ops.set_params(fe);
921 else
922 err("it seems I don't have a tuner...");
923
924 /* Enable automatic acquisition and reset cycle */
925 cx24123_writereg(state, 0x03, (cx24123_readreg(state, 0x03) | 0x07));
926 cx24123_writereg(state, 0x00, 0x10);
927 cx24123_writereg(state, 0x00, 0);
928
929 if (state->config->agc_callback)
930 state->config->agc_callback(fe);
931
932 return 0;
933 }
934
cx24123_get_frontend(struct dvb_frontend * fe,struct dtv_frontend_properties * p)935 static int cx24123_get_frontend(struct dvb_frontend *fe,
936 struct dtv_frontend_properties *p)
937 {
938 struct cx24123_state *state = fe->demodulator_priv;
939
940 dprintk("\n");
941
942 if (cx24123_get_inversion(state, &p->inversion) != 0) {
943 err("%s: Failed to get inversion status\n", __func__);
944 return -EREMOTEIO;
945 }
946 if (cx24123_get_fec(state, &p->fec_inner) != 0) {
947 err("%s: Failed to get fec status\n", __func__);
948 return -EREMOTEIO;
949 }
950 p->frequency = state->currentfreq;
951 p->symbol_rate = state->currentsymbolrate;
952
953 return 0;
954 }
955
cx24123_set_tone(struct dvb_frontend * fe,enum fe_sec_tone_mode tone)956 static int cx24123_set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
957 {
958 struct cx24123_state *state = fe->demodulator_priv;
959 u8 val;
960
961 /* wait for diseqc queue ready */
962 cx24123_wait_for_diseqc(state);
963
964 val = cx24123_readreg(state, 0x29) & ~0x40;
965
966 switch (tone) {
967 case SEC_TONE_ON:
968 dprintk("setting tone on\n");
969 return cx24123_writereg(state, 0x29, val | 0x10);
970 case SEC_TONE_OFF:
971 dprintk("setting tone off\n");
972 return cx24123_writereg(state, 0x29, val & 0xef);
973 default:
974 err("CASE reached default with tone=%d\n", tone);
975 return -EINVAL;
976 }
977
978 return 0;
979 }
980
cx24123_tune(struct dvb_frontend * fe,bool re_tune,unsigned int mode_flags,unsigned int * delay,enum fe_status * status)981 static int cx24123_tune(struct dvb_frontend *fe,
982 bool re_tune,
983 unsigned int mode_flags,
984 unsigned int *delay,
985 enum fe_status *status)
986 {
987 int retval = 0;
988
989 if (re_tune)
990 retval = cx24123_set_frontend(fe);
991
992 if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
993 cx24123_read_status(fe, status);
994 *delay = HZ/10;
995
996 return retval;
997 }
998
cx24123_get_algo(struct dvb_frontend * fe)999 static enum dvbfe_algo cx24123_get_algo(struct dvb_frontend *fe)
1000 {
1001 return DVBFE_ALGO_HW;
1002 }
1003
cx24123_release(struct dvb_frontend * fe)1004 static void cx24123_release(struct dvb_frontend *fe)
1005 {
1006 struct cx24123_state *state = fe->demodulator_priv;
1007 dprintk("\n");
1008 i2c_del_adapter(&state->tuner_i2c_adapter);
1009 kfree(state);
1010 }
1011
cx24123_tuner_i2c_tuner_xfer(struct i2c_adapter * i2c_adap,struct i2c_msg msg[],int num)1012 static int cx24123_tuner_i2c_tuner_xfer(struct i2c_adapter *i2c_adap,
1013 struct i2c_msg msg[], int num)
1014 {
1015 struct cx24123_state *state = i2c_get_adapdata(i2c_adap);
1016 /* this repeater closes after the first stop */
1017 cx24123_repeater_mode(state, 1, 1);
1018 return i2c_transfer(state->i2c, msg, num);
1019 }
1020
cx24123_tuner_i2c_func(struct i2c_adapter * adapter)1021 static u32 cx24123_tuner_i2c_func(struct i2c_adapter *adapter)
1022 {
1023 return I2C_FUNC_I2C;
1024 }
1025
1026 static const struct i2c_algorithm cx24123_tuner_i2c_algo = {
1027 .master_xfer = cx24123_tuner_i2c_tuner_xfer,
1028 .functionality = cx24123_tuner_i2c_func,
1029 };
1030
1031 struct i2c_adapter *
cx24123_get_tuner_i2c_adapter(struct dvb_frontend * fe)1032 cx24123_get_tuner_i2c_adapter(struct dvb_frontend *fe)
1033 {
1034 struct cx24123_state *state = fe->demodulator_priv;
1035 return &state->tuner_i2c_adapter;
1036 }
1037 EXPORT_SYMBOL(cx24123_get_tuner_i2c_adapter);
1038
1039 static const struct dvb_frontend_ops cx24123_ops;
1040
cx24123_attach(const struct cx24123_config * config,struct i2c_adapter * i2c)1041 struct dvb_frontend *cx24123_attach(const struct cx24123_config *config,
1042 struct i2c_adapter *i2c)
1043 {
1044 /* allocate memory for the internal state */
1045 struct cx24123_state *state =
1046 kzalloc(sizeof(struct cx24123_state), GFP_KERNEL);
1047
1048 dprintk("\n");
1049 if (state == NULL) {
1050 err("Unable to kzalloc\n");
1051 goto error;
1052 }
1053
1054 /* setup the state */
1055 state->config = config;
1056 state->i2c = i2c;
1057
1058 /* check if the demod is there */
1059 state->demod_rev = cx24123_readreg(state, 0x00);
1060 switch (state->demod_rev) {
1061 case 0xe1:
1062 info("detected CX24123C\n");
1063 break;
1064 case 0xd1:
1065 info("detected CX24123\n");
1066 break;
1067 default:
1068 err("wrong demod revision: %x\n", state->demod_rev);
1069 goto error;
1070 }
1071
1072 /* create dvb_frontend */
1073 memcpy(&state->frontend.ops, &cx24123_ops,
1074 sizeof(struct dvb_frontend_ops));
1075 state->frontend.demodulator_priv = state;
1076
1077 /* create tuner i2c adapter */
1078 if (config->dont_use_pll)
1079 cx24123_repeater_mode(state, 1, 0);
1080
1081 strscpy(state->tuner_i2c_adapter.name, "CX24123 tuner I2C bus",
1082 sizeof(state->tuner_i2c_adapter.name));
1083 state->tuner_i2c_adapter.algo = &cx24123_tuner_i2c_algo;
1084 state->tuner_i2c_adapter.algo_data = NULL;
1085 state->tuner_i2c_adapter.dev.parent = i2c->dev.parent;
1086 i2c_set_adapdata(&state->tuner_i2c_adapter, state);
1087 if (i2c_add_adapter(&state->tuner_i2c_adapter) < 0) {
1088 err("tuner i2c bus could not be initialized\n");
1089 goto error;
1090 }
1091
1092 return &state->frontend;
1093
1094 error:
1095 kfree(state);
1096
1097 return NULL;
1098 }
1099 EXPORT_SYMBOL_GPL(cx24123_attach);
1100
1101 static const struct dvb_frontend_ops cx24123_ops = {
1102 .delsys = { SYS_DVBS },
1103 .info = {
1104 .name = "Conexant CX24123/CX24109",
1105 .frequency_min_hz = 950 * MHz,
1106 .frequency_max_hz = 2150 * MHz,
1107 .frequency_stepsize_hz = 1011 * kHz,
1108 .frequency_tolerance_hz = 5 * MHz,
1109 .symbol_rate_min = 1000000,
1110 .symbol_rate_max = 45000000,
1111 .caps = FE_CAN_INVERSION_AUTO |
1112 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1113 FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
1114 FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1115 FE_CAN_QPSK | FE_CAN_RECOVER
1116 },
1117
1118 .release = cx24123_release,
1119
1120 .init = cx24123_initfe,
1121 .set_frontend = cx24123_set_frontend,
1122 .get_frontend = cx24123_get_frontend,
1123 .read_status = cx24123_read_status,
1124 .read_ber = cx24123_read_ber,
1125 .read_signal_strength = cx24123_read_signal_strength,
1126 .read_snr = cx24123_read_snr,
1127 .diseqc_send_master_cmd = cx24123_send_diseqc_msg,
1128 .diseqc_send_burst = cx24123_diseqc_send_burst,
1129 .set_tone = cx24123_set_tone,
1130 .set_voltage = cx24123_set_voltage,
1131 .tune = cx24123_tune,
1132 .get_frontend_algo = cx24123_get_algo,
1133 };
1134
1135 MODULE_DESCRIPTION("DVB Frontend module for Conexant " \
1136 "CX24123/CX24109/CX24113 hardware");
1137 MODULE_AUTHOR("Steven Toth");
1138 MODULE_LICENSE("GPL");
1139
1140